WO2022196714A1 - Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein - Google Patents

Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein Download PDF

Info

Publication number
WO2022196714A1
WO2022196714A1 PCT/JP2022/011788 JP2022011788W WO2022196714A1 WO 2022196714 A1 WO2022196714 A1 WO 2022196714A1 JP 2022011788 W JP2022011788 W JP 2022011788W WO 2022196714 A1 WO2022196714 A1 WO 2022196714A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
pericyte
pericytes
bfgf
present
Prior art date
Application number
PCT/JP2022/011788
Other languages
French (fr)
Japanese (ja)
Inventor
憲一郎 嶋谷
照 佐藤
雅夫 笹井
芳樹 澤
充弘 齋藤
繁 宮川
Original Assignee
アステラス製薬株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アステラス製薬株式会社, 国立大学法人大阪大学 filed Critical アステラス製薬株式会社
Priority to EP22771459.9A priority Critical patent/EP4310176A1/en
Priority to JP2023507146A priority patent/JPWO2022196714A1/ja
Publication of WO2022196714A1 publication Critical patent/WO2022196714A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/50Fibroblast growth factors [FGF]
    • C07K14/503Fibroblast growth factors [FGF] basic FGF [bFGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/44Vessels; Vascular smooth muscle cells; Endothelial cells; Endothelial progenitor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention is characterized by pericytes into which a basic fibroblast growth factor (bFGF) gene has been introduced, pharmaceutical compositions containing the pericytes, methods for producing the pericytes, and administration of the pericytes. It relates to angiogenesis therapy and the like.
  • bFGF basic fibroblast growth factor
  • Capillaries connect arterioles and venules, and are distributed deep in the body tissue in a mesh pattern so that oxygen and nutrients can be supplied to every corner of the body's periphery.
  • Capillaries are composed of a single layer of vascular endothelial cells and pericytes (vascular pericytes) surrounding them that form the luminal structure.
  • Pericytes as cells that coat vascular endothelial cells, play an important role in normal blood flow regulation such as maturation and stabilization of blood vessels and maintenance of the blood-brain barrier.
  • Critical lower extremity ischemia is a serious disease that impairs blood flow, but no effective drug therapy has been established, and it is treated by bypass surgery, endovascular treatment, and the like.
  • Patent Document 1 there has been a demand for the development of a new therapeutic method that induces the formation of peripheral capillaries by cell therapy.
  • Base fibroblast growth factor is a member of the growth factor family, also called FGF-2. It is known to contribute to angiogenesis by promoting endothelial cell growth and tube formation.
  • Human bFGF/FGF-2 protein is a single-chain polypeptide with a molecular weight of 18 kD consisting of 154 amino acids, and is known to be released from macrophages, endothelial cells, damaged muscle fibers, etc. (Henke C et al., Am. J. Pathol., (1993), 143: 1189-1199, Wang YX et al., J. Cell Sci., (2014), 127: 4543-4548).
  • bFGF/FGF-2 The most characteristic action of bFGF/FGF-2 in angiogenesis is to directly act on vascular endothelial cells to promote proliferation and tube formation of vascular endothelial cells. It is also believed that bFGF/FGF-2 indirectly promotes angiogenesis by regulating the expression of vascular endothelial growth factor (VEGF) in vascular smooth muscle cells (Non-Patent Document 1). It has been reported that introduction of the bFGF/FGF-2 gene into ischemic muscle tissue using a Sendai virus vector enhances endogenous VEGF and hepatocyte growth factor (HGF) expression, and induces improvement in lower extremity ischemia. (Non-Patent Document 2). Thus, bFGF/FGF-2 is a potent angiogenic factor, and is expected to be applied to ischemic diseases.
  • VEGF vascular endothelial growth factor
  • the object of the present invention is to provide cell therapy that is expected to be useful as angiogenesis therapy for peripheral vascular diseases such as severe lower extremity ischemia. Specifically, the object is to provide pericytes with high angiogenic potential and a method for producing the same.
  • the present inventors conducted intensive studies such as introducing several genes encoding angiogenic factors into pericytes. , the angiogenic ability of the pericytes transplanted into the living body is remarkably enhanced, and furthermore, the pericytes are applicable to angiogenic therapy such as severe lower extremity ischemia.
  • the present invention has been completed based on such findings.
  • the present invention has the following features: [1] Pericytes into which a basic fibroblast growth factor (bFGF) gene has been introduced. [2] The pericyte according to [1], wherein the pericyte is primary pericyte. [3] The pericytes according to [1], wherein the pericytes are pericyte-like cells differentiated from pluripotent stem cells. [4] The pericyte of [3], wherein the pluripotent stem cells are human pluripotent stem cells. [5] The pericyte of [3] or [4], wherein the pluripotent stem cells are embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells).
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • a pharmaceutical composition for angiogenesis therapy comprising the pericyte of any one of [1] to [5].
  • the pharmaceutical composition of [6] wherein the angiogenesis therapy is treatment of critical limb ischemia.
  • a pharmaceutical composition for angiogenesis therapy comprising a combination of the pericytes and vascular endothelial cells of any one of [1] to [5].
  • the pharmaceutical composition of [9], wherein the angiogenesis therapy is treatment of critical limb ischemia.
  • An angiogenesis therapy comprising administering a therapeutically effective amount of the pericyte according to any one of [1] to [5] to a subject.
  • the angiogenesis therapy of [12] further comprising administering vascular endothelial cells.
  • bFGF gene-introduced pericytes obtained by the method of the present invention can be used for angiogenesis therapy for severe lower extremity ischemia and the like.
  • FIG. 1 shows the results of evaluating the bFGF expression level in the bFGF gene-introduced human primary pericyte (bFGF-Primary pericyte) obtained in Example 3 together with the bFGF expression level in the human primary pericyte (Primary pericyte) in Example 4. is.
  • the vertical axis indicates the bFGF expression level (ng/mL). Error bars indicate ⁇ standard error of the mean.
  • 2 shows the results of qualitative evaluation of the angiogenic potential of the bFGF gene-introduced human primary pericytes obtained in Example 3 in Example 5.
  • FIG. 1 shows the results of evaluating the bFGF expression level in the bFGF gene-introduced human primary pericyte (bFGF-Primary pericyte) obtained in Example 3 together with the bFGF expression level in the human primary pericyte (Primary pericyte) in Example 4. is.
  • the vertical axis indicates the bFGF expression
  • 3 shows the results of quantitative evaluation of the angiogenic potential of the bFGF gene-introduced human primary pericytes obtained in Example 3 in Example 6.
  • FIG. 4 shows the therapeutic effect of administering the bFGF gene-introduced human primary pericytes obtained in Example 3 to lower limb ischemia model mice in Example 7.
  • FIG. The horizontal axis in the left diagram of FIG. 4 indicates the number of weeks after administration of the control medium (Medium) or bFGF gene-introduced primary pericyte (bFGF-Primary pericyte) to the ischemic limb, and the vertical axis indicates blood flow in the ischemic limb.
  • the blood flow ratio (%, Ischemic/normal) obtained by dividing the signal value of (Blood perfusion) by the signal value of the normal limb blood flow is shown.
  • the vertical axis in the right diagram of FIG. 4 indicates the AUC (Area Under Curve) after administration of the control medium or primary pericytes into which the bFGF gene was introduced, calculated based on the left diagram.
  • the P value indicated by ** in the right diagram of FIG. 4 is 0.0139. Error bars indicate ⁇ standard error of the mean.
  • the present invention provides pericytes into which a bFGF gene has been introduced (also referred to as "pericytes of the present invention").
  • the pericytes of the present invention are pericytes into which the bFGF gene has been introduced.
  • the nucleotide sequence of the bFGF gene and the amino acid sequence of bFGF are already known, and the sequences are published in public databases and the like.
  • the nucleotide sequence and amino acid sequence of human bFGF are published as GenBank Accession Number: M27968.1 and AAA52448.1, respectively.
  • human bFGF is encoded by the gene with GenBank Accession Number: M27968.1 (SEQ ID NO: 1) and has the amino acid sequence (SEQ ID NO: 2) indicated by GenBank Accession Number: AAA52448.1.
  • the bFGF gene to be introduced into pericytes includes genes encoding naturally occurring bFGF and genes encoding functional variants of bFGF.
  • the bFGF gene introduced into pericytes in the present invention is at least 80% or more, preferably 85% or more, 90% of the amino acid sequence published as GenBank Accession Number: AAA52448.1 As described above, it is a gene encoding a protein having 95% or more or 98% or more identity and having a function as bFGF.
  • the bFGF gene to be introduced into pericytes in the present invention has 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 amino acids deleted, substituted, A gene consisting of an inserted and/or added amino acid sequence and encoding a protein having the function of bFGF.
  • the bFGF gene introduced into pericytes in the present invention is a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO:2. Having a function as bFGF can be confirmed by a known method (Beenken A & Mohammadi M, Nat. Rev. Drug Discov., (2009), 8: 235-253).
  • the bFGF gene to be introduced into pericytes in the present invention may be a gene encoding bFGF or a variant thereof to which a secretory signal has been added.
  • a secretion signal known to those skilled in the art can be used, and in one embodiment, the Bmp2/4 secretion signal (US Pat. No. 7,816,140) can be used.
  • the bFGF gene introduced into pericytes in the present invention is at least 80% or more, preferably 85% or more, 90% or more, 95% or more, or It is a gene encoding a protein having an identity of 98% or more and having a function as bFGF.
  • the bFGF gene introduced into pericytes in the present invention is a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO:4.
  • bFGF may be described as "FGF-2.”
  • Pericytes are cells that surround microvessel walls or capillary walls in the brain, periphery, retina, or the like, and are also called vascular pericytes. Its function is as described above, and as a cell that coats vascular endothelial cells, it plays an important role in normal blood flow regulation such as maturation and stabilization of blood vessels and maintenance of the blood-brain barrier (Daneman R et al., Nature, (2010), 468: 562-568; Armulik A et al., Dev. Cell, (2011), 21: 193-215).
  • the pericytes of the present invention are primary pericytes into which the bFGF gene has been introduced.
  • primary pericytes means pericytes directly collected from an individual organism, or primary cultured cells or subcultured cells obtained by culturing and proliferating the pericytes in vitro. Methods for isolating and culturing primary pericytes from individual organisms are described, for example, in Quattrocelli M et al., Methods Mol. Biol., (2012), 798: 65-76.
  • Primary pericytes in the present invention are not particularly limited, but in one embodiment, they are human primary pericytes.
  • Human primary pericytes include, for example, human patients themselves, or primary pericytes having the same or substantially the same human leukocyte antigen (HLA) genotype as the transplant recipient from the viewpoint of preventing rejection.
  • HLA human leukocyte antigen
  • the term "substantially identical" means that the HLA genotypes match the transplanted pericytes to the extent that an immunosuppressive agent can suppress an immune reaction. It is a pericyte having an HLA type in which 3 loci of B and HLA-DR or 4 loci including HLA-C are matched.
  • the pericytes of the present invention are pericyte-like cells induced to differentiate from pluripotent stem cells into which the bFGF gene has been introduced.
  • pericyte-like cells means cells that have been induced to differentiate from pluripotent stem cells and have properties similar to primary pericytes. It can be confirmed by a known method that pericyte-like cells have properties similar to those of pericytes (Armulik A et al., Dev. Cell, (2011), 21: 193-215). Differentiation induction from pluripotent stem cells to pericyte-like cells can be performed using methods known to those skilled in the art /0316094).
  • the induction of differentiation from pluripotent stem cells to pericyte-like cells can be performed using the method described in the section ⁇ Method for Inducing Differentiation of Pluripotent Stem Cells into Pericyt-like Cells>> below.
  • pluripotent stem cells means a stem cell that has pluripotency capable of differentiating into cells with many different properties and morphologies that exist in a living body, and that also has proliferative potential.
  • Preferred pluripotent stem cells in the present invention are human pluripotent stem cells.
  • the pericytes of the present invention are pericyte-like cells induced to differentiate from human pluripotent stem cells into which the bFGF gene has been introduced.
  • the pluripotent stem cells used in the present invention are not particularly limited. , germline stem cells (GS cells), embryonic germ cells (EG cells), induced pluripotent stem cells (iPS cells), cultured fibroblasts and bone marrow stem cell-derived pluripotent cells (Multi -lineage differentiating stress enduring cells; Muse cells), etc.
  • Preferred pluripotent stem cells for inducing the differentiation of pericyte-like cells in the present invention are ES cells or iPS cells.
  • the pericytes of the present invention are pericyte-like cells induced to differentiate from embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells) into which a bFGF gene has been introduced.
  • the pericytes of the present invention are pericyte-like cells induced to differentiate from human ES cells or human iPS cells into which a bFGF gene has been introduced.
  • -ES cells- ES cells are stem cells that are established from the inner cell mass of early embryos (for example, blastocysts) of mammals such as humans and mice and that have pluripotency and the ability to proliferate through self-renewal.
  • ES cells can be established by removing the inner cell mass from the blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder.
  • cells can be maintained by subculturing using a medium supplemented with substances such as leukemia inhibitory factor (LIF) and bFGF.
  • LIF leukemia inhibitory factor
  • Human ES cells are prepared by known methods (for example, Suemori H et al., Biochem. Biophys. Res. Commun., (2006), 345: 926-932, Kawasaki H et al., Proc. Natl. Acad. Sci. USA , (2002), 99: 1580-1585).
  • -iPS cells- iPS cells are a general term for pluripotent stem cell lines that are artificially induced by introducing specific genes into somatic cells that have lost their pluripotency.
  • Methods for producing iPS cells are known in the art, and can be produced by introducing reprogramming factors into arbitrary somatic cells.
  • the initialization factors are, for example, Oct3/4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 Gene products such as -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 are exemplified, and these reprogramming factors may be used alone or in combination.
  • the somatic cells used for the production of iPS cells may be either neonatal (offspring) somatic cells, healthy human or patient somatic cells, and are not particularly limited to these.
  • any of primary cultured cells, passaged cells and established cells derived therefrom may be used.
  • the somatic cells used for the production of iPS cells are, for example, (1) tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells, (2) tissue progenitor cells, (3) ) Blood cells (peripheral blood cells, umbilical cord blood cells, etc.), muscle cells, skin cells, hair cells, liver cells, gastric mucosa cells, enterocytes, splenocytes, pancreatic cells, brain cells, lung cells, kidney cells, adipocytes, etc. They include differentiated cells present in organs and tissues.
  • tissue stem cells such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells
  • tissue progenitor cells tissue progenitor cells
  • Blood cells peripheral blood cells, umbilical cord blood cells, etc.
  • muscle cells muscle cells
  • skin cells hair cells
  • liver cells gastric mucosa cells
  • enterocytes enterocytes
  • the human leukocyte antigen (HLA) genotype of the transplant recipient is the same or substantially the same from the viewpoint of avoiding rejection.
  • Cell-derived iPS cells are preferably used, but are not limited to this.
  • substantially identical means that the HLA genotypes match the transplanted cells to the extent that an immunosuppressive agent can suppress an immune reaction.
  • HLA-DR 3 loci or HLA-C plus 4 loci are matched HLA type iPS cells derived from somatic cells.
  • pluripotent stem cells which are materials for inducing pericyte-like cells, prepared by the method described in, for example, Gornalusse GG et al., Nat. Biotechnol., (2017), 35: 765-772 It is also possible to use pluripotent stem cells that do not cause rejection in .
  • the pluripotent stem cells that do not cause rejection in allotransplantation are preferably ES cells or iPS cells that do not cause rejection in allotransplantation, and human ES cells or human iPS cells that do not cause rejection in allotransplantation. is more preferred.
  • the pericytes of the present invention are pericyte-like cells induced to differentiate from pluripotent stem cells into which the bFGF gene has been introduced and which do not cause rejection in allotransplantation. In one embodiment, the pericytes of the present invention are pericyte-like cells induced to differentiate from human ES cells or human iPS cells into which the bFGF gene has been introduced and which do not cause rejection in allotransplantation.
  • the pericytes of the present invention are pericytes in which endogenous bFGF expression is enhanced.
  • the expression of endogenous bFGF is enhanced means that in pericyte-like cells differentiated from primary pericytes or pluripotent stem cells, direct Both endogenous bFGF activity enhancement and indirect endogenous bFGF activity enhancement due to release of related inhibitory system, etc. are included. Enhancement of endogenous bFGF expression can be brought about by induction of endogenous bFGF expression by an exogenous factor.
  • Methods for inducing endogenous bFGF expression include, for example, induction by acidosis (D'Arcangelo D et al., Circ. Res., (2000), 86: 312-318).
  • the bFGF protein expression level in pericytes in which endogenous bFGF expression is enhanced is not particularly limited. In normal primary pericytes, bFGF expression was below the detection limit (see Example 4).
  • the present invention also provides a method for producing bFGF gene-introduced pericytes (also referred to as “the production method of the present invention”).
  • the production method of the present invention includes introducing the bFGF gene into pericytes. In one embodiment, the production method of the present invention includes introducing a bFGF gene into primary pericytes. In one embodiment, the production method of the present invention includes introducing a bFGF gene into pericyte-like cells that have been induced to differentiate from pluripotent stem cells. In one embodiment, the production method of the present invention includes introducing a bFGF gene into pericyte-like cells that have been induced to differentiate from ES cells or iPS cells. In one embodiment, the production method of the present invention includes introducing a bFGF gene into pericyte-like cells that have been induced to differentiate from human pluripotent stem cells. In one embodiment, the production method of the present invention includes introducing a bFGF gene into pericyte-like cells that have been induced to differentiate from human ES cells or human iPS cells.
  • the production method of the present invention includes introducing a bFGF gene into pluripotent stem cells, and inducing differentiation of the bFGF gene-introduced pluripotent stem cells into pericyte-like cells.
  • the production method of the present invention comprises introducing a bFGF gene into ES cells or iPS cells, and inducing differentiation of the ES cells or iPS cells into which the bFGF gene has been introduced into pericyte-like cells. .
  • the production method of the present invention comprises introducing a bFGF gene into human pluripotent stem cells, and inducing differentiation of the human pluripotent stem cells into which the bFGF gene has been introduced into pericyte-like cells. .
  • the production method of the present invention comprises introducing a bFGF gene into human ES cells or human iPS cells, and inducing differentiation of the human ES cells or human iPS cells introduced with the bFGF gene into pericyte-like cells. including doing
  • the bFGF gene can be constructed using methods known in the art based on base sequence information.
  • the bFGF gene can be synthesized using gene synthesis methods known in the art.
  • the method of introducing the bFGF gene into pericytes or pluripotent stem cells includes methods commonly used for transfection of animal cells, such as calcium phosphate method, lipofection method, electroporation method, microinjection method, and viral vector.
  • a method of introduction and the like can be used.
  • a method of introducing the bFGF gene into pericytes or pluripotent stem cells using a viral vector can be used.
  • Viral vectors that can be used to introduce the bFGF gene into pericytes or pluripotent stem cells include lentivirus, adenovirus, adeno-associated virus or retrovirus.
  • a method of introducing the bFGF gene into pericytes or pluripotent stem cells using a lentiviral vector can be used. Specifically, as described in Example 3, the bFGF gene can be introduced into the cells by infecting the cells with a lentivirus for introducing the bFGF gene.
  • pericyte-like cells can be obtained by inducing differentiation from pluripotent stem cells into pericyt-like cells, as described above.
  • the method for inducing the differentiation of pluripotent stem cells into pericyte-like cells is not particularly limited, but in one embodiment, it can be obtained by a method comprising the following steps (a) and (b): (a) differentiating the pluripotent stem cells into early mesodermal cells; and (b) differentiating the early mesodermal cells obtained in step (a) into pericyte-like cells;
  • Step (a) is a step of differentiating pluripotent stem cells into primitive posterior mesoderms.
  • the method of differentiating pluripotent stem cells into early mesodermal cells is not particularly limited, but for example, US9,868,939 and US9,771,561, Uenishi G et al., Stem Cell Reports, (2014), 3: 1073. -1084 can be used to induce differentiation from pluripotent stem cells to early mesoderm cells.
  • pluripotent stem cells into early mesoderm cells has been described, for example, in Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729, US9,771,561, and Uenishi G et al., Stem Cell Reports, (2014), 3: 1073-1084, can be confirmed using surface antigen markers specific to early mesodermal cells (PDGFR ⁇ , APLNR, etc.).
  • Step (b) is a step of inducing differentiation of the early mesodermal cells obtained in step (a) into pericyte-like cells.
  • the method for differentiating early mesoderm cells into pericyte-like cells is not particularly limited, but, for example, the method of inducing differentiation from early mesoderm cells into pericyte-like cells described in US Pat. No. 9,868,939 is used. be able to.
  • the differentiation of early mesodermal cells into pericyte-like cells can be confirmed using surface antigen markers such as NG2 and CD146 (Herrmann M. et al., Eur. Cells Mater., (2016) et al., Exp. Hematol., (2008), 36: 642-654, Lv FJ. et al., Stem Cells, (2014), 32: 1408-1419).
  • step (b) spheroids of early mesoderm cells are first formed, and then the spheroids of early mesoderm cells can be induced to differentiate into pericyte-like cells.
  • the method for forming spheroids of early mesodermal cells is not particularly limited, and known methods can be used.
  • a method using a methylcellulose medium described in US Pat. No. 9,771,561 can be mentioned.
  • the composition of the spheroid-forming medium can be set with reference to known techniques (Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729, etc.).
  • the method for differentiating spheroid-formed early mesoderm cells into pericyte-like cells is not particularly limited, and known methods can be used.
  • the method described in US9,868,939 can be used.
  • the method for culturing/proliferating the pericytes of the present invention is not particularly limited, and a method for culturing/proliferating pericytes known in the art can be used.
  • the medium for culturing the pericytes of the present invention is not particularly limited as long as it is a medium suitable for culturing pericytes.
  • ES medium, DM-160 medium, Fisher medium, F12 medium, WE medium, RPMI medium, StemSpan medium, StemPro medium and mixtures thereof can be used.
  • the medium for culturing the pericytes of the present invention may be appropriately supplemented with various nutrient sources necessary for cell maintenance and proliferation.
  • nutrient sources include carbon sources such as glycerol, glucose, fructose, sucrose, lactose, honey, starch, and dextrin; hydrocarbons such as fatty acids, oils, lecithin, and alcohols; ammonium sulfate, ammonium nitrate, ammonium chloride, urea , Nitrogen sources such as sodium nitrate, salt, potassium salts, phosphates, magnesium salts, calcium salts, iron salts, inorganic salts such as manganese salts, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride, sulfuric acid It can contain ferrous iron, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids, and the like.
  • an amino acid such as glutamine can be used as
  • the medium for culturing the pericytes of the present invention may be appropriately supplemented with growth factors such as FGF family growth factors necessary for cell proliferation.
  • growth factors such as FGF family growth factors necessary for cell proliferation.
  • the growth factor to be added is not particularly limited, but in one embodiment, bFGF or modified bFGF with enhanced thermostability can be used as the growth factor to be added to the medium for culturing the pericytes of the present invention.
  • the pH of the medium for culturing the pericytes of the present invention is in the range of 5.5-9.0, preferably 6.0-8.0, more preferably 6.5-7.5.
  • a suitable scaffold can be used in culturing the pericytes of the present invention.
  • the scaffold is not particularly limited as long as it is a matrix, substrate, or carrier to which cells can attach and divide/proliferate. Examples include poly-L-lysine, poly-D-lysine, and the like.
  • a collagen matrix can be used as a scaffold for use in culturing pericytes of the present invention.
  • Cultivation of pericytes of the present invention can be carried out at 36°C to 38°C in one embodiment.
  • the pericytes of the present invention can be cultured at 36.5°C to 37.5°C in an atmosphere of 1% to 25% O 2 and 1% to 15% CO 2 while exchanging the medium as appropriate. can.
  • the present invention also provides pharmaceutical compositions comprising the pericytes of the present invention (also referred to as "pharmaceutical compositions of the present invention").
  • the pharmaceutical composition can be prepared by a commonly used method using excipients commonly used in the field, ie, pharmaceutical excipients, pharmaceutical carriers, and the like. In formulating the pharmaceutical composition, excipients, carriers, additives and the like according to these dosage forms can be used within a pharmaceutically acceptable range.
  • the pharmaceutical composition of the present invention comprises primary pericytes into which the bFGF gene has been introduced.
  • the pharmaceutical composition of the present invention contains pericyte-like cells induced to differentiate from pluripotent stem cells into which the bFGF gene has been introduced.
  • the pharmaceutical composition of the present invention contains pericyte-like cells differentiated from ES cells or iPS cells into which a bFGF gene has been introduced.
  • the pharmaceutical composition of the present invention contains pericyte-like cells induced to differentiate from human pluripotent stem cells into which a bFGF gene has been introduced.
  • the pharmaceutical composition of the present invention contains pericyte-like cells induced to differentiate from human ES cells or human iPS cells into which a bFGF gene has been introduced.
  • the pharmaceutical composition of the present invention is a pharmaceutical composition for angiogenesis therapy.
  • the pharmaceutical composition includes a therapeutic agent for angiogenesis therapy containing pericytes of the present invention.
  • Angiogenesis therapy refers to the development of new cells in an ischemic organ, tissue, or body part to increase the amount of oxygen-rich blood reaching the ischemic organ, tissue, or body part. It is a therapeutic method that promotes the formation of blood vessels.
  • Angiogenic therapies include treatment of peripheral vascular diseases such as critical limb ischemia and diabetic retinopathy, and diseases such as pulmonary hypertension.
  • the pharmaceutical composition of the present invention is a pharmaceutical composition for treatment of critical limb ischemia, peripheral vascular diseases such as diabetic retinopathy, pulmonary hypertension, and the like.
  • the pharmaceutical composition of the invention is a pharmaceutical composition for the treatment of critical limb ischemia.
  • the present invention provides use of the pericyte of the present invention in the manufacture of a pharmaceutical composition for angiogenesis therapy.
  • the invention provides pericytes of the invention for use in angiogenesis therapy.
  • the invention also provides the use of the pericytes of the invention for angiogenesis therapy.
  • the present invention provides use of the pericyte of the present invention in the manufacture of a pharmaceutical composition for treating critical limb ischemia.
  • the present invention provides pericytes of the present invention for use in treating critical limb ischemia.
  • the present invention also provides use of the pericytes of the present invention for the treatment of critical limb ischemia.
  • the present invention also provides an angiogenesis therapy (also referred to as "the treatment method of the present invention") comprising administering a therapeutically effective amount of the pericyte of the present invention to a subject.
  • an angiogenesis therapy also referred to as "the treatment method of the present invention”
  • a "subject” is a human or other animal in need of such treatment.
  • a "subject” is a human in need of the method of treatment.
  • the pericyte of the present invention When the pericyte of the present invention is administered to humans, it can be administered to the subject in the form of a pharmaceutical composition containing the pericyte of the present invention and a pharmaceutically acceptable excipient.
  • the dosage and frequency of administration of the pharmaceutical composition of the present invention to humans can be appropriately adjusted according to the disease to be treated, its severity, and the age, weight and condition of the person to be treated.
  • the administration method of the pharmaceutical composition of the present invention is not particularly limited, and depending on the site of application, local transplantation by surgical means, intravenous administration, leg puncture administration, local injection administration, subcutaneous administration, intradermal administration, intramuscular administration. etc. can be considered.
  • the pharmaceutical composition of the present invention may be made into a sheet and applied directly to the affected area.
  • the sheet may contain a suitable support as well as cells.
  • the pharmaceutical composition of the present invention may contain scaffolding materials and components that assist in cell maintenance/proliferation, administration to affected areas, and other pharmaceutically acceptable carriers.
  • Components necessary for maintenance and growth of cells include medium components such as carbon sources, nitrogen sources, vitamins, minerals, salts, various cytokines, and extracellular matrix preparations such as matrigel.
  • the pericyte of the present invention or the pharmaceutical composition of the present invention can also be used in combination with vascular endothelial cells.
  • the term "combination" means administration of multiple active pharmaceutical ingredients simultaneously or separately to the same subject. In combination, the multiple active pharmaceutical ingredients may be contained in the same composition, or may be contained separately in different compositions.
  • the pharmaceutical composition of the present invention is a pharmaceutical composition used in combination with vascular endothelial cells. In one embodiment, the pharmaceutical composition of the present invention is a pharmaceutical composition further comprising vascular endothelial cells. In one embodiment, the therapeutic method of the present invention further comprises administering vascular endothelial cells.
  • the present invention also includes a pharmaceutical composition comprising a combination of the pericytes of the present invention and vascular endothelial cells.
  • a pharmaceutical composition comprising a combination of the pericytes of the present invention and vascular endothelial cells.
  • the term “combination” means that multiple types of active pharmaceutical ingredients are contained in the same pharmaceutical composition, or multiple types of active pharmaceutical ingredients are contained separately in different pharmaceutical compositions.
  • the pharmaceutical composition obtained by combining the pericytes of the present invention and vascular endothelial cells is a pharmaceutical composition comprising the pericytes of the present invention and vascular endothelial cells.
  • a pharmaceutical composition comprising a combination of the pericytes of the present invention and vascular endothelial cells is a pharmaceutical composition in which the pericytes of the present invention and vascular endothelial cells are separately contained in different pharmaceutical compositions. It's a combination.
  • the pharmaceutical composition obtained by combining the pericytes of the present invention and vascular endothelial cells is a combination of the pharmaceutical composition containing the pericytes of the present invention and the pharmaceutical composition containing vascular endothelial cells.
  • the pharmaceutical composition comprising a combination of pericytes and vascular endothelial cells of the present invention is a pharmaceutical composition for angiogenesis therapy.
  • the pharmaceutical composition comprising a combination of pericytes and vascular endothelial cells of the present invention is a pharmaceutical composition for treating critical limb ischemia.
  • Vascular endothelial cells are flat cells that line the lumen of blood vessels, and have various functions such as regulation of vascular tone and vascular permeability, angiogenesis, anti-inflammatory, and blood coagulation promotion.
  • Large blood vessels at the level of arteries and veins have a three-layered structure consisting of the intima, the media, and the adventitia, each of which is mainly composed of vascular endothelial cells, smooth muscle cells, and fibroblasts.
  • the luminal structure of vascular endothelial cells is surrounded by pericytes.
  • pericytes In mature capillaries, pericytes share the basement membrane with vascular endothelial cells and are embedded therein. In recent years, mutual cell signaling between pericytes and vascular endothelial cells regulates differentiation and proliferation, and is important for the maturation, stabilization, and maintenance of capillaries, formation of basement membrane, and deposition of extracellular matrix. known to play a role.
  • Vascular endothelial cells that can be combined with the pericytes of the present invention or the pharmaceutical composition of the present invention are not particularly limited, but in one embodiment, primary vascular endothelial cells or induced differentiation from pluripotent stem cells or the like vascular endothelial cells.
  • Vascular endothelial cells used in combination with the pericytes of the present invention or the pharmaceutical composition of the present invention are not particularly limited, but in one embodiment, primary vascular endothelial cells, or blood vessels differentiated from pluripotent stem cells or the like endothelial cells.
  • the vascular endothelial cells are administered simultaneously with the administration of the pericytes of the present invention, or before or after the administration of the pericytes of the present invention. can be administered.
  • Primary vascular endothelial cells means vascular endothelial cells directly collected from an individual organism, or primary cultured cells or passaged cells obtained by culturing and proliferating the vascular endothelial cells in vitro.
  • the primary vascular endothelial cells are not particularly limited, in certain embodiments, they are human primary vascular endothelial cells.
  • Human primary vascular endothelial cells include, for example, primary human vascular endothelial cells that have the same or substantially the same human leukocyte antigen (HLA) genotype as that of a human patient, or a recipient individual from the viewpoint that rejection does not occur. It is desirable to use vascular endothelial cells.
  • HLA human leukocyte antigen
  • the term “substantially identical” means that the HLA genotypes match the transplanted vascular endothelial cells to the extent that the immunosuppressive agent can suppress the immune reaction.
  • Vascular endothelial cells that can be used or combined with the pericytes of the present invention or the pharmaceutical compositions of the present invention are, in one embodiment, primary human vascular endothelial cells.
  • vascular endothelial cells differentiated from pluripotent stem cells or the like that can be combined with the pericytes of the present invention or the pharmaceutical composition of the present invention are not particularly limited, but for example, Ikuno T et al., Pros One, (2019), 12: e0173271 and Cho SW et al., Circulation, (2007), 116: 2409-2419, vascular endothelial cells produced by the method described can be used.
  • Vascular endothelial cells that can be used or combined with the pericytes of the present invention or the pharmaceutical composition of the present invention are, in one embodiment, vascular endothelial cells induced to differentiate from human pluripotent stem cells or the like.
  • Example 1 Establishment of primary human pericyte derived from skeletal muscle A portion of the human quadriceps muscle was soaked in PBS, and the muscle was finely cut along the fiber using a scalpel and tweezers. The cut muscle fibers were placed in a 50 mL centrifuge tube (Corning, 352070), 15 mL of collagenase solution (see below) was added, allowed to stand for 3 minutes, and the supernatant was removed. The above operation was repeated two more times. Next, the muscle fiber subjected to the above operation was placed in another 50 mL centrifuge tube, 15 mL of collagenase solution was added, and the tube was allowed to stand in a warm bath at 37° C. for 1 hour.
  • a cell suspension other than the muscle fibers was collected and designated as cell suspension 1.
  • the collagenase solution was again added in two portions of 15 mL each, and each addition of the collagenase solution was collected in the same manner as the cell suspension 1 to obtain a cell suspension 2 and a cell suspension 3.
  • Cell suspensions 1, 2 and 3 were each passed through a 100 ⁇ m cell strainer (Corning, 352360), and the resulting cell suspensions were centrifuged at 300 g at 4° C. for 5 minutes.
  • the culture supernatant was removed, and after washing with 5 mL of PBS, 2 mL of a cell dissociation reagent (Accutase (registered trademark), Innovative Cell Technologies, AT104) was added, and allowed to stand on a 37°C plate for 5 minutes. 8 mL of pericyte growth medium was added to each dish, and the cell suspension was collected in a centrifuge tube and centrifuged at 300 g at room temperature for 5 minutes.
  • a cell dissociation reagent (Accutase (registered trademark), Innovative Cell Technologies, AT104) was added, and allowed to stand on a 37°C plate for 5 minutes.
  • 8 mL of pericyte growth medium was added to each dish, and the cell suspension was collected in a centrifuge tube and centrifuged at 300 g at room temperature for 5 minutes.
  • ALP(+) and CD56(-) cells that is, primary human pericytes
  • SH800S a cell sorter
  • the collected cells were suspended in a pericyte growth medium, seeded on a collagen-coated dish, and cultured.
  • Collagenase solution It was prepared by dissolving 100 mg of Collagenase, Type II (ThermoFisher Scientific, 17101015) in 200 mL of TrypLE select (ThermoFisher Scientific, 12563029).
  • Pericyte establishment medium The composition is as follows. ⁇ 92% MegaCell Dulbecco's Modified Eagle's Medium (Sigma-Aldrich, M3942) ⁇ 5% FBS (Sigma-Aldrich) ⁇ 1% GlutaMax (ThermoFisher Scientific, 35050061) ⁇ 1% MEM Non-essential Amino Acid Solution (Sigma-Aldrich, M7145) ⁇ 1% Penicillin-Streptomycin (Sigma-Aldrich, P0781) ⁇ 100 ⁇ M 2-Mercaptethanol (ThermoFisher Scientific, 21985023) ⁇ 5ng/mL FGF-basic (154a.a.), Human, Recombinant (Peprotech, 100-18B)
  • Pericyte growth medium The composition is as follows. ⁇ 77% MegaCell Dulbecco's Modified Eagle's Medium ⁇ 20% FBS ⁇ 1% GlutaMax ⁇ 1% MEM Non-essential Amino Acid Solution ⁇ 1% Penicillin-Streptomycin ⁇ 100 ⁇ M 2-mercaptethanol ⁇ 5ng/mL Animal-free Recombinant Human FGFbasic-TS (Proteintech, HZ-1285)
  • Example 2 Preparation of lentiviral vector for bFGF gene transfer
  • a cell line for lentiviral packaging (Lenti-X 293T Cell Line, Takara Bio, 632180) was grown in 10 mL of 293T growth medium (see below) per 10 cm dish. 5 ⁇ 10 6 cells were seeded, and the cells seeded in 4 dishes were cultured at 37° C. in a 5% CO 2 atmosphere.
  • composition is as follows. ⁇ D-MEM ⁇ 10% FBS ⁇ 1% GlutaMAX
  • Plasmid (pLe6 -Bmp-bFGF: SEQ ID NO: 5) was produced.
  • Example 3 Preparation of bFGF gene-introduced human primary pericytes
  • the human primary pericytes established in Example 1 were grown in a pericyte growth medium at 1 ⁇ 10 5 cells/well in a collagen-coated 6-well plate (Iwaki, 4810). -010) were seeded in the top two wells.
  • Two days later 1.2 ⁇ L of 10 mg/mL polybrene solution (Nacalai Tesque, 12996-81) and 62 ⁇ L of lentiviral suspension for bFGF gene transfer prepared in Example 2 were added to 3 mL of pericyte growth medium, mixed, and incubated at room temperature. Let sit for 5 minutes (suspension A).
  • Suspension A was aspirated per well and added to each of the two wells.
  • the plate was centrifuged at room temperature at 1200 g for 60 minutes and then cultured at 37° C., 5% CO 2 , 5% O 2 atmosphere.
  • the supernatant was removed, and after washing with PBS nine times, 1 mL of Accutase was added and allowed to stand on a 37°C plate for 5 minutes.
  • 4 mL of pericyte growth medium was added to the dish to collect the cell suspension, and the cell suspension for 2 wells was collected in the same centrifuge tube and centrifuged at 300 g at room temperature for 5 minutes.
  • Example 4 Quantitation of bFGF Expression Level in bFGF Gene-Introduced Human Primary Pericytes Using the culture medium, the cells were seeded on a collagen-coated dish at 3 ⁇ 10 5 cells/dish and cultured at 37° C. in an atmosphere of 5% CO 2 and 5% O 2 . On day 3 of culture, the culture supernatant was collected and passed through a syringe filter (IWAKI, 2053-025). The concentration of bFGF in the supernatant passed through the syringe filter was measured using an ELISA kit (Human FGF basic Quantikine ELISA KIT, R&D Systems, DFB50). The bFGF concentration was measured according to the protocol attached to the kit.
  • ELISA kit Human FGF basic Quantikine ELISA KIT, R&D Systems, DFB50
  • Example 5 Qualitative evaluation of angiogenic potential of bFGF gene-introduced human primary pericytes ) and cultured at 37°C in a 5% CO 2 atmosphere.
  • the human primary pericytes (control) established in Example 1 and the bFGF gene-introduced primary human pericytes prepared in Example 3 were each cultured on a collagen-coated dish using a pericyte growth medium. After confirming that each of the three types of cells proliferated to a confluent state, the supernatant was removed, and after washing with PBS, 2 mL of Accutase was added and allowed to stand on a 37° C. plate for 5 minutes.
  • HUVECs endothelial cell growth medium for HUVECs and pericyte growth medium for human primary pericytes and bFGF-transduced human primary pericytes.
  • Cell suspensions were collected from each dish and centrifuged at 300 g at room temperature for 5 minutes to remove the supernatant. suspended in growth medium.
  • 5.5 ⁇ 10 5 HUVECs were added to each of 9 1.5 mL tubes (Eppendorf, 0030120.086), 3 of which were human primary pericytes and 3 of them were bFGF transgenic human primary pericytes. were added and mixed at 5.5 ⁇ 10 5 per tube.
  • Each tube was centrifuged at 300 g at 4°C for 5 minutes, the supernatant was removed, and after washing once with PBS, the tube was centrifuged again under the same conditions and the supernatant was removed.
  • 400 ⁇ L of extracellular matrix (Matrigel (registered trademark) Growth factor reduced, Corning, 356231, hereinafter referred to as “Matrigel”) was added to each tube, mixed on ice, and the Matrigel containing the cells was attached with a 25 gauge needle. Aspirated with a syringe.
  • HUVEC alone HUVEC
  • HUVEC and control human primary pericyte HUVEC
  • HUVEC and bFGF-transduced human primary pericyte bFGF-Primary pericyte/HUVEC
  • Matrigel containing bFGF-transfected human primary pericytes (bFGF-Primary pericyte/HUVEC in Fig. 2) showed more angiogenesis than control Matrigel containing human primary pericytes (Primary pericyte/HUVEC in Fig. 2). . In addition, no angiogenesis was observed in Matrigel containing only HUVEC (HUVEC in FIG. 2).
  • Example 6 Quantitative evaluation of angiogenesis exhibited by bFGF-transfected human primary pericytes Each Matrigel collected by the procedure of Example 5 was placed in a 2 mL tube (Eppendorf, 0030120.094) and cut several times with dissecting scissors. One stainless steel bead (Qiagen, 69989) was added thereto, and 350 ⁇ L of 0.1% Brij (registered trademark) L23 solution (Sigma-Aldrich, B4184) was added. Matrigel was crushed using TissueLyser II (Qiagen, 85300), centrifuged at 10,000 g at 4°C for 5 minutes, and the supernatant was recovered.
  • TissueLyser II Qiagen, 85300
  • the hemoglobin concentration in the recovered supernatant was measured using QuantiChrom Hemoglobin Assay Kit (BioAssay Systems, DIHB-250). The method followed the product protocol. As a statistical analysis test, a t-test was performed between two groups of HUVEC and control human primary pericyte (Primary pericyte/HUVEC), and between HUVEC and bFGF gene-introduced human primary pericyte (bFGF-Primary pericyte/HUVEC).
  • Example 7 Evaluation of Improvement in Blood Flow of bFGF Gene-Transduced Human Primary Pericytes in Lower Limb Ischemia Model 300 ⁇ L of a three-kind mixed anesthetic solution having the same composition as that used in Example 5 was administered intraperitoneally to NOG mice. After anesthesia, body hair around the left lower leg was removed using depilatory cream. Thereafter, 300 ⁇ L of anti-sedan preparation solution prepared by adding 150 ⁇ L of anti-sedan (Nippon Zenyaku Kogyo) to 24.8 mL of physiological saline was subcutaneously administered to awaken the NOG mice.
  • anti-sedan preparation solution prepared by adding 150 ⁇ L of anti-sedan (Nippon Zenyaku Kogyo) to 24.8 mL of physiological saline was subcutaneously administered to awaken the NOG mice.
  • the NOG mouse was again anesthetized with the three kinds of mixed anesthetic solution in the same manner as the previous day, placed on its back under a stereoscopic microscope, and the skin of the left lower limb was cut open to expose the femoral artery and vein and the saphenous artery and vein. rice field. After ligating the blood vessels branching from the femoral artery and vein, the femoral artery and vein and the saphenous artery and vein were excised and the skin was sutured. Subsequently, the NOG mouse was placed prone, the skin near the gastrocnemius muscle was incised, and the marginal vein was cut.
  • the skin was sutured again, and 300 ⁇ L of the anti-sedan preparation solution was administered subcutaneously to awaken the NOG mice.
  • the NOG mice were anesthetized with the above three kinds of mixed anesthetic, kept warm for 10 minutes on a warming plate at 36°C, and the blood flow in the lower extremities was measured with a blood flow imaging device (moorLDI2-IR, moor instruments). and analyzed.
  • the blood flow signal value of the operated ischemic limb was divided by the blood flow signal value of the non-operated normal limb to calculate the blood flow ratio (% conversion).
  • the number of necrotic nails on the toes of the NOG mice whose blood flow was measured was recorded.
  • mice with a blood flow ratio of 20% to 40% and with 4 or 5 necrotic nails were selected as evaluation mice.
  • Grouping was performed so that the average blood flow ratio was the same between the two groups.
  • the NOG mice divided into two groups were anesthetized with a three-kind mixed anesthetic, and the skin of the left lower leg was cut open to expose the muscle.
  • 3 ⁇ 10 6 bFGF-transduced primary human pericytes suspended in 100 ⁇ L of Megacell Dulbecco's Modified Eagle's Medium were placed on the sole of the left lower leg at a total of 9 points from the left lower femoral muscle to the gastrocnemius muscle.
  • Example 8 Differentiation induction from ES cells to early mesodermal cells Add 230 ⁇ L of Matrigel human ES cell optimized matrix (Corning, 354277) to 25 mL of DMEM/Ham F12 medium (Nacalai Tesque, 11581-15) and place in a 6-well plate. (Iwaki, 3810-006) is added to 3 wells of 1.5 mL each and allowed to stand at room temperature for 3 hours to prepare a Matrigel-coated plate.
  • Human ES cells were seeded on the Matrigel-coated plate and cultured using STEMdiff Mesoderm induction medium (STEMCELL Technologies, 05220) at 37°C in a 5% CO 2 atmosphere to induce differentiation from ES cells to early mesoderm cells. I do.
  • STEMdiff Mesoderm induction medium STEMdiff Mesoderm induction medium
  • Flow cytometry is used to confirm whether the obtained cells are differentiated into early mesoderm cells.
  • CD140 ⁇ and APLNR were selected as cell surface markers of early mesodermal cells, and the ratio of CD140 ⁇ (+) and APLNR(+) cells was increased by flow cytometry using antibodies against each cell surface marker. By confirming this, it is confirmed that differentiation induction from ES cells to early mesoderm has progressed.
  • Example 9 Spheroid formation from early mesoderm cells 1.7 ⁇ 10 5 early mesoderm cells obtained in Example 8 were documented (Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729 ), and cultured on an EZSPHERE (registered trademark) dish (Iwaki, 11-0434) at 37°C in an atmosphere of 5% CO 2 and 5% O 2 .
  • EZSPHERE registered trademark
  • Example 10 Differentiation Induction from Spheroids to Pericyte-Like Cells Based on US Pat. Specifically, all the spheroids collected in Example 9 are suspended in a pericyte differentiation-inducing medium (see below), seeded on a dish coated with Fibronectin and Human type 1 Collagen, and cultured. When monolayer cell proliferation is observed on the bottom of the dish, the supernatant is removed, washed with PBS, then Accutase is added, and the cells are detached. The cell suspension is harvested in the dish using pericyte growth medium (see Example 1) and centrifuged. The supernatant is removed, a pericyte growth medium is added, seeded on a collagen-coated dish, and further cultured.
  • a pericyte differentiation-inducing medium see below
  • Pericyte differentiation induction medium The composition is as follows: - 50% Stemline® II Hematopoietic Stem Cell Expansion Medium (Sigma-Aldrich, S0192) ⁇ 50% Human Endothelial SFM (ThermoFisher Scientific, 11111044) ⁇ 1% GlutaMax ⁇ 0.05% Ex-CYTE NZ Growth Enhancement Media Supplement (Merck, 81150N) ⁇ 100 ⁇ M Monothioglycerol (Fujifilm Wako Pure Chemical Industries, 195-15791) ⁇ 10ng/mL Animal-free Recombinant Human FGFbasic-TS ⁇ 50ng/mL Recombinant Human PDGF-BB Protein (R&D Systems, 220-BB)
  • Example 11 Introduction of bFGF Gene into Human ES Cell-Derived Pericyte-Like Cells
  • the lentivirus for bFGF gene transfer was prepared in the same manner as in Example 2.
  • the bFGF gene is introduced into human ES cell-derived pericyte-like cells in the same manner as in Example 3 for human primary pericytes.
  • Example 12 Quantitation of bFGF Expression Level in bFGF Gene-Transduced Human ES Cell-Derived Pericyt-Like Cells
  • the bFGF expression level of the human ES cell-derived pericyte-like cells is quantified in the same manner as in Example 4.
  • the bFGF gene-introduced human ES cell-derived pericyte-like cells exhibit a higher bFGF expression level than the control.
  • Example 13 Evaluation of angiogenic potential of bFGF transfected human ES cell-derived pericyt-like cells Evaluation of the angiogenic potential of bFGF transfected human ES cell-derived pericyt-like cells It can be carried out in the same manner as in Examples 5 and 6 in which the performance was evaluated.
  • the bFGF-transfected human ES cell-derived pericyte-like cells exhibit higher angiogenic potential than the control human ES cell-derived pericyt-like cells.
  • Example 14 Evaluation of blood flow improvement of bFGF gene-transduced human ES cell-derived pericyte-like cells in lower limb ischemia model It can be performed in the same manner as in Example 7, in which blood flow improvement in bFGF gene-introduced human primary pericytes was evaluated using ischemia model mice.
  • Administration of bFGF gene-introduced human ES cell-derived pericyte-like cells exhibits a high blood flow improvement effect in the model mice.
  • the pericytes into which the bFGF gene of the present invention has been introduced have excellent angiogenic activity and can be used for angiogenic therapy for severe lower extremity ischemia.
  • the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing is the gene sequence of human bFGF shown in GenBank Accession Number: M27968.1, and the amino acid sequence shown in SEQ ID NO: 2 is shown in GenBank Accession Number: AAA52448.1. is the amino acid sequence of human bFGF.
  • the description of "Artificial Sequence" is provided under the number heading ⁇ 223> in the sequence listing below.
  • the nucleotide sequence shown in SEQ ID NO: 3 in the sequence listing is a nucleotide sequence that encodes the amino acid sequence of human bFGF analog shown in SEQ ID NO: 4.
  • the nucleotide sequence shown in SEQ ID NO: 5 in the sequence listing is the nucleotide sequence of the human bFGF expression plasmid (pLe6-Bmp-bFGF) used in the Examples of the present application.

Abstract

The present invention addresses the problem of providing a cell therapy expected to be useful as an angiogenic therapy for peripheral vessel diseases such as critical limb ischemia. Specifically, a pericyte having high angiogenic potentional and a method for producing the same are provided. A pericyte having a bFGF gene introduced therein and a method for producing the same are provided.

Description

塩基性繊維芽細胞増殖因子(bFGF)遺伝子が導入されたペリサイトPericytes transfected with basic fibroblast growth factor (bFGF) gene
 本発明は、塩基性繊維芽細胞増殖因子(bFGF)遺伝子が導入されたペリサイト、前記ペリサイトを含む医薬組成物、前記ペリサイトの製造方法、及び前記ペリサイトを投与することを特徴とする血管新生療法などに関する。 The present invention is characterized by pericytes into which a basic fibroblast growth factor (bFGF) gene has been introduced, pharmaceutical compositions containing the pericytes, methods for producing the pericytes, and administration of the pericytes. It relates to angiogenesis therapy and the like.
 毛細血管は細動脈と細静脈を結び、身体の末梢の隅々に酸素や栄養素を供給できるように身体組織の深くまで網目状に分布している。毛細血管は管腔構造を形成する一層の血管内皮細胞とそれを囲むペリサイト(Pericyte, 血管周皮細胞)から構成されている。ペリサイトは血管内皮細胞を被覆する細胞として血管の成熟・安定化や血液脳関門の維持など正常な血流調節に重要な役割を担っている。血流に障害のある重篤な疾患として重症下肢虚血があるが、有効な薬物療法が確立されておらず、バイパス手術や血管内治療などで治療されている。近年、細胞治療によって末梢の毛細血管の新生を誘導する新しい治療方法の開発が望まれている(特許文献1)。 Capillaries connect arterioles and venules, and are distributed deep in the body tissue in a mesh pattern so that oxygen and nutrients can be supplied to every corner of the body's periphery. Capillaries are composed of a single layer of vascular endothelial cells and pericytes (vascular pericytes) surrounding them that form the luminal structure. Pericytes, as cells that coat vascular endothelial cells, play an important role in normal blood flow regulation such as maturation and stabilization of blood vessels and maintenance of the blood-brain barrier. Critical lower extremity ischemia is a serious disease that impairs blood flow, but no effective drug therapy has been established, and it is treated by bypass surgery, endovascular treatment, and the like. In recent years, there has been a demand for the development of a new therapeutic method that induces the formation of peripheral capillaries by cell therapy (Patent Document 1).
 「塩基性繊維芽細胞増殖因子(basic fibroblast growth factor:bFGF)」は、FGF-2とも呼ばれる成長因子ファミリーの1つで、多種の作用を持つタンパク質であり、血管内皮細胞に直接作用して血管内皮細胞の増殖促進や管腔形成を促進することで、血管新生に寄与することが知られている。ヒトbFGF/FGF-2タンパク質は154個のアミノ酸からなる分子量18kDの一本鎖ポリペプチドであり、マクロファージや内皮細胞、障害を受けた筋繊維などから放出されることが知られている(Henke C et al., Am. J. Pathol., (1993), 143: 1189-1199、Wang YX et al., J. Cell Sci., (2014), 127: 4543-4548)。血管新生におけるbFGF/FGF-2の最も特徴的な作用は、血管内皮細胞に直接作用して血管内皮細胞の増殖促進や管腔形成を促進することである。また、bFGF/FGF-2は血管平滑筋細胞における血管内皮増殖因子(VEGF)の発現を制御することによって間接的にも血管形成を促進すると考えられている(非特許文献1)。センダイウイルスベクターを用いてbFGF/FGF-2遺伝子を虚血筋組織に導入すると、内因性VEGF及び肝細胞増殖因子(HGF)発現が亢進し、下肢虚血の改善が誘導されることが報告されている(非特許文献2)。このようにbFGF/FGF-2は強力な血管新生作用因子であり、虚血疾患への応用が期待されている。 "Basic fibroblast growth factor (bFGF)" is a member of the growth factor family, also called FGF-2. It is known to contribute to angiogenesis by promoting endothelial cell growth and tube formation. Human bFGF/FGF-2 protein is a single-chain polypeptide with a molecular weight of 18 kD consisting of 154 amino acids, and is known to be released from macrophages, endothelial cells, damaged muscle fibers, etc. (Henke C et al., Am. J. Pathol., (1993), 143: 1189-1199, Wang YX et al., J. Cell Sci., (2014), 127: 4543-4548). The most characteristic action of bFGF/FGF-2 in angiogenesis is to directly act on vascular endothelial cells to promote proliferation and tube formation of vascular endothelial cells. It is also believed that bFGF/FGF-2 indirectly promotes angiogenesis by regulating the expression of vascular endothelial growth factor (VEGF) in vascular smooth muscle cells (Non-Patent Document 1). It has been reported that introduction of the bFGF/FGF-2 gene into ischemic muscle tissue using a Sendai virus vector enhances endogenous VEGF and hepatocyte growth factor (HGF) expression, and induces improvement in lower extremity ischemia. (Non-Patent Document 2). Thus, bFGF/FGF-2 is a potent angiogenic factor, and is expected to be applied to ischemic diseases.
WO2008/104064WO2008/104064
 本発明の課題は、重症下肢虚血等の末梢血管疾患に対する血管新生療法として有用であると期待される細胞治療を提供することである。具体的には、血管新生能の高いペリサイト及びその製造方法を提供することである。 The object of the present invention is to provide cell therapy that is expected to be useful as angiogenesis therapy for peripheral vascular diseases such as severe lower extremity ischemia. Specifically, the object is to provide pericytes with high angiogenic potential and a method for producing the same.
 本発明者らは上記の課題を解決すべく、ペリサイトに血管新生因子をコードする遺伝子のうちの幾つかを導入するなど、鋭意検討を行った結果、ペリサイトにbFGF遺伝子を導入することにより、生体に移植された当該ペリサイトの血管新生能が著しく増大すること、さらに当該ペリサイトが重症下肢虚血などの血管新生療法に適用可能であることを見出した。本発明はそのような知見を基にして完成されたものである。 In order to solve the above problems, the present inventors conducted intensive studies such as introducing several genes encoding angiogenic factors into pericytes. , the angiogenic ability of the pericytes transplanted into the living body is remarkably enhanced, and furthermore, the pericytes are applicable to angiogenic therapy such as severe lower extremity ischemia. The present invention has been completed based on such findings.
 すなわち、本発明は以下の特徴を有する:
[1]塩基性繊維芽細胞増殖因子(bFGF)遺伝子が導入されたペリサイト。
[2]ペリサイトが初代ペリサイトである、[1]に記載のペリサイト。
[3]ペリサイトが多能性幹細胞から分化誘導されたペリサイト様細胞である、[1]に記載のペリサイト。
[4]多能性幹細胞がヒト多能性幹細胞である、[3]に記載のペリサイト。
[5]多能性幹細胞が胚性幹細胞(ES細胞)又は人工多能性幹細胞(iPS細胞)である、[3]又は[4]に記載のペリサイト。
[6][1]~[5]のいずれか1つに記載のペリサイトを含む、血管新生療法のための医薬組成物。
[7]血管新生療法が重症下肢虚血の治療である、[6]に記載の医薬組成物。
[8]血管内皮細胞と併用される、[6]又は[7]に記載の医薬組成物。
[9][1]~[5]のいずれか1つに記載のペリサイト及び血管内皮細胞を組み合わせてなる、血管新生療法のための医薬組成物。
[10]血管新生療法が重症下肢虚血の治療である、[9]に記載の医薬組成物。
[11][1]~[5]のいずれか1つに記載のペリサイトの製造方法。
[12][1]~[5]のいずれか1つに記載のペリサイトの治療有効量を対象に投与することを特徴とする血管新生療法。
[13]さらに血管内皮細胞を投与することを含む、[12]に記載の血管新生療法。
[14]重症下肢虚血の治療である、[12]又は[13]に記載の血管新生療法。
[15]血管新生療法のための医薬組成物の製造における、[1]~[5]のいずれか1つに記載のペリサイトの使用。
[16]重症下肢虚血の治療のための医薬組成物の製造における、[1]~[5]のいずれか1つに記載のペリサイトの使用。
[17]血管新生療法に使用するための、[1]~[5]のいずれか1つに記載のペリサイト。
[18]重症下肢虚血の治療に使用するための、[1]~[5]のいずれか1つに記載のペリサイト。
[19]内在性bFGFの発現が亢進しているペリサイト。
Specifically, the present invention has the following features:
[1] Pericytes into which a basic fibroblast growth factor (bFGF) gene has been introduced.
[2] The pericyte according to [1], wherein the pericyte is primary pericyte.
[3] The pericytes according to [1], wherein the pericytes are pericyte-like cells differentiated from pluripotent stem cells.
[4] The pericyte of [3], wherein the pluripotent stem cells are human pluripotent stem cells.
[5] The pericyte of [3] or [4], wherein the pluripotent stem cells are embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells).
[6] A pharmaceutical composition for angiogenesis therapy, comprising the pericyte of any one of [1] to [5].
[7] The pharmaceutical composition of [6], wherein the angiogenesis therapy is treatment of critical limb ischemia.
[8] The pharmaceutical composition of [6] or [7], which is used in combination with vascular endothelial cells.
[9] A pharmaceutical composition for angiogenesis therapy, comprising a combination of the pericytes and vascular endothelial cells of any one of [1] to [5].
[10] The pharmaceutical composition of [9], wherein the angiogenesis therapy is treatment of critical limb ischemia.
[11] The method for producing pericyte according to any one of [1] to [5].
[12] An angiogenesis therapy comprising administering a therapeutically effective amount of the pericyte according to any one of [1] to [5] to a subject.
[13] The angiogenesis therapy of [12], further comprising administering vascular endothelial cells.
[14] The angiogenesis therapy of [12] or [13], which is a treatment for critical limb ischemia.
[15] Use of the pericyte according to any one of [1] to [5] in the manufacture of a pharmaceutical composition for angiogenesis therapy.
[16] Use of the pericyte according to any one of [1] to [5] in the manufacture of a pharmaceutical composition for treating critical limb ischemia.
[17] The pericyte of any one of [1] to [5] for use in angiogenesis therapy.
[18] The pericyte according to any one of [1] to [5], for use in treating critical limb ischemia.
[19] Pericytes with enhanced expression of endogenous bFGF.
 本発明では、ペリサイトにbFGF遺伝子を導入することにより、血管新生能の高いペリサイトを取得・製造することができる。また、本発明の方法で取得されたbFGF遺伝子導入ペリサイトは、重症下肢虚血などに対する血管新生療法に使用されうる。 In the present invention, by introducing the bFGF gene into pericytes, pericytes with high angiogenic potential can be obtained and produced. In addition, bFGF gene-introduced pericytes obtained by the method of the present invention can be used for angiogenesis therapy for severe lower extremity ischemia and the like.
図1は、実施例4において、実施例3で取得したbFGF遺伝子導入ヒト初代ペリサイト(bFGF-Primary pericyte)におけるbFGF発現量を、ヒト初代ペリサイト(Primary pericyte)におけるbFGF発現量と共に評価した結果である。縦軸はbFGFの発現量(bFGF expression level)(ng/mL)を示す。エラーバーは±平均の標準誤差を示す。FIG. 1 shows the results of evaluating the bFGF expression level in the bFGF gene-introduced human primary pericyte (bFGF-Primary pericyte) obtained in Example 3 together with the bFGF expression level in the human primary pericyte (Primary pericyte) in Example 4. is. The vertical axis indicates the bFGF expression level (ng/mL). Error bars indicate ± standard error of the mean. 図2は、実施例5において、実施例3で取得したbFGF遺伝子導入ヒト初代ペリサイトの血管新生能を定性評価した結果である。具体的には、ヒト臍帯静脈内皮細胞(Human Umbilical Vein Endothelial Cells;HUVEC)、HUVECとヒト初代ペリサイト(Primary pericyte/HUVEC)又はHUVECとbFGF遺伝子導入ヒト初代ペリサイト(bFGF-Primary pericyte/HUVEC)をマトリゲルと共にNOGマウスに投与し、14日後にマウスからマトリゲルを回収し、撮影した結果である。2 shows the results of qualitative evaluation of the angiogenic potential of the bFGF gene-introduced human primary pericytes obtained in Example 3 in Example 5. FIG. Specifically, human umbilical vein endothelial cells (HUVEC), HUVEC and human primary pericyte (HUVEC), or HUVEC and bFGF transgenic human primary pericyte (bFGF-Primary pericyte/HUVEC) was administered to NOG mice together with Matrigel, Matrigel was recovered from the mice 14 days later, and photographed. 図3は、実施例6において、実施例3で取得したbFGF遺伝子導入ヒト初代ペリサイトの血管新生能を定量評価した結果である。具体的には、実施例5の手順で回収した各マトリゲルを破砕し、遠心分離後の上清に含まれるヘモグロビン濃度を測定した結果である。縦軸はマトリゲル由来の上清に含まれるヘモグロビン濃度(Hemoglobin concentration)(μg/mL)を示す。図3の**で示すP値は0.0001である。エラーバーは±平均の標準誤差を示す。3 shows the results of quantitative evaluation of the angiogenic potential of the bFGF gene-introduced human primary pericytes obtained in Example 3 in Example 6. FIG. Specifically, each Matrigel collected by the procedure of Example 5 was crushed, and the concentration of hemoglobin contained in the supernatant after centrifugation was measured. The vertical axis indicates the hemoglobin concentration (μg/mL) contained in the Matrigel-derived supernatant. The P value indicated by ** in FIG. 3 is 0.0001. Error bars indicate ± standard error of the mean. 図4は、実施例7において、下肢虚血モデルマウスに対して、実施例3で取得したbFGF遺伝子導入ヒト初代ペリサイトを投与した治療効果を示す。図4の左図の横軸は虚血肢にコントロールの培地(Medium)又はbFGF遺伝子導入初代ペリサイト(bFGF-Primary pericyte)を投与後の経過した週を、縦軸は虚血肢の血流(Blood perfusion)のシグナル値を正常肢の血流のシグナル値で割った血流比(%, Ischemic/ normal)を示す。図4の右図における縦軸は、左図を基に計算した、コントロールの培地、又はbFGF遺伝子導入初代ペリサイト投与後のAUC(Area Under Curve)を示す。図4の右図における**で示すP値は0.0139である。エラーバーは±平均の標準誤差を示す。FIG. 4 shows the therapeutic effect of administering the bFGF gene-introduced human primary pericytes obtained in Example 3 to lower limb ischemia model mice in Example 7. FIG. The horizontal axis in the left diagram of FIG. 4 indicates the number of weeks after administration of the control medium (Medium) or bFGF gene-introduced primary pericyte (bFGF-Primary pericyte) to the ischemic limb, and the vertical axis indicates blood flow in the ischemic limb. The blood flow ratio (%, Ischemic/normal) obtained by dividing the signal value of (Blood perfusion) by the signal value of the normal limb blood flow is shown. The vertical axis in the right diagram of FIG. 4 indicates the AUC (Area Under Curve) after administration of the control medium or primary pericytes into which the bFGF gene was introduced, calculated based on the left diagram. The P value indicated by ** in the right diagram of FIG. 4 is 0.0139. Error bars indicate ± standard error of the mean.
 本発明を以下に詳細に説明する。 The present invention will be described in detail below.
<bFGF遺伝子が導入されたペリサイト>
 本発明は、bFGF遺伝子が導入されたペリサイト(「本発明のペリサイト」とも称する)を提供する。
<Pericytes into which the bFGF gene was introduced>
The present invention provides pericytes into which a bFGF gene has been introduced (also referred to as "pericytes of the present invention").
 本発明のペリサイトは、bFGF遺伝子が導入されたペリサイトである。bFGF遺伝子の塩基配列及びbFGFのアミノ酸配列はすでに公知であり、公共のデータベース等に、その配列が公表されている。例えば、ヒトbFGFの塩基配列及びアミノ酸配列は、それぞれGenBank Accession Number:M27968.1及びAAA52448.1として公表されている。具体的には、ヒトbFGFは、GenBank Accession Number:M27968.1(配列番号1)の遺伝子によってコードされ、GenBank Accession Number:AAA52448.1で示されるアミノ酸配列(配列番号2)を有する。本発明において、ペリサイトに導入されるbFGF遺伝子には、天然に存在するbFGFをコードする遺伝子、及びbFGFの機能を有する改変体をコードする遺伝子も含まれる。1つの実施形態において、本発明でペリサイトに導入されるbFGF遺伝子は、上記GenBank Accession Number:AAA52448.1として公表されているアミノ酸配列に対して少なくとも80%以上、好ましくは85%以上、90%以上、95%以上、又は98%以上の同一性を有し、且つ、bFGFとしての機能を有するタンパク質をコードする遺伝子である。1つの実施形態において、本発明でペリサイトに導入されるbFGF遺伝子は、1~5個、1~4個、1~3個、1~2個、又は1個のアミノ酸が欠失、置換、挿入、及び/若しくは付加されたアミノ酸配列からなり、かつ、bFGFとしての機能を有するタンパク質をコードする遺伝子である。1つの実施形態において、本発明でペリサイトに導入されるbFGF遺伝子は、配列番号2で示されるアミノ酸配列からなるタンパク質をコードする遺伝子である。bFGFとしての機能を有することは、公知の方法で確認することができる(Beenken A & Mohammadi M, Nat. Rev. Drug Discov., (2009), 8: 235-253)。1つの実施形態において、本発明でペリサイトに導入されるbFGF遺伝子は、分泌シグナルを付加したbFGF又はその改変体をコードする遺伝子であってもよい。分泌シグナルとしては、当業者に公知の分泌シグナルが使用でき、1つの実施形態として、Bmp2/4分泌シグナル(米国特許US7816140)が使用されうる。1つの実施形態において、本発明でペリサイトに導入されるbFGF遺伝子は、配列番号4で示されるアミノ酸配列に対して少なくとも80%以上、好ましくは85%以上、90%以上、95%以上、又は98%以上の同一性を有し、且つ、bFGFとしての機能を有するタンパク質をコードする遺伝子である。1つの実施形態において、本発明でペリサイトに導入されるbFGF遺伝子は、配列番号4で示されるアミノ酸配列からなるタンパク質をコードする遺伝子である。なお、本明細書では、「bFGF」を「FGF-2」と記載する場合もある。 The pericytes of the present invention are pericytes into which the bFGF gene has been introduced. The nucleotide sequence of the bFGF gene and the amino acid sequence of bFGF are already known, and the sequences are published in public databases and the like. For example, the nucleotide sequence and amino acid sequence of human bFGF are published as GenBank Accession Number: M27968.1 and AAA52448.1, respectively. Specifically, human bFGF is encoded by the gene with GenBank Accession Number: M27968.1 (SEQ ID NO: 1) and has the amino acid sequence (SEQ ID NO: 2) indicated by GenBank Accession Number: AAA52448.1. In the present invention, the bFGF gene to be introduced into pericytes includes genes encoding naturally occurring bFGF and genes encoding functional variants of bFGF. In one embodiment, the bFGF gene introduced into pericytes in the present invention is at least 80% or more, preferably 85% or more, 90% of the amino acid sequence published as GenBank Accession Number: AAA52448.1 As described above, it is a gene encoding a protein having 95% or more or 98% or more identity and having a function as bFGF. In one embodiment, the bFGF gene to be introduced into pericytes in the present invention has 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1 amino acids deleted, substituted, A gene consisting of an inserted and/or added amino acid sequence and encoding a protein having the function of bFGF. In one embodiment, the bFGF gene introduced into pericytes in the present invention is a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO:2. Having a function as bFGF can be confirmed by a known method (Beenken A & Mohammadi M, Nat. Rev. Drug Discov., (2009), 8: 235-253). In one embodiment, the bFGF gene to be introduced into pericytes in the present invention may be a gene encoding bFGF or a variant thereof to which a secretory signal has been added. As the secretion signal, a secretion signal known to those skilled in the art can be used, and in one embodiment, the Bmp2/4 secretion signal (US Pat. No. 7,816,140) can be used. In one embodiment, the bFGF gene introduced into pericytes in the present invention is at least 80% or more, preferably 85% or more, 90% or more, 95% or more, or It is a gene encoding a protein having an identity of 98% or more and having a function as bFGF. In one embodiment, the bFGF gene introduced into pericytes in the present invention is a gene encoding a protein consisting of the amino acid sequence shown in SEQ ID NO:4. In addition, in this specification, "bFGF" may be described as "FGF-2."
 核酸配列またはアミノ酸配列について、本明細書における「同一性」とは、NEEDLE program(Needleman SB et al., J. Mol. Biol., (1970), 48: 443-453)検索によりデフォルトで用意されているパラメータを用いて得られた値Identityを意味する。前記パラメータは以下のとおりである。
 Gap penalty = 10
 Extend penalty = 0.5
 Matrix = EBLOSUM62
With respect to nucleic acid sequences or amino acid sequences, the term “identity” as used herein refers to the NEEDLE program (Needleman SB et al., J. Mol. Biol., (1970), 48: 443-453) provided by default by searching. means the value Identity obtained using the parameters Said parameters are as follows.
Gap penalty = 10
Extended penalty = 0.5
Matrix = EBLOSUM62
≪ペリサイト≫
 「ペリサイト」とは、脳、末梢又は網膜などに存在する微小血管壁又は毛細血管壁を取り巻くように存在する細胞のことで、血管周皮細胞とも称される。その機能は上述した通りであり、血管内皮細胞を被覆する細胞として血管の成熟・安定化や血液脳関門の維持など正常な血流調節に重要な役割を担っている(Daneman R et al., Nature, (2010), 468: 562-568、Armulik A et al., Dev. Cell, (2011), 21: 193-215)。ペリサイトの細胞機能に障害が生じると、ペリサイト本来の機能(例えば、血管の安定化、血流の維持、脳血液関門の維持、血液神経関門の維持など)が損なわれ、糖尿病網膜症などの重篤な血流障害関連疾患につながる。また、骨格筋由来のペリサイトの中には筋肉や骨への分化能を持つメソアンジオブラスト(Mesoangioblast)と呼ばれる細胞の存在が明らかとなっている(Gerli MFM et al., J. Vis. Exp., (2014), 83: 50523、Gerli MFM et al., Stem Cell Rep., (2019), 12: 461-473、Shimatani K et al., Am. J. Physiol. Heart Circ. Physiol., (2021), on line: https://doi.org/10.1152/ajpheart.00470.2020)。
≪Pericyte≫
"Pericytes" are cells that surround microvessel walls or capillary walls in the brain, periphery, retina, or the like, and are also called vascular pericytes. Its function is as described above, and as a cell that coats vascular endothelial cells, it plays an important role in normal blood flow regulation such as maturation and stabilization of blood vessels and maintenance of the blood-brain barrier (Daneman R et al., Nature, (2010), 468: 562-568; Armulik A et al., Dev. Cell, (2011), 21: 193-215). When the cell function of pericytes is impaired, the original functions of pericytes (for example, stabilization of blood vessels, maintenance of blood flow, maintenance of the blood-brain barrier, maintenance of the blood-nerve barrier, etc.) are impaired, resulting in diabetic retinopathy, etc. leading to serious blood flow disorder-related diseases. In addition, the existence of cells called mesoangioblasts, which have the ability to differentiate into muscle and bone, has been clarified in pericytes derived from skeletal muscle (Gerli MFM et al., J. Vis. Exp. ., (2014), 83: 50523, Gerli MFM et al., Stem Cell Rep., (2019), 12: 461-473, Shimatani K et al., Am. J. Physiol. Heart Circ. Physiol., ( 2021), on line: https://doi.org/10.1152/ajpheart.00470.2020).
-初代ペリサイト-
 1つの実施形態において、本発明のペリサイトは、bFGF遺伝子が導入された初代ペリサイトである。
- First generation pericyte -
In one embodiment, the pericytes of the present invention are primary pericytes into which the bFGF gene has been introduced.
 本明細書において「初代ペリサイト」とは、生物個体から直接採取されたペリサイト、または当該ペリサイトをin vitroで培養・増殖させた初代培養細胞、継代細胞を意味する。生物個体からの初代ペリサイトの単離・培養方法については、例えば、Quattrocelli M et al., Methods Mol. Biol., (2012), 798: 65-76に記載されている。本発明における初代ペリサイトとしては特に限定されないが、1つの実施形態において、ヒト初代ペリサイトである。ヒト初代ペリサイトとしては、例えば、ヒトである患者本人、あるいは、拒絶反応が起こらないという観点から、移植先の個体のヒト白血球抗原(HLA)遺伝子型が同一又は実質的に同一である初代ペリサイトを用いることが望ましい。ここで、「実質的に同一」とは、移植したペリサイトに対して免疫抑制剤により免疫反応が抑制できる程度にHLA遺伝子型が一致していることであり、例えば、HLA-A、HLA-B及びHLA-DRの3遺伝子座又はそれらにHLA-Cを加えた4遺伝子座が一致するHLA型を有するペリサイトである。 As used herein, the term "primary pericytes" means pericytes directly collected from an individual organism, or primary cultured cells or subcultured cells obtained by culturing and proliferating the pericytes in vitro. Methods for isolating and culturing primary pericytes from individual organisms are described, for example, in Quattrocelli M et al., Methods Mol. Biol., (2012), 798: 65-76. Primary pericytes in the present invention are not particularly limited, but in one embodiment, they are human primary pericytes. Human primary pericytes include, for example, human patients themselves, or primary pericytes having the same or substantially the same human leukocyte antigen (HLA) genotype as the transplant recipient from the viewpoint of preventing rejection. It is preferable to use the site. Here, the term "substantially identical" means that the HLA genotypes match the transplanted pericytes to the extent that an immunosuppressive agent can suppress an immune reaction. It is a pericyte having an HLA type in which 3 loci of B and HLA-DR or 4 loci including HLA-C are matched.
-ペリサイト様細胞-
 1つの実施形態において、本発明のペリサイトは、bFGF遺伝子が導入された、多能性幹細胞から分化誘導されたペリサイト様細胞である。
-Pericyte-like cells-
In one embodiment, the pericytes of the present invention are pericyte-like cells induced to differentiate from pluripotent stem cells into which the bFGF gene has been introduced.
 本明細書において「ペリサイト様細胞」とは、多能性幹細胞から分化誘導された、初代ペリサイトと同様の性質をもつ細胞を意味する。ペリサイト様細胞がペリサイトと同様の性質を有することは、公知の方法で確認することができる(Armulik A et al., Dev. Cell, (2011), 21: 193-215)。多能性幹細胞からペリサイト様細胞への分化誘導は、当業者に公知の方法を用いて行うことができる(WO2013/108039, WO2009/156151, US9771561, US9868939, US2015/0368609, US2017/0342384, US2019/0316094)。例えば、多能性幹細胞からペリサイト様細胞への分化誘導は、後記の≪多能性幹細胞のペリサイト様細胞への分化誘導方法≫の項に記載の方法を用いて行うことができる。 As used herein, the term "pericyte-like cells" means cells that have been induced to differentiate from pluripotent stem cells and have properties similar to primary pericytes. It can be confirmed by a known method that pericyte-like cells have properties similar to those of pericytes (Armulik A et al., Dev. Cell, (2011), 21: 193-215). Differentiation induction from pluripotent stem cells to pericyte-like cells can be performed using methods known to those skilled in the art /0316094). For example, the induction of differentiation from pluripotent stem cells to pericyte-like cells can be performed using the method described in the section <<Method for Inducing Differentiation of Pluripotent Stem Cells into Pericyt-like Cells>> below.
≪多能性幹細胞≫
 本明細書において「多能性幹細胞」とは、生体に存在する多くの性質・形態の異なる細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞を意味する。本発明における好ましい多能性幹細胞は、ヒト多能性幹細胞である。1つの実施形態において、本発明のペリサイトは、bFGF遺伝子が導入された、ヒト多能性幹細胞から分化誘導されたペリサイト様細胞である。
≪Pluripotent stem cells≫
As used herein, the term "pluripotent stem cell" means a stem cell that has pluripotency capable of differentiating into cells with many different properties and morphologies that exist in a living body, and that also has proliferative potential. Preferred pluripotent stem cells in the present invention are human pluripotent stem cells. In one embodiment, the pericytes of the present invention are pericyte-like cells induced to differentiate from human pluripotent stem cells into which the bFGF gene has been introduced.
 本発明で使用される多能性幹細胞としては、特に限定されないが、例えば、胚性幹細胞(ES細胞)、核移植技術を使って作製された胚性幹細胞(Nuclear transfer embryonic stem cell; ntES細胞)、精子幹細胞(Germline stem cell; GS細胞)、胚性生殖細胞(Embryonic germ cell; EG細胞)、人工多能性幹細胞(iPS細胞)、培養繊維芽細胞や骨髄幹細胞由来の多能性細胞(Multi-lineage differentiating stress enduring cell;Muse細胞)などが含まれる。本発明における、ペリサイト様細胞を分化誘導するための好ましい多能性幹細胞は、ES細胞又はiPS細胞である。1つの実施形態において、本発明のペリサイトは、bFGF遺伝子が導入された、胚性幹細胞(ES細胞)又は人工多能性幹細胞(iPS細胞)から分化誘導されたペリサイト様細胞である。1つの実施形態において、本発明のペリサイトは、bFGF遺伝子が導入された、ヒトES細胞又はヒトiPS細胞から分化誘導されたペリサイト様細胞である。 The pluripotent stem cells used in the present invention are not particularly limited. , germline stem cells (GS cells), embryonic germ cells (EG cells), induced pluripotent stem cells (iPS cells), cultured fibroblasts and bone marrow stem cell-derived pluripotent cells (Multi -lineage differentiating stress enduring cells; Muse cells), etc. Preferred pluripotent stem cells for inducing the differentiation of pericyte-like cells in the present invention are ES cells or iPS cells. In one embodiment, the pericytes of the present invention are pericyte-like cells induced to differentiate from embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells) into which a bFGF gene has been introduced. In one embodiment, the pericytes of the present invention are pericyte-like cells induced to differentiate from human ES cells or human iPS cells into which a bFGF gene has been introduced.
-ES細胞-
 ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、分化多能性(pluripotency)と自己複製による増殖能を有する幹細胞である。ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を繊維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病阻止因子(LIF)、bFGFなどの物質を添加した培地を用いて行うことができる。ヒトES細胞は、公知の方法(例えばSuemori H et al., Biochem. Biophys. Res. Commun., (2006), 345: 926-932、Kawasaki H et al., Proc. Natl. Acad. Sci. USA, (2002), 99: 1580-1585などに記載)により樹立及び維持することができる。
-ES cells-
ES cells are stem cells that are established from the inner cell mass of early embryos (for example, blastocysts) of mammals such as humans and mice and that have pluripotency and the ability to proliferate through self-renewal. ES cells can be established by removing the inner cell mass from the blastocyst of a fertilized egg of a target animal and culturing the inner cell mass on a fibroblast feeder. Furthermore, cells can be maintained by subculturing using a medium supplemented with substances such as leukemia inhibitory factor (LIF) and bFGF. Human ES cells are prepared by known methods (for example, Suemori H et al., Biochem. Biophys. Res. Commun., (2006), 345: 926-932, Kawasaki H et al., Proc. Natl. Acad. Sci. USA , (2002), 99: 1580-1585).
-iPS細胞-
 iPS細胞とは、分化多能性を喪失している体細胞に特定の遺伝子を導入することによって、人為的に誘導される多能性幹細胞株の総称である。iPS細胞の製造方法は当該分野で公知であり、任意の体細胞へ初期化因子を導入することによって製造することができる。ここで、初期化因子とは、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3又はGlis1等の遺伝子産物が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666; WO2008/118820; WO2009/007852;WO2009/032194; WO2009/058413; WO2009/057831; WO2009/075119; WO2009/079007;WO2009/091659; WO2009/101084; WO2009/101407; WO2009/102983; WO2009/114949; WO2009/117439; WO2009/126250; WO2009/126251; WO2009/126655; WO2009/157593; WO2010/009015; WO2010/033906; WO2010/033920; WO2010/042800; WO2010/050626; WO 2010/056831; WO2010/068955; WO2010/098419; WO2010/102267; WO2010/111409; WO2010/111422; WO2010/115050; WO2010/124290; WO2010/147395; WO2010/147612; Huangfu D et al., Nat. Biotechnol., (2008), 26: 795-797; Shi Y et al., Cell Stem Cell, (2008), 2: 525-528; Eminli S et al., Stem Cells, (2008), 26: 2467-2474; Huangfu D et al., Nat. Biotechnol., (2008), 26: 1269-1275; Shi Y et al., Cell Stem Cell, (2008), 3: 568-574; Zhao Y et al., Cell Stem Cell, (2008), 3: 475-479; Marson A Cell Stem Cell, (2008), 3: 132-135; Feng B et al., Nat. Cell Biol., (2009), 11: 197-203; Judson RL et al., Nat. Biotechnol., (2009), 27: 459-461; Lyssiotis CA et al., Proc. Natl. Acad. Sci. USA, (2009), 106: 8912-8917; Kim JB et al., Nature, (2009), 461: 649-643; Ichida JK et al., Cell Stem Cell, (2009), 5: 491-503; Heng JC et al., Cell Stem Cell, (2010), 6: 167-174; Han J et al., Nature, (2010), 463: 1096-1100; Mali P et al., Stem Cells, (2010), 28: 713-720; Maekawa M et al., Nature, (2011), 474: 225-229に記載の組み合わせが例示される。
-iPS cells-
iPS cells are a general term for pluripotent stem cell lines that are artificially induced by introducing specific genes into somatic cells that have lost their pluripotency. Methods for producing iPS cells are known in the art, and can be produced by introducing reprogramming factors into arbitrary somatic cells. Here, the initialization factors are, for example, Oct3/4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15 Gene products such as -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3 or Glis1 are exemplified, and these reprogramming factors may be used alone or in combination. .初期化因子の組み合わせとしては、WO2007/069666; WO2008/118820; WO2009/007852;WO2009/032194; WO2009/058413; WO2009/057831; WO2009/075119; WO2009/079007;WO2009/091659; WO2009/101084; WO2009/ 101407; WO2009/102983; WO2009/114949; WO2009/117439; WO2009/126250; WO2009/126251; WO2009/126655; WO2009/157593; WO2010/009015; WO2010/033906; WO2010/033920; WO2010/042800; WO2010/050626; WO 2010/056831; WO2010/068955; WO2010/098419; WO2010/102267; WO2010/111409; WO2010/111422; WO2010/115050; WO2010/124290; WO2010/147395; WO2010/147612; Huangfu D et al., Nat. Biotechnol ., (2008), 26: 795-797; Shi Y et al., Cell Stem Cell, (2008), 2: 525-528; Eminli S et al., Stem Cells, (2008), 26: 2467-2474 Huangfu D et al., Nat. Biotechnol., (2008), 26: 1269-1275; Shi Y et al., Cell Stem Cell, (2008), 3: 568-574; Zhao Y et al., Cell Stem Cell, (2008), 3: 475-479; Marson A Cell Stem Cell, (2008), 3: 132-135; Feng B et al., Nat. Cell Biol., (2009), 11: 197-203; Judson RL et al., Nat. Biotechnol., (2009), 27: 459-461; Lyssiotis CA et al. USA, (2009), 106: 8912-8917; Kim JB et al., Nature, (2009), 461: 649-643; Ichida JK et al., Cell Stem Cell. , (2009), 5: 491-503; Heng JC et al., Cell Stem Cell, (2010), 6: 167-174; Han J et al., Nature, (2010), 463: 1096-1100; P et al., Stem Cells, (2010), 28: 713-720; Maekawa M et al., Nature, (2011), 474: 225-229.
 iPS細胞の製造に用いる体細胞は、新生児(仔)の体細胞、及び健常人あるいは患者の体細胞のいずれでもよく、特にこれらに限定されない。また、それら由来の初代培養細胞、継代細胞及び株化細胞のいずれでもよい。ある態様では、iPS細胞の製造に用いる体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)血液細胞(末梢血細胞、臍帯血細胞等)、筋肉細胞、皮膚細胞、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞、脳細胞、肺細胞、腎細胞及び脂肪細胞等の臓器、組織に存在する分化細胞などである。 The somatic cells used for the production of iPS cells may be either neonatal (offspring) somatic cells, healthy human or patient somatic cells, and are not particularly limited to these. In addition, any of primary cultured cells, passaged cells and established cells derived therefrom may be used. In one embodiment, the somatic cells used for the production of iPS cells are, for example, (1) tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells, (2) tissue progenitor cells, (3) ) Blood cells (peripheral blood cells, umbilical cord blood cells, etc.), muscle cells, skin cells, hair cells, liver cells, gastric mucosa cells, enterocytes, splenocytes, pancreatic cells, brain cells, lung cells, kidney cells, adipocytes, etc. They include differentiated cells present in organs and tissues.
 ペリサイト様細胞を分化誘導するための材料としてiPS細胞を用いる場合、拒絶反応が起こらないという観点から、移植先の個体のヒト白血球抗原(HLA)遺伝子型が同一又は実質的に同一である体細胞由来のiPS細胞を用いることが望ましいが、その限りではない。ここで、「実質的に同一」とは、移植した細胞に対して免疫抑制剤により免疫反応が抑制できる程度にHLA遺伝子型が一致していることであり、例えば、HLA-A、HLA-B及びHLA-DRの3遺伝子座又はそれらにHLA-Cを加えた4遺伝子座が一致するHLA型を有する体細胞由来のiPS細胞である。 When iPS cells are used as a material for inducing the differentiation of pericyte-like cells, the human leukocyte antigen (HLA) genotype of the transplant recipient is the same or substantially the same from the viewpoint of avoiding rejection. Cell-derived iPS cells are preferably used, but are not limited to this. Here, the term "substantially identical" means that the HLA genotypes match the transplanted cells to the extent that an immunosuppressive agent can suppress an immune reaction. and HLA-DR 3 loci or HLA-C plus 4 loci are matched HLA type iPS cells derived from somatic cells.
 ペリサイト様細胞を誘導するための材料である多能性幹細胞として、例えばGornalusse GG et al., Nat. Biotechnol., (2017), 35: 765-772に記載の方法で作製した、他家移植において拒絶反応が起きない多能性幹細胞を用いることもできる。前記他家移植において拒絶反応が起きない多能性幹細胞としては、他家移植において拒絶反応が起きないES細胞又はiPS細胞が好ましく、他家移植において拒絶反応が起きないヒトES細胞又はヒトiPS細胞がより好ましい。1つの実施形態において、本発明のペリサイトは、bFGF遺伝子が導入された、他家移植において拒絶反応が起きない多能性幹細胞から分化誘導されたペリサイト様細胞である。1つの実施形態において、本発明のペリサイトは、bFGF遺伝子が導入された、他家移植において拒絶反応が起きないヒトES細胞又はヒトiPS細胞から分化誘導されたペリサイト様細胞である。 Allotransplantation of pluripotent stem cells, which are materials for inducing pericyte-like cells, prepared by the method described in, for example, Gornalusse GG et al., Nat. Biotechnol., (2017), 35: 765-772 It is also possible to use pluripotent stem cells that do not cause rejection in . The pluripotent stem cells that do not cause rejection in allotransplantation are preferably ES cells or iPS cells that do not cause rejection in allotransplantation, and human ES cells or human iPS cells that do not cause rejection in allotransplantation. is more preferred. In one embodiment, the pericytes of the present invention are pericyte-like cells induced to differentiate from pluripotent stem cells into which the bFGF gene has been introduced and which do not cause rejection in allotransplantation. In one embodiment, the pericytes of the present invention are pericyte-like cells induced to differentiate from human ES cells or human iPS cells into which the bFGF gene has been introduced and which do not cause rejection in allotransplantation.
<内在性bFGFの発現が亢進しているペリサイト>
 本発明のペリサイトは、1つの実施形態において、内在性bFGFの発現が亢進しているペリサイトである。ここで、「内在性bFGFの発現が亢進している」とは、初代ペリサイト又は多能性幹細胞から分化誘導されたペリサイト様細胞において、内在性bFGFタンパク質の発現量の増加による直接的な内在性bFGF活性亢進と、関連する抑制系の解除等による間接的な内在性bFGF活性亢進の両方を包含する。内在性bFGF発現の亢進は、外的因子による内在性bFGF発現誘導によってもたらすことができる。内在性bFGF発現の誘導方法としては、例えば、アシドーシスによる誘導方法が挙げられる(D’Arcangelo D et al., Circ. Res., (2000), 86: 312-318)。内在性bFGFの発現が亢進しているペリサイトにおけるbFGFタンパク質の発現レベルは特に限定されない。なお、通常の初代ペリサイトにおいて、bFGF発現は検出限界以下であった(実施例4参照)。
<Pericytes with enhanced expression of endogenous bFGF>
In one embodiment, the pericytes of the present invention are pericytes in which endogenous bFGF expression is enhanced. Here, "the expression of endogenous bFGF is enhanced" means that in pericyte-like cells differentiated from primary pericytes or pluripotent stem cells, direct Both endogenous bFGF activity enhancement and indirect endogenous bFGF activity enhancement due to release of related inhibitory system, etc. are included. Enhancement of endogenous bFGF expression can be brought about by induction of endogenous bFGF expression by an exogenous factor. Methods for inducing endogenous bFGF expression include, for example, induction by acidosis (D'Arcangelo D et al., Circ. Res., (2000), 86: 312-318). The bFGF protein expression level in pericytes in which endogenous bFGF expression is enhanced is not particularly limited. In normal primary pericytes, bFGF expression was below the detection limit (see Example 4).
<bFGF遺伝子が導入されたペリサイトの製造方法>
 本発明はまた、bFGF遺伝子が導入されたペリサイトの製造方法(「本発明の製造方法」とも称する)を提供する。
<Method for Producing Pericytes Introduced with the bFGF Gene>
The present invention also provides a method for producing bFGF gene-introduced pericytes (also referred to as “the production method of the present invention”).
 1つの実施形態において、本発明の製造方法は、ペリサイトにbFGF遺伝子を導入することを含む。1つの実施形態において、本発明の製造方法は、初代ペリサイトにbFGF遺伝子を導入することを含む。1つの実施形態において、本発明の製造方法は、多能性幹細胞から分化誘導されたペリサイト様細胞にbFGF遺伝子を導入することを含む。1つの実施形態において、本発明の製造方法は、ES細胞又はiPS細胞から分化誘導されたペリサイト様細胞にbFGF遺伝子を導入することを含む。1つの実施形態において、本発明の製造方法は、ヒト多能性幹細胞から分化誘導されたペリサイト様細胞にbFGF遺伝子を導入することを含む。1つの実施形態において、本発明の製造方法は、ヒトES細胞又はヒトiPS細胞から分化誘導されたペリサイト様細胞にbFGF遺伝子を導入することを含む。 In one embodiment, the production method of the present invention includes introducing the bFGF gene into pericytes. In one embodiment, the production method of the present invention includes introducing a bFGF gene into primary pericytes. In one embodiment, the production method of the present invention includes introducing a bFGF gene into pericyte-like cells that have been induced to differentiate from pluripotent stem cells. In one embodiment, the production method of the present invention includes introducing a bFGF gene into pericyte-like cells that have been induced to differentiate from ES cells or iPS cells. In one embodiment, the production method of the present invention includes introducing a bFGF gene into pericyte-like cells that have been induced to differentiate from human pluripotent stem cells. In one embodiment, the production method of the present invention includes introducing a bFGF gene into pericyte-like cells that have been induced to differentiate from human ES cells or human iPS cells.
 1つの実施形態において、本発明の製造方法は、多能性幹細胞にbFGF遺伝子を導入すること、及びbFGF遺伝子が導入された多能性幹細胞をペリサイト様細胞に分化誘導することを含む。1つの実施形態において、本発明の製造方法は、ES細胞又はiPS細胞にbFGF遺伝子を導入すること、及びbFGF遺伝子が導入されたES細胞又はiPS細胞をペリサイト様細胞に分化誘導することを含む。1つの実施形態において、本発明の製造方法は、ヒト多能性幹細胞にbFGF遺伝子を導入すること、及びbFGF遺伝子が導入されたヒト多能性幹細胞をペリサイト様細胞に分化誘導することを含む。1つの実施形態において、本発明の製造方法は、ヒトES細胞又はヒトiPS細胞にbFGF遺伝子を導入すること、及びbFGF遺伝子が導入されたヒトES細胞又はヒトiPS細胞をペリサイト様細胞に分化誘導することを含む。 In one embodiment, the production method of the present invention includes introducing a bFGF gene into pluripotent stem cells, and inducing differentiation of the bFGF gene-introduced pluripotent stem cells into pericyte-like cells. In one embodiment, the production method of the present invention comprises introducing a bFGF gene into ES cells or iPS cells, and inducing differentiation of the ES cells or iPS cells into which the bFGF gene has been introduced into pericyte-like cells. . In one embodiment, the production method of the present invention comprises introducing a bFGF gene into human pluripotent stem cells, and inducing differentiation of the human pluripotent stem cells into which the bFGF gene has been introduced into pericyte-like cells. . In one embodiment, the production method of the present invention comprises introducing a bFGF gene into human ES cells or human iPS cells, and inducing differentiation of the human ES cells or human iPS cells introduced with the bFGF gene into pericyte-like cells. including doing
〔細胞へのbFGF遺伝子の導入方法〕
 bFGF遺伝子は、塩基配列情報に基づき、当該分野で公知の方法を使用して作製することができる。例えば、bFGF遺伝子は、当該分野で公知の遺伝子合成方法を利用して合成することができる。
[Method for introducing bFGF gene into cells]
The bFGF gene can be constructed using methods known in the art based on base sequence information. For example, the bFGF gene can be synthesized using gene synthesis methods known in the art.
 本発明において、ペリサイト又は多能性幹細胞へbFGF遺伝子を導入する方法は、動物細胞のトランスフェクションに通常用いられる方法、例えばリン酸カルシウム法、リポフェクション法、エレクトロポレーション法、マイクロインジェクション法、ウイルスベクターで導入する方法等を用いることができる。1つの実施形態において、ペリサイト又は多能性幹細胞へbFGF遺伝子を導入する方法として、ウイルスベクターで導入する方法を用いることができる。ペリサイト又は多能性幹細胞へbFGF遺伝子を導入するために用いることができるウイルスベクターとしては、レンチウイルス、アデノウイルス、アデノ随伴ウイルス又はレトロウイルスが挙げられる。1つの実施形態において、ペリサイト又は多能性幹細胞へbFGF遺伝子を導入する方法として、レンチウイルスベクターで導入する方法を用いることができる。具体的には、実施例3に記載のように、bFGF遺伝子導入用レンチウイルスを細胞に感染させて、bFGF遺伝子を細胞に導入することができる。 In the present invention, the method of introducing the bFGF gene into pericytes or pluripotent stem cells includes methods commonly used for transfection of animal cells, such as calcium phosphate method, lipofection method, electroporation method, microinjection method, and viral vector. A method of introduction and the like can be used. In one embodiment, a method of introducing the bFGF gene into pericytes or pluripotent stem cells using a viral vector can be used. Viral vectors that can be used to introduce the bFGF gene into pericytes or pluripotent stem cells include lentivirus, adenovirus, adeno-associated virus or retrovirus. In one embodiment, a method of introducing the bFGF gene into pericytes or pluripotent stem cells using a lentiviral vector can be used. Specifically, as described in Example 3, the bFGF gene can be introduced into the cells by infecting the cells with a lentivirus for introducing the bFGF gene.
〔多能性幹細胞のペリサイト様細胞への分化誘導方法〕
 本発明において、ペリサイト様細胞は、前述の通り、多能性幹細胞からペリサイト様細胞に分化誘導して得ることができる。多能性幹細胞からペリサイト様細胞に分化誘導する方法は特に限定されないが、1つの実施形態において、以下の工程(a)及び(b)を含む方法によって得ることができる:
(a)多能性幹細胞を初期中胚葉細胞に分化させる工程、及び、
(b)工程(a)で得られた初期中胚葉細胞をペリサイト様細胞に分化させる工程。
[Method for inducing differentiation of pluripotent stem cells into pericyte-like cells]
In the present invention, pericyte-like cells can be obtained by inducing differentiation from pluripotent stem cells into pericyt-like cells, as described above. The method for inducing the differentiation of pluripotent stem cells into pericyte-like cells is not particularly limited, but in one embodiment, it can be obtained by a method comprising the following steps (a) and (b):
(a) differentiating the pluripotent stem cells into early mesodermal cells; and
(b) differentiating the early mesodermal cells obtained in step (a) into pericyte-like cells;
 以下に、工程(a)及び(b)について説明する。
 工程(a)は、多能性幹細胞を初期中胚葉細胞(primitive posterior mesoderm)に分化させる工程である。本発明において、多能性幹細胞を初期中胚葉細胞に分化させる方法は特に限定されないが、例えば、US9,868,939やUS9,771,561、Uenishi G et al., Stem Cell Reports, (2014), 3: 1073-1084に記載される多能性幹細胞から初期中胚葉細胞への分化誘導方法を用いることができる。多能性幹細胞が初期中胚葉細胞に分化したことは、例えば、Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729、US9,771,561、及びUenishi G et al., Stem Cell Reports, (2014), 3: 1073-1084に記載のように初期中胚葉細胞に特有の表面抗原マーカー(PDGFRα、APLNRなど)を用いて確認することができる。
Steps (a) and (b) are described below.
Step (a) is a step of differentiating pluripotent stem cells into primitive posterior mesoderms. In the present invention, the method of differentiating pluripotent stem cells into early mesodermal cells is not particularly limited, but for example, US9,868,939 and US9,771,561, Uenishi G et al., Stem Cell Reports, (2014), 3: 1073. -1084 can be used to induce differentiation from pluripotent stem cells to early mesoderm cells. The differentiation of pluripotent stem cells into early mesoderm cells has been described, for example, in Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729, US9,771,561, and Uenishi G et al., Stem Cell Reports, (2014), 3: 1073-1084, can be confirmed using surface antigen markers specific to early mesodermal cells (PDGFRα, APLNR, etc.).
 工程(b)は、前記工程(a)で得られた初期中胚葉細胞をペリサイト様細胞に分化誘導させる工程である。本発明において、初期中胚葉細胞をペリサイト様細胞に分化させる方法は特に限定されないが、例えば、US9,868,939に記載に記載される初期中胚葉細胞からペリサイト様細胞への分化誘導方法を用いることができる。初期中胚葉細胞がペリサイト様細胞に分化したことは、例えば、NG2やCD146などの表面抗原マーカーを用いて確認することができる(Herrmann M. et al., Eur. Cells Mater., (2016), 31: 236-249、Covas DT. et al., Exp. Hematol., (2008), 36: 642-654、Lv FJ. et al., Stem Cells, (2014), 32: 1408-1419)。 Step (b) is a step of inducing differentiation of the early mesodermal cells obtained in step (a) into pericyte-like cells. In the present invention, the method for differentiating early mesoderm cells into pericyte-like cells is not particularly limited, but, for example, the method of inducing differentiation from early mesoderm cells into pericyte-like cells described in US Pat. No. 9,868,939 is used. be able to. The differentiation of early mesodermal cells into pericyte-like cells can be confirmed using surface antigen markers such as NG2 and CD146 (Herrmann M. et al., Eur. Cells Mater., (2016) et al., Exp. Hematol., (2008), 36: 642-654, Lv FJ. et al., Stem Cells, (2014), 32: 1408-1419).
 1つの実施形態において、工程(b)では、まず初期中胚葉細胞のスフェロイドを形成し、その後、初期中胚葉細胞のスフェロイドをペリサイト様細胞に分化誘導させることができる。 In one embodiment, in step (b), spheroids of early mesoderm cells are first formed, and then the spheroids of early mesoderm cells can be induced to differentiate into pericyte-like cells.
 本発明において、初期中胚葉細胞のスフェロイド形成する方法は特に限定されず、公知の方法を用いることができる。例えば、US9,771,561に記載のメチルセルロース培地を用いる方法が挙げられる。スフェロイド形成培地の組成は、公知技術(Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729など)を参照して設定することができる。 In the present invention, the method for forming spheroids of early mesodermal cells is not particularly limited, and known methods can be used. For example, a method using a methylcellulose medium described in US Pat. No. 9,771,561 can be mentioned. The composition of the spheroid-forming medium can be set with reference to known techniques (Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729, etc.).
 本発明において、スフェロイド形成した初期中胚葉細胞をペリサイト様細胞に分化させる方法は特に限定されず、公知の方法を用いることができる。例えば、US9,868,939に記載の方法を用いることができる。 In the present invention, the method for differentiating spheroid-formed early mesoderm cells into pericyte-like cells is not particularly limited, and known methods can be used. For example, the method described in US9,868,939 can be used.
〔bFGF遺伝子導入ペリサイトの培養方法〕
 本発明のペリサイトを培養・増殖する方法は、特に限定されず、当該技術分野で公知のペリサイトの培養・増殖方法を用いることができる。
[Method for culturing bFGF gene-introduced pericytes]
The method for culturing/proliferating the pericytes of the present invention is not particularly limited, and a method for culturing/proliferating pericytes known in the art can be used.
 本発明のペリサイトを培養する培地は、ペリサイトの培養に適した培地であれば特に限定されず、基本培地として、MEM培地、BME培地、D-MEM培地、α-MEM培地、IMEM培地、ES培地、DM-160培地、Fisher培地、F12培地、WE培地、RPMI培地、StemSpan培地、StemPro培地及びこれらの混合物を用いることができる。 The medium for culturing the pericytes of the present invention is not particularly limited as long as it is a medium suitable for culturing pericytes. ES medium, DM-160 medium, Fisher medium, F12 medium, WE medium, RPMI medium, StemSpan medium, StemPro medium and mixtures thereof can be used.
 本発明のペリサイトを培養する培地には、細胞の維持増殖に必要な各種栄養源を適宜添加してもよい。例えば、栄養源としては、グリセロール、グルコース、果糖、ショ糖、乳糖、ハチミツ、デンプン、デキストリン等の炭素源、脂肪酸、油脂、レシチン、アルコール類等の炭化水素類、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源、食塩、カリウム塩、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等の無機塩類、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、モリブデン酸ナトリウム、タングステン酸ナトリウム及び硫酸マンガン、各種ビタミン類、アミノ酸類等を含むことができる。1つの実施形態において、本発明のペリサイトを培養する培地に添加する栄養源として、グルタミン等のアミノ酸を用いることができる。 The medium for culturing the pericytes of the present invention may be appropriately supplemented with various nutrient sources necessary for cell maintenance and proliferation. For example, nutrient sources include carbon sources such as glycerol, glucose, fructose, sucrose, lactose, honey, starch, and dextrin; hydrocarbons such as fatty acids, oils, lecithin, and alcohols; ammonium sulfate, ammonium nitrate, ammonium chloride, urea , Nitrogen sources such as sodium nitrate, salt, potassium salts, phosphates, magnesium salts, calcium salts, iron salts, inorganic salts such as manganese salts, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride, sulfuric acid It can contain ferrous iron, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids, and the like. In one embodiment, an amino acid such as glutamine can be used as a nutrient source added to the medium for culturing the pericytes of the present invention.
 本発明のペリサイトを培養する培地には、細胞の増殖に必要なFGFファミリー増殖因子等の成長因子を適宜添加してもよい。添加する成長因子は特に限定されないが、1つの実施形態において、本発明のペリサイトを培養する培地に添加する成長因子としてbFGF又は熱安定性を強化した改変型bFGFを用いることができる。 The medium for culturing the pericytes of the present invention may be appropriately supplemented with growth factors such as FGF family growth factors necessary for cell proliferation. The growth factor to be added is not particularly limited, but in one embodiment, bFGF or modified bFGF with enhanced thermostability can be used as the growth factor to be added to the medium for culturing the pericytes of the present invention.
 本発明のペリサイトを培養する培地のpHは、5.5~9.0、好ましくは6.0~8.0、より好ましくは6.5~7.5の範囲である。 The pH of the medium for culturing the pericytes of the present invention is in the range of 5.5-9.0, preferably 6.0-8.0, more preferably 6.5-7.5.
 ペリサイトは細胞外マトリックスに付着して増殖する特性を有する付着細胞である。それゆえ、1つの実施形態において、本発明のペリサイトの培養においては適当な足場を用いることができる。足場は細胞が付着して分裂・増殖し得るマトリックスや基質や担体であれば特に制限されず、例えば、フィブロネクチン、ビトロネクチン、コラーゲン、プロテオグリカン、ラミニン、テネイシン、エンタクチン、エラスチン、フィブリリン、ヒアルロン酸、ゼラチン、ポリ-L-リジン(poly-L-lysine)、ポリ-D-リジン(poly-D-lysine)等を挙げることができる。1つの実施形態において、本発明のペリサイトの培養において用いる足場として、コラーゲンのマトリックスを用いることができる。 Pericytes are adherent cells that have the property of adhering to the extracellular matrix and proliferating. Therefore, in one embodiment, a suitable scaffold can be used in culturing the pericytes of the present invention. The scaffold is not particularly limited as long as it is a matrix, substrate, or carrier to which cells can attach and divide/proliferate. Examples include poly-L-lysine, poly-D-lysine, and the like. In one embodiment, a collagen matrix can be used as a scaffold for use in culturing pericytes of the present invention.
 本発明のペリサイトの培養は、1つの実施形態において、36℃~38℃で行うことができる。1つの実施形態において、本発明のペリサイトの培養は、36.5℃~37.5℃で、1%~25% O2、1%~15% CO2の雰囲気下で適宜培地を交換しながら行うことができる。 Cultivation of pericytes of the present invention can be carried out at 36°C to 38°C in one embodiment. In one embodiment, the pericytes of the present invention can be cultured at 36.5°C to 37.5°C in an atmosphere of 1% to 25% O 2 and 1% to 15% CO 2 while exchanging the medium as appropriate. can.
<本発明の医薬組成物等>
 本発明はまた、本発明のペリサイトを含む医薬組成物(「本発明の医薬組成物」とも称する)を提供する。当該医薬組成物は、当該分野において通常用いられる賦形剤、即ち、薬剤用賦形剤や薬剤用担体等を用いて、通常使用される方法によって調製することができる。医薬組成物の製剤化にあたっては、薬学的に許容される範囲で、これら剤型に応じた賦形剤、担体、添加剤等を使用することができる。1つの実施形態において、本発明の医薬組成物は、bFGF遺伝子が導入された初代ペリサイトを含む。1つの実施形態において、本発明の医薬組成物は、bFGF遺伝子が導入された、多能性幹細胞から分化誘導されたペリサイト様細胞を含む。本発明の医薬組成物は、bFGF遺伝子が導入された、ES細胞又はiPS細胞から分化誘導されたペリサイト様細胞を含む。1つの実施形態において、本発明の医薬組成物は、bFGF遺伝子が導入された、ヒト多能性幹細胞から分化誘導されたペリサイト様細胞を含む。1つの実施形態において、本発明の医薬組成物は、bFGF遺伝子が導入された、ヒトES細胞又はヒトiPS細胞から分化誘導されたペリサイト様細胞を含む。
<Pharmaceutical composition, etc. of the present invention>
The present invention also provides pharmaceutical compositions comprising the pericytes of the present invention (also referred to as "pharmaceutical compositions of the present invention"). The pharmaceutical composition can be prepared by a commonly used method using excipients commonly used in the field, ie, pharmaceutical excipients, pharmaceutical carriers, and the like. In formulating the pharmaceutical composition, excipients, carriers, additives and the like according to these dosage forms can be used within a pharmaceutically acceptable range. In one embodiment, the pharmaceutical composition of the present invention comprises primary pericytes into which the bFGF gene has been introduced. In one embodiment, the pharmaceutical composition of the present invention contains pericyte-like cells induced to differentiate from pluripotent stem cells into which the bFGF gene has been introduced. The pharmaceutical composition of the present invention contains pericyte-like cells differentiated from ES cells or iPS cells into which a bFGF gene has been introduced. In one embodiment, the pharmaceutical composition of the present invention contains pericyte-like cells induced to differentiate from human pluripotent stem cells into which a bFGF gene has been introduced. In one embodiment, the pharmaceutical composition of the present invention contains pericyte-like cells induced to differentiate from human ES cells or human iPS cells into which a bFGF gene has been introduced.
 1つの実施形態において、本発明の医薬組成物は、血管新生療法のための医薬組成物である。なお、当該医薬組成物は、本発明のペリサイトを含む血管新生療法のための治療剤を包含する。血管新生療法とは、虚血状態にある臓器、組織、又は人体の部位に到達する酸素を豊富に含む血液量を増加させるため、当該虚血状態にある臓器、組織、または人体の部位において新しい血管の生成を促す治療方法である。血管新生療法には、重症下肢虚血や糖尿病性網膜症等の末梢血管疾患、肺高血圧症等の疾患の治療が含まれる。1つの実施形態において、本発明の医薬組成物は、重症下肢虚血、糖尿病性網膜症等の末梢血管疾患、肺高血圧症等の治療のための医薬組成物である。1つの実施形態において、本発明の医薬組成物は、重症下肢虚血の治療のための医薬組成物である。 In one embodiment, the pharmaceutical composition of the present invention is a pharmaceutical composition for angiogenesis therapy. The pharmaceutical composition includes a therapeutic agent for angiogenesis therapy containing pericytes of the present invention. Angiogenesis therapy refers to the development of new cells in an ischemic organ, tissue, or body part to increase the amount of oxygen-rich blood reaching the ischemic organ, tissue, or body part. It is a therapeutic method that promotes the formation of blood vessels. Angiogenic therapies include treatment of peripheral vascular diseases such as critical limb ischemia and diabetic retinopathy, and diseases such as pulmonary hypertension. In one embodiment, the pharmaceutical composition of the present invention is a pharmaceutical composition for treatment of critical limb ischemia, peripheral vascular diseases such as diabetic retinopathy, pulmonary hypertension, and the like. In one embodiment, the pharmaceutical composition of the invention is a pharmaceutical composition for the treatment of critical limb ischemia.
 本発明は、血管新生療法のための医薬組成物の製造における本発明のペリサイトの使用を提供する。本発明は、血管新生療法に使用するための、本発明のペリサイトを提供する。また、本発明は、血管新生療法のための、本発明のペリサイトの使用を提供する。 The present invention provides use of the pericyte of the present invention in the manufacture of a pharmaceutical composition for angiogenesis therapy. The invention provides pericytes of the invention for use in angiogenesis therapy. The invention also provides the use of the pericytes of the invention for angiogenesis therapy.
 本発明は、重症下肢虚血を治療するための医薬組成物の製造における本発明のペリサイトの使用を提供する。本発明は、重症下肢虚血の治療に使用するための、本発明のペリサイトを提供する。また、本発明は、重症下肢虚血の治療のための、本発明のペリサイトの使用を提供する。 The present invention provides use of the pericyte of the present invention in the manufacture of a pharmaceutical composition for treating critical limb ischemia. The present invention provides pericytes of the present invention for use in treating critical limb ischemia. The present invention also provides use of the pericytes of the present invention for the treatment of critical limb ischemia.
 本発明にはまた、本発明のペリサイトの治療有効量を対象に投与することを含む、血管新生療法(「本発明の治療方法」とも称する)を提供する。本発明の治療方法において、「対象」とは、その治療を必要とするヒト又はその他の動物である。1つの実施形態において、「対象」とは、その治療方法を必要とするヒトである。本発明のペリサイトをヒトへ投与する場合、本発明のペリサイト及び薬学的に許容される賦形剤を含む医薬組成物の形態で対象に投与することができる。ヒトへの本発明の医薬組成物の投与量及び投与回数は、治療対象の疾患、重症度、処置を受けるヒトの年齢、体重及び状態などに応じて適宜調節できる。 The present invention also provides an angiogenesis therapy (also referred to as "the treatment method of the present invention") comprising administering a therapeutically effective amount of the pericyte of the present invention to a subject. In the treatment methods of the present invention, a "subject" is a human or other animal in need of such treatment. In one embodiment, a "subject" is a human in need of the method of treatment. When the pericyte of the present invention is administered to humans, it can be administered to the subject in the form of a pharmaceutical composition containing the pericyte of the present invention and a pharmaceutically acceptable excipient. The dosage and frequency of administration of the pharmaceutical composition of the present invention to humans can be appropriately adjusted according to the disease to be treated, its severity, and the age, weight and condition of the person to be treated.
 本発明の医薬組成物の投与方法は特に限定されず、適用部位に応じて、外科的手段による局所移植、静脈内投与、下肢穿刺投与、局所注入投与、皮下投与、皮内投与、筋肉内投与などが考えられる。 The administration method of the pharmaceutical composition of the present invention is not particularly limited, and depending on the site of application, local transplantation by surgical means, intravenous administration, leg puncture administration, local injection administration, subcutaneous administration, intradermal administration, intramuscular administration. etc. can be considered.
 本発明の医薬組成物は、シート状にして、患部に直接適用してもよい。シートは細胞のみならず適当な支持体を含んでいてもよい。 The pharmaceutical composition of the present invention may be made into a sheet and applied directly to the affected area. The sheet may contain a suitable support as well as cells.
 本発明の医薬組成物は、細胞の維持・増殖、患部への投与を補助する足場材料や成分、他の医薬的に許容しうる担体を含んでいてもよい。細胞の維持・増殖に必要な成分としては、炭素源、窒素源、ビタミン、ミネラル、塩類、各種サイトカイン等の培地成分、あるいはマトリゲル等の細胞外マトリックス調製品、が挙げられる。 The pharmaceutical composition of the present invention may contain scaffolding materials and components that assist in cell maintenance/proliferation, administration to affected areas, and other pharmaceutically acceptable carriers. Components necessary for maintenance and growth of cells include medium components such as carbon sources, nitrogen sources, vitamins, minerals, salts, various cytokines, and extracellular matrix preparations such as matrigel.
 本発明のペリサイト又は本発明の医薬組成物は、血管内皮細胞と併用することもできる。本明細書中、「併用」とは、同一対象に対して複数種の医薬有効成分を同時に又は別々に投与することを意味する。併用においては、当該複数種の医薬有効成分は、同一の組成物中に含まれていてもよいし、異なる組成物中に別々に含まれていてもよい。1つの実施形態において、本発明の医薬組成物は、血管内皮細胞と併用される医薬組成物である。1つの実施形態において、本発明の医薬組成物は、血管内皮細胞をさらに含む医薬組成物である。1つの実施形態において、本発明の治療方法は、血管内皮細胞を投与することをさらに含む。 The pericyte of the present invention or the pharmaceutical composition of the present invention can also be used in combination with vascular endothelial cells. As used herein, the term "combination" means administration of multiple active pharmaceutical ingredients simultaneously or separately to the same subject. In combination, the multiple active pharmaceutical ingredients may be contained in the same composition, or may be contained separately in different compositions. In one embodiment, the pharmaceutical composition of the present invention is a pharmaceutical composition used in combination with vascular endothelial cells. In one embodiment, the pharmaceutical composition of the present invention is a pharmaceutical composition further comprising vascular endothelial cells. In one embodiment, the therapeutic method of the present invention further comprises administering vascular endothelial cells.
 本発明はまた、本発明のペリサイトと血管内皮細胞を組み合わせてなる、医薬組成物を含む。本明細書中、「組み合わせてなる」とは、複数種の医薬有効成分が同一の医薬組成物に含まれていること、又は複数種の医薬有効成分が異なる医薬組成物中に別々に含まれていることを意味する。1つの実施態様において、本発明のペリサイトと血管内皮細胞を組み合わせてなる医薬組成物は、本発明のペリサイトと血管内皮細胞を含む医薬組成物である。1つの実施態様において、本発明のペリサイトと血管内皮細胞を組み合わせてなる医薬組成物は、本発明のペリサイトと血管内皮細胞が異なる医薬組成物中に別々に含まれている医薬組成物の組み合わせである。1つの実施態様において、本発明のペリサイトと血管内皮細胞を組み合わせてなる医薬組成物は、本発明のペリサイトを含む医薬組成物と血管内皮細胞を含む医薬組成物の組み合わせである。1つの実施形態において、本発明のペリサイトと血管内皮細胞を組み合わせてなる医薬組成物は、血管新生療法のための医薬組成物である。1つの実施形態において、本発明のペリサイトと血管内皮細胞を組み合わせてなる医薬組成物は、重症下肢虚血を治療するための医薬組成物である。 The present invention also includes a pharmaceutical composition comprising a combination of the pericytes of the present invention and vascular endothelial cells. As used herein, the term "combination" means that multiple types of active pharmaceutical ingredients are contained in the same pharmaceutical composition, or multiple types of active pharmaceutical ingredients are contained separately in different pharmaceutical compositions. means that In one embodiment, the pharmaceutical composition obtained by combining the pericytes of the present invention and vascular endothelial cells is a pharmaceutical composition comprising the pericytes of the present invention and vascular endothelial cells. In one embodiment, a pharmaceutical composition comprising a combination of the pericytes of the present invention and vascular endothelial cells is a pharmaceutical composition in which the pericytes of the present invention and vascular endothelial cells are separately contained in different pharmaceutical compositions. It's a combination. In one embodiment, the pharmaceutical composition obtained by combining the pericytes of the present invention and vascular endothelial cells is a combination of the pharmaceutical composition containing the pericytes of the present invention and the pharmaceutical composition containing vascular endothelial cells. In one embodiment, the pharmaceutical composition comprising a combination of pericytes and vascular endothelial cells of the present invention is a pharmaceutical composition for angiogenesis therapy. In one embodiment, the pharmaceutical composition comprising a combination of pericytes and vascular endothelial cells of the present invention is a pharmaceutical composition for treating critical limb ischemia.
≪血管内皮細胞≫
 「血管内皮細胞」は、血管内腔を裏打ちする一層の扁平状の細胞で、血管の緊張度や血管透過性の調節、血管新生、抗炎症、凝血促進など多彩な機能を有する。動・静脈レベルの大きな血管は内膜、中膜、及び外膜で構成される3層構造を取っており、それぞれ主に、血管内皮細胞、平滑筋細胞、繊維芽細胞で構成されている。一方、毛細血管レベルの小さな血管では血管内皮細胞の管腔構造がペリサイトにより囲まれている。成熟した毛細血管においては、ペリサイトは血管内皮細胞と基底膜を共有し、その中に埋まり込む形で存在している。近年、ペリサイトと血管内皮細胞が相互に細胞シグナル伝達を行うことで、分化、増殖を調節し、毛細血管の成熟、安定化、維持、及び基底膜の形成、細胞外マトリックスの沈着などに重要な役割を果たすことが知られている。
≪Vascular endothelial cell≫
“Vascular endothelial cells” are flat cells that line the lumen of blood vessels, and have various functions such as regulation of vascular tone and vascular permeability, angiogenesis, anti-inflammatory, and blood coagulation promotion. Large blood vessels at the level of arteries and veins have a three-layered structure consisting of the intima, the media, and the adventitia, each of which is mainly composed of vascular endothelial cells, smooth muscle cells, and fibroblasts. On the other hand, in small blood vessels at the capillary level, the luminal structure of vascular endothelial cells is surrounded by pericytes. In mature capillaries, pericytes share the basement membrane with vascular endothelial cells and are embedded therein. In recent years, mutual cell signaling between pericytes and vascular endothelial cells regulates differentiation and proliferation, and is important for the maturation, stabilization, and maintenance of capillaries, formation of basement membrane, and deposition of extracellular matrix. known to play a role.
 本発明のペリサイト又は本発明の医薬組成物と組み合せることができる血管内皮細胞は、特に限定されないが、1つの実施形態において、初代血管内皮細胞、又は多能性幹細胞等から分化誘導された血管内皮細胞である。本発明のペリサイト又は本発明の医薬組成物と併用される血管内皮細胞としては、特に限定されないが、1つの実施形態において、初代血管内皮細胞、又は多能性幹細胞等から分化誘導された血管内皮細胞である。本発明の血管新生療法において、本発明のペリサイトと血管内皮細胞を併用する場合、血管内皮細胞は、本発明のペリサイトの投与と同時に、あるいは、本発明のペリサイトの投与前又は投与後に投与されうる。 Vascular endothelial cells that can be combined with the pericytes of the present invention or the pharmaceutical composition of the present invention are not particularly limited, but in one embodiment, primary vascular endothelial cells or induced differentiation from pluripotent stem cells or the like vascular endothelial cells. Vascular endothelial cells used in combination with the pericytes of the present invention or the pharmaceutical composition of the present invention are not particularly limited, but in one embodiment, primary vascular endothelial cells, or blood vessels differentiated from pluripotent stem cells or the like endothelial cells. In the angiogenesis therapy of the present invention, when the pericytes of the present invention and vascular endothelial cells are used in combination, the vascular endothelial cells are administered simultaneously with the administration of the pericytes of the present invention, or before or after the administration of the pericytes of the present invention. can be administered.
 「初代血管内皮細胞」とは、生物個体から直接採取された血管内皮細胞、または当該血管内皮細胞をin vitroで培養・増殖させた初代培養細胞、継代細胞を意味する。初代血管内皮細胞としては特に限定されないが、ある態様では、ヒト初代血管内皮細胞である。ヒト初代血管内皮細胞としては、例えば、ヒトである患者本人、あるいは、拒絶反応が起こらないという観点から、移植先の個体のヒト白血球抗原(HLA)遺伝子型が同一又は実質的に同一である初代血管内皮細胞を用いることが望ましい。ここで、「実質的に同一」とは、移植した血管内皮細胞に対して免疫抑制剤により免疫反応が抑制できる程度にHLA遺伝子型が一致していることであり、例えば、HLA-A、HLA-B及びHLA-DRの3遺伝子座又はそれらにHLA-Cを加えた4遺伝子座が一致するHLA型を有する血管内皮細胞である。本発明のペリサイト又は本発明の医薬組成物と併用される又は組み合せることができる血管内皮細胞は、1つの実施形態において、ヒト初代血管内皮細胞である。 "Primary vascular endothelial cells" means vascular endothelial cells directly collected from an individual organism, or primary cultured cells or passaged cells obtained by culturing and proliferating the vascular endothelial cells in vitro. Although the primary vascular endothelial cells are not particularly limited, in certain embodiments, they are human primary vascular endothelial cells. Human primary vascular endothelial cells include, for example, primary human vascular endothelial cells that have the same or substantially the same human leukocyte antigen (HLA) genotype as that of a human patient, or a recipient individual from the viewpoint that rejection does not occur. It is desirable to use vascular endothelial cells. Here, the term “substantially identical” means that the HLA genotypes match the transplanted vascular endothelial cells to the extent that the immunosuppressive agent can suppress the immune reaction. A vascular endothelial cell having an HLA type corresponding to 3 loci of -B and HLA-DR or 4 loci including HLA-C. Vascular endothelial cells that can be used or combined with the pericytes of the present invention or the pharmaceutical compositions of the present invention are, in one embodiment, primary human vascular endothelial cells.
 本発明のペリサイト又は本発明の医薬組成物と組み合せることができる「多能性幹細胞等から分化誘導された血管内皮細胞」としては、特に限定されないが、例えば、Ikuno T et al., Pros One, (2019), 12: e0173271やCho SW et al., Circulation, (2007), 116: 2409-2419に記載されている方法で製造した血管内皮細胞を用いることができる。本発明のペリサイト又は本発明の医薬組成物と併用される又は組み合せることができる血管内皮細胞は、1つの実施形態において、ヒト多能性幹細胞等から分化誘導された血管内皮細胞である。 The "vascular endothelial cells differentiated from pluripotent stem cells or the like" that can be combined with the pericytes of the present invention or the pharmaceutical composition of the present invention are not particularly limited, but for example, Ikuno T et al., Pros One, (2019), 12: e0173271 and Cho SW et al., Circulation, (2007), 116: 2409-2419, vascular endothelial cells produced by the method described can be used. Vascular endothelial cells that can be used or combined with the pericytes of the present invention or the pharmaceutical composition of the present invention are, in one embodiment, vascular endothelial cells induced to differentiate from human pluripotent stem cells or the like.
 本発明についてさらに理解を得るために参照する特定の実施例をここに提供するが、これらは例示目的とするものであって、本発明を限定するものではない。 Specific examples are provided herein for reference to gain a further understanding of the invention, but these are for illustrative purposes and do not limit the invention.
 実施例1:骨格筋由来ヒト初代ペリサイトの樹立
 ヒト大腿四頭筋の一部をPBSに浸した状態でメスとピンセットを用いて筋肉をその繊維に沿って細かく切断した。切断した筋繊維を50mL遠沈管(Corning, 352070)に入れてコラゲナーゼ溶液(下記参照)を15mL添加し、3分静置後、上清を除いた。前記操作をさらに2回繰り返した。次に、前記操作を行った筋繊維を別の50mL遠沈管に入れてコラゲナーゼ溶液を15mL添加し、37℃の温浴で1時間静置した。筋繊維以外の細胞懸濁液を回収し、細胞懸濁液1とした。再度コラゲナーゼ溶液を15mLずつ2回に分けて添加し、コラゲナーゼ溶液の添加毎に細胞懸濁液1と同様の手順で回収して、細胞懸濁液2、及び細胞懸濁液3を得た。細胞懸濁液1、2、3についてそれぞれ100μmセルストレイナー(Corning, 352360)に通し、得られた細胞懸濁液を300g、4℃、5分の条件で遠心分離した。上清を除き、それぞれの遠沈管にペリサイト樹立培地(下記参照)を20mL添加し、コラーゲンコーティングディッシュ(Corning, 356450)2枚に分け入れて、37℃、5% CO2、5% O2雰囲気下で培養した。細胞懸濁液1、2、3由来の細胞をそれぞれ条件1、2、3の細胞と以下で呼ぶ。培養3、6、8日目にそれぞれの培養上清を除き、ペリサイト樹立培地を10mL添加した。条件1の細胞については、培養13日目にディッシュ上の培養上清を除き、PBS 5mLで洗浄後、細胞解離試薬(TrypLE Express, ThermoFisher Scientific, 12604013)を1mL添加し、37℃プレート上で5分間静置した。ディッシュにペリサイト樹立培地を4mL添加して細胞懸濁液を回収し、300g、室温、5分の条件で遠心分離した。上清を除いた後、セルバンカー1(タカラバイオ, CB011)を5mL添加し、1mLずつクライオチューブに分注して液体窒素中で保管した。
Example 1: Establishment of primary human pericyte derived from skeletal muscle A portion of the human quadriceps muscle was soaked in PBS, and the muscle was finely cut along the fiber using a scalpel and tweezers. The cut muscle fibers were placed in a 50 mL centrifuge tube (Corning, 352070), 15 mL of collagenase solution (see below) was added, allowed to stand for 3 minutes, and the supernatant was removed. The above operation was repeated two more times. Next, the muscle fiber subjected to the above operation was placed in another 50 mL centrifuge tube, 15 mL of collagenase solution was added, and the tube was allowed to stand in a warm bath at 37° C. for 1 hour. A cell suspension other than the muscle fibers was collected and designated as cell suspension 1. The collagenase solution was again added in two portions of 15 mL each, and each addition of the collagenase solution was collected in the same manner as the cell suspension 1 to obtain a cell suspension 2 and a cell suspension 3. Cell suspensions 1, 2 and 3 were each passed through a 100 μm cell strainer (Corning, 352360), and the resulting cell suspensions were centrifuged at 300 g at 4° C. for 5 minutes. Remove the supernatant, add 20 mL of pericyte establishment medium (see below) to each centrifuge tube, divide into 2 collagen-coated dishes (Corning, 356450), and incubate at 37°C, 5% CO 2 , 5% O 2 . Cultured under atmosphere. Cells from cell suspensions 1, 2 and 3 are referred to below as condition 1, 2 and 3 cells respectively. On the 3rd, 6th and 8th days of culture, each culture supernatant was removed and 10 mL of pericyte establishment medium was added. For the cells in Condition 1, remove the culture supernatant on the dish on day 13 of culture, wash with 5 mL of PBS, add 1 mL of cell dissociation reagent (TrypLE Express, ThermoFisher Scientific, 12604013), and place on a 37°C plate for 5 minutes. Let stand for 1 minute. 4 mL of pericyte establishment medium was added to the dish to collect the cell suspension, which was then centrifuged at 300 g at room temperature for 5 minutes. After removing the supernatant, 5 mL of cell banker 1 (Takara Bio, CB011) was added, and 1 mL portions were dispensed into cryotubes and stored in liquid nitrogen.
 培養10日目に条件2、3の細胞のディッシュの培養上清を除き、それぞれをPBS 5mLで洗浄後、TrypLE Expressを1mLずつ添加し、37℃プレート上で5分間静置した。各ディッシュにペリサイト樹立培地を4mL添加して細胞懸濁液を回収し、条件2及び3の細胞懸濁液をまとめて同一遠沈管にて混合して300g、室温、5分の条件で遠心分離した。上清を除いた後、セルバンカー1を5mL添加し、1mLずつクライオチューブに分注して液体窒素中で保管した。後日、50mL遠沈管にペリサイト増殖培地(下記参照)を9mL添加し、融解した前記の条件2、3の細胞を含むセルバンカー1溶液を1mL添加して300g、4℃、5分の条件で遠心分離した。上清を除き、遠沈管にペリサイト増殖培地を20mL添加し、細胞懸濁液を回収した。回収した細胞懸濁液をコラーゲンコーティングディッシュ2枚に分け入れて、37℃、5% CO2、5% O2雰囲気下で培養した。培養3日目に各ディッシュの培養上清を除き、ペリサイト増殖培地を10mL添加した。翌日に培養上清を除き、PBS 5mLで洗浄後、細胞解離試薬(Accutase(登録商標), Innovative Cell Technologies, AT104)を2mL添加し、37℃プレート上で5分間静置した。各ディッシュにペリサイト増殖培地を8mL添加して細胞懸濁液を遠沈管に回収し、300g、室温、5分の条件で遠心分離した。上清を除き、前記遠沈管にPBSを100μL添加し、ブロッキング試薬(FcR Blocking Reagent, Miltenyi Biotec, 130-059-901)を20μL添加して氷上で15分間静置した。続いて抗ヒトALP(Alkaline Phosphatase)抗体(R&D Systems, FAB1448P)、及び抗CD56 APC抗体(Miltenyi Biotec, 130-090-843)を各20μL添加し、氷上で20分間静置した。PBSで2回洗浄した後、再度PBSで懸濁し、セルソーター(SH800S, ソニー)を用いてALP(+)かつCD56(-)細胞(すなわち、ヒト初代ペリサイト)を分取した。分取後の細胞はペリサイト増殖培地に懸濁してコラーゲンコーティングディッシュに播種して培養した。 On the 10th day of culture, the culture supernatants of the dishes of the cells of conditions 2 and 3 were removed, and after washing each dish with 5 mL of PBS, 1 mL of TrypLE Express was added to each dish, and allowed to stand on a 37° C. plate for 5 minutes. Add 4 mL of pericyte establishment medium to each dish to collect the cell suspension, mix the cell suspensions of conditions 2 and 3 together in the same centrifuge tube, and centrifuge at 300 g at room temperature for 5 minutes. separated. After removing the supernatant, 5 mL of cell banker 1 was added, and 1 mL portions were dispensed into cryotubes and stored in liquid nitrogen. At a later date, add 9 mL of pericyte growth medium (see below) to a 50 mL centrifuge tube, add 1 mL of cell banker 1 solution containing the thawed cells of conditions 2 and 3 above, and incubate at 300 g at 4°C for 5 minutes. Centrifuged. The supernatant was removed, 20 mL of pericyte growth medium was added to the centrifuge tube, and the cell suspension was recovered. The collected cell suspension was divided into 2 collagen-coated dishes and cultured at 37° C., 5% CO 2 , 5% O 2 atmosphere. On day 3 of culture, the culture supernatant of each dish was removed, and 10 mL of pericyte growth medium was added. On the next day, the culture supernatant was removed, and after washing with 5 mL of PBS, 2 mL of a cell dissociation reagent (Accutase (registered trademark), Innovative Cell Technologies, AT104) was added, and allowed to stand on a 37°C plate for 5 minutes. 8 mL of pericyte growth medium was added to each dish, and the cell suspension was collected in a centrifuge tube and centrifuged at 300 g at room temperature for 5 minutes. The supernatant was removed, 100 µL of PBS was added to the centrifuge tube, 20 µL of a blocking reagent (FcR Blocking Reagent, Miltenyi Biotec, 130-059-901) was added, and the tube was allowed to stand on ice for 15 minutes. Subsequently, 20 μL each of anti-human ALP (Alkaline Phosphatase) antibody (R&D Systems, FAB1448P) and anti-CD56 APC antibody (Miltenyi Biotec, 130-090-843) were added and allowed to stand on ice for 20 minutes. After washing twice with PBS, the cells were resuspended in PBS, and ALP(+) and CD56(-) cells (that is, primary human pericytes) were sorted using a cell sorter (SH800S, Sony). The collected cells were suspended in a pericyte growth medium, seeded on a collagen-coated dish, and cultured.
[コラゲナーゼ溶液]
 TrypLE select(ThermoFisher Scientific, 12563029)200mLにCollagenase, Type II(ThermoFisher Scientific, 17101015)を100mg溶解させて調製した。
[Collagenase solution]
It was prepared by dissolving 100 mg of Collagenase, Type II (ThermoFisher Scientific, 17101015) in 200 mL of TrypLE select (ThermoFisher Scientific, 12563029).
[ペリサイト樹立培地]
 組成は以下の通りである。
・92% MegaCell Dulbecco’s Modified Eagle’s Medium(Sigma-Aldrich, M3942)
・5% FBS(Sigma-Aldrich)
・1% GlutaMax(ThermoFisher Scinetific, 35050061)
・1% MEM Non-essential Amino Acid Solution(Sigma-Aldrich, M7145)
・1% Penicillin-Streptmycin(Sigma-Aldrich, P0781)
・100μM 2-Mercaptethanol(ThermoFisher Scientific, 21985023)
・5ng/mL FGF-basic(154a.a.), Human, Recombinant (Peprotech, 100-18B)
[Pericyte establishment medium]
The composition is as follows.
・92% MegaCell Dulbecco's Modified Eagle's Medium (Sigma-Aldrich, M3942)
・5% FBS (Sigma-Aldrich)
・1% GlutaMax (ThermoFisher Scientific, 35050061)
・1% MEM Non-essential Amino Acid Solution (Sigma-Aldrich, M7145)
・1% Penicillin-Streptomycin (Sigma-Aldrich, P0781)
・100 μM 2-Mercaptethanol (ThermoFisher Scientific, 21985023)
・5ng/mL FGF-basic (154a.a.), Human, Recombinant (Peprotech, 100-18B)
[ペリサイト増殖培地]
 組成は以下の通りである。
・77% MegaCell Dulbecco’s Modified Eagle’s Medium
・20% FBS
・1% GlutaMax
・1% MEM Non-essential Amino Acid Solution
・1% Penicillin-Streptmycin
・100μM 2-Mercaptethanol
・5ng/mL Animal-free Recombinant Human FGFbasic-TS(Proteintech, HZ-1285)
[Pericyte growth medium]
The composition is as follows.
・77% MegaCell Dulbecco's Modified Eagle's Medium
・20% FBS
・1% GlutaMax
・1% MEM Non-essential Amino Acid Solution
・1% Penicillin-Streptomycin
・100 μM 2-mercaptethanol
・5ng/mL Animal-free Recombinant Human FGFbasic-TS (Proteintech, HZ-1285)
 実施例2:bFGF遺伝子導入用レンチウイルスベクターの作製
 レンチウイルスパッケージ用細胞株(Lenti-X 293T Cell Line, タカラバイオ, 632180)を10cmディッシュ1枚当たり10mLの293T増殖培地(下記参照)を用いて5×106個播種し、当該ディッシュ4枚に播種した細胞を37℃、5% CO2雰囲気下で培養した。翌日にD-MEM(富士フイルム和光純薬, 045-30285)6mLにLentiviral High Titer Packaging Mix(タカラバイオ, 6194)28μLとbFGF挿入プラスミド(下記参照)15μLを添加、混合し、室温で5分間静置した。さらに、そこにトランスフェクション試薬(TransIT-293 Transfection Reagent, タカラバイオ, MIR2704) 180μLを添加、混合し、室温で30分間静置した(以下、これを「Transfection溶液」という)。前日にLenti-X 293T Cell Lineを播種した10cmディッシュ1枚につきTransfection溶液1.5mLを前記4枚のディッシュそれぞれに添加した。翌日に各ディッシュの上清を除き、293T増殖培地を10mL添加した。2日後に培養上清を回収し、剥離した細胞を取り除くため、室温で300g、5分の条件で遠心分離した。上清を回収し、そこに上清の1/3量のレンチウイルス濃縮試薬(Lenti-X Concentrator, タカラバイオ, 631231)を添加し、500g、4℃、45分の条件で遠心分離した。上清を除き、D-MEMを200μL添加し、bFGF遺伝子導入用レンチウイルス懸濁液を得た。
Example 2: Preparation of lentiviral vector for bFGF gene transfer A cell line for lentiviral packaging (Lenti-X 293T Cell Line, Takara Bio, 632180) was grown in 10 mL of 293T growth medium (see below) per 10 cm dish. 5×10 6 cells were seeded, and the cells seeded in 4 dishes were cultured at 37° C. in a 5% CO 2 atmosphere. On the next day, add 28 μL of Lentiviral High Titer Packaging Mix (Takara Bio, 6194) and 15 μL of bFGF insertion plasmid (see below) to 6 mL of D-MEM (Fujifilm Wako Pure Chemical Industries, Ltd., 045-30285), mix, and leave at room temperature for 5 minutes. placed. Further, 180 μL of a transfection reagent (TransIT-293 Transfection Reagent, Takara Bio Inc., MIR2704) was added thereto, mixed, and allowed to stand at room temperature for 30 minutes (hereinafter referred to as “transfection solution”). 1.5 mL of Transfection solution was added to each of the 4 dishes per 10 cm dish seeded with the Lenti-X 293T Cell Line the day before. The next day, the supernatant of each dish was removed and 10 mL of 293T growth medium was added. Two days later, the culture supernatant was collected and centrifuged at room temperature at 300 g for 5 minutes to remove detached cells. The supernatant was recovered, 1/3 of the supernatant was added with a lentivirus concentration reagent (Lenti-X Concentrator, Takara Bio, 631231), and centrifuged at 500 g at 4°C for 45 minutes. After removing the supernatant, 200 μL of D-MEM was added to obtain a lentiviral suspension for bFGF gene transfer.
[293T増殖培地]
 組成は以下の通りである。
・D-MEM
・10% FBS
・1% GlutaMAX
[293T growth medium]
The composition is as follows.
・D-MEM
・10% FBS
・1% GlutaMAX
[bFGF挿入プラスミド]
 pLenti6/V5 Directional TOPO Cloning Kit(ThermoFisher Scientific, K495510)を用いてBmp-bFGF(特許文献US 7816140 B2)のアミノ酸配列(配列番号4)をコードする遺伝子配列(配列番号3)を挿入したプラスミド(pLe6-Bmp-bFGF:配列番号5)を作製した。
[bFGF insertion plasmid]
Plasmid (pLe6 -Bmp-bFGF: SEQ ID NO: 5) was produced.
 実施例3:bFGF遺伝子導入ヒト初代ペリサイトの作製
 実施例1において樹立したヒト初代ペリサイトをペリサイト増殖培地下で1×105個/ウェルの細胞数でコラーゲンコーティング6ウェルプレート(Iwaki, 4810-010)上の2ウェルに播種した。2日後にペリサイト増殖培地3mLに10mg/mLポリブレン溶液(ナカライテスク, 12996-81)1.2μLと実施例2で作製したbFGF遺伝子導入用レンチウイルス懸濁液62μLとを添加、混合し、室温で5分間静置した(懸濁液A)。培養したヒト初代ペリサイトの上清を除き、懸濁液Aを1ウェルあたり1.5mLずつ吸引し、前記2ウェルそれぞれに添加した。プレートを室温で1200g、60分の条件で遠心分離し、その後、37℃、5% CO2、5% O2雰囲気下で培養した。翌日に上清を除き、PBSで9回洗浄後、Accutaseを1mL添加し、37℃プレート上で5分間静置した。ディッシュにペリサイト増殖培地を4mL添加して細胞懸濁液を回収し、2ウェル分の細胞懸濁液を同一遠沈管に回収して300g、室温、5分の条件で遠心分離した。上清を除き、ペリサイト増殖培地10mLを添加し、回収した細胞をコラーゲンコーティングディッシュに播種して培養した。培養は37℃、5% CO2、5% O2雰囲気下で行った。翌日に前記コラーゲンディッシュに10mg/mL ブラストサイジンS溶液(富士フイルム和光純薬, 026-18711)を最終濃度2.5μg/mLとなるように添加し、更に培養を続けた。本操作を経て増殖した細胞をbFGF遺伝子導入ヒト初代ペリサイトとした。
Example 3: Preparation of bFGF gene-introduced human primary pericytes The human primary pericytes established in Example 1 were grown in a pericyte growth medium at 1 × 10 5 cells/well in a collagen-coated 6-well plate (Iwaki, 4810). -010) were seeded in the top two wells. Two days later, 1.2 μL of 10 mg/mL polybrene solution (Nacalai Tesque, 12996-81) and 62 μL of lentiviral suspension for bFGF gene transfer prepared in Example 2 were added to 3 mL of pericyte growth medium, mixed, and incubated at room temperature. Let sit for 5 minutes (suspension A). After removing the supernatant of cultured primary human pericytes, 1.5 mL of Suspension A was aspirated per well and added to each of the two wells. The plate was centrifuged at room temperature at 1200 g for 60 minutes and then cultured at 37° C., 5% CO 2 , 5% O 2 atmosphere. On the next day, the supernatant was removed, and after washing with PBS nine times, 1 mL of Accutase was added and allowed to stand on a 37°C plate for 5 minutes. 4 mL of pericyte growth medium was added to the dish to collect the cell suspension, and the cell suspension for 2 wells was collected in the same centrifuge tube and centrifuged at 300 g at room temperature for 5 minutes. The supernatant was removed, 10 mL of pericyte growth medium was added, and the collected cells were seeded on a collagen-coated dish and cultured. Cultivation was performed at 37° C., 5% CO 2 , 5% O 2 atmosphere. On the following day, a 10 mg/mL Blasticidin S solution (Fuji Film Wako Pure Chemical Industries, Ltd., 026-18711) was added to the collagen dish to a final concentration of 2.5 μg/mL, and the culture was continued. Cells proliferated through this procedure were used as bFGF gene-introduced primary human pericytes.
 実施例4:bFGF遺伝子導入ヒト初代ペリサイトにおけるbFGF発現量の定量
 実施例3で作製したbFGF遺伝子導入ヒト初代ペリサイト、及び実施例1で作製したヒト初代ペリサイト(コントロール)を、ペリサイト増殖培地を用いて3×105個/ディッシュの細胞数でコラーゲンコーティングディッシュに播種して、37℃、5% CO2、5% O2雰囲気下で培養した。培養3日目に培養上清を回収し、シリンジフィルター(IWAKI, 2053-025)に通した。シリンジフィルターを通した上清中のbFGFの濃度をELISAキット(Human FGF basic Quantikine ELISA KIT, R&D Systems, DFB50)を用いて測定した。bFGF濃度の測定はキット添付のプロトコル通りに実施した。
Example 4: Quantitation of bFGF Expression Level in bFGF Gene-Introduced Human Primary Pericytes Using the culture medium, the cells were seeded on a collagen-coated dish at 3×10 5 cells/dish and cultured at 37° C. in an atmosphere of 5% CO 2 and 5% O 2 . On day 3 of culture, the culture supernatant was collected and passed through a syringe filter (IWAKI, 2053-025). The concentration of bFGF in the supernatant passed through the syringe filter was measured using an ELISA kit (Human FGF basic Quantikine ELISA KIT, R&D Systems, DFB50). The bFGF concentration was measured according to the protocol attached to the kit.
 コントロールのヒト初代ペリサイトにおいてはbFGFの発現が検出できなかったのに対して、bFGF遺伝子導入ヒト初代ペリサイトにおいては非常に高いbFGFの発現が見られた(図1)。 In the control human primary pericytes, bFGF expression could not be detected, whereas in the bFGF gene-introduced human primary pericytes, very high bFGF expression was observed (Fig. 1).
 実施例5:bFGF遺伝子導入ヒト初代ペリサイトの血管新生能の定性評価
 ヒト臍帯静脈内皮細胞(Human Umbilical Vein Endothelial Cells: HUVEC, PromoCell, C-12200)を、内皮細胞増殖培地(PromoCell, C-22111)を用いて37℃、5% CO2雰囲気下で培養した。また、実施例1にて樹立したヒト初代ペリサイト(コントロール)、及び実施例3で作製したbFGF遺伝子導入ヒト初代ペリサイトそれぞれをコラーゲンコーティングディッシュ上にペリサイト増殖培地を用いて培養した。前記3種類の細胞のそれぞれについてコンフルエントな状態まで増殖を確認した後、上清を除き、PBSで洗浄後、Accutaseを2mL添加し、37℃プレート上で5分間静置した。次に、各ディッシュに、HUVECに関しては内皮細胞増殖培地、ヒト初代ペリサイト及びbFGF遺伝子導入ヒト初代ペリサイトに関してはペリサイト増殖培地を8mL添加した。それぞれのディッシュから細胞懸濁液を回収し、300g、室温、5分の条件で遠心分離して上清を除いた後、HUVECは内皮細胞増殖培地に、2種類のヒト初代ペリサイトはペリサイト増殖培地に懸濁した。1.5mLチューブ(Eppendorf, 0030120.086)9本にHUVECをそれぞれ5.5×105個添加し、さらにそのうちの3本にはヒト初代ペリサイトを、又、別の3本にはbFGF遺伝子導入ヒト初代ペリサイトをそれぞれ1本あたり5.5×105個添加して混和した。各チューブを300g、4℃、5分の条件で遠心し、上清を除き、さらにPBSで1回洗浄後、再度同じ条件で遠心し、上清を除いた。次にそれぞれのチューブに細胞外マトリクス(Matrigel(登録商標)Growth factor reduced、Corning, 356231、以下、「マトリゲル」と呼ぶ)を400μLずつ加え、氷上で混和後に、細胞を含むマトリゲルを25ゲージ針付きシリンジで吸引した。生理食塩水(大塚製薬工場)79mLにドミトール(日本全薬工業)3mL、ドルミカム注射液(丸石製薬)8mL、ベトルファール(Meiji Seika ファルマ)10mLを添加した三種混合麻酔液を作製した。9匹のNOGマウス(NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJicマウス、In-Vivo Science)のそれぞれの腹腔に前記三種混合麻酔液を300μL投与した。麻酔されたマウス3匹ずつに、調製したHUVECのみ(HUVEC)、HUVEC及びコントロールヒト初代ペリサイト(Primary pericyte/HUVEC)、HUVEC及びbFGF遺伝子導入ヒト初代ペリサイト(bFGF-Primary pericyte/HUVEC)のいずれかを含むマトリゲルを皮下に全量投与した。14日後にそれぞれのマウスから、投与したマトリゲルを回収し、それを撮影した(図2)。
Example 5: Qualitative evaluation of angiogenic potential of bFGF gene-introduced human primary pericytes ) and cultured at 37°C in a 5% CO 2 atmosphere. In addition, the human primary pericytes (control) established in Example 1 and the bFGF gene-introduced primary human pericytes prepared in Example 3 were each cultured on a collagen-coated dish using a pericyte growth medium. After confirming that each of the three types of cells proliferated to a confluent state, the supernatant was removed, and after washing with PBS, 2 mL of Accutase was added and allowed to stand on a 37° C. plate for 5 minutes. To each dish was then added 8 mL of endothelial cell growth medium for HUVECs and pericyte growth medium for human primary pericytes and bFGF-transduced human primary pericytes. Cell suspensions were collected from each dish and centrifuged at 300 g at room temperature for 5 minutes to remove the supernatant. suspended in growth medium. 5.5×10 5 HUVECs were added to each of 9 1.5 mL tubes (Eppendorf, 0030120.086), 3 of which were human primary pericytes and 3 of them were bFGF transgenic human primary pericytes. were added and mixed at 5.5×10 5 per tube. Each tube was centrifuged at 300 g at 4°C for 5 minutes, the supernatant was removed, and after washing once with PBS, the tube was centrifuged again under the same conditions and the supernatant was removed. Next, 400 μL of extracellular matrix (Matrigel (registered trademark) Growth factor reduced, Corning, 356231, hereinafter referred to as “Matrigel”) was added to each tube, mixed on ice, and the Matrigel containing the cells was attached with a 25 gauge needle. Aspirated with a syringe. To 79 mL of physiological saline (Otsuka Pharmaceutical Factory), 3 mL of Domitol (Nippon Zenyaku Kogyo), 8 mL of Dormicum Injection (Maruishi Pharmaceutical), and 10 mL of Betrufal (Meiji Seika Pharma) were added to prepare a mixed anesthetic solution. Nine NOG mice (NOD.Cg-Prkdc scid Il2rg tm1Sug /ShiJic mice, In-Vivo Science) were each intraperitoneally administered with 300 μL of the three kinds of mixed anesthetic solution. Prepared HUVEC alone (HUVEC), HUVEC and control human primary pericyte (HUVEC), HUVEC and bFGF-transduced human primary pericyte (bFGF-Primary pericyte/HUVEC) were administered to each of three anesthetized mice. A full dose of Matrigel containing After 14 days, the administered Matrigel was collected from each mouse and photographed (Fig. 2).
 bFGF遺伝子導入ヒト初代ペリサイトを含むマトリゲル(図2のbFGF-Primary pericyte/HUVEC)は、コントロールのヒト初代ペリサイトを含むマトリゲル(図2のPrimary pericyte/HUVEC)よりも血管新生が亢進していた。また、HUVECのみを含むマトリゲルでは血管新生は見られなかった(図2のHUVEC)。 Matrigel containing bFGF-transfected human primary pericytes (bFGF-Primary pericyte/HUVEC in Fig. 2) showed more angiogenesis than control Matrigel containing human primary pericytes (Primary pericyte/HUVEC in Fig. 2). . In addition, no angiogenesis was observed in Matrigel containing only HUVEC (HUVEC in FIG. 2).
 実施例6:bFGF遺伝子導入ヒト初代ペリサイトが示す血管新生の定量評価
 実施例5の手順にて回収した各マトリゲルを2mLチューブ(Eppendorf, 0030120.094)に入れ、解剖バサミで数回切断した。ここにステンレススチールビーズ(Qiagen, 69989)を1個添加し、0.1% Brij(登録商標)L23溶液(Sigma-Aldrich, B4184)を350μL添加した。TissueLyser II(Qiagen, 85300)を用いてマトリゲルを破砕し、10,000g、4℃、5分の条件で遠心後、上清を回収した。QuantiChrom Hemoglobin Assay Kit(BioAssay Systems, DIHB-250)を用いて回収した上清中のヘモグロビン濃度を測定した。方法は製品のプロトコルに従った。統計解析検定として、HUVECとコントロールヒト初代ペリサイト(Primary pericyte/HUVEC)、及びHUVECとbFGF遺伝子導入ヒト初代ペリサイト(bFGF-Primary pericyte/HUVEC)の2群間でt検定を実施した。
Example 6: Quantitative evaluation of angiogenesis exhibited by bFGF-transfected human primary pericytes Each Matrigel collected by the procedure of Example 5 was placed in a 2 mL tube (Eppendorf, 0030120.094) and cut several times with dissecting scissors. One stainless steel bead (Qiagen, 69989) was added thereto, and 350 μL of 0.1% Brij (registered trademark) L23 solution (Sigma-Aldrich, B4184) was added. Matrigel was crushed using TissueLyser II (Qiagen, 85300), centrifuged at 10,000 g at 4°C for 5 minutes, and the supernatant was recovered. The hemoglobin concentration in the recovered supernatant was measured using QuantiChrom Hemoglobin Assay Kit (BioAssay Systems, DIHB-250). The method followed the product protocol. As a statistical analysis test, a t-test was performed between two groups of HUVEC and control human primary pericyte (Primary pericyte/HUVEC), and between HUVEC and bFGF gene-introduced human primary pericyte (bFGF-Primary pericyte/HUVEC).
 bFGF遺伝子導入ヒト初代ペリサイトを含むマトリゲル中のヘモグロビン濃度は、コントロールである初代ペリサイトを含むマトリゲル中のヘモグロビン濃度に比べて有意に高かった(図3)。 The hemoglobin concentration in Matrigel containing bFGF gene-introduced human primary pericytes was significantly higher than that in Matrigel containing control primary pericytes (Fig. 3).
 実施例7:下肢虚血モデルにおけるbFGF遺伝子導入ヒト初代ペリサイトの血流改善の評価
 NOGマウスの腹腔に実施例5で用いたものと同じ組成の三種混合麻酔液を300μL投与した。麻酔後に左下肢周辺の体毛を、除毛クリームを用いて除去した。その後、生理食塩水24.8mLにアンチセダン(日本全薬工業)を150uL添加したアンチセダン調製溶液を300μL皮下に投与してNOGマウスを覚醒させた。翌日に再度、NOGマウスを、前記三種混合麻酔液を用いて、前日と同様に麻酔し、実体顕微鏡下に仰向けに置き、左下肢の皮膚を切開し大腿動静脈と伏在動静脈を露出させた。大腿動静脈から分岐する血管を結紮後、大腿動静脈と伏在動静脈を切除し、皮膚を縫合した。続けてNOGマウスをうつ伏せに置き、腓腹筋付近の皮膚を切開し、辺縁静脈を切断した。再度皮膚を縫合し、前記アンチセダン調製溶液300μLを皮下に投与してNOGマウスを覚醒させた。術後2週目にNOGマウスを前記三種混合麻酔液にて麻酔し、36℃の保温プレートにて10分保温し、下肢の血流を血流画像化装置(moorLDI2-IR, moor instruments)にて解析した。施術した虚血肢の血流のシグナル値を、施術していない正常肢の血流のシグナル値で割り、血流比(%換算)を算出した。同時に、血流を測定したNOGマウスの下肢の足先にて壊死した爪の数を記録した。前述の施術を行った複数の下肢虚血モデルマウスのうち、血流比が20%~40%までの個体で、かつ、壊死した爪の数が4又は5本のマウスを評価マウスとして選別し、血流比の平均が2群間で同じになるように群分けを実施した。翌日に2つに群分けしたNOGマウスを三種混合麻酔薬にて麻酔し、左下肢の皮膚を切開し、筋肉を露出させた。1つの群には、Megacell Dulbecco’s Modified Eagle’s Medium 100μLに懸濁した3×106個のbFGF遺伝子導入ヒト初代ペリサイトを左大腿骨下部の筋肉から腓腹筋にかけて計9か所、左下肢の足裏に1か所の計10か所に各10μLずつ投与した(細胞投与群;8匹)。もう1つの群には、コントロールとしてMegacell Dulbecco’s Modified Eagle’s Mediumのみを同様に投与した(培地投与群;7匹)。細胞又は培地投与後、2、4、6週目に前述の通りの方法で下肢の血流を血流画像化装置moorLDI2-IRにて解析を行い、虚血肢の血流のシグナル値を正常肢の血流のシグナル値で割った、血流比(%換算)(図4左)及び、細胞投与後6週目までのAUC(Area Under Curve)を算出した(図4右)。ここでのAUCはX軸に時間を、Y軸に血流比をとったときに描かれる折れ線の下側の面積とした。統計解析検定としてt検定を実施した。
Example 7 Evaluation of Improvement in Blood Flow of bFGF Gene-Transduced Human Primary Pericytes in Lower Limb Ischemia Model 300 μL of a three-kind mixed anesthetic solution having the same composition as that used in Example 5 was administered intraperitoneally to NOG mice. After anesthesia, body hair around the left lower leg was removed using depilatory cream. Thereafter, 300 μL of anti-sedan preparation solution prepared by adding 150 μL of anti-sedan (Nippon Zenyaku Kogyo) to 24.8 mL of physiological saline was subcutaneously administered to awaken the NOG mice. The next day, the NOG mouse was again anesthetized with the three kinds of mixed anesthetic solution in the same manner as the previous day, placed on its back under a stereoscopic microscope, and the skin of the left lower limb was cut open to expose the femoral artery and vein and the saphenous artery and vein. rice field. After ligating the blood vessels branching from the femoral artery and vein, the femoral artery and vein and the saphenous artery and vein were excised and the skin was sutured. Subsequently, the NOG mouse was placed prone, the skin near the gastrocnemius muscle was incised, and the marginal vein was cut. The skin was sutured again, and 300 μL of the anti-sedan preparation solution was administered subcutaneously to awaken the NOG mice. Two weeks after the operation, the NOG mice were anesthetized with the above three kinds of mixed anesthetic, kept warm for 10 minutes on a warming plate at 36°C, and the blood flow in the lower extremities was measured with a blood flow imaging device (moorLDI2-IR, moor instruments). and analyzed. The blood flow signal value of the operated ischemic limb was divided by the blood flow signal value of the non-operated normal limb to calculate the blood flow ratio (% conversion). At the same time, the number of necrotic nails on the toes of the NOG mice whose blood flow was measured was recorded. Among the multiple lower limb ischemia model mice that underwent the above procedure, mice with a blood flow ratio of 20% to 40% and with 4 or 5 necrotic nails were selected as evaluation mice. , Grouping was performed so that the average blood flow ratio was the same between the two groups. The next day, the NOG mice divided into two groups were anesthetized with a three-kind mixed anesthetic, and the skin of the left lower leg was cut open to expose the muscle. In one group, 3 × 10 6 bFGF-transduced primary human pericytes suspended in 100 μL of Megacell Dulbecco's Modified Eagle's Medium were placed on the sole of the left lower leg at a total of 9 points from the left lower femoral muscle to the gastrocnemius muscle. 10 µL each was administered to a total of 10 sites (cell-administered group; 8 animals). As a control, only Megacell Dulbecco's Modified Eagle's Medium was similarly administered to another group (medium-administered group; 7 animals). 2, 4, and 6 weeks after administration of the cells or medium, the blood flow in the lower extremities was analyzed using the blood flow imaging device moorLDI2-IR as described above, and the signal value of the blood flow in the ischemic limb was evaluated as normal. The blood flow ratio (% conversion) (Fig. 4, left) and AUC (Area Under Curve) up to 6 weeks after cell administration were calculated by dividing by the limb blood flow signal value (Fig. 4, right). Here, AUC is the area under the polygonal line drawn when time is plotted on the X-axis and blood flow ratio is plotted on the Y-axis. A t-test was performed as a statistical analysis test.
 下肢虚血モデルマウスにおいて、bFGF遺伝子導入ヒト初代ペリサイトの投与は有意に血流の改善効果を示した。 In lower extremity ischemia model mice, administration of bFGF gene-introduced primary human pericytes significantly improved blood flow.
 実施例8:ES細胞から初期中胚葉細胞への分化誘導
 DMEM/ハムF12培地(ナカライテスク, 11581-15)25mLにマトリゲルヒトES細胞最適化マトリックス(Corning, 354277)を230μL添加し、6ウェルプレート(Iwaki, 3810-006)の3ウェルに1.5mLずつ添加し、室温で3時間静置してマトリゲルコーティングプレートを作製する。ヒトES細胞を前記マトリゲルコーティングプレートに播種し、37℃、5% CO2雰囲気下でSTEMdiff Mesoderm induction Medium(STEMCELL Technologies, 05220)を用いて培養することでES細胞から初期中胚葉細胞への分化誘導を行う。得られた細胞が初期中胚葉細胞へ分化しているかどうかをフローサイトメトリー法にて確認する。具体的には、初期中胚葉細胞の細胞表面マーカーとしてCD140α及びAPLNRを選定し、各細胞表面マーカーに対する抗体を用いてフローサイトメトリー法でCD140α(+)かつAPLNR(+)の細胞の割合の増加を確認することで、ES細胞から初期中胚葉への分化誘導が進んだことを確認する。
Example 8: Differentiation induction from ES cells to early mesodermal cells Add 230 μL of Matrigel human ES cell optimized matrix (Corning, 354277) to 25 mL of DMEM/Ham F12 medium (Nacalai Tesque, 11581-15) and place in a 6-well plate. (Iwaki, 3810-006) is added to 3 wells of 1.5 mL each and allowed to stand at room temperature for 3 hours to prepare a Matrigel-coated plate. Human ES cells were seeded on the Matrigel-coated plate and cultured using STEMdiff Mesoderm induction medium (STEMCELL Technologies, 05220) at 37°C in a 5% CO 2 atmosphere to induce differentiation from ES cells to early mesoderm cells. I do. Flow cytometry is used to confirm whether the obtained cells are differentiated into early mesoderm cells. Specifically, CD140α and APLNR were selected as cell surface markers of early mesodermal cells, and the ratio of CD140α(+) and APLNR(+) cells was increased by flow cytometry using antibodies against each cell surface marker. By confirming this, it is confirmed that differentiation induction from ES cells to early mesoderm has progressed.
 実施例9:初期中胚葉細胞からのスフェロイド形成
 実施例8にて取得した初期中胚葉細胞1.7×105個に文献(Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729)に記載のスフェロイド形成培地を添加し、EZSPHERE(商標登録)ディッシュ(Iwaki, 11-0434)上で、37℃、5% CO2、5% O2雰囲気下で培養する。スフェロイドが形成されたら、スフェロイドを含む培養液を100μmセルストレイナーに通し、100μm以上のサイズのスフェロイドを回収する。
Example 9: Spheroid formation from early mesoderm cells 1.7 × 10 5 early mesoderm cells obtained in Example 8 were documented (Vodyanik MA et al., Cell Stem Cell, (2010), 7: 718-729 ), and cultured on an EZSPHERE (registered trademark) dish (Iwaki, 11-0434) at 37°C in an atmosphere of 5% CO 2 and 5% O 2 . When spheroids are formed, pass the spheroid-containing culture medium through a 100 μm cell strainer to collect spheroids with a size of 100 μm or larger.
 実施例10:スフェロイドからペリサイト様細胞への分化誘導
 米国特許US9868939に基づき、スフェロイドからペリサイト様細胞への分化誘導を行う。具体的には、実施例9にて回収したスフェロイド全てをペリサイト分化誘導培地(下記参照)に懸濁してFibronectin及びHuman type1 Collagenでコートされたディッシュに播種して培養する。前記ディッシュの底面にて単層状の細胞増殖が観察されたら上清を除き、PBSで洗浄後、Accutaseを添加し、細胞を剥離する。前記ディッシュにペリサイト増殖培地(実施例1参照)を用いて細胞懸濁液を回収し、遠心分離する。上清を除き、ペリサイト増殖培地を添加し、コラーゲンコーティングディッシュに播種し更に培養する。
Example 10 Differentiation Induction from Spheroids to Pericyte-Like Cells Based on US Pat. Specifically, all the spheroids collected in Example 9 are suspended in a pericyte differentiation-inducing medium (see below), seeded on a dish coated with Fibronectin and Human type 1 Collagen, and cultured. When monolayer cell proliferation is observed on the bottom of the dish, the supernatant is removed, washed with PBS, then Accutase is added, and the cells are detached. The cell suspension is harvested in the dish using pericyte growth medium (see Example 1) and centrifuged. The supernatant is removed, a pericyte growth medium is added, seeded on a collagen-coated dish, and further cultured.
[ペリサイト分化誘導培地]
 組成は以下の通りである:
・50% Stemline(登録商標)II Hematopoietic Stem Cell Expansion Medium(Sigma-Aldrich, S0192)
・50% Human Endothelial SFM (ThermoFisher Scientific, 11111044)
・1% GlutaMax
・0.05% Ex-CYTE NZ Growth Enhancement Media Supplement (Merck, 81150N)
・100μM Monothioglycerol(富士フイルム和光純薬, 195-15791)
・10ng/mL Animal-free Recombinant Human FGFbasic-TS
・50ng/mL Recombinant Human PDGF-BB Protein(R&D Systems, 220-BB)
[Pericyte differentiation induction medium]
The composition is as follows:
- 50% Stemline® II Hematopoietic Stem Cell Expansion Medium (Sigma-Aldrich, S0192)
・50% Human Endothelial SFM (ThermoFisher Scientific, 11111044)
・1% GlutaMax
・0.05% Ex-CYTE NZ Growth Enhancement Media Supplement (Merck, 81150N)
・100μM Monothioglycerol (Fujifilm Wako Pure Chemical Industries, 195-15791)
・10ng/mL Animal-free Recombinant Human FGFbasic-TS
・50ng/mL Recombinant Human PDGF-BB Protein (R&D Systems, 220-BB)
 実施例11:ヒトES細胞由来ペリサイト様細胞へのbFGF遺伝子導入
 実施例10で作製したヒトES細胞由来ペリサイト様細胞については、実施例2と同様の方法で作製したbFGF遺伝子導入用レンチウイルス懸濁液を用いて、実施例3のヒト初代ペリサイトの場合と同様にして、ヒトES細胞由来ペリサイト様細胞にbFGF遺伝子を導入する。
Example 11: Introduction of bFGF Gene into Human ES Cell-Derived Pericyte-Like Cells For the human ES cell-derived pericyte-like cells prepared in Example 10, the lentivirus for bFGF gene transfer was prepared in the same manner as in Example 2. Using the suspension, the bFGF gene is introduced into human ES cell-derived pericyte-like cells in the same manner as in Example 3 for human primary pericytes.
 実施例12:bFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞におけるbFGF発現量の定量
 実施例11で作製したbFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞、及びコントロールとして、実施例10で得られたヒトES細胞由来ペリサイト様細胞について、実施例4と同様の方法でbFGF発現量を定量する。bFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞はコントロールに比べて高いbFGF発現量を示す。
Example 12: Quantitation of bFGF Expression Level in bFGF Gene-Transduced Human ES Cell-Derived Pericyt-Like Cells The bFGF expression level of the human ES cell-derived pericyte-like cells is quantified in the same manner as in Example 4. The bFGF gene-introduced human ES cell-derived pericyte-like cells exhibit a higher bFGF expression level than the control.
 実施例13:bFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞の血管新生能の評価
 bFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞の血管新生能の評価は、bFGF遺伝子導入ヒト初代ペリサイトの血管新生能を評価した実施例5及び6と同様にして行うことができる。bFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞はコントロールのヒトES細胞由来ペリサイト様細胞に比べ高い血管新生能を示す。
Example 13: Evaluation of angiogenic potential of bFGF transfected human ES cell-derived pericyt-like cells Evaluation of the angiogenic potential of bFGF transfected human ES cell-derived pericyt-like cells It can be carried out in the same manner as in Examples 5 and 6 in which the performance was evaluated. The bFGF-transfected human ES cell-derived pericyte-like cells exhibit higher angiogenic potential than the control human ES cell-derived pericyt-like cells.
 実施例14:下肢虚血モデルにおけるbFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞の血流改善の評価
 bFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞のin vivoでの血流改善の評価は、下肢虚血モデルマウスを用いてbFGF遺伝子導入ヒト初代ペリサイトの血流改善を評価した実施例7と同様にして行うことができる。bFGF遺伝子導入ヒトES細胞由来ペリサイト様細胞の投与は前記モデルマウスに対して高い血流改善効果を呈する。
Example 14: Evaluation of blood flow improvement of bFGF gene-transduced human ES cell-derived pericyte-like cells in lower limb ischemia model It can be performed in the same manner as in Example 7, in which blood flow improvement in bFGF gene-introduced human primary pericytes was evaluated using ischemia model mice. Administration of bFGF gene-introduced human ES cell-derived pericyte-like cells exhibits a high blood flow improvement effect in the model mice.
 本発明のbFGF遺伝子が導入されたペリサイトは優れた血管新生作用を有し、重症下肢虚血などに対する血管新生療法に使用できる。 The pericytes into which the bFGF gene of the present invention has been introduced have excellent angiogenic activity and can be used for angiogenic therapy for severe lower extremity ischemia.
 配列表の配列番号1に示される塩基配列は、GenBank Accession Number:M27968.1で示されるヒトbFGFの遺伝子配列であり、配列番号2に示されるアミノ酸配列は、GenBank Accession Number:AAA52448.1で示されるヒトbFGFのアミノ酸配列である。また、以下の配列表の数字見出し<223>には、「Artificial Sequence」の説明を記載する。具体的には、配列表の配列番号3に示される塩基配列は、配列番号4に示されるヒトbFGF analogのアミノ酸配列をコードする塩基配列である。また、配列表の配列番号5に示される塩基配列は、本願実施例で使用したヒトbFGF発現プラスミド(pLe6-Bmp-bFGF)の塩基配列である。 The nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing is the gene sequence of human bFGF shown in GenBank Accession Number: M27968.1, and the amino acid sequence shown in SEQ ID NO: 2 is shown in GenBank Accession Number: AAA52448.1. is the amino acid sequence of human bFGF. In addition, the description of "Artificial Sequence" is provided under the number heading <223> in the sequence listing below. Specifically, the nucleotide sequence shown in SEQ ID NO: 3 in the sequence listing is a nucleotide sequence that encodes the amino acid sequence of human bFGF analog shown in SEQ ID NO: 4. The nucleotide sequence shown in SEQ ID NO: 5 in the sequence listing is the nucleotide sequence of the human bFGF expression plasmid (pLe6-Bmp-bFGF) used in the Examples of the present application.

Claims (18)

  1.  塩基性繊維芽細胞増殖因子(bFGF)遺伝子が導入されたペリサイト。 A pericyte into which the basic fibroblast growth factor (bFGF) gene has been introduced.
  2.  ペリサイトが初代ペリサイトである、請求項1に記載のペリサイト。 The pericyte according to claim 1, wherein the pericyte is primary pericyte.
  3.  ペリサイトが多能性幹細胞から分化誘導されたペリサイト様細胞である、請求項1に記載のペリサイト。 The pericytes according to claim 1, wherein the pericytes are pericyte-like cells differentiated from pluripotent stem cells.
  4.  多能性幹細胞がヒト多能性幹細胞である、請求項3に記載のペリサイト。 The pericyte according to claim 3, wherein the pluripotent stem cells are human pluripotent stem cells.
  5.  多能性幹細胞が胚性幹細胞(ES細胞)又は人工多能性幹細胞(iPS細胞)である、請求項3又は4に記載のペリサイト。 The pericytes according to claim 3 or 4, wherein the pluripotent stem cells are embryonic stem cells (ES cells) or induced pluripotent stem cells (iPS cells).
  6.  請求項1~5のいずれか1項に記載のペリサイトを含む、血管新生療法のための医薬組成物。 A pharmaceutical composition for angiogenesis therapy, comprising the pericyte according to any one of claims 1 to 5.
  7.  血管新生療法が重症下肢虚血の治療である、請求項6に記載の医薬組成物。 The pharmaceutical composition according to claim 6, wherein the angiogenesis therapy is treatment of critical limb ischemia.
  8.  血管内皮細胞と併用される、請求項6又は7に記載の医薬組成物。 The pharmaceutical composition according to claim 6 or 7, which is used in combination with vascular endothelial cells.
  9.  請求項1~5のいずれか1項に記載のペリサイト及び血管内皮細胞を組み合わせてなる、血管新生療法のための医薬組成物。 A pharmaceutical composition for angiogenesis therapy, comprising a combination of the pericytes and vascular endothelial cells according to any one of claims 1 to 5.
  10.  血管新生療法が重症下肢虚血の治療である、請求項9に記載の医薬組成物。 The pharmaceutical composition according to claim 9, wherein the angiogenesis therapy is treatment of critical limb ischemia.
  11.  請求項1~5のいずれか1項に記載のペリサイトの製造方法。 A method for producing pericyte according to any one of claims 1 to 5.
  12.  請求項1~5のいずれか1項に記載のペリサイトの治療有効量を対象に投与することを含む、血管新生療法。 An angiogenesis therapy comprising administering a therapeutically effective amount of the pericyte according to any one of claims 1 to 5 to a subject.
  13.  さらに血管内皮細胞を投与することを含む、請求項12に記載の血管新生療法。 The angiogenesis therapy according to claim 12, further comprising administering vascular endothelial cells.
  14.  重症下肢虚血の治療である、請求項12又は13に記載の血管新生療法。 The angiogenesis therapy according to claim 12 or 13, which is a treatment for critical limb ischemia.
  15.  血管新生療法のための医薬組成物の製造における、請求項1~5のいずれか1項に記載のペリサイトの使用。 Use of the pericyte according to any one of claims 1 to 5 in the manufacture of a pharmaceutical composition for angiogenesis therapy.
  16.  重症下肢虚血の治療のための医薬組成物の製造における、請求項1~5のいずれか1項に記載のペリサイトの使用。 Use of the pericyte according to any one of claims 1 to 5 in the manufacture of a pharmaceutical composition for treating critical limb ischemia.
  17.  血管新生療法に使用するための、請求項1~5のいずれか1項に記載のペリサイト。 The pericyte according to any one of claims 1 to 5, for use in angiogenesis therapy.
  18.  重症下肢虚血の治療に使用するための、請求項1~5のいずれか1項に記載のペリサイト。
     
    Pericytes according to any one of claims 1 to 5, for use in treating critical limb ischemia.
PCT/JP2022/011788 2021-03-17 2022-03-16 Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein WO2022196714A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22771459.9A EP4310176A1 (en) 2021-03-17 2022-03-16 Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein
JP2023507146A JPWO2022196714A1 (en) 2021-03-17 2022-03-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043100 2021-03-17
JP2021-043100 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196714A1 true WO2022196714A1 (en) 2022-09-22

Family

ID=83321033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011788 WO2022196714A1 (en) 2021-03-17 2022-03-16 Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein

Country Status (3)

Country Link
EP (1) EP4310176A1 (en)
JP (1) JPWO2022196714A1 (en)
WO (1) WO2022196714A1 (en)

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069666A1 (en) 2005-12-13 2007-06-21 Kyoto University Nuclear reprogramming factor
WO2008118820A2 (en) 2007-03-23 2008-10-02 Wisconsin Alumni Research Foundation Somatic cell reprogramming
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009032194A1 (en) 2007-08-31 2009-03-12 Whitehead Institute For Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
WO2009058413A1 (en) 2007-10-29 2009-05-07 Shi-Lung Lin Generation of human embryonic stem-like cells using intronic rna
WO2009057831A1 (en) 2007-10-31 2009-05-07 Kyoto University Nuclear reprogramming method
WO2009075119A1 (en) 2007-12-10 2009-06-18 Kyoto University Effective nucleus initialization method
WO2009079007A1 (en) 2007-12-17 2009-06-25 Gliamed, Inc. Stem-like cells and method for reprogramming adult mammalian somatic cells
WO2009091659A2 (en) 2008-01-16 2009-07-23 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents
WO2009101407A2 (en) 2008-02-11 2009-08-20 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
WO2009101084A1 (en) 2008-02-13 2009-08-20 Fondazione Telethon Method for reprogramming differentiated cells
WO2009102983A2 (en) 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2009114949A1 (en) 2008-03-20 2009-09-24 UNIVERSITé LAVAL Methods for deprogramming somatic cells and uses thereof
WO2009117439A2 (en) 2008-03-17 2009-09-24 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009126655A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of a small molecule modulator
WO2009157593A1 (en) 2008-06-27 2009-12-30 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2009156151A1 (en) 2008-06-26 2009-12-30 T2Cure Gmbh Mesoangioblast-like cell as well as methods and uses relating thereto
WO2010009015A2 (en) 2008-07-14 2010-01-21 Oklahoma Medical Research Foundation Production of pluripotent cells through inhibition of bright/arid3a function
WO2010033920A2 (en) 2008-09-19 2010-03-25 Whitehead Institute For Biomedical Research Compositions and methods for enhancing cell reprogramming
WO2010033906A2 (en) 2008-09-19 2010-03-25 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2010042800A1 (en) 2008-10-10 2010-04-15 Nevada Cancer Institute Methods of reprogramming somatic cells and methods of use for such cells
WO2010050626A1 (en) 2008-10-30 2010-05-06 Kyoto University Method for producing induced pluripotent stem cells
WO2010056831A2 (en) 2008-11-12 2010-05-20 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2010068955A2 (en) 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING
WO2010098419A1 (en) 2009-02-27 2010-09-02 Kyoto University Novel nuclear reprogramming substance
WO2010102267A2 (en) 2009-03-06 2010-09-10 Ipierian, Inc. Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells
WO2010111422A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Induced pluripotent stem cell generation using two factors and p53 inactivation
WO2010111409A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Pluripotent stem cells
WO2010115050A2 (en) 2009-04-01 2010-10-07 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
US7816140B2 (en) 2005-06-14 2010-10-19 The United States Of America As Represented By The Department Of Veterans Affairs Composition and methods for osteogenic gene therapy
WO2010124290A2 (en) 2009-04-24 2010-10-28 Whitehead Institute For Biomedical Research Compositions and methods for deriving or culturing pluripotent cells
WO2010147612A1 (en) 2009-06-18 2010-12-23 Lixte Biotechnology, Inc. Methods of modulating cell regulation by inhibiting p53
WO2010147395A2 (en) 2009-06-16 2010-12-23 Korea Research Institute Of Bioscience And Biotechnology Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2013108039A1 (en) 2012-01-19 2013-07-25 Ucl Business Plc Method for obtaining mab-like cells and uses thereof
US20150368609A1 (en) 2014-02-18 2015-12-24 ReCyte Therapeutics, Inc. Perivascular stromal cells from primate pluripotent stem cells
US9771561B2 (en) 2007-09-25 2017-09-26 Wisconsin Alumni Research Foundation Method of making primate cells expressing apelin receptor that have mesangioblast potential
US20170342384A1 (en) 2009-08-17 2017-11-30 Technion Research & Development Foundation Limited Pericyte progenitor cells and methods of generating and using same
US9868939B2 (en) 2013-06-12 2018-01-16 Wisconsin Alumni Research Foundation Generating vasculogenic cell populations
US20190316094A1 (en) 2018-04-16 2019-10-17 Wisconsin Alumni Research Foundation Chemically defined differentiation protocol for pericyte differentiation from pluripotent stem cells

Patent Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816140B2 (en) 2005-06-14 2010-10-19 The United States Of America As Represented By The Department Of Veterans Affairs Composition and methods for osteogenic gene therapy
WO2007069666A1 (en) 2005-12-13 2007-06-21 Kyoto University Nuclear reprogramming factor
WO2008118820A2 (en) 2007-03-23 2008-10-02 Wisconsin Alumni Research Foundation Somatic cell reprogramming
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009032194A1 (en) 2007-08-31 2009-03-12 Whitehead Institute For Biomedical Research Wnt pathway stimulation in reprogramming somatic cells
US9771561B2 (en) 2007-09-25 2017-09-26 Wisconsin Alumni Research Foundation Method of making primate cells expressing apelin receptor that have mesangioblast potential
WO2009058413A1 (en) 2007-10-29 2009-05-07 Shi-Lung Lin Generation of human embryonic stem-like cells using intronic rna
WO2009057831A1 (en) 2007-10-31 2009-05-07 Kyoto University Nuclear reprogramming method
WO2009075119A1 (en) 2007-12-10 2009-06-18 Kyoto University Effective nucleus initialization method
WO2009079007A1 (en) 2007-12-17 2009-06-25 Gliamed, Inc. Stem-like cells and method for reprogramming adult mammalian somatic cells
WO2009091659A2 (en) 2008-01-16 2009-07-23 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant rna agents
WO2009101407A2 (en) 2008-02-11 2009-08-20 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
WO2009101084A1 (en) 2008-02-13 2009-08-20 Fondazione Telethon Method for reprogramming differentiated cells
WO2009102983A2 (en) 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2009117439A2 (en) 2008-03-17 2009-09-24 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009114949A1 (en) 2008-03-20 2009-09-24 UNIVERSITé LAVAL Methods for deprogramming somatic cells and uses thereof
WO2009126655A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of a small molecule modulator
WO2009126250A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through rna interference
WO2009126251A2 (en) 2008-04-07 2009-10-15 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2009156151A1 (en) 2008-06-26 2009-12-30 T2Cure Gmbh Mesoangioblast-like cell as well as methods and uses relating thereto
WO2009157593A1 (en) 2008-06-27 2009-12-30 Kyoto University Method of efficiently establishing induced pluripotent stem cells
WO2010009015A2 (en) 2008-07-14 2010-01-21 Oklahoma Medical Research Foundation Production of pluripotent cells through inhibition of bright/arid3a function
WO2010033920A2 (en) 2008-09-19 2010-03-25 Whitehead Institute For Biomedical Research Compositions and methods for enhancing cell reprogramming
WO2010033906A2 (en) 2008-09-19 2010-03-25 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds
WO2010042800A1 (en) 2008-10-10 2010-04-15 Nevada Cancer Institute Methods of reprogramming somatic cells and methods of use for such cells
WO2010050626A1 (en) 2008-10-30 2010-05-06 Kyoto University Method for producing induced pluripotent stem cells
WO2010056831A2 (en) 2008-11-12 2010-05-20 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an hdac modulator
WO2010068955A2 (en) 2008-12-13 2010-06-17 Dna Microarray MICROENVIRONMENT NICHE ASSAY FOR CiPS SCREENING
WO2010098419A1 (en) 2009-02-27 2010-09-02 Kyoto University Novel nuclear reprogramming substance
WO2010102267A2 (en) 2009-03-06 2010-09-10 Ipierian, Inc. Tgf-beta pathway inhibitors for enhancement of cellular reprogramming of human cells
WO2010111409A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Pluripotent stem cells
WO2010111422A2 (en) 2009-03-25 2010-09-30 The Salk Institute For Biological Studies Induced pluripotent stem cell generation using two factors and p53 inactivation
WO2010115050A2 (en) 2009-04-01 2010-10-07 The Regents Of The University Of California Embryonic stem cell specific micrornas promote induced pluripotency
WO2010124290A2 (en) 2009-04-24 2010-10-28 Whitehead Institute For Biomedical Research Compositions and methods for deriving or culturing pluripotent cells
WO2010147395A2 (en) 2009-06-16 2010-12-23 Korea Research Institute Of Bioscience And Biotechnology Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2010147612A1 (en) 2009-06-18 2010-12-23 Lixte Biotechnology, Inc. Methods of modulating cell regulation by inhibiting p53
US20170342384A1 (en) 2009-08-17 2017-11-30 Technion Research & Development Foundation Limited Pericyte progenitor cells and methods of generating and using same
WO2013108039A1 (en) 2012-01-19 2013-07-25 Ucl Business Plc Method for obtaining mab-like cells and uses thereof
US9868939B2 (en) 2013-06-12 2018-01-16 Wisconsin Alumni Research Foundation Generating vasculogenic cell populations
US20150368609A1 (en) 2014-02-18 2015-12-24 ReCyte Therapeutics, Inc. Perivascular stromal cells from primate pluripotent stem cells
US20190316094A1 (en) 2018-04-16 2019-10-17 Wisconsin Alumni Research Foundation Chemically defined differentiation protocol for pericyte differentiation from pluripotent stem cells

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. AAA52448.1
ARMULIK A ET AL., DEV. CELL, vol. 21, 2011, pages 193 - 215
BEENKEN AMOHAMMADI M, NAT. REV. DRUG DISCOV., vol. 8, 2009, pages 235 - 253
CHO SW ET AL., CIRCULATION, vol. 116, 2007, pages 2409 - 2419
COVAS DT. ET AL., EXP. HEMATOL., vol. 36, 2008, pages 642 - 654
DANEMAN R ET AL., NATURE, vol. 463, 2010, pages 1096 - 1100
D'ARCANGELO D ET AL., CIRC. RES., vol. 86, 2000, pages 312 - 318
EMINLI S ET AL., STEM CELLS, vol. 26, 2008, pages 2467 - 2474
FENG B ET AL., NAT. CELL BIOL., vol. 11, 2009, pages 197 - 203
GERANMAYEH MOHAMMAD HOSSEIN, RAHBARGHAZI REZA, FARHOUDI MEHDI: "Targeting pericytes for neurovascular regeneration", CELL COMMUNICATION AND SIGNALING, vol. 17, no. 1, 1 December 2019 (2019-12-01), XP055968295, DOI: 10.1186/s12964-019-0340-8 *
GERLI MFM ET AL., J. VIS. EXP., vol. 83, 2014, pages 50523
GERLI MFM ET AL., STEM CELL REP., vol. 12, 2019, pages 461 - 473
GORNALUSSE GG ET AL., NAT. BIOTECHNOL., vol. 35, 2017, pages 765 - 772
HENKE C ET AL., AM. J. PATHOL., vol. 143, 1993, pages 1189 - 1199
HERRMANN M. ET AL., EUR. CELLS MATER., vol. 31, 2016, pages 236 - 249
HUANGFU D ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 1269 - 1275
ICHIDA JK ET AL., CELL STEM CELL, vol. 5, 2009, pages 491 - 503
ICHIRO MASAKI ET AL., CIRCULATION RESEARCH, vol. 90, 2002, pages 966 - 973
IKUNO T ET AL., PROS ONE, vol. 12, 2019, pages e0173271
JUDSON RL ET AL., NAT. BIOTECHNOL., vol. 27, 2009, pages 459 - 461
KAWASAKI H ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, 2002, pages 1580 - 1585
KIM JB ET AL., NATURE, vol. 461, 2009, pages 649 - 643
LV FJ. ET AL., STEM CELLS, vol. 32, 2014, pages 1408 - 1419
LYSSIOTIS CA ET AL., PROC. NATL. ACAD. SCI. USA, vol. 106, 2009, pages 8912 - 8917
MAEKAWA M ET AL., NATURE, vol. 474, 2011, pages 225 - 229
MALI P ET AL., STEM CELLS, vol. 28, 2010, pages 713 - 720
MARCO PRESTA ET AL., CYTOKINE & GROWTH FACTOR REVIEWS, vol. 16, 2005, pages 159 - 178
NAKAMURA KUNIYUKI; ARIMURA KOICHI; NISHIMURA ATARU; TACHIBANA MASAKI; YOSHIKAWA YOJI; MAKIHARA NORIKO; WAKISAKA YOSHINOBU; KURODA : "Possible involvement of basic FGF in the upregulation of PDGFRβ in pericytes after ischemic stroke", BRAIN RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 1630, 10 November 2015 (2015-11-10), NL , pages 98 - 108, XP029339821, ISSN: 0006-8993, DOI: 10.1016/j.brainres.2015.11.003 *
NEEDLEMAN SB ET AL., J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
QUATTROCELLI M ET AL., METHODS MOL. BIOL., vol. 798, 2012, pages 65 - 76
SHIMATANI K ET AL., AM. J. PHYSIOL. HEART CIRC. PHYSIOL., 2021, Retrieved from the Internet <URL:https://doi.org/10.1152/ajpheart.00470.2020>
SHIMATANI KENICHIRO, SATO HIROMU, SAITO ATSUHIRO, SASAI MASAO, WATANABE KENICHI, MIZUKAMI KAZUHIKO, KAMOHARA MASAZUMI, MIYAGAWA SH: "A novel model of chronic limb ischemia to therapeutically evaluate the angiogenic effects of drug candidates", AMERICAN JOURNAL OF PHYSIOLOGY HEART AND CIRCULATORY PHYSIOLOGY, AMERICAN PHYSIOLOGICAL SOCIETY, US, vol. 320, no. 3, 1 March 2021 (2021-03-01), US , pages H1124 - H1135, XP055968293, ISSN: 0363-6135, DOI: 10.1152/ajpheart.00470.2020 *
SUEMORI H ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 345, 2006, pages 926 - 932
UENISHI G ET AL., STEM CELL REPORTS, vol. 3, 2014, pages 1073 - 1084
VODYANIK MA ET AL., CELL STEM CELL, vol. 7, 2010, pages 718 - 729
WANG YI-CHUN, CHEN QIONG, LUO JUN-MING, NIE JING, MENG QING-HE, SHUAI WEI, XIE HAN, XIA JIA-MEI, WANG HUI: "Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway", EXPERIMENTAL AND MOLECULAR MEDICINE, SEOUL, KR, vol. 51, no. 3, 1 March 2019 (2019-03-01), KR , pages 1 - 11, XP055968291, ISSN: 1226-3613, DOI: 10.1038/s12276-019-0228-0 *
WANG YX ET AL., J. CELL SCI., vol. 127, 2014, pages 4543 - 4548
YANG, ERYAN, YING CAI, XIUHUA YAO, JI LIU, QIXUE WANG , WEILI JIN, QIAOLI WU , WEIJIA FAN, LINA QIU, CHUNSHENG KANG, JIALING WU: "Tissue plasminogen activator disrupts the blood-brain barrier through increasing the inflammatory response mediated by pericytes after cerebral ischemia", AGING, vol. 11, no. 22, pages 10167 - 10182, XP055968289 *
ZHAO Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 132 - 135

Also Published As

Publication number Publication date
JPWO2022196714A1 (en) 2022-09-22
EP4310176A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
CN106163572B (en) Composition for inducing direct transdifferentiation of somatic cells into vascular progenitor cells and use thereof
AU2015229387B2 (en) Method for generating endothelial colony forming cell-like cells
EP2692859B1 (en) Method for producing cardiomyocyte sheet from embryonic stem cells
US20230174929A1 (en) Method for generating mesoderm and/or endothelial colony forming cell-like cells having in vivo blood vessel forming capacity
JPWO2003038076A1 (en) Immortalized mesenchymal cells and their use
Santos et al. Leukemia inhibitory factor (LIF) overexpression increases the angiogenic potential of bone marrow mesenchymal stem/stromal cells
EP2907870A1 (en) Reprogramming peptide and use thereof
WO2015133792A1 (en) Composition for inducing direct transdifferentiation of somatic cell into vascular progenitor cell, and use thereof
WO2018144725A1 (en) Engineering blood vessel cells for transplantation
WO2006017567A2 (en) Customizing stem cell-derived cardiomyocytes for transplantation
WO2022196714A1 (en) Pericyte having basic fibroblast growth factor (bfgf) gene introduced therein
WO2019098264A1 (en) Cell populations comprising cd31-positive, cd45-negative, cd200-positive mammalian cells, and use thereof
KR101575413B1 (en) Method for preparing of endothelial cells by transformation (transdifferentiation) of adult fibroblasts, and use thereof
JP2004520009A (en) Nucleic acid constructs, vascular cells transformed thereby, pharmaceutical compositions and methods using same for inducing angiogenesis
WO2019027299A2 (en) Pharmaceutical composition for preventing or treating vascular disorders including mesenchymal stem cell expressing hepatocyte growth factor as active ingredient
WO2018183653A1 (en) Method of generating and using cd34+ cells derived from fibroblasts
WO2023286832A1 (en) Pericyte-like cells expressing vascular endothelial growth factor (vegf) at high level
WO2023286834A1 (en) Pericyte-like cell expressing vascular endothelial growth factor (vegf) at high level
KR102165323B1 (en) Composition and kit for differentiating cancer associated fibroblasts to macrophage, and method using the same
Lou Tissue Engineered Cardiac Muscle Patches with Human Pluripotent Stem Cells Enhance the Repairing Efficacy of Infarcted Cardiac Muscle in Mouse Model
US20200095557A1 (en) Cell spheroids containing capillary structures and methods of using same
US20190382728A1 (en) Menstrual Blood Derived Angiogenesis Stimulatory Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023507146

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18282450

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022771459

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771459

Country of ref document: EP

Effective date: 20231017