WO2022196630A1 - Method for producing antibody-binding nanoparticles, antibody-binding nanoparticles, kit for producing antibody-binding nanoparticles, and method for measuring analyte using antibody-binding nanoparticles - Google Patents

Method for producing antibody-binding nanoparticles, antibody-binding nanoparticles, kit for producing antibody-binding nanoparticles, and method for measuring analyte using antibody-binding nanoparticles Download PDF

Info

Publication number
WO2022196630A1
WO2022196630A1 PCT/JP2022/011293 JP2022011293W WO2022196630A1 WO 2022196630 A1 WO2022196630 A1 WO 2022196630A1 JP 2022011293 W JP2022011293 W JP 2022011293W WO 2022196630 A1 WO2022196630 A1 WO 2022196630A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
nanoparticles
bound
binding
phase carrier
Prior art date
Application number
PCT/JP2022/011293
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 小野
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2022196630A1 publication Critical patent/WO2022196630A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a method for producing antibody-bound nanoparticles, antibody-bound nanoparticles, a kit for producing antibody-bound nanoparticles, and a method for measuring a substance to be detected using antibody-bound nanoparticles.
  • a detection target for example, sandwich immunoassay
  • antibody-bound microparticles beads
  • the factor that antibodies (proteins) are easily adsorbed and the factor that non-specific adsorption is small are contradictory. Therefore, nonspecific adsorption is generally reduced by covering (masking) the bead surface with molecules that do not cause nonspecific adsorption after the antibody is bound to the bead surface.
  • a low-molecular-weight compound such as aminoethanol is generally used for masking the bead surface.
  • Patent Document 1 In the use of such high-precision analytical equipment, the reduction of non-specific adsorption to the surface of beads, which are labels, is a problem.
  • the conventional masking method using low-molecular-weight compounds could not sufficiently reduce non-specific adsorption to the bead surface.
  • a technique for further reducing non-specific adsorption to the surface of beads, which are labels, is required.
  • this embodiment provides a method for producing antibody-bound nanoparticles that can reduce nonspecific adsorption, antibody-bound nanoparticles produced by the production method, a kit for producing the antibody-bound nanoparticles, And an object thereof is to provide a method for measuring a substance to be detected using antibody-bound nanoparticles.
  • the nanoparticles to which the antibody and the polyethylene glycol are bound are heated at a temperature of 30 to 45° C. at a temperature of 40 to 100
  • Exosomes were counted with an ExoCounter (registered trademark) using the anti-CD9 antibody-bound nanoparticles of Example 1, Comparative Example 1-1, and Comparative Example 2-1 in a dilution series of the culture supernatant of the colon cancer cell line HCT116. The results are shown.
  • Exosomes were counted with an ExoCounter (registered trademark) using the anti-CD63 antibody-bound nanoparticles of Example 2, Comparative Example 1-2, and Comparative Example 2-2 in a dilution series of the culture supernatant of the colon cancer cell line HCT116. The results are shown.
  • antibody is meant an immunoglobulin that has antigen-binding activity.
  • An antibody need not be an intact antibody, and may be an antigen-binding fragment, as long as it has antigen-binding activity.
  • the term “antibody” includes antigen-binding fragments.
  • An "antigen-binding fragment” is a polypeptide comprising a portion of an antibody that retains the antigen-binding properties of the original antibody.
  • Antigen-binding fragments preferably include all six complementarity determining regions (CDRs) of the original antibody. That is, it preferably contains all of the CDR1, CDR2 and CDR3 of the heavy chain variable region and the CDR1, CDR2 and CDR3 of the light chain variable region.
  • CDRs complementarity determining regions
  • Antigen-binding fragments include, for example, Fab, Fab', F(ab') 2 , variable region fragments (Fv), disulfide-bonded Fv, single-chain Fv (scFv), sc(Fv) 2 and the like.
  • the present disclosure provides methods of making antibody-conjugated nanoparticles.
  • the production method of the present embodiment includes (a) a step of binding an antibody and polyethylene glycol to a nanoparticle, and (b) a step of binding a blocking agent to the nanoparticle to which the antibody and the polyethylene glycol are bound. ,including.
  • step (a)> nanoparticles are bound to antibodies and polyethylene glycol.
  • Nanoparticles means particles having an average primary particle diameter of nanometer order (less than 1000 nm).
  • the average primary particle size of the nanoparticles can be appropriately selected according to the application of the antibody-bound nanoparticles produced by the production method of this embodiment. Examples of the average primary particle size of nanoparticles include 10 to 1000 nm, 50 to 500 nm, 100 to 300 nm, or 150 to 200 nm.
  • nanoparticles may be surface-modified to facilitate binding of antibodies.
  • nanoparticles 1 shown in FIG. 1(A) are carboxy group-modified nanoparticles 10 whose surfaces are modified with carboxy groups.
  • Carboxy groups react with amino groups contained in antibodies in the presence of a suitable condensing agent to form amide bonds. This allows the antibodies to bind to the nanoparticles.
  • Functional groups used for surface modification of nanoparticles are not particularly limited as long as they are capable of binding antibodies.
  • Functional groups that can be used for surface modification include, for example, carboxy groups, amino groups, and succinimide groups. Surface modification of nanoparticles with these functional groups can be performed by known methods. Alternatively, commercially available surface-modified nanoparticles may be used.
  • nanoparticles include, for example, Tamagawa Seiki FG beads series (COOH beads, NH 2 beads, NHS beads) and the like. Modification functional groups on the nanoparticle surface can be appropriately selected according to the protein to be bound to the nanoparticles. When binding an antibody to the nanoparticle surface, the surface of the nanoparticle is preferably modified with a carboxy group.
  • cancer antigen membrane proteins specifically expressed in cancer cells or exosomes to be detected
  • cancer antigens include, but are not limited to, Her2, CD147, MUC1, CEA, mesothelin, EGFR, EGFRvIII, MAGE, NY-ESO-1, PSMA, PSA, CD19, VEGFR1, VEGFR2, and the like.
  • Polyethylene glycol may be terminally modified in order to increase binding to nanoparticles.
  • the type of terminal modification can be appropriately selected according to the surface modification of the nanoparticles.
  • the polyethylene glycol may be amino group-modified to have an amino group at the end.
  • polyethylene glycol may be modified to have a monoamine or oligoamine at one end.
  • nanoparticles to which antibodies and polyethylene glycol are bound see FIG. 1(B)
  • nanoparticles to which antibodies and polyethylene glycol are bound see FIG. 1(B)
  • Blocking agent means a compound that binds to nanoparticles in order to suppress non-specific adsorption to the nanoparticles.
  • the blocking agent those commonly used as blocking agents in immunochemical detection methods can be used.
  • the blocking agent is preferably capable of reacting with the modifying groups on the surface of the nanoparticles.
  • a compound containing a carboxy group-reactive group can be used as the blocking agent. Examples of carboxy group-reactive groups include amino groups and hydroxy groups.
  • the reaction for binding the nanoparticles to the blocking agent can be performed by incubating the nanoparticles after step (a) in a buffer solution containing the blocking agent.
  • the buffer used for incubation is not particularly limited, and buffers commonly used for blocking in immunochemical detection methods can be used. Examples of buffers include, but are not limited to, PBS, PBS-T, Tris buffer, HEPES buffer, and the like.
  • the content of the blocking agent in the buffer solution can be, for example, about 0.01 to 5% (w/v).
  • a surfactant such as Tween-20 or a chelating agent such as EDTA may be added to the buffer.
  • the conditions normally used for blocking treatment can be used. Temperature conditions for incubation include, for example, 30-45°C, 30-40°C, or 35-40°C. As an example, the incubation temperature is 37°C.
  • the incubation time should be a time during which the binding reaction of the blocking agent to the nanoparticles proceeds sufficiently. Incubation times include, for example, 40-100 hours, 50-90 hours, or 60-80 hours.
  • the manufacturing method according to this embodiment may include optional steps in addition to the steps (a) and (b).
  • the optional step is not particularly limited, but includes, for example, a step of washing the nanoparticles after step (a) or step (b).
  • the nanoparticles may be washed with a washing liquid.
  • the washing liquid is not particularly limited, and washing liquids commonly used in immunochemical detection methods can be used. Examples of washing solutions include, but are not limited to, blocking agent-containing buffers, BS, PBS-T, Tris buffers, HEPES buffers, and pure water used in the blocking treatment in step (b).
  • the antibody-bound nanoparticles obtained by the production method of the present embodiment are prepared by binding the antibody and polyethylene glycol to the nanoparticles in step (a), thereby masking the modified groups on the surface of the nanoparticles to which the antibody is not bound with polyethylene glycol. can do. Furthermore, in step (b), unbound modifying groups can be reduced by binding a blocking agent to the modifying groups on the nanoparticle surface to which antibodies and polyethylene glycol are not bound. Therefore, antibody-bound nanoparticles with reduced nonspecific adsorption can be obtained.
  • the present disclosure provides antibody-conjugated nanoparticles in which a blocking agent is conjugated to the antibody-polyethylene glycol conjugated nanoparticles.
  • FIG. 1(C) is a schematic diagram showing an example of antibody-bound nanoparticles according to this embodiment.
  • Antibody 20, polyethylene glycol 30, and blocking agent 40 are bound to nanoparticle 1 in antibody-bound nanoparticles 100 shown in FIG. 1(C).
  • nanoparticles antibodies, polyethylene glycol, and blocking agents, the same ones as listed in the above section [Method for producing antibody-bound nanoparticles] can be used.
  • kits the present invention provides a kit for producing antibody-conjugated nanoparticles according to the above embodiments.
  • a kit according to this embodiment includes nanoparticles, antibodies, polyethylene glycol, and a blocking agent.
  • Nanoparticles, antibodies, polyethylene glycol, and blocking agents may be the same as those listed in the section [Method for producing antibody-bound nanoparticles] above.
  • the nanoparticles are preferably surface-modified with carboxy groups or the like.
  • the kit according to this embodiment can be used for producing antibody-bound nanoparticles by the production method according to the above embodiment.
  • the kit of this embodiment may contain arbitrary components in addition to nanoparticles, antibodies, polyethylene glycol, and blocking agents.
  • optional components include washing solutions, various reagents such as various buffer solutions, condensing agents, instructions for use, and the like.
  • the buffer include the buffer used in the step (a) (eg, acetate buffer), the buffer used in the step (b), and the like.
  • the kit of this embodiment may further include a configuration for using the produced antibody-binding nanoparticles.
  • it may further comprise a solid phase carrier to which a capturing antibody is bound.
  • a “capture antibody” is an antibody used to capture a substance to be detected in a sample on a solid-phase carrier in an immunochemical detection method.
  • the capture antibody uses an antibody that specifically binds to the substance to be detected.
  • the capturing antibody may be the same as or different from the antibody used for the antibody-bound nanoparticles (hereinafter also referred to as "labeled antibody").
  • labeling antibody and the capturing antibody may be antibodies that specifically bind to the same pan-exosomal membrane protein (eg, CD9).
  • the labeling antibody and the capturing antibody can be antibodies that bind to different pan-exosomal membrane proteins (eg, CD9 and CD63).
  • the capture antibody is an antibody that specifically binds to the pan-exosomal membrane protein (e.g., CD9), and the labeled antibody is the exosomes to be detected (e.g., cancer cell-specific exosomes) specifically expressed membrane
  • the exosomes to be detected e.g., cancer cell-specific exosomes
  • Antibodies that specifically bind to proteins eg, cancer antigens such as Her2 and CD147
  • proteins eg, cancer antigens such as Her2 and CD147
  • the solid-phase carrier on which the capturing antibody is immobilized is not particularly limited, and any solid-phase carrier commonly used in immunochemical detection methods can be used.
  • solid-phase carriers include well plates, substrates, membranes, reaction chambers attached to immunochemical detection devices, and the like.
  • the material of the solid phase carrier is not particularly limited, and can be appropriately selected according to the type of solid phase carrier.
  • Materials for the solid phase carrier include, for example, resins such as polystyrene, polyolefin (polyethylene, polypropylene, etc.), cycloolefin polymer, polycarbonate, etc.; glass; metals such as gold, iron, zirconia, etc.; Not limited.
  • kits that further includes a solid-phase carrier to which a capturing antibody is bound can be used to detect a substance to which the antibody contained in the antibody-bonded nanoparticles and the capturing antibody specifically bind. Therefore, a kit further comprising a solid phase carrier bound with a capturing antibody can be used as a detection kit for a substance to be detected.
  • FIG. 2 shows an example of a solid phase carrier.
  • the solid phase carrier 201 shown in FIG. 2 is an example of an analysis substrate used in an exosome counting device such as ExoCounter (registered trademark).
  • the solid phase carrier 201 has a disc shape similar to optical discs such as Blu-ray Discs (BD), DVDs, Compact Discs (CDs), for example.
  • a positioning hole 202 is formed in the center of the solid phase carrier 201 .
  • the solid phase carrier 201 is made of, for example, a resin material generally used for optical discs, such as polycarbonate resin or cycloolefin polymer.
  • the solid phase carrier 201 may be in another form, and an optical disc complying with a predetermined standard can also be used.
  • FIG. 3 is an enlarged view of the surface of the solid phase carrier 201.
  • track regions 205 are formed in which convex portions 203 and concave portions 204 are alternately arranged in the radial direction.
  • the protrusions 203 and the recesses 204 are spirally formed from the inner periphery of the solid phase carrier 201 toward the outer periphery thereof.
  • a track pitch W which is the radial pitch of the concave portions 204 (convex portions 203), is, for example, 320 nm.
  • a reaction region 210 is formed on the track region 205 of the solid phase carrier 201 (see FIG. 2). In FIG. 2, eight reaction regions 210 are formed at equal intervals so that the center of each reaction region 210 is located on the same circumference Cb with respect to the center Ca of the solid phase carrier 201. The number and formation position of are not limited to this.
  • exosome counting device such as ExoCounter (registered trademark)
  • ExoCounter registered trademark
  • a sample is supplied to the reaction area 210 on the track area 205, and binding reaction between the capture antibody 212 immobilized on the reaction area 210 and the exosome E in the sample is performed.
  • the sample is not particularly limited, and any sample can be used.
  • the sample may be a liquid sample in which exosomes E are to be measured. Samples include, for example, body fluid samples (blood, serum, plasma, saliva, urine, tears, sweat, milk, nasal discharge, semen, pleural effusion, gastrointestinal secretions, cerebrospinal fluid, interstitial fluid, lymphatic fluid, etc.), cell culture Examples include, but are not limited to, supernatants and the like.
  • the binding reaction can be performed by incubating for a predetermined time while the sample is supplied to the reaction area 210 .
  • the incubation time may be a time sufficient for exosome E in the sample to bind to the capturing antibody. Examples of the incubation time include 30 minutes or more, 1 to 10 hours, 2 to 6 hours, 2 to 4 hours, or 2 to 3 hours. Examples of the incubation temperature include 10 to 40°C, 20 to 40°C, or 30 to 40°C.
  • the solid phase carrier 201 may be gently shaken during incubation. When the sample contains exosomes E, the binding reaction causes the capture antibody 212 to capture the exosomes E in the sample (see FIG. 4).
  • the solid phase carrier 201 may be washed with a washing liquid as appropriate.
  • a washing liquid is not particularly limited, and washing liquids commonly used in immunochemical detection methods can be used without particular limitations. Examples of washing solutions include, but are not limited to, buffers such as PBS, Tris buffer, and HEPES buffer; surfactants such as Tween 20 added to the buffer; and pure water.
  • the reaction area 210 Before supplying the sample to the reaction area 210, the reaction area 210 may be blocked.
  • the blocking treatment can be performed by supplying a blocking solution to the reaction area 210 and incubating it.
  • the blocking solution is not particularly limited, and those commonly used in immunochemical detection methods can be used without particular limitation.
  • Blocking solutions include, for example, buffers containing about 1 to 5% skim milk, casein, or bovine serum albumin (BSA).
  • the buffer for the blocking solution is not particularly limited, and examples thereof include PBS, PBS-T, Tris buffer, HEPES buffer and the like.
  • Examples of the incubation temperature include 10 to 40°C, 20 to 40°C, or 30 to 40°C. Incubation times include 10 to 180 minutes, 20 to 120 minutes, 20 to 100 minutes, or 30 to 60 minutes.
  • a buffer solution containing the antibody-bound nanoparticles 100 is supplied to the reaction area 210 on the track area 205, and the binding reaction between the exosomes E and the antibody-bound nanoparticles 100 is performed.
  • the buffer for suspending the antibody-bound nanoparticles 100 is not particularly limited, and those commonly used in immunochemical detection methods can be used without particular limitations. Examples of buffers include PBS, Tris buffer, HEPES buffer and the like.
  • the binding reaction can be performed by incubating for a predetermined period of time in a state in which a buffer solution containing the antibody-bound nanoparticles 100 is supplied to the reaction region 210 .
  • Antibody-bound nanoparticles 100 captured in reaction region 210 of solid phase carrier 201 can be counted using a counting device (ExoCounter (registered trademark), etc.) equipped with an optical pickup.
  • the optical pickup has an objective lens 241 .
  • the optical pickup irradiates the solid phase carrier 201 with a laser beam 240a.
  • the laser beam 40a is condensed by the objective lens 241 onto the surface on which the reaction region 210 is formed.
  • the wavelength of the laser beam 40a is, for example, approximately 405 nm.
  • the optical pickup receives reflected light from the solid-phase carrier 201, detects the received light level of the reflected light, generates a received light level signal, and outputs the received light level signal to a control unit including a CPU or the like.
  • the controller extracts the detection signal of the antibody-bound nanoparticles 100 from the received light level signal output from the optical pickup.
  • the solid-phase carrier 201 is driven at a constant linear velocity Lv, and the laser beam 240a is scanned along the concave portion 204.
  • the optical pickup counts the antibody-bound nanoparticles 100 captured in the reaction area 210 by extracting the detection signal of the antibody-bound nanoparticles 100 along the recess 204 .
  • a measuring device having such a mechanism includes, for example, the counting device described in Japanese Patent Application Laid-Open No. 2017-207289.
  • the present disclosure provides a method for measuring a substance to be detected using the antibody-bound nanoparticles of the embodiment.
  • the measurement method of the present embodiment includes a step of contacting the antibody-bound nanoparticles with a substance to be detected that specifically binds to the antibody bound to the antibody-bound nanoparticles (hereinafter, also referred to as “step (i)” and a step of measuring the substance to be detected bound to the antibody-bound nanoparticles (hereinafter also referred to as “step (ii)”).
  • step (i) the antibody-bound nanoparticles are brought into contact with a substance to be detected that specifically binds to the antibody bound to the antibody-bound nanoparticles.
  • the antibody-conjugated nanoparticles are the antibody-conjugated nanoparticles of the previous embodiments.
  • a substance that specifically binds to a specific antibody preferably has a high binding property to the specific antibody, but little binding property to other biomolecules.
  • a substance that specifically binds to a specific antibody can be said to be an antigen of the specific antibody.
  • a substance to be detected means a substance to be measured by the measurement method of this embodiment.
  • the substance to be detected is not particularly limited as long as it causes an antigen-antibody reaction.
  • Substances to be detected include, but are not limited to, proteins, peptides, sugar chains, lipids, and cells, viruses, and extracellular vesicles expressing the above molecules.
  • Extracellular vesicles are vesicles released by cells. The size of extracellular vesicles is about 30 nm to 1 ⁇ m in diameter. Extracellular vesicles include exosomes, apoptotic bodies, microvesicles and the like.
  • the antibody bound to the antibody-bound nanoparticles may be an antibody that specifically binds to the pan-exosomal membrane protein.
  • it may be a membrane protein that exosomes that are the substance to be detected specifically express.
  • Incubation conditions can be set appropriately according to the type of substance to be detected.
  • the incubation conditions include, for example, the same conditions as those listed in the section ⁇ Usage Examples of Antibody-Binding Nanoparticles>> above.
  • the solid phase carrier After contact between the solid phase carrier and the substance to be detected, the solid phase carrier may be washed as appropriate. Before the contact between the solid phase carrier and the substance to be detected, the solid phase carrier may be appropriately blocked. After contacting the antibody-bound nanoparticles with the substance to be detected, the antibody-bound nanoparticles may be washed as appropriate. Examples of these methods include the methods described in the section ⁇ Usage Examples of Antibody-Binding Nanoparticles>> above.
  • step (ii) the substance to be detected bound to the antibody-bound nanoparticles is measured.
  • the method of measuring the detection target substance bound to the antibody-bound nanoparticles is not particularly limited.
  • the substances to be detected are bound to the substance to be detected in the same manner as the methods listed in the section ⁇ Usage Examples of Antibody-Binding Nanoparticles>> above. can be measured.
  • the antibody-bound nanoparticles may be collected and contacted with a detection antibody that specifically binds to the substance to be detected contained in the collected antibody-bound nanoparticles.
  • the detection antibody is labeled with a labeling substance. Therefore, the substance to be detected can be measured indirectly by detecting the signal of the labeling substance.
  • the labeling substance those commonly used in ELISA and the like can be used without particular limitation.
  • the signal of the labeling substance can be detected by a known method according to the type of labeling substance.
  • the signal of the labeling substance can be detected by performing a coloring reaction with the enzyme and detecting the coloring.
  • the labeling substance is a fluorescent dye, a radioactive isotope label, or an electrochemically luminescent label
  • the signal of the labeling substance can be detected by detecting the fluorescent signal, the radioactive signal, or the electrochemically luminescent signal. .
  • the measurement method of the present embodiment uses the antibody-bound nanoparticles of the above embodiment, it is possible to reduce non-specific adsorption to the antibody-bound nanoparticles during the binding reaction between the antibody-bound nanoparticles and the substance to be detected. . Therefore, even when the concentration of the substance to be detected in the sample is low, highly accurate measurement with reduced noise can be performed.
  • Example 1 ⁇ Preparation of antibody-bound nanoparticles> Antibody-bound nanoparticles of Example 1 were prepared by the following procedure. (1) 5.76 g of acetic acid was added to 4.44 g of sodium acetate, and the mixture was made up to 50 mL with pure water to prepare a 3M acetate buffer (pH 4.5). (2) The 3 M acetate buffer was diluted 60 times to prepare a 50 mM acetate buffer (pH 4.5). (3) Amicon filter (cutoff molecular weight 10 KDa) (Amicon Ultra- 0.5 mL centrifugal filter, MERCK) and centrifuged at 4° C. and 14000 G for 15 minutes.
  • Amicon filter cutoff molecular weight 10 KDa
  • a culture supernatant of colon cancer cell line HCT116 was used as a sample.
  • Antibody-bound nanoparticles of Comparative Example 1-1 were prepared by the following procedure, partially modified with reference to the guidelines of the COOH bead manufacturer. (1) Add 50 ⁇ L (1 mg) of COOH beads (TAS8848N1140, bead diameter 180 nm ⁇ 30 nm, carboxy group surface modification (surface modification amount: about 250 nmol/mg), Tamagawa Seiki) to a 1.5 mL Protein LoBind tube (Eppendorf), Centrifugation was performed at room temperature at 21130 G for 5 minutes, and the supernatant was removed.
  • COOH beads TAS8848N1140, bead diameter 180 nm ⁇ 30 nm, carboxy group surface modification (surface modification amount: about 250 nmol/mg), Tamagawa Seiki)
  • Detection of exosomes was performed in the same manner as in Example 1 above, except that the anti-CD9 antibody-bound nanoparticles of Comparative Example 1-1 prepared above were used.
  • Comparative Example 2-1 The antibody-conjugated nanoparticles of Comparative Example 2-1 were prepared according to the COOH bead manufacturer's guidelines. Specifically, antibody-bound nanoparticles of Comparative Example 2-1 were prepared by the following procedure. (1) Protein immobilization buffer (25 mM morpholinoethanesulfonic acid (MES)-NaOH (pH 6), wash/storage buffer (10 mM HEPES-NaOH (pH 7.9), 50 mM KCl, 1 mM EDTA, 10% glycerol), and masking A solution (1 M aminoethanol, 0.1% Nonidet P-40, adjusted to pH 8.0 with HCl) was prepared.
  • MES morpholinoethanesulfonic acid
  • wash/storage buffer 10 mM HEPES-NaOH (pH 7.9)
  • 50 mM KCl 1 mM EDTA, 10% glycerol
  • a solution (1 M aminoethanol, 0.1% Nonidet P-40, adjusted to pH
  • N-hydroxysuccinimide (NHS) was dissolved in 250 ⁇ L of N,N'-dimethylformamide (DMF) to prepare a 1M NHS solution.
  • the anti-CD9 antibody was diluted with a protein immobilization buffer to prepare 50 ⁇ L or more of a 50 ⁇ g/50 ⁇ L antibody solution.
  • 1 mg of COOH beads (TAS8848N1140) was placed in a 1.5 mL microtube.
  • Centrifugation (15,000 rpm, room temperature, 5 minutes) was performed, and the supernatant was discarded.
  • 100 ⁇ L of DMF was added and ultrasonicated to disperse the COOH beads.
  • Example 1 Comparative Example 1-1, and Comparative Example 2-1
  • FIG. 5A the results of Example 1, Comparative Example 1-1, and Comparative Example 2-1
  • Example 1 compared to Comparative Examples 1-1 and 2-1, the sensitivity was improved and the blank count value was reduced.
  • Example 2 ⁇ Preparation of antibody-bound nanoparticles> Anti-CD63 antibody-bound nanoparticles of Example 2 were prepared in the same manner as in Example 1 except that anti-CD63 antibodies (exosome monoclonal antibody Anti CD63, Cosmo Bio) were used instead of anti-CD9 antibodies. did.
  • anti-CD63 antibodies exosome monoclonal antibody Anti CD63, Cosmo Bio
  • Detection of exosomes was performed in the same manner as in Example 1 above, except that the anti-63 antibody-binding nanoparticles of Example 2 prepared above were used.
  • Detection of exosomes was prepared in the same manner as in Example 1 above, except that the anti-CD63 antibody-bound nanoparticles of Comparative Example 1-2 were used.
  • Detection of exosomes was prepared in the same manner as in Example 1 above, except that the anti-CD63 antibody-bound nanoparticles of Comparative Example 2-2 were used.
  • Example 3 ⁇ Preparation of antibody-bound nanoparticles> Anti-Her2 antibody-bound nanoparticles of Example 3 were prepared in the same manner as in Example 1, except that an anti-Her2 antibody (monoclonal antibody Anti Her2, BioLegend) was used instead of the anti-CD9 antibody.
  • an anti-Her2 antibody monoclonal antibody Anti Her2, BioLegend
  • Exosomes were detected in the same manner as in Example 1 above, except that the breast cancer cell line KPL4 was used instead of the colon cancer cell line HCT116, and the anti-Her2 antibody-bound nanoparticles of Example 3 prepared above were used. .
  • Comparative Example 1-3 ⁇ Preparation of antibody-bound nanoparticles> Anti-Her2 antibody-bound nanoparticles of Comparative Example 1-3 were prepared in the same manner as in Comparative Example 1-1, except that an anti-Her2 antibody was used instead of the anti-CD9 antibody.
  • Exosomes are detected in the same manner as in Example 1 above, except that the breast cancer cell line KPL4 is used instead of the colon cancer cell line HCT116 and the anti-Her2 antibody-bound nanoparticles of Comparative Example 1-3 prepared above are used. gone.

Abstract

Provided is a method for producing antibody-binding nanoparticles, the method comprising (a) a step for binding an antibody and polyethylene glycol to nanoparticles and (b) a step for binding a blocking agent to each of the nanoparticles to which the antibody and the polyethylene glycol have been bound. Also provided are antibody-binding nanoparticles to each of which an antibody, polyethylene glycol and a blocking agent are bound. Also provided is a kit for producing the antibody-binding nanoparticles, which includes nanoparticles, polyethylene glycol and a blocking gent. Also provided is a method for measuring an analyte using the antibody-binding nanoparticles.

Description

抗体結合ナノ粒子の製造方法、抗体結合ナノ粒子、抗体結合ナノ粒子を製造するためのキット、及び抗体結合ナノ粒子を用いた検出対象物質の測定方法Method for producing antibody-bound nanoparticles, antibody-bound nanoparticles, kit for producing antibody-bound nanoparticles, and method for measuring substance to be detected using antibody-bound nanoparticles
 本発明は、抗体結合ナノ粒子の製造方法、抗体結合ナノ粒子、抗体結合ナノ粒子を製造するためのキット、及び抗体結合ナノ粒子を用いた検出対象物質の測定方法に関する。
 本願は、2021年3月19日に、日本に出願された特願2021-046537号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a method for producing antibody-bound nanoparticles, antibody-bound nanoparticles, a kit for producing antibody-bound nanoparticles, and a method for measuring a substance to be detected using antibody-bound nanoparticles.
This application claims priority based on Japanese Patent Application No. 2021-046537 filed in Japan on March 19, 2021, the content of which is incorporated herein.
 免疫学的に検出対象を捕捉し、標識する系(例えば、サンドイッチイムノアッセイなど)において、低濃度の検出対象を高精度に検出するためには、非特異吸着を低減する必要がある。抗体を結合させた微粒子(ビーズ)を標識体として使用する場合、抗体(タンパク質)が吸着しやすいという要素と非特異吸着が少ないという要素は相反する。そのため、一般的に、ビーズ表面に抗体を結合させた後、ビーズ表面を非特異吸着の生じない分子で覆う(マスキングする)ことで、非特異吸着を低減している。ビーズ表面のマスキングには、一般的に、アミノエタノールなど低分子化合物が用いられることが多い。 In a system that immunologically captures and labels a detection target (for example, sandwich immunoassay), it is necessary to reduce non-specific adsorption in order to detect low-concentration detection targets with high accuracy. When antibody-bound microparticles (beads) are used as labels, the factor that antibodies (proteins) are easily adsorbed and the factor that non-specific adsorption is small are contradictory. Therefore, nonspecific adsorption is generally reduced by covering (masking) the bead surface with molecules that do not cause nonspecific adsorption after the antibody is bound to the bead surface. A low-molecular-weight compound such as aminoethanol is generally used for masking the bead surface.
 近年、分析機器及び試薬などの改良により、分析の高精度化及び高感度化が進んでいる。それにより、非常に少ない量の検出対象物質の差を検出できるようになってきた(特許文献1)。そのような高精度な分析機器を使用では、標識体であるビーズ表面への非特異吸着の低減が課題となっている。 In recent years, due to improvements in analytical instruments and reagents, the accuracy and sensitivity of analysis are increasing. As a result, it has become possible to detect the difference in very small amounts of substances to be detected (Patent Document 1). In the use of such high-precision analytical equipment, the reduction of non-specific adsorption to the surface of beads, which are labels, is a problem.
特開2017-207289号公報JP 2017-207289 A
 低分子化合物を用いる従来のマスキング法では、ビーズ表面に対する非特異吸着を十分に低減できていなかった。特に、低濃度の検出対象物質を高精度に分析するためには、標識体であるビーズ表面に対する非特異吸着をさらに低減する手法が求められる。  The conventional masking method using low-molecular-weight compounds could not sufficiently reduce non-specific adsorption to the bead surface. In particular, in order to analyze low-concentration substances to be detected with high accuracy, a technique for further reducing non-specific adsorption to the surface of beads, which are labels, is required.
 そこで、本実施形態は、非特異吸着を低減することが可能な、抗体結合ナノ粒子の製造方法、前記製造方法により製造される抗体結合ナノ粒子、前記抗体結合ナノ粒子を製造するためのキット、及び抗体結合ナノ粒子を用いた検出対象物質の測定方法を提供することを目的とする。 Therefore, this embodiment provides a method for producing antibody-bound nanoparticles that can reduce nonspecific adsorption, antibody-bound nanoparticles produced by the production method, a kit for producing the antibody-bound nanoparticles, And an object thereof is to provide a method for measuring a substance to be detected using antibody-bound nanoparticles.
 本実施形態は以下の態様を含む。
[1](a)ナノ粒子に、抗体及びポリエチレングリコールを結合させる工程と、(b)前記抗体及び前記ポリエチレングリコールを結合させた前記ナノ粒子に、ブロッキング剤を結合させる工程と、を含む、抗体結合ナノ粒子の製造方法。
[2]前記(a)の工程が、前記ナノ粒子に前記抗体を結合させる反応と、前記ナノ粒子に前記ポリエチレングリコールを結合させる反応とを同時に行う工程であり、前記ナノ粒子の表面と前記抗体とが互いに逆の電位となるpHを有し、前記工程(a)が、縮合剤を含有する緩衝液中で、前記ナノ粒子に、前記抗体及び前記ポリエチレングリコールを結合させることを含む、[1]に記載の抗体結合ナノ粒子の製造方法。
[3]前記(b)の工程が、前記ブロッキング剤を含有する緩衝液中で、前記抗体及び前記ポリエチレングリコールを結合させた前記ナノ粒子を、30~45℃の温度条件下で、40~100時間インキュベーションすることを含む、[1]又は[2]に記載の抗体結合ナノ粒子の製造方法。
[4]抗体とポリエチレングリコールとが結合したナノ粒子に、ブロッキング剤が結合された、抗体結合ナノ粒子。
[5]ナノ粒子と、抗体と、ポリエチレングリコールと、ブロッキング剤と、を含む、[1]~[3]のいずれか1つに記載の製造方法により抗体結合ナノ粒子を製造するためのキット。
[6][4]に記載の抗体結合ナノ粒子と、前記抗体結合ナノ粒子に結合された前記抗体と特異的に結合する検出対象物質とを接触させる工程と、前記抗体結合ナノ粒子に結合した前記検出対象物質を測定する工程と、を含む、抗体結合ナノ粒子を用いた検出対象物質の測定方法。
This embodiment includes the following aspects.
[1] An antibody comprising the steps of: (a) binding an antibody and polyethylene glycol to a nanoparticle; and (b) binding a blocking agent to the nanoparticle to which the antibody and the polyethylene glycol are bound. A method for producing bound nanoparticles.
[2] The step (a) is a step of simultaneously performing a reaction of binding the antibody to the nanoparticles and a reaction of binding the polyethylene glycol to the nanoparticles, wherein the surface of the nanoparticles and the antibody and have a pH at which they are at opposite potentials, and step (a) comprises binding the antibody and the polyethylene glycol to the nanoparticles in a buffer solution containing a condensing agent, [1 ].
[3] In the step (b), in a buffer solution containing the blocking agent, the nanoparticles to which the antibody and the polyethylene glycol are bound are heated at a temperature of 30 to 45° C. at a temperature of 40 to 100 A method for producing antibody-bound nanoparticles according to [1] or [2], which comprises incubating for a period of time.
[4] Antibody-bound nanoparticles, in which a blocking agent is bound to nanoparticles bound to an antibody and polyethylene glycol.
[5] A kit for producing antibody-bound nanoparticles by the production method according to any one of [1] to [3], comprising nanoparticles, antibodies, polyethylene glycol, and a blocking agent.
[6] A step of contacting the antibody-bound nanoparticles according to [4] with a substance to be detected that specifically binds to the antibody bound to the antibody-bound nanoparticles, and binding to the antibody-bound nanoparticles A method for measuring a substance to be detected using antibody-bound nanoparticles, comprising the step of measuring the substance to be detected.
 本実施形態によれば、非特異吸着を低減することが可能な、抗体結合ナノ粒子の製造方法、前記製造方法により製造される抗体結合ナノ粒子、前記抗体結合ナノ粒子を製造するためのキット、及び抗体結合ナノ粒子を用いた検出対象物質の測定方法が提供される。 According to this embodiment, a method for producing antibody-bound nanoparticles that can reduce nonspecific adsorption, antibody-bound nanoparticles produced by the production method, a kit for producing the antibody-bound nanoparticles, and a method for measuring a substance to be detected using antibody-bound nanoparticles.
一実施形態にかかる抗体結合ナノ粒子の製造方法の一例を示す模式図である。1 is a schematic diagram showing an example of a method for producing antibody-bound nanoparticles according to one embodiment. FIG. 固相担体の一例を示す上面図である。エクソソーム計数装置で用いられる分析用基板の例である。FIG. 2 is a top view showing an example of a solid phase carrier; It is an example of an analytical substrate used in an exosome counting device. 図2の固相担体に抗体結合ナノ粒子が捕捉されている状態を拡大して示す模式図である。FIG. 3 is an enlarged schematic diagram showing a state in which antibody-bound nanoparticles are trapped on the solid-phase carrier of FIG. 2; 図2の固相担体上で、抗体結合ナノ粒子がエクソソームと特異的に結合している状態を拡大して示す模式図である。On the solid-phase carrier of FIG. 2, it is a schematic diagram showing an enlarged state in which antibody-bound nanoparticles are specifically bound to exosomes. 結腸癌細胞株HCT116の培養上清の希釈系列において、実施例1、比較例1-1、及び比較例2-1の抗CD9抗体結合ナノ粒子を用いて、ExoCounter(登録商標)でエクソソームをカウントした結果を示す。Exosomes were counted with an ExoCounter (registered trademark) using the anti-CD9 antibody-bound nanoparticles of Example 1, Comparative Example 1-1, and Comparative Example 2-1 in a dilution series of the culture supernatant of the colon cancer cell line HCT116. The results are shown. 図5Aのブランク(Dilution factor=0)におけるエクソソームのカウント値を示す。Figure 5A shows exosome count values in the blank (Dilution factor = 0). 結腸癌細胞株HCT116の培養上清の希釈系列において、実施例2、比較例1-2、及び比較例2-2の抗CD63抗体結合ナノ粒子を用いて、ExoCounter(登録商標)でエクソソームをカウントした結果を示す。Exosomes were counted with an ExoCounter (registered trademark) using the anti-CD63 antibody-bound nanoparticles of Example 2, Comparative Example 1-2, and Comparative Example 2-2 in a dilution series of the culture supernatant of the colon cancer cell line HCT116. The results are shown. 図6Aのブランク(Dilution factor=0)におけるエクソソームのカウント値を示す。Figure 6A shows exosome count values in the blank (Dilution factor = 0). 乳癌細胞株KPL4の培養上清の希釈系列において、実施例3、比較例1-3、及び比較例2-3の抗Her2抗体結合ナノ粒子を用いて、ExoCounter(登録商標)でエクソソームをカウントした結果を示す。Exosomes were counted with an ExoCounter (registered trademark) using the anti-Her2 antibody-bound nanoparticles of Example 3, Comparative Example 1-3, and Comparative Example 2-3 in a dilution series of the culture supernatant of the breast cancer cell line KPL4. Show the results. 図7Aのブランク(Dilution factor=0)におけるエクソソームのカウント値を示す。FIG. 7A shows exosome count values in the blank (Dilution factor=0) of FIG. 7A. 膵癌細胞株MiaPaca2の培養上清の希釈系列において、実施例4、比較例1-4、及び比較例2-4の抗CD147抗体結合ナノ粒子を用いて、ExoCounter(登録商標)でエクソソームをカウントした結果を示す。Exosomes were counted with ExoCounter (registered trademark) using the anti-CD147 antibody-binding nanoparticles of Example 4, Comparative Example 1-4, and Comparative Example 2-4 in dilution series of culture supernatant of pancreatic cancer cell line MiaPaca2. Show the results. 図8Aのブランク(Dilution factor=0)におけるエクソソームのカウント値を示す。Figure 8A shows exosome count values in the blank (Dilution factor = 0). 実施例及び比較例におけるS/N値を比較した結果を示す。S:Dilution factor=1におけるカウント値。N:Dilution factor=0におけるカウント値。The results of comparing the S/N values in Examples and Comparative Examples are shown. S: Count value at Dilution factor=1. N: Count value at Dilution factor=0.
 以下、場合により図面を参照しつつ、本実施形態について詳細に説明する。図面中、同一又は相当部分には同一又は対応する符号を付し、重複する説明は省略する。各図における寸法比は、説明のため誇張している部分があり、必ずしも実際の寸法比とは一致しない。 Hereinafter, the present embodiment will be described in detail with reference to the drawings as the case may be. In the drawings, the same or corresponding parts are denoted by the same or corresponding reference numerals, and overlapping descriptions are omitted. The dimensional ratios in each drawing are exaggerated for explanation and do not necessarily match the actual dimensional ratios.
 「抗体」とは、抗原結合活性を有する免疫グロブリンを意味する。抗体は、抗原結合活性を有していれば、インタクトな抗体である必要はなく、抗原結合断片であってもよい。本明細書において、「抗体」という用語は、抗原結合断片を包含する。「抗原結合断片」とは、抗体の一部を含むポリペプチドであって、元の抗体の抗原結合性を維持しているポリペプチドである。抗原結合断片は、元の抗体の6つの相補性決定領域(complementarity determining region:CDR)を全て含むものが好ましい。すなわち、重鎖可変領域のCDR1、CDR2、CDR3、並びに軽鎖可変領域のCDR1、CDR2、CDR3を全て含むことが好ましい。抗原結合断片としては、例えば、Fab、Fab’、F(ab’)、可変領域断片(Fv)、ジスルフィド結合Fv、一本鎖Fv(scFv)、sc(Fv)等が挙げられる。 By "antibody" is meant an immunoglobulin that has antigen-binding activity. An antibody need not be an intact antibody, and may be an antigen-binding fragment, as long as it has antigen-binding activity. As used herein, the term "antibody" includes antigen-binding fragments. An "antigen-binding fragment" is a polypeptide comprising a portion of an antibody that retains the antigen-binding properties of the original antibody. Antigen-binding fragments preferably include all six complementarity determining regions (CDRs) of the original antibody. That is, it preferably contains all of the CDR1, CDR2 and CDR3 of the heavy chain variable region and the CDR1, CDR2 and CDR3 of the light chain variable region. Antigen-binding fragments include, for example, Fab, Fab', F(ab') 2 , variable region fragments (Fv), disulfide-bonded Fv, single-chain Fv (scFv), sc(Fv) 2 and the like.
 抗体は、いずれの生物に由来するものであってもよい。抗体が由来する生物としては、例えば、哺乳類(ヒト、マウス、ラット、ウサギ、ウマ、ウシ、ブタ、サル、イヌ等)、鳥類(ニワトリ、ダチョウ)等が挙げられるが、これらに限定されない。
 抗体は、免疫グロブリンのいずれのクラス及びサブクラスであってもよい。抗体は、モノクローナル抗体であってもよく、ポリクローナル抗体であってもよいが、モノクローナル抗体が好ましい。抗体は、免疫法、ハイブリドーマ法、ファージディスプレイ法等の公知の方法により作製することができる。
Antibodies may be derived from any organism. Examples of organisms from which antibodies are derived include, but are not limited to, mammals (humans, mice, rats, rabbits, horses, cows, pigs, monkeys, dogs, etc.), birds (chickens, ostriches), and the like.
Antibodies can be of any class and subclass of immunoglobulin. The antibody may be a monoclonal antibody or a polyclonal antibody, preferably a monoclonal antibody. Antibodies can be produced by known methods such as the immunization method, hybridoma method, and phage display method.
 「特異的に結合する」とは、対象とする物質に高い結合性を有し、他の物質にはほとんど結合性を有しないことを意味する。 The term "specifically binds" means that it has a high binding property to the target substance and almost no binding property to other substances.
[抗体結合ナノ粒子の製造方法]
 一実施形態において、本開示は、抗体結合ナノ粒子の製造方法を提供する。本実施形態の製造方法は、(a)ナノ粒子に、抗体及びポリエチレングリコールを結合させる工程と、(b)前記抗体及び前記ポリエチレングリコールを結合させた前記ナノ粒子に、ブロッキング剤を結合させる工程と、を含む。
[Method for producing antibody-bound nanoparticles]
In one embodiment, the present disclosure provides methods of making antibody-conjugated nanoparticles. The production method of the present embodiment includes (a) a step of binding an antibody and polyethylene glycol to a nanoparticle, and (b) a step of binding a blocking agent to the nanoparticle to which the antibody and the polyethylene glycol are bound. ,including.
 図1は、本実施形態の抗体結合ナノ粒子の製造方法の一例を示す模式図である。まず、カルボキシ基修飾ナノ粒子10に、抗体20及びポリエチレングリコール30を結合させる(図1(A)及び(B);工程(a))。次いで、ブロッキング剤40を結合させる(図1(C);工程(b))。このようにして、抗体20、ポリエチレングリコール30、及びブロッキング剤40が結合した抗体結合ナノ粒子100を製造することができる。 FIG. 1 is a schematic diagram showing an example of the method for producing antibody-bound nanoparticles of this embodiment. First, antibodies 20 and polyethylene glycol 30 are bound to carboxy group-modified nanoparticles 10 (FIGS. 1(A) and (B); step (a)). Next, a blocking agent 40 is bound (FIG. 1(C); step (b)). In this way, antibody-bound nanoparticles 100 bound with antibody 20, polyethylene glycol 30, and blocking agent 40 can be produced.
<工程(a)>
 工程(a)では、ナノ粒子に、抗体及びポリエチレングリコールを結合させる。
<Step (a)>
In step (a), nanoparticles are bound to antibodies and polyethylene glycol.
 「ナノ粒子」とは、ナノメートルオーダー(1000nm未満)の平均一次粒子径を有する粒子を意味する。ナノ粒子の平均一次粒子径は、本実施形態の製造方法により製造される抗体結合ナノ粒子の用途に応じて、適宜選択することができる。ナノ粒子の平均一次粒子径としては、例えば、10~1000nm、50~500nm、100~300nm、又は150~200nm等が挙げられる。 "Nanoparticles" means particles having an average primary particle diameter of nanometer order (less than 1000 nm). The average primary particle size of the nanoparticles can be appropriately selected according to the application of the antibody-bound nanoparticles produced by the production method of this embodiment. Examples of the average primary particle size of nanoparticles include 10 to 1000 nm, 50 to 500 nm, 100 to 300 nm, or 150 to 200 nm.
 ナノ粒子の材質は、特に限定されない。ナノ粒子の材質としては、例えば、ポリスチレン、グリシジルメタクリレート等の樹脂;鉄、金、銀等の金属;ジルコニア、チタニア、酸化鉄等の金属酸化物;フェライト等の磁性材料等が挙げられるが、これらに限定されない。 The material of the nanoparticles is not particularly limited. Materials for the nanoparticles include, for example, resins such as polystyrene and glycidyl methacrylate; metals such as iron, gold, and silver; metal oxides such as zirconia, titania, and iron oxide; and magnetic materials such as ferrite. is not limited to
 ナノ粒子は、抗体が結合しやすいように、表面修飾されていてもよい。例えば、図1(A)に示すナノ粒子1は、表面がカルボキシ基修飾されており、カルボキシ基修飾ナノ粒子10となっている。カルボキシ基は、適切な縮合剤の存在下で、抗体に含まれるアミノ基と反応し、アミド結合を形成する。これにより、抗体をナノ粒子に結合させることができる。
 ナノ粒子の表面修飾に用いる官能基は、抗体を結合可能なものであれば、特に限定されない。表面修飾に使用可能な官能基としては、例えば、カルボキシ基、アミノ基、スクシンイミド基等が挙げられる。
 これらの官能基によるナノ粒子の表面修飾は、公知の方法で行うことができる。また、市販の表面修飾ナノ粒子を用いてもよい。市販のナノ粒子としては、例えば、多摩川精機製のFG beadsシリーズ(COOH beads、NH beads、NHS beads)等が挙げられる。
 ナノ粒子に結合させるタンパク質に応じて、ナノ粒子表面の修飾官能基を適宜選択することができる。ナノ粒子表面に抗体を結合させる場合、ナノ粒子の表面は、カルボキシ基で修飾されていることが好ましい。
The nanoparticles may be surface-modified to facilitate binding of antibodies. For example, nanoparticles 1 shown in FIG. 1(A) are carboxy group-modified nanoparticles 10 whose surfaces are modified with carboxy groups. Carboxy groups react with amino groups contained in antibodies in the presence of a suitable condensing agent to form amide bonds. This allows the antibodies to bind to the nanoparticles.
Functional groups used for surface modification of nanoparticles are not particularly limited as long as they are capable of binding antibodies. Functional groups that can be used for surface modification include, for example, carboxy groups, amino groups, and succinimide groups.
Surface modification of nanoparticles with these functional groups can be performed by known methods. Alternatively, commercially available surface-modified nanoparticles may be used. Commercially available nanoparticles include, for example, Tamagawa Seiki FG beads series (COOH beads, NH 2 beads, NHS beads) and the like.
Modification functional groups on the nanoparticle surface can be appropriately selected according to the protein to be bound to the nanoparticles. When binding an antibody to the nanoparticle surface, the surface of the nanoparticle is preferably modified with a carboxy group.
 抗体は、本実施形態の製造方法により製造される抗体結合ナノ粒子の用途に応じて、適宜選択することができる。例えば、抗体結合ナノ粒子がエクソソーム検出用又は細胞検出用である場合、検出対象のエクソソーム又は細胞で特異的に発現する膜タンパク質に特異的に結合する抗体を用いることができる。あるいは、抗体結合ナノ粒子がエクソソーム検出用である場合、エクソソームがユビキタスに有する膜タンパク質(以下、「汎エクソソーム膜タンパク質」ともいう)に特異的に結合する抗体を用いてもよい。「エクソソームがユビキタスに有する」とは、広範な種類のエクソソームが有していることをいう。汎エクソソーム膜タンパク質としては、例えば、CD9、CD63、及びCD81等が挙げられる。検出対象物質がエクソソームである場合、CD9、CD63、又はCD81に対して特異的に結合する抗体を用いてもよい。 The antibody can be appropriately selected according to the use of the antibody-bound nanoparticles produced by the production method of this embodiment. For example, when the antibody-conjugated nanoparticles are for exosome detection or cell detection, antibodies that specifically bind to membrane proteins specifically expressed in exosomes or cells to be detected can be used. Alternatively, when the antibody-conjugated nanoparticles are for exosome detection, an antibody that specifically binds to a membrane protein that exosomes have ubiquitously (hereinafter also referred to as "pan-exosome membrane protein") may be used. "Exosomes have ubiquitous" means that a wide variety of exosomes have. Pan-exosomal membrane proteins include, for example, CD9, CD63, and CD81. When the substance to be detected is exosomes, an antibody that specifically binds to CD9, CD63, or CD81 may be used.
 抗体結合ナノ粒子が、癌細胞検出用又は癌細胞から放出されるエクソソームの検出用である場合、検出対象の癌細胞又はエクソソームで特異的に発現する膜タンパク質(以下、「癌抗原」ともいう)に特異的に結合する抗体を用いてもよい。癌抗原としては、例えば、Her2、CD147、MUC1、CEA、メソテリン、EGFR、EGFRvIII、MAGE、NY-ESO-1、PSMA、PSA、CD19、VEGFR1、VEGFR2等が挙げられるが、これらに限定されない。 When the antibody-bound nanoparticles are for detection of cancer cells or for detection of exosomes released from cancer cells, membrane proteins specifically expressed in cancer cells or exosomes to be detected (hereinafter also referred to as "cancer antigen") Antibodies that specifically bind to may also be used. Examples of cancer antigens include, but are not limited to, Her2, CD147, MUC1, CEA, mesothelin, EGFR, EGFRvIII, MAGE, NY-ESO-1, PSMA, PSA, CD19, VEGFR1, VEGFR2, and the like.
 ポリエチレングリコールは、特に限定されないが、分子量(Mw:重量平均分子量)が1000~5000程度のものを用いることが好ましい。ポリエチレングリコールのMwは、1500~3000が好ましく、1500~2500がより好ましく、1800~2200がさらに好ましい。一例として、ポリエチレングリコールのMwは、2000である。ポリエチレングリコールのMwが、前記好ましい範囲内であると、ナノ粒子に対して、効率よくマスキングを行うことができる。前記Mwは、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算の重量平均分子量を用いることができる。 Although polyethylene glycol is not particularly limited, it is preferable to use one having a molecular weight (Mw: weight average molecular weight) of about 1000 to 5000. Mw of polyethylene glycol is preferably 1,500 to 3,000, more preferably 1,500 to 2,500, and still more preferably 1,800 to 2,200. As an example, the Mw of polyethylene glycol is 2000. When the Mw of polyethylene glycol is within the preferred range, the nanoparticles can be efficiently masked. For the Mw, a weight average molecular weight in terms of polystyrene by GPC (gel permeation chromatography) can be used.
 ポリエチレングリコールは、ナノ粒子に対する結合性を高めるために、末端修飾されていてもよい。末端修飾の種類は、ナノ粒子の表面修飾に応じて適宜選択することができる。例えば、ナノ粒子がカルボキシ基修飾されている場合、ポリエチレングリコールは、末端にアミノ基を有するようにアミノ基修飾されていてもよい。例えば、ポリエチレングリコールは、一方の末端にモノアミン又はオリゴアミンを有するように修飾されていてもよい。  Polyethylene glycol may be terminally modified in order to increase binding to nanoparticles. The type of terminal modification can be appropriately selected according to the surface modification of the nanoparticles. For example, if the nanoparticles are carboxy group-modified, the polyethylene glycol may be amino group-modified to have an amino group at the end. For example, polyethylene glycol may be modified to have a monoamine or oligoamine at one end.
 ナノ粒子に対する抗体の結合及びナノ粒子に対するポリエチレングリコールの結合は、同時に行ってもよく、別々に行ってもよい。ナノ粒子に抗体を結合させる反応と、ナノ粒子にポリエチレングリコールを結合させる反応とを別々に行う場合、最初に、ナノ粒子に抗体を結合させる反応を行った後、ナノ粒子にポリエチレングリコールを結合させる反応を行うことが好ましい。まず、ナノ粒子に対する抗体の結合反応を行い、次いでポリエチレングリコールを結合させることにより、抗体が結合しなかったナノ粒子表面の修飾基にポリエチレングリコールを結合させて、当該修飾基のマスキングを行うことができる。 Binding of antibodies to nanoparticles and binding of polyethylene glycol to nanoparticles may be performed simultaneously or separately. When the reaction for binding antibodies to nanoparticles and the reaction for binding polyethylene glycol to nanoparticles are performed separately, first, the reaction for binding antibodies to nanoparticles is performed, and then polyethylene glycol is bound to nanoparticles. It is preferred to carry out the reaction. First, the binding reaction of the antibody to the nanoparticles is performed, and then polyethylene glycol is bound to bind polyethylene glycol to the modified groups on the surface of the nanoparticles to which the antibodies were not bound, thereby masking the modified groups. can.
 ナノ粒子と、抗体及びポリエチレングリコールとの結合反応は、適切な縮合剤の存在下で行うことができる。縮合剤としては、脱水縮合反応に用いられるものを特に制限なく用いることができる。縮合剤としては、例えば、カルボジイミド系縮合剤が挙げられる。カルボジイミド系縮合剤としては、例えば、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド(EDC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N,N’-ジイソプロピルカルボジイミド(DIC)等が挙げられるが、これらに限定されない。中でも、縮合剤は、EDC・HClが好ましい。 The binding reaction of nanoparticles with antibodies and polyethylene glycol can be carried out in the presence of a suitable condensing agent. As the condensing agent, those used for dehydration condensation reaction can be used without particular limitation. Examples of condensing agents include carbodiimide-based condensing agents. Examples of carbodiimide condensing agents include 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (EDC) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC/HCl). , N,N′-dicyclohexylcarbodiimide (DCC), N,N′-diisopropylcarbodiimide (DIC), and the like, but are not limited thereto. Among them, the condensing agent is preferably EDC.HCl.
 ナノ粒子と抗体との結合反応は、結合反応を効率よく進行させるために、ナノ粒子の表面と抗体とが互いに逆の電位となるpH条件下で行うことが好ましい。例えば、カルボキシ基修飾されたナノ粒子の表面はマイナスに荷電しているため、抗体がプラスに荷電するようなpH条件下で反応を行う。そのようなpH条件としては、抗体の等電点よりも低いpH条件が挙げられる。抗体の等電点は、pH5~6程度であることから、例えば、pH5以下のpH条件を用いることができる。抗体の変性を抑制する観点から、pH3.5以上が好ましく、pH4以上がより好ましい。ナノ粒子と抗体との結合反応時のpH条件としては、例えば、pH3.5~5、pH4~5、又はpH4.2~4.8等が挙げられる。一例として、pH4.5を用いることができる。 The binding reaction between nanoparticles and antibodies is preferably carried out under pH conditions in which the potentials of the surfaces of the nanoparticles and the antibodies are opposite to each other, in order to allow the binding reaction to proceed efficiently. For example, since the surfaces of nanoparticles modified with carboxy groups are negatively charged, the reaction is carried out under pH conditions such that the antibody is positively charged. Such pH conditions include pH conditions below the isoelectric point of the antibody. Since the isoelectric point of the antibody is about pH 5 to 6, a pH condition of, for example, pH 5 or less can be used. From the viewpoint of suppressing antibody denaturation, the pH is preferably 3.5 or higher, more preferably 4 or higher. Examples of pH conditions for the binding reaction between nanoparticles and antibodies include pH 3.5 to 5, pH 4 to 5, pH 4.2 to 4.8, and the like. As an example, pH 4.5 can be used.
 ナノ粒子に抗体を結合させる反応と、ナノ粒子にポリエチレングリコールを結合させる反応とは、ナノ粒子の表面と前記抗体とが互いに逆の電位となるpHを有し、且つ縮合剤を含有する緩衝液中で、同時に行うことができる。結合反応に用いる緩衝液は、前記pH条件を達成できるものであれば、特に限定されないが、酢酸バッファーが好ましい。酢酸バッファーは、酢酸ナトリウムを酢酸及び純水の混合溶媒に溶解することにより、作製することができる。 The reaction for binding antibodies to the nanoparticles and the reaction for binding polyethylene glycol to the nanoparticles are carried out in a buffer solution having a pH such that the surfaces of the nanoparticles and the antibodies have opposite potentials and containing a condensing agent. can be done at the same time. The buffer used for the binding reaction is not particularly limited as long as it can achieve the above pH conditions, but an acetate buffer is preferred. Acetate buffer can be prepared by dissolving sodium acetate in a mixed solvent of acetic acid and pure water.
 ナノ粒子に抗体を結合させる反応、及びナノ粒子にポリエチレングリコールを結合させる反応は、例えば、20~40℃の温度条件で行うことができる。反応時間は、結合反応が十分に進行する時間であれば、特に限定されない。反応時間としては、例えば、30~300分間、60~250分間、又は120~200分間が挙げられる。 The reaction for binding antibodies to nanoparticles and the reaction for binding polyethylene glycol to nanoparticles can be carried out under temperature conditions of, for example, 20 to 40°C. The reaction time is not particularly limited as long as the time allows the binding reaction to proceed sufficiently. Examples of reaction time include 30 to 300 minutes, 60 to 250 minutes, or 120 to 200 minutes.
 本工程により、抗体及びポリエチレングリコールが結合したナノ粒子(図1(B)参照)を得ることができる。 Through this step, nanoparticles to which antibodies and polyethylene glycol are bound (see FIG. 1(B)) can be obtained.
<工程(b)>
 工程(b)では、抗体及びポリエチレングリコールを結合させたナノ粒子に、ブロッキング剤を結合させる。
<Step (b)>
In step (b), a blocking agent is bound to the nanoparticles to which the antibody and polyethylene glycol are bound.
 「ブロッキング剤」とは、ナノ粒子に対する非特異吸着を抑制するために、ナノ粒子に結合させる化合物を意味する。ブロッキング剤は、免疫化学的検出法において、ブロッキング剤として通常用いられているものを用いることができる。ナノ粒子が表面修飾されている場合、ブロッキング剤は、ナノ粒子表面の修飾基と反応可能なものが好ましい。例えば、ナノ粒子がカルボキシ基修飾されている場合、ブロッキング剤としては、カルボキシ基反応性基を含む化合物を用いることができる。カルボキシ基反応性基としては、例えば、アミノ基、ヒドロキシ基等が挙げられる。
 ナノ粒子がカルボキシ基修飾されている場合、ブロッキング剤としては、例えば、カゼイン、アルブミン(例えば、ウシ血清アルブミン(BSA))、コラーゲン、ゼラチン等のタンパク質を用いることができる。中でも、ブロッキング剤は、カゼインが好ましい。
 ブロッキング剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
"Blocking agent" means a compound that binds to nanoparticles in order to suppress non-specific adsorption to the nanoparticles. As the blocking agent, those commonly used as blocking agents in immunochemical detection methods can be used. When the nanoparticles are surface-modified, the blocking agent is preferably capable of reacting with the modifying groups on the surface of the nanoparticles. For example, when the nanoparticles are modified with a carboxy group, a compound containing a carboxy group-reactive group can be used as the blocking agent. Examples of carboxy group-reactive groups include amino groups and hydroxy groups.
When the nanoparticles are modified with carboxy groups, the blocking agent can be, for example, protein such as casein, albumin (eg, bovine serum albumin (BSA)), collagen, or gelatin. Among them, the blocking agent is preferably casein.
A blocking agent may be used individually by 1 type, and may use 2 or more types together.
 ナノ粒子に、ブロッキング剤を結合させる反応は、ブロッキング剤を含む緩衝液中で、前記工程(a)後のナノ粒子を、インキュベーションすることにより行うことができる。インキュベーションに用いる緩衝液は、特に限定されず、免疫化学的検出法において、ブロッキングに通常用いられる緩衝液を用いることができる。緩衝液としては、例えば、PBS、PBS-T、トリス緩衝液、HEPES緩衝液等が挙げられるが、これらに限定されない。緩衝液中のブロッキング剤の含有量は、例えば、0.01~5%(w/v)程度とすることができる。緩衝液にはTween-20などの界面活性剤やEDTAなどのキレート剤が添加されていてもよい。 The reaction for binding the nanoparticles to the blocking agent can be performed by incubating the nanoparticles after step (a) in a buffer solution containing the blocking agent. The buffer used for incubation is not particularly limited, and buffers commonly used for blocking in immunochemical detection methods can be used. Examples of buffers include, but are not limited to, PBS, PBS-T, Tris buffer, HEPES buffer, and the like. The content of the blocking agent in the buffer solution can be, for example, about 0.01 to 5% (w/v). A surfactant such as Tween-20 or a chelating agent such as EDTA may be added to the buffer.
 インキュベーションの条件は、ブロッキング処理に通常用いられる条件を使用することができる。インキュベーションの温度条件としては、例えば、30~45℃、30~40℃、又は35~40℃が挙げられる。一例として、インキュベーション温度は、37℃である。インキュベーション時間は、ナノ粒子に対するブロッキング剤の結合反応が十分に進行する時間であればよい。インキュベーション時間としては、例えば、40~100時間、50~90時間、又は60~80時間が挙げられる。 For the incubation conditions, the conditions normally used for blocking treatment can be used. Temperature conditions for incubation include, for example, 30-45°C, 30-40°C, or 35-40°C. As an example, the incubation temperature is 37°C. The incubation time should be a time during which the binding reaction of the blocking agent to the nanoparticles proceeds sufficiently. Incubation times include, for example, 40-100 hours, 50-90 hours, or 60-80 hours.
 工程(b)により、抗体、ポリエチレングリコール、及びブロッキング剤が結合した抗体結合ナノ粒子(図1(C)参照)を得ることができる。前記抗体結合ナノ粒子では、工程(a)で抗体及びポリエチレングリコールが未結合であったナノ粒子表面の修飾基に、ブロッキング剤が結合している。そのため、工程(a)後のナノ粒子と比較して、ナノ粒子表面の未反応修飾基が低減されている。そのため、ナノ粒子表面に対する非特異吸着が低減される。 Through step (b), antibody-bound nanoparticles (see FIG. 1(C)) to which the antibody, polyethylene glycol, and blocking agent are bound can be obtained. In the antibody-bound nanoparticles, a blocking agent is bound to the modified groups on the surface of the nanoparticles to which the antibody and polyethylene glycol were not bound in step (a). Therefore, unreacted modification groups on the surface of the nanoparticles are reduced compared to the nanoparticles after step (a). Therefore, non-specific adsorption to the nanoparticle surface is reduced.
<任意工程>
 本実施形態にかかる製造方法は、上記工程(a)及び(b)に加えて、任意工程を含んでいてもよい。任意工程は、特に限定されないが、例えば、工程(a)又は工程(b)の後に、ナノ粒子を洗浄する工程が挙げられる。例えば、工程(a)の後、工程(b)の前に、洗浄液でナノ粒子を洗浄してもよい。洗浄液は、特に限定されず、免疫化学的検出法において、通常用いられる洗浄液を用いることができる。洗浄液としては、例えば、工程(b)のブロッキング処理に用いるブロッキング剤含有緩衝液、BS、PBS-T、トリス緩衝液、HEPES緩衝液、純水等が挙げられるが、これらに限定されない。
<Optional process>
The manufacturing method according to this embodiment may include optional steps in addition to the steps (a) and (b). The optional step is not particularly limited, but includes, for example, a step of washing the nanoparticles after step (a) or step (b). For example, after step (a) and before step (b), the nanoparticles may be washed with a washing liquid. The washing liquid is not particularly limited, and washing liquids commonly used in immunochemical detection methods can be used. Examples of washing solutions include, but are not limited to, blocking agent-containing buffers, BS, PBS-T, Tris buffers, HEPES buffers, and pure water used in the blocking treatment in step (b).
 本実施形態の製造方法により得られた抗体結合ナノ粒子は、工程(a)において抗体及びポリエチレングリコールをナノ粒子に結合させることにより、抗体が未結合のナノ粒子表面の修飾基をポリエチレングリコールでマスキングすることができる。さらに、工程(b)において、抗体及びポリエチレングリコールが未結合のナノ粒子表面の修飾基にブロッキング剤を結合することにより、未結合の修飾基を低減することができる。そのため、非特異吸着が低減された抗体結合ナノ粒子を得ることができる。 The antibody-bound nanoparticles obtained by the production method of the present embodiment are prepared by binding the antibody and polyethylene glycol to the nanoparticles in step (a), thereby masking the modified groups on the surface of the nanoparticles to which the antibody is not bound with polyethylene glycol. can do. Furthermore, in step (b), unbound modifying groups can be reduced by binding a blocking agent to the modifying groups on the nanoparticle surface to which antibodies and polyethylene glycol are not bound. Therefore, antibody-bound nanoparticles with reduced nonspecific adsorption can be obtained.
[抗体結合ナノ粒子]
 一実施形態において、本開示は、抗体とポリエチレングリコールとが結合したナノ粒子に、ブロッキング剤が結合された、抗体結合ナノ粒子を提供する。
[Antibody-bound nanoparticles]
In one embodiment, the present disclosure provides antibody-conjugated nanoparticles in which a blocking agent is conjugated to the antibody-polyethylene glycol conjugated nanoparticles.
 本実施形態にかかる抗体結合ナノ粒子は、前記実施形態の製造方法により得ることができる。図1(C)は、本実施形態にかかる抗体結合ナノ粒子の一例を示す模式図である。図1(C)に示す抗体結合ナノ粒子100では、ナノ粒子1に、抗体20、ポリエチレングリコール30、及びブロッキング剤40が結合している。 The antibody-bound nanoparticles according to this embodiment can be obtained by the production method of the above embodiment. FIG. 1(C) is a schematic diagram showing an example of antibody-bound nanoparticles according to this embodiment. Antibody 20, polyethylene glycol 30, and blocking agent 40 are bound to nanoparticle 1 in antibody-bound nanoparticles 100 shown in FIG. 1(C).
 ナノ粒子、抗体、ポリエチレングリコール、及びブロッキング剤は、上記[抗体結合ナノ粒子の製造方法]の項で挙げたものと同様のものを用いることができる。 As the nanoparticles, antibodies, polyethylene glycol, and blocking agents, the same ones as listed in the above section [Method for producing antibody-bound nanoparticles] can be used.
 本実施形態にかかる抗体結合ナノ粒子は、抗体未結合修飾基が、ポリエチレングリコール及びブロッキング剤によりマスキングされている。そのため、非特異吸着を低減することができる。したがって、検出対象物質の濃度が低い場合であっても、感度よく検出対象物質を検出することができる。 In the antibody-bound nanoparticles according to this embodiment, the antibody-unbound modification groups are masked with polyethylene glycol and a blocking agent. Therefore, nonspecific adsorption can be reduced. Therefore, even when the concentration of the detection target substance is low, the detection target substance can be detected with high sensitivity.
[キット]
 一実施形態において、本発明は、前記実施形態にかかる抗体結合ナノ粒子を製造するためのキットを提供する。本実施形態にかかるキットは、ナノ粒子と、抗体と、ポリエチレングリコールと、ブロッキング剤と、を含む。
[kit]
In one embodiment, the present invention provides a kit for producing antibody-conjugated nanoparticles according to the above embodiments. A kit according to this embodiment includes nanoparticles, antibodies, polyethylene glycol, and a blocking agent.
 ナノ粒子、抗体、ポリエチレングリコール、ブロッキング剤は、上記[抗体結合ナノ粒子の製造方法]の項で挙げたものと同様のものを用いることができる。ナノ粒子は、カルボキシ基等で表面修飾されたものが好ましい。
 本実施形態にかかるキットは、前記実施形態にかかる製造方法により、抗体結合ナノ粒子を製造するために用いることができる。
Nanoparticles, antibodies, polyethylene glycol, and blocking agents may be the same as those listed in the section [Method for producing antibody-bound nanoparticles] above. The nanoparticles are preferably surface-modified with carboxy groups or the like.
The kit according to this embodiment can be used for producing antibody-bound nanoparticles by the production method according to the above embodiment.
<任意の構成>
 本実施形態のキットは、ナノ粒子、抗体、ポリエチレングリコール、及びブロッキング剤に加えて、任意の構成を含んでいてもよい。任意の構成としては、例えば、洗浄液、各種緩衝液等の各種試薬類、縮合剤、及び使用説明書等が挙げられる。緩衝液としては、前記工程(a)で用いる緩衝液(例えば、酢酸バッファー)、前記工程(b)で用いる緩衝液等が挙げられる。
<Arbitrary configuration>
The kit of this embodiment may contain arbitrary components in addition to nanoparticles, antibodies, polyethylene glycol, and blocking agents. Examples of optional components include washing solutions, various reagents such as various buffer solutions, condensing agents, instructions for use, and the like. Examples of the buffer include the buffer used in the step (a) (eg, acetate buffer), the buffer used in the step (b), and the like.
(捕捉用抗体が結合された固相担体)
 本実施形態のキットは、製造された抗体結合ナノ粒子を使用するための構成をさらに含んでいてもよい。例えば、捕捉用抗体が結合された固相担体をさらに含んでいてもよい。
(Solid phase carrier bound with capture antibody)
The kit of this embodiment may further include a configuration for using the produced antibody-binding nanoparticles. For example, it may further comprise a solid phase carrier to which a capturing antibody is bound.
 「捕捉用抗体」とは、免疫化学的検出法において、試料中の検出対象物質を固相担体上に捕捉するために使用される抗体である。 A "capture antibody" is an antibody used to capture a substance to be detected in a sample on a solid-phase carrier in an immunochemical detection method.
 捕捉用抗体は、検出対象物質に対して特異的に結合する抗体を用いる。捕捉用抗体は、抗体結合ナノ粒子に用いる抗体(以下、「標識抗体」ともいう)と同じであってもよく、異なっていてもよい。例えば、検出対象物質が、エクソソームである場合、標識抗体及び捕捉用抗体は、同じ汎エクソソーム膜タンパク質(例えば、CD9)に特異的に結合する抗体であってもよい。あるいは、標識抗体及び捕捉用抗体は、互いに異なる汎エクソソーム膜タンパク質(例えば、CD9とCD63)に結合する抗体であってもよい。あるいは、捕捉用抗体は、汎エクソソーム膜タンパク質(例えば、CD9)に特異的に結合する抗体であり、標識抗体は、検出対象のエクソソーム(例えば、癌細胞特異的エクソソーム)に特異的に発現する膜タンパク質(例えば、Her2、CD147等の癌抗原)に特異的に結合する抗体であってもよい。 The capture antibody uses an antibody that specifically binds to the substance to be detected. The capturing antibody may be the same as or different from the antibody used for the antibody-bound nanoparticles (hereinafter also referred to as "labeled antibody"). For example, when the substance to be detected is exosomes, the labeling antibody and the capturing antibody may be antibodies that specifically bind to the same pan-exosomal membrane protein (eg, CD9). Alternatively, the labeling antibody and the capturing antibody can be antibodies that bind to different pan-exosomal membrane proteins (eg, CD9 and CD63). Alternatively, the capture antibody is an antibody that specifically binds to the pan-exosomal membrane protein (e.g., CD9), and the labeled antibody is the exosomes to be detected (e.g., cancer cell-specific exosomes) specifically expressed membrane Antibodies that specifically bind to proteins (eg, cancer antigens such as Her2 and CD147) may also be used.
 捕捉用抗体が固定される固相担体は、特に限定されず、免疫化学的検出法に通常用いられる任意の固相担体を用いることができる。固相担体としては、例えば、ウェルプレート、基板、メンブレン、免疫化学的検出装置に付属する反応チャンバ等が挙げられる。 The solid-phase carrier on which the capturing antibody is immobilized is not particularly limited, and any solid-phase carrier commonly used in immunochemical detection methods can be used. Examples of solid-phase carriers include well plates, substrates, membranes, reaction chambers attached to immunochemical detection devices, and the like.
 固相担体の材質は、特に限定されず、固相担体の種類に応じて適宜選択することができる。固相担体の材質としては、例えば、ポリスチレン、ポリオレフィン(ポリエチレン、ポリプロピレン等)、シクロオレフィンポリマー、ポリカーボネート等の樹脂;ガラス;金、鉄、ジルコニア等の金属又は酸化金属等が挙げられるが、これらに限定されない。 The material of the solid phase carrier is not particularly limited, and can be appropriately selected according to the type of solid phase carrier. Materials for the solid phase carrier include, for example, resins such as polystyrene, polyolefin (polyethylene, polypropylene, etc.), cycloolefin polymer, polycarbonate, etc.; glass; metals such as gold, iron, zirconia, etc.; Not limited.
 固相担体への捕捉用抗体の固定方法は、固相担体の種類に応じて、公知の方法を用いて行うことができる。例えば、捕捉用抗体を固定する面を、表面疎水的相互作用によりタンパク質が物理吸着されるように表面加工してもよい。アビジン-ビオチン結合を利用してもよい。例えば、アビジン修飾した固相担体に、ビオチン修飾した捕捉用抗体を結合させてもよい。
 本実施形態のキットは、捕捉用抗体が結合される前の固相担体を含んでいてもよい。この場合、キットの使用者が、固相担体に任意の抗体を結合させることができる。
A known method can be used to immobilize the capture antibody on the solid phase carrier depending on the type of the solid phase carrier. For example, the surface on which the capturing antibody is immobilized may be surface-treated so that proteins are physically adsorbed by surface hydrophobic interaction. Avidin-biotin conjugation may also be utilized. For example, a biotin-modified capture antibody may be bound to an avidin-modified solid support.
The kit of this embodiment may contain a solid phase carrier to which the capturing antibody is bound. In this case, the user of the kit can bind any antibody to the solid phase carrier.
 捕捉用抗体が結合された固相担体をさらに含むキットは、抗体結合ナノ粒子に含まれる抗体及び捕捉用抗体が特異的に結合する物質を検出するために用いることができる。したがって、捕捉用抗体が結合された固相担体をさらに含むキットは、検出対象物質の検出キットとして使用可能である。 A kit that further includes a solid-phase carrier to which a capturing antibody is bound can be used to detect a substance to which the antibody contained in the antibody-bonded nanoparticles and the capturing antibody specifically bind. Therefore, a kit further comprising a solid phase carrier bound with a capturing antibody can be used as a detection kit for a substance to be detected.
≪固相担体の具体例≫
 図2は、固相担体の一例を示す。図2に示す固相担体201は、ExoCounter(登録商標)等のエクソソーム計数装置に用いる分析用基板の一例である。
<<Specific examples of solid phase carriers>>
FIG. 2 shows an example of a solid phase carrier. The solid phase carrier 201 shown in FIG. 2 is an example of an analysis substrate used in an exosome counting device such as ExoCounter (registered trademark).
 固相担体201は、例えば、ブルーレイディスク(BD)、DVD、コンパクトディスク(CD)等の光ディスクと同様の円板形状を有する。固相担体201の中心部には位置決め孔202が形成されている。固相担体201は、例えば、一般的に光ディスクに用いられるポリカーボネート樹脂やシクロオレフィンポリマー等の樹脂材料で形成されている。固相担体201は、他の形態であってもよく、所定の規格に準拠した光ディスクを用いることもできる。 The solid phase carrier 201 has a disc shape similar to optical discs such as Blu-ray Discs (BD), DVDs, Compact Discs (CDs), for example. A positioning hole 202 is formed in the center of the solid phase carrier 201 . The solid phase carrier 201 is made of, for example, a resin material generally used for optical discs, such as polycarbonate resin or cycloolefin polymer. The solid phase carrier 201 may be in another form, and an optical disc complying with a predetermined standard can also be used.
 図3は、固相担体201の表面の拡大図である。固相担体201の表面には、凸部203と凹部204とが半径方向に交互に配置されたトラック領域205が形成されている。凸部203及び凹部204は、固相担体201の内周部から外周部に向かってスパイラル状に形成されている。凹部204(凸部203)の半径方向のピッチであるトラックピッチWは例えば320nmである。固相担体201のトラック領域205上には反応領域210が形成されている(図2参照)。図2では、固相担体201の中心Caに対して同一円周Cb上に各反応領域210の中心がそれぞれ位置するように8つの反応領域210が等間隔に形成されているが、反応領域210の数や形成位置はこれに限定されるものではない。 FIG. 3 is an enlarged view of the surface of the solid phase carrier 201. FIG. On the surface of the solid-phase carrier 201, track regions 205 are formed in which convex portions 203 and concave portions 204 are alternately arranged in the radial direction. The protrusions 203 and the recesses 204 are spirally formed from the inner periphery of the solid phase carrier 201 toward the outer periphery thereof. A track pitch W, which is the radial pitch of the concave portions 204 (convex portions 203), is, for example, 320 nm. A reaction region 210 is formed on the track region 205 of the solid phase carrier 201 (see FIG. 2). In FIG. 2, eight reaction regions 210 are formed at equal intervals so that the center of each reaction region 210 is located on the same circumference Cb with respect to the center Ca of the solid phase carrier 201. The number and formation position of are not limited to this.
 図4は、トラック領域205に形成された反応領域210の拡大図である。トラック領域205上の所定の領域(反応領域210が形成される領域)には、捕捉用抗体212が固定されている。 FIG. 4 is an enlarged view of the reaction area 210 formed in the track area 205. FIG. A capture antibody 212 is immobilized on a predetermined area (area where the reaction area 210 is formed) on the track area 205 .
≪抗体結合ナノ粒子の使用例≫
 抗体結合ナノ粒子及び上記固相担体201を用いて、ExoCounter(登録商標)等のエクソソーム計数装置により、エクソソームを計数する方法について説明する。以下の例では、検出対象物質としてエクソソームEを計数するものとする。
≪Usage examples of antibody-bound nanoparticles≫
Using the antibody-bound nanoparticles and the solid phase carrier 201, exosome counting device such as ExoCounter (registered trademark), a method for counting exosomes will be described. In the following examples, exosomes E as a substance to be detected shall be counted.
 まず、トラック領域205上の反応領域210に、試料を供給し、反応領域210に固定された捕捉用抗体212と、試料中のエクソソームEとの結合反応を行う。
 試料は、特に限定されず、任意の試料を用いることができる。試料は、エクソソームEの測定対象となる液体試料であってもよい。試料は、例えば、体液試料(血液、血清、血漿、唾液、尿、涙、汗、乳汁、鼻汁、精液、胸水、消化管分泌液、脳脊髄液、組織間液、及びリンパ液等)、細胞培養上清等が挙げられるが、これらに限定されない。
 結合反応は、反応領域210に試料を供給した状態で、所定時間インキュベートすることにより行うことができる。インキュベート時間は、捕捉用抗体に、試料中のエクソソームEが結合するのに十分な時間であればよい。インキュベート時間としては、例えば、30分以上、1~10時間、2~6時間、2~4時間、又は2~3時間等が挙げられる。インキュベート温度としては、例えば、10~40℃、20~40℃、又は30~40℃等が挙げられる。捕捉用抗体212とエクソソームEとの反応効率を向上させるために、インキュベート中、固相担体201を緩やかに振盪してもよい。
 試料にエクソソームEが含まれている場合には、結合反応により、捕捉用抗体212に試料中のエクソソームEが捕捉される(図4参照)。
First, a sample is supplied to the reaction area 210 on the track area 205, and binding reaction between the capture antibody 212 immobilized on the reaction area 210 and the exosome E in the sample is performed.
The sample is not particularly limited, and any sample can be used. The sample may be a liquid sample in which exosomes E are to be measured. Samples include, for example, body fluid samples (blood, serum, plasma, saliva, urine, tears, sweat, milk, nasal discharge, semen, pleural effusion, gastrointestinal secretions, cerebrospinal fluid, interstitial fluid, lymphatic fluid, etc.), cell culture Examples include, but are not limited to, supernatants and the like.
The binding reaction can be performed by incubating for a predetermined time while the sample is supplied to the reaction area 210 . The incubation time may be a time sufficient for exosome E in the sample to bind to the capturing antibody. Examples of the incubation time include 30 minutes or more, 1 to 10 hours, 2 to 6 hours, 2 to 4 hours, or 2 to 3 hours. Examples of the incubation temperature include 10 to 40°C, 20 to 40°C, or 30 to 40°C. In order to improve the reaction efficiency between the capturing antibody 212 and exosomes E, the solid phase carrier 201 may be gently shaken during incubation.
When the sample contains exosomes E, the binding reaction causes the capture antibody 212 to capture the exosomes E in the sample (see FIG. 4).
 結合反応後、適宜、洗浄液を用いて固相担体201の洗浄を行ってもよい。固相担体201を洗浄することにより、捕捉用抗体212に結合していない物質を除去することができる。洗浄液は、特に限定されず、免疫化学的検出法で通常用いられる洗浄液を特に制限なく使用することができる。洗浄液としては、例えば、PBS、トリス緩衝液、HEPES緩衝液等の緩衝液;前記緩衝液にTween20等の界面活性剤を添加したもの;及び純水等が挙げられるが、これらに限定されない。 After the binding reaction, the solid phase carrier 201 may be washed with a washing liquid as appropriate. By washing the solid-phase carrier 201, substances not bound to the capturing antibody 212 can be removed. The washing liquid is not particularly limited, and washing liquids commonly used in immunochemical detection methods can be used without particular limitations. Examples of washing solutions include, but are not limited to, buffers such as PBS, Tris buffer, and HEPES buffer; surfactants such as Tween 20 added to the buffer; and pure water.
 反応領域210に試料を供給する前に、反応領域210のブロッキング処理を行ってもよい。ブロッキング処理は、ブロッキング液を、反応領域210に供給し、インキュベーションすることにより行うことができる。ブロッキング液は、特に限定されず、免疫化学的検出法に通常用いられるものを、特に制限なく使用することができる。ブロッキング液としては、例えば、1~5%程度のスキムミルク、カゼイン、若しくはウシ血清アルブミン(BSA)を含む緩衝液等が挙げられる。ブロッキング液用の緩衝液は、特に限定されないが、例えば、PBS、PBS-T、トリス緩衝液、HEPES緩衝液等が挙げられる。
 インキュベート温度としては、例えば、10~40℃、20~40℃、又は30~40℃等が挙げられる。インキュベーション時間としては、10~180分間、20~120分間、20~100分間、又は30~60分間等が挙げられる。反応領域210のブロッキング処理を行うことにより、反応領域210が形成されるトラック領域205に対する非特異吸着を低減することができる。
Before supplying the sample to the reaction area 210, the reaction area 210 may be blocked. The blocking treatment can be performed by supplying a blocking solution to the reaction area 210 and incubating it. The blocking solution is not particularly limited, and those commonly used in immunochemical detection methods can be used without particular limitation. Blocking solutions include, for example, buffers containing about 1 to 5% skim milk, casein, or bovine serum albumin (BSA). The buffer for the blocking solution is not particularly limited, and examples thereof include PBS, PBS-T, Tris buffer, HEPES buffer and the like.
Examples of the incubation temperature include 10 to 40°C, 20 to 40°C, or 30 to 40°C. Incubation times include 10 to 180 minutes, 20 to 120 minutes, 20 to 100 minutes, or 30 to 60 minutes. By blocking the reaction regions 210, non-specific adsorption to the track regions 205 where the reaction regions 210 are formed can be reduced.
 次に、抗体結合ナノ粒子100を含む緩衝液を、トラック領域205上の反応領域210に供給し、エクソソームEと抗体結合ナノ粒子100との結合反応を行う。抗体結合ナノ粒子100を懸濁する緩衝液は、特に限定されず、免疫化学的検出法に通常用いられるものを、特に制限なく使用することができる。緩衝液としては、例えば、PBS、トリス緩衝液、HEPES緩衝液等が挙げられる。
 結合反応は、反応領域210に抗体結合ナノ粒子100を含む緩衝液を供給した状態で、所定時間インキュベートすることにより行うことができる。インキュベート時間は、エクソソームEに、抗体結合ナノ粒子100中の抗体20が結合するのに十分な時間であればよい。インキュベート時間としては、例えば、30分以上、1~10時間、1~6時間、1~4時間、1~3時間、又は1~2時間等が挙げられる。インキュベート温度としては、例えば、10~40℃、20~40℃、又は30~40℃等が挙げられる。抗体20とエクソソームEとの反応効率を向上させるために、インキュベート中、固相担体201を緩やかに振盪してもよい。
 結合反応により、捕捉用抗体212に捕捉されたエクソソームEに、抗体20を介して抗体結合ナノ粒子100が結合する(図4参照)。これにより、抗体結合ナノ粒子100は、トラック領域205の凹部204に捕捉される。
Next, a buffer solution containing the antibody-bound nanoparticles 100 is supplied to the reaction area 210 on the track area 205, and the binding reaction between the exosomes E and the antibody-bound nanoparticles 100 is performed. The buffer for suspending the antibody-bound nanoparticles 100 is not particularly limited, and those commonly used in immunochemical detection methods can be used without particular limitations. Examples of buffers include PBS, Tris buffer, HEPES buffer and the like.
The binding reaction can be performed by incubating for a predetermined period of time in a state in which a buffer solution containing the antibody-bound nanoparticles 100 is supplied to the reaction region 210 . Incubation time, exosomes E, as long as the antibody 20 in the antibody-binding nanoparticles 100 is sufficient time to bind. Examples of the incubation time include 30 minutes or more, 1 to 10 hours, 1 to 6 hours, 1 to 4 hours, 1 to 3 hours, or 1 to 2 hours. Examples of the incubation temperature include 10 to 40°C, 20 to 40°C, or 30 to 40°C. In order to improve the reaction efficiency between the antibody 20 and exosomes E, the solid phase carrier 201 may be gently shaken during incubation.
Due to the binding reaction, the antibody-bound nanoparticles 100 bind to the exosomes E captured by the capturing antibody 212 via the antibody 20 (see FIG. 4). Antibody-bound nanoparticles 100 are thereby trapped in recesses 204 of track region 205 .
 固相担体201の反応領域210に捕捉された抗体結合ナノ粒子100は、光ピックアップを備えた計数装置(ExoCounter(登録商標)等)を用いて計数することができる。光ピックアップは、対物レンズ241を備えている。光ピックアップは、固相担体201に向けてレーザ光240aを照射する。レーザ光40aは、対物レンズ241によって反応領域210が形成されている側の面に集光される。レーザ光40aの波長は、例えば、405nm程度である。
 光ピックアップは、固相担体201からの反射光を受光し、反射光の受光レベルを検出して受光レベル信号を生成し、CPU等を備えた制御部へ出力する。制御部では、光ピックアップから出力された受光レベル信号から抗体結合ナノ粒子100の検出信号を抽出する。固相担体201は、一定の線速度Lvで駆動され、レーザ光240aは凹部204に沿って走査される。光ピックアップは、凹部204に沿って、抗体結合ナノ粒子100の検出信号を抽出することにより、反応領域210に捕捉されている抗体結合ナノ粒子100をカウントする。
Antibody-bound nanoparticles 100 captured in reaction region 210 of solid phase carrier 201 can be counted using a counting device (ExoCounter (registered trademark), etc.) equipped with an optical pickup. The optical pickup has an objective lens 241 . The optical pickup irradiates the solid phase carrier 201 with a laser beam 240a. The laser beam 40a is condensed by the objective lens 241 onto the surface on which the reaction region 210 is formed. The wavelength of the laser beam 40a is, for example, approximately 405 nm.
The optical pickup receives reflected light from the solid-phase carrier 201, detects the received light level of the reflected light, generates a received light level signal, and outputs the received light level signal to a control unit including a CPU or the like. The controller extracts the detection signal of the antibody-bound nanoparticles 100 from the received light level signal output from the optical pickup. The solid-phase carrier 201 is driven at a constant linear velocity Lv, and the laser beam 240a is scanned along the concave portion 204. As shown in FIG. The optical pickup counts the antibody-bound nanoparticles 100 captured in the reaction area 210 by extracting the detection signal of the antibody-bound nanoparticles 100 along the recess 204 .
 このような機構を備えた測定装置としては、例えば、特開2017-207289号公報に記載の計数装置が挙げられる。 A measuring device having such a mechanism includes, for example, the counting device described in Japanese Patent Application Laid-Open No. 2017-207289.
 上記実施形態の抗体結合ナノ粒子の使用方法は、上記に限定されず、ELISA、免疫沈降法、タンパク質精製、細胞分離、細胞計数等の種々の免疫学的方法に使用することができる。 The method of using the antibody-bound nanoparticles of the above embodiment is not limited to the above, and can be used for various immunological methods such as ELISA, immunoprecipitation, protein purification, cell separation, and cell counting.
[抗体結合ナノ粒子を用いた検出対象物質の測定方法]
 一実施形態において、本開示は、前記実施形態の抗体結合ナノ粒子を用いた検出対象物質の測定方法を提供する。本実施形態の測定方法は、前記抗体結合ナノ粒子と、前記抗体結合ナノ粒子に結合された前記抗体と特異的に結合する検出対象物質とを接触させる工程(以下、「工程(i)」ともいう)と、前記抗体結合ナノ粒子に結合した前記検出対象物質を測定する工程(以下、「工程(ii)」ともいう)と、を含む。
[Method for measuring substance to be detected using antibody-bound nanoparticles]
In one embodiment, the present disclosure provides a method for measuring a substance to be detected using the antibody-bound nanoparticles of the embodiment. The measurement method of the present embodiment includes a step of contacting the antibody-bound nanoparticles with a substance to be detected that specifically binds to the antibody bound to the antibody-bound nanoparticles (hereinafter, also referred to as “step (i)” and a step of measuring the substance to be detected bound to the antibody-bound nanoparticles (hereinafter also referred to as “step (ii)”).
<工程(i)>
 工程(i)では、前記抗体結合ナノ粒子と、前記抗体結合ナノ粒子に結合された抗体と特異的に結合する検出対象物質とを接触させる。
<Step (i)>
In step (i), the antibody-bound nanoparticles are brought into contact with a substance to be detected that specifically binds to the antibody bound to the antibody-bound nanoparticles.
 抗体結合ナノ粒子は、前記実施形態の抗体結合ナノ粒子である。
 特定の抗体と特異的に結合する物質は、好ましくは、前記特定の抗体に高い結合性を有するが、他の生体分子にはほとんど結合性を有しない。特定の抗体と特異的に結合する物質は、前記特定の抗体の抗原であるともいえる。
The antibody-conjugated nanoparticles are the antibody-conjugated nanoparticles of the previous embodiments.
A substance that specifically binds to a specific antibody preferably has a high binding property to the specific antibody, but little binding property to other biomolecules. A substance that specifically binds to a specific antibody can be said to be an antigen of the specific antibody.
 検出対象物質は、本実施形態の測定方法の測定対象となる物質を意味する。検出対象物質は、特に限定されず、抗原抗体反応が生じる物質であればよい。検出対象物質としては、例えば、タンパク質、ペプチド、糖鎖、及び脂質、並びに前記分子を発現する細胞、ウイルス及び細胞外小胞等が挙げられるが、これらに限定されない。細胞外小胞は、細胞が放出する小胞である。細胞外小胞の大きさは直径30nm~1μm程度である。細胞外小胞としては、エクソソーム、アポトーシス小体、マイクロベシクル等が挙げられる。 A substance to be detected means a substance to be measured by the measurement method of this embodiment. The substance to be detected is not particularly limited as long as it causes an antigen-antibody reaction. Substances to be detected include, but are not limited to, proteins, peptides, sugar chains, lipids, and cells, viruses, and extracellular vesicles expressing the above molecules. Extracellular vesicles are vesicles released by cells. The size of extracellular vesicles is about 30 nm to 1 μm in diameter. Extracellular vesicles include exosomes, apoptotic bodies, microvesicles and the like.
 検出対象物質がエクソソームである場合、抗体結合ナノ粒子に結合された抗体は、汎エクソソーム膜タンパク質に特異的に結合する抗体であってもよい。あるいは、検出対象物質であるエクソソームが特異的に発現する膜タンパク質であってもよい。 When the substance to be detected is an exosome, the antibody bound to the antibody-bound nanoparticles may be an antibody that specifically binds to the pan-exosomal membrane protein. Alternatively, it may be a membrane protein that exosomes that are the substance to be detected specifically express.
 抗体結合ナノ粒子と、検出対象物質との接触は、公知の方法で行うことができる。例えば、検出対象物質を含む試料と、抗体結合ナノ粒子とを混合し、インキュベートする方法が挙げられる。検出対象物質を含む試料は、特に限定されず、検出対象物質の種類に応じて適宜選択可能である。検出対象物質が生体物質である場合、検出対象物質を含む試料としては、例えば、体液試料、細胞培養上清等が挙げられる。 The contact between the antibody-bound nanoparticles and the substance to be detected can be carried out by a known method. For example, a method of mixing and incubating a sample containing a substance to be detected and antibody-bound nanoparticles can be mentioned. A sample containing a substance to be detected is not particularly limited, and can be appropriately selected according to the type of the substance to be detected. When the substance to be detected is a biological substance, examples of samples containing the substance to be detected include body fluid samples and cell culture supernatants.
 インキュベーション条件は、検出対象物質の種類に応じて、適宜設定することができる。インキュベーション条件としては、例えば、上記≪抗体結合ナノ粒子の使用例≫の項で挙げた条件と同様の条件が挙げられる。 Incubation conditions can be set appropriately according to the type of substance to be detected. The incubation conditions include, for example, the same conditions as those listed in the section <<Usage Examples of Antibody-Binding Nanoparticles>> above.
 抗体結合物質と検出対象物質との接触は、検出対象物質が固相担体に捕捉された状態で行ってもよい。固相担体への検出対象物質の捕捉は、検出対象物質に特的結合を行う捕捉用抗体を結合させた固相担体に、検出対象物質を接触させて、インキュベーションすることにより行うことができる。
 インキュベーション条件は、検出対象物質の種類に応じて、適宜設定することができる。インキュベーション条件としては、例えば、上記≪抗体結合ナノ粒子の使用例≫の項で挙げた条件と同様の条件が挙げられる。
Contact between the antibody-binding substance and the substance to be detected may be carried out while the substance to be detected is captured on a solid phase carrier. Capturing of the substance to be detected on the solid phase carrier can be carried out by bringing the substance to be detected into contact with the solid phase carrier bound with a capturing antibody that specifically binds to the substance to be detected, followed by incubation.
Incubation conditions can be appropriately set according to the type of substance to be detected. The incubation conditions include, for example, the same conditions as those listed in the section <<Usage Examples of Antibody-Binding Nanoparticles>> above.
 固相担体と検出対象物質との接触後には、適宜、固相担体の洗浄を行ってもよい。固相担体と検出対象物質との接触前には、適宜、固相担体のブロッキングを行ってもよい。抗体結合ナノ粒子と、検出対象物質との接触後には、適宜抗体結合ナノ粒子の洗浄を行ってもよい。これらの方法としては、上記≪抗体結合ナノ粒子の使用例≫の項で挙げた方法と同様の方法が挙げられる。 After contact between the solid phase carrier and the substance to be detected, the solid phase carrier may be washed as appropriate. Before the contact between the solid phase carrier and the substance to be detected, the solid phase carrier may be appropriately blocked. After contacting the antibody-bound nanoparticles with the substance to be detected, the antibody-bound nanoparticles may be washed as appropriate. Examples of these methods include the methods described in the section <<Usage Examples of Antibody-Binding Nanoparticles>> above.
<工程(ii)>
 工程(ii)では、前記抗体結合ナノ粒子に結合した前記検出対象物質を測定する。
<Step (ii)>
In step (ii), the substance to be detected bound to the antibody-bound nanoparticles is measured.
 抗体結合ナノ粒子に結合した検出対象物質を測定する方法は特に限定されない。抗体結合ナノ粒子が、固相担体に捕捉された検出対象物質に結合している場合には、上記≪抗体結合ナノ粒子の使用例≫の項で挙げた方法と同様の方法で、検出対象物質を測定することができる。 The method of measuring the detection target substance bound to the antibody-bound nanoparticles is not particularly limited. When the antibody-bound nanoparticles are bound to the substance to be detected captured by the solid-phase carrier, the substances to be detected are bound to the substance to be detected in the same manner as the methods listed in the section <<Usage Examples of Antibody-Binding Nanoparticles>> above. can be measured.
 あるいは、抗体結合ナノ粒子を回収し、前記回収した抗体結合ナノ粒子中に含まれる検出対象物質に対して特異的に結合する検出用抗体を接触させてもよい。検出用抗体は、標識物質で標識されている。そのため、前記標識物質のシグナルを検出することで、検出対象物質を間接的に測定することができる。標識物質としては、ELISA等で通常用いられるものを特に制限なく用いることができる。標識物質としては、例えば、ペルオキシダーゼ(例、西洋ワサビペルオキシダーゼ)、アルカリホスファターゼなどの酵素標識;カルボキシフルオレセイン(FAM)、6-カルボキシ-4’,5’-ジクロロ2’,7’-ジメトキシフルオレセイン(JOE)、フルオレセインイソチオシアネート(FITC)、テトラクロロフルオレセイン(TET)、5'-ヘキサクロロ-フルオレセイン-CEホスホロアミダイト(HEX)、Cy3、Cy5、Alexa568、Alexa647などの蛍光標識;ヨウ素125などの放射性同位体標識;ルテニウム錯体などの電気化学発光標識;ビオチン等が挙げられる。 Alternatively, the antibody-bound nanoparticles may be collected and contacted with a detection antibody that specifically binds to the substance to be detected contained in the collected antibody-bound nanoparticles. The detection antibody is labeled with a labeling substance. Therefore, the substance to be detected can be measured indirectly by detecting the signal of the labeling substance. As the labeling substance, those commonly used in ELISA and the like can be used without particular limitation. Examples of labeling substances include enzyme labels such as peroxidase (eg, horseradish peroxidase) and alkaline phosphatase; carboxyfluorescein (FAM), 6-carboxy-4',5'-dichloro2',7'-dimethoxyfluorescein (JOE ), fluorescein isothiocyanate (FITC), tetrachlorofluorescein (TET), 5′-hexachloro-fluorescein-CE phosphoramidite (HEX), fluorescent labels such as Cy3, Cy5, Alexa568, Alexa647; radioisotopes such as iodine-125 Labels; electrochemiluminescent labels such as ruthenium complexes; biotin and the like.
 標識物質のシグナルの検出は、標識物質の種類に応じた公知の方法により行うことができる。例えば、酵素標識の場合には、酵素による発色反応を行い、発色を検出することで、標識物質のシグナルを検出することができる。標識物質が蛍光色素、放射性同位体標識、若しくは電気化学的発光標識である場合、蛍光シグナル、放射活性シグナル、若しくは電気化学的発光シグナルを検出することで、標識物質のシグナルを検出することができる。  The signal of the labeling substance can be detected by a known method according to the type of labeling substance. For example, in the case of enzyme labeling, the signal of the labeling substance can be detected by performing a coloring reaction with the enzyme and detecting the coloring. When the labeling substance is a fluorescent dye, a radioactive isotope label, or an electrochemically luminescent label, the signal of the labeling substance can be detected by detecting the fluorescent signal, the radioactive signal, or the electrochemically luminescent signal. .
 本実施形態の測定方法は、前記実施形態の抗体結合ナノ粒子を使用するため、抗体結合ナノ粒子と検出対象物質との結合反応中等において、抗体結合ナノ粒子に対する非特異吸着を低減することができる。そのため、試料中の検出対象物質が低濃度である場合でも、ノイズの低減された精度の高い測定を行うことができる。 Since the measurement method of the present embodiment uses the antibody-bound nanoparticles of the above embodiment, it is possible to reduce non-specific adsorption to the antibody-bound nanoparticles during the binding reaction between the antibody-bound nanoparticles and the substance to be detected. . Therefore, even when the concentration of the substance to be detected in the sample is low, highly accurate measurement with reduced noise can be performed.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.
[実施例1]
<抗体結合ナノ粒子の調製>
 以下の手順で、実施例1の抗体結合ナノ粒子を調製した。
(1)酢酸ナトリウム4.44gに、酢酸5.76gを添加し、純水で50mLにメスアップして、3Mの酢酸バッファー(pH4.5)を調製した。
(2)前記3Mの酢酸バッファーを60倍希釈し、50mMの酢酸バッファー(pH4.5)を調製した。
(3)抗CD9抗体(エクソソームモノクローナル抗体 Anti CD9、コスモ・バイオ)55μgと50mMの酢酸バッファー(pH4.5)とを合計500μLになるように、アミコンフィルター(カットオフ分子量10KDa)(アミコンウルトラ-0.5mL遠心式フィルター、MERCK)に入れ、4℃、14000Gで15分間遠心処理した。
(4)濾液を捨て、50mMの酢酸バッファー(pH4.5)を加えて約500μLとなるようにした。
(5)4℃、14000Gで15分間遠心処理した。
(6)フィルター上に濃縮された抗CD9抗体を、1000Gで2分間、逆遠心処理して回収した。
(7)1.5mLのProtein LoBindチューブ(Eppendorf)に、COOHビーズ(TAS8848N1140、ビーズ径180nm±30nm、カルボキシ基表面修飾(表面修飾量約250nmol/mg)、多摩川精機)を50μL(1mg)加えた。21130Gで5分間遠心処理し、上清を除去した。
(8)(7)のProtein LoBindチューブに、(6)で回収した抗CD9抗体を全量(約50μL)添加した。
(9)Protein LoBindチューブ内のCOOHビーズを超音波処理で分散させた後、チューブミキサーを用いて、37℃で、60分間撹拌した。
(10)1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)2.88g/ポリエチレングリコール(PEG)(Mw=2,000;CE210、JSRライフサイエンス)0.5mLに対し、前記EDC・HCl及びPEGの合計量に対して1/59量(約8.5μL)の比率で3Mの酢酸バッファーを混合したものを後述の(12)で使用する直前に調製した(組成;30mM EDC・HCl+PEG in 50mM 酢酸バッファー(pH4.5))。
(11)(9)のProtein LoBindチューブを、4℃、21130Gで5分間遠心処理し、上清を除去した。
(12)(10)で調製した溶液を400μL加え、超音波処理でCOOHビーズを分散させた後、チューブミキサーで、室温で、180分間撹拌した。
(13)4℃、21130Gで5分間遠心処理し、上清を除去した。
(14)200μLのStorageバッファー(10mM HEPES-NaOH(pH7.9),1mM EDTA,0.1% Tween-20,0.1% Casein)で、洗浄(洗浄液投入、超音波処理による分散、遠心処理、及び上清除去で1回の洗浄)することを3回繰り返した。
(15)500μLのStorageバッファーを添加し、終濃度2mg/mLの抗CD9抗体結合ナノ粒子懸濁液とした。
(16)次いで、(15)の抗CD9抗体結合ナノ粒子懸濁液を含むチューブを37℃で、3日間、インキュベーションした。
(17)(16)の後、チューブを、4℃で保存した。
[Example 1]
<Preparation of antibody-bound nanoparticles>
Antibody-bound nanoparticles of Example 1 were prepared by the following procedure.
(1) 5.76 g of acetic acid was added to 4.44 g of sodium acetate, and the mixture was made up to 50 mL with pure water to prepare a 3M acetate buffer (pH 4.5).
(2) The 3 M acetate buffer was diluted 60 times to prepare a 50 mM acetate buffer (pH 4.5).
(3) Amicon filter (cutoff molecular weight 10 KDa) (Amicon Ultra- 0.5 mL centrifugal filter, MERCK) and centrifuged at 4° C. and 14000 G for 15 minutes.
(4) The filtrate was discarded, and 50 mM acetate buffer (pH 4.5) was added to make about 500 μL.
(5) Centrifuged at 4°C and 14000G for 15 minutes.
(6) The anti-CD9 antibody concentrated on the filter was recovered by reverse centrifugation at 1000 G for 2 minutes.
(7) 50 μL (1 mg) of COOH beads (TAS8848N1140, bead diameter 180 nm±30 nm, carboxy group surface modification (surface modification amount: about 250 nmol/mg), Tamagawa Seiki) was added to a 1.5 mL Protein LoBind tube (Eppendorf). . It was centrifuged at 21130G for 5 minutes and the supernatant was removed.
(8) The entire amount (about 50 μL) of the anti-CD9 antibody collected in (6) was added to the Protein LoBind tube of (7).
(9) After the COOH beads in the Protein LoBind tube were dispersed by ultrasonic treatment, they were stirred at 37°C for 60 minutes using a tube mixer.
(10) 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC/HCl) 2.88 g / polyethylene glycol (PEG) (Mw = 2,000; CE210, JSR Life Science) to 0.5 mL On the other hand, a mixture of 3M acetate buffer at a ratio of 1/59 (about 8.5 μL) to the total amount of EDC·HCl and PEG was prepared immediately before use in (12) described below (composition 30 mM EDC.HCl+PEG in 50 mM acetate buffer (pH 4.5)).
(11) The Protein LoBind tube of (9) was centrifuged at 4° C. and 21130 G for 5 minutes, and the supernatant was removed.
(12) 400 μL of the solution prepared in (10) was added, and the COOH beads were dispersed by ultrasonic treatment, followed by stirring with a tube mixer at room temperature for 180 minutes.
(13) Centrifuged at 21130G at 4°C for 5 minutes and removed the supernatant.
(14) Wash with 200 μL of storage buffer (10 mM HEPES-NaOH (pH 7.9), 1 mM EDTA, 0.1% Tween-20, 0.1% Casein) (addition of washing solution, dispersion by sonication, centrifugation) , and one wash with supernatant removal) were repeated three times.
(15) 500 μL of Storage buffer was added to prepare an anti-CD9 antibody-bound nanoparticle suspension with a final concentration of 2 mg/mL.
(16) Next, the tube containing the anti-CD9 antibody-bound nanoparticle suspension of (15) was incubated at 37°C for 3 days.
(17) After (16), the tubes were stored at 4°C.
<捕捉用抗体の固相担体への固定>
 固相担体として、ExoCounter(登録商標)(株式会社JVCケンウッド)に付属のディスクを用いた。抗CD9抗体を、捕捉用抗体としてディスクに固定した。
 抗CD9抗体を、5μg/mLとなるようにリン酸緩衝生理食塩水に溶解し、70μLをディスク上に固定したウェルに注入した。37℃で、30分間インキュベートし、疎水吸着により、抗CD9抗体をディスクに固定した。インキュベート後、ディスク及びウェルを緩衝液で洗浄した。
<Immobilization of Capture Antibody to Solid Phase Carrier>
A disk attached to ExoCounter (registered trademark) (JVC Kenwood Co., Ltd.) was used as a solid phase carrier. An anti-CD9 antibody was immobilized on the disc as a capture antibody.
Anti-CD9 antibody was dissolved in phosphate-buffered saline to 5 μg/mL and 70 μL was injected into wells fixed on the disc. After incubation at 37° C. for 30 minutes, the anti-CD9 antibody was fixed to the disc by hydrophobic adsorption. After incubation, the discs and wells were washed with buffer.
<固相担体のブロッキング>
 次いで、リン酸緩衝生理食塩水に溶解した1%BSA200μLをディスク上に固定したウェルに注入し、37℃で、30分間インキュベートし、ディスク及びウェルのブロッキング処理を行った。インキュベート後、ディスク及びウェルを緩衝液で洗浄した。
<Blocking of solid-phase carrier>
Then, 200 μL of 1% BSA dissolved in phosphate-buffered saline was poured into the wells immobilized on the discs and incubated at 37° C. for 30 minutes to block the discs and wells. After incubation, the discs and wells were washed with buffer.
<エクソソームの検出>
 結腸癌細胞株HCT116の培養上清を試料として用いた。前記培養上清をリン酸緩衝生理食塩水で、0.8倍(Dilution factor=0.8)、0.6倍(Dilution factor=0.6)、0.4倍(Dilution factor=0.4)、及び0.2倍(Dilution factor=0.2)となるように希釈して、各希釈倍率の試料を調製した。培養上清をDilution Factor=1の試料とし、リン酸緩衝液をブランク(Dilution factor=0)の試料とした。
<Detection of exosomes>
A culture supernatant of colon cancer cell line HCT116 was used as a sample. The culture supernatant is phosphate-buffered saline, 0.8 times (Dilution factor = 0.8), 0.6 times (Dilution factor = 0.6), 0.4 times (Dilution factor = 0.4 ) and 0.2 times (Dilution factor = 0.2) to prepare samples of each dilution factor. The culture supernatant was used as a sample with a dilution factor of 1, and the phosphate buffer solution was used as a sample with a blank (dilution factor=0).
 抗CD9抗体を固定したディスク上のウェルに、前記各試料を50μL注入し、37℃で、2時間インキュベートした。インキュベート後、ウェルを緩衝液で洗浄した。 50 μL of each sample was injected into the wells on the disk on which the anti-CD9 antibody was immobilized, and incubated at 37° C. for 2 hours. After incubation, wells were washed with buffer.
 次いで、ウェルに、前記のように調製した抗CD9抗体結合ナノ粒子を1μg注入し、37℃で、1.5時間インキュベートした。インキュベート後、ウェルを洗浄し、ウェル内を乾燥させた。 Then, 1 µg of anti-CD9 antibody-bound nanoparticles prepared as described above were injected into the wells and incubated at 37°C for 1.5 hours. After incubation, the wells were washed and dried.
 次いで、ディスクからウェルを分離して、ディスク表面に結合した抗CD9抗体結合ナノ粒子の個数をExoCounter(登録商標)でカウントした。 Then, the wells were separated from the disc, and the number of anti-CD9 antibody-bound nanoparticles bound to the disc surface was counted with an ExoCounter (registered trademark).
[比較例1-1]
<抗体結合ナノ粒子の調製>
 COOHビーズの製造業者のガイドラインを参考にして一部を変更した、以下の手順で、比較例1-1の抗体結合ナノ粒子を調製した。
(1)1.5mLのProtein LoBindチューブ(Eppendorf)に、COOHビーズ(TAS8848N1140、ビーズ径180nm±30nm、カルボキシ基表面修飾(表面修飾量約250nmol/mg)、多摩川精機)を50μL(1mg)加え、室温、21130Gで5分間遠心処理し、上清を除去した。
(2)次いで、400mMのEDC・HCl in 50mMの酢酸バッファー、および400mMのN-ヒドロキシスクシンイミド(NHS) in 50mMの酢酸バッファーを調製した。それぞれ100μLずつを(1)のCOOHビーズに加え、超音波処理を行ってCOOHビーズを分散させ、室温で30分間マイクロチューブミキサーを使ってインキュベートを行った。
(3)次いで50μgの抗CD9抗体を追加で添加し、さらに室温で2時間インキュベートを行った。
(4)遠心処理(4℃、21130G、5分間)を行い、上清を廃棄した。
(5)次いで、ポリエチレングリコール(PEG)(Mw=2,000;CE210、JSRライフサイエンス)を800μL投入し、4℃で一晩(オーバーナイト)マイクロチューブミキサーを使ってインキュベートを行った。
(6)遠心処理(4℃、21130G、5分間)を行い、上清を廃棄した。
(7)200μLの洗浄バッファー(10mM HEPES-NaOH(pH7.9),1mM EDTA,0.1%Tween-20)で、洗浄(洗浄液投入、超音波処理による分散、遠心処理、及び上清除去で1回の洗浄)することを3回繰り返した。
(8)500μLの洗浄バッファーを添加し、終濃度2mg/mLの抗CD9抗体結合ナノ粒子懸濁液とした。
(9)(8)の抗CD9抗体結合ナノ粒子懸濁液を含むチューブを、4℃で保存した。
[Comparative Example 1-1]
<Preparation of antibody-bound nanoparticles>
Antibody-bound nanoparticles of Comparative Example 1-1 were prepared by the following procedure, partially modified with reference to the guidelines of the COOH bead manufacturer.
(1) Add 50 μL (1 mg) of COOH beads (TAS8848N1140, bead diameter 180 nm±30 nm, carboxy group surface modification (surface modification amount: about 250 nmol/mg), Tamagawa Seiki) to a 1.5 mL Protein LoBind tube (Eppendorf), Centrifugation was performed at room temperature at 21130 G for 5 minutes, and the supernatant was removed.
(2) Next, 400 mM EDC·HCl in 50 mM acetate buffer and 400 mM N-hydroxysuccinimide (NHS) in 50 mM acetate buffer were prepared. 100 μL of each was added to the COOH beads of (1), ultrasonicated to disperse the COOH beads, and incubated at room temperature for 30 minutes using a microtube mixer.
(3) Then, 50 μg of anti-CD9 antibody was additionally added, and further incubated at room temperature for 2 hours.
(4) Centrifugation (4°C, 21130G, 5 minutes) was performed, and the supernatant was discarded.
(5) Next, 800 μL of polyethylene glycol (PEG) (Mw=2,000; CE210, JSR Life Science) was added and incubated overnight at 4° C. using a microtube mixer.
(6) Centrifugation (4°C, 21130G, 5 minutes) was performed, and the supernatant was discarded.
(7) Washing with 200 μL of washing buffer (10 mM HEPES-NaOH (pH 7.9), 1 mM EDTA, 0.1% Tween-20) (washing solution addition, dispersion by ultrasonication, centrifugation, and supernatant removal) 1 wash) was repeated 3 times.
(8) 500 μL of washing buffer was added to obtain an anti-CD9 antibody-bound nanoparticle suspension with a final concentration of 2 mg/mL.
(9) The tube containing the anti-CD9 antibody-bound nanoparticle suspension of (8) was stored at 4°C.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、前記で調製した比較例1-1の抗CD9抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Detection of exosomes was performed in the same manner as in Example 1 above, except that the anti-CD9 antibody-bound nanoparticles of Comparative Example 1-1 prepared above were used.
[比較例2-1]
 比較例2-1の抗体結合ナノ粒子は、COOHビーズの製造業者のガイドラインに従って調製した。具体的には、以下の手順で、比較例2-1の抗体結合ナノ粒子を調製した。
(1)タンパク質固定化バッファー(25mM モルホリノエタンスルホン酸(MES)-NaOH(pH6)、洗浄/保存バッファー(10mM HEPES-NaOH(pH7.9),50mM KCl,1mM EDTA,10%グリセロール)、及びマスキング溶液(1M アミノエタノール,0.1% Nonidet P-40,HClでpH8.0に調整)を調製した。
(2)N-ヒドロキシスクシンイミド(NHS)28.8mgを、N,N’-ジメチルホルムアミド(DMF)250μLに溶解して、1M NHS溶液を調製した。
(3)抗CD9抗体をタンパク質固定化バッファーで希釈し、50μg/50μLの抗体溶液を50μL以上作製した。
(4)1.5mLマイクロチューブに、COOHビーズ(TAS8848N1140)を1mg入れた。
(5)遠心処理(15,000rpm,室温,5分間)を行い、上清を廃棄した。
(6)DMF 100μLを添加し、超音波処理を行ってCOOHビーズを分散させた。
(7)遠心処理(15,000rpm,室温,5分間)を行い、上清を廃棄した。
(8)(6)及び(7)を2回繰り返した(ビーズの洗浄を計3回行った)。
(9)別の1.5mLマイクロチューブにEDC・HCl 7.68mg(40マイクロmol)を量り取った。
(10)COOHビーズに、DMF 160μLを添加し、超音波処理を行ってCOOHビーズを分散させた。
(11)1M NHS溶液を40μL添加し、混合した。
(12)COOHビーズ-NHS溶液200μLを、(9)で秤量したEDCに添加し、超音波処理を行って分散させた。
(13)室温で、2時間、マイクロチューブミキサーにて反応させた。
(14)遠心処理(15,000rpm,室温、5分間)を行い、上清を廃棄した。
(15)DMF 100μLを添加し、超音波処理を行ってビーズ(COOH-NHS修飾ビーズ:以下「NHSビーズ」)を分散させた。
(16)遠心処理(15,000rpm,室温、5分間)を行い、上清を廃棄した。
(17)(15)及び(16)を4回繰り返した(ビーズの洗浄を計5回行った)。
(18)DMF 100μLを添加し、超音波処理を行ってビーズ(NHSビーズ)を分散させた。(NHSビーズ濃度:1mg/100μL)
(19)1.5mLマイクロチューブにNHSビーズを1mg入れた。
(20)遠心処理(15,000rpm,4℃,5分間)を行い、上清を廃棄した。
(21)メタノール 50μLを添加し、超音波処理を行ってNHSビーズを超音波にて分散させた。
(22)遠心処理(15,000rpm,4℃,5分間)を行い、上清を廃棄した。
(23)タンパク質固定化バッファー50μLを添加し、超音波処理を行ってビーズを分散させた。
(24)抗CD9抗体溶液50μLを添加した。
(25)4℃で、30分、マイクロチューブミキサーにて反応させた。
(26)遠心処理(15,000rpm,4℃,5分間)を行い、上清を回収した。
(27)マスキング溶液 250μLを添加し、ビーズを分散させた。
(28)4℃で、一晩(16~20時間)、マイクロチューブミキサーにて反応させた。
(29)遠心処理(15,000rpm,4℃,5分間)を行い、上清を廃棄した。
(30)洗浄/保存バッファー200μLを添加し、ビーズを分散させた。
(31)遠心処理(15,000rpm,4℃,5分間)を行い、上清を廃棄した。
(32)(30)及び(31)を更に2回繰り返した(ビーズの洗浄を計3回行った)。
(33)洗浄/保存バッファー200μLに分散させ、4℃で保存した。
[Comparative Example 2-1]
The antibody-conjugated nanoparticles of Comparative Example 2-1 were prepared according to the COOH bead manufacturer's guidelines. Specifically, antibody-bound nanoparticles of Comparative Example 2-1 were prepared by the following procedure.
(1) Protein immobilization buffer (25 mM morpholinoethanesulfonic acid (MES)-NaOH (pH 6), wash/storage buffer (10 mM HEPES-NaOH (pH 7.9), 50 mM KCl, 1 mM EDTA, 10% glycerol), and masking A solution (1 M aminoethanol, 0.1% Nonidet P-40, adjusted to pH 8.0 with HCl) was prepared.
(2) 28.8 mg of N-hydroxysuccinimide (NHS) was dissolved in 250 µL of N,N'-dimethylformamide (DMF) to prepare a 1M NHS solution.
(3) The anti-CD9 antibody was diluted with a protein immobilization buffer to prepare 50 µL or more of a 50 µg/50 µL antibody solution.
(4) 1 mg of COOH beads (TAS8848N1140) was placed in a 1.5 mL microtube.
(5) Centrifugation (15,000 rpm, room temperature, 5 minutes) was performed, and the supernatant was discarded.
(6) 100 μL of DMF was added and ultrasonicated to disperse the COOH beads.
(7) Centrifugation (15,000 rpm, room temperature, 5 minutes) was performed, and the supernatant was discarded.
(8) (6) and (7) were repeated twice (beads were washed three times in total).
(9) 7.68 mg (40 micromol) of EDC.HCl was weighed into another 1.5 mL microtube.
(10) 160 µL of DMF was added to the COOH beads, and ultrasonication was performed to disperse the COOH beads.
(11) 40 μL of 1 M NHS solution was added and mixed.
(12) 200 μL of the COOH bead-NHS solution was added to the EDC weighed in (9) and dispersed by ultrasonication.
(13) The mixture was allowed to react with a microtube mixer at room temperature for 2 hours.
(14) Centrifugation (15,000 rpm, room temperature, 5 minutes) was performed, and the supernatant was discarded.
(15) 100 μL of DMF was added and ultrasonicated to disperse the beads (COOH-NHS modified beads: hereinafter “NHS beads”).
(16) Centrifugation (15,000 rpm, room temperature, 5 minutes) was performed, and the supernatant was discarded.
(17) (15) and (16) were repeated four times (washing the beads five times in total).
(18) 100 µL of DMF was added and ultrasonicated to disperse the beads (NHS beads). (NHS bead concentration: 1 mg/100 μL)
(19) 1 mg of NHS beads was placed in a 1.5 mL microtube.
(20) Centrifugation (15,000 rpm, 4°C, 5 minutes) was performed, and the supernatant was discarded.
(21) 50 μL of methanol was added, and ultrasonication was performed to disperse the NHS beads with ultrasonic waves.
(22) Centrifugation (15,000 rpm, 4°C, 5 minutes) was performed, and the supernatant was discarded.
(23) 50 μL of protein immobilization buffer was added and ultrasonicated to disperse the beads.
(24) 50 μL of anti-CD9 antibody solution was added.
(25) The mixture was reacted at 4°C for 30 minutes with a microtube mixer.
(26) Centrifugation (15,000 rpm, 4°C, 5 minutes) was performed to collect the supernatant.
(27) 250 μL of masking solution was added to disperse the beads.
(28) The mixture was allowed to react overnight (16 to 20 hours) at 4°C with a microtube mixer.
(29) Centrifugation (15,000 rpm, 4°C, 5 minutes) was performed, and the supernatant was discarded.
(30) Added 200 μL of wash/storage buffer to disperse the beads.
(31) Centrifugation (15,000 rpm, 4°C, 5 minutes) was performed, and the supernatant was discarded.
(32) (30) and (31) were repeated two more times (total of three bead washes).
(33) Dispersed in 200 μL of washing/storage buffer and stored at 4°C.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、前記で調製した比較例2-1の抗CD9抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Detection of exosomes was performed in the same manner as in Example 1 above, except that the anti-CD9 antibody-bound nanoparticles of Comparative Example 2-1 prepared above were used.
(結果)
 実施例1、比較例1-1、及び比較例2-1の結果を図5Aに示す。また、ブランク(Dilution factor=0)の試料におけるカウント値を、図5Bに示す。
 実施例1では、比較例1-1及び比較例2-1と比較して、感度が改善し、ブランクにおけるカウント値が低減された。
(result)
The results of Example 1, Comparative Example 1-1, and Comparative Example 2-1 are shown in FIG. 5A. In addition, the count value in the blank (Dilution factor=0) sample is shown in FIG. 5B.
In Example 1, compared to Comparative Examples 1-1 and 2-1, the sensitivity was improved and the blank count value was reduced.
[実施例2]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗CD63抗体(エクソソームモノクローナル抗体 Anti CD63、コスモ・バイオ)を用いたこと以外は、実施例1と同様の方法で、実施例2の抗CD63抗体結合ナノ粒子を調製した。
[Example 2]
<Preparation of antibody-bound nanoparticles>
Anti-CD63 antibody-bound nanoparticles of Example 2 were prepared in the same manner as in Example 1 except that anti-CD63 antibodies (exosome monoclonal antibody Anti CD63, Cosmo Bio) were used instead of anti-CD9 antibodies. did.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、前記で調製した実施例2の抗63抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Detection of exosomes was performed in the same manner as in Example 1 above, except that the anti-63 antibody-binding nanoparticles of Example 2 prepared above were used.
[比較例1-2]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗CD63抗体を用いたこと以外は、比較例1-1と同様の方法で、比較例1-2の抗CD63抗体結合ナノ粒子を調製した。
[Comparative Example 1-2]
<Preparation of antibody-bound nanoparticles>
Anti-CD63 antibody-bound nanoparticles of Comparative Example 1-2 were prepared in the same manner as in Comparative Example 1-1, except that an anti-CD63 antibody was used instead of the anti-CD9 antibody.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、前記で調製した、比較例1-2の抗CD63抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Detection of exosomes was prepared in the same manner as in Example 1 above, except that the anti-CD63 antibody-bound nanoparticles of Comparative Example 1-2 were used.
[比較例2-2]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗CD63抗体を用いたこと以外は、比較例1-2と同様の方法で、比較例2-2の抗CD63抗体結合ナノ粒子を調製した。
[Comparative Example 2-2]
<Preparation of antibody-bound nanoparticles>
Anti-CD63 antibody-bound nanoparticles of Comparative Example 2-2 were prepared in the same manner as in Comparative Example 1-2, except that an anti-CD63 antibody was used instead of the anti-CD9 antibody.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、前記で調製した、比較例2-2の抗CD63抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Detection of exosomes was prepared in the same manner as in Example 1 above, except that the anti-CD63 antibody-bound nanoparticles of Comparative Example 2-2 were used.
(結果)
 実施例2、比較例1-2、及び比較例2-2の結果を図6Aに示す。また、ブランク(Dilution factor=0)の試料におけるカウント値を、図6Bに示す。
 比較例1-2は、ブランクにおけるカウント値が最も低かったが、感度が顕著に低下した。一方、実施例2は、感度が及びブランクのカウント値ともに良好であった。
(result)
The results of Example 2, Comparative Example 1-2, and Comparative Example 2-2 are shown in FIG. 6A. In addition, the count value in the blank (Dilution factor=0) sample is shown in FIG. 6B.
Comparative Example 1-2 had the lowest count value in the blank, but markedly decreased sensitivity. On the other hand, in Example 2, both the sensitivity and blank count value were good.
[実施例3]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗Her2抗体(モノクローナル抗体 Anti Her2、BioLegend)を用いたこと以外は、実施例1と同様の方法で、実施例3の抗Her2抗体結合ナノ粒子を調製した。
[Example 3]
<Preparation of antibody-bound nanoparticles>
Anti-Her2 antibody-bound nanoparticles of Example 3 were prepared in the same manner as in Example 1, except that an anti-Her2 antibody (monoclonal antibody Anti Her2, BioLegend) was used instead of the anti-CD9 antibody.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、結腸癌細胞株HCT116に替えて乳癌細胞株KPL4を用い、前記で調製した実施例3の抗Her2抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Exosomes were detected in the same manner as in Example 1 above, except that the breast cancer cell line KPL4 was used instead of the colon cancer cell line HCT116, and the anti-Her2 antibody-bound nanoparticles of Example 3 prepared above were used. .
[比較例1-3]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗Her2抗体を用いたこと以外は、比較例1-1と同様の方法で、比較例1-3の抗Her2抗体結合ナノ粒子を調製した。
[Comparative Example 1-3]
<Preparation of antibody-bound nanoparticles>
Anti-Her2 antibody-bound nanoparticles of Comparative Example 1-3 were prepared in the same manner as in Comparative Example 1-1, except that an anti-Her2 antibody was used instead of the anti-CD9 antibody.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、結腸癌細胞株HCT116に替えて乳癌細胞株KPL4を用い、前記で調製した比較例1-3の抗Her2抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Exosomes are detected in the same manner as in Example 1 above, except that the breast cancer cell line KPL4 is used instead of the colon cancer cell line HCT116 and the anti-Her2 antibody-bound nanoparticles of Comparative Example 1-3 prepared above are used. gone.
[比較例2-3]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗Her2抗体を用いたこと以外は、比較例1-2と同様の方法で、比較例2-3の抗Her2抗体結合ナノ粒子を調製した。
[Comparative Example 2-3]
<Preparation of antibody-bound nanoparticles>
Anti-Her2 antibody-bound nanoparticles of Comparative Example 2-3 were prepared in the same manner as in Comparative Example 1-2, except that an anti-Her2 antibody was used instead of the anti-CD9 antibody.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、結腸癌細胞株HCT116に替えて乳癌細胞株KPL4を用い、前記で調製した比較例2-3の抗Her2抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Exosomes are detected in the same manner as in Example 1 above, except that the breast cancer cell line KPL4 is used instead of the colon cancer cell line HCT116, and the anti-Her2 antibody-bound nanoparticles of Comparative Example 2-3 prepared above are used. gone.
(結果)
 実施例3、比較例1-3、及び比較例2-3の結果を図7Aに示す。また、ブランク(Dilution factor=0)の試料におけるカウント値を、図7Bに示す。
 比較例1-3は、ブランクにおけるカウント値が最も低かったが、感度が顕著に低下した。一方、実施例3は、感度が及びブランクのカウント値ともに良好であった。
(result)
The results of Example 3, Comparative Examples 1-3, and Comparative Examples 2-3 are shown in FIG. 7A. In addition, the count value in the blank (Dilution factor=0) sample is shown in FIG. 7B.
Comparative Example 1-3 had the lowest count value in the blank, but markedly decreased sensitivity. On the other hand, in Example 3, both the sensitivity and blank count value were good.
[実施例4]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗CD147抗体(モノクローナル抗体 Anti CD147、BioLegend)を用いたこと以外は、実施例1と同様の方法で、実施例4の抗CD147抗体結合ナノ粒子を調製した。
[Example 4]
<Preparation of antibody-bound nanoparticles>
Anti-CD147 antibody-bound nanoparticles of Example 4 were prepared in the same manner as in Example 1, except that an anti-CD147 antibody (monoclonal antibody Anti CD147, BioLegend) was used instead of the anti-CD9 antibody.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、結腸癌細胞株HCT116に替えて膵癌細胞株MiaPaca2を用い、前記で調製した実施例4の抗CD147抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Exosomes were detected in the same manner as in Example 1 above, except that the pancreatic cancer cell line MiaPaca2 was used instead of the colon cancer cell line HCT116 and the anti-CD147 antibody-binding nanoparticles of Example 4 prepared above were used. .
[比較例1-4]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗CD147抗体を用いたこと以外は、比較例1-1と同様の方法で、比較例1-4の抗CD147抗体結合ナノ粒子を調製した。
[Comparative Example 1-4]
<Preparation of antibody-bound nanoparticles>
Anti-CD147 antibody-bound nanoparticles of Comparative Example 1-4 were prepared in the same manner as in Comparative Example 1-1, except that an anti-CD147 antibody was used instead of the anti-CD9 antibody.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、結腸癌細胞株HCT116に替えて膵癌細胞株MiaPaca2を用い、前記で調製した比較例1-4の抗CD147抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Exosomes are detected in the same manner as in Example 1 above, except that the pancreatic cancer cell line MiaPaca2 is used instead of the colon cancer cell line HCT116, and the anti-CD147 antibody-bound nanoparticles of Comparative Example 1-4 prepared above are used. gone.
[比較例2-4]
<抗体結合ナノ粒子の調製>
 抗CD9抗体に替えて、抗CD147抗体を用いたこと以外は、比較例1-2と同様の方法で、比較例2-4の抗CD147抗体結合ナノ粒子を調製した。
[Comparative Example 2-4]
<Preparation of antibody-bound nanoparticles>
Anti-CD147 antibody-bound nanoparticles of Comparative Example 2-4 were prepared in the same manner as in Comparative Example 1-2, except that an anti-CD147 antibody was used instead of the anti-CD9 antibody.
<捕捉用抗体の固相担体への固定、固相担体のブロッキング>
 捕捉用抗体の固相担体への固定、及び固相担体のブロッキングは、上記実施例1と同様に行った。
<Immobilization of Capture Antibody to Solid Phase Carrier, Blocking of Solid Phase Carrier>
Immobilization of the capturing antibody to the solid-phase carrier and blocking of the solid-phase carrier were carried out in the same manner as in Example 1 above.
<エクソソームの検出>
 エクソソームの検出は、結腸癌細胞株HCT116に替えて膵癌細胞株MiaPaca2を用い、前記で調製した比較例2-4の抗CD147抗体結合ナノ粒子を用いたこと以外は、上記実施例1と同様に行った。
<Detection of exosomes>
Exosomes are detected in the same manner as in Example 1 above, except that the pancreatic cancer cell line MiaPaca2 is used instead of the colon cancer cell line HCT116, and the anti-CD147 antibody-bound nanoparticles of Comparative Example 2-4 prepared above are used. gone.
(結果)
 実施例4、比較例1-4、及び比較例2-4の結果を図8Aに示す。また、ブランク(Dilution factor=0)の試料におけるカウント値を、図8Bに示す。
 実施例4では、比較例1-4及び比較例2-4と比較して、感度が改善し、ブランクにおけるカウント値が低減された。
(result)
The results of Example 4, Comparative Examples 1-4, and Comparative Examples 2-4 are shown in FIG. 8A. In addition, the count value in the blank (Dilution factor=0) sample is shown in FIG. 8B.
In Example 4, compared to Comparative Examples 1-4 and 2-4, the sensitivity was improved and the blank count value was reduced.
 図9に、前記各例において、S/N値を算出した結果を示す(S:Dilution factor=1におけるカウント値、N:Dilution factor=0におけるカウント値)。S/N値が大きいほど、感度及びブランクのカウント値が良好であることを示す。
 いずれの抗体結合ナノ粒子においても、実施例の抗体結合ナノ粒子が最もS/Nの値が大きかった。この結果は、実施例の抗体結合ナノ粒子では、非特異吸着が低減され、且つ感度が良好であることを示す。
FIG. 9 shows the results of calculating the S/N value in each of the above examples (S: count value at Dilution factor=1, N: count value at Dilution factor=0). A higher S/N value indicates better sensitivity and blank count value.
Among all the antibody-bound nanoparticles, the antibody-bound nanoparticles of Examples had the highest S/N value. This result indicates that the antibody-bound nanoparticles of Examples have reduced non-specific adsorption and good sensitivity.
 本発明によれば、非特異吸着を低減することが可能な、抗体結合ナノ粒子の製造方法、前記製造方法により製造される抗体結合ナノ粒子、前記抗体結合ナノ粒子を製造するためのキット、及び抗体結合ナノ粒子を用いた検出対象物質の測定方法が提供される。 According to the present invention, a method for producing antibody-bound nanoparticles that can reduce nonspecific adsorption, antibody-bound nanoparticles produced by the production method, a kit for producing the antibody-bound nanoparticles, and A method for measuring a substance to be detected using antibody-bound nanoparticles is provided.
 1  ナノ粒子
 10 カルボキシ基修飾ナノ粒子
 20 抗体
 30 ポリエチレングリコール
 40 ブロッキング剤
 100 抗体結合ナノ粒子
1 Nanoparticle 10 Carboxy Group-Modified Nanoparticle 20 Antibody 30 Polyethylene Glycol 40 Blocking Agent 100 Antibody-Binding Nanoparticle

Claims (6)

  1.  (a)ナノ粒子に、抗体及びポリエチレングリコールを結合させる工程と、
     (b)前記抗体及び前記ポリエチレングリコールを結合させた前記ナノ粒子に、ブロッキング剤を結合させる工程と、
     を含む、抗体結合ナノ粒子の製造方法。
    (a) binding an antibody and polyethylene glycol to the nanoparticles;
    (b) binding a blocking agent to the nanoparticles to which the antibody and the polyethylene glycol are bound;
    A method for producing antibody-conjugated nanoparticles, comprising:
  2.  前記(a)の工程が、前記ナノ粒子に前記抗体を結合させる反応と、前記ナノ粒子に前記ポリエチレングリコールを結合させる反応とを同時に行う工程であり、
     前記ナノ粒子の表面と前記抗体とが互いに逆の電位となるpHを有し、
     前記(a)の工程が、縮合剤を含有する緩衝液中で、前記ナノ粒子に、前記抗体及び前記ポリエチレングリコールを結合させることを含む、
     請求項1に記載の抗体結合ナノ粒子の製造方法。
    The step (a) is a step of simultaneously performing a reaction of binding the antibody to the nanoparticles and a reaction of binding the polyethylene glycol to the nanoparticles,
    having a pH at which the surface of the nanoparticles and the antibody have opposite potentials;
    The step (a) comprises binding the antibody and the polyethylene glycol to the nanoparticles in a buffer solution containing a condensing agent.
    A method for producing antibody-bound nanoparticles according to claim 1 .
  3.  前記(b)の工程が、前記ブロッキング剤を含有する緩衝液中で、前記抗体及び前記ポリエチレングリコールを結合させた前記ナノ粒子を、30~45℃の温度条件下で、40~100時間インキュベーションすることを含む、
     請求項1又は2に記載の抗体結合ナノ粒子の製造方法。
    In the step (b), the nanoparticles bound to the antibody and the polyethylene glycol are incubated in a buffer solution containing the blocking agent under a temperature condition of 30 to 45° C. for 40 to 100 hours. including
    3. A method for producing antibody-bound nanoparticles according to claim 1 or 2.
  4.  抗体とポリエチレングリコールとが結合したナノ粒子に、ブロッキング剤が結合された、抗体結合ナノ粒子。  Antibody-bound nanoparticles in which a blocking agent is bound to nanoparticles bound to antibodies and polyethylene glycol.
  5.  ナノ粒子と、
     抗体と、
     ポリエチレングリコールと、
     ブロッキング剤と、
     を含む、請求項1~3のいずれか一項に記載の製造方法により抗体結合ナノ粒子を製造するためのキット。
    nanoparticles;
    an antibody;
    polyethylene glycol;
    a blocking agent;
    A kit for producing antibody-bound nanoparticles by the production method according to any one of claims 1 to 3, comprising:
  6.  請求項4に記載の抗体結合ナノ粒子と、前記抗体結合ナノ粒子に結合された前記抗体と特異的に結合する検出対象物質とを接触させる工程と、
     前記抗体結合ナノ粒子に結合した前記検出対象物質を測定する工程と、
     を含む、抗体結合ナノ粒子を用いた検出対象物質の測定方法。
    A step of contacting the antibody-bound nanoparticles according to claim 4 with a substance to be detected that specifically binds to the antibody bound to the antibody-bound nanoparticles;
    measuring the substance to be detected bound to the antibody-bound nanoparticles;
    A method for measuring a substance to be detected using antibody-bound nanoparticles, comprising:
PCT/JP2022/011293 2021-03-19 2022-03-14 Method for producing antibody-binding nanoparticles, antibody-binding nanoparticles, kit for producing antibody-binding nanoparticles, and method for measuring analyte using antibody-binding nanoparticles WO2022196630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021046537A JP2022145226A (en) 2021-03-19 2021-03-19 Method for manufacturing antibody binding nanoparticle, antibody binding nanoparticle, kit for manufacturing antibody binding nanoparticle, and method for measuring substance to be detected using antibody binding nanoparticle
JP2021-046537 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196630A1 true WO2022196630A1 (en) 2022-09-22

Family

ID=83320421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011293 WO2022196630A1 (en) 2021-03-19 2022-03-14 Method for producing antibody-binding nanoparticles, antibody-binding nanoparticles, kit for producing antibody-binding nanoparticles, and method for measuring analyte using antibody-binding nanoparticles

Country Status (2)

Country Link
JP (1) JP2022145226A (en)
WO (1) WO2022196630A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189138A1 (en) * 2022-03-30 2023-10-05 京セラ株式会社 Optical devices and biosensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090271A (en) * 1996-09-13 1998-04-10 Masao Karube Immunity measuring method and device utilizing surface plasmon resonance phenomenon
WO2005075997A1 (en) * 2004-02-03 2005-08-18 Asahi Kasei Kabushiki Kaisha Method of detecting analyte with use of magnetic bead
JP2009180580A (en) * 2008-01-30 2009-08-13 Asahi Kasei Corp Antibody fixing carrier
WO2010082681A1 (en) * 2009-01-16 2010-07-22 国立大学法人筑波大学 Immuno-latex particles and process for producing same
JP2011502260A (en) * 2007-10-30 2011-01-20 ジョン ワン、 Method and apparatus for detecting occult blood
JP2011027693A (en) * 2009-07-29 2011-02-10 Furukawa Electric Co Ltd:The Test strip for immuno-chromatography
JP2012230123A (en) * 2006-01-27 2012-11-22 Becton Dickinson & Co Lateral flow immunoassay with encapsulated detection modality

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090271A (en) * 1996-09-13 1998-04-10 Masao Karube Immunity measuring method and device utilizing surface plasmon resonance phenomenon
WO2005075997A1 (en) * 2004-02-03 2005-08-18 Asahi Kasei Kabushiki Kaisha Method of detecting analyte with use of magnetic bead
JP2012230123A (en) * 2006-01-27 2012-11-22 Becton Dickinson & Co Lateral flow immunoassay with encapsulated detection modality
JP2011502260A (en) * 2007-10-30 2011-01-20 ジョン ワン、 Method and apparatus for detecting occult blood
JP2009180580A (en) * 2008-01-30 2009-08-13 Asahi Kasei Corp Antibody fixing carrier
WO2010082681A1 (en) * 2009-01-16 2010-07-22 国立大学法人筑波大学 Immuno-latex particles and process for producing same
JP2011027693A (en) * 2009-07-29 2011-02-10 Furukawa Electric Co Ltd:The Test strip for immuno-chromatography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGASAKI, Y. KOBAYASHI, H. KATSUYAMA, Y. JOMURA, T. SAKURA, T.: "Enhanced immunoresponse of antibody/mixed-PEG co-immobilized surface construction of high-performance immunomagnetic ELISA system", JOURNAL OF COLLOID AND INTERFACE SCIENCE, ACADEMIC PRESS,INC., US, vol. 309, no. 2, 11 April 2007 (2007-04-11), US , pages 524 - 530, XP022020987, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2006.12.079 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189138A1 (en) * 2022-03-30 2023-10-05 京セラ株式会社 Optical devices and biosensor

Also Published As

Publication number Publication date
JP2022145226A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
Krishnan et al. Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels
KR102065387B1 (en) Signal amplification in lateral flow and related immunoassays
CN103620409B (en) Immunoassay methods and reagents for decreasing nonspecific binding
US20080108084A1 (en) Cancer Detection Methods and Reagents
JP2009085753A (en) Sandwich immunoassay
CA2805720A1 (en) Rotors for immunoassays
EP3315969B1 (en) Method of detecting test substance by immune complex transfer method
WO2022196630A1 (en) Method for producing antibody-binding nanoparticles, antibody-binding nanoparticles, kit for producing antibody-binding nanoparticles, and method for measuring analyte using antibody-binding nanoparticles
US20030138860A1 (en) Cancer detection methods and reagents
JPWO2002048711A1 (en) Immunological analysis reagent and analysis method
JPWO2009084369A1 (en) Reagent for detection of HIV-1 antigen and detection method
US20140011192A1 (en) Particle complex and method of isolating target cell
WO2001073437A2 (en) Antigen-specific enzyme-linked immunosorbent assay
JP2022053276A (en) Antibody for detection, solid-phase carrier particles, measuring kit for detection target substance, and method for measurement
WO2021193682A1 (en) Immunological analysis method and immunological analysis reagent kit
WO2022065052A1 (en) Capture antibody, solid-phase carrier, detection antibody, solid-phase carrier particles, and kit and method for measuring detection target substance
CN114689845A (en) Method for detecting multiple analytes
US20010051351A1 (en) Antigen-specific immune complex-based enzyme-linked immunosorbent assay
JP2022053284A (en) Antibody for capturing, solid-phase carrier, measuring kit for detection target substance, and method for measurement
JPH07309895A (en) New protein, method for detecting the same and diagnostic
WO2022196036A1 (en) Conjugate formation method, substance of interest measurement method, and kit
JPH0727764A (en) Antibody for immunological measurement blocking fc part, reagent for immunological measurement containing said antibody, immunological measuring method using said reagent for immunological measurement and block reagent blocking fc part
WO2024090399A1 (en) Method for detecting test substance in specimen
Presnova et al. Multianalysis of thyroid tumor markers on the surface of a porous membrane and semiconductor substrates using gold nanoparticles as a label
JP5137880B2 (en) Method for producing dry particles with immobilized binding substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771376

Country of ref document: EP

Kind code of ref document: A1