WO2022196427A1 - Oct装置、その制御方法およびoct装置制御プログラム - Google Patents

Oct装置、その制御方法およびoct装置制御プログラム Download PDF

Info

Publication number
WO2022196427A1
WO2022196427A1 PCT/JP2022/009932 JP2022009932W WO2022196427A1 WO 2022196427 A1 WO2022196427 A1 WO 2022196427A1 JP 2022009932 W JP2022009932 W JP 2022009932W WO 2022196427 A1 WO2022196427 A1 WO 2022196427A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
preview image
time
oct apparatus
interval
Prior art date
Application number
PCT/JP2022/009932
Other languages
English (en)
French (fr)
Inventor
隆信 佐川
Original Assignee
株式会社吉田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社吉田製作所 filed Critical 株式会社吉田製作所
Priority to US18/253,413 priority Critical patent/US20240000552A1/en
Priority to CN202280021915.3A priority patent/CN117098486A/zh
Priority to DE112022001518.7T priority patent/DE112022001518T5/de
Publication of WO2022196427A1 publication Critical patent/WO2022196427A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02076Caused by motion
    • G01B9/02077Caused by motion of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02085Combining two or more images of different regions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/65Spatial scanning object beam

Definitions

  • the present invention relates to an OCT apparatus, its control method, and an OCT apparatus control program, and more particularly to a dental OCT apparatus, its control method, and an OCT apparatus control program.
  • OCT optical coherence tomography
  • the OCT apparatus described in Patent Literature 1 has two imaging modes: a mode that operates in response to measurement instructions (hereinafter referred to as measurement mode imaging) and a mode that operates in response to preview instructions (hereinafter referred to as preview mode imaging). I have.
  • the scanning mechanism scans at a predetermined pitch, so that the OCT device acquires an optical coherence tomographic image (OCT image) of the subject at a predetermined resolution, and the display device displays a still image of the OCT image.
  • OCT image optical coherence tomographic image
  • Measurement mode photography is based on the assumption that subject image data is saved.
  • the operator brings the tip of the nozzle of the probe of the OCT apparatus into contact with the tooth and asks the patient not to move for several seconds until the end of measurement imaging.
  • preview mode imaging since it is not assumed that the subject image data will be saved, the scanning mechanism scans at a coarse pitch, and the OCT device acquires a low-resolution image.
  • the OCT apparatus continuously acquires low-resolution images, and the display device displays tomographic images, on-face images, and 3D images of the subject at high speed as real-time moving images.
  • the preview mode shot may be used to locate the shot location for obtaining the image desired to be saved prior to taking the measurement mode shot.
  • an on-face image is a two-dimensional image obtained by summing data in the depth direction of a three-dimensional image of a subject. Unlike simple surface images and front images, on-face images are generated using not only information on the outer surface of a subject but also internal information.
  • an OCT apparatus irradiates a subject with laser light from a probe including a two-dimensional scanning mechanism that two-dimensionally scans laser light, and measures internal information of the subject by optical interference.
  • An OCT apparatus that measures object information in a direction along the optical axis of a laser beam at predetermined point intervals in two-dimensional scanning to obtain a cross-sectional image of a tomographic plane along the optical axis of the laser beam.
  • Signal processing means for acquiring preview image data corresponding to a volume image having a predetermined roughness superimposed in a direction perpendicular to the plane in one shot, a memory for storing the preview image data for a plurality of shots, and the subject.
  • an instruction receiving means for receiving an instruction to generate measured and photographed image data corresponding to a volume image that is more precise than the predetermined roughness of the signal processing means, each time the preview image data is acquired, the two-dimensional scanning the origin of is shifted by minute intervals smaller than the point interval so as to fill the point interval, the preview image data for a plurality of times is acquired, and the plurality of times stored in the memory by the time the instruction is received
  • the measurement image data is generated by reconstructing the preview image data.
  • a control method for an OCT apparatus irradiates a subject with a laser beam from a probe including a two-dimensional scanning mechanism for two-dimensionally scanning the laser beam, and scans the subject by optical interference.
  • a control method for an OCT apparatus that measures internal information comprising measuring object information in a direction along the optical axis of a laser beam at predetermined point intervals in two-dimensional scanning, thereby measuring information along the optical axis of the laser beam.
  • the present invention can also be realized by a program for causing a computer to function as a control device for the OCT apparatus described above.
  • the present invention there is no need to perform measurement mode imaging again after performing preview mode imaging, it is possible to reduce the possibility of obtaining an image unsuitable for storage, and reduce re-imaging.
  • FIG. 1 is a configuration diagram schematically showing an OCT apparatus according to a first embodiment of the present invention
  • FIG. 2 is a block diagram schematically showing the configuration of a control unit in FIG. 1
  • FIG. 4 is a flow chart showing the flow of image generation display processing of the OCT apparatus according to the first embodiment of the present invention
  • FIG. 4 is an explanatory diagram of the generation processing of the measurement photographed image data according to the first embodiment of the present invention, in which (a) shows an A cross-sectional image and (b) shows a volume image.
  • FIG. 4 is an explanatory diagram of preview image data generation processing according to the first embodiment of the present invention, in which (a) shows an A cross-section image and (b) shows a volume image.
  • FIG. 4 is an explanatory diagram of preview image data generation processing according to the first embodiment of the present invention, in which (a) shows an A cross-section image and (b) shows a volume image.
  • FIG. 10 is a schematic diagram showing the flow of photographing until a measurement photographed image is displayed according to a conventional technique
  • FIG. 4 is a schematic diagram showing the flow of photographing until a measurement photographed image is displayed according to the first embodiment of the present invention
  • It is a schematic diagram which shows the effect of the OCT apparatus which concerns on 1st Embodiment of this invention.
  • FIG. 4 is a block diagram schematically showing the configuration of a control unit of an OCT apparatus according to a second embodiment of the present invention
  • FIG. FIG. 10 is a schematic diagram showing the flow of photographing until a measurement photographed image is displayed according to the second embodiment of the present invention
  • FIG. 11 is a block diagram schematically showing the configuration of a control unit of an OCT apparatus according to a third embodiment of the invention
  • FIG. 11 is a block diagram schematically showing the configuration of a control unit of an OCT apparatus according to a fourth embodiment of the invention
  • FIG. 11 is a block diagram schematically showing the configuration of a control unit of an OCT apparatus according to a fifth embodiment of the present invention
  • FIG. 14 is an explanatory diagram of the shake sensing means of FIG. 13
  • FIG. 11 is a block diagram schematically showing the configuration of a control unit of an OCT apparatus according to a sixth embodiment of the present invention. It is an example of a screen display of the OCT apparatus of FIG.
  • the OCT apparatus 1 As shown in FIG. 1, the OCT apparatus 1 according to the first embodiment mainly includes an optical unit 10, a probe 30, and a control unit 50, and irradiates a subject S with a laser beam to detect the subject by optical interference. It measures the internal information of S.
  • the optical unit 10 includes a light source, an optical system, and a detector to which each method of general optical coherence tomography can be applied.
  • the optical unit 10 includes a light source 11 that periodically irradiates the subject S with laser light, a detector 23 that detects internal information of the subject S, and an optical path between the light source 11 and the detector 23 . It is equipped with an optical fiber and various optical components.
  • the light source 11 for example, an SS-OCT (Swept Source Optical Coherence Tomography) type laser light output device can be used. Assume that the subject S is, for example, a tooth.
  • Measurement light enters the probe 30 from the circulator 14 of the sample arm 13 .
  • the shutter 31 of the probe 30 is open, the measurement light passes through the collimator lens 32 and the two-dimensional scanning mechanism 33 and is condensed onto the subject S by the condenser lens 34. After being scattered and reflected there, the condenser lens 34 It returns to the circulator 14 of the sample arm 13 via the two-dimensional scanning mechanism 33 and the collimator lens 32 . The returned measurement light enters the detector 23 via the coupler 16 .
  • the reference light separated by the coupler 12 passes through the circulator 18 of the reference arm 17, passes through the collimator lens 19, and is condensed by the condensing lens 20 onto the reference mirror 21. to the circulator 18.
  • the returned reference light enters the detector 23 via the coupler 16 . That is, the coupler 16 multiplexes the measurement light that has been scattered and reflected by the object S and has returned, and the reference light that has been reflected by the reference mirror 21 . It can be detected as internal information of the subject S.
  • the polarization controller 15 of the sample arm 13 and the polarization controller 22 of the reference arm 17 are installed to return the polarized light generated inside the OCT apparatus 1 including the probe 30 to a less polarized state. .
  • the probe 30 includes a two-dimensional scanning mechanism 33 that two-dimensionally scans the laser light, guides the laser light from the optical unit 10 to the subject S, and guides the light reflected by the subject S to the optical unit 10.
  • the two-dimensional scanning mechanism 33 is composed of two galvanomirrors whose rotation axes are perpendicular to each other, a motor for each galvanomirror, and the like.
  • the control unit 50 includes an AD conversion circuit 51 , a DA conversion circuit 52 , a two-dimensional scanning mechanism control circuit 53 , a display device 54 and an OCT control device 100 .
  • the AD conversion circuit 51 converts the analog output signal of the detector 23 into a digital signal.
  • the AD conversion circuit 51 starts acquiring signals in synchronization with a trigger output from the laser output device, which is the light source 11, and the timing of the clock signal ck that is also output from the laser output device. , the analog output signal of the detector 23 is acquired and converted into a digital signal. This digital signal is input to the OCT control device 100 .
  • the DA conversion circuit 52 converts the digital output signal of the OCT control device 100 into an analog signal.
  • the DA conversion circuit 52 converts the digital signal of the OCT control device 100 into an analog signal in synchronization with a trigger output from the light source 11 . This analog signal is input to the two-dimensional scanning mechanism control circuit 53 .
  • the two-dimensional scanning mechanism control circuit 53 is a driver that controls the two-dimensional scanning mechanism 33 inside the probe 30 .
  • the two-dimensional scanning mechanism control circuit 53 generates a motor drive signal for driving or stopping the motor of the galvanomirror in synchronization with the output cycle of the laser light emitted from the light source 11 based on the analog output signal of the OCT control device 100. to output
  • the two-dimensional scanning mechanism control circuit 53 performs a process of rotating the rotation axis of one galvanomirror to change the angle of the mirror surface, and a process of rotating the rotation axis of the other galvanomirror to change the angle of the mirror surface. , at different times.
  • the display device 54 displays optical coherence tomographic images (hereinafter referred to as OCT images) generated by the OCT control device 100 .
  • the display device 54 is composed of, for example, a liquid crystal display (LCD) or the like.
  • An OCT control device (control device for the OCT device) 100 is a control device for the OCT device 1, and performs imaging by controlling the two-dimensional scanning mechanism 33 in synchronization with the laser light emitted from the light source 11. It controls the generation of an OCT image of the object S from data obtained by converting the detection signal of the detector 23 .
  • An OCT image or the like can be generated by a known method for generating an optical coherence tomographic image or the like. Note that an OCT image or the like may be generated using the method described in Patent Document 1, for example.
  • the OCT control device 100 includes signal processing means 110 , memory 120 and instruction receiving means 130 .
  • the signal processing means 110 acquires preview image data corresponding to a volume image with a predetermined roughness in one shot.
  • This volume image with a predetermined roughness is a cross-sectional image of a tomographic plane along the optical axis of the laser beam by measuring subject information in the direction along the optical axis of the laser beam at predetermined point intervals in two-dimensional scanning. are superimposed in the direction orthogonal to the fault plane.
  • This function of the signal processing means 110 is similar to the function of preview mode imaging of a conventional OCT apparatus.
  • the memory 120 stores preview image data for multiple times.
  • the memory 120 sequentially stores preview image data for a plurality of times, and when the storage capacity is exceeded, the memory 120 deletes the preview image data in order from the oldest.
  • the instruction receiving means 130 receives an instruction to generate image data that is more precise than the preview image data.
  • the precise image data is the measurement photographed image data corresponding to the volume image of the subject S that is more precise than the predetermined roughness.
  • the OCT apparatus 1 of the present embodiment does not perform measurement mode imaging, the data is suitable for storage like the data acquired in the measurement mode imaging of a conventional OCT apparatus. It is called image data.
  • the instruction receiving unit 130 determines that an instruction to generate image data more precise than the preview image data has been received when a shooting button (not shown) is clicked.
  • the signal processing means 110 Each time the signal processing means 110 acquires preview image data, the origin of the two-dimensional scanning is shifted by minute intervals smaller than the point interval so as to fill the point interval, and multiple times of preview image data are acquired.
  • the origin of two-dimensional scanning is also referred to as the scanning origin.
  • the signal processing means 110 generates measurement photographed image data by reconstructing preview image data for a plurality of times (for example, nine times) stored in the memory 120 by the time the instruction receiving means 130 receives an instruction. Thereby, the display device 54 displays the measurement photographed image (still image).
  • the method of shifting the scan origin can be done, for example, by a mechanical method or a software method.
  • a mechanical method is employed, and the signal processing means 110 instructs the two-dimensional scanning mechanism control circuit 53, which controls the two-dimensional scanning mechanism 33, each time preview image data is acquired.
  • the scanning origin (origin of two-dimensional scanning) is shifted.
  • the OCT control device 100 is composed of a computer equipped with, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk, and an input/output interface.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the control method of the OCT apparatus 1 includes a preview image data acquisition process, an origin movement process, a storage process, an instruction reception process, and a measurement image data generation process.
  • a preview image data acquisition step a cross-sectional image of a tomographic plane along the optical axis of the laser beam is obtained by measuring object information in the direction along the optical axis of the laser beam at predetermined point intervals in two-dimensional scanning.
  • the origin moving step is a step of shifting the origin of two-dimensional scanning so as to fill the point interval by a minute interval smaller than the point interval each time preview image data is acquired.
  • the storage step is a step of storing preview image data for multiple times in the memory 120 .
  • the instruction receiving step is a step of receiving an instruction to generate measurement photographed image data corresponding to a volume image of the subject S that is more precise than the predetermined roughness.
  • the measurement photographed image data generation step is a step of generating measurement photographed image data by reconstructing preview image data for a plurality of times stored in the memory 120 by the time the instruction is received.
  • the instruction receiving means 130 determines whether or not an instruction has been input (step S1). That is, the instruction receiving means 130 determines whether or not the shooting button has been clicked. If no instruction is input (step S1: No), the signal processing means 110 acquires preview image data corresponding to one shot (step S2), and stores the preview image data in the memory 120 (step S3). ). Then, the OCT apparatus 1 performs a process of shifting the scanning origin (origin of two-dimensional scanning) (step S4), and returns to step S1.
  • step S1 when the shooting button is clicked and an instruction is input (step S1: Yes), the signal processing means 110 reproduces the preview image data for multiple times stored in the memory 120 up to that point. Then, the measurement image data is generated (step S5), and the display device 54 displays the measurement image (step S6).
  • a line shown in FIG. 5A indicates a direction in which the laser beam is irradiated along the optical axis (A axis) of the condenser lens 34 in the probe 30 .
  • Data in the A-axis direction corresponds to data representing tomographic information (internal information) in the depth direction from the surface of the object S.
  • FIG. A line B shown in FIG. 5A is along the optical axis (B-axis direction) of the collimator lens 32 in the probe 30 .
  • the B line is set in the width direction of the subject S by the outward movement of one galvanomirror.
  • the tomographic image schematically shown in FIG. 5A is referred to as an A cross-sectional image.
  • the V-line shown in FIG. 5(b) extends in directions perpendicular to the A-axis and the B-axis.
  • the V-line is set in the depth direction of the subject S by the outward movement of the other galvanomirror.
  • FIG. 5B schematically shows that a 3D image can be formed by superimposing A-section images in a direction (V-axis direction) orthogonal to the plane.
  • the number of B-line points and the number of V-line points for one measurement mode shooting are 400 points each (see FIG. 4). ).
  • the number of B-line points and the number of V-line points for one preview mode shooting (one volume) in this embodiment is 1/3 of 400 points.
  • Schematic diagrams in the case of 134 points are shown in FIGS. 5(a) and 5(b).
  • the point interval of the B line in preview mode photography is approximately three times the point interval of B line in measurement mode photography.
  • the V-line point interval for preview mode imaging is approximately three times the point interval for V-line imaging in measurement mode imaging.
  • the OCT apparatus 1 shifts the scan origin by 1 ⁇ 3 of the point interval of the B line, or shifts the point interval of the V line each time (one volume) is captured in the preview mode. Shift by 1/3 and scan so as to fill the space between points.
  • This operation is hereinafter referred to as interlaced scanning.
  • the number of points set for each scan (one volume) of interlaced scanning is the same as the number of points set for conventional preview mode shooting, and the displayed image is displayed by conventional preview mode shooting. Similar to the image.
  • the number of points set is almost the same as the number of points set in the conventional measurement mode photography, which is the same as the image displayed in the conventional measurement mode photography. It is possible to display a detailed image of
  • the position of the scan origin changes, for example, as follows.
  • ⁇ B is the point spacing of the B line and ⁇ V is the point spacing of the V line.
  • the coordinates of the first origin are (0, 0)
  • the coordinates of the second origin are ( ⁇ B*1/3, 0)
  • the coordinates of the origin for the third time are ( ⁇ B*2/3, 0)
  • the coordinates of the origin for the fourth time are (0, ⁇ V*1/3)
  • the coordinates of the fifth origin are ( ⁇ B*1/3, ⁇ V*1/3)
  • the coordinates of the sixth origin are ( ⁇ B*2/3, ⁇ V*1/3)
  • the coordinates of the origin for the seventh time are (0, ⁇ V*2/3)
  • the coordinates of the eighth origin are ( ⁇ B*1/3, ⁇ V*2/3)
  • the coordinates of the ninth origin are ( ⁇ B*2/3, ⁇ V*2/3).
  • the coordinates of the origin of the 10th time are the same as the coordinates of the origin of the first time
  • FIGS. 6 and 7 the horizontal axis is the time axis
  • reference numeral 300 schematically shows the flow of processing when the OCT apparatus captures and displays a subject image. Hatching in FIGS. 6, 7, and FIG. 10, which will be described later, represents acquisition of image data used for reconstruction. Note that the length of processing on the time axis of each drawing may be exaggerated for clarity of explanation.
  • a conventional OCT apparatus acquires a low-resolution image by scanning at a coarse pitch when the main power is turned on (preview mode imaging: step 311).
  • the operator positions the probe held by himself/herself at the target site while viewing the preview captured image (rough OCT image) displayed on the screen of the display device.
  • the conventional OCT apparatus acquires a high-resolution image by scanning at a fine pitch (measurement mode imaging: step 312).
  • the operator brings the nozzle tip of the probe of the OCT apparatus into contact with the tooth, while the patient remains motionless for a few seconds until the measurement imaging is completed.
  • the time required for measurement photography is appropriately set, and here, the required time is assumed to be, for example, 6 seconds.
  • the conventional OCT apparatus reconstructs a high-resolution volume image using all the data acquired between time T11 and time T2 (step 320).
  • the conventional OCT apparatus displays the high-resolution metrology image (step 330).
  • FIG. 1 When the main power is turned on, the OCT apparatus 1 scans at coarse pitches to acquire low-resolution images (preview image data) (steps 313 and 314). These steps 313 and 314 correspond to preview mode imaging (step 311 in FIG. 6), but differ from step 311 in that the OCT apparatus 1 sequentially stores the preview image data in the memory 120 . Also, here, the memory 120 stores at least the most recent nine or more pieces of preview image data, and when the memory capacity is exceeded, the oldest images are deleted. The operator positions the probe held by himself/herself at the target site while viewing the preview image displayed on the screen of the display device.
  • the operator brings the tip of the nozzle of the probe into contact with the tooth while the patient does not move. Then, when the operator judges that a time (for example, 6 seconds) equivalent to the time required for conventional measurement photography has passed, the operator clicks the photography button at time T22, for example (step 420).
  • the time T21 is the time before the time T22 by the amount of time required to acquire the preview image data for a plurality of times (for example, nine times).
  • the OCT apparatus 1 reconstructs a high-resolution volume image using the multiple times of preview image data stored in the memory 120 by time T22 (step 320). Then, the display device 54 of the OCT apparatus 1 displays the high-resolution measurement image (step 330).
  • the first embodiment by devising preview mode photography, it is possible to obtain a detailed photographed image equivalent to conventional measurement mode photography. Further, according to the first embodiment, it is possible to perform photographing without distinguishing between preview mode photographing and measurement mode photographing as in the conventional art.
  • the horizontal axis in FIG. 8 is a time axis indicating time.
  • On the first line below the time on this time axis an example of the behavior of the operator or the patient is described in association with the time.
  • On the second line below the time on the time axis an example of the operation of the conventional OCT apparatus is described in association with the time.
  • On the third line below the time on the time axis an example of the operation of the OCT apparatus of the embodiment is described in association with the time.
  • a preview image data group 430 written above the time axis indicates multiple times of preview image data acquired and stored in the memory by the OCT apparatus of the embodiment within a predetermined period of time.
  • each rectangle connected in the time direction schematically indicates the preview image data.
  • the operator positions the probe at the target site and contacts the tip of the nozzle of the probe against the tooth, and speaks to the patient, for example, "Please do not move your body from now on.” . A few seconds pass before you say this word. It is assumed that the patient's body has stopped at time T26 after the operator finishes saying this word. After that, at time T27, the operator confirms that the patient's body has stopped. A few seconds pass before the patient's body is confirmed to be still. When using the conventional OCT apparatus, the operator confirms that the patient's body is stationary, and then clicks the imaging button at time T27 to start measurement mode imaging.
  • time T29 When time T29 is reached after a predetermined time has elapsed in the conventional OCT apparatus, acquisition of image data used for reconstruction in the conventional OCT apparatus ends, and conventional imaging ends. Then, at time T29, which is the imaging end time, the operator tells the patient that imaging has ended. If there is no body movement of the patient until this imaging end time, the conventional OCT apparatus reconstructs image data for one measurement mode imaging (one volume) performed from time T27 to time T29, and saves it. A suitable good image is obtained. On the other hand, if the patient moves during the period from time T28 to time T29 before the end of conventional imaging, the conventional OCT apparatus obtains an image that is not suitable for storage. In this case, it was necessary to retake the image.
  • the operator since measurement mode imaging is unnecessary, the operator does not click the imaging button at time T27 after confirming that the patient's body is stationary. After that, at time T29, which is the imaging end time, the operator clicks the imaging button and tells the patient that imaging has ended.
  • the preview image data group 430 includes nine images included in the section indicated by reference numeral 431, that is, the section from time T27 to time T29. A good image suitable for storage can be obtained by generating the measured image data using the preview image data.
  • the OCT apparatus 1 can detect the movement of the preview image data group 430 in the section indicated by reference numeral 432 before the section indicated by reference numeral 431.
  • a good image suitable for storage can be obtained by generating measurement photographed image data using nine pieces of included preview image data. In this case, there is no need to re-shoot.
  • the dots attached to rectangles in FIG. 8 schematically indicate that there is an influence of the patient's body movement or the like.
  • the example has the effect of reducing re-imaging even when the patient moves or the imaging probe moves. Further, even when blood, saliva, etc. oozes from the patient's tooth between time T28 and time T29, the example has the effect of reducing re-imaging compared to the comparative example.
  • the OCT apparatus according to the second embodiment comprises blur sensing means 200 .
  • the shake sensing means 200 generates a shake sensing signal that indicates the time change of the vibration of the probe 30 gripped by the operator.
  • the shake sensing means 200 is composed of a sensor built into the probe 30 and sensing a change in position.
  • the sensor that senses a positional change is, for example, an acceleration sensor, a gyro sensor, a displacement sensor, or a vibration sensor that converts a vibration into an electric signal.
  • the OCT control device 100B includes signal processing means 110, memory 120, instruction receiving means 130, and section identifying means 140.
  • the section identifying means 140 identifies a time section in which the waveform intensity of the shake detection signal does not continuously exceed a predetermined threshold.
  • the section specifying unit 140 automatically sets a time interval with little shake based on the waveform of the shake sensing signal.
  • the section identifying means 140 stores the blur sensing signal in the memory 120 and outputs the time section identified from the blur sensing signal to the signal processing means 110 .
  • the memory 120 stores the shake sensing signal in synchronization with the preview image data.
  • Signal processing means 110 selects preview image data for multiple times acquired within a predetermined time up to the time when an instruction is received by instruction receiving means 130 and stored in memory 120 within a time interval specified by interval specifying means 140 .
  • the obtained preview image data is used to generate measurement image data.
  • FIG. 10 shows a timing chart of processing when the OCT apparatus captures and displays a subject image and a blur detection signal.
  • the OCT apparatus 1 When the main power is turned on, the OCT apparatus 1 according to the second embodiment scans at a coarse pitch and acquires a low-resolution image (preview captured image data) (steps 315, 316, 317). At this time, the OCT apparatus 1 is different from the OCT apparatus according to the first embodiment in that the signal strength of the shake detection signal is associated with the preview captured image data and sequentially stored in the memory 120 . After completing positioning of the probe with reference to the preview photographed image, the operator brings the tip of the nozzle of the probe into contact with the tooth. Then, when the operator judges that a predetermined period of time (for example, 6 seconds) has passed, he clicks the shooting button at time T33, for example (step 420).
  • a predetermined period of time for example, 6 seconds
  • the amplitude of the signal strength of the shake detection signal is greater than the predetermined threshold in the section before time T31 and in the section from time T32 to time T33. Therefore, the data obtained in steps 315 and 317 are data that should not be used for image reconstruction.
  • the OCT apparatus 1 identifies the section from time T31 to time T32, for example, as a section with less blurring, based on the blur detection signal.
  • the OCT apparatus 1 acquires in step 316 and stores in the memory 120 a plurality of previews (for example, nine previews) in association with the shake sensing signals detected between time T31 and time T32.
  • a high-resolution volumetric image is reconstructed using the captured image data (step 320).
  • the display device 54 of the OCT apparatus 1 displays the high-resolution measurement image (step 330).
  • the OCT apparatus 1 normally generates the measurement image data by reconstructing a predetermined specified number (nine times) of preview image data for sections with little blur. .
  • the specified number of pieces of preview image data for nine times
  • reconstruction may be performed using all the data in the specified section (first modification). .
  • the image quality is worse than when the specified number (9 times) of preview image data is used, but an image with less blurring can be obtained.
  • reconstruction may be performed using all data in the specified section (second modification). ).
  • the OCT control device 100C of the OCT apparatus according to the third embodiment includes signal processing means 110, memory 120, instruction receiving means 130, automatically set section identifying means 140, and manually set section input means 150. I have.
  • the OCT apparatus according to the third embodiment is different from the OCT apparatus according to the second embodiment in that the interval input means 150 is provided and the display device 54 displays the waveform of the shake detection signal.
  • the OCT control device 100C according to the third embodiment can also display a measured captured image reflecting the less blurred section automatically set by the section identifying means 140 .
  • the interval input means 150 displays the waveform of the shake sensing signal on the display device 54 so that the operator can select a continuous time interval of the waveform of the shake sensing signal, and inputs the selected time interval to the operator. is.
  • the signal processing means 110 generates and corrects the measurement image data using the preview image data acquired during the time interval.
  • the operator confirms the waveform of the shake detection signal displayed on the display device 54, selects a section with less shake, and corrects the section automatically set by the section specifying means 140. can do.
  • An OCT controller 100D of an OCT apparatus according to the fourth embodiment includes signal processing means 110, memory 120, instruction receiving means 130, and interval input means 150.
  • the OCT control device 100D according to the fourth embodiment is different from the OCT control device 100C according to the third embodiment in that the less blurring section is not automatically set but manually set.
  • the signal processing means 110 receives a plurality of data acquired within a predetermined time and stored in the memory 120 until the instruction acceptance means 130 accepts the instruction.
  • the preview image data acquired within the time interval is used to generate the measurement photographed image data.
  • the operator can check the waveform of the shake detection signal displayed on the display device 54 and select and set the section with less shake by himself/herself.
  • the shake sensing means 200 of FIG. 9 is composed of a sensor that senses a change in position built in the probe 30, but in this embodiment, the OCT control device 100E can It has In other words, the blur sensing means 200E analyzes the OCT image by image processing instead of using an acceleration sensor or a gyro sensor, and based on the analysis result, senses a blur that indicates the temporal change in the vibration of the probe 30 held by the operator. A signal is generated and output to the section identifying means 140 .
  • the blur sensing means 200B calculates the distance from the upper edge of the A cross-sectional image to the upper surface of the subject in the cross-sectional image, and generates a blur sensing signal based on the change in the calculated distance over time.
  • the blur sensing means 200B detects the distance from the upper edge (position indicated by reference numeral 501) of the A cross-section image 500 shown in FIG. can be used.
  • FIG. 2 See FIG. 2 as appropriate.
  • the overall view of the OCT apparatus according to the sixth embodiment is the same as that of FIG. 1, and is therefore omitted. Also, the same components as those of the OCT control device 100 in FIG.
  • the OCT control device 100F includes a signal processing means 110, a memory 120, an instruction receiving means 130, and a manually set second interval input means 160.
  • the signal processing means 110 generates an on-face image for each piece of preview image data (one volume).
  • the on-face image is a two-dimensional image obtained by summing the data in the subject depth direction in the preview image data.
  • the second section input means 160 displays a plurality of on-face images on the display device 54 so that the operator can select a time section in which a plurality of on-face images are continuous, and inputs the selected time section to the operator. be.
  • the signal processing means 110 acquires and stores the time interval in the memory 120 within a predetermined time until the instruction acceptance means 130 accepts the instruction.
  • the preview image data acquired within the time interval is used to generate the measurement photographed image data.
  • the signal processing means 110 can synchronize the generation timing of the on-face image with the operation of the second interval input means 160, for example.
  • the signal processing means 110 generates the on-face image from the preview image data (volume data) stored in the memory 120 when the second interval input means 160 causes the display device 54 to display the on-face image.
  • the signal processing means 110 may generate an on-face image from the preview image data each time the preview image data is acquired, and store the on-face image in the memory 120 in association with the preview image data. By doing so, the second interval input means 160 can quickly display the on-face image on the display device 54 simply by reading the on-face image from the memory 120 .
  • FIG. 16 is a screen display example of the display device 54 of the OCT apparatus according to the sixth embodiment.
  • an interval input screen 600 is displayed on the screen of the display device 54, as shown in FIG.
  • the section input screen 600 includes a section selection area 601 and an on-face image display area 602 arranged below the section selection area 601 .
  • a plurality of rectangles arranged in a line corresponding to a plurality of time intervals are displayed in the section selection area 601 .
  • each rectangle connected in the screen width direction (horizontal) schematically indicates a time interval of one preview mode shooting.
  • the time section indicated by the rectangle on the right represents the time section after the time section indicated by the rectangle on the left.
  • on-face images 603 and 604 of the preview image data acquired in each time interval are displayed. Since the on-face image is a two-dimensional image obtained by summing the data in the depth direction of the three-dimensional image of the subject, if blood or the like bleeds onto the subject during shooting, the subject will naturally appear on the on-face image. Blood or the like that oozes out is drawn. Since the oozing blood or the like is displayed like a stain, the oozing of the blood or the like can be found by visually checking the on-face image.
  • the on-face image 603 represents a normal on-face image.
  • the on-face image 604 represents the on-face image when blood is oozing.
  • each rectangle in the section selection area 601 may be configured as a check box so that the operator can input a check mark using a mouse or the like.
  • each on-face image may be displayed as a thumbnail.
  • the operator clicks a thumbnail-displayed on-face image with a mouse or the like the clicked on-face image can be enlarged and displayed. This makes it easier for the operator to distinguish between the normal on-face image 603 without blemishes and the on-face image 604 with blemishes.
  • the on-face image will be distorted, so it is possible to check for blurring by visually checking the on-face image. Therefore, the operator can select a section in which normal on-face images without blurring or spots are continuously arranged.
  • the sixth embodiment can be modified so as to include shake sensing means as follows.
  • the OCT apparatus according to the sixth embodiment may further include blur detection means 200 and section identification means 140 shown in FIG.
  • the OCT apparatus according to the sixth embodiment may further include shake sensing means 200, section specifying means 140, and section input means 150 shown in FIG. (Modification 3)
  • the OCT apparatus according to the sixth embodiment may further include blur detection means 200 and section input means 150 shown in FIG. (Modification 4)
  • the OCT apparatus according to the sixth embodiment may further include blur detection means 200E and section identification means 140 shown in FIG. (Modification 5)
  • the blur sensing means 200 may be replaced with a blur sensing means 200E.
  • the present invention can also be realized by a program (OCT device control program) that causes hardware resources such as a CPU, memory, and hard disk provided in a computer to operate cooperatively as the OCT control device 100 .
  • This program may be distributed via a communication line, or may be distributed by being written in a recording medium such as a CD-ROM or flash memory.
  • the present invention is not limited to the above-described embodiments, and includes design changes and the like that do not deviate from the gist of the present invention.
  • a mechanical method is used to shift the scanning origin, but a software method may be used.
  • the signal processing means 110 acquires the mirror coordinates in the two-dimensional scanning mechanism 33, and each time the preview image data is acquired, by shifting the mirror coordinates at the time of starting acquisition of the data of the A section image, The scanning origin (origin of two-dimensional scanning) should be shifted.
  • the present invention is not limited to this, and a two-dimensional MEMS mirror can also be employed.
  • Elements of the two-dimensional MEMS mirror include, for example, a mirror that totally reflects light, a silicon layer in which a movable structure such as a plane coil for electromagnetic drive that generates electromagnetic force is formed, a ceramic base, a permanent magnet, It is formed in a three-layer structure, and static and dynamic tilt control in the X-axis and Y-axis directions is possible in proportion to the magnitude of the current applied to the coil.
  • OCT apparatus optical unit 11 light source 12 coupler 13 sample arm 14 circulator 15 polarization controller 16 coupler 17 reference arm 18 circulator 19 collimator lens 20 condenser lens 21 reference mirror 22 polarization controller 23 detector 30 probe 31 shutter 32 collimator lens 33 two-dimensional Scanning mechanism 34 Condensing lens 50 Control unit 51 AD conversion circuit 52 DA conversion circuit 53 Two-dimensional scanning mechanism control circuit 54 Display device 100, 100B, 100C, 100D, 100E, 100F OCT control device 110 Signal processing means 120 Memory 130 Instruction reception Means 140 Section specifying means 150 Section input means 160 Second section input means 200, 200E Blur detection means S Subject

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

OCT装置は、所定粗さのボリューム画像に相当するプレビュー画像データを1回の撮影で取得する信号処理手段(110)と、複数回分のプレビュー画像データを記憶するメモリ(120)と、被写体の所定粗さより精緻なボリューム画像に相当する計測撮影画像データを生成する指示を受け付ける指示受付手段(130)と、を備え、信号処理手段(110)は、プレビュー画像データを取得するたびに、2次元走査の原点を、ポイント間隔よりも小さな微小間隔ずつポイント間隔を埋めるようにずらし、複数回分のプレビュー画像データを取得し、指示を受け付けた時点までにメモリ(120)に記憶された複数回分のプレビュー画像データを再構成することで計測撮影画像データを生成する。

Description

OCT装置、その制御方法およびOCT装置制御プログラム
 本発明は、OCT装置、その制御方法およびOCT装置制御プログラムに係り、特に歯科用のOCT装置、その制御方法およびOCT装置制御プログラムに関する。
 従来、被写体にレーザ光を照射して光干渉により被写体の内部情報を測定する光干渉断層画像生成装置(Optical Coherence Tomography:OCT装置)が知られている(特許文献1参照)。特許文献1に記載されたOCT装置は、2つの撮影モードとして、計測指示で動作するモード(以下、計測モード撮影という)と、プレビュー指示で動作するモード(以下、プレビューモード撮影という)と、を備えている。
 計測モード撮影では、走査機構が所定ピッチで走査することでOCT装置は所定の解像度で被写体の光干渉断層画像(OCT画像)を取得し、表示装置がOCT画像の静止画を表示する。計測モード撮影では、被写体画像データが保存されることを前提としている。被写体が歯牙である場合、操作者は、OCT装置のプローブのノズル先端を歯牙に当接させて、計測撮影が終わるまで数秒間だけ患者には動かないようにしてもらう。
 一方、プレビューモード撮影では、被写体画像データが保存されることを前提としていないため、走査機構が粗いピッチで走査することでOCT装置は低解像度の画像を取得する。プレビューモード撮影では、OCT装置は、低解像度の画像を連続して取得することで、表示装置が、被写体の断層画像、オンファス画像や3D画像をリアルタイムの動画として高速に表示する。そのため、プレビューモード撮影は、計測モード撮影を行う前に、保存したい画像を得るための撮影箇所を位置決めするために用いられる場合がある。なお、オンファス(en-face)画像とは、被写体の3次元画像の深さ方向のデータを総和して求められた2次元画像である。オンファス画像は、単純な表面画像や正面画像とは異なって、被写体の外表面の情報だけではなく内部情報も利用して生成されている。
特許第5827024号公報
 従来のOCT装置では、計測モード撮影において、保存に適した良好な画像が得られる場合もあったが、保存に適さない画像が得られる場合もあった。例えば撮影中に、被写体が動いたり、または、撮影プローブが動いたりした場合、画像が歪むことで、保存に適さない画像が得られる。また、例えば撮影中に、血液や唾液等が被写体上に滲み出してしまった場合、レーザ光が被写体表面で吸収されたり、反射してしまったりすることで、保存に適さない画像が得られる。このように保存に適さない画像が得られた場合、再撮影を行う必要があった。そのため、OCT装置には改良の余地があった。
 本発明は、前記した事情に鑑みてなされたものであり、保存に適した良好な画像を得るための再撮影を低減できるOCT装置、その制御方法およびOCT装置制御プログラムを提供することを課題とする。
 前記課題を解決するために、本発明に係るOCT装置は、レーザ光を2次元走査する2次元走査機構を含むプローブから被写体にレーザ光を照射して光干渉により前記被写体の内部情報を測定するOCT装置であって、レーザ光の光軸に沿った方向の被写体情報を2次元走査の予め定められたポイント間隔で測定することでレーザ光の光軸に沿った断層面の断面画像を前記断層面に直交する方向に向かって重ねた所定粗さのボリューム画像に相当するプレビュー画像データを1回の撮影で取得する信号処理手段と、複数回分の前記プレビュー画像データを記憶するメモリと、前記被写体の前記所定粗さより精緻なボリューム画像に相当する計測撮影画像データを生成する指示を受け付ける指示受付手段と、を備え、前記信号処理手段は、前記プレビュー画像データを取得するたびに、前記2次元走査の原点を、前記ポイント間隔よりも小さな微小間隔ずつ前記ポイント間隔を埋めるようにずらし、複数回分の前記プレビュー画像データを取得し、前記指示を受け付けた時点までに前記メモリに記憶された複数回分の前記プレビュー画像データを再構成することで前記計測撮影画像データを生成することを特徴とする。
 また、前記課題を解決するために、本発明に係るOCT装置の制御方法は、レーザ光を2次元走査する2次元走査機構を含むプローブから被写体にレーザ光を照射して光干渉により前記被写体の内部情報を測定するOCT装置の制御方法であって、レーザ光の光軸に沿った方向の被写体情報を2次元走査の予め定められたポイント間隔で測定することでレーザ光の光軸に沿った断層面の断面画像を前記断層面に直交する方向に向かって重ねた所定粗さのボリューム画像に相当するプレビュー画像データを1回の撮影で取得する工程と、前記プレビュー画像データを取得するたびに、前記2次元走査の原点を、前記ポイント間隔よりも小さな微小間隔ずつ前記ポイント間隔を埋めるようにずらす工程と、複数回分の前記プレビュー画像データをメモリに記憶する工程と、前記被写体の前記所定粗さより精緻なボリューム画像に相当する計測撮影画像データを生成する指示を受け付ける工程と、前記指示を受け付けた時点までに前記メモリに記憶された複数回分の前記プレビュー画像データを再構成することで前記計測撮影画像データを生成する工程と、を含むことを特徴とする。
 なお、本発明は、コンピュータを、前記したOCT装置の制御装置として機能させるためのプログラムで実現することもできる。
 本発明によれば、プレビューモード撮影を行った後、改めて計測モード撮影を行う必要が無く、保存に適さない画像が得られることを低減でき、再撮影を低減できる。
本発明の第1実施形態に係るOCT装置を模式的に示す構成図である。 図1の制御ユニットの構成を模式的に示すブロック図である。 本発明の第1実施形態に係るOCT装置の画像生成表示処理の流れを示すフローチャートである。 本発明の第1実施形態に係る計測撮影画像データの生成処理の説明図であって、(a)はA断面画像、(b)はボリューム画像をそれぞれ示している。 本発明の第1実施形態に係るプレビュー画像データの生成処理の説明図であって、(a)はA断面画像、(b)はボリューム画像をそれぞれ示している。 従来技術に係る計測撮影画像が表示されるまでの撮影の流れを示す模式図である。 本発明の第1実施形態に係る計測撮影画像が表示されるまでの撮影の流れを示す模式図である。 本発明の第1実施形態に係るOCT装置の効果を示す模式図である。 本発明の第2実施形態に係るOCT装置の制御ユニットの構成を模式的に示すブロック図である。 本発明の第2実施形態に係る計測撮影画像が表示されるまでの撮影の流れを示す模式図である。 本発明の第3実施形態に係るOCT装置の制御ユニットの構成を模式的に示すブロック図である。 本発明の第4実施形態に係るOCT装置の制御ユニットの構成を模式的に示すブロック図である。 本発明の第5実施形態に係るOCT装置の制御ユニットの構成を模式的に示すブロック図である。 図13のブレ感知手段の説明図である。 本発明の第6実施形態に係るOCT装置の制御ユニットの構成を模式的に示すブロック図である。 図15のOCT装置の画面表示例である。
 本発明に係るOCT装置を実施するための形態について図面を参照して詳細に説明する。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。
(第1実施形態)
 図1に示すように、第1実施形態に係るOCT装置1は、光学ユニット10と、プローブ30と、制御ユニット50と、を主に備え、被写体Sにレーザ光を照射して光干渉により被写体Sの内部情報を測定するものである。
 光学ユニット10は、一般的な光コヒーレンストモグラフィの各方式が適用可能な光源、光学系、検出部を備えている。光学ユニット10は、被写体Sにレーザ光を周期的に照射する光源11と、被写体Sの内部情報を検出するディテクタ(検出器)23と、光源11とディテクタ23との間の光路中に設けられた光ファイバや各種光学部品等を備えている。光源11としては、例えばSS-OCT(Swept Source Optical Coherence Tomography)方式のレーザ光出力装置を用いることができる。被写体Sは例えば歯牙であるものとする。
 ここで、光学ユニット10の概略を説明する。光源11から射出された光は、光分割手段であるカップラ12により、計測光と参照光とに分けられる。計測光は、サンプルアーム13のサーキュレータ14からプローブ30に入射する。この計測光は、プローブ30のシャッタ31が開状態において、コリメータレンズ32、2次元走査機構33を経て集光レンズ34によって被写体Sに集光され、そこで散乱、反射した後に再び集光レンズ34、2次元走査機構33、コリメータレンズ32を経てサンプルアーム13のサーキュレータ14に戻る。戻ってきた計測光はカップラ16を介してディテクタ23に入力する。
 一方、カップラ12により分離された参照光は、レファレンスアーム17のサーキュレータ18からコリメータレンズ19を経て集光レンズ20によってレファレンスミラー21に集光され、そこで反射した後に再び集光レンズ20、コリメータレンズ19を経てサーキュレータ18に戻る。戻ってきた参照光はカップラ16を介してディテクタ23に入力する。つまり、カップラ16が、被写体Sで散乱、反射して戻ってきた計測光と、レファレンスミラー21で反射した参照光とを合波するので、合波により干渉した光(干渉光)をディテクタ23が被写体Sの内部情報として検出することができる。なお、サンプルアーム13の偏光コントローラ15、および、レファレンスアーム17の偏光コントローラ22は、それぞれ、プローブ30を含むOCT装置1内部に生じた偏光を、より偏光の少ない状態に戻すために設置されている。
 プローブ30は、レーザ光を2次元走査する2次元走査機構33を含み、光学ユニット10からのレーザ光を被写体Sに導くと共に、被写体Sで反射した光を光学ユニット10に導くものである。本実施形態では、2次元走査機構33は、回転軸が互いに直交した2つのガルバノミラーや、各ガルバノミラーのモータ等で構成されている。
 制御ユニット50は、AD変換回路51と、DA変換回路52と、2次元走査機構制御回路53と、表示装置54と、OCT制御装置100とを備える。
 AD変換回路51は、ディテクタ23のアナログ出力信号をデジタル信号に変換するものである。本実施形態では、AD変換回路51は、光源11であるレーザ出力装置から出力されるトリガ(trigger)に同期して信号の収得を開始し、同じくレーザ出力装置から出力されるクロック信号ckのタイミングに合わせて、ディテクタ23のアナログ出力信号を収得し、デジタル信号に変換する。このデジタル信号は、OCT制御装置100に入力する。
 DA変換回路52は、OCT制御装置100のデジタル出力信号をアナログ信号に変換するものである。本実施形態では、DA変換回路52は、光源11から出力されるトリガ(trigger)に同期して、OCT制御装置100のデジタル信号をアナログ信号に変換する。このアナログ信号は、2次元走査機構制御回路53に入力する。
 2次元走査機構制御回路53は、プローブ30内の2次元走査機構33を制御するドライバである。2次元走査機構制御回路53は、OCT制御装置100のアナログ出力信号に基づいて、光源11から出照されるレーザ光の出力周期に同期して、ガルバノミラーのモータを駆動または停止させるモータ駆動信号を出力する。2次元走査機構制御回路53は、一方のガルバノミラーの回転軸を回転させてミラー面の角度を変更する処理と、他方のガルバノミラーの回転軸を回転させてミラー面の角度を変更する処理と、を異なるタイミングで行う。
 表示装置54は、OCT制御装置100によって生成される光干渉断層画像(以下、OCT画像という)を表示するものである。表示装置54は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)等から構成される。
 OCT制御装置(OCT装置の制御装置)100は、OCT装置1の制御装置であって、光源11から出射されるレーザ光に同期して2次元走査機構33を制御することで撮影を行うと共に、ディテクタ23の検出信号を変換したデータから被写体SのOCT画像を生成する制御を行うものである。OCT画像等は、公知の光干渉断層画像等の生成方法で生成することができる。なお、OCT画像等を例えば特許文献1に記載された手法を用いて生成するようにしてもよい。
 以下、OCT制御装置100を中心にOCT装置1の構成について更に詳細に図2を参照して説明する。OCT制御装置100は、信号処理手段110と、メモリ120と、指示受付手段130と、を備えている。
 信号処理手段110は、所定粗さのボリューム画像に相当するプレビュー画像データを1回の撮影で取得する。この所定粗さのボリューム画像は、レーザ光の光軸に沿った方向の被写体情報を2次元走査の予め定められたポイント間隔で測定することでレーザ光の光軸に沿った断層面の断面画像を断層面に直交する方向に向かって重ねたものである。信号処理手段110のこの機能は、従来のOCT装置のプレビューモード撮影の機能と同様のものである。
 メモリ120は、複数回分のプレビュー画像データを記憶するものである。メモリ120は、複数回分のプレビュー画像データを順番に記憶し、記憶容量を超えた場合、古いプレビュー画像データから順番に消去する。
 指示受付手段130は、プレビュー画像データよりも精緻な画像データを生成する指示を受け付けるものである。ここで、精緻な画像データは、被写体Sの所定粗さより精緻なボリューム画像に相当する計測撮影画像データである。なお、本実施形態のOCT装置1は、計測モード撮影をしないが、従来のOCT装置の計測モード撮影で取得されるデータのように保存に適したデータとなるので、精緻な画像データを計測撮影画像データと呼称する。
 指示受付手段130は、図示しない撮影ボタンがクリックされたときに、プレビュー画像データよりも精緻な画像データを生成する指示を受け付けたと判定する。
 信号処理手段110は、プレビュー画像データを取得するたびに、2次元走査の原点を、ポイント間隔よりも小さな微小間隔ずつポイント間隔を埋めるようにずらし、複数回分のプレビュー画像データを取得する。以下では、2次元走査の原点をスキャン原点ともいう。信号処理手段110は、指示受付手段130によって指示を受け付けた時点までにメモリ120に記憶された複数回分(例えば9回分)のプレビュー画像データを再構成することで計測撮影画像データを生成する。これにより、表示装置54は、計測撮影画像(静止画)を表示する。
 スキャン原点をずらす方法は、例えば機械的な方法やソフトウェア的な方法によって行うことができる。本実施形態では、機械的な方法を採用し、信号処理手段110は、プレビュー画像データを取得するたびに、2次元走査機構33を制御する2次元走査機構制御回路53に対して、2次元走査機構33における走査開始位置の原点をずらすための信号を出力することで、スキャン原点(2次元走査の原点)をずらすこととする。
 OCT制御装置100は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク、入出力インタフェースを備えたコンピュータで構成される。
 次に、OCT制御装置100を中心に、OCT装置1による制御方法について説明する。OCT装置1の制御方法は、プレビュー画像データ取得工程と、原点移動工程と、記憶工程と、指示受付工程と、計測撮影画像データ生成工程と、を含む。
 プレビュー画像データ取得工程は、レーザ光の光軸に沿った方向の被写体情報を2次元走査の予め定められたポイント間隔で測定することでレーザ光の光軸に沿った断層面の断面画像を断層面に直交する方向に向かって重ねた所定粗さのボリューム画像に相当するプレビュー画像データを1回の撮影で取得する工程である。
 原点移動工程は、プレビュー画像データを取得するたびに、2次元走査の原点を、ポイント間隔よりも小さな微小間隔ずつポイント間隔を埋めるようにずらす工程である。
 記憶工程は、複数回分のプレビュー画像データをメモリ120に記憶する工程である。
 指示受付工程は、被写体Sの所定粗さより精緻なボリューム画像に相当する計測撮影画像データを生成する指示を受け付ける工程である。
 計測撮影画像データ生成工程は、指示を受け付けた時点までにメモリ120に記憶された複数回分のプレビュー画像データを再構成することで計測撮影画像データを生成する工程である。
 次に、OCT装置の画像生成表示処理の流れについて図3を参照(適宜図2参照)して説明する。まず、指示受付手段130は、指示が入力されたか否かを判別する(ステップS1)。すなわち、指示受付手段130は、撮影ボタンがクリックされたか否かを判別する。指示が入力されていない場合(ステップS1:No)、信号処理手段110は、1回分の撮影に相当するプレビュー画像データを取得し(ステップS2)、プレビュー画像データをメモリ120に記憶する(ステップS3)。そして、OCT装置1は、スキャン原点(2次元走査の原点)をずらす処理を行い(ステップS4)、ステップS1に戻る。一方、前記ステップS1において、撮影ボタンがクリックされて、指示が入力された場合(ステップS1:Yes)、信号処理手段110は、それまでにメモリ120に記憶された複数回分のプレビュー画像データを再構成して計測撮影画像データを生成し(ステップS5)、表示装置54が計測撮影画像を表示する(ステップS6)。
 次に、OCT装置が生成するプレビュー画像データと計測撮影画像データとの具体例について図5を参照(適宜図4および図2参照)して説明する。図5(a)に示すAラインは、プローブ30において集光レンズ34の光軸(A軸)に沿ってレーザ光が照射される方向を指している。A軸方向のデータ(以下、Aラインデータという)は、被写体Sの表面から深さ方向の断層情報(内部情報)を示すデータに相当する。図5(a)に示すBラインは、プローブ30においてコリメータレンズ32の光軸(B軸方向)に沿っている。Bラインは、一方のガルバノミラーの往路動作によって被写体Sの幅方向に設定される。以下では、図5(a)に模式的に示す断層画像のことをA断面画像と呼称する。図5(b)に示すVラインは、A軸およびB軸にそれぞれ直交する方向に沿っている。Vラインは、他方のガルバノミラーの往路動作によって被写体Sの奥行方向に設定される。図5(b)は、A断面画像を、その面に直交する方向(V軸方向)に重ね合わせると、3D画像を形成できることを模式的に示している。
 一方、特許文献1に記載さている例(比較例)では、計測モード撮影1回(1ボリューム)分のBラインのポイント数と、Vラインのポイント数は、それぞれ400ポイントである(図4参照)。
(比較例:従来の計測モード撮影の条件)
  Aライン:1024点
  Bライン:400ポイント
  Vライン:400ポイント
 上記の比較例の条件の場合から逆算して、本実施形態におけるプレビューモード撮影1回(1ボリューム)分のBラインのポイント数と、Vラインのポイント数を、400ポイントの1/3である134ポイントとした場合の模式図が図5(a)および図5(b)になっている。
(実施例:プレビューモード撮影の条件)
  Aライン:1024点
  Bライン:134ポイント(計測モード撮影の約1/3)
  Vライン:134ポイント(計測モード撮影の約1/3)
 すなわち、実施例では、プレビューモード撮影のBラインのポイント間隔は、計測モード撮影のBラインのポイント間隔の約3倍である。また、実施例では、プレビューモード撮影のVラインのポイント間隔は、計測モード撮影のVラインのポイント間隔の約3倍である。
 この場合、本実施形態では、OCT装置1は、プレビューモード撮影1回(1ボリューム)毎に、スキャン原点を、Bラインのポイント間隔の1/3ずつずらすか、または、Vラインのポイント間隔の1/3ずつずらし、ポイント間隔の間を埋めるようにスキャンをする。この動作を以下では、インターレーススキャンと呼称する。インターレーススキャンの1回(1ボリューム)毎のスキャンにおいて、設定されるポイント数は従来のプレビューモード撮影で設定されるポイント数と同じであり、表示される画像は従来のプレビューモード撮影により表示される画像と同様である。しかし、インターレーススキャンでは、9回分の撮影データを合算すると、従来の計測モード撮影で設定されるポイント数とほぼ同じポイント数が設定されたこととなり、従来の計測モード撮影により表示される画像と同様の精緻な画像が表示可能となる。
 具体的には、スキャン原点の位置は、例えば次のように変遷する。ここで、ΔBは、Bラインのポイントの間隔であり、ΔVは、Vラインのポイントの間隔である。
 1回目の原点の座標は、(0,0)であり、
 2回目の原点の座標は、(ΔB*1/3,0)であり、
 3回目の原点の座標は、(ΔB*2/3,0)であり、
 4回目の原点の座標は、(0,ΔV*1/3)であり、
 5回目の原点の座標は、(ΔB*1/3,ΔV*1/3)であり、
 6回目の原点の座標は、(ΔB*2/3,ΔV*1/3)であり、
 7回目の原点の座標は、(0,ΔV*2/3)であり、
 8回目の原点の座標は、(ΔB*1/3,ΔV*2/3)であり、
 9回目の原点の座標は、(ΔB*2/3,ΔV*2/3)である。
10回目の原点の座標は、は、1回目の原点の座標と同じである。
 次に、OCT装置の計測撮影画像が表示されるまでの撮影の流れについて図6および図7を参照(適宜図2参照)して説明する。図6、図7、および後記する図10において横軸は時間軸であり、符号300は、OCT装置が被写体画像の撮影および表示を行うときの処理の流れを模式的に示している。また、図6、図7、および後記する図10に付したハッチングは、再構成に利用する画像データの取得を表している。なお、各図面の時間軸上の処理の長さは、説明を明確にするために誇張していることがある。
 はじめに比較例として従来のOCT装置の動作説明を行う。従来のOCT装置は、主電源を入れると、粗いピッチで走査して低解像度の画像を取得する(プレビューモード撮影:ステップ311)。操作者は、表示装置の画面に表示されるプレビュー撮影画像(OCTの粗い画像)を見ながら、自ら把持するプローブを目的の部位に位置決めする。そして位置決めが完了したら、操作者は、例えば時刻T11に撮影ボタンをクリックする(ステップ410)。これにより、従来のOCT装置は、細かいピッチで走査して高解像度の画像を取得する(計測モード撮影:ステップ312)。計測モード撮影中、操作者はOCT装置のプローブのノズル先端を歯牙に当接させ、一方、患者は計測撮影が終わるまで数秒間だけ動かないように我慢する。計測撮影の所要時間は適宜設定されており、ここでは、その所要時間は例えば6秒間であるものとする。時刻T11から例えば6秒経過した時刻T2になると、従来のOCT装置は、時刻T11から時刻T2までの間に取得したすべてのデータを用いて高解像度のボリューム画像を再構成する(ステップ320)。そして、従来のOCT装置は、高解像度の計測撮影画像を表示する(ステップ330)。
 次に実施例1としてOCT装置1の動作説明を行う。OCT装置1は、主電源を入れると、粗いピッチで走査して低解像度の画像(プレビュー撮影画像データ)を取得する(ステップ313,314)。これらステップ313,314は、プレビューモード撮影(図6のステップ311)に相当するが、OCT装置1は、プレビュー撮影画像データを順次メモリ120に記憶する点がステップ311とは相違している。また、ここでは、メモリ120は、少なくとも直近の9回分以上のプレビュー撮影画像データを記憶し、記憶容量を超えた場合、古い画像から消去していく。操作者は、表示装置の画面に表示されるプレビュー撮影画像を見ながら、自ら把持するプローブを目的の部位に位置決めする。そして位置決めが完了したら、操作者は、プローブのノズル先端を歯牙に当接させ、一方、患者は動かないように我慢する。そして、操作者は、従来の計測撮影の所要時間と同程度の時間(例えば6秒間)が経過したと判断したら、例えば時刻T22に撮影ボタンをクリックする(ステップ420)。なお、時刻T21は、時刻T22から、複数回分(例えば9回分)のプレビュー撮影画像データの取得に必要な時間だけ遡った時刻である。そして、OCT装置1は、時刻T22までにメモリ120に記憶された複数回分のプレビュー撮影画像データを用いて高解像度のボリューム画像を再構成する(ステップ320)。そして、OCT装置1の表示装置54は、高解像度の計測撮影画像を表示する(ステップ330)。
 実施例1によれば、プレビューモード撮影を工夫することで従来の計測モード撮影と同等の詳細な撮影画像を得ることができる。また、実施例1によれば、従来のようなプレビューモード撮影と計測モード撮影といった区別のない撮影を行うことができる。
 次に、実施例のOCT装置が、比較例である従来のOCT装置よりも有利な効果を奏する一例について図8を参照して説明する。図8の横軸は時刻を示す時間軸である。この時間軸の時刻の下の1行目には、操作者や患者の行動の一例が時刻と関連付けて記載されている。時間軸の時刻の下の2行目には、従来のOCT装置の操作の一例が時刻と関連付けて記載されている。時間軸の時刻の下の3行目には、実施例のOCT装置の操作の一例が時刻と関連付けて記載されている。また、時間軸の上方に記載されたプレビュー画像データ群430は、実施例のOCT装置が、所定時間内に取得してメモリに記憶した複数回分のプレビュー画像データを示している。ここでは、時間方向に連結された矩形の1つ1つが、プレビュー画像データを模式的に示している。
 まず、操作者や患者の行動の一例について説明する。
 時刻T25のときに、操作者がプローブを目的の部位に位置決めしてプローブのノズル先端を歯牙に当接させながら、患者に例えば「これから身体を動かさないでじっとしていて下さい」と声をかける。この一言を発するのに数秒間が経過する。操作者がこの一言を言い終わって、時刻T26のときに、患者の身体が静止したものとする。その後、時刻T27のときに、操作者は、患者の身体が静止したことを確認したものとする。患者の身体が静止したことを確認するまでに数秒間が経過する。
 従来のOCT装置を使用する場合、操作者は、患者の身体が静止したことを確認した後、時刻T27のときに、撮影ボタンをクリックすることにより、計測モード撮影が開始される。
 そして、従来のOCT装置において予め決まっている所定時間が経過して時刻T29になると、従来のOCT装置において再構成に利用する画像データの取得が終了し、従来の撮影が終了する。そして、撮影終了時刻である時刻T29のときに、操作者は患者に「撮影が終了しました」と言う。この撮影終了時刻まで、患者の体動がなければ、従来のOCT装置では、時刻T27から時刻T29までに行った計測モード撮影1回(1ボリューム)分の画像データを再構成して、保存に適した良好な画像が得られる。一方、従来の撮影終了前の時刻T28から時刻T29までの間に、患者が体動すると、従来のOCT装置では、保存に適さない画像が得られる。この場合、再撮影を行う必要があった。
 一方、実施例では、計測モード撮影が不要なので、操作者は、患者の身体が静止したことを確認した後、時刻T27のときに、撮影ボタンをクリックしない。
 その後、撮影終了時刻である時刻T29のときに、操作者は、撮影ボタンをクリックして、患者に「撮影が終了しました」と言う。OCT装置1では、この撮影終了時刻まで、患者の体動がなければ、プレビュー画像データ群430のうち、例えば、符号431で示す区間、つまり、時刻T27から時刻T29までの区間に含まれる9個のプレビュー画像データを使用して計測撮影画像データを生成することで、保存に適した良好な画像が得られる。一方、時刻T28から時刻T29までの間に、患者の体動があったとしても、OCT装置1では、プレビュー画像データ群430のうち、符号431で示す区間よりも前の符号432で示す区間に含まれる9個のプレビュー画像データを使用して計測撮影画像データを生成することで、保存に適した良好な画像が得られる。この場合、再撮影を行う必要がない。なお、図8に矩形に付したドットは、患者の体動等の影響があることを模式的に示している。
 要するに、比較例と実施例を同じ条件で比較すると、患者の体動があったり、または、撮影プローブが動いたりした場合でも、実施例は再撮影を低減する効果を奏する。また、時刻T28から時刻T29までの間に、患者の歯牙において血液や唾液等が滲み出てきた場合であっても、実施例は、比較例と比べて再撮影を低減する効果を奏する。
(第2実施形態)
 次に、第2実施形態に係るOCT装置についてOCT制御装置を中心に図9を参照して説明する。なお、第2実施形態に係るOCT装置の全体図は図1と同じなので省略する。また、図2のOCT制御装置100と同じ構成には同じ符号を付して説明を省略する。第2実施形態に係るOCT装置は、ブレ感知手段200を備えている。ブレ感知手段200は、操作者によって把持されたプローブ30の振動の時間変化を示すブレ感知信号を生成するものである。本実施形態では、ブレ感知手段200は、プローブ30に内蔵された、位置変化を感知するセンサで構成される。ここで、位置変化を感知するセンサは、例えば加速度センサ、ジャイロセンサ、変位センサ、振動を感知すると電気信号に変換する振動センサ等のセンサである。
 第2実施形態に係るOCT制御装置100Bは、信号処理手段110と、メモリ120と、指示受付手段130と、区間特定手段140と、を備えている。
 区間特定手段140は、ブレ感知信号の波形の強度が予め定められた閾値を連続的に超えない時間区間を特定するものである。区間特定手段140は、ブレ感知手段200によって生成されたブレ感知信号が入力されると、ブレ感知信号の波形を基にブレの少ない時間区間を自動的に設定する。区間特定手段140は、ブレ感知信号をメモリ120に記憶させると共に、ブレ感知信号から特定した時間区間を信号処理手段110に出力する。メモリ120は、プレビュー画像データに同期させてブレ感知信号を記憶する。
 信号処理手段110は、指示受付手段130によって指示を受け付けた時点までの所定時間内に取得されメモリ120に記憶された複数回分のプレビュー画像データのうち区間特定手段140によって特定された時間区間内に取得したプレビュー画像データを用いて計測撮影画像データを生成する。
 次に、第2実施形態に係るOCT装置の計測撮影画像が表示されるまでの撮影の流れについて図10を参照して説明する。なお、図6および図7と同様の構成には同様の符号を付し、同様の説明を省略する。図10では、横軸が時間軸を示し、縦軸が信号強度を示している。そして、図10は、OCT装置が被写体画像の撮影および表示を行うときの処理と、ブレ感知信号とのタイミングチャートを示している。
 第2実施形態に係るOCT装置1は、主電源を入れると、粗いピッチで走査して低解像度の画像(プレビュー撮影画像データ)を取得する(ステップ315,316,317)。このとき、OCT装置1は、ブレ感知信号の信号強度をプレビュー撮影画像データと対応付けて順次メモリ120に記憶する点が第1実施形態に係るOCT装置とは相違している。操作者は、プレビュー撮影画像を参考にしてプロープの位置決めが完了したら、プローブのノズル先端を歯牙に当接させる。そして、操作者は、所定時間(例えば6秒間)が経過したと判断したら、例えば時刻T33に撮影ボタンをクリックする(ステップ420)。
 なお、図10において時刻T31よりも前の区間や時刻T32から時刻T33までの区間では、ブレ感知信号の信号強度の振幅が所定の閾値よりも大きくなっている。そのため、ステップ315,317にて取得されたデータは、画像再構成に利用すべきではないデータとなっている。
 第2実施形態に係るOCT装置1は、ブレ感知信号によって、例えば時刻T31から時刻T32までの区間がブレの少ない区間であると特定する。この場合、OCT装置1は、ステップ316にて取得されて、時刻T31から時刻T32までの間に検知されたブレ感知信号と対応付けてメモリ120に記憶された複数回分(例えば9回分)のプレビュー撮影画像データを用いて高解像度のボリューム画像を再構成する(ステップ320)。そして、OCT装置1の表示装置54は、高解像度の計測撮影画像を表示する(ステップ330)。
 本実施形態によれば、ブレの少ない良好な画像を得ることができる。また、第2実施形態を種々に変形することができる。上記の例では、第2実施形態に係るOCT装置1は、通常、ブレの少ない区間について予め定められた規定数(9回分)のプレビュー画像データを再構成することで計測撮影画像データを生成する。ただし、ブレの少ない区間に、毎回のように規定数(9回分)のプレビュー画像データが得られるとは限らない。そこで、ブレの少ない区間のプレビュー画像データの数が規定数(9回分)に満たない場合、その特定された区間内の全データを用いて再構成するようにしてもよい(第1変形例)。この場合、規定数(9回分)のプレビュー画像データを用いた場合に比べて画質が悪くなるが、ブレの少ない画像を得ることができる。
 また、ブレの少ない区間のプレビュー画像データの数が規定数(9回分)を超えていた場合、その特定された区間内の全データを用いて再構成するようにしてもよい(第2変形例)。このように通常撮影の場合よりも多い枚数のデータを再構成することで、ブレが少なく、かつ、高画質の画像を得ることができる。
(第3実施形態)
 次に、第3実施形態に係るOCT装置についてOCT制御装置を中心に図11を参照して説明する。第3実施形態に係るOCT装置のOCT制御装置100Cは、信号処理手段110と、メモリ120と、指示受付手段130と、自動設定の区間特定手段140と、手動設定の区間入力手段150と、を備えている。第3実施形態に係るOCT装置では、区間入力手段150を備え、表示装置54が、ブレ感知信号の波形を表示する点が第2実施形態に係るOCT装置とは相違する。つまり、第3実施形態に係るOCT制御装置100Cは、区間特定手段140で自動的に設定されたブレの少ない区間を反映した計測撮影画像を表示することもできる。
 区間入力手段150は、ブレ感知信号の波形の連続的な時間区間を操作者が選択できるようにブレ感知信号の波形を表示装置54に表示させて操作者に選択された時間区間を入力するものである。信号処理手段110は、区間入力手段150によって操作者に選択された時間区間が入力された場合、当該時間区間内に取得したプレビュー画像データを用いて計測撮影画像データを生成修正する。
 本実施形態によれば、操作者は、表示装置54に表示されたブレ感知信号の波形を確認して、自らブレの少ない区間を選んで、区間特定手段140で自動設定されていた区間を修正することができる。
(第4実施形態)
 次に、第4実施形態に係るOCT装置についてOCT制御装置を中心に図12を参照して説明する。第4実施形態に係るOCT装置のOCT制御装置100Dは、信号処理手段110と、メモリ120と、指示受付手段130と、区間入力手段150と、を備えている。第4実施形態に係るOCT制御装置100Dは、ブレの少ない区間を自動で設定することはせずに手動で設定する点が、第3実施形態に係るOCT制御装置100Cとは相違している。
 信号処理手段110は、区間入力手段150によって操作者に選択された時間区間が入力された場合、指示受付手段130によって指示を受け付けた時点までの所定時間内に取得されメモリ120に記憶された複数回分のプレビュー画像データのうち当該時間区間内に取得したプレビュー画像データを用いて計測撮影画像データを生成する。
 本実施形態によれば、操作者は、表示装置54に表示されたブレ感知信号の波形を確認して、自らブレの少ない区間を選んで設定することができる。
(第5実施形態)
 次に、第5実施形態に係るOCT装置についてOCT制御装置を中心に図13を参照(適宜図9参照)して説明する。前記した第2実施形態では図9のブレ感知手段200がプローブ30に内蔵された位置変化を感知するセンサで構成されるものとしたが、本実施形態では、OCT制御装置100Eがブレ感知手段200Eを備えている。つまり、ブレ感知手段200Eは、加速度センサやジャイロセンサではなく、画像処理によってOCT画像を解析して、その解析結果に基づいて、操作者によって把持されたプローブ30の振動の時間変化を示すブレ感知信号を生成して区間特定手段140に出力する。
 ブレ感知手段200Bは、A断面画像の上縁から、当該断面画像中の被写体上面までの距離を算出し、算出された距離の時間変化によってブレ感知信号を生成する。具体的には、前記したプレビューモード撮影の条件(Aライン:1024点、Bライン:134ポイント、Vライン:134ポイント)であれば、Bラインの座標値(B)およびVラインの座標値(V)の中央値は67である。したがって、ブレ感知手段200Bは、例えばプレビューモード撮影1回(1ボリューム)の中央座標(B,V)=(67,67)におけるA断面画像を用いてもよい。図14は1ボリュームの中央座標(B,V)=(67,67)におけるA断面画像の一例を示す図である。この場合、ブレ感知手段200Bは、図14に示すA断面画像500の上縁(符号501で示す位置)から被写体上面(符号502で示す位置)までの距離(図14において両矢印で示す距離)を使用することができる。また、その1ボリュームの中央座標(B,V)=(67,67)という一箇所だけではなく、その点を中心としてBラインの近傍座標値やBラインの近傍座標値におけるそれぞれの距離を平均した平均値を用いてもよい。その場合には、計測撮影画像データがノイズ等の影響を受けづらくなる効果も奏するので好ましい。
(第6実施形態)
 次に、第6実施形態として、患者の歯牙において血液等が滲み出していない区間のプレビュー画像を用いて保存に適した良好な画像を得るOCT装置についてOCT制御装置を中心に図15を参照(適宜図2参照)して説明する。なお、第6実施形態に係るOCT装置の全体図は図1と同じなので省略する。また、図2のOCT制御装置100と同じ構成には同じ符号を付して説明を省略する。
 第6実施形態に係るOCT制御装置100Fは、信号処理手段110と、メモリ120と、指示受付手段130と、手動設定の第2区間入力手段160と、を備えている。
 本実施形態では、信号処理手段110は、プレビュー画像データ(1ボリューム)ごとにオンファス画像をそれぞれ生成する。ここで、オンファス画像は、プレビュー画像データにおける被写体深さ方向のデータを総和して求めた2次元画像である。第2区間入力手段160は、複数のオンファス画像が連続する時間区間を操作者が選択できるように複数のオンファス画像を表示装置54に表示させて操作者に選択された時間区間を入力するものである。信号処理手段110は、第2区間入力手段160によって操作者に選択された時間区間が入力された場合、指示受付手段130によって指示を受け付けた時点までの所定時間内に取得されメモリ120に記憶された複数回分のプレビュー画像データのうち当該時間区間内に取得したプレビュー画像データを用いて計測撮影画像データを生成する。
 ここで、信号処理手段110は、オンファス画像の生成タイミングを、例えば第2区間入力手段160の動作に連動させることができる。この場合、信号処理手段110は、第2区間入力手段160によってオンファス画像を表示装置54に表示させるときに、メモリ120に記憶されたプレビュー画像データ(ボリュームデータ)から当該オンファス画像を生成する。
 信号処理手段110は、プレビュー画像データを取得するたびに、プレビュー画像データからオンファス画像を生成し、オンファス画像をプレビュー画像データと対応付けてメモリ120に記憶するようにしてもよい。このようにすることで、第2区間入力手段160は、メモリ120からオンファス画像を読み出すだけで、当該オンファス画像を迅速に表示装置54に表示させることができる。
 次に、第2区間入力手段160が複数のオンファス画像を表示装置54に表示させる具体例について図16を参照して説明する。図16は、第6実施形態に係るOCT装置の表示装置54の画面表示例である。表示装置54の画面には、図16に示すように、例えば区間入力画面600が表示される。区間入力画面600は、区間選択領域601と、この区間選択領域601の下に配置されたオンファス画像表示領域602と、を備えている。区間選択領域601には、複数の時間区間に対応して一列に並んだ複数の矩形が表示される。ここでは、画面幅方向(横)に連結された矩形の1つ1つが、1回のプレビューモード撮影の時間区間を模式的に示している。また、右に配置された矩形で示される時間区間は左に配置された矩形で示される時間区間よりも後の時間区間を表している。
 オンファス画像表示領域602には、時間区間ごとに、当該区間で取得したプレビュー画像データのオンファス画像603,604が表示される。オンファス画像は、被写体の3次元画像の深さ方向のデータを総和して求めた2次元画像なので、撮影中に血液等が被写体上に滲み出してしまった場合、当然に、オンファス画像には被写体上に滲み出した血液等が描画される。滲み出た血液等は、シミの様に表示されるので、オンファス画像を目視確認することで、血液等の滲み出しを発見することができる。ここでは、オンファス画像603は、正常なオンファス画像を表している。オンファス画像604は、血液が滲み出たときのオンファス画像を表している。
 図16に示す例では、区間選択領域601において符号605で示すように、シミが無い正常なオンファス画像603が連続的に並んだ9区間が選択されている。ここでは、区間選択領域601の矩形をハッチングで示すことで選択区間を表している。区間選択領域601の各矩形をチェックボックスとして操作者がマウス等によってチェックマークを入力できるように構成してもよい。
 オンファス画像表示領域602には、オンファス画像を一列に並べて表示しているために、各画像のサイズが小さく、画像中のシミが判別しにくいことがある。そこで、各オンファス画像をサムネイル表示するようにしてもよい。この場合、サムネイル表示のオンファス画像を、操作者がマウス等によってクリックすることで、クリックされたオンファス画像を拡大表示することができる。これにより、操作者は、シミが無い正常なオンファス画像603と、シミがあるオンファス画像604とを判別しやすくなる。
 また、撮影中(プレビュー画像取得中)にブレが生じた場合、オンファス画像が歪むので、オンファス画像を目視確認することで、ブレも確認することが可能である。よって、操作者は、ブレもシミも無い正常なオンファス画像が連続的に並んだ区間を選択することができる。
 第6実施形態は、図示を省略するが、以下の通り、ブレ感知手段を備えるように変形することができる。
(変形例1)第6実施形態に係るOCT装置は、図9に示すブレ感知手段200と、区間特定手段140と、をさらに備えるようにしてもよい。
(変形例2)第6実施形態に係るOCT装置は、図11に示すブレ感知手段200と、区間特定手段140と、区間入力手段150と、をさらに備えるようにしてもよい。
(変形例3)第6実施形態に係るOCT装置は、図12に示すブレ感知手段200と、区間入力手段150と、をさらに備えるようにしてもよい。
(変形例4)第6実施形態に係るOCT装置は、図13に示すブレ感知手段200Eと、区間特定手段140と、をさらに備えるようにしてもよい。
(変形例5)変形例1~変形例3に係るOCT装置は、ブレ感知手段200をブレ感知手段200Eに置き換えてもよい。
 本発明は、コンピュータが備えるCPU、メモリ、ハードディスク等のハードウェア資源を、OCT制御装置100として協調動作させるプログラム(OCT装置制御プログラム)で実現することもできる。このプログラムは、通信回線を介して配布してもよく、CD-ROMやフラッシュメモリ等の記録媒体に書き込んで配布してもよい。
 なお、本発明の実施形態を詳述してきたが、本発明は前記した各実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更なども含まれる。例えば、前記実施形態では、スキャン原点をずらす方法は機械的な方法を採用したが、ソフトウェア的な方法を採用してもよい。その場合には、信号処理手段110は、2次元走査機構33におけるミラー座標を取り込み、プレビュー画像データを取得するたびに、A断面画像のデータの取得を開始するときのミラー座標をずらすことで、スキャン原点(2次元走査の原点)をずらせばよい。
 2次元走査機構33として、ガルバノミラーを採用した場合について説明したが、これに限らず、2次元MEMSミラーを採用することもできる。2次元MEMSミラーの素子は、例えば、光を全反射するミラーや、電磁力を発生する電磁駆動用の平面コイル等の可動構造体が形成されたシリコン層と、セラミック台座と、永久磁石と、の3層構造に形成されて、コイルへ通電される電流の大きさに比例してX軸方向及びY軸方向に静的、動的傾斜する制御が可能になっている。
 1   OCT装置
 10  光学ユニット
 11  光源
 12  カップラ
 13  サンプルアーム
 14  サーキュレータ
 15  偏光コントローラ
 16  カップラ
 17  レファレンスアーム
 18  サーキュレータ
 19  コリメータレンズ
 20  集光レンズ
 21  レファレンスミラー
 22  偏光コントローラ
 23  ディテクタ
 30  プローブ
 31  シャッタ
 32  コリメータレンズ
 33  2次元走査機構
 34  集光レンズ
 50  制御ユニット
 51  AD変換回路
 52  DA変換回路
 53  2次元走査機構制御回路
 54  表示装置
 100,100B,100C,100D,100E,100F OCT制御装置
 110 信号処理手段
 120 メモリ
 130 指示受付手段
 140 区間特定手段
 150 区間入力手段
 160 第2区間入力手段
 200,200E ブレ感知手段
 S   被写体

Claims (14)

  1.  レーザ光を2次元走査する2次元走査機構を含むプローブから被写体にレーザ光を照射して光干渉により前記被写体の内部情報を測定するOCT装置であって、
     レーザ光の光軸に沿った方向の被写体情報を2次元走査の予め定められたポイント間隔で測定することでレーザ光の光軸に沿った断層面の断面画像を前記断層面に直交する方向に向かって重ねた所定粗さのボリューム画像に相当するプレビュー画像データを1回の撮影で取得する信号処理手段と、
     複数回分の前記プレビュー画像データを記憶するメモリと、
     前記被写体の前記所定粗さより精緻なボリューム画像に相当する計測撮影画像データを生成する指示を受け付ける指示受付手段と、を備え、
     前記信号処理手段は、前記プレビュー画像データを取得するたびに、前記2次元走査の原点を、前記ポイント間隔よりも小さな微小間隔ずつ前記ポイント間隔を埋めるようにずらし、複数回分の前記プレビュー画像データを取得し、前記指示を受け付けた時点までに前記メモリに記憶された複数回分の前記プレビュー画像データを再構成することで前記計測撮影画像データを生成する、
    ことを特徴とするOCT装置。
  2.  操作者によって把持された前記プローブの振動の時間変化を示すブレ感知信号を生成するブレ感知手段と、
     前記ブレ感知信号の波形の強度が予め定められた閾値を連続的に超えない時間区間を特定する区間特定手段と、を備え、
     前記メモリは、前記プレビュー画像データに同期させて前記ブレ感知信号を記憶し、
     前記信号処理手段は、前記指示を受け付けた時点までの所定時間内に取得され前記メモリに記憶された複数回分の前記プレビュー画像データのうち前記特定された時間区間内に取得したプレビュー画像データを用いて前記計測撮影画像データを生成する、
    ことを特徴とする請求項1に記載のOCT装置。
  3.  前記ブレ感知信号の波形の連続的な時間区間を操作者が選択できるように前記ブレ感知信号の波形を表示装置に表示させて前記操作者に選択された時間区間を入力する区間入力手段を備え、
     前記信号処理手段は、前記区間入力手段によって前記操作者に選択された時間区間が入力された場合、当該時間区間内に取得したプレビュー画像データを用いて前記計測撮影画像データを生成する、
    ことを特徴とする請求項2に記載のOCT装置。
  4.  操作者によって把持された前記プローブの振動の時間変化を示すブレ感知信号を生成するブレ感知手段と、
     前記ブレ感知信号の波形の連続的な時間区間を操作者が選択できるように前記ブレ感知信号の波形を表示装置に表示させて前記操作者に選択された時間区間を入力する区間入力手段を備え、
     前記メモリは、前記プレビュー画像データに同期させて前記ブレ感知信号を記憶し、
     前記信号処理手段は、前記区間入力手段によって前記操作者に選択された時間区間が入力された場合、前記指示を受け付けた時点までの所定時間内に取得され前記メモリに記憶された複数回分の前記プレビュー画像データのうち当該時間区間内に取得したプレビュー画像データを用いて前記計測撮影画像データを生成する、
    ことを特徴とする請求項1に記載のOCT装置。
  5.  前記ブレ感知手段は、前記プローブに内蔵された位置変化を感知するセンサである、
    ことを特徴とする請求項2から請求項4のいずれか一項に記載のOCT装置。
  6.  ブレ感知手段は、前記断面画像の上縁から、当該断面画像中の被写体上面までの距離を算出し、前記算出された距離の時間変化によって前記ブレ感知信号を生成する、
    ことを特徴とする請求項2から請求項4のいずれか一項に記載のOCT装置。
  7.  前記信号処理手段は、前記プレビュー画像データごとに前記プレビュー画像データにおける被写体深さ方向のデータを総和して求めた2次元画像であるオンファス画像をそれぞれ生成し、
     複数の前記オンファス画像が連続する時間区間を操作者が選択できるように複数の前記オンファス画像を表示装置に表示させて前記操作者に選択された時間区間を入力する第2区間入力手段を備え、
     前記信号処理手段は、前記第2区間入力手段によって前記操作者に選択された時間区間が入力された場合、前記指示を受け付けた時点までの所定時間内に取得され前記メモリに記憶された複数回分の前記プレビュー画像データのうち当該時間区間内に取得したプレビュー画像データを用いて前記計測撮影画像データを生成する、
    ことを特徴とする請求項1から請求項6のいずれか一項に記載のOCT装置。
  8.  前記信号処理手段は、前記第2区間入力手段によって前記オンファス画像を表示装置に表示させるときに、前記メモリに記憶された前記プレビュー画像データから当該オンファス画像を生成する、
    ことを特徴とする請求項7に記載のOCT装置。
  9.  前記信号処理手段は、前記プレビュー画像データを取得するたびに、取得したプレビュー画像データから前記オンファス画像を生成し、生成したオンファス画像を前記プレビュー画像データと対応付けて前記メモリに記憶する、
    ことを特徴とする請求項7に記載のOCT装置。
  10.  前記メモリは、複数回分の前記プレビュー画像データを順番に記憶し、記憶容量を超えた場合、古いプレビュー画像データから順番に消去する、
    ことを特徴とする請求項1から請求項9のいずれか一項に記載のOCT装置。
  11.  前記信号処理手段は、前記プレビュー画像データを取得するたびに、前記2次元走査機構を制御する2次元走査機構制御回路に対して、前記2次元走査機構における走査開始位置の原点をずらすための信号を出力することで、前記2次元走査の原点をずらす、
    ことを特徴とする請求項1から請求項10のいずれか一項に記載のOCT装置。
  12.  前記信号処理手段は、前記2次元走査機構におけるミラー座標を取り込み、前記プレビュー画像データを取得するたびに、前記断面画像のデータの取得を開始するときの前記ミラー座標をずらすことで、前記2次元走査の原点をずらす、
    ことを特徴とする請求項1から請求項10のいずれか一項に記載のOCT装置。
  13.  レーザ光を2次元走査する2次元走査機構を含むプローブから被写体にレーザ光を照射して光干渉により前記被写体の内部情報を測定するOCT装置の制御方法であって、
     レーザ光の光軸に沿った方向の被写体情報を2次元走査の予め定められたポイント間隔で測定することでレーザ光の光軸に沿った断層面の断面画像を前記断層面に直交する方向に向かって重ねた所定粗さのボリューム画像に相当するプレビュー画像データを1回の撮影で取得する工程と、
     前記プレビュー画像データを取得するたびに、前記2次元走査の原点を、前記ポイント間隔よりも小さな微小間隔ずつ前記ポイント間隔を埋めるようにずらす工程と、
     複数回分の前記プレビュー画像データをメモリに記憶する工程と、
     前記被写体の前記所定粗さより精緻なボリューム画像に相当する計測撮影画像データを生成する指示を受け付ける工程と、
     前記指示を受け付けた時点までに前記メモリに記憶された複数回分の前記プレビュー画像データを再構成することで前記計測撮影画像データを生成する工程と、
    を含むことを特徴とするOCT装置の制御方法。
  14.  コンピュータを、請求項1から請求項12のいずれか一項に記載のOCT装置の制御装置として機能させるためのOCT装置制御プログラム。
PCT/JP2022/009932 2021-03-15 2022-03-08 Oct装置、その制御方法およびoct装置制御プログラム WO2022196427A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/253,413 US20240000552A1 (en) 2021-03-15 2022-03-08 Oct device, method for controlling same, and oct device controlling program
CN202280021915.3A CN117098486A (zh) 2021-03-15 2022-03-08 Oct装置、其控制方法和oct装置控制程序
DE112022001518.7T DE112022001518T5 (de) 2021-03-15 2022-03-08 Oct-vorrichtung, verfahren zum steuern derselben und oct-vorrichtungssteuerungsprogramm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-041221 2021-03-15
JP2021041221A JP7044421B1 (ja) 2021-03-15 2021-03-15 Oct装置、その制御方法およびoct装置制御プログラム

Publications (1)

Publication Number Publication Date
WO2022196427A1 true WO2022196427A1 (ja) 2022-09-22

Family

ID=81215164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009932 WO2022196427A1 (ja) 2021-03-15 2022-03-08 Oct装置、その制御方法およびoct装置制御プログラム

Country Status (5)

Country Link
US (1) US20240000552A1 (ja)
JP (1) JP7044421B1 (ja)
CN (1) CN117098486A (ja)
DE (1) DE112022001518T5 (ja)
WO (1) WO2022196427A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190069775A1 (en) * 2017-09-07 2019-03-07 Carl Zeiss Meditec, Inc. Systems and methods for improved montaging of ophthalmic imaging data
JP2019103732A (ja) * 2017-12-14 2019-06-27 キヤノン株式会社 眼科装置、制御方法及びプログラム
JP2021037239A (ja) * 2019-09-05 2021-03-11 キヤノン株式会社 領域分類方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7768652B2 (en) * 2006-03-16 2010-08-03 Carl Zeiss Meditec, Inc. Methods for mapping tissue with optical coherence tomography data
JP5827024B2 (ja) * 2011-03-31 2015-12-02 株式会社吉田製作所 光干渉断層画像生成装置の制御装置、制御方法及び制御プログラム
JP5639521B2 (ja) * 2011-03-31 2014-12-10 株式会社吉田製作所 歯科用光干渉断層画像生成装置の制御装置、制御方法及び制御プログラム
WO2015182632A1 (ja) * 2014-05-28 2015-12-03 興和株式会社 画像処理装置、画像処理方法及び画像処理プログラム
JP6712106B2 (ja) * 2015-10-13 2020-06-17 株式会社吉田製作所 光干渉断層画像生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190069775A1 (en) * 2017-09-07 2019-03-07 Carl Zeiss Meditec, Inc. Systems and methods for improved montaging of ophthalmic imaging data
JP2019103732A (ja) * 2017-12-14 2019-06-27 キヤノン株式会社 眼科装置、制御方法及びプログラム
JP2021037239A (ja) * 2019-09-05 2021-03-11 キヤノン株式会社 領域分類方法

Also Published As

Publication number Publication date
JP2022141083A (ja) 2022-09-29
DE112022001518T5 (de) 2024-01-11
US20240000552A1 (en) 2024-01-04
CN117098486A (zh) 2023-11-21
JP7044421B1 (ja) 2022-03-30

Similar Documents

Publication Publication Date Title
JP5827024B2 (ja) 光干渉断層画像生成装置の制御装置、制御方法及び制御プログラム
JP5213835B2 (ja) 光干渉断層像の撮像方法および光干渉断層像の撮像装置
JP5189287B2 (ja) 歯科用レーザデジタイザシステム
CN102970919B (zh) 光学相干断层图像摄像设备及其方法
CN107949309B (zh) 光相干断层图像生成装置
JP2007267866A (ja) 画像診断装置およびその処理方法
JP2008194108A (ja) 位置方向検出機能付き3次元上特性測定・表示装置
JP2010246767A (ja) 3次元画像構築装置及びその画像処理方法
JP2004202069A (ja) 画像読取装置、画像読取方法
JP5639521B2 (ja) 歯科用光干渉断層画像生成装置の制御装置、制御方法及び制御プログラム
CN114732355A (zh) 高速扫描光声影像输入装置及其控制方法
US20200226755A1 (en) Image processing apparatus, ophthalmic imaging apparatus, image processing method, and computer-readable medium
WO2022196427A1 (ja) Oct装置、その制御方法およびoct装置制御プログラム
US10799099B2 (en) Optical interference tomographic image generating apparatus and method for using same
JP2012210293A (ja) 光干渉断層画像生成装置の制御装置、制御方法及び制御プログラム
US20050281476A1 (en) Examination apparatus
JP7131861B1 (ja) Oct装置の制御装置およびoct装置制御プログラム
JP2012239514A (ja) 光干渉断層像形成装置
JP2017099748A (ja) 光干渉断層画像表示制御装置及びそのプログラム
JP7044420B1 (ja) Oct装置の制御装置およびプログラム
KR920010548B1 (ko) 3차원 곡면 형상의 측정방법 및 장치
JPH0625655B2 (ja) 3次元曲面形状の測定方法及び装置
JPH0629709B2 (ja) 3次元曲面形状の測定方法及び装置
US20180256026A1 (en) Information processing apparatus, information processing method, and storage medium
JP2005195539A (ja) 光学測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18253413

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280021915.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001518

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771179

Country of ref document: EP

Kind code of ref document: A1