WO2022196089A1 - Liposome complex, substance delivery system, substance delivery method, and light irradiation device - Google Patents

Liposome complex, substance delivery system, substance delivery method, and light irradiation device Download PDF

Info

Publication number
WO2022196089A1
WO2022196089A1 PCT/JP2022/002035 JP2022002035W WO2022196089A1 WO 2022196089 A1 WO2022196089 A1 WO 2022196089A1 JP 2022002035 W JP2022002035 W JP 2022002035W WO 2022196089 A1 WO2022196089 A1 WO 2022196089A1
Authority
WO
WIPO (PCT)
Prior art keywords
liposome
liposome complex
dye
photoresponsive
light
Prior art date
Application number
PCT/JP2022/002035
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 竹村
真理 市村
崇人 鈴木
敏 新井
サティア サーカー
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023506802A priority Critical patent/JPWO2022196089A1/ja
Publication of WO2022196089A1 publication Critical patent/WO2022196089A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes

Definitions

  • This technology relates to a liposome complex, a substance delivery system, a substance delivery method, and a light irradiation device.
  • a liposome is a closed endoplasmic reticulum formed by at least one or more lipid bilayer membranes.
  • DDS drug delivery systems
  • Patent Document 1 discloses a medical device that induces specific and sufficient necrosis in cancer tissue, wherein the medical device comprises a liposome membrane-constituting substance covalently bound to a light-absorbing compound, In addition, a liposome complex containing a drug inside the liposome is used.
  • the main purpose of this technology is to provide a liposome complex that is easy to prepare and a technology that uses the liposome complex.
  • the present technology provides a liposome complex that includes at least a liposome and a photoresponsive dye supported by a lipid that constitutes the liposome through non-covalent interaction.
  • a liposome complex including at least a liposome and a photoresponsive dye supported by a lipid constituting the liposome through non-covalent interaction, and the liposome complex is irradiated with light.
  • a substance delivery system comprising at least a light irradiation device comprising at least a light irradiation unit for performing.
  • At least a step of irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome is performed.
  • a light irradiation unit for irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome comprising at least
  • FIG. 1 is a schematic conceptual diagram showing a first embodiment; FIG. 4A to 4D are diagrams for explaining application example 1.
  • FIG. 4A to 4E are diagrams for explaining application example 2.
  • FIG. 3A to 3E are diagrams for explaining application example 3.
  • FIG. It is a schematic conceptual diagram which shows 2nd Embodiment. 4A and 4B are diagrams for explaining Experimental Example 1.
  • FIG. 5 is a diagram showing the results of Experimental Example 1; 8A and 8B are diagrams for explaining Experimental Example 2.
  • FIG. 10 is a diagram showing the results of Experimental Example 2;
  • FIG. 10 is a diagram showing the results of Experimental Example 3;
  • FIG. 10 is a diagram showing the results of Experimental Example 3;
  • 3A to 3C are diagrams showing the results of Experimental Example 4.
  • FIG. 7A to 7G show the results of Experimental Example 5.
  • FIG. 10 is a diagram showing the results of Experimental Example 6;
  • FIG. 1 is a schematic conceptual diagram showing an example of the first embodiment.
  • a liposome complex 10 according to this embodiment includes at least a liposome 11 and a photoresponsive dye 12 . Moreover, the inclusion 13 etc. may be included as needed.
  • the liposome 11 is a closed endoplasmic reticulum formed of at least one or more lipid bilayer membranes, and has an aqueous phase (inner aqueous phase) within the space of the closed vesicle.
  • the liposomes 11 usually exist in a state of being dispersed in the solution outside the closed vesicles (external aqueous phase).
  • the liposome 11 may be a single lamella structure with a single double membrane or a multilamellar structure with multiple double membranes. If is large, it is preferably single lamellae.
  • the form is not specifically limited, either.
  • the components that make up the lipid bilayer of the liposome 11 are selected from lipids, and examples of the lipids include phospholipids, lipids that do not contain phosphoric acid, cholesterols, fatty acids, and the like, and combinations thereof may also be used.
  • Phospholipids include, for example, natural phospholipids such as phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, cardiolipin, sphingomyelin, egg yolk lecithin, soybean lecithin, and lysolecithin, or hydrogenated from these by a conventional method.
  • natural phospholipids such as phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, cardiolipin, sphingomyelin, egg yolk lecithin, soybean lecithin, and lysolecithin, or hydrogenated from these by a conventional method.
  • Synthetic phospholipids such as distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine, dipalmitoylphosphatidylserine, eleosestearoylphosphatidylcholine, eleosestearoylphosphatidylethanolamine, and eleosestearoylphosphatidylserine; .
  • Lipids that do not contain phosphoric acid include, for example, amino acid-type lipids, peptide lipids, glycolipids, and the like.
  • Cholesterols include, for example, cholesterol and phytosterols.
  • fatty acids include oleic acid, palmitoleic acid, linoleic acid, and fatty acid mixtures containing these unsaturated fatty acids.
  • the lipid is particularly preferably a lipid with phase transition among these.
  • phase transition property means having a phase transition point such as phase transition pressure and phase transition temperature.
  • phase transition means a transition that occurs between two states, a liquid crystal phase and a gel phase, in a lipid bilayer.
  • the photoresponsive dye 12 is supported by the lipids constituting the liposome 11 through non-covalent interactions.
  • the term "photoresponsive" means that the property changes reversibly or irreversibly when irradiated with light. Specifically, for example, when the photoresponsive dye 12 is irradiated with light, an absorption spectrum is observed.
  • the absorption wavelength of the photoresponsive dye 12 is not particularly limited, but is preferably 200 nm to 2000 nm, more preferably 300 nm to 1000 nm.
  • the term “carrying” refers to a form in which the entire photoresponsive dye 12 is contained in the membrane of the lipid constituting the liposome 11, a form in which only a part thereof is contained in the membrane, or a form in which the photoresponsive dye 12 is contained in the membrane. It means taking a form that exists outside the membrane in a state where the whole is attached to the membrane.
  • the photoresponsive dye 12 is supported by the lipid through non-covalent interaction, which facilitates the preparation of the liposome complex 10 according to the present embodiment. If the photoresponsive dye is covalently bound to the lipid, a very complicated chemical synthesis is required for the preparation of the liposome complex. On the other hand, when the photoresponsive dye 12 is supported on the lipid using a non-covalent bond, the liposome complex 10 can be prepared simply by performing operations such as mixing in an appropriate solvent and drying. It is possible to
  • the combination of the photoresponsive dye 12 and the lipid is also easy to change as appropriate according to the application of the liposome complex 10 and the like.
  • the preparation of the liposome complex 10 is easier than the case where the photoresponsive dye is covalently bound to the lipid. Therefore, it is possible to prepare the liposome complex 10 having various properties. It becomes possible. Specifically, for example, by changing the photoresponsive dye 12, it is possible to make the liposome complex 10 multicolor, or to change the phase transition temperature by using a combination of lipids having different phase transition temperatures. can.
  • covalent bonding of photoresponsive dyes to lipids may have a significant impact on the lipid aggregation properties. Therefore, it is necessary to design the photoresponsive dye-lipid conjugate each time, and chemically synthesize it each time, which makes it difficult to control the properties of the liposome complex.
  • the photoresponsive dye 12 is supported on the lipid using a non-covalent bond, the characteristics of the photoresponsive dye 12 and the lipid constituting the liposome 11 are maintained. Therefore, it is easy to predict the properties of the liposome complex 10 itself, and as a result, it is easy to control the properties.
  • non-covalent interactions include any one or more interactions selected from the group consisting of electrostatic interactions, hydrophobic interactions, van der Waals interactions, and ⁇ interactions.
  • Electrostatic interactions include, for example, interactions between ions, hydrogen bonds, interactions between halogens, or combinations thereof.
  • Van der Waals interactions include, for example, dipole-dipole interaction, dipole-induced dipole interaction, induced dipole-induced dipole interaction (London dispersion force) and the like.
  • ⁇ interaction include ⁇ - ⁇ interaction, cation- ⁇ /anion- ⁇ interaction, metal- ⁇ interaction, polar- ⁇ interaction, ⁇ donor-acceptor interaction, CH- ⁇ interaction, and the like. mentioned.
  • the non-covalent action is particularly preferably hydrophobic interaction or a combination of hydrophobic interaction and other non-covalent action.
  • the photoresponsive dye 12 for example, the following molecules can be used singly or in combination. When used in combination, a substituent or the like described later may be used.
  • polymethines such as cyanine, squalane, croconine, merocyanine, curcumin; phthalocyanine, naphthalocyanine, subphthalocyanine; porphyrin, chlorin, chlorophyll, azaporphyrin, corole, cyanocobalamin, oligophyrin; oligophenol, polyphenol, melanin , quinone; diimonium; metal complexes such as dithiolate complexes, rare earth complexes and transition metal complexes; dipyrromethene such as BODIPY; spiro compounds such as spiropyran and spiroperimidine; azo compounds such as azobenzene; , naphthalene, anthracene; perylene diimide, naphthalene diimide; indigo, thioindigo; acridine, quinacridone; phenothiazine; structures in which heteroatoms
  • a portion of the photoresponsive dye 12 may be substituted with one or more substituents.
  • the substituent preferably has a high affinity with the lipid that constitutes the liposome.
  • the substituent can be appropriately selected from, for example, the following substituents, and a single or multiple types of substituents can be used in combination.
  • the photoresponsive dyes 12 may be connected to each other via a substituent.
  • linear, branched or cyclic alkyl groups such as partial fluoroalkyl groups and perfluoroalkyl groups; unsaturated carbonized groups such as phenyl groups, ethynyl groups, vinyl groups and pyrene groups; Hydrogen groups, or linear or condensed conjugated molecules connecting them; Aromatic rings containing heteroatoms such as thiophene, pyrrole, furan, pyridine, aniline groups, etc., or their condensed rings; Halogen-containing organic compounds, halides; silyl compounds such as silylalkyl groups, silylalkoxy groups, and arylsilyl groups; Sulfur compounds such as carbonyl groups; nitrogen compounds such as amino groups, alkylamino groups, arylamino groups, amide groups, ammonium groups, nitro groups, cyano groups; hydroxy groups, alkoxy groups, phenoxy groups, aryloxy groups, acyl groups,
  • the liposome complex 10 releases an inclusion 13, which will be described later, when irradiated with light.
  • release is a broad concept including stepwise sustained release, large-scale release at one time, and the like.
  • it is possible to control the release amount of the inclusion 13, the release rate, and the like.
  • the inclusions 13 can be released and act on the target.
  • the “object” is not particularly limited, but includes, for example, cells, biological tissue, etc., and the surface of materials such as paper, resin, metal, etc., and the inclusions 13 are directly acted inside and outside, or liposome complexes are used. Anything that the body 10 can react to as the external environment can be targeted.
  • an object is placed in an optical system such as a microscope, the dispersion liquid of the liposome complex 10 containing the inclusions 13 is brought into contact, any liposome complex 10 is irradiated with light, and the inclusions 13 are exposed. is released.
  • an optical system such as a microscope
  • the size of the liposome complex 10 can be, for example, 1 nm or more and 1 mm or less, preferably 20 nm or more and 100 ⁇ m or less. By setting the size of the liposome complex 10 to 1 nm or more and 1 mm or less, the liposome complex 10 can be directly irradiated with light.
  • the energy of the light is preferably less than the energy at which the temperature changes in the vicinity of the liposome complex 10 irradiated with the light.
  • the photoresponsive dye is covalently bound to the lipid, the entire surroundings are heated when the encapsulation is released, or a large amount of heat is generated by the stimulus for release. It affects the surroundings (for example, it damages surrounding normal cells, etc.), and it is difficult to obtain the action of the inclusion alone.
  • the photoresponsive dye 12 is carried by non-covalent interaction with the lipid that constitutes the liposome 11, and the affinity between the photoresponsive dye 12 and the lipid is high. Even relatively small energy can cause the inclusion 13 to be released.
  • the energy of the light is less than the energy at which the temperature changes in the vicinity of the liposome complex 10 irradiated with the light, the effects of temperature rise on the surroundings are suppressed, and the effect is non-invasive. , it can be expected that only the action of the inclusion 13 can be obtained while reducing undesirable stimulation as much as possible.
  • the molar ratio between the lipid constituting the liposome 11 and the photoresponsive dye 12 is 10 8 :1 or more. This allows the photoresponsive dye 12 to efficiently stimulate the lipid membrane.
  • the photoresponsive dye 12 is preferably a photothermal conversion dye. This is because heat stimulation is particularly preferable as the noninvasive stimulation means in this embodiment.
  • the photoresponsive dye 12 preferably has photostability.
  • the term "light stability" means durability when irradiated with light.
  • a dye having photostability is, for example, a dye that has the property of being difficult to decompose when the dye is irradiated with light. More specifically, for example, when a solution containing the dye is continuously irradiated with light, the temperature rise curve converges and the temperature does not drop after a certain time. The above time varies depending on the pigment skeleton, pigment concentration, oxygen saturation, power of light irradiation, and the like.
  • Examples of the photoresponsive dye 12 having photostability include, among the specific examples of the photoresponsive dye 12 described above, an aromatic ring, a condensed ring conjugate system, or a condensed or condensed ring thereof. .
  • a substituent for photostabilization even in a linear conjugated molecule having a low aromatic structure such as ethylene or acetylene, it is possible to improve the photostability by introducing a substituent for photostabilization.
  • a substituent for photostabilization for example, in the case of a cyanine-based polymer, photostability can be imparted by introducing thiophenol or the like.
  • the substituent for photostabilization the above-described substituents and the like can be used, excluding substituents with high eliminability such as halogen.
  • Photostability can also be imparted to the photoresponsive dye 12 by binding a radical scavenger to it or arranging it in the vicinity.
  • the inclusion 13 may be included as necessary.
  • the inclusion 13 is not particularly limited as long as it can be included in the liposome 11 described above.
  • the term “encapsulated” means that the encapsulated matter 13 is contained in the inner aqueous phase and the membrane itself of the liposome 11 .
  • the inclusion 13 is enclosed in a closed space formed of a membrane, a form in which the inclusion is enclosed in the membrane itself, and the like, and a combination thereof is also possible.
  • acetylcholine lipids, signaling substances, ATP, mRNA, calcium ions, metal ions, other various ions, drugs, physiologically active substances, amino acids, peptides, proteins, nucleic acids, sugars, reducing agents, oxidation agents, acidic substances, alkaline substances, and the like.
  • the inclusion 13 may be either water-insoluble or water-soluble, but among these, water-soluble is particularly preferred.
  • FIG. 2 shows an example of a substance transport process to living tissue, cells, and the like.
  • the subject is brought into contact with the dispersion liquid of the liposome complex 10 encapsulating the drug or the like, and as shown in FIG.
  • the drug or the like reaches a desired position, range, or the like, and as shown in FIG.
  • the liposome complex 10 according to the present embodiment can be manipulated non-invasively, since the liposome complex 10 according to the present embodiment causes less stimulation such as heat to be applied to the surroundings. Therefore, it can be used for tissues such as nervous tissue, brain tissue, etc., which are sensitive to heat, and delicate tissues, such as skin.
  • the inclusion 13 can act in the vicinity of the target molecule at a high concentration, so that the reaction efficiency, speed, etc. between the target molecule and the inclusion 13 are increased. Therefore, since the reaction efficiency is high, the amount of the inclusion 13 can be reduced, and as a result, for example, the dose to be administered into the body can be suppressed.
  • Fig. 3 shows an example of a material deposition process such as plating.
  • the object is allowed to carry a catalyst or the like (for example, the catalyst or the like is fixed to a base material), and as shown in FIG. 10 are brought into contact with each other, and as shown in FIG. 3D, a desired position, range, or the like is irradiated with light to gradually release the contained metal ions or the like.
  • the metal or the like can be gradually precipitated around the areas where the sustained release has occurred.
  • the liposome complex 10 according to the present embodiment does not generate thermal convection, the deposition rate can be controlled with high accuracy, and a smooth surface can be obtained.
  • FIGS. 4A and 4B An example of the crystallization process is shown in Fig. 4.
  • the substrate is brought into contact with the dispersion liquid of the liposome complex 10 encapsulating organic monomers, inorganic monomers, etc., which are the source of crystals, and as shown in FIG.
  • the material or the entire system is heated or cooled to prepare crystal growth conditions.
  • a desired position, range, or the like is irradiated with light to gradually release the encapsulated organic monomer, inorganic monomer, or the like.
  • FIG. 4E crystals can be slowly grown on the base material or in the system, centering on the slowly released portion.
  • the deposition rate can be controlled with high accuracy, and crystals with a high degree of crystallinity can be obtained.
  • the liposome complex 10 according to the present embodiment can be applied even if its shape is not spherical as long as it has a membrane composed of lipids.
  • the channel can be gated or closed by irradiating a desired position, range, or the like with light.
  • FIG. 5 is a conceptual schematic diagram showing an example of the second embodiment.
  • a substance delivery system 100 according to this embodiment includes at least the liposome complex 10 and the light irradiation device 101 described above. In addition, it may have other devices or the like as necessary. Since the liposome complex 10 is the same as described above, the explanation is omitted here.
  • the light irradiation device 101 irradiates the liposome complex 10 with light.
  • the light irradiation device 101 includes, for example, a light irradiation unit 102 that irradiates laser light, an irradiation condition setting unit 103 that can change the frequency, irradiation intensity, pulse width, etc. of the laser light to be irradiated, movement of the irradiation area, irradiation area etc., a light-receiving unit 105 that receives light emitted from a target in response to the laser light emitted from the light-irradiating unit 102, and an analyzing unit 106 that analyzes the light obtained from the light-receiving unit 105. And prepare.
  • the light irradiation unit 102 can also irradiate the liposome complex 10 with light of two or more different wavelengths.
  • an external analysis device or the like may be used instead of the analysis unit 106 .
  • it may be implemented in a personal computer or CPU, and stored as a program in a hardware resource including a recording medium (eg, nonvolatile memory (USB memory), HDD, CD, etc.), and stored in a personal computer. or by a CPU.
  • a recording medium eg, nonvolatile memory (USB memory), HDD, CD, etc.
  • an external analysis device or the like may be connected to each part of the light irradiation device 101 via a network.
  • the substance delivery method according to this embodiment performs at least the step of irradiating the liposome complex 10 with light. Moreover, you may have another process as needed. Since the liposome complex 10 is the same as described above, the explanation is omitted here. Further, since the method performed in the above steps is the same as the method performed by the light irradiation device 101 described above, the description is omitted here.
  • the light irradiation device includes at least a light irradiation unit that irradiates the liposome complex 10 described above with light. In addition, it may have other parts or the like as necessary. Since the liposome complex 10 is the same as described above, the explanation is omitted here. Further, since the processing performed in the light irradiation unit is the same as the processing performed in the light irradiation device 101 described above, the description thereof is omitted here.
  • 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine DPPC
  • N-(3-carboxy-1-oxopropyl)- 1,5-dihexadecyl ester
  • SA 1,2-Distaroyl-sn-glycero- 3-phosphoethanolamine-N-[monomethoxy poly(ethylene glycol) (2000)]
  • PEG-DSPE 1,2-Distaroyl-sn-glycero- 3-phosphoethanolamine-N-[monomethoxy poly(ethylene glycol) (2000)]
  • aqueous solution in which a drug, a fluorescent dye, a pH adjuster, an ion concentration adjuster, etc. were dissolved was added to the obtained lipid-pigment film to hydrate it, thereby obtaining a suspension.
  • the resulting suspension was fractionated by gel chromatography to isolate only the liposome component to obtain a liposome complex.
  • FIGS. 6A and 6B A compound represented by the chemical formula (4) was selected as the dye, and a liposome complex was prepared in the same manner as in the above preparation example.
  • the calcein-encapsulating liposome complex is placed in a temperature probe solution whose fluorescence intensity varies with temperature, and laser light is irradiated to generate The ambient temperature change due to heat (circled points 1, 2 and 3 in FIG. 6B) was estimated.
  • FIG. 7 shows changes in the fluorescence intensity ratio derived from the temperature probe at each point during laser light irradiation. As shown in FIG. 7, there was no fluorescence intensity change at any point, and no temperature change due to heat emitted from the liposome complex was observed.
  • FIG. 9 shows changes in the fluorescence intensity ratio during laser light irradiation.
  • ⁇ in FIG. 9 indicates changes in the fluorescence intensity ratio derived from the temperature probe, and ⁇ in FIG. 9 indicates changes in the fluorescence intensity ratio derived from calcein.
  • no change in temperature was observed in the vicinity of the liposome complex, while the fluorescence intensity in the center changed. Therefore, it was found that inclusions can be released without changing the temperature in the vicinity of the liposome complex.
  • FIG. 10 shows changes in fluorescence intensity ratio derived from calcein during laser light irradiation under a temperature condition of 37°C.
  • FIG. 11 shows changes in fluorescence intensity ratio derived from calcein during laser light irradiation under a temperature condition of 25°C.
  • each compound represented by Chemical Formula (1), Chemical Formula (4), and Chemical Formula (5) was selected as the dye, and each liposome complex was prepared in the same manner as in the above Preparation Examples. .
  • the calcein-encapsulated liposome complex was irradiated with a laser beam at a temperature of 25°C.
  • FIG. 12A shows the change in fluorescence intensity ratio derived from calcein upon laser light irradiation when the compound represented by the chemical formula (4) is selected
  • FIG. 12B shows the compound represented by the chemical formula (1).
  • FIG. 12C shows the change in the fluorescence intensity ratio derived from calcein during laser light irradiation when the compound represented by the chemical formula (5) was selected. shows a change in As shown in FIG. 12, it was found that the dye composed of the compound represented by the chemical formula (1) did not release inclusions even when irradiated with laser light, and did not exhibit photoresponsiveness.
  • each compound represented by Chemical Formulas (1) to (6) was selected as the dye, and each liposome complex was prepared in the same manner as in the above Preparation Examples.
  • the absorption spectrum of the suspension of each liposome complex was measured.
  • FIG. 13 shows the result of measuring the absorption spectrum of the suspension of each liposome complex.
  • a in FIG. 13 is a negative control
  • B in FIG. 13 is when the compound represented by the chemical formula (1) is selected
  • C in FIG. 13 is when the compound represented by the chemical formula (2) is selected.
  • D is when the compound represented by the chemical formula (3) is selected
  • E in FIG. 13 is when the compound represented by the chemical formula (4) is selected
  • F in FIG. 13 is when the compound represented by the chemical formula (5) is selected
  • G in FIG. 13 show the case where the compound represented by the chemical formula (6) is selected.
  • a broad absorption spectrum derived from the absorption of the dye was observed except for the dye made of the compound represented by the chemical formula (1). not observed.
  • the dye composed of the compound represented by the chemical formula (1) has low interaction with lipids and is not incorporated into lipids, resulting in a liposome complex composed of the dye and lipids having low photoresponsiveness. it is conceivable that.
  • FIG. 14 shows the results of measuring the temperature of each solution over time. As shown in FIG. 14, it can be seen that the temperature of each dye increases with the irradiation time, and the light is converted into heat. going from rising to falling. This is due to the fact that the dye made of the compound represented by the chemical formula (5) has low photostability, and the dye decomposes as it is irradiated with laser light, resulting in a decrease in absorbance.
  • a liposome a photoresponsive dye supported by a non-covalent interaction on the lipid constituting the liposome;
  • a liposome complex comprising at least [2] [1], wherein the non-covalent interactions are any one or more interactions selected from the group consisting of electrostatic interactions, hydrophobic interactions, van der Waals interactions, and ⁇ interactions; liposome complex.
  • the liposome complex according to any one of [1] to [3], which releases the entrapped substance upon irradiation with light.
  • a liposome complex comprising at least a liposome and a photoresponsive dye supported by a lipid constituting the liposome through non-covalent interaction;
  • a substance delivery system comprising at least a light irradiation device including at least a light irradiation unit for irradiating the liposome complex with light.
  • a method of substance delivery comprising: [12] a light irradiation unit for irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome;
  • a light irradiation device comprising at least
  • Liposome Complex 11 Liposome 12: Photoresponsive Dye 13: Inclusion 100: Substance Delivery System 101: Light Irradiation Device 102: Light Irradiation Unit 103: Irradiation Condition Setting Unit 104: Adjusting Means 105: Light Receiving Unit 106: Analysis Department

Abstract

The present invention provides: a liposome complex that is easy to prepare; and a technology that uses this liposome complex. Provided is a liposome complex that includes at least: a liposome; and a photoresponsive pigment that is supported, by a non-covalent interaction, on lipids that constitute the liposome. Also provided is a material delivery system that has at least: a liposome complex that includes at least a liposome and a photoresponsive pigment that is supported, by a non-covalent interaction, on lipids that constitute the liposome; and a light irradiation device that comprises at least a light irradiation unit that irradiates light on the liposome complex.

Description

リポソーム複合体、物質送達システム、物質送達方法及び光照射装置Liposome complex, substance delivery system, substance delivery method, and light irradiation device
 本技術は、リポソーム複合体、物質送達システム、物質送達方法及び光照射装置に関する。 This technology relates to a liposome complex, a substance delivery system, a substance delivery method, and a light irradiation device.
 リポソームとは、少なくとも1つ以上の脂質二重膜で形成される閉鎖小胞体である。従来、リポソームは、薬剤等を内包した状態で、主に標的組織へのドラッグデリバリーシステム(DDS)のキャリアとして利用されている。前記標的組織としては、例えば癌組織が挙げられる。 A liposome is a closed endoplasmic reticulum formed by at least one or more lipid bilayer membranes. Conventionally, liposomes encapsulating drugs and the like have been mainly used as carriers of drug delivery systems (DDS) to target tissues. Examples of the target tissue include cancer tissue.
 例えば、特許文献1には、癌組織に特異的かつ十分な壊死の誘導をもたらす医薬用装置が開示されており、該医薬用装置では、光吸収化合物と共有結合したリポソーム膜構成物質を含み、かつ、リポソーム内に薬剤を含むリポソーム複合体が用いられている。 For example, Patent Document 1 discloses a medical device that induces specific and sufficient necrosis in cancer tissue, wherein the medical device comprises a liposome membrane-constituting substance covalently bound to a light-absorbing compound, In addition, a liposome complex containing a drug inside the liposome is used.
特開2013-230211号公報JP 2013-230211 A
 しかしながら、共有結合を利用してリポソーム複合体を作製することは、脂質と化合物とを直接結合させるという複雑な化学合成が必要であるという問題があった。また、脂質と化合物とを直接結合させると、脂質が有する特性に大きな影響を与える可能性があり、その結果、リポソーム複合体自体の特性を制御することも困難となる。 However, using covalent bonds to produce liposome complexes has the problem of requiring complex chemical synthesis to directly bond lipids and compounds. In addition, direct binding of a lipid and a compound may greatly affect the properties of the lipid, and as a result, it becomes difficult to control the properties of the liposome complex itself.
 そこで、本技術では、調製が容易であるリポソーム複合体及び該リポソーム複合体を用いた技術を提供することを主目的とする。 Therefore, the main purpose of this technology is to provide a liposome complex that is easy to prepare and a technology that uses the liposome complex.
 すなわち、本技術では、リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体を提供する。 That is, the present technology provides a liposome complex that includes at least a liposome and a photoresponsive dye supported by a lipid that constitutes the liposome through non-covalent interaction.
 また、本技術では、リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体と、前記リポソーム複合体に光を照射する光照射部、を少なくとも備えた、光照射装置と、を少なくとも有する、物質送達システムも提供する。 Further, in the present technology, a liposome complex including at least a liposome and a photoresponsive dye supported by a lipid constituting the liposome through non-covalent interaction, and the liposome complex is irradiated with light. Also provided is a substance delivery system comprising at least a light irradiation device comprising at least a light irradiation unit for performing.
 更に、本技術では、リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体に光を照射する工程、を少なくとも行う、物質送達方法も提供する。 Furthermore, in the present technology, at least a step of irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome is performed. , also provides a method of substance delivery.
 加えて、本技術では、リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体に光を照射する光照射部、を少なくとも備える、光照射装置も提供する。 In addition, in the present technology, a light irradiation unit for irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome, A light irradiation device is also provided, comprising at least
第1実施形態を示す模式概念図である。1 is a schematic conceptual diagram showing a first embodiment; FIG. A~Dは、用途例1を説明する図である。4A to 4D are diagrams for explaining application example 1. FIG. A~Eは、用途例2を説明する図である。4A to 4E are diagrams for explaining application example 2. FIG. A~Eは、用途例3を説明する図である。3A to 3E are diagrams for explaining application example 3. FIG. 第2実施形態を示す模式概念図である。It is a schematic conceptual diagram which shows 2nd Embodiment. A及びBは、実験例1について説明する図である。4A and 4B are diagrams for explaining Experimental Example 1. FIG. 実験例1の結果を示す図である。FIG. 5 is a diagram showing the results of Experimental Example 1; A及びBは、実験例2について説明する図である。8A and 8B are diagrams for explaining Experimental Example 2. FIG. 実験例2の結果を示す図である。FIG. 10 is a diagram showing the results of Experimental Example 2; 実験例3の結果を示す図である。FIG. 10 is a diagram showing the results of Experimental Example 3; 実験例3の結果を示す図である。FIG. 10 is a diagram showing the results of Experimental Example 3; A~Cは、実験例4の結果を示す図である。3A to 3C are diagrams showing the results of Experimental Example 4. FIG. A~Gは、実験例5の結果を示す図である。7A to 7G show the results of Experimental Example 5. FIG. 実験例6の結果を示す図である。FIG. 10 is a diagram showing the results of Experimental Example 6;
 以下、本技術を実施するための好適な形態について説明する。
 なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。本技術の説明は以下の順序で行う。

1.第1実施形態(リポソーム複合体10)
(1)リポソーム11
(2)光応答性色素12
(3)内包物13
(4)用途
 (4-1)用途例1
 (4-2)用途例2
 (4-3)用途例3
 (4-4)用途例4
2.第2実施形態(物質送達システム100)
3.第3実施形態(物質送達方法)
4.第4実施形態(光照射装置)
A preferred embodiment for implementing the present technology will be described below.
It should be noted that the embodiments described below are representative embodiments of the present technology, and the scope of the present technology should not be construed narrowly. The present technology will be described in the following order.

1. First embodiment (liposome complex 10)
(1) Liposome 11
(2) Photoresponsive dye 12
(3) Inclusion 13
(4) Applications (4-1) Application example 1
(4-2) Application example 2
(4-3) Application example 3
(4-4) Application example 4
2. Second embodiment (substance delivery system 100)
3. Third embodiment (substance delivery method)
4. Fourth embodiment (light irradiation device)
1.第1実施形態(リポソーム複合体10) 1. First embodiment (liposome complex 10)
 図1は、第1実施形態の一例を示す模式概念図である。
 本実施形態に係るリポソーム複合体10は、リポソーム11と、光応答性色素12と、を少なくとも含む。また、必要に応じて、内包物13等を含んでいてもよい。
FIG. 1 is a schematic conceptual diagram showing an example of the first embodiment.
A liposome complex 10 according to this embodiment includes at least a liposome 11 and a photoresponsive dye 12 . Moreover, the inclusion 13 etc. may be included as needed.
(1)リポソーム11 (1) Liposome 11
 リポソーム11とは、少なくとも1つ以上の脂質二重膜で形成される閉鎖小胞体であり、その閉鎖小胞の空間内に水相(内水相)を有する。リポソーム11は、通常、閉鎖小胞外の溶液(外水相)に分散した状態で存在する。
 本実施形態において、リポソーム11は、二重膜が一重の構造であるシングルラメラであっても、多数の二重膜の構造である多層ラメラであってもよいが、後述する内包物13の体積が大きい場合は、シングルラメラであることが好ましい。また、その形態も、特に限定されない。
The liposome 11 is a closed endoplasmic reticulum formed of at least one or more lipid bilayer membranes, and has an aqueous phase (inner aqueous phase) within the space of the closed vesicle. The liposomes 11 usually exist in a state of being dispersed in the solution outside the closed vesicles (external aqueous phase).
In the present embodiment, the liposome 11 may be a single lamella structure with a single double membrane or a multilamellar structure with multiple double membranes. If is large, it is preferably single lamellae. Moreover, the form is not specifically limited, either.
 リポソーム11の脂質二重層を構成する成分は、脂質から選ばれ、該脂質としては、例えば、リン脂質、リン酸を含まない脂質、コレステロール類、脂肪酸等が挙げられ、これらの組み合わせでもよい。 The components that make up the lipid bilayer of the liposome 11 are selected from lipids, and examples of the lipids include phospholipids, lipids that do not contain phosphoric acid, cholesterols, fatty acids, and the like, and combinations thereof may also be used.
 リン脂質としては、例えば、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジルエタノールアミン、ホスファチジン酸、カルジオリピン、スフィンゴミエリン、卵黄レシチン、大豆レシチン、リゾレシチン等の天然リン脂質、或いはこれらを常法によって水素添加したもの;ジステアロイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジパルミトイルホスファチジルエタノールアミン、ジパルミトイルホスファチジルセリン、エレオステアロイルホスファチジルコリン、エレオステアロイルホスファチジルエタノールアミン、エレオステアロイルホスファチジルセリン等の合成リン脂質;等が挙げられる。
 リン酸を含まない脂質としては、例えば、アミノ酸型脂質、ペプチド脂質、糖脂質等が挙げられる。
Phospholipids include, for example, natural phospholipids such as phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, cardiolipin, sphingomyelin, egg yolk lecithin, soybean lecithin, and lysolecithin, or hydrogenated from these by a conventional method. Synthetic phospholipids such as distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine, dipalmitoylphosphatidylserine, eleosestearoylphosphatidylcholine, eleosestearoylphosphatidylethanolamine, and eleosestearoylphosphatidylserine; .
Lipids that do not contain phosphoric acid include, for example, amino acid-type lipids, peptide lipids, glycolipids, and the like.
 コレステロール類としては、例えば、コレステロール、フィトステロール等が挙げられる。
 脂肪酸としては、例えば、オレイン酸、パルミトオレイン酸、リノール酸、或いはこれら不飽和脂肪酸を含む脂肪酸混合物等が挙げられる。
Cholesterols include, for example, cholesterol and phytosterols.
Examples of fatty acids include oleic acid, palmitoleic acid, linoleic acid, and fatty acid mixtures containing these unsaturated fatty acids.
 本実施形態では、前記脂質は、これらの中でも特に、相転移性がある脂質が好ましい。ここで、「相転移性」とは、相転移圧力、相転移温度等の相転移点を有することを意味する。また、「相転移」とは、脂質二重層において、液晶相とゲル相の2つの状態間で起こる転移を意味する。 In the present embodiment, the lipid is particularly preferably a lipid with phase transition among these. Here, "phase transition property" means having a phase transition point such as phase transition pressure and phase transition temperature. In addition, "phase transition" means a transition that occurs between two states, a liquid crystal phase and a gel phase, in a lipid bilayer.
(2)光応答性色素12 (2) Photoresponsive dye 12
 光応答性色素12は、前記リポソーム11を構成する脂質に、非共有結合性相互作用で担持されている。ここで、「光応答性」とは、光を照射した際に、その性質が可逆的又は不可逆的に変化することを意味する。具体的には、例えば光応答性色素12に光を照射した際に吸収スペクトルが観測されることが挙げられる。本実施形態において、光応答性色素12の吸収波長は特に限定されないが、200nm~2000nmであることが好ましく、300nm~1000nmであることが更に好ましい。 The photoresponsive dye 12 is supported by the lipids constituting the liposome 11 through non-covalent interactions. Here, the term "photoresponsive" means that the property changes reversibly or irreversibly when irradiated with light. Specifically, for example, when the photoresponsive dye 12 is irradiated with light, an absorption spectrum is observed. In this embodiment, the absorption wavelength of the photoresponsive dye 12 is not particularly limited, but is preferably 200 nm to 2000 nm, more preferably 300 nm to 1000 nm.
 また、「担持」とは、リポソーム11を構成する脂質に対して光応答性色素12全体が膜内に含まれる形態や、その一部のみが膜内に含まれる形態、或いは光応答性色素12全体が膜に付着した状態で膜外に存在する形態等をとることを意味する。 In addition, the term “carrying” refers to a form in which the entire photoresponsive dye 12 is contained in the membrane of the lipid constituting the liposome 11, a form in which only a part thereof is contained in the membrane, or a form in which the photoresponsive dye 12 is contained in the membrane. It means taking a form that exists outside the membrane in a state where the whole is attached to the membrane.
 本実施形態では、光応答性色素12が前記脂質に非共有結合性相互作用で担持されていることで、本実施形態に係るリポソーム複合体10の調製が容易となる。光応答性色素を脂質に対して共有結合で結合させた場合は、リポソーム複合体の調製に際し非常に複雑な化学合成が必要となる。一方で、光応答性色素12を前記脂質に対して非共有結合性作用を用いて担持させた場合は、適切な溶媒中で混合、乾固等の作業を行うのみでリポソーム複合体10を調製することが可能である。 In the present embodiment, the photoresponsive dye 12 is supported by the lipid through non-covalent interaction, which facilitates the preparation of the liposome complex 10 according to the present embodiment. If the photoresponsive dye is covalently bound to the lipid, a very complicated chemical synthesis is required for the preparation of the liposome complex. On the other hand, when the photoresponsive dye 12 is supported on the lipid using a non-covalent bond, the liposome complex 10 can be prepared simply by performing operations such as mixing in an appropriate solvent and drying. It is possible to
 また、光応答性色素12と前記脂質との組み合わせを、リポソーム複合体10の用途等に応じて適宜変更することも容易である。前述した通り、光応答性色素を脂質に対して共有結合で結合させた場合と比較してリポソーム複合体10の調製が容易であることから、各種特性を有するリポソーム複合体10を調製することが可能となる。具体的には、例えば光応答性色素12を変更することにより、リポソーム複合体10を多色化したり、相転移温度が異なる脂質同士を組み合わせて用いることにより相転移温度を変化させたりすることができる。 It is also easy to change the combination of the photoresponsive dye 12 and the lipid as appropriate according to the application of the liposome complex 10 and the like. As described above, the preparation of the liposome complex 10 is easier than the case where the photoresponsive dye is covalently bound to the lipid. Therefore, it is possible to prepare the liposome complex 10 having various properties. It becomes possible. Specifically, for example, by changing the photoresponsive dye 12, it is possible to make the liposome complex 10 multicolor, or to change the phase transition temperature by using a combination of lipids having different phase transition temperatures. can.
 更に、光応答性色素を脂質に対して共有結合で結合させると、脂質の集合特性等に大きな影響を与えてしまう可能性がある。そのため、光応答性色素-脂質結合体の設計がその都度必要となり、かつ、その度に化学合成しなければならないため、リポソーム複合体の特性制御が困難である。一方で、光応答性色素12を前記脂質に対して非共有結合性作用を用いて担持させた場合は、光応答性色素12とリポソーム11を構成する脂質の、それぞれの特性が保たれているため、リポソーム複合体10自体の特性も予測し易く、その結果、特性制御もし易くなる。 Furthermore, covalent bonding of photoresponsive dyes to lipids may have a significant impact on the lipid aggregation properties. Therefore, it is necessary to design the photoresponsive dye-lipid conjugate each time, and chemically synthesize it each time, which makes it difficult to control the properties of the liposome complex. On the other hand, when the photoresponsive dye 12 is supported on the lipid using a non-covalent bond, the characteristics of the photoresponsive dye 12 and the lipid constituting the liposome 11 are maintained. Therefore, it is easy to predict the properties of the liposome complex 10 itself, and as a result, it is easy to control the properties.
 非共有結合性相互作用としては、例えば、静電相互作用、疎水性相互作用、ファンデルワールス相互作用、及びπ相互作用からなる群より選ばれるいずれか1以上の相互作用が挙げられる。 Examples of non-covalent interactions include any one or more interactions selected from the group consisting of electrostatic interactions, hydrophobic interactions, van der Waals interactions, and π interactions.
 静電相互作用としては、例えば、イオン間の相互作用、水素結合、ハロゲン間の相互作用、又はこれらの組み合わせ等が挙げられる。
 ファンデルワールス相互作用としては、例えば、双極子-双極子相互作用、双極子-誘起双極子相互作用、誘起双極子-誘起双極子相互作用(ロンドン分散力)等が挙げられる。
 π相互作用としては、例えば、π-π相互作用、カチオン-π・アニオン-π相互作用、金属-π相互作用、極性-π相互作用、πドナー-アクセプター相互作用、CH-π相互作用等が挙げられる。
Electrostatic interactions include, for example, interactions between ions, hydrogen bonds, interactions between halogens, or combinations thereof.
Van der Waals interactions include, for example, dipole-dipole interaction, dipole-induced dipole interaction, induced dipole-induced dipole interaction (London dispersion force) and the like.
Examples of π interaction include π-π interaction, cation-π/anion-π interaction, metal-π interaction, polar-π interaction, π donor-acceptor interaction, CH-π interaction, and the like. mentioned.
 本実施形態では、非共有結合性作用は、これらの中でも特に、疎水性相互作用、又は疎水性相互作用と他の非共有結合性作用との組み合わせが好ましい。 In the present embodiment, the non-covalent action is particularly preferably hydrophobic interaction or a combination of hydrophobic interaction and other non-covalent action.
 光応答性色素12としては、例えば以下の分子を、単体又は複数連結して用いることができる。連結して用いる場合は、後述する置換基等を用いてもよい。 As the photoresponsive dye 12, for example, the following molecules can be used singly or in combination. When used in combination, a substituent or the like described later may be used.
 具体的には、例えば、シアニン、スクアラン、クロコナイン、メロシアニン、クルクミン等のポリメチン;フタロシアニン、ナフタロシアニン、サブフタロシアニン;ポルフィリン、クロリン、クロロフィル、アザポルフィリン、コロール、シアノコバラミン、オリゴフィリン;オリゴフェノール、ポリフェノール、メラニン、キノン;ジイモニウム;ジチオレート錯体、希土類錯体、遷移金属錯体等の金属錯体;BODIPY等のジピロメテン;スピロピラン、スピロペリミジン等のスピロ化合物;アゾベンゼン等のアゾ化合物;クマリン;ローダミン、フルオレセイン等のキサンテン;ピレン、ペリレン、ナフタレン、アントラセン;ペリレンジイミド、ナフタレンジイミド;インディゴ、チオインディゴ;アクリジン、キナクリドン;フェノチアジン;ジアリールエテン;フルギド;ヘキサアリールビイミダゾール;ドナー・アクセプター性共役分子が結合したもの、DCM等のDA分子;上記共役構造の各位置にヘテロ原子が置換したもの;上記共役構造が複数連結、又は縮環したもの;等が挙げられ、これらの組み合わせでもよい。 Specifically, for example, polymethines such as cyanine, squalane, croconine, merocyanine, curcumin; phthalocyanine, naphthalocyanine, subphthalocyanine; porphyrin, chlorin, chlorophyll, azaporphyrin, corole, cyanocobalamin, oligophyrin; oligophenol, polyphenol, melanin , quinone; diimonium; metal complexes such as dithiolate complexes, rare earth complexes and transition metal complexes; dipyrromethene such as BODIPY; spiro compounds such as spiropyran and spiroperimidine; azo compounds such as azobenzene; , naphthalene, anthracene; perylene diimide, naphthalene diimide; indigo, thioindigo; acridine, quinacridone; phenothiazine; structures in which heteroatoms are substituted at each position of the structure; structures in which a plurality of the above conjugated structures are connected or condensed;
 光応答性色素12は、その一部が1又は複数の置換基により置換されていてもよい。この場合、該置換基は、リポソームを構成する脂質と親和性の高いものであることが好ましい。置換基としては、例えば以下の置換基から適宜選択でき、単一又は複数種の置換基を連結して用いることができる。また、本実施形態では、光応答性色素12同士が、置換基を介して連結していてもよい。 A portion of the photoresponsive dye 12 may be substituted with one or more substituents. In this case, the substituent preferably has a high affinity with the lipid that constitutes the liposome. The substituent can be appropriately selected from, for example, the following substituents, and a single or multiple types of substituents can be used in combination. Moreover, in this embodiment, the photoresponsive dyes 12 may be connected to each other via a substituent.
 具体的には、例えば、直鎖、分岐、又は環状のアルキル基;パーシャルフルオロアルキル基、パーフルオロアルキル基等のハロゲン化アルキル基;フェニル基、エチニル基、ビニル基、ピレン基等の不飽和炭化水素基、又はそれらが連結した直鎖、若しくは縮環した共役系分子;チオフェン基、ピロール基、フラン基、ピリジン基、アニリン基等のヘテロ原子を含む芳香環、又はそれらが縮環したもの;ハロゲンを含む有機化合物、ハロゲン化物;シリルアルキル基、シリルアルコキシ基、アリールシリル基等のシリル化合物;チオアルキル基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、スルホニル基、スルホン基、スルホン酸基、チオカルボニル基等の硫黄化合物;アミノ基、アルキルアミノ基、アリールアミノ基、アミド基、アンモニウム基、ニトロ基、シアノ基等の窒素化合物;ヒドロキシ基、アルコキシ基、フェノキシ基、アリールオキシ基、アシル基、アシルアミノ基、アシルオキシ基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、ホルミル基、チオアシル基等の酸素化合物;ビニル基、アリル基、(メタ)アクリル基、グリシジル基、アジリジン環、イソシアネート基、共役ジエン、酸無水物、酸塩化物、カルボニル基、水酸基、アミド基、アミノ基、クロロメチル基、エステル基、ホルミル基、ニトリル基、ニトロ基、カルボジイミド基、オキサゾリン基等の重合性官能基;ホウ素化合物;カルコゲナイド化合物;等が挙げられ、これらの組み合わせでもよい。また、上記置換基を介して、アルカリ金属、アルカリ土類金属、遷移金属等の金属が配位していてもよい。 Specifically, for example, linear, branched or cyclic alkyl groups; halogenated alkyl groups such as partial fluoroalkyl groups and perfluoroalkyl groups; unsaturated carbonized groups such as phenyl groups, ethynyl groups, vinyl groups and pyrene groups; Hydrogen groups, or linear or condensed conjugated molecules connecting them; Aromatic rings containing heteroatoms such as thiophene, pyrrole, furan, pyridine, aniline groups, etc., or their condensed rings; Halogen-containing organic compounds, halides; silyl compounds such as silylalkyl groups, silylalkoxy groups, and arylsilyl groups; Sulfur compounds such as carbonyl groups; nitrogen compounds such as amino groups, alkylamino groups, arylamino groups, amide groups, ammonium groups, nitro groups, cyano groups; hydroxy groups, alkoxy groups, phenoxy groups, aryloxy groups, acyl groups, Oxygen compounds such as acylamino group, acyloxy group, carboxy group, carboxamide group, carboalkoxy group, formyl group, thioacyl group; vinyl group, allyl group, (meth)acrylic group, glycidyl group, aziridine ring, isocyanate group, conjugated diene , acid anhydride, acid chloride, carbonyl group, hydroxyl group, amide group, amino group, chloromethyl group, ester group, formyl group, nitrile group, nitro group, carbodiimide group, oxazoline group and other polymerizable functional groups; boron compound ; a chalcogenide compound; and the like, and a combination thereof may also be used. Also, metals such as alkali metals, alkaline earth metals and transition metals may be coordinated through the above substituents.
 本実施形態に係るリポソーム複合体10は、光が照射されることにより後述する内包物13を放出する。ここで、「放出」とは、段階的に徐放することや、一度に大量に放出すること等を含む広い概念である。また、本実施形態においては、内包物13の放出量や、放出速度等の制御も可能である。 The liposome complex 10 according to the present embodiment releases an inclusion 13, which will be described later, when irradiated with light. Here, "release" is a broad concept including stepwise sustained release, large-scale release at one time, and the like. Moreover, in this embodiment, it is possible to control the release amount of the inclusion 13, the release rate, and the like.
 具体的には、例えばリポソーム複合体10を対象の近傍に配置して光を照射することにより、内包物13を放出し、対象に作用させることができる。ここで、「対象」とは、特に限定されないが、例えば、細胞、生体組織等や、紙、樹脂、金属等の素材表面等が挙げられ、内外において内包物13を直接作用させる、或いはリポソーム複合体10の外環境として反応させることのできるあらゆるものを対象とすることができる。 Specifically, for example, by arranging the liposome complex 10 in the vicinity of the target and irradiating it with light, the inclusions 13 can be released and act on the target. Here, the “object” is not particularly limited, but includes, for example, cells, biological tissue, etc., and the surface of materials such as paper, resin, metal, etc., and the inclusions 13 are directly acted inside and outside, or liposome complexes are used. Anything that the body 10 can react to as the external environment can be targeted.
 より具体的には、例えば顕微鏡等の光学系中に対象を配置し、内包物13を含むリポソーム複合体10の分散液を接触させ、任意のリポソーム複合体10に光を照射し、内包物13を放出させる。更に具体的な例については、後述する「(4)用途」において、詳しく説明する。 More specifically, for example, an object is placed in an optical system such as a microscope, the dispersion liquid of the liposome complex 10 containing the inclusions 13 is brought into contact, any liposome complex 10 is irradiated with light, and the inclusions 13 are exposed. is released. A more specific example will be described in detail in "(4) Application" described later.
 本実施形態において、リポソーム複合体10の大きさは、例えば1nm以上1mm以下とすることができ、好ましくは20nm以上100μm以下である。リポソーム複合体10の大きさを1nm以上1mm以下とすることで、リポソーム複合体10に対して直接光を照射することができる。 In this embodiment, the size of the liposome complex 10 can be, for example, 1 nm or more and 1 mm or less, preferably 20 nm or more and 100 μm or less. By setting the size of the liposome complex 10 to 1 nm or more and 1 mm or less, the liposome complex 10 can be directly irradiated with light.
 リポソーム複合体10に光を照射する場合、該光のエネルギーは、前記光が照射された前記リポソーム複合体10の近傍における温度が変化するエネルギー未満であることが好ましい。光応答性色素を脂質に対して共有結合で結合させた場合は、内包物を放出する際に、周囲全体を加熱する、又は放出させるための刺激によって大きな熱が発生するため、リポソーム複合体の周辺に影響を与えてしまい(例えば周囲の正常な細胞等へダメージを与えてしまうなど)、内包物のみの作用を得ることが難しい。一方で、本実施形態では、光応答性色素12が前記リポソーム11を構成する脂質に非共有結合性相互作用で担持されており、光応答性色素12と脂質との親和性が高く、従来よりも比較的小さいエネルギーであっても、内包物13を放出させることができる。また、光のエネルギーを、前記光が照射された前記リポソーム複合体10の近傍における温度が変化するエネルギー未満とすることで、周囲への温度上昇等の影響を抑え、非侵襲的でありながらも、望ましくない刺激を極力低減して、内包物13の作用のみが得られることが期待できる。 When the liposome complex 10 is irradiated with light, the energy of the light is preferably less than the energy at which the temperature changes in the vicinity of the liposome complex 10 irradiated with the light. When the photoresponsive dye is covalently bound to the lipid, the entire surroundings are heated when the encapsulation is released, or a large amount of heat is generated by the stimulus for release. It affects the surroundings (for example, it damages surrounding normal cells, etc.), and it is difficult to obtain the action of the inclusion alone. On the other hand, in the present embodiment, the photoresponsive dye 12 is carried by non-covalent interaction with the lipid that constitutes the liposome 11, and the affinity between the photoresponsive dye 12 and the lipid is high. Even relatively small energy can cause the inclusion 13 to be released. In addition, by setting the energy of the light to be less than the energy at which the temperature changes in the vicinity of the liposome complex 10 irradiated with the light, the effects of temperature rise on the surroundings are suppressed, and the effect is non-invasive. , it can be expected that only the action of the inclusion 13 can be obtained while reducing undesirable stimulation as much as possible.
 本実施形態において、前記リポソーム11を構成する脂質と前記光応答性色素12とのモル比は10:1以上であることが好ましい。これにより、光応答性色素12が効率的に脂質膜を刺激することができる。 In this embodiment, it is preferable that the molar ratio between the lipid constituting the liposome 11 and the photoresponsive dye 12 is 10 8 :1 or more. This allows the photoresponsive dye 12 to efficiently stimulate the lipid membrane.
 また、本実施形態において、光応答性色素12は、光熱変換性色素であることが好ましい。これは、本実施形態における非侵襲的な刺激手段として、特に、熱による刺激が好ましいからである。 Further, in the present embodiment, the photoresponsive dye 12 is preferably a photothermal conversion dye. This is because heat stimulation is particularly preferable as the noninvasive stimulation means in this embodiment.
 更に、本実施形態において、光応答性色素12は、光安定性を有することが好ましい。ここで、「光安定性」とは、光を照射した際に耐久性があることを意味する。光安定性を有する色素とは、具体的には、例えば色素に光を照射した際に該色素が分解しにくい性質を有する色素である。より具体的には、例えば色素を含む溶液に光を連続照射した際に、昇温カーブが収束し、かつ、ある時間を境に降温に生じることがない色素である。なお、前記時間は、色素骨格、色素濃度、酸素飽和度、光照射のパワー等によって変化する。 Furthermore, in this embodiment, the photoresponsive dye 12 preferably has photostability. Here, the term "light stability" means durability when irradiated with light. A dye having photostability is, for example, a dye that has the property of being difficult to decompose when the dye is irradiated with light. More specifically, for example, when a solution containing the dye is continuously irradiated with light, the temperature rise curve converges and the temperature does not drop after a certain time. The above time varies depending on the pigment skeleton, pigment concentration, oxygen saturation, power of light irradiation, and the like.
 光安定性を有する光応答性色素12としては、例えば前述した光応答性色素12の具体例の中で、芳香環、縮環共役系、又はそれらが連結、若しくは縮環したもの等が挙げられる。また、エチレン、アセチレン等の芳香性が低い構造からなる直鎖共役分子においても、光安定化のための置換基を導入することにより、光安定性を向上させることが可能である。具体的には、例えばシアニン系であれば、チオフェノール等を導入することで、光安定性を付与することが可能である。光安定化のための置換基は、ハロゲンのような脱離性の高い置換基を除いた、前述した置換基等を用いることができる。また、光応答性色素12に対して、ラジカルスカベンジャーを結合、又は近傍に配置することによっても、光安定性を付与することが可能である。 Examples of the photoresponsive dye 12 having photostability include, among the specific examples of the photoresponsive dye 12 described above, an aromatic ring, a condensed ring conjugate system, or a condensed or condensed ring thereof. . In addition, even in a linear conjugated molecule having a low aromatic structure such as ethylene or acetylene, it is possible to improve the photostability by introducing a substituent for photostabilization. Specifically, for example, in the case of a cyanine-based polymer, photostability can be imparted by introducing thiophenol or the like. As the substituent for photostabilization, the above-described substituents and the like can be used, excluding substituents with high eliminability such as halogen. Photostability can also be imparted to the photoresponsive dye 12 by binding a radical scavenger to it or arranging it in the vicinity.
(3)内包物13 (3) Inclusion 13
 本実施形態では、必要に応じて、内包物13を含んでいてもよい。 In this embodiment, the inclusion 13 may be included as necessary.
 内包物13は、前述したリポソーム11に内包されることができるものであれば、特に限定されない。ここで、「内包」とは、リポソーム11に対して内包物13が内水相及び膜自体に含まれる形態をとることを意味する。具体的には、例えば膜で形成された閉鎖空間内に内包物13を封入する形態や、膜自体に内包する形態等が挙げられ、これらの組合せでもよい。 The inclusion 13 is not particularly limited as long as it can be included in the liposome 11 described above. Here, the term “encapsulated” means that the encapsulated matter 13 is contained in the inner aqueous phase and the membrane itself of the liposome 11 . Specifically, for example, there are a form in which the inclusion 13 is enclosed in a closed space formed of a membrane, a form in which the inclusion is enclosed in the membrane itself, and the like, and a combination thereof is also possible.
 具体的には、例えば、アセチルコリン、脂質、シグナル伝達物質、ATP、mRNA、カルシウムイオン、金属イオン、その他の各種イオン、薬剤、生理活性物質、アミノ酸、ペプチド、タンパク質、核酸、糖、還元剤、酸化剤、酸性物質、アルカリ性物質等が挙げられる。内包物13は、非水溶性又は水溶性のいずれであってもよいが、これらの中でも特に、水溶性であることが好ましい。 Specifically, for example, acetylcholine, lipids, signaling substances, ATP, mRNA, calcium ions, metal ions, other various ions, drugs, physiologically active substances, amino acids, peptides, proteins, nucleic acids, sugars, reducing agents, oxidation agents, acidic substances, alkaline substances, and the like. The inclusion 13 may be either water-insoluble or water-soluble, but among these, water-soluble is particularly preferred.
(4)用途 (4) Applications
 以下、本実施形態に係るリポソーム複合体10の用途について、例を挙げて説明する。
 なお、以下に説明する用途例1~4は、本実施形態に係るリポソーム複合体10の代表的な用途例を示したものであり、これにより本実施形態に係るリポソーム複合体10の用途の範囲が狭く解釈されることはない。
Hereinafter, applications of the liposome complex 10 according to the present embodiment will be described with examples.
Application examples 1 to 4 described below show typical application examples of the liposome complex 10 according to the present embodiment, and thus the range of application of the liposome complex 10 according to the present embodiment. cannot be interpreted narrowly.
 (4-1)用途例1
 生体組織、細胞等への物質輸送プロセスの例を図2に示す。図2のA及びBに示すように、対象に薬剤等を内包したリポソーム複合体10の分散液を接触させ、図2のCに示すように、所望の位置、範囲等に光を照射し、内包した薬剤等放出させることで、所望の位置、範囲等に薬剤等が到達し、図2のDに示すように、対象に内包物13による効果を付与する。この際に、本実施形態に係るリポソーム複合体10は、周囲に与える熱等の刺激が小さいため、非侵襲的な操作が可能である。したがって、神経組織、脳組織等の熱に弱い組織や、皮膚等のデリケートな組織に対しても活用できる。
(4-1) Application example 1
FIG. 2 shows an example of a substance transport process to living tissue, cells, and the like. As shown in FIGS. 2A and 2B, the subject is brought into contact with the dispersion liquid of the liposome complex 10 encapsulating the drug or the like, and as shown in FIG. By releasing the included drug or the like, the drug or the like reaches a desired position, range, or the like, and as shown in FIG. At this time, the liposome complex 10 according to the present embodiment can be manipulated non-invasively, since the liposome complex 10 according to the present embodiment causes less stimulation such as heat to be applied to the surroundings. Therefore, it can be used for tissues such as nervous tissue, brain tissue, etc., which are sensitive to heat, and delicate tissues, such as skin.
 また、前述した物質輸送プロセスでは、タンパク質等の分子を標的とすることも可能である。例えばリポソームを構成する脂質を適宜選択する、又は脂質表面を機能化する等により、特定の分子を標的化し、該分子に対して内包物13を作用させることが可能である。これにより、標的分子の近傍に高濃度で内包物13を作用させることができるため、標的分子と内包物13との間での反応効率、速度等が高くなる。したがって、反応効率が高いため、内包物13の量を少なくでき、結果として、例えば生体内への投与量を抑えることができる。 In addition, it is also possible to target molecules such as proteins in the substance transport process mentioned above. For example, by appropriately selecting lipids constituting the liposome or functionalizing the lipid surface, it is possible to target a specific molecule and allow the inclusion 13 to act on the molecule. As a result, the inclusion 13 can act in the vicinity of the target molecule at a high concentration, so that the reaction efficiency, speed, etc. between the target molecule and the inclusion 13 are increased. Therefore, since the reaction efficiency is high, the amount of the inclusion 13 can be reduced, and as a result, for example, the dose to be administered into the body can be suppressed.
 (4-2)用途例2 (4-2) Application example 2
 メッキ等の物質析出プロセスの例を図3に示す。図3のA及びBに示すように、対象に、触媒等を担持させ(例えば基材に触媒等を固着させるなど)、図3のCに示すように、金属イオン等を内包したリポソーム複合体10の分散液を接触させ、図3のDに示すように、所望の位置、範囲等に光を照射し、内包した金属イオン等を除放させる。その後、図3のEに示すように、徐放された箇所を中心に、緩やかに金属等を析出させることができる。この際に、本実施形態に係るリポソーム複合体10は、熱的な対流が生じないため、析出速度を精度高く制御でき、平滑な表面が得られる。 Fig. 3 shows an example of a material deposition process such as plating. As shown in FIGS. 3A and 3B, the object is allowed to carry a catalyst or the like (for example, the catalyst or the like is fixed to a base material), and as shown in FIG. 10 are brought into contact with each other, and as shown in FIG. 3D, a desired position, range, or the like is irradiated with light to gradually release the contained metal ions or the like. After that, as shown in FIG. 3E, the metal or the like can be gradually precipitated around the areas where the sustained release has occurred. At this time, since the liposome complex 10 according to the present embodiment does not generate thermal convection, the deposition rate can be controlled with high accuracy, and a smooth surface can be obtained.
 (4-3)用途例3 (4-3) Application example 3
 結晶化プロセスの例を図4に示す。図4のA及びBに示すように、基材に、結晶の元となる有機モノマー、無機モノマー等を内包したリポソーム複合体10の分散液を接触させ、図4のCに示すように、基材又は系全体を加熱又は冷却し、結晶成長条件を整える。次いで、図4のDに示すように、所望の位置、範囲等に光を照射し、内包した有機モノマー、無機モノマー等を徐放する。その後、図4のEに示すように、徐放された箇所を中心に、基材上又は系中にて、緩やかに結晶を成長させることができる。この際に、本実施形態に係るリポソーム複合体10は、熱的な対流が生じないため、析出速度を精度高く制御でき、結晶化度が高い結晶が得られる。 An example of the crystallization process is shown in Fig. 4. As shown in FIGS. 4A and 4B, the substrate is brought into contact with the dispersion liquid of the liposome complex 10 encapsulating organic monomers, inorganic monomers, etc., which are the source of crystals, and as shown in FIG. The material or the entire system is heated or cooled to prepare crystal growth conditions. Next, as shown in FIG. 4D, a desired position, range, or the like is irradiated with light to gradually release the encapsulated organic monomer, inorganic monomer, or the like. After that, as shown in FIG. 4E, crystals can be slowly grown on the base material or in the system, centering on the slowly released portion. At this time, since thermal convection does not occur in the liposome complex 10 according to the present embodiment, the deposition rate can be controlled with high accuracy, and crystals with a high degree of crystallinity can be obtained.
 (4-4)用途例4 (4-4) Application example 4
 本実施形態に係るリポソーム複合体10は、脂質で構成された膜を有していれば、その形態が球状でなくても応用することができる。例えばマイクロ流路などに設置された脂質膜をリポソーム複合体10にすると、所望の位置、範囲等に光を照射することで、該流路のゲート開閉などができるようになる。 The liposome complex 10 according to the present embodiment can be applied even if its shape is not spherical as long as it has a membrane composed of lipids. For example, if a lipid membrane placed in a microchannel or the like is used as the liposome complex 10, the channel can be gated or closed by irradiating a desired position, range, or the like with light.
2.第2実施形態(物質送達システム100) 2. Second embodiment (substance delivery system 100)
 図5は、第2実施形態の一例を示す概念模式図である。
 本実施形態に係る物質送達システム100は、前述したリポソーム複合体10と、光照射装置101と、を少なくとも有する。また、必要に応じて、その他の装置等を有していてもよい。リポソーム複合体10については、前述したものと同様であるため、ここでは説明を割愛する。
FIG. 5 is a conceptual schematic diagram showing an example of the second embodiment.
A substance delivery system 100 according to this embodiment includes at least the liposome complex 10 and the light irradiation device 101 described above. In addition, it may have other devices or the like as necessary. Since the liposome complex 10 is the same as described above, the explanation is omitted here.
(1)光照射装置101 (1) Light irradiation device 101
 光照射装置101は、リポソーム複合体10に対して光を照射する。光照射装置101は、例えばレーザ光を照射する光照射部102を備え、照射するレーザ光の周波数、照射強度、パルス幅等を変更可能な照射条件設定部103と、照射領域の移動、照射面積等を調節可能な調節手段104と、光照射部102から照射されたレーザ光に応じて対象から発せられた光を受光する受光部105と、受光部105から得た光を解析する解析部106と、を備える。 The light irradiation device 101 irradiates the liposome complex 10 with light. The light irradiation device 101 includes, for example, a light irradiation unit 102 that irradiates laser light, an irradiation condition setting unit 103 that can change the frequency, irradiation intensity, pulse width, etc. of the laser light to be irradiated, movement of the irradiation area, irradiation area etc., a light-receiving unit 105 that receives light emitted from a target in response to the laser light emitted from the light-irradiating unit 102, and an analyzing unit 106 that analyzes the light obtained from the light-receiving unit 105. And prepare.
 本実施形態において、光照射部102は、リポソーム複合体10に対して2種以上の異なる波長の光を照射することも可能である。また、解析部106の代わりに外部の解析装置等を用いてもよい。具体的には、例えばパーソナルコンピュータやCPUにて実施してもよく、記録媒体(例えば、不揮発性メモリ(USBメモリ)、HDD、CDなど)等を備えるハードウェア資源にプログラムとして格納し、パーソナルコンピュータやCPUによって機能させることも可能である。また、外部の解析装置等は、光照射装置101の各部とネットワークを介して接続されていてよい。 In this embodiment, the light irradiation unit 102 can also irradiate the liposome complex 10 with light of two or more different wavelengths. Also, an external analysis device or the like may be used instead of the analysis unit 106 . Specifically, for example, it may be implemented in a personal computer or CPU, and stored as a program in a hardware resource including a recording medium (eg, nonvolatile memory (USB memory), HDD, CD, etc.), and stored in a personal computer. or by a CPU. Also, an external analysis device or the like may be connected to each part of the light irradiation device 101 via a network.
3.第3実施形態(物質送達方法) 3. Third embodiment (substance delivery method)
 本実施形態に係る物質送達方法は、前述したリポソーム複合体10に光を照射する工程、を少なくとも行う。また、必要に応じて、その他の工程を有していてもよい。リポソーム複合体10については、前述したものと同様であるため、ここでは説明を割愛する。また、前記工程において行われる方法は、前述した光照射装置101で行われる方法と同様であるため、ここでは説明を割愛する。 The substance delivery method according to this embodiment performs at least the step of irradiating the liposome complex 10 with light. Moreover, you may have another process as needed. Since the liposome complex 10 is the same as described above, the explanation is omitted here. Further, since the method performed in the above steps is the same as the method performed by the light irradiation device 101 described above, the description is omitted here.
4.第4実施形態(光照射装置) 4. Fourth embodiment (light irradiation device)
 本実施形態に係る光照射装置は、前述したリポソーム複合体10に光を照射する光照射部、を少なくとも備える。また、必要に応じて、その他の部等を有していてもよい。リポソーム複合体10については、前述したものと同様であるため、ここでは説明を割愛する。また、前記光照射部において行われる処理は、前述した光照射装置101で行われる処理と同様であるため、ここでは説明を割愛する。 The light irradiation device according to this embodiment includes at least a light irradiation unit that irradiates the liposome complex 10 described above with light. In addition, it may have other parts or the like as necessary. Since the liposome complex 10 is the same as described above, the explanation is omitted here. Further, since the processing performed in the light irradiation unit is the same as the processing performed in the light irradiation device 101 described above, the description thereof is omitted here.
 以下、実施例に基づいて本技術を更に詳細に説明する。
 なお、以下に説明する実施例は、本技術の代表的な実施例の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。
Hereinafter, the present technology will be described in further detail based on examples.
It should be noted that the embodiments described below are examples of representative embodiments of the present technology, and the scope of the present technology should not be interpreted narrowly.
<調製例> <Preparation example>
 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), N-(3-carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester (SA), 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[monomethoxy poly(ethylene glycol)(2000)] (PEG-DSPE)を9:1:0.06のモル比で混合し、得られた混合脂質5 mgに対し、0.05, 0.5 mMの色素クロロホルム溶液を0.5 mL添加し、溶解させ、ガラスバイアル中でクロロホルムを留去した。得られた脂質-色素膜に、薬剤、蛍光色素、pH調整剤、イオン濃度調整剤等が溶解した水溶液を加えて水和させ、懸濁液を得た。得られた懸濁液をゲルクロマトグラフィーにより分画し、リポソーム成分のみを分取して、リポソーム複合体を得た。 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), N-(3-carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester (SA), 1,2-Distaroyl-sn-glycero- 3-phosphoethanolamine-N-[monomethoxy poly(ethylene glycol) (2000)] (PEG-DSPE) was mixed at a molar ratio of 9:1:0.06, and 0.05, 0.5 mM was added to 5 mg of the resulting mixed lipid. 0.5 mL of dye chloroform solution was added and dissolved, and chloroform was distilled off in a glass vial. An aqueous solution in which a drug, a fluorescent dye, a pH adjuster, an ion concentration adjuster, etc. were dissolved was added to the obtained lipid-pigment film to hydrate it, thereby obtaining a suspension. The resulting suspension was fractionated by gel chromatography to isolate only the liposome component to obtain a liposome complex.
 なお、本調製例では、前記色素として、下記化学式(1)~(6)で示す化合物を用いた。 In addition, in this preparation example, compounds represented by the following chemical formulas (1) to (6) were used as the dyes.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
<実験例1> <Experimental example 1>
 前記色素として、化学式(4)で示す化合物を選択し、上記調製例と同様の方法にて、リポソーム複合体を調製した。次いで、図6のA及びBに示すように、温度によって蛍光強度が変化する温度プローブ溶液中に、カルセインを内包した前記リポソーム複合体を配置してレーザ光を照射し、リポソーム複合体から発生する熱による周囲の温度変化(図6のB中の丸で囲った1、2及び3の地点)を見積もった。図7に、レーザ光照射時の各地点における温度プローブに由来する蛍光強度比の変化を示す。図7に示すように、いずれの地点においても蛍光強度変化が無く、リポソーム複合体から発する熱による温度変化が観測されなかった。 A compound represented by the chemical formula (4) was selected as the dye, and a liposome complex was prepared in the same manner as in the above preparation example. Next, as shown in FIGS. 6A and 6B, the calcein-encapsulating liposome complex is placed in a temperature probe solution whose fluorescence intensity varies with temperature, and laser light is irradiated to generate The ambient temperature change due to heat (circled points 1, 2 and 3 in FIG. 6B) was estimated. FIG. 7 shows changes in the fluorescence intensity ratio derived from the temperature probe at each point during laser light irradiation. As shown in FIG. 7, there was no fluorescence intensity change at any point, and no temperature change due to heat emitted from the liposome complex was observed.
<実験例2> <Experimental example 2>
 前記色素として、化学式(4)で示す化合物を選択し、上記調製例と同様の方法にて、リポソーム複合体を調製した。次いで、図8に示すように、温度プローブを直接リポソーム複合体に結合させ、かつ、カルセインを前記リポソーム複合体に内包させ、レーザ光照射時のリポソーム複合体近傍の温度変化を観測した。図9に、レーザ光照射時の蛍光強度比の変化を示す。図9のαは、温度プローブに由来する蛍光強度比の変化を示し、図9のβは、カルセインに由来する蛍光強度比の変化を示している。図9に示すように、リポソーム複合体の近傍において、温度変化は観測されなかった一方で、中心の蛍光強度は変化していることが分かった。したがって、リポソーム複合体の近傍の温度を変化させることなく、内包物を放出可能であることが分かった。 A compound represented by the chemical formula (4) was selected as the dye, and a liposome complex was prepared in the same manner as in the above preparation example. Next, as shown in FIG. 8, a temperature probe was directly bound to the liposome complex, calcein was incorporated into the liposome complex, and temperature changes in the vicinity of the liposome complex during laser light irradiation were observed. FIG. 9 shows changes in the fluorescence intensity ratio during laser light irradiation. α in FIG. 9 indicates changes in the fluorescence intensity ratio derived from the temperature probe, and β in FIG. 9 indicates changes in the fluorescence intensity ratio derived from calcein. As shown in FIG. 9, no change in temperature was observed in the vicinity of the liposome complex, while the fluorescence intensity in the center changed. Therefore, it was found that inclusions can be released without changing the temperature in the vicinity of the liposome complex.
 <実験例3> <Experimental example 3>
 前記色素として、化学式(4)で示す化合物を選択し、上記調製例と同様の方法にて、リポソーム複合体を調製した。次いで、カルセインを内包した前記リポソーム複合体に対して37℃又は25℃の異なる温度条件下にてレーザ光を照射した。図10に、37℃の温度条件下におけるレーザ光照射時のカルセインに由来する蛍光強度比の変化を示す。また、図11に、25℃の温度条件下におけるレーザ光照射時のカルセインに由来する蛍光強度比の変化を示す。図10及び図11に示すように、レーザ光照射による刺激が効果的にリポソームを構成する脂質に伝達しているため、従来よりも小さいエネルギーで内包物を漏出させることが可能であることが分かった。また、リポソーム複合体を崩壊させることなく、内包物の段階的な放出が可能であることも分かった。更に、リポソームを構成する脂質の相転移温度から離れた低温下においても、内包物を放出させることが可能であることも分かった。したがって、前記リポソーム複合体は、生体内での使用のみならず、工業的な用途での使用も可能である。 A compound represented by the chemical formula (4) was selected as the dye, and a liposome complex was prepared in the same manner as in the above preparation example. Next, the calcein-encapsulated liposome complex was irradiated with laser light under different temperature conditions of 37°C or 25°C. FIG. 10 shows changes in fluorescence intensity ratio derived from calcein during laser light irradiation under a temperature condition of 37°C. Further, FIG. 11 shows changes in fluorescence intensity ratio derived from calcein during laser light irradiation under a temperature condition of 25°C. As shown in FIGS. 10 and 11, it was found that since the stimulation by laser light irradiation was effectively transmitted to the lipids constituting the liposomes, it was possible to make the inclusions leak out with less energy than in the past. rice field. It was also found that the gradual release of the encapsulation is possible without collapsing the liposome complex. Furthermore, it was also found that the inclusions can be released even at low temperatures that are far from the phase transition temperature of the lipids that constitute the liposomes. Therefore, the liposome complex can be used not only in vivo but also in industrial applications.
<実験例4> <Experimental example 4>
 本実験例4では、前記色素として、化学式(1)、化学式(4)、及び化学式(5)で示す各化合物を選択し、上記調製例と同様の方法にて、各リポソーム複合体を調製した。次いで、カルセインを内包した前記リポソーム複合体に対して25℃の温度条件下にてレーザ光を照射した。図12のAに、化学式(4)で示す化合物を選択した場合のレーザ光照射時のカルセインに由来する蛍光強度比の変化を示し、図12のBに、化学式(1)で示す化合物を選択した場合のレーザ光照射時のカルセインに由来する蛍光強度比の変化を示し、図12のCに、化学式(5)で示す化合物を選択した場合のレーザ光照射時のカルセインに由来する蛍光強度比の変化を示す。図12に示すように、化学式(1)で示す化合物からなる色素は、レーザ光を照射しても内包物が放出されず、光応答性を示さないことが分かった。 In Experimental Example 4, each compound represented by Chemical Formula (1), Chemical Formula (4), and Chemical Formula (5) was selected as the dye, and each liposome complex was prepared in the same manner as in the above Preparation Examples. . Next, the calcein-encapsulated liposome complex was irradiated with a laser beam at a temperature of 25°C. FIG. 12A shows the change in fluorescence intensity ratio derived from calcein upon laser light irradiation when the compound represented by the chemical formula (4) is selected, and FIG. 12B shows the compound represented by the chemical formula (1). FIG. 12C shows the change in the fluorescence intensity ratio derived from calcein during laser light irradiation when the compound represented by the chemical formula (5) was selected. shows a change in As shown in FIG. 12, it was found that the dye composed of the compound represented by the chemical formula (1) did not release inclusions even when irradiated with laser light, and did not exhibit photoresponsiveness.
<実験例5> <Experimental example 5>
 本実験例5では、前記色素として、化学式(1)~化学式(6)で示す各化合物を選択し、上記調製例と同様の方法にて、各リポソーム複合体を調製した。次いで、各リポソーム複合体の懸濁液の吸収スペクトルを測定した。図13に、各リポソーム複合体の懸濁液の吸収スペクトルを測定した結果を示す。図13のAは、negative controlであり、図13のBは、化学式(1)で示す化合物を選択した場合、図13のCは、化学式(2)で示す化合物を選択した場合、図13のDは、化学式(3)で示す化合物を選択した場合、図13のEは、化学式(4)で示す化合物を選択した場合、図13のFは、化学式(5)で示す化合物を選択した場合、図13のGは、化学式(6)で示す化合物を選択した場合を示している。図13に示すように、化学式(1)で示す化合物からなる色素以外は色素の吸収に由来するブロードな吸収スペクトルが観測されたが、化学式(1)で示す化合物からなる色素のみ、吸収スペクトルが観測されなかった。 In Experimental Example 5, each compound represented by Chemical Formulas (1) to (6) was selected as the dye, and each liposome complex was prepared in the same manner as in the above Preparation Examples. Next, the absorption spectrum of the suspension of each liposome complex was measured. FIG. 13 shows the result of measuring the absorption spectrum of the suspension of each liposome complex. A in FIG. 13 is a negative control, B in FIG. 13 is when the compound represented by the chemical formula (1) is selected, and C in FIG. 13 is when the compound represented by the chemical formula (2) is selected. D is when the compound represented by the chemical formula (3) is selected, E in FIG. 13 is when the compound represented by the chemical formula (4) is selected, and F in FIG. 13 is when the compound represented by the chemical formula (5) is selected , and G in FIG. 13 show the case where the compound represented by the chemical formula (6) is selected. As shown in FIG. 13, a broad absorption spectrum derived from the absorption of the dye was observed except for the dye made of the compound represented by the chemical formula (1). not observed.
 これには、各色素とリポソームを構成する脂質との親和性が関係しており、親和性が高い、すなわち、両者の相互作用が強い系において脂質中に色素が入り込む、又は近傍に色素が吸着し、レーザ光による刺激を伝達する起点になることが考えられる。したがって、化学式(1)で示す化合物からなる色素は、脂質との相互作用が低いため、脂質に取り込まれず、該色素と脂質とで構成されたリポソーム複合体は、結果として、光応答性が低いと考えられる。 This is related to the affinity between each dye and the lipid that constitutes the liposome, and the dye enters the lipid in a system with high affinity, that is, the interaction between the two is strong, or the dye is adsorbed in the vicinity. It is conceivable that it will become a starting point for transmitting stimulation by laser light. Therefore, the dye composed of the compound represented by the chemical formula (1) has low interaction with lipids and is not incorporated into lipids, resulting in a liposome complex composed of the dye and lipids having low photoresponsiveness. it is conceivable that.
<実験例6> <Experimental example 6>
 本実験例6では、前記色素として、化学式(1)で示す化合物を除く、化学式(2)~化学式(6)で示す各化合物を選択し、それぞれの色素を有機溶媒に溶解させ、室温下でレーザ光を照射しながら、各溶液の温度変化を経時的に観測した。図14に、各溶液の温度を経時的に測定した結果を示す。図14に示すように、いずれの色素も照射時間と共に温度が上昇し、光が熱に変換されていることが分かるが、化学式(5)で示す化合物からなる色素のみ、8分以降において温度が上昇から降下に転じている。これは、化学式(5)で示す化合物からなる色素の光安定性が低い性質に由来しており、レーザ光を照射するにつれて該色素が分解し、吸光度が下がり、結果として、レーザ光が熱に変換できなくなり、室温に戻りつつある現象を捉えている。すなわち、化学式(5)で示す化合物からなる色素は光安定性が低いため、脂質中で分解して光を熱に変換できず、それらで構成されたリポソーム複合体は、結果として、前述した実験例5に示すように、光応答性が低いことが分かった。 In this Experimental Example 6, each compound represented by the chemical formulas (2) to (6), excluding the compound represented by the chemical formula (1), was selected as the dye, and each dye was dissolved in an organic solvent and allowed to stand at room temperature. While irradiating the laser light, the temperature change of each solution was observed over time. FIG. 14 shows the results of measuring the temperature of each solution over time. As shown in FIG. 14, it can be seen that the temperature of each dye increases with the irradiation time, and the light is converted into heat. going from rising to falling. This is due to the fact that the dye made of the compound represented by the chemical formula (5) has low photostability, and the dye decomposes as it is irradiated with laser light, resulting in a decrease in absorbance. It captures the phenomenon of being unable to convert and returning to room temperature. That is, since the dye composed of the compound represented by the chemical formula (5) has low photostability, it cannot be decomposed in lipids to convert light into heat. As shown in Example 5, the photoresponsivity was found to be low.
 なお、本技術では、以下のような構成を採用することができる。
〔1〕
 リポソームと、
 前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、
を少なくとも含む、リポソーム複合体。
〔2〕
 前記非共有結合性相互作用は、静電相互作用、疎水性相互作用、ファンデルワールス相互作用、及びπ相互作用からなる群より選ばれるいずれか1以上の相互作用である、〔1〕に記載のリポソーム複合体。
〔3〕
 前記光応答性色素は、一部が1又は複数の置換基により置換された、〔1〕又は〔2〕に記載のリポソーム複合体。
〔4〕
 光が照射されることにより内包物を放出する、〔1〕から〔3〕のいずれかに記載のリポソーム複合体。
〔5〕
 前記リポソーム複合体の大きさは、1nm以上1mm以下である、〔4〕に記載のリポソーム複合体。
〔6〕
 前記光のエネルギーは、前記光が照射された前記リポソーム複合体の近傍における温度が変化するエネルギー未満である、〔4〕又は〔5〕に記載のリポソーム複合体。
〔7〕
 前記脂質と前記光応答性色素とのモル比は10:1以上である、〔1〕から〔6〕のいずれかに記載のリポソーム複合体。
〔8〕
 前記光応答性色素は、光熱変換性色素である、〔1〕から〔7〕のいずれかに記載のリポソーム複合体。
〔9〕
 前記光応答性色素は、光安定性を有する、〔1〕から〔8〕のいずれかに記載のリポソーム複合体。
〔10〕
 リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体と、
 前記リポソーム複合体に光を照射する光照射部、を少なくとも備えた、光照射装置と、を少なくとも有する、物質送達システム。
〔11〕
 リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体に光を照射する工程、
を少なくとも行う、物質送達方法。
〔12〕
 リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体に光を照射する光照射部、
を少なくとも備える、光照射装置。
Note that the following configuration can be adopted in the present technology.
[1]
a liposome;
a photoresponsive dye supported by a non-covalent interaction on the lipid constituting the liposome;
A liposome complex comprising at least
[2]
[1], wherein the non-covalent interactions are any one or more interactions selected from the group consisting of electrostatic interactions, hydrophobic interactions, van der Waals interactions, and π interactions; liposome complex.
[3]
The liposome complex according to [1] or [2], wherein the photoresponsive dye is partially substituted with one or more substituents.
[4]
The liposome complex according to any one of [1] to [3], which releases the entrapped substance upon irradiation with light.
[5]
The liposome complex according to [4], wherein the liposome complex has a size of 1 nm or more and 1 mm or less.
[6]
The liposome complex according to [4] or [5], wherein the energy of the light is less than the energy at which the temperature changes in the vicinity of the liposome complex irradiated with the light.
[7]
The liposome complex according to any one of [1] to [6], wherein the molar ratio between the lipid and the photoresponsive dye is 10 8 :1 or more.
[8]
The liposome complex according to any one of [1] to [7], wherein the photoresponsive dye is a photothermal conversion dye.
[9]
The liposome complex according to any one of [1] to [8], wherein the photoresponsive dye has photostability.
[10]
a liposome complex comprising at least a liposome and a photoresponsive dye supported by a lipid constituting the liposome through non-covalent interaction;
A substance delivery system comprising at least a light irradiation device including at least a light irradiation unit for irradiating the liposome complex with light.
[11]
a step of irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome with light;
A method of substance delivery comprising:
[12]
a light irradiation unit for irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome;
A light irradiation device comprising at least
10:リポソーム複合体
11:リポソーム
12:光応答性色素
13:内包物
100:物質送達システム
101:光照射装置
102:光照射部
103:照射条件設定部
104:調節手段
105:受光部
106:解析部
 
10: Liposome Complex 11: Liposome 12: Photoresponsive Dye 13: Inclusion 100: Substance Delivery System 101: Light Irradiation Device 102: Light Irradiation Unit 103: Irradiation Condition Setting Unit 104: Adjusting Means 105: Light Receiving Unit 106: Analysis Department

Claims (12)

  1.  リポソームと、
     前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、
    を少なくとも含む、リポソーム複合体。
    a liposome;
    a photoresponsive dye supported by a non-covalent interaction on the lipid constituting the liposome;
    A liposome complex comprising at least
  2.  前記非共有結合性相互作用は、静電相互作用、疎水性相互作用、ファンデルワールス相互作用、及びπ相互作用からなる群より選ばれるいずれか1以上の相互作用である、請求項1に記載のリポソーム複合体。 2. The non-covalent interaction according to claim 1, wherein the interaction is any one or more selected from the group consisting of electrostatic interaction, hydrophobic interaction, van der Waals interaction, and π interaction. liposome complex.
  3.  前記光応答性色素は、一部が1又は複数の置換基により置換された、請求項1に記載のリポソーム複合体。 The liposome complex according to claim 1, wherein the photoresponsive dye is partially substituted with one or more substituents.
  4.  光が照射されることにより内包物を放出する、請求項1に記載のリポソーム複合体。 The liposome complex according to claim 1, which releases the entrapped material when irradiated with light.
  5.  前記リポソーム複合体の大きさは、1nm以上1mm以下である、請求項4に記載のリポソーム複合体。 The liposome complex according to claim 4, wherein the size of the liposome complex is 1 nm or more and 1 mm or less.
  6.  前記光のエネルギーは、前記光が照射された前記リポソーム複合体の近傍における温度が変化するエネルギー未満である、請求項4に記載のリポソーム複合体。 The liposome complex according to claim 4, wherein the energy of the light is less than the energy at which the temperature changes in the vicinity of the liposome complex irradiated with the light.
  7.  前記脂質と前記光応答性色素とのモル比は10:1以上である、請求項1に記載のリポソーム複合体。 The liposome complex according to claim 1, wherein the molar ratio of said lipid and said photoresponsive dye is 108 :1 or more.
  8.  前記光応答性色素は、光熱変換性色素である、請求項1に記載のリポソーム複合体。 The liposome complex according to claim 1, wherein the photoresponsive dye is a photothermal conversion dye.
  9.  前記光応答性色素は、光安定性を有する、請求項1に記載のリポソーム複合体。 The liposome complex according to claim 1, wherein the photoresponsive dye has photostability.
  10.  リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体と、
     前記リポソーム複合体に光を照射する光照射部、を少なくとも備えた、光照射装置と、を少なくとも有する、物質送達システム。
    a liposome complex comprising at least a liposome and a photoresponsive dye supported by a lipid constituting the liposome through non-covalent interaction;
    A substance delivery system comprising at least a light irradiation device including at least a light irradiation unit for irradiating the liposome complex with light.
  11.  リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体に光を照射する工程、
    を少なくとも行う、物質送達方法。
    a step of irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome with light;
    A method of substance delivery comprising:
  12.  リポソームと、前記リポソームを構成する脂質に、非共有結合性相互作用で担持された光応答性色素と、を少なくとも含む、リポソーム複合体に光を照射する光照射部、
    を少なくとも備える、光照射装置。
     
     
    a light irradiation unit for irradiating a liposome complex containing at least a liposome and a photoresponsive dye supported by a non-covalent interaction with a lipid constituting the liposome;
    A light irradiation device comprising at least

PCT/JP2022/002035 2021-03-15 2022-01-20 Liposome complex, substance delivery system, substance delivery method, and light irradiation device WO2022196089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506802A JPWO2022196089A1 (en) 2021-03-15 2022-01-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021041841 2021-03-15
JP2021-041841 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196089A1 true WO2022196089A1 (en) 2022-09-22

Family

ID=83320185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002035 WO2022196089A1 (en) 2021-03-15 2022-01-20 Liposome complex, substance delivery system, substance delivery method, and light irradiation device

Country Status (2)

Country Link
JP (1) JPWO2022196089A1 (en)
WO (1) WO2022196089A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516421A (en) * 1999-12-08 2003-05-13 ジェンシャン・アクティーゼルスカブ Substituted phthalocyanines and their precursors
JP2007277218A (en) * 2006-04-03 2007-10-25 Taipei Medical Univ Liposome composition and method for using the same
KR20120131538A (en) * 2011-05-25 2012-12-05 강원대학교산학협력단 Photo-responsive vesicles and preparation method thereof
JP2015028001A (en) * 2013-06-24 2015-02-12 キヤノン株式会社 Photoacoustic imaging agent which has lipid particle containing silicon naphthalocyanine analog
CN107049953A (en) * 2017-06-05 2017-08-18 福州大学 A kind of pH/ near infrared lights response bubble liposome and preparation method thereof
CN107260676A (en) * 2017-06-05 2017-10-20 福州大学 A kind of application of pH/ near infrared lights response bubble liposome

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516421A (en) * 1999-12-08 2003-05-13 ジェンシャン・アクティーゼルスカブ Substituted phthalocyanines and their precursors
JP2007277218A (en) * 2006-04-03 2007-10-25 Taipei Medical Univ Liposome composition and method for using the same
KR20120131538A (en) * 2011-05-25 2012-12-05 강원대학교산학협력단 Photo-responsive vesicles and preparation method thereof
JP2015028001A (en) * 2013-06-24 2015-02-12 キヤノン株式会社 Photoacoustic imaging agent which has lipid particle containing silicon naphthalocyanine analog
CN107049953A (en) * 2017-06-05 2017-08-18 福州大学 A kind of pH/ near infrared lights response bubble liposome and preparation method thereof
CN107260676A (en) * 2017-06-05 2017-10-20 福州大学 A kind of application of pH/ near infrared lights response bubble liposome

Also Published As

Publication number Publication date
JPWO2022196089A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
Jalani et al. Seeing, targeting and delivering with upconverting nanoparticles
Feng et al. Substitution activated precise phototheranostics through supramolecular assembly of AIEgen and calixarene
Leung et al. Light-activated content release from liposomes
Lim et al. In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy
Ng et al. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications
Alvarez‐Lorenzo et al. Light‐sensitive intelligent drug delivery systems
Chen et al. Light-induced liposomes for cancer therapeutics
Babu et al. Functional π-gelators and their applications
Carter et al. Porphyrin–phospholipid liposomes permeabilized by near-infrared light
You et al. Near-infrared light-sensitive liposomes for the enhanced photothermal tumor treatment by the combination with chemotherapy
CA2776796C (en) Porphyrin nanovesicles
Wang et al. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation
Hoebeke The importance of liposomes as models and tools in the understanding of photosensitization mechanisms
Komatsu et al. Solid vesicle membrane made of meso-Tetrakis [(bixinylamino)-o-phenyl] porphyrins
Ng et al. Chlorosome-inspired synthesis of templated metallochlorin-lipid nanoassemblies for biomedical applications
Hou et al. Understanding the dynamic behavior of an anticancer drug, doxorubicin, on a lipid membrane using multiple spectroscopic techniques
Choudhury et al. L-phenylalanine-tethered, naphthalene diimide-based, aggregation-induced, green-emitting organic nanoparticles
Zhao Surface-cross-linked micelles as multifunctionalized organic nanoparticles for controlled release, light harvesting, and catalysis
Chen et al. Light-gated nano-porous capsules from stereoisomer-directed self-assemblies
Rotomskis et al. Complexes of functionalized quantum dots and chlorin e6 in photodynamic therapy
Cho et al. Injectable single-component peptide depot: autonomously rechargeable tumor photosensitization for repeated photodynamic therapy
Mebrouk et al. Fine and Clean Photothermally Controlled NIR Drug Delivery from Biocompatible Nickel‐bis (dithiolene)‐Containing Liposomes
Jyothish et al. Synthesis of new cholesterol-and sugar-anchored squaraine dyes: Further evidence of how electronic factors influence dye formation
Kilian et al. Light-triggered release of large biomacromolecules from porphyrin-phospholipid liposomes
WO2022196089A1 (en) Liposome complex, substance delivery system, substance delivery method, and light irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770851

Country of ref document: EP

Kind code of ref document: A1