WO2022196053A1 - Solid oxide fuel cell and method for producing same - Google Patents

Solid oxide fuel cell and method for producing same Download PDF

Info

Publication number
WO2022196053A1
WO2022196053A1 PCT/JP2022/000685 JP2022000685W WO2022196053A1 WO 2022196053 A1 WO2022196053 A1 WO 2022196053A1 JP 2022000685 W JP2022000685 W JP 2022000685W WO 2022196053 A1 WO2022196053 A1 WO 2022196053A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
mixed layer
cathode
anode
fuel cell
Prior art date
Application number
PCT/JP2022/000685
Other languages
French (fr)
Japanese (ja)
Inventor
李新宇
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2022196053A1 publication Critical patent/WO2022196053A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer

Definitions

  • the present invention relates to a solid oxide fuel cell and its manufacturing method.
  • Patent Documents 1 and 2 In order to develop a solid oxide fuel cell system that can be used in automobiles, etc., it is desired to develop a cell that can withstand vibration and not crack even when the temperature rises rapidly. Therefore, metal support type solid oxide fuel cells have been developed (see, for example, Patent Documents 1 and 2).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a solid oxide fuel cell that can suppress the occurrence of warping and a method for manufacturing the same.
  • a solid oxide fuel cell according to the present invention comprises: a solid electrolyte layer containing a solid oxide having oxide ion conductivity; and an anode having an anode catalyst in the porous body, and a structure in which the anode is provided on the side opposite to the solid electrolyte layer and a metal material and a ceramic material are mixed.
  • a first mixed layer a first support provided on a surface of the first mixed layer opposite to the solid electrolyte layer and containing a metal as a main component; a cathode having a porous body containing a conductive ceramic and an oxide ion conductive ceramic, and having a cathode catalyst in the porous body; and a second support provided on the surface of the second mixed layer opposite to the solid electrolyte layer and having a metal as a main component.
  • the warp amount of the solid oxide fuel cell may be less than 3%.
  • an insulating member covering the outer peripheries of the first support, the first mixed layer, the anode, the solid electrolyte layer, the cathode, the second mixed layer and the second support may be provided.
  • the solid oxide fuel cell has a substantially rectangular shape in plan view, and the insulating member comprises a surface of the first support opposite to the first mixed layer and a surface of the first support. Extending to the surface of the second support opposite to the second mixed layer, the length of the extension is defined as distance a, and the length of one side of the solid oxide fuel cell is defined as length b. , a/b may be 1/10 or less.
  • the insulating member may be glass.
  • the insulating member penetrates from the outer periphery of the first support, the first mixed layer, the anode, the cathode, the second mixed layer, and the second support to the inside. You may have
  • the anode catalyst may be Ni and GDC, and the cathode catalyst may contain at least one of PrO x , LSM, LSC, and GDC.
  • each of the anode catalyst and the cathode catalyst may have an average particle size of 100 nm or less.
  • first support>first mixed layer> The relationship of the anode is established, and among the porosity of the second support, the porosity of the second mixed layer, and the porosity of the cathode, the second support>the second mixed layer>the A cathodic relationship may also be established.
  • the thickness of the first support > the first mixed layer > the anode is such that the thickness of the first support > the first mixed layer > the anode.
  • a relationship is established between the thickness of the second support, the thickness of the second mixed layer, and the thickness of the cathode: second support>second mixed layer>cathode.
  • the crystal grain size of the metal component of the first support and the second support is larger than the crystal grain size of the metal component of the first mixed layer and the second mixed layer.
  • the porous body may have a porosity of 20% or more in the cross-sectional areas of the anode and the cathode.
  • the thickness of the anode and the cathode may be 2 ⁇ m or more.
  • the cross-sectional area ratio of the ion-conducting ceramics and the electron-conducting ceramics may be 1:9 to 9:1.
  • an electronically conductive ceramics material powder and an oxide ion conductive ceramics material are coated on both sides of an electrolyte green sheet containing a solid oxide material powder having oxide ion conductivity.
  • the support obtained by firing the support green sheet, the mixed layer obtained by firing the mixed layer green sheet, and the A step of covering the outer periphery of the porous body with an insulating member may be included.
  • FIG. 2 is a schematic cross-sectional view illustrating a layered structure of a solid oxide fuel cell
  • FIG. 3 is an enlarged cross-sectional view illustrating details of the first support, first mixed layer, anode, cathode, second mixed layer, and second support
  • FIG. 4 is a diagram for explaining the amount of warpage of a fuel cell
  • (a) and (b) are figures which illustrate an interconnector.
  • 1 is a diagram illustrating a flow of a method for manufacturing a fuel cell
  • FIG. 5 is a schematic cross-sectional view illustrating the laminated structure of a fuel cell according to a second embodiment
  • FIG. 6 is a diagram illustrating the flow of a method for manufacturing a fuel cell according to the second embodiment
  • (a) and (b) are diagrams for explaining the details of the insulating member forming process.
  • FIG. 1 is a schematic cross-sectional view illustrating the layered structure of a solid oxide fuel cell 100 according to the first embodiment.
  • the fuel cell 100 includes an anode 30 on the first surface (lower surface) of a solid electrolyte layer 40 and a first mixed layer 20 on the surface of the anode 30 opposite to the solid electrolyte layer 40.
  • the first support 10 is provided on the surface of the first mixed layer 20 opposite to the solid electrolyte layer 40
  • the cathode 50 is provided on the second surface (upper surface) of the solid electrolyte layer 40
  • the solid electrolyte layer 40 of the cathode 50 and the It has a structure in which the second mixed layer 60 is provided on the opposite side, and the second support 70 is provided on the side of the second mixed layer 60 opposite to the solid electrolyte layer 40 .
  • a plurality of fuel cells 100 may be stacked to form a fuel cell stack.
  • the solid electrolyte layer 40 is a gas-impermeable, gas-impermeable, gas-impermeable, gas-impermeable, gas-impermeable, gas-impermeable dense solid layer.
  • the solid electrolyte layer 40 is preferably made mainly of scandia-yttria-stabilized zirconium oxide (ScYSZ) or the like. When the concentration of Y 2 O 3 +Sc 2 O 3 is between 6 mol % and 15 mol %, the highest oxide ion conductivity is obtained, and it is desirable to use materials with this composition.
  • the thickness of the solid electrolyte layer 40 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. The thinner the electrolyte, the better, but a thickness of 1 ⁇ m or more is desirable in order to prevent gas from leaking from both sides.
  • FIG. 2 is an enlarged cross-sectional view illustrating details of the first support 10, the first mixed layer 20, the anode 30, the cathode 50, the second mixed layer 60, and the second support 70.
  • FIG. 2 is an enlarged cross-sectional view illustrating details of the first support 10, the first mixed layer 20, the anode 30, the cathode 50, the second mixed layer 60, and the second support 70.
  • the first support 10 is a member that has gas permeability and can support the first mixed layer 20 , the anode 30 , the solid electrolyte layer 40 , the cathode 50 and the second mixed layer 60 .
  • the first support 10 is a metal porous body, such as an Fe--Cr alloy porous body.
  • the anode 30 is an electrode having electrode activity as an anode, and has a porous ceramic material (electrode skeleton).
  • the porous body does not contain any metal component.
  • the porous body of anode 30 has electronic conductivity and oxide ion conductivity.
  • Anode 30 contains electronically conductive ceramics 31 .
  • the electronically conductive ceramics 31 is, for example, a perovskite-type oxide having a compositional formula of ABO3 , wherein the A site is at least one selected from the group of Ca, Sr, Ba, and La, and the B site is At least one perovskite oxide selected from Ti and Cr can be used.
  • the molar ratio of A sites to B sites may be B ⁇ A.
  • a LaCrO 3 -based material, a SrTiO 3 -based material, or the like can be used as the electron conductive ceramics 31 .
  • the porous body of the anode 30 contains oxide ion conductive ceramics 32 .
  • the oxide ion conductive ceramics 32 is ScYSZ or the like.
  • ScYSZ having a composition range of 5 mol % to 16 mol % of scandia (Sc 2 O 3 ) and 1 mol % to 3 mol % of yttria (Y 2 O 3 ).
  • ScYSZ in which the combined amount of scandia and yttria is 6 mol % to 15 mol % is more preferable. This is because oxide ion conductivity is highest in this composition range.
  • the oxide ion conductive ceramics 32 is, for example, a material having an oxide ion transport number of 99% or higher. GDC or the like may be used as the oxide ion conductive ceramics 32 . In the example of FIG. 2, the same solid oxide as the solid oxide contained in the solid electrolyte layer 40 is used as the oxide ion conductive ceramics 32 .
  • an electron conductive ceramic 31 and an oxide ion conductive ceramic 32 form a porous body.
  • This porous body forms a plurality of voids.
  • An anode catalyst is supported on the surface of the porous body in the void portion. Therefore, a plurality of anode catalysts are spatially dispersed and arranged in the porous body that is spatially continuously formed.
  • a composite catalyst is preferably used as the anode catalyst.
  • oxide ion conductive ceramics 33 and catalyst metal 34 are preferably supported on the surface of a porous body.
  • the oxide ion conductive ceramics 33 may have the same composition as the oxide ion conductive ceramics 32, but may have a different composition.
  • the metal that functions as the catalyst metal 34 may be in the form of a compound when power is not being generated.
  • Ni may be in the form of NiO (nickel oxide). These compounds are reduced by the reducing fuel gas supplied to the anode 30 during power generation, and take the form of metals that function as anode catalysts.
  • the first mixed layer 20 contains a metal material 21 and a ceramic material 22 .
  • the metal material 21 and the ceramic material 22 are randomly mixed. Therefore, a structure in which a layer of the metal material 21 and a layer of the ceramic material 22 are laminated is not formed. A plurality of voids are also formed in the first mixed layer 20 .
  • the metal material 21 is not particularly limited as long as it is metal. In the example of FIG. 2, the same metal material as that of the first support 10 is used as the metal material 21 .
  • the ceramic material 22 electronic conductive ceramics 31, oxide ion conductive ceramics 32, or the like can be used.
  • the ceramic material 22 ScYSZ, GDC, SrTiO3 - based materials, LaCrO3 - based materials, etc. can be used. Since SrTiO 3 -based materials and LaCrO 3 -based materials have high electronic conductivity, the ohmic resistance in the first mixed layer 20 can be reduced.
  • the cathode 50 is an electrode having electrode activity as a cathode, and has a porous ceramic material (electrode skeleton).
  • the porous body does not contain any metal component.
  • the porous body of the cathode 50 has electronic conductivity and oxide ion conductivity.
  • Cathode 50 contains electronically conductive ceramics 51 .
  • the electronically conductive ceramic 51 is, for example, a perovskite-type oxide having a compositional formula of ABO3 , wherein the A site is at least one selected from the group of Ca, Sr, Ba, and La, and the B site is At least one perovskite oxide selected from Ti and Cr can be used.
  • the molar ratio of A sites to B sites may be B ⁇ A.
  • the electronically conductive ceramics 51 preferably contains the same components as the electronically conductive ceramics 31, and preferably has the same composition ratio.
  • the porous body of the cathode 50 contains oxide ion conductive ceramics 52 .
  • the oxide ion conductive ceramics 52 is ScYSZ or the like.
  • ScYSZ having a composition range of 5 mol % to 16 mol % of scandia (Sc 2 O 3 ) and 1 mol % to 3 mol % of yttria (Y 2 O 3 ).
  • ScYSZ in which the combined amount of scandia and yttria is 6 mol % to 15 mol % is more preferable. This is because oxide ion conductivity is highest in this composition range.
  • the oxide ion conductive ceramics 52 is, for example, a material having an oxide ion transport number of 99% or higher. GDC or the like may be used as the oxide ion conductive ceramics 52 .
  • the oxide ion conductive ceramics 52 preferably contains the same components as the oxide ion conductive ceramics 32, and preferably has the same composition ratio. In the example of FIG. 2, the same solid oxide as the solid oxide contained in the solid electrolyte layer 40 is used as the oxide ion conductive ceramics 52 .
  • an electronically conductive ceramics 51 and an oxide ion conductive ceramics 52 form a porous body.
  • This porous body forms a plurality of voids.
  • a cathode catalyst 53 is supported on the surface of the porous body in the void portion. Therefore, the plurality of cathode catalysts 53 are spatially dispersed and arranged in the spatially continuous porous body.
  • Praseodymium oxide (PrO x ), LSM (lanthanum strontium manganite), LSC (lanthanum strontium cobaltite), or the like can be used as the cathode catalyst 53 .
  • LSM is a Sr-doped LaMnO3 - based material.
  • LSM is a Sr-doped LaCoO3 - based material.
  • the second mixed layer 60 contains a metal material 61 and a ceramic material 62 .
  • the metal material 61 and the ceramic material 62 are randomly mixed. Therefore, a structure in which a layer of the metal material 61 and a layer of the ceramic material 62 are laminated is not formed. A plurality of voids are also formed in the second mixed layer 60 .
  • the metal material 61 is not particularly limited as long as it is metal. In the example of FIG. 2, the same metal material as that of the second support 70 is used as the metal material 61 .
  • the ceramics material 62 electronically conductive ceramics 51, oxide ion conductive ceramics 52, or the like can be used.
  • the ceramic material 62 ScYSZ, GDC, SrTiO3 - based materials, LaCrO3 - based materials, etc. can be used. Since SrTiO 3 -based materials and LaCrO 3 -based materials have high electronic conductivity, the ohmic resistance in the second mixed layer 60 can be reduced.
  • the second support 70 is a member that has gas permeability and can support the second mixed layer 60 , the cathode 50 , the solid electrolyte layer 40 , the anode 30 and the first mixed layer 20 .
  • the second support 70 is a metal porous body, such as an Fe--Cr alloy porous body.
  • Fuel cell 100 generates power by the following actions.
  • the second support 70 is supplied with an oxidant gas containing oxygen, such as air.
  • the oxidant gas reaches cathode 50 via second support 70 and second mixed layer 60 .
  • oxygen that reaches the cathode 50 reacts with electrons supplied from an external electric circuit to form oxide ions.
  • the oxide ions conduct through the solid electrolyte layer 40 and move to the anode 30 side.
  • the first support 10 is supplied with a hydrogen-containing fuel gas such as hydrogen gas or reformed gas.
  • the fuel gas reaches anode 30 via first support 10 and first mixed layer 20 .
  • the hydrogen that reaches the anode 30 emits electrons at the anode 30 and reacts with oxide ions that are conducted through the solid electrolyte layer 40 from the cathode 50 side to become water (H 2 O).
  • the emitted electrons are extracted outside by an external electric circuit.
  • the electrons taken out are supplied to the cathode 50 after performing electrical work. Electric power is generated by the above action.
  • the catalyst metal 34 functions as a catalyst in the reaction between hydrogen and oxide ions.
  • the electronically conductive ceramics 31 conducts electrons obtained by the reaction between hydrogen and oxide ions.
  • the oxide ion conductive ceramics 32 conducts oxide ions that reach the anode 30 from the solid electrolyte layer 40 .
  • the cathode catalyst 53 functions as a catalyst in a reaction in which oxide ions are generated from oxygen gas and electrons.
  • Electronically conductive ceramics 51 are responsible for conducting electrons from an external electrical circuit.
  • the oxide ion conductive ceramics 52 is responsible for conduction of oxide ions to the solid electrolyte layer 40 .
  • a fuel cell can be produced by laminating each layer using a powder material and firing them simultaneously. However, if there is a large difference in shrinkage behavior between the layers during the firing process, warping as illustrated in FIG. 3 occurs. If the fuel cells are warped, stress is generated in each fuel cell when stacking a plurality of fuel cells to form a stack, and the fuel cells are likely to crack.
  • distance B the distance between both sides that come into contact with the surface.
  • distance A be the vertical distance from the vertex of the warp to the flat surface.
  • L be the thickness of the cell.
  • the amount of warpage T (%) is defined as (A ⁇ L)/B ⁇ 100 (%).
  • both the anode 30 and the cathode 50 are porous bodies made of electronically conductive ceramics and oxygen ion conductive ceramics. In this configuration, structural differences between anode 30 and cathode 50 are reduced.
  • a first mixed layer 20 is provided on the anode side, and a second mixed layer 60 is provided on the cathode side.
  • a first support 10 is provided on the anode side, and a second support 70 is provided on the cathode side.
  • the fuel cell 100 has a symmetrical structure with the solid electrolyte layer 40 as the center. As a result, the difference in shrinkage behavior of each layer during the firing process is reduced, and warping is suppressed. For example, the warp amount T (%) is within 3%.
  • the first support 10 mainly composed of metal is provided on the anode side and the second support 70 mainly composed of metal is provided on the cathode side, an example is shown in FIG.
  • the contact resistance with the interconnector 80 is lowered, and the ohmic resistance can be reduced.
  • the anode 30 and the cathode 50 are connected to the interconnector via the current collector 82 .
  • FIG. 4(b) by welding the interconnector 80 to the anode 30 and the cathode 50, the ohmic resistance can be further reduced.
  • FIG. 4(b) by welding the interconnector 80 to the anode 30 and the cathode 50, the ohmic resistance can be further reduced.
  • the interconnector 80 is welded to the anode 30 and the cathode 50 via the welding points 81 .
  • the welding technique even if the surface of the metal is covered with an oxide film, the internal metal parts are electrically connected, so the internal resistance becomes almost zero, and the contact resistance becomes almost zero. goes down.
  • the cathode is made of conductive ceramics without providing a support on the cathode side, the contact resistance between the cathode and the interconnector increases. Also, the cathode and the interconnector cannot be welded.
  • both the anode 30 and the cathode 50 are porous bodies made of electron-conducting ceramics and oxygen-ion-conducting ceramics, the difference in structure between the anode 30 and the cathode 50 becomes smaller.
  • Anode 30 and cathode 50 can be fired simultaneously.
  • the adhesion of the anode 30 and the cathode 50 to the solid electrolyte layer 40 is improved, film peeling is suppressed, and the ohmic resistance of the fuel cell 100 as a whole is reduced.
  • firing in a reducing atmosphere is possible.
  • the fuel cell 100 since the fuel cell 100 includes the first support 10 and the second support 70 mainly composed of metal, it has a structure that is resistant to thermal shock, mechanical shock, and the like. Moreover, since the first mixed layer 20 contains the metal material 21 and the ceramic material 22, it has both the material properties of metal and the material properties of ceramics. Therefore, the first mixed layer 20 has high adhesion with the first support 10 and has high adhesion with the anode 30 . As described above, delamination between the first support 10 and the anode 30 can be suppressed. Since the second mixed layer 60 contains the metal material 61 and the ceramic material 62, it has both the material properties of metal and the material properties of ceramics. Therefore, the second mixed layer 60 has high adhesion with the second support 70 and has high adhesion with the cathode 50 . As described above, delamination between the second support 70 and the cathode 50 can be suppressed.
  • the oxide ion conductive ceramics 33 is supported on the porous body of the anode 30.
  • the cathode catalyst 53 is supported on the porous body of the cathode 50.
  • the porosity of the first support 10 the porosity of the first mixed layer 20, and the porosity of the anode 30
  • first support 10>first mixed layer 20>anode 30 It is preferable to be established.
  • a relationship of (second support 70>second mixed layer 60>cathode 50) is established among the porosity of the second support 70, the porosity of the second mixed layer 60, and the porosity of the cathode 50. is preferred.
  • the support can have sufficient gas permeability.
  • having a relatively low porosity provides high electronic conductivity and high oxide ion conductivity while maintaining gas permeability.
  • gas permeability is obtained, and a contact area with the support is obtained, so that adhesion with the support is obtained.
  • the thickness of the first support 10, the thickness of the first mixed layer 20, and the thickness of the anode 30 satisfy the relationship of first support 10>first mixed layer 20>anode 30.
  • the thickness of the second support 70, the thickness of the second mixed layer 60, and the thickness of the cathode 50, the relationship of second support 70>second mixed layer 60>cathode 50 is preferably established.
  • most of the volume (for example, 80% or more) of the entire fuel cell 100 is made of a metal material, so that effects such as rapid heating and cooling and improved mechanical strength such as flexibility can be obtained. .
  • the surface area per unit volume of the catalyst is large from the viewpoint of promoting the chemical reaction.
  • the average crystal grain size of the anode catalyst (the oxide ion conductive ceramics 33 and the catalyst metal 34) and the cathode catalyst 53 is preferably 100 nm or less, more preferably 80 nm or less, and 50 nm or less. is more preferred.
  • the thickness of the anode 30 is within ⁇ 50% of the thickness of the cathode 50
  • the thickness of the first mixed layer 20 is within ⁇ 50% of the thickness of the second mixed layer 60
  • the thickness of the first support 10 is within the second It is preferable that the variation is within ⁇ 50% of the thickness of the support 70 .
  • the crystal grain size of the metal component of the first support 10 and the second support 70 is set to the first mixed layer 20 and second mixed layer 20 It is preferably larger than the crystal grain size of the metal component of layer 60 . If the crystal grain size is large, the gaps between the particles also become large, making it easier for the gas to pass through.
  • the crystal grain size of the metal component of the first support 10 and the second support 70 is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more.
  • the crystal grain size of the metal component of the first support 10 and the second support 70 is preferably 100 ⁇ m or less, preferably 80 ⁇ m or less.
  • the porosity of the porous body is preferably 20% or more, and preferably 50% or more, in the cross-sectional area of the anode 30 and the cathode 50. is more preferable.
  • the thickness of the anode 30 and the cathode 50 is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, more preferably 10 ⁇ m, from the viewpoint of ensuring a sufficient three-phase interface. It is more preferable that it is above.
  • both the lower limit and the upper limit are set for the cross-sectional area ratio of the ion-conducting ceramics and the electron-conducting ceramics in the porous bodies of the anode 30 and the cathode 50.
  • the cross-sectional area ratio of the ion-conducting ceramics and the electron-conducting ceramics is preferably 1:3 to 3:1, preferably 1:9 to 9:1. is more preferable.
  • FIG. 5 is a diagram illustrating the flow of the manufacturing method of the fuel cell 100. As shown in FIG. 5
  • Materials for the support include metal powder (for example, particle size is 10 ⁇ m to 100 ⁇ m), plasticizer (for example, adjusted to 1 wt % to 6 wt % to adjust the adhesion of the sheet), solvent (toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc. (20 wt% to 30 wt% depending on viscosity), vanishing material (organic matter), binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry. .
  • a support material is used as a material for forming a support.
  • the volume ratio of the organic component (vanishing material, binder solid content, plasticizer) to the metal powder is, for example, in the range of 1:1 to 20:1, and the amount of the organic component is adjusted according to the porosity.
  • Ceramic material powder for example, a particle size of 100 nm to 10 ⁇ m
  • small-particle-size metal material powder that is a raw material for the metal materials 21 and 61
  • solvent toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity
  • plasticizer for example, sheet adhesion 1 wt % to 6 wt %), a vanishing material (organic matter), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry.
  • the volume ratio of the organic component (vanishing material, binder solid content, plasticizer) to the ceramic material powder and the metal material powder is, for example, in the range of 1:1 to 5:1, and the amount of the organic component is adjusted according to the porosity. adjust. Also, the pore size of the voids is controlled by adjusting the particle size of the vanishing material.
  • the ceramic material powder may contain electronically conductive material powder and oxide ion conductive material powder. In this case, the volume ratio of the electron conductive material powder and the oxide ion conductive material powder is preferably in the range of 1:9 to 9:1, for example.
  • Ceramic material powder constituting the porous body As materials for the anode, ceramic material powder constituting the porous body, solvent (toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity), plasticizer An agent (for example, adjusted to 1 wt % to 6 wt % to adjust the adhesion of the sheet), a vanishing material (organic matter), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry.
  • solvent toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity
  • plasticizer An agent for example, adjusted to 1 wt % to 6 wt % to adjust the adhesion
  • an electronically conductive material powder (for example, a particle size of 100 nm to 10 ⁇ m) that is the raw material of the electronically conductive ceramics 31, and an oxide ion conductive material that is the raw material of the oxide ion conductive ceramics 32.
  • a flexible material powder (for example, a particle size of 100 nm to 10 ⁇ m) may be used.
  • the volume ratio of the organic component (vanishing material, binder solid content, plasticizer) to the electronic conductive material powder is, for example, in the range of 1:1 to 5:1, and the amount of the organic component is adjusted according to the porosity.
  • the pore size of the voids is controlled by adjusting the particle size of the vanishing material.
  • the volume ratio of the electron conductive material powder and the oxide ion conductive material powder is, for example, in the range of 1:9 to 9:1.
  • Ceramic material powder constituting the porous body As materials for the cathode, ceramic material powder constituting the porous body, solvent (toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity), plasticizer An agent (for example, adjusted to 1 wt % to 6 wt % to adjust the adhesion of the sheet), a vanishing material (organic matter), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry.
  • solvent toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity
  • plasticizer An agent for example, adjusted to 1 wt % to 6 wt % to adjust the adhe
  • an electronically conductive material powder for example, a particle size of 100 nm to 10 ⁇ m
  • an oxide ion conductive material which is a raw material of the oxide ion conductive ceramics 52.
  • a flexible material powder for example, a particle size of 100 nm to 10 ⁇ m
  • the volume ratio of the organic component (vanishing material, binder solid content, plasticizer) to the electronic conductive material powder is, for example, in the range of 1:1 to 5:1, and the amount of the organic component is adjusted according to the porosity.
  • the pore size of the voids is controlled by adjusting the particle size of the vanishing material.
  • the volume ratio of the electron conductive material powder and the oxide ion conductive material powder is, for example, in the range of 1:9 to 9:1.
  • the anode material may be used as the cathode material.
  • oxide ion conductive material powder for example, ScYSZ, YSZ, GDC, etc., with a particle size of 10 nm to 1000 nm
  • solvents toluene, 2-propanol (IPA), 1-butanol, terpineol , butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on the viscosity
  • a plasticizer for example, adjusted from 1 wt% to 6 wt% to adjust the adhesion of the sheet
  • a binder PVB, acrylic resin, ethyl cellulose, etc.
  • the volume ratio of the organic component (binder solid content, plasticizer) to the oxide ion conductive material powder is, for example, in the range of 6:4 to 3:4.
  • a first support green sheet is produced by coating a PET (polyethylene terephthalate) film with the material for the first support.
  • a first mixed layer green sheet is produced by coating a first mixed layer material on another PET film.
  • An anode green sheet is produced by coating an anode material on another PET film.
  • An electrolyte layer green sheet is produced by coating the electrolyte layer material on another PET film.
  • a cathode green sheet is produced by coating a cathode material on another PET film.
  • a second mixed layer green sheet is produced by coating a second mixed layer material on another PET film.
  • a second support green sheet is produced by coating a second support material on another PET film.
  • first support green sheets, one first mixed layer green sheet, one anode green sheet, one electrolyte layer green sheet, one cathode green sheet, and one second mixed layer green sheet. , and a plurality of second support green sheets are laminated in this order, and cut into a predetermined size. After that, it is fired at a temperature range of about 1100° C. to 1300° C. in a reducing atmosphere with an oxygen partial pressure of 10 ⁇ 20 atm or less. Thereby, a cell comprising the first support 10, the first mixed layer 20, the anode 30 porous body, the solid electrolyte layer 40, the cathode 50 porous body, the second mixed layer 60, and the second support 70 can be obtained. can.
  • the reducing gas flowing into the furnace may be a gas obtained by diluting H 2 ( hydrogen) with a nonflammable gas (Ar (argon), He (helium), N 2 (nitrogen), etc.). It may be gas. In consideration of safety, it is preferable to set an upper limit up to the explosion limit. For example, in the case of a mixed gas of H 2 and Ar, the concentration of H 2 is preferably 4% by volume or less.
  • the porous body of the anode 30 is impregnated with raw materials of the oxide ion conductive ceramics 33 and the catalyst metal 34 .
  • raw materials of the oxide ion conductive ceramics 33 and the catalyst metal 34 For example, nitrates or chlorides of Zr, Y, Sc, Ce, Gd, and Ni are combined with water or alcohols so that Gd-doped ceria or Sc, Y-doped zirconia and Ni are produced when sintered at a given temperature in a reducing atmosphere. ethanol, 2-propanol, methanol, etc.), impregnated into the porous body of the anode 30, dried, and heat-treated repeatedly.
  • a cathode catalyst 53 such as PrOx is then impregnated into the porous body of the cathode 50 .
  • PrO 2 x is used as the cathode catalyst 53, for example, nitrate or chloride of Pr is dissolved in water or alcohols (ethanol, 2-propanol, methanol, etc.), impregnated into the porous body of the cathode 50, dried, and heat-treated. is repeated the required number of times.
  • LSM low-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-strength-streng/N-propanol, methanol, etc.
  • the half-cell is impregnated, dried, and the heat treatment is repeated a required number of times.
  • both the electron conductive material and the oxide ion conductive material are used. Structural differences between porous materials are reduced.
  • the first mixed layer 20 is fired on the anode side, and the second mixed layer 60 is fired on the cathode side.
  • the first support 10 is fired on the anode side, and the second support 70 is fired on the cathode side.
  • the fuel cell 100 has a symmetrical structure with the solid electrolyte layer 40 as the center. As a result, the difference in shrinkage behavior of each layer during the firing process is reduced, and warping is suppressed. For example, the amount of warp T (%) is 3% or less.
  • the anode 30 and the cathode 50 can be fired at the same time.
  • the adhesion of the anode 30 and the cathode 50 to the solid electrolyte layer 40 is improved, film peeling is suppressed, and the ohmic resistance of the fuel cell 100 as a whole is reduced.
  • the material for the first mixed layer contains the metallic material and the ceramic material
  • the first mixed layer 20 after firing contains the metallic material 21 and the ceramic material 22 .
  • the first mixed layer 20 has both the material properties of metal and the material properties of ceramics. Therefore, delamination between the first support 10 and the anode 30 can be suppressed during the firing process.
  • the second mixed layer material contains the metal material and the ceramic material
  • the second mixed layer 60 after firing contains the metal material 61 and the ceramic material 62 . Thereby, the second mixed layer 60 has both the material properties of metal and the material properties of ceramics. Therefore, delamination between the second support 70 and the cathode 50 can be suppressed during the firing process.
  • a relationship of (first support 10>first mixed layer 20>anode 30) is established among the porosity of the first support 10, the porosity of the first mixed layer 20, and the porosity of the anode 30, and
  • the porosity of the second support 70, the porosity of the second mixed layer 60, and the porosity of the cathode 50 are such that the relationship (second support 70>second mixed layer 60>cathode 50) is established.
  • the support can have sufficient gas permeability. Electrodes are dense and have high oxide ion conductivity. In the mixed layer, gas permeability is obtained, and a contact area with the support is obtained, so that adhesion with the support is obtained.
  • the manufacturing method according to the present embodiment it is possible to first form the porous body by sintering, and then impregnate the porous body with the composite catalyst and sinter it at a low temperature (for example, 850° C. or lower). Therefore, the reaction between the porous material of the anode 30 and the anode catalyst is suppressed. Moreover, the reaction between the porous body of the cathode 50 and the cathode catalyst is suppressed. Therefore, the degree of freedom in selecting the anode catalyst and the cathode catalyst is increased.
  • FIG. 6 is a schematic cross-sectional view illustrating the laminated structure of the fuel cell 100a according to the second embodiment.
  • the fuel cell 100a differs from the fuel cell 100 of FIG. 1 in that an insulating member 90 functioning as a sealing member is provided.
  • the first support 10, the first mixed layer 20, the anode 30, the solid electrolyte layer 40, the cathode 50, the second mixed layer 60, and the second support 70 have substantially the same size (for example, rectangular or square). )have.
  • the positions of the outer peripheries (side surfaces) of the first support 10, the first mixed layer 20, the anode 30, the solid electrolyte layer 40, the cathode 50, the second mixed layer 60, and the second support 70 are substantially aligned.
  • the outer peripheries of the first support 10, the first mixed layer 20, the anode 30, the solid electrolyte layer 40, the cathode 50, the second mixed layer 60 and the second support 70 form an outer peripheral surface.
  • This outer peripheral surface is called a cell outer peripheral surface.
  • the outer peripheral surface of the cell is covered with an insulating member 90 .
  • the insulating member 90 is not particularly limited as long as it is made of a material having insulating properties, and is, for example, glass.
  • the outer peripheral surface of the cell is covered with the insulating member 90, when the catalyst is impregnated, it is suppressed from permeating along the outer peripheral surface of the cell to the electrode on the opposite side due to capillary action.
  • the permeation of the anode catalyst to the cathode 50 is suppressed, and the permeation of the cathode catalyst to the anode 30 is suppressed. Thereby, the short circuit between electrodes can be suppressed.
  • the insulating member 90 preferably extends to the surface (lower surface) of the first support 10 opposite to the first mixed layer 20 . Moreover, the insulating member 90 preferably extends to the surface (upper surface) of the second support 70 opposite to the second mixed layer 60 . By extending the insulating member 90 to at least one of the lower surface of the first support 10 and the upper surface of the second support 70, penetration of the catalyst to the electrode on the opposite side is further suppressed. Become.
  • the length of one side of the rectangular shape of the first support 10, the first mixed layer 20, the anode 30, the solid electrolyte layer 40, the cathode 50, the second mixed layer 60, and the second support 70 is b.
  • the extension distance of the insulating member 90 with respect to the lower surface of the first support 10 and the extension distance of the insulation member 90 with respect to the upper surface of the second support 70 are referred to as distance a.
  • the effective power generation area ratio can be defined as (area of electrode impregnated with catalyst)/(area of entire electrode). Therefore, it is preferable to set an upper limit for the a/b ratio.
  • the a/b ratio is preferably 1/10 or less, more preferably 1/20 or less, and even more preferably 1/50 or less.
  • the insulating member 90 not only cover the outer peripheral surface of the cell, but also partially intrude from the outer peripheral surface of the cell as illustrated in FIG. In this case, the permeation of the catalyst to the electrode on the opposite side is further suppressed.
  • FIG. 7 is a diagram illustrating the flow of the manufacturing method of the fuel cell 100a. A different point from the manufacturing method of FIG. 5 is that an insulating member forming step is performed between the baking step and the impregnating step.
  • FIGS. 8(a) and 8(b) are diagrams for explaining the details of the insulating member forming process.
  • the cell outer peripheral surfaces (four side surfaces) of the cell 200 obtained by the firing step are attached one by one to a container 300 containing, for example, a glass sealing material, and the cell is dipped. Apply sealing material to the outer peripheral surface. The depth of the dip makes it possible to control the coverage of the sealant coating.
  • the insulating member 90 can be formed by drying and firing.
  • the manufacturing method according to the present embodiment eliminates the need for slurry rebuilding, so the cost can be suppressed. Further, in the method of forming an insulating member on the outer peripheral surface of the cell, the above-described distance a can be reduced, so that the effective power generation area ratio can be increased.
  • a fuel cell was manufactured according to the manufacturing method according to the above embodiment.
  • Example 1 SUS (stainless steel) powder was used as the support material. ScYSZ was used as the electrolyte layer. A LaCrO 3 -based material was used for the electron-conducting ceramics of the anode, and ScYSZ was used for the oxide ion-conducting ceramics. A LaCrO 3 -based material was used for the electron-conducting ceramics of the cathode, and ScYSZ was used for the oxide ion-conducting ceramics. A LaCrO 3 -based material was used as the ceramic material for the mixed layer. SUS was used as the metal material of the mixed layer.
  • a first support green sheet, a first mixed layer green sheet, an anode green sheet, an electrolyte green sheet, a cathode green sheet, a second mixed layer green sheet, and a second support green sheet are laminated in this order and subjected to a firing process, A single cell with a symmetrical structure was fabricated.
  • the cathode porous body was impregnated with PrOx as a cathode catalyst.
  • the anode porous body was impregnated with Ni and GDC as an anode catalyst.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.5 ⁇ cm 2 and the reaction resistance was 0.4 ⁇ cm 2 .
  • Example 2 In Example 2, the cathode porous body was impregnated with LSM. Other conditions were the same as in Example 1.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.3 ⁇ cm 2 and the reaction resistance was 0.7 ⁇ cm 2 . It is believed that the difference in ohmic resistance and reaction resistance from Example 1 is due to the difference in the cathode catalyst. From the results of Examples 1 and 2, it can be seen that it is preferable to use LSM from the viewpoint of reducing ohmic resistance, and it is preferable to use PrOx from the viewpoint of reducing reaction resistance.
  • Example 3 the cathode porous body was impregnated with GDC and LSC. In order to suppress the reaction between ScYSZ and LSC, GDC was first impregnated and then LSC was impregnated. Other conditions were the same as in Example 1.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.3 ⁇ cm 2 and the reaction resistance was 0.6 ⁇ cm 2 . It is believed that the difference in ohmic resistance and reaction resistance from Example 1 is due to the difference in the cathode catalyst. From the results of Examples 2 and 3, it can be seen that it is preferable to use LSC from the viewpoint of reducing the reaction resistance.
  • Example 4 The manufacturing conditions for the single cell were the same as in Example 3. When the amount of warpage of the single cell was evaluated, it was less than 1% as in Example 3. It is considered that this is because of the symmetrical structure.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below.
  • the single cell and the interconnector were connected by laser welding without providing a current collector.
  • no current collector was provided between the single cell and the interconnector, and no laser welding was performed.
  • each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.4 ⁇ cm 2 and the reaction resistance was 0.6 ⁇ cm 2 .
  • Comparative example 1 In Comparative Example 1, an asymmetric structure was adopted without providing a support on the cathode side. Other conditions were the same as in Example 3. When the warp amount of the single cell was evaluated, it was 3%. It is considered that this is because the asymmetric structure made the difference in the coefficient of thermal expansion of each material remarkable.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below.
  • the single cell and the interconnector were connected by laser welding without providing a current collector. Attempts were made to weld the mixed layer on the cathode side to the interconnector, but it was found to be unweldable. It is considered that this is because the ceramic material is mixed in the mixed layer. Therefore, instead of welding on the cathode side, the current collector was installed between the single cell and the interconnector, and evaluated in a sandwiched state.
  • each resistance value was separated by impedance measurement.
  • the ohmic resistance of the cell was 0.7 ⁇ cm 2 and the reaction resistance was 0.6 ⁇ cm 2 . Compared with Example 3, the ohmic resistance increased because the cathode side was not connected by welding.
  • Comparative example 2 In Comparative Example 2, a support green sheet, a mixed layer green sheet, an anode green sheet, and an electrolyte green sheet were laminated in this order, and a firing process was performed to produce a half cell. Thereafter, a GDC layer having a thickness of about 700 nm was formed on the solid electrolyte layer by PVD film formation, a cathode was printed using LSC paste, and the layer was fired to complete a single cell. Other conditions were the same as in Example 1.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below.
  • the single cell and the interconnector were connected by laser welding without providing a current collector.
  • the current collector was installed between the unit cell and the interconnector, and the evaluation was performed in a sandwiched state.
  • each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.7 ⁇ cm 2 and the reaction resistance was 0.6 ⁇ cm 2 . Compared with Example 3, the ohmic resistance increased because the cathode side was not connected by welding.
  • Comparative Example 3 In Comparative Example 3, an all-ceramic single cell was produced instead of a metal-supported single cell. A mixture of NiO/YSZ was used for the support. A NiO/ScYSZ cermet electrode was used as the anode. A dense layer of ScYSZ was used as the solid electrolyte layer. A GDC layer having a thickness of about 700 nm was formed on the solid electrolyte layer by PVD film formation, a cathode was printed using LSC paste, and a single cell was completed by firing. No mixed layer was provided.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below.
  • the single cell and the interconnector were connected by laser welding without providing a current collector.
  • the current collector was installed between the unit cell and the interconnector, and the evaluation was performed in a sandwiched state.
  • each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.9 ⁇ cm 2 and the reaction resistance was 0.6 ⁇ cm 2 .
  • an increase in ohmic resistance was observed because none of the electrodes were connected by welding.
  • Comparative Example 4 Comparative Example 4, LSM paste was printed instead of LSC paste for the cathode. Other conditions were the same as in Comparative Example 3.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below.
  • the single cell and the interconnector were connected by laser welding without providing a current collector.
  • the current collector was installed between the unit cell and the interconnector, and the evaluation was performed in a sandwiched state.
  • each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.9 ⁇ cm 2 and the reaction resistance was 1.2 ⁇ cm 2 .
  • an increase in ohmic resistance was observed because none of the electrodes were connected by welding.
  • an increase in reaction resistance was observed. It is believed that this is because the catalytic activity of LSM is lower than that of LSC.
  • Example 5 A single cell having a symmetrical structure was produced by carrying out the firing process in the same manner as in Example 1.
  • the size of the single cell in plan view was 100 mm ⁇ 100 mm.
  • An insulating member was applied to the outer peripheral surface of the cell by dipping. The dip depth was set to 1 mm.
  • the cathode porous body was impregnated with LSM as a cathode catalyst for an area of 98 mm ⁇ 98 mm.
  • the porous body of the anode was impregnated with Ni and GDC as an anode catalyst for an area of 98 mm ⁇ 98 mm.
  • the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure.
  • the impregnating liquid did not seep into the electrode on the opposite side. It is considered that this is because the insulating member is provided.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.3 ⁇ cm 2 and the reaction resistance was 0.7 ⁇ cm 2 . The current that flowed when the terminal voltage was 0.9V was 19.1A.
  • Example 6 A single cell having a symmetrical structure was produced by carrying out the firing process in the same manner as in Example 1.
  • the size of the single cell in plan view was 100 mm ⁇ 100 mm.
  • An insulating member was applied to the outer peripheral surface of the cell by dipping. The dip depth was set to 2 mm.
  • the cathode porous body was impregnated with LSM as a cathode catalyst for an area of 96 mm ⁇ 96 mm.
  • the anode porous body was impregnated with Ni and GDC as an anode catalyst for an area of 96 mm ⁇ 96 mm.
  • the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure.
  • the impregnating liquid did not seep into the electrode on the opposite side. It is considered that this is because the insulating member is provided.
  • Example 5 a single cell power generation evaluation was performed.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below.
  • a single cell and an interconnector were connected by laser welding without providing a current collector.
  • each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.3 ⁇ cm 2 and the reaction resistance was 0.7 ⁇ cm 2 .
  • the current that flowed when the terminal voltage was 0.9V was 18.3A. From the results of comparison between Example 5 and Example 6, it can be seen that the higher the effective power generation area utilization rate, the larger the current.
  • Example 7 A first support green sheet, a first mixed layer green sheet, an anode green sheet, and an electrolyte green sheet were laminated in this order to obtain a laminate. Next, on the electrolyte green sheet, a cathode layer is printed in an area smaller than that of the laminate by 2 to 3 mm from the outer periphery and dried, a mixed layer is printed and dried, and a second support layer is printed.
  • the cathode porous body was impregnated with LSM as a cathode catalyst for an area of 96 mm ⁇ 96 mm.
  • the anode porous body was impregnated with Ni and GDC as an anode catalyst for an area of 96 mm ⁇ 96 mm.
  • the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure.
  • the impregnating liquid did not seep into the electrode on the opposite side. It is considered that this is because the cathode was formed in a small area by carrying out the slurry rebuild.
  • Example 6 did not use a slurry build, it is advantageous in terms of cost.
  • Example 8 A single cell having a symmetrical structure was produced by carrying out the firing process in the same manner as in Example 1.
  • the size of the single cell in plan view was 100 mm ⁇ 100 mm. No insulating member was formed on the outer peripheral surface of the cell.
  • the anode porous body was impregnated with Ni and GDC for an area of 80 mm ⁇ 80 mm.
  • the cathode porous body was impregnated with LSM over an area of 80 mm ⁇ 80 mm.
  • the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure.
  • the impregnating liquid did not seep into the electrode on the opposite side. It is believed that this is because the area impregnated with the catalyst was reduced.
  • Example 5 a single cell power generation evaluation was performed.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below.
  • a single cell and an interconnector were connected by laser welding without providing a current collector.
  • each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.3 ⁇ cm 2 and the reaction resistance was 0.7 ⁇ cm 2 .
  • the current that flowed when the terminal voltage was 0.9V was 12.7A. From the results of comparison between Example 5 and Example 8, it can be seen that the higher the effective power generation area utilization rate, the larger the current.
  • Example 9 A single cell having a symmetrical structure was produced by carrying out the firing process in the same manner as in Example 1.
  • the size of the single cell in plan view was 100 mm ⁇ 100 mm. No insulating member was formed on the outer peripheral surface of the cell.
  • the anode porous body was impregnated with Ni and GDC for an area of 96 mm ⁇ 96 mm.
  • the cathode porous body was impregnated with LSM over an area of 96 mm x 96 mm.
  • Comparative Example 5 In Comparative Example 5, a support green sheet, a mixed layer green sheet, an anode green sheet, and an electrolyte green sheet were laminated in this order, followed by firing to produce a half cell. No insulating member was formed on the outer peripheral surface of the cell. The size of the half-cell in plan view was 100 mm ⁇ 100 mm. The anode porous body was impregnated with Ni and GDC for an area of 96 mm ⁇ 96 mm. After that, LSM was printed on an area of 96 mm ⁇ 96 mm on the solid electrolyte layer and baked at a temperature of 900° C. or lower.
  • the single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below.
  • the single cell and the interconnector were connected by laser welding without providing a current collector.
  • the current collector was installed between the unit cell and the interconnector, and the evaluation was performed in a sandwiched state.
  • each resistance value was separated by impedance measurement.
  • the ohmic resistance of the single cell was 0.7 ⁇ cm 2 and the reaction resistance was 0.7 ⁇ cm 2 .
  • the current that flowed when the terminal voltage was 0.9V was 13.2A.
  • the effective power generation area was the same as that of Example 6, the current obtained by power generation decreased by the amount corresponding to the increase in ohmic resistance.

Abstract

The present invention is provided with: a solid electrolyte layer; an anode which is provided on the lower surface of the solid electrolyte layer, and comprises a porous body that is provided with an anode catalyst, while containing an electron conductive ceramic and an oxide ion conductive ceramic; a first mixed layer which is provided on the lower surface of the anode, and has a structure wherein a metal material and a ceramic material are mixed with each other; a first supporting body which is provided on the lower surface of the first mixed layer, and is mainly composed of a metal; a cathode which is provided on the upper surface of the solid electrolyte layer, and comprises a porous body that is provided with a cathode catalyst, while containing an electron conductive ceramic and an oxide ion conductive ceramic; a second mixed layer which is provided on the upper surface of the cathode, and has a structure wherein a metal material and a ceramic material are mixed with each other; and a second supporting body which is provided on the upper surface of the second mixed layer, and is mainly composed of a metal.

Description

固体酸化物型燃料電池およびその製造方法Solid oxide fuel cell and manufacturing method thereof
 本発明は、固体酸化物型燃料電池およびその製造方法に関する。 The present invention relates to a solid oxide fuel cell and its manufacturing method.
 自動車などで使用可能な固体酸化物型燃料電池システムを開発するためには、振動に耐えられかつ急速昇温でも割れないセルを開発することが望まれている。そこで、金属支持体で指示するメタルサポートタイプの固体酸化物型燃料電池が開発されている(例えば、特許文献1,2参照)。  In order to develop a solid oxide fuel cell system that can be used in automobiles, etc., it is desired to develop a cell that can withstand vibration and not crack even when the temperature rises rapidly. Therefore, metal support type solid oxide fuel cells have been developed (see, for example, Patent Documents 1 and 2).
特表2004-512651号公報Japanese Patent Publication No. 2004-512651 特開2020-21646号公報Japanese Patent Application Laid-Open No. 2020-21646
 しかしながら、アノードとカソードとの間に構造の相違があることに起因して、熱膨張係数に差異が生じ、焼成時に固体酸化物型燃料電池に反りが生じるおそれがある。 However, due to the structural difference between the anode and the cathode, there is a difference in thermal expansion coefficient, which may cause the solid oxide fuel cell to warp during firing.
 本発明は、上記課題に鑑みなされたものであり、反りの発生を抑制することができる固体酸化物型燃料電池およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid oxide fuel cell that can suppress the occurrence of warping and a method for manufacturing the same.
 本発明に係る固体酸化物型燃料電池は、酸化物イオン伝導性を有する固体酸化物を含む固体電解質層と、前記固体電解質層の第1面に設けられ、電子伝導性セラミックスおよび酸化物イオン伝導性セラミックスを含む多孔体を有し、当該多孔体にアノード触媒を有するアノードと、前記アノードの前記固体電解質層と反対側の面に設けられ、金属材料とセラミックス材料とが混合された構造を有する第1混合層と、前記第1混合層の前記固体電解質層と反対側の面に設けられ、金属を主成分とする第1支持体と、前記固体電解質層の第2面に設けられ、電子伝導性セラミックスおよび酸化物イオン伝導性セラミックスを含む多孔体を有し、当該多孔体にカソード触媒を有するカソードと、前記カソードの前記固体電解質層と反対側の面に設けられ、金属材料とセラミックス材料とが混合された構造を有する第2混合層と、前記第2混合層の前記固体電解質層と反対側の面に設けられ、金属を主成分とする第2支持体と、を備えることを特徴とする。 A solid oxide fuel cell according to the present invention comprises: a solid electrolyte layer containing a solid oxide having oxide ion conductivity; and an anode having an anode catalyst in the porous body, and a structure in which the anode is provided on the side opposite to the solid electrolyte layer and a metal material and a ceramic material are mixed. a first mixed layer, a first support provided on a surface of the first mixed layer opposite to the solid electrolyte layer and containing a metal as a main component; a cathode having a porous body containing a conductive ceramic and an oxide ion conductive ceramic, and having a cathode catalyst in the porous body; and a second support provided on the surface of the second mixed layer opposite to the solid electrolyte layer and having a metal as a main component. and
 上記固体酸化物型燃料電池の反り量は、3%未満であってもよい。 The warp amount of the solid oxide fuel cell may be less than 3%.
 上記固体酸化物型燃料電池において、前記第1支持体、前記第1混合層、前記アノード、前記固体電解質層、前記カソード、前記第2混合層および前記第2支持体の外周を覆う絶縁部材を備えていてもよい。 In the above solid oxide fuel cell, an insulating member covering the outer peripheries of the first support, the first mixed layer, the anode, the solid electrolyte layer, the cathode, the second mixed layer and the second support may be provided.
 上記固体酸化物型燃料電池において、前記固体酸化物型燃料電池は、平面視で略矩形状を有し、前記絶縁部材は前記第1支持体の前記第1混合層とは反対側の面および前記第2支持体の前記第2混合層とは反対側の面まで延在し、当該延在の距離を距離aとし、前記固体酸化物型燃料電池の1辺の長さを長さbとした場合に、a/bは、1/10以下であってもよい。 In the above-described solid oxide fuel cell, the solid oxide fuel cell has a substantially rectangular shape in plan view, and the insulating member comprises a surface of the first support opposite to the first mixed layer and a surface of the first support. Extending to the surface of the second support opposite to the second mixed layer, the length of the extension is defined as distance a, and the length of one side of the solid oxide fuel cell is defined as length b. , a/b may be 1/10 or less.
 上記固体酸化物型燃料電池において、前記絶縁部材は、ガラスであってもよい。 In the above solid oxide fuel cell, the insulating member may be glass.
 上記固体酸化物型燃料電池において、前記絶縁部材は、前記第1支持体、前記第1混合層、前記アノード、前記カソード、前記第2混合層および前記第2支持体の外周から内方まで侵入していてもよい。 In the above solid oxide fuel cell, the insulating member penetrates from the outer periphery of the first support, the first mixed layer, the anode, the cathode, the second mixed layer, and the second support to the inside. You may have
 上記固体酸化物型燃料電池において、前記アノード触媒は、NiおよびGDCであり、前記カソード触媒は、PrO、LSM、LSC、GDCの少なくとも1種類を含んでいてもよい。 In the solid oxide fuel cell described above, the anode catalyst may be Ni and GDC, and the cathode catalyst may contain at least one of PrO x , LSM, LSC, and GDC.
 上記固体酸化物型燃料電池において、前記アノード触媒および前記カソード触媒のそれぞれの平均粒径は、100nm以下であってもよい。 In the above solid oxide fuel cell, each of the anode catalyst and the cathode catalyst may have an average particle size of 100 nm or less.
 上記固体酸化物型燃料電池において、前記第1支持体における空隙率、前記第1混合層における空隙率、および前記アノードにおける空隙率の間には、前記第1支持体>前記第1混合層>前記アノードの関係が成立し、前記第2支持体における空隙率、前記第2混合層における空隙率、および前記カソードにおける空隙率の間には、前記第2支持体>前記第2混合層>前記カソードの関係が成立してもよい。 In the above solid oxide fuel cell, among the porosity of the first support, the porosity of the first mixed layer, and the porosity of the anode, the following relationship is satisfied: first support>first mixed layer> The relationship of the anode is established, and among the porosity of the second support, the porosity of the second mixed layer, and the porosity of the cathode, the second support>the second mixed layer>the A cathodic relationship may also be established.
 上記固体酸化物型燃料電池において、前記第1支持体の厚み、前記第1混合層の厚み、および前記アノードの厚みの間には、前記第1支持体>前記第1混合層>前記アノードの関係が成立し、前記第2支持体の厚み、前記第2混合層の厚み、および前記カソードの厚みの間には、前記第2支持体>前記第2混合層>前記カソードの関係が成立してもよい。 In the solid oxide fuel cell, the thickness of the first support > the first mixed layer > the anode is such that the thickness of the first support > the first mixed layer > the anode. A relationship is established between the thickness of the second support, the thickness of the second mixed layer, and the thickness of the cathode: second support>second mixed layer>cathode. may
 上記固体酸化物型燃料電池において、前記第1支持体および前記第2支持体の金属成分の結晶粒径は、前記第1混合層および前記第2混合層の金属成分の結晶粒径よりも大きくてもよい。 In the above solid oxide fuel cell, the crystal grain size of the metal component of the first support and the second support is larger than the crystal grain size of the metal component of the first mixed layer and the second mixed layer. may
 上記固体酸化物型燃料電池において、前記アノードおよび前記カソードの断面積において、前記多孔体の空隙率は、20%以上であってもよい。 In the above solid oxide fuel cell, the porous body may have a porosity of 20% or more in the cross-sectional areas of the anode and the cathode.
 上記固体酸化物型燃料電池において、前記アノードおよび前記カソードの厚みは、2μm以上であってもよい。 In the above solid oxide fuel cell, the thickness of the anode and the cathode may be 2 μm or more.
 上記固体酸化物型燃料電池の前記アノードおよび前記カソードの前記多孔体において、イオン伝導性セラミックスと電子伝導性セラミックスとの断面積比は、1:9~9:1であってもよい。 In the porous bodies of the anode and the cathode of the solid oxide fuel cell, the cross-sectional area ratio of the ion-conducting ceramics and the electron-conducting ceramics may be 1:9 to 9:1.
 本発明に係る固体酸化物型燃料電池の製造方法は、酸化物イオン伝導性を有する固体酸化物材料粉末を含む電解質グリーンシートの両面に、電子伝導性セラミックス材料粉末および酸化物イオン伝導性セラミックス材料粉末を含む電極グリーンシートと、セラミックス材料粉末および金属材料粉末を含む混合層グリーンシートと、金属粉末を含む支持体グリーンシートとが積層された積層体を焼成する工程と、前記電極グリーンシートの焼成によって得られる多孔体に、触媒を含浸する工程と、を含むことを特徴とする。 In the method for manufacturing a solid oxide fuel cell according to the present invention, an electronically conductive ceramics material powder and an oxide ion conductive ceramics material are coated on both sides of an electrolyte green sheet containing a solid oxide material powder having oxide ion conductivity. firing a laminate in which an electrode green sheet containing a powder, a mixed layer green sheet containing a ceramic material powder and a metal material powder, and a support green sheet containing a metal powder are laminated; and firing the electrode green sheet. and a step of impregnating the porous body obtained by the above with a catalyst.
 上記固体酸化物型燃料電池の製造方法において、前記触媒を含浸する工程の前に、前記支持体グリーシートの焼成によって得られる支持体、前記混合層グリーンシートの焼成によって得られる混合層、および前記多孔体の外周を絶縁部材によって覆う工程を含んでいてもよい。 In the above method for producing a solid oxide fuel cell, before the step of impregnating with the catalyst, the support obtained by firing the support green sheet, the mixed layer obtained by firing the mixed layer green sheet, and the A step of covering the outer periphery of the porous body with an insulating member may be included.
 本発明によれば、反りの発生を抑制することができる固体酸化物型燃料電池およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a solid oxide fuel cell that can suppress the occurrence of warping and a method for manufacturing the same.
固体酸化物型の燃料電池の積層構造を例示する模式的断面図である。FIG. 2 is a schematic cross-sectional view illustrating a layered structure of a solid oxide fuel cell; 第1支持体、第1混合層、アノード、カソード、第2混合層、および第2支持体の詳細を例示する拡大断面図である。FIG. 3 is an enlarged cross-sectional view illustrating details of the first support, first mixed layer, anode, cathode, second mixed layer, and second support; 燃料電池の反り量を説明するための図である。FIG. 4 is a diagram for explaining the amount of warpage of a fuel cell; (a)および(b)はインターコネクタを例示する図である。(a) and (b) are figures which illustrate an interconnector. 燃料電池の製造方法のフローを例示する図である。1 is a diagram illustrating a flow of a method for manufacturing a fuel cell; FIG. 第2実施形態に係る燃料電池の積層構造を例示する模式的断面図である。FIG. 5 is a schematic cross-sectional view illustrating the laminated structure of a fuel cell according to a second embodiment; 第2実施形態に係る燃料電池の製造方法のフローを例示する図である。FIG. 6 is a diagram illustrating the flow of a method for manufacturing a fuel cell according to the second embodiment; (a)および(b)は絶縁部材形成工程の詳細を説明するための図である。(a) and (b) are diagrams for explaining the details of the insulating member forming process.
 以下、図面を参照しつつ、実施形態について説明する。 Embodiments will be described below with reference to the drawings.
(第1実施形態)
 図1は、第1実施形態に係る固体酸化物型の燃料電池100の積層構造を例示する模式的断面図である。図1で例示するように、燃料電池100は、固体電解質層40の第1面(下面)にアノード30を備え、アノード30の固体電解質層40と反対側の面に第1混合層20を備え、第1混合層20の固体電解質層40と反対側の面に第1支持体10を備え、固体電解質層40の第2面(上面)にカソード50を備え、カソード50の固体電解質層40と反対側の面に第2混合層60を備え、第2混合層60の固体電解質層40と反対側の面に第2支持体70を備える構造を有している。複数の燃料電池100を積層させて、燃料電池スタックを構成してもよい。
(First embodiment)
FIG. 1 is a schematic cross-sectional view illustrating the layered structure of a solid oxide fuel cell 100 according to the first embodiment. As illustrated in FIG. 1, the fuel cell 100 includes an anode 30 on the first surface (lower surface) of a solid electrolyte layer 40 and a first mixed layer 20 on the surface of the anode 30 opposite to the solid electrolyte layer 40. , the first support 10 is provided on the surface of the first mixed layer 20 opposite to the solid electrolyte layer 40, the cathode 50 is provided on the second surface (upper surface) of the solid electrolyte layer 40, and the solid electrolyte layer 40 of the cathode 50 and the It has a structure in which the second mixed layer 60 is provided on the opposite side, and the second support 70 is provided on the side of the second mixed layer 60 opposite to the solid electrolyte layer 40 . A plurality of fuel cells 100 may be stacked to form a fuel cell stack.
 固体電解質層40は、酸化物イオン伝導性を有する固体酸化物を主成分とし、ガス不透過性を有する緻密な固体層である。固体電解質層40は、スカンジア・イットリア安定化酸化ジルコニウム(ScYSZ)などを主成分とすることが好ましい。Y+Scの濃度は6mol%~15mol%の間で酸化物イオン伝導性が最も高く、この組成の材料を用いることが望ましい。また、固体電解質層40の厚みは、20μm以下であることが好ましく、より望ましいのは10μm以下である。電解質は薄いほど良いが、両側のガスが漏れないように製造するためには、1μm以上の厚みが望ましい。 The solid electrolyte layer 40 is a gas-impermeable, gas-impermeable, gas-impermeable, gas-impermeable, gas-impermeable dense solid layer. The solid electrolyte layer 40 is preferably made mainly of scandia-yttria-stabilized zirconium oxide (ScYSZ) or the like. When the concentration of Y 2 O 3 +Sc 2 O 3 is between 6 mol % and 15 mol %, the highest oxide ion conductivity is obtained, and it is desirable to use materials with this composition. Moreover, the thickness of the solid electrolyte layer 40 is preferably 20 μm or less, more preferably 10 μm or less. The thinner the electrolyte, the better, but a thickness of 1 μm or more is desirable in order to prevent gas from leaking from both sides.
 図2は、第1支持体10、第1混合層20、アノード30、カソード50、第2混合層60、および第2支持体70の詳細を例示する拡大断面図である。 FIG. 2 is an enlarged cross-sectional view illustrating details of the first support 10, the first mixed layer 20, the anode 30, the cathode 50, the second mixed layer 60, and the second support 70. FIG.
 第1支持体10は、ガス透過性を有するとともに、第1混合層20、アノード30、固体電解質層40、カソード50および第2混合層60を支持可能な部材である。第1支持体10は、金属多孔体であり、例えば、Fe-Cr合金の多孔体などである。 The first support 10 is a member that has gas permeability and can support the first mixed layer 20 , the anode 30 , the solid electrolyte layer 40 , the cathode 50 and the second mixed layer 60 . The first support 10 is a metal porous body, such as an Fe--Cr alloy porous body.
 アノード30は、アノードとしての電極活性を有する電極であり、セラミックス材料の多孔体(電極骨格)を有する。多孔体には、金属成分が含まれていない。この構成では、高温還元雰囲気での焼成時に、金属成分の粗大化によるアノードの空隙率の低下が抑制される。また、第1支持体10の金属成分との合金化が抑制され、触媒機能低下が抑制される。 The anode 30 is an electrode having electrode activity as an anode, and has a porous ceramic material (electrode skeleton). The porous body does not contain any metal component. With this configuration, the decrease in the porosity of the anode due to coarsening of the metal component is suppressed during firing in a high-temperature reducing atmosphere. In addition, alloying with the metal component of the first support 10 is suppressed, and deterioration of the catalytic function is suppressed.
 アノード30の多孔体は、電子伝導性および酸化物イオン伝導性を有している。アノード30は、電子伝導性セラミックス31を含有している。電子伝導性セラミックス31として、例えば、組成式がABOで表されるペロブスカイト型酸化物であって、AサイトがCa、Sr、Ba、Laの群から選ばれる少なくとも1種であり、BサイトがTi、Crから選ばれる少なくとも1種であるペロブスカイト型酸化物を用いることができる。AサイトとBサイトのモル比は、B≧Aであってもよい。具体的には、電子伝導性セラミックス31として、LaCrO系材料、SrTiO系材料などを用いることができる。 The porous body of anode 30 has electronic conductivity and oxide ion conductivity. Anode 30 contains electronically conductive ceramics 31 . The electronically conductive ceramics 31 is, for example, a perovskite-type oxide having a compositional formula of ABO3 , wherein the A site is at least one selected from the group of Ca, Sr, Ba, and La, and the B site is At least one perovskite oxide selected from Ti and Cr can be used. The molar ratio of A sites to B sites may be B≧A. Specifically, a LaCrO 3 -based material, a SrTiO 3 -based material, or the like can be used as the electron conductive ceramics 31 .
 また、アノード30の多孔体は、酸化物イオン伝導性セラミックス32を含有している。酸化物イオン伝導性セラミックス32は、ScYSZなどである。例えば、スカンジア(Sc)が5mol%~16mol%で、イットリア(Y)が1mol%~3mol%の組成範囲を有するScYSZを用いることが好ましい。スカンジアとイットリアの添加量が合わせて6mol%~15mol%となるScYSZがさらに好ましい。この組成範囲で、酸化物イオン伝導性が最も高くなるからである。なお、酸化物イオン伝導性セラミックス32は、例えば、酸化物イオンの輸率が99%以上の材料である。酸化物イオン伝導性セラミックス32として、GDCなどを用いてもよい。図2の例では、酸化物イオン伝導性セラミックス32として、固体電解質層40に含まれる固体酸化物と同じ固体酸化物を用いている。 Moreover, the porous body of the anode 30 contains oxide ion conductive ceramics 32 . The oxide ion conductive ceramics 32 is ScYSZ or the like. For example, it is preferable to use ScYSZ having a composition range of 5 mol % to 16 mol % of scandia (Sc 2 O 3 ) and 1 mol % to 3 mol % of yttria (Y 2 O 3 ). ScYSZ in which the combined amount of scandia and yttria is 6 mol % to 15 mol % is more preferable. This is because oxide ion conductivity is highest in this composition range. The oxide ion conductive ceramics 32 is, for example, a material having an oxide ion transport number of 99% or higher. GDC or the like may be used as the oxide ion conductive ceramics 32 . In the example of FIG. 2, the same solid oxide as the solid oxide contained in the solid electrolyte layer 40 is used as the oxide ion conductive ceramics 32 .
 図2で例示するように、アノード30において、例えば、電子伝導性セラミックス31と酸化物イオン伝導性セラミックス32とが多孔体を形成している。この多孔体によって、複数の空隙が形成される。空隙部分の多孔体の表面には、アノード触媒が担持されている。したがって、空間的に連続して形成されている多孔体において、複数のアノード触媒が空間的に分散して配置されている。アノード触媒として、複合触媒を用いることが好ましい。例えば、複合触媒として、酸化物イオン伝導性セラミックス33と、触媒金属34とが、多孔体の表面に担持されていることが好ましい。酸化物イオン伝導性セラミックス33として、例えば、YがドープされたBaCe1-xZr(BCZY、x=0~1)、YがドープされたSrCe1-xZr(SCZY、x=0~1)、SrがドープされたLaScO(LSS)、GDCなどを用いることができる。触媒金属34として、Niなどを用いることができる。酸化物イオン伝導性セラミックス33は、酸化物イオン伝導性セラミックス32と同じ組成を有していてもよいが、異なる組成を有していてもよい。なお、触媒金属34として機能する金属は、未発電時には化合物の形態をとっていてもよい。例えば、Niは、NiO(酸化ニッケル)の形態をとっていてもよい。これらの化合物は、発電時には、アノード30に供給される還元性の燃料ガスによって還元され、アノード触媒として機能する金属の形態をとるようになる。 As illustrated in FIG. 2, in the anode 30, for example, an electron conductive ceramic 31 and an oxide ion conductive ceramic 32 form a porous body. This porous body forms a plurality of voids. An anode catalyst is supported on the surface of the porous body in the void portion. Therefore, a plurality of anode catalysts are spatially dispersed and arranged in the porous body that is spatially continuously formed. A composite catalyst is preferably used as the anode catalyst. For example, as a composite catalyst, oxide ion conductive ceramics 33 and catalyst metal 34 are preferably supported on the surface of a porous body. Examples of oxide ion conductive ceramics 33 include Y-doped BaCe 1-x Zr x O 3 (BCZY, x=0 to 1), Y-doped SrCe 1-x Zr x O 3 (SCZY, x=0 to 1), Sr-doped LaScO 3 (LSS), GDC, and the like can be used. Ni or the like can be used as the catalyst metal 34 . The oxide ion conductive ceramics 33 may have the same composition as the oxide ion conductive ceramics 32, but may have a different composition. Note that the metal that functions as the catalyst metal 34 may be in the form of a compound when power is not being generated. For example, Ni may be in the form of NiO (nickel oxide). These compounds are reduced by the reducing fuel gas supplied to the anode 30 during power generation, and take the form of metals that function as anode catalysts.
 第1混合層20は、金属材料21とセラミックス材料22とを含有する。第1混合層20において、金属材料21とセラミックス材料22とがランダムに混合されている。したがって、金属材料21の層とセラミックス材料22の層とが積層されたような構造が形成されているわけではない。第1混合層20においても、複数の空隙が形成されている。金属材料21は、金属であれば特に限定されるものではない。図2の例では、金属材料21として、第1支持体10と同じ金属材料が用いられている。セラミックス材料22として、電子伝導性セラミックス31、酸化物イオン伝導性セラミックス32などを用いることができる。例えば、セラミックス材料22として、ScYSZ、GDC、SrTiO系材料、LaCrO系材料などを用いることができる。SrTiO系材料およびLaCrO系材料は高い電子伝導性を有するため、第1混合層20におけるオーム抵抗を小さくすることができる。 The first mixed layer 20 contains a metal material 21 and a ceramic material 22 . In the first mixed layer 20, the metal material 21 and the ceramic material 22 are randomly mixed. Therefore, a structure in which a layer of the metal material 21 and a layer of the ceramic material 22 are laminated is not formed. A plurality of voids are also formed in the first mixed layer 20 . The metal material 21 is not particularly limited as long as it is metal. In the example of FIG. 2, the same metal material as that of the first support 10 is used as the metal material 21 . As the ceramic material 22, electronic conductive ceramics 31, oxide ion conductive ceramics 32, or the like can be used. For example, as the ceramic material 22, ScYSZ, GDC, SrTiO3 - based materials, LaCrO3 - based materials, etc. can be used. Since SrTiO 3 -based materials and LaCrO 3 -based materials have high electronic conductivity, the ohmic resistance in the first mixed layer 20 can be reduced.
 カソード50は、カソードとしての電極活性を有する電極であり、セラミックス材料の多孔体(電極骨格)を有する。多孔体には、金属成分が含まれていない。カソード50の多孔体は、電子伝導性および酸化物イオン伝導性を有している。カソード50は、電子伝導性セラミックス51を含有している。電子伝導性セラミックス51として、例えば、組成式がABOで表されるペロブスカイト型酸化物であって、AサイトがCa、Sr、Ba、Laの群から選ばれる少なくとも1種であり、BサイトがTi、Crから選ばれる少なくとも1種であるペロブスカイト型酸化物を用いることができる。AサイトとBサイトのモル比は、B≧Aであってもよい。具体的には、電子伝導性セラミックス51として、LaCrO系材料、SrTiO系材料などを用いることができる。電子伝導性セラミックス51は、電子伝導性セラミックス31と同じ成分を含んでいることが好ましく、同じ組成比率を有していることが好ましい。 The cathode 50 is an electrode having electrode activity as a cathode, and has a porous ceramic material (electrode skeleton). The porous body does not contain any metal component. The porous body of the cathode 50 has electronic conductivity and oxide ion conductivity. Cathode 50 contains electronically conductive ceramics 51 . The electronically conductive ceramic 51 is, for example, a perovskite-type oxide having a compositional formula of ABO3 , wherein the A site is at least one selected from the group of Ca, Sr, Ba, and La, and the B site is At least one perovskite oxide selected from Ti and Cr can be used. The molar ratio of A sites to B sites may be B≧A. Specifically, a LaCrO 3 -based material, a SrTiO 3 -based material, or the like can be used as the electron conductive ceramics 51 . The electronically conductive ceramics 51 preferably contains the same components as the electronically conductive ceramics 31, and preferably has the same composition ratio.
 また、カソード50の多孔体は、酸化物イオン伝導性セラミックス52を含有している。酸化物イオン伝導性セラミックス52は、ScYSZなどである。例えば、スカンジア(Sc)が5mol%~16mol%で、イットリア(Y)が1mol%~3mol%の組成範囲を有するScYSZを用いることが好ましい。スカンジアとイットリアの添加量が合わせて6mol%~15mol%となるScYSZがさらに好ましい。この組成範囲で、酸化物イオン伝導性が最も高くなるからである。なお、酸化物イオン伝導性セラミックス52は、例えば、酸化物イオンの輸率が99%以上の材料である。酸化物イオン伝導性セラミックス52として、GDCなどを用いてもよい。酸化物イオン伝導性セラミックス52は、酸化物イオン伝導性セラミックス32と同じ成分を含んでいることが好ましく、同じ組成比率を有していることが好ましい。図2の例では、酸化物イオン伝導性セラミックス52として、固体電解質層40に含まれる固体酸化物と同じ固体酸化物を用いている。 Moreover, the porous body of the cathode 50 contains oxide ion conductive ceramics 52 . The oxide ion conductive ceramics 52 is ScYSZ or the like. For example, it is preferable to use ScYSZ having a composition range of 5 mol % to 16 mol % of scandia (Sc 2 O 3 ) and 1 mol % to 3 mol % of yttria (Y 2 O 3 ). ScYSZ in which the combined amount of scandia and yttria is 6 mol % to 15 mol % is more preferable. This is because oxide ion conductivity is highest in this composition range. The oxide ion conductive ceramics 52 is, for example, a material having an oxide ion transport number of 99% or higher. GDC or the like may be used as the oxide ion conductive ceramics 52 . The oxide ion conductive ceramics 52 preferably contains the same components as the oxide ion conductive ceramics 32, and preferably has the same composition ratio. In the example of FIG. 2, the same solid oxide as the solid oxide contained in the solid electrolyte layer 40 is used as the oxide ion conductive ceramics 52 .
 図2で例示するように、カソード50において、例えば、電子伝導性セラミックス51と酸化物イオン伝導性セラミックス52とが多孔体を形成している。この多孔体によって、複数の空隙が形成される。空隙部分の多孔体の表面には、カソード触媒53が担持されている。したがって、空間的に連続して形成されている多孔体において、複数のカソード触媒53が空間的に分散して配置されている。カソード触媒53として、酸化プラセオジム(PrO)、LSM(ランタンストロンチウムマンガナイト)、LSC(ランタンストロンチウムコバルタイト)などを用いることができる。LSMは、SrドープしたLaMnO系材料である。LSMは、SrドープしたLaCoO系材料である。 As illustrated in FIG. 2, in the cathode 50, for example, an electronically conductive ceramics 51 and an oxide ion conductive ceramics 52 form a porous body. This porous body forms a plurality of voids. A cathode catalyst 53 is supported on the surface of the porous body in the void portion. Therefore, the plurality of cathode catalysts 53 are spatially dispersed and arranged in the spatially continuous porous body. Praseodymium oxide (PrO x ), LSM (lanthanum strontium manganite), LSC (lanthanum strontium cobaltite), or the like can be used as the cathode catalyst 53 . LSM is a Sr-doped LaMnO3 - based material. LSM is a Sr-doped LaCoO3 - based material.
 第2混合層60は、金属材料61とセラミックス材料62とを含有する。第2混合層60において、金属材料61とセラミックス材料62とがランダムに混合されている。したがって、金属材料61の層とセラミックス材料62の層とが積層されたような構造が形成されているわけではない。第2混合層60においても、複数の空隙が形成されている。金属材料61は、金属であれば特に限定されるものではない。図2の例では、金属材料61として、第2支持体70と同じ金属材料が用いられている。セラミックス材料62として、電子伝導性セラミックス51、酸化物イオン伝導性セラミックス52などを用いることができる。例えば、セラミックス材料62として、ScYSZ、GDC、SrTiO系材料、LaCrO系材料などを用いることができる。SrTiO系材料およびLaCrO系材料は高い電子伝導性を有するため、第2混合層60におけるオーム抵抗を小さくすることができる。 The second mixed layer 60 contains a metal material 61 and a ceramic material 62 . In the second mixed layer 60, the metal material 61 and the ceramic material 62 are randomly mixed. Therefore, a structure in which a layer of the metal material 61 and a layer of the ceramic material 62 are laminated is not formed. A plurality of voids are also formed in the second mixed layer 60 . The metal material 61 is not particularly limited as long as it is metal. In the example of FIG. 2, the same metal material as that of the second support 70 is used as the metal material 61 . As the ceramics material 62, electronically conductive ceramics 51, oxide ion conductive ceramics 52, or the like can be used. For example, as the ceramic material 62, ScYSZ, GDC, SrTiO3 - based materials, LaCrO3 - based materials, etc. can be used. Since SrTiO 3 -based materials and LaCrO 3 -based materials have high electronic conductivity, the ohmic resistance in the second mixed layer 60 can be reduced.
 第2支持体70は、ガス透過性を有するとともに、第2混合層60、カソード50、固体電解質層40、アノード30、および第1混合層20を支持可能な部材である。第2支持体70は、金属多孔体であり、例えば、Fe-Cr合金の多孔体などである。 The second support 70 is a member that has gas permeability and can support the second mixed layer 60 , the cathode 50 , the solid electrolyte layer 40 , the anode 30 and the first mixed layer 20 . The second support 70 is a metal porous body, such as an Fe--Cr alloy porous body.
 燃料電池100は、以下の作用によって発電する。第2支持体70には、空気などの、酸素を含有する酸化剤ガスが供給される。酸化剤ガスは、第2支持体70および第2混合層60を介してカソード50に到達する。カソード50においては、カソード50に到達した酸素と、外部電気回路から供給される電子とが反応して酸化物イオンになる。酸化物イオンは、固体電解質層40を伝導してアノード30側に移動する。一方、第1支持体10には、水素ガス、改質ガスなどの、水素を含有する燃料ガスが供給される。燃料ガスは、第1支持体10および第1混合層20を介してアノード30に到達する。アノード30に到達した水素は、アノード30において電子を放出するとともに、カソード50側から固体電解質層40を伝導してくる酸化物イオンと反応して水(HO)になる。放出された電子は、外部電気回路によって外部に取り出される。外部に取り出された電子は、電気的な仕事をした後に、カソード50に供給される。以上の作用によって、発電が行われる。 Fuel cell 100 generates power by the following actions. The second support 70 is supplied with an oxidant gas containing oxygen, such as air. The oxidant gas reaches cathode 50 via second support 70 and second mixed layer 60 . At the cathode 50, oxygen that reaches the cathode 50 reacts with electrons supplied from an external electric circuit to form oxide ions. The oxide ions conduct through the solid electrolyte layer 40 and move to the anode 30 side. On the other hand, the first support 10 is supplied with a hydrogen-containing fuel gas such as hydrogen gas or reformed gas. The fuel gas reaches anode 30 via first support 10 and first mixed layer 20 . The hydrogen that reaches the anode 30 emits electrons at the anode 30 and reacts with oxide ions that are conducted through the solid electrolyte layer 40 from the cathode 50 side to become water (H 2 O). The emitted electrons are extracted outside by an external electric circuit. The electrons taken out are supplied to the cathode 50 after performing electrical work. Electric power is generated by the above action.
 以上の発電反応において、触媒金属34は、水素と酸化物イオンとの反応における触媒として機能する。電子伝導性セラミックス31は、水素と酸化物イオンとの反応によって得られる電子の伝導を担う。酸化物イオン伝導性セラミックス32は、固体電解質層40からアノード30に到達した酸化物イオンの伝導を担う。カソード触媒53は、酸素ガスと電子とから酸化物イオンが生成される反応における触媒として機能する。電子伝導性セラミックス51は、外部電気回路からの電子の伝導を担う。酸化物イオン伝導性セラミックス52は、固体電解質層40への酸化物イオンの伝導を担う。 In the above power generation reaction, the catalyst metal 34 functions as a catalyst in the reaction between hydrogen and oxide ions. The electronically conductive ceramics 31 conducts electrons obtained by the reaction between hydrogen and oxide ions. The oxide ion conductive ceramics 32 conducts oxide ions that reach the anode 30 from the solid electrolyte layer 40 . The cathode catalyst 53 functions as a catalyst in a reaction in which oxide ions are generated from oxygen gas and electrons. Electronically conductive ceramics 51 are responsible for conducting electrons from an external electrical circuit. The oxide ion conductive ceramics 52 is responsible for conduction of oxide ions to the solid electrolyte layer 40 .
 燃料電池は、粉末材料を用いて各層を積層し、同時に焼成することによって作製することができる。しかしながら、焼成過程における各層の収縮挙動差が大きいと、図3で例示するような反りが生じる。燃料電池に反りが生じていると、複数の燃料電池を積層してスタックを構成する際に、各燃料電池に応力が生じ、割れやすくなる。 A fuel cell can be produced by laminating each layer using a powder material and firing them simultaneously. However, if there is a large difference in shrinkage behavior between the layers during the firing process, warping as illustrated in FIG. 3 occurs. If the fuel cells are warped, stress is generated in each fuel cell when stacking a plurality of fuel cells to form a stack, and the fuel cells are likely to crack.
 なお、図3で例示するように、セルを平坦の面に置いた際に面と接触した両側の距離を距離Bとする。反りの頂点から平坦面までの垂直距離を距離Aとする。セルの厚みをLとする。この場合において、反り量T(%)=(A-L)/B×100(%)と定義する。 It should be noted that, as illustrated in FIG. 3, when the cell is placed on a flat surface, the distance between both sides that come into contact with the surface is defined as a distance B. Let distance A be the vertical distance from the vertex of the warp to the flat surface. Let L be the thickness of the cell. In this case, the amount of warpage T (%) is defined as (A−L)/B×100 (%).
 本実施形態に係る燃料電池100では、アノード30およびカソード50の両方とも、電子伝導性セラミックスと酸素イオン伝導性セラミックスとによって多孔体が形成されている。この構成においては、アノード30とカソード50との間における構造上の相違が小さくなる。また、アノード側に第1混合層20が設けられ、カソード側に第2混合層60が設けられている。さらに、アノード側に第1支持体10が設けられ、カソード側に第2支持体70が設けられている。このように、燃料電池100は、固体電解質層40を中心にして、対称構造を有している。それにより、焼成過程における各層の収縮挙動差が小さくなり、反りが抑制される。例えば、反り量T(%)は、3%以内となる。 In the fuel cell 100 according to this embodiment, both the anode 30 and the cathode 50 are porous bodies made of electronically conductive ceramics and oxygen ion conductive ceramics. In this configuration, structural differences between anode 30 and cathode 50 are reduced. A first mixed layer 20 is provided on the anode side, and a second mixed layer 60 is provided on the cathode side. Furthermore, a first support 10 is provided on the anode side, and a second support 70 is provided on the cathode side. Thus, the fuel cell 100 has a symmetrical structure with the solid electrolyte layer 40 as the center. As a result, the difference in shrinkage behavior of each layer during the firing process is reduced, and warping is suppressed. For example, the warp amount T (%) is within 3%.
 また、アノード側に金属を主成分とする第1支持体10が設けられかつカソード側にも金属を主成分とする第2支持体70が設けられているため、図4(a)で例示するインターコネクタ80との接触抵抗が下がり、オーム抵抗を低減できるようになる。なお、図4(a)では、集電体82を介してアノード30およびカソード50がインターコネクタと接続されている。また、図4(b)で例示するように、インターコネクタ80と、アノード30およびカソード50とを溶接することによって、オーム抵抗をより低減できるようになる。例えば、図4(b)で例示するように、溶接点81を介して、インターコネクタ80と、アノード30およびカソード50とが溶接される。なお、溶接の手法を用いることによって、金属の表面が酸化膜によって覆われていたとしても、内部の金属部分が電気的に接続されることになるため、内部抵抗がほとんどゼロになり、接触抵抗が下がる。例えば、カソード側に支持体を設けずにカソードを導電性セラミックスで構成する場合には、カソードとインターコネクタとの接触抵抗が大きくなる。また、カソードとインターコネクタとを溶接することができない。 In addition, since the first support 10 mainly composed of metal is provided on the anode side and the second support 70 mainly composed of metal is provided on the cathode side, an example is shown in FIG. The contact resistance with the interconnector 80 is lowered, and the ohmic resistance can be reduced. In addition, in FIG. 4A, the anode 30 and the cathode 50 are connected to the interconnector via the current collector 82 . Also, as illustrated in FIG. 4(b), by welding the interconnector 80 to the anode 30 and the cathode 50, the ohmic resistance can be further reduced. For example, as exemplified in FIG. 4B, the interconnector 80 is welded to the anode 30 and the cathode 50 via the welding points 81 . By using the welding technique, even if the surface of the metal is covered with an oxide film, the internal metal parts are electrically connected, so the internal resistance becomes almost zero, and the contact resistance becomes almost zero. goes down. For example, if the cathode is made of conductive ceramics without providing a support on the cathode side, the contact resistance between the cathode and the interconnector increases. Also, the cathode and the interconnector cannot be welded.
 なお、アノード30およびカソード50の両方とも、電子伝導性セラミックスと酸素イオン伝導性セラミックスとによって多孔体が形成されていると、アノード30とカソード50との間における構造上の相違が小さくなるため、アノード30とカソード50とを同時に焼成できるようになる。その結果、固体電解質層40に対するアノード30およびカソード50の密着性が向上し、膜剥がれが抑制され、燃料電池100全体のオーム抵抗が低減される。また、アノード30およびカソード50の多孔体について上述した材料を用いることによって、還元雰囲気での焼成が可能である。 Note that if both the anode 30 and the cathode 50 are porous bodies made of electron-conducting ceramics and oxygen-ion-conducting ceramics, the difference in structure between the anode 30 and the cathode 50 becomes smaller. Anode 30 and cathode 50 can be fired simultaneously. As a result, the adhesion of the anode 30 and the cathode 50 to the solid electrolyte layer 40 is improved, film peeling is suppressed, and the ohmic resistance of the fuel cell 100 as a whole is reduced. Also, by using the above-mentioned materials for the porous bodies of the anode 30 and the cathode 50, firing in a reducing atmosphere is possible.
 また、燃料電池100は、金属を主成分とする第1支持体10および第2支持体70を備えることから、熱衝撃、機械的衝撃等に強い構成を有している。また、第1混合層20は、金属材料21とセラミックス材料22とを含有することから、金属の材料性質とセラミックスの材料性質とを併せ持つ。したがって、第1混合層20は、第1支持体10との間に高い密着性を有するとともに、アノード30との間に高い密着性を有する。以上のことから、第1支持体10とアノード30との間の層間剥がれを抑制することができる。第2混合層60は、金属材料61とセラミックス材料62とを含有することから、金属の材料性質とセラミックスの材料性質とを併せ持つ。したがって、第2混合層60は、第2支持体70との間に高い密着性を有するとともに、カソード50との間に高い密着性を有する。以上のことから、第2支持体70とカソード50との間の層間剥がれを抑制することができる。 In addition, since the fuel cell 100 includes the first support 10 and the second support 70 mainly composed of metal, it has a structure that is resistant to thermal shock, mechanical shock, and the like. Moreover, since the first mixed layer 20 contains the metal material 21 and the ceramic material 22, it has both the material properties of metal and the material properties of ceramics. Therefore, the first mixed layer 20 has high adhesion with the first support 10 and has high adhesion with the anode 30 . As described above, delamination between the first support 10 and the anode 30 can be suppressed. Since the second mixed layer 60 contains the metal material 61 and the ceramic material 62, it has both the material properties of metal and the material properties of ceramics. Therefore, the second mixed layer 60 has high adhesion with the second support 70 and has high adhesion with the cathode 50 . As described above, delamination between the second support 70 and the cathode 50 can be suppressed.
 また、燃料電池100においては、アノード30の多孔体に酸化物イオン伝導性セラミックス33が担持されている。この構造では、先に多孔体を焼成によって形成し、その後に酸化物イオン伝導性セラミックス33を含浸させて低温で焼成することが可能となる。したがって、酸化物イオン伝導性セラミックス32と酸化物イオン伝導性セラミックス33とが同じ組成を有していなくても、酸化物間反応が抑制される。したがって、酸化物イオン伝導性セラミックス33として、複合触媒に適した酸化物を選択する自由度が大きくなる。 In addition, in the fuel cell 100, the oxide ion conductive ceramics 33 is supported on the porous body of the anode 30. In this structure, it is possible to first form the porous body by firing, and then impregnate the porous body with the oxide ion conductive ceramics 33 and fire it at a low temperature. Therefore, even if the oxide ion conductive ceramics 32 and the oxide ion conductive ceramics 33 do not have the same composition, the reaction between the oxides is suppressed. Therefore, the degree of freedom in selecting an oxide suitable for the composite catalyst as the oxide ion conductive ceramics 33 is increased.
 同様に、燃料電池100においては、カソード50の多孔体にカソード触媒53が担持されている。この構造では、先に多孔体を焼成によって形成し、その後にカソード触媒53を含浸させて低温で焼成することが可能となる。したがって、酸化物イオン伝導性セラミックス52とカソード触媒53とが同じ組成を有していなくても、酸化物間反応が抑制される。したがって、カソード触媒53として、好ましい酸化物を選択する自由度が大きくなる。 Similarly, in the fuel cell 100, the cathode catalyst 53 is supported on the porous body of the cathode 50. In this structure, it is possible to first form the porous body by firing, and then impregnate the cathode catalyst 53 and fire it at a low temperature. Therefore, even if the oxide ion conductive ceramics 52 and the cathode catalyst 53 do not have the same composition, the reaction between the oxides is suppressed. Therefore, the degree of freedom in selecting a preferable oxide for the cathode catalyst 53 is increased.
 また、第1支持体10における空隙率、第1混合層20における空隙率、アノード30における空隙率との間には、(第1支持体10>第1混合層20>アノード30)の関係が成立することが好ましい。第2支持体70における空隙率、第2混合層60における空隙率、カソード50における空隙率との間には、(第2支持体70>第2混合層60>カソード50)の関係が成立することが好ましい。この関係が成立することで、支持体においては十分なガス透過性が得られる。電極では、比較的低い空隙率を有することによって、ガス透過性を保ちつつ、高い電子伝導性と高い酸化物イオン伝導性が得られる。混合層では、ガス透過性が得られるとともに、支持体との接触面積が得られて支持体との密着性が得られるようになる。 In addition, among the porosity of the first support 10, the porosity of the first mixed layer 20, and the porosity of the anode 30, there is a relationship of (first support 10>first mixed layer 20>anode 30). It is preferable to be established. A relationship of (second support 70>second mixed layer 60>cathode 50) is established among the porosity of the second support 70, the porosity of the second mixed layer 60, and the porosity of the cathode 50. is preferred. By establishing this relationship, the support can have sufficient gas permeability. In the electrode, having a relatively low porosity provides high electronic conductivity and high oxide ion conductivity while maintaining gas permeability. In the mixed layer, gas permeability is obtained, and a contact area with the support is obtained, so that adhesion with the support is obtained.
 また、第1支持体10の厚み、第1混合層20の厚み、およびアノード30の厚みの間には、第1支持体10>第1混合層20>アノード30の関係が成立することが好ましく、第2支持体70の厚み、第2混合層60の厚み、およびカソード50の厚みの間には、第2支持体70>第2混合層60>カソード50の関係が成立することが好ましい。これらの関係が成立することにより、燃料電池100全体の多く(例えば8割以上)の体積がメタル材料で構成されるため、急速昇降温、フレキシブルなどの機械的強度が向上するという効果が得られる。 Further, it is preferable that the thickness of the first support 10, the thickness of the first mixed layer 20, and the thickness of the anode 30 satisfy the relationship of first support 10>first mixed layer 20>anode 30. , the thickness of the second support 70, the thickness of the second mixed layer 60, and the thickness of the cathode 50, the relationship of second support 70>second mixed layer 60>cathode 50 is preferably established. When these relationships are established, most of the volume (for example, 80% or more) of the entire fuel cell 100 is made of a metal material, so that effects such as rapid heating and cooling and improved mechanical strength such as flexibility can be obtained. .
 アノード反応およびカソード反応は、触媒の表面に起こる化学反応であるため、当該化学反応を促進する観点から、触媒の単位体積あたりの表面積が大きいことが好ましい。例えば、アノード触媒(酸化物イオン伝導性セラミックス33および触媒金属34)およびカソード触媒53の平均結晶粒径は、100nm以下であることが好ましく、80nm以下であることがより好ましく、50nm以下であることがさらに好ましい。 Since the anode reaction and the cathode reaction are chemical reactions that occur on the surface of the catalyst, it is preferable that the surface area per unit volume of the catalyst is large from the viewpoint of promoting the chemical reaction. For example, the average crystal grain size of the anode catalyst (the oxide ion conductive ceramics 33 and the catalyst metal 34) and the cathode catalyst 53 is preferably 100 nm or less, more preferably 80 nm or less, and 50 nm or less. is more preferred.
 アノード30およびカソード50のそれぞれの厚み、第1混合層20および第2混合層60のそれぞれの厚み、および第1支持体10および第2支持体70のそれぞれの厚みにおけるバラツキが大きくなると、燃料電池100の構造が非対称構造に近づき、上下の材料間の熱応力が相殺されず、燃料電池100に反りが生じるおそれがある。そこで、例えば、アノード30の厚みがカソード50の厚みの±50%以内、第1混合層20の厚みが第2混合層60の厚みの±50%以内、第1支持体10の厚みが第2支持体70の厚みの±50%以内のバラつき範囲内であることが好ましい。 If the thicknesses of the anode 30 and the cathode 50, the thicknesses of the first mixed layer 20 and the second mixed layer 60, and the thicknesses of the first support 10 and the second support 70 increase, the fuel cell The structure of the fuel cell 100 approaches an asymmetrical structure, the thermal stress between the upper and lower materials is not canceled, and the fuel cell 100 may warp. Therefore, for example, the thickness of the anode 30 is within ±50% of the thickness of the cathode 50, the thickness of the first mixed layer 20 is within ±50% of the thickness of the second mixed layer 60, and the thickness of the first support 10 is within the second It is preferable that the variation is within ±50% of the thickness of the support 70 .
 発電する際にガスを流しやすくするため、つまりガス拡散抵抗を抑えたい観点から、第1支持体10および第2支持体70の金属成分の結晶粒径は、第1混合層20および第2混合層60の金属成分の結晶粒径よりも大きいことが好ましい。結晶粒径は大きいと、粒子同士間の隙間も大きくなるため、ガスは通過しやすくなる。例えば、第1支持体10および第2支持体70の金属成分の結晶粒径は、10μm以上であることが好ましく、20μm以上であることがより好ましい。また、グリーンシートを作製する際に、金属の結晶粒径は大きすぎると、塗工時に金属粉末は沈降し、グリーンシートの厚み方向に材料の分布が不均一になる。グリーンシートの品質を維持する観点から、第1支持体10および第2支持体70の金属成分の結晶粒径は、100μm以下であることが好ましく、80μm以下であることが好ましい。 In order to facilitate the flow of gas during power generation, that is, from the viewpoint of suppressing gas diffusion resistance, the crystal grain size of the metal component of the first support 10 and the second support 70 is set to the first mixed layer 20 and second mixed layer 20 It is preferably larger than the crystal grain size of the metal component of layer 60 . If the crystal grain size is large, the gaps between the particles also become large, making it easier for the gas to pass through. For example, the crystal grain size of the metal component of the first support 10 and the second support 70 is preferably 10 μm or more, more preferably 20 μm or more. In addition, if the crystal grain size of the metal is too large when producing the green sheet, the metal powder will settle during coating, resulting in non-uniform distribution of the material in the thickness direction of the green sheet. From the viewpoint of maintaining the quality of the green sheet, the crystal grain size of the metal component of the first support 10 and the second support 70 is preferably 100 μm or less, preferably 80 μm or less.
 アノード30およびカソード50の触媒は含浸法によって添加していくため、触媒が入る空間が必要になる。十分な性能を得るために一定量の触媒を空隙に入れる観点から、記アノード30およびカソード50の断面積において、多孔体の空隙率は、20%以上であることが好ましく、50%以上であることがより好ましい。 Since the catalysts for the anode 30 and cathode 50 are added by an impregnation method, a space for the catalyst is required. From the viewpoint of placing a certain amount of catalyst in the pores to obtain sufficient performance, the porosity of the porous body is preferably 20% or more, and preferably 50% or more, in the cross-sectional area of the anode 30 and the cathode 50. is more preferable.
 電極反応は主に三相界面で起きるため、十分な三相界面を確保する観点から、アノード30およびカソード50の厚みは、2μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがさらに好ましい。 Since the electrode reaction mainly occurs at the three-phase interface, the thickness of the anode 30 and the cathode 50 is preferably 2 μm or more, more preferably 5 μm or more, more preferably 10 μm, from the viewpoint of ensuring a sufficient three-phase interface. It is more preferable that it is above.
 高性能の電極を実現するため、電極層において一定の電子伝導性およびイオン電導性を確保する必要がある。イオン電導性セラミックス材料は多すぎると、電極層における電子伝導性が低下し、十分な性能が得られなくなる。一方、電子伝導性セラミックス材料は多すぎると、電極層におけるイオン伝導性が低下し、十分な性能が得られなくなる。電極層におけるイオン電導性と電子伝導性のバランスを取る観点から、アノード30およびカソード50の多孔体において、イオン伝導性セラミックスと電子伝導性セラミックスとの断面積比に下限値と上限値の両方を設けることが好ましい。例えば、アノード30およびカソード50の多孔体において、イオン伝導性セラミックスと電子伝導性セラミックスとの断面積比は、1:3~3:1であることが好ましく、1:9~9:1であることがより好ましい。  In order to achieve a high-performance electrode, it is necessary to ensure a certain level of electronic and ionic conductivity in the electrode layer. If the amount of the ion-conducting ceramic material is too large, the electron conductivity in the electrode layer is lowered, and sufficient performance cannot be obtained. On the other hand, if the amount of the electronically conductive ceramics material is too large, the ionic conductivity of the electrode layer is lowered, and sufficient performance cannot be obtained. From the viewpoint of balancing the ion conductivity and electronic conductivity in the electrode layer, both the lower limit and the upper limit are set for the cross-sectional area ratio of the ion-conducting ceramics and the electron-conducting ceramics in the porous bodies of the anode 30 and the cathode 50. It is preferable to provide For example, in the porous bodies of the anode 30 and the cathode 50, the cross-sectional area ratio of the ion-conducting ceramics and the electron-conducting ceramics is preferably 1:3 to 3:1, preferably 1:9 to 9:1. is more preferable.
 以下、燃料電池100の製造方法について説明する。図5は、燃料電池100の製造方法のフローを例示する図である。 A method for manufacturing the fuel cell 100 will be described below. FIG. 5 is a diagram illustrating the flow of the manufacturing method of the fuel cell 100. As shown in FIG.
(第1支持体用材料および第2支持体用材料の作製工程)
 支持体用材料として、金属粉末(例えば、粒径が10μm~100μm)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、消失材(有機物)、バインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。支持体用材料は、支持体を形成するための材料として用いる。有機成分(消失材、バインダ固形分、可塑剤)と金属粉末との体積比は、例えば1:1~20:1の範囲とし、空隙率に応じて有機成分量を調整する。
(Process for producing first support material and second support material)
Materials for the support include metal powder (for example, particle size is 10 μm to 100 μm), plasticizer (for example, adjusted to 1 wt % to 6 wt % to adjust the adhesion of the sheet), solvent (toluene, 2-propanol ( IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc. (20 wt% to 30 wt% depending on viscosity), vanishing material (organic matter), binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry. . A support material is used as a material for forming a support. The volume ratio of the organic component (vanishing material, binder solid content, plasticizer) to the metal powder is, for example, in the range of 1:1 to 20:1, and the amount of the organic component is adjusted according to the porosity.
(第1混合層用材料および第2混合層用材料の作製工程)
 混合層用材料として、セラミックス材料22,62の原料であるセラミックス材料粉末(例えば、粒径が100nm~10μm)、金属材料21,61の原料である小粒径の金属材料粉末(例えば、粒径が1μm~10μm)、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、消失材(有機物)、およびバインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。有機成分(消失材、バインダ固形分、可塑剤)と、セラミックス材料粉末および金属材料粉末と、の体積比は、例えば1:1~5:1の範囲とし、空隙率に応じて有機成分量を調整する。また、空隙の孔径は、消失材の粒径を調整することによって制御される。セラミックス材料粉末は、電子伝導性材料粉末と酸化物イオン伝導性材料粉末とを含んでいてもよい。この場合、電子伝導性材料粉末と酸化物イオン伝導性材料粉末との体積比率は、例えば、1:9~9:1の範囲とすることが好ましい。また、電子伝導性材料の代わりに電解質材料ScYSZ、GDCなどを用いても界面のはがれが無く、セルの作製が可能である。ただし、オーム抵抗を小さくする観点から、電子伝導性材料と金属粉末とを混合することが好ましい。
(Process for producing first mixed layer material and second mixed layer material)
As materials for the mixed layer, ceramic material powder (for example, a particle size of 100 nm to 10 μm) that is a raw material for the ceramic materials 22 and 62, and small-particle-size metal material powder that is a raw material for the metal materials 21 and 61 (for example, a particle size of 1 μm to 10 μm), solvent (toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity), plasticizer (for example, sheet adhesion 1 wt % to 6 wt %), a vanishing material (organic matter), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry. The volume ratio of the organic component (vanishing material, binder solid content, plasticizer) to the ceramic material powder and the metal material powder is, for example, in the range of 1:1 to 5:1, and the amount of the organic component is adjusted according to the porosity. adjust. Also, the pore size of the voids is controlled by adjusting the particle size of the vanishing material. The ceramic material powder may contain electronically conductive material powder and oxide ion conductive material powder. In this case, the volume ratio of the electron conductive material powder and the oxide ion conductive material powder is preferably in the range of 1:9 to 9:1, for example. Also, even if an electrolyte material such as ScYSZ or GDC is used in place of the electronically conductive material, it is possible to fabricate a cell without peeling of the interface. However, from the viewpoint of reducing the ohmic resistance, it is preferable to mix the electron conductive material and the metal powder.
(アノード用材料の作製工程)
 アノード用材料として、多孔体を構成するセラミックス材料粉末、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、消失材(有機物)、およびバインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。多孔体を構成するセラミックス材料粉末として、電子伝導性セラミックス31の原料である電子伝導性材料粉末(例えば、粒径が100nm~10μm)、酸化物イオン伝導性セラミックス32の原料である酸化物イオン伝導性材料粉末(例えば、粒径が100nm~10μm)などを用いてもよい。有機成分(消失材、バインダ固形分、可塑剤)と電子伝導性材料粉末との体積比は、例えば1:1~5:1の範囲とし、空隙率に応じて有機成分量を調整する。また、空隙の孔径は、消失材の粒径を調整することによって制御される。電子伝導性材料粉末と酸化物イオン伝導性材料粉末との体積比率は、例えば、1:9~9:1の範囲とする。
(Manufacturing process of anode material)
As materials for the anode, ceramic material powder constituting the porous body, solvent (toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity), plasticizer An agent (for example, adjusted to 1 wt % to 6 wt % to adjust the adhesion of the sheet), a vanishing material (organic matter), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry. As the ceramic material powder constituting the porous body, an electronically conductive material powder (for example, a particle size of 100 nm to 10 μm) that is the raw material of the electronically conductive ceramics 31, and an oxide ion conductive material that is the raw material of the oxide ion conductive ceramics 32. A flexible material powder (for example, a particle size of 100 nm to 10 μm) may be used. The volume ratio of the organic component (vanishing material, binder solid content, plasticizer) to the electronic conductive material powder is, for example, in the range of 1:1 to 5:1, and the amount of the organic component is adjusted according to the porosity. Also, the pore size of the voids is controlled by adjusting the particle size of the vanishing material. The volume ratio of the electron conductive material powder and the oxide ion conductive material powder is, for example, in the range of 1:9 to 9:1.
(カソード用材料の作製工程)
 カソード用材料として、多孔体を構成するセラミックス材料粉末、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、消失材(有機物)、およびバインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。多孔体を構成するセラミックス材料粉末として、電子伝導性セラミックス51の原料である電子伝導性材料粉末(例えば、粒径が100nm~10μm)、酸化物イオン伝導性セラミックス52の原料である酸化物イオン伝導性材料粉末(例えば、粒径が100nm~10μm)などを用いてもよい。有機成分(消失材、バインダ固形分、可塑剤)と電子伝導性材料粉末との体積比は、例えば1:1~5:1の範囲とし、空隙率に応じて有機成分量を調整する。また、空隙の孔径は、消失材の粒径を調整することによって制御される。電子伝導性材料粉末と酸化物イオン伝導性材料粉末との体積比率は、例えば、1:9~9:1の範囲とする。なお、アノード用材料とカソード用材料とが共通する場合には、アノード用材料をカソード用材料として用いてもよい。
(Manufacturing process of cathode material)
As materials for the cathode, ceramic material powder constituting the porous body, solvent (toluene, 2-propanol (IPA), 1-butanol, terpineol, butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on viscosity), plasticizer An agent (for example, adjusted to 1 wt % to 6 wt % to adjust the adhesion of the sheet), a vanishing material (organic matter), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) are mixed to form a slurry. As the ceramic material powder constituting the porous body, an electronically conductive material powder (for example, a particle size of 100 nm to 10 μm), which is a raw material of the electronically conductive ceramics 51, and an oxide ion conductive material, which is a raw material of the oxide ion conductive ceramics 52. A flexible material powder (for example, a particle size of 100 nm to 10 μm) may be used. The volume ratio of the organic component (vanishing material, binder solid content, plasticizer) to the electronic conductive material powder is, for example, in the range of 1:1 to 5:1, and the amount of the organic component is adjusted according to the porosity. Also, the pore size of the voids is controlled by adjusting the particle size of the vanishing material. The volume ratio of the electron conductive material powder and the oxide ion conductive material powder is, for example, in the range of 1:9 to 9:1. In addition, when the anode material and the cathode material are common, the anode material may be used as the cathode material.
(電解質層用材料の作製工程)
 電解質層用材料として、酸化物イオン伝導性材料粉末(例えば、ScYSZ、YSZ、GDCなどであって、粒径が10nm~1000nm)、溶剤(トルエン、2-プロパノール(IPA)、1-ブタノール、ターピネオール、酢酸ブチル、エタノールなどで、粘度に応じて20wt%~30wt%)、可塑剤(例えば、シートの密着性を調整するため、1wt%~6wt%まで調整)、およびバインダ(PVB、アクリル樹脂、エチルセルロースなど)を混合してスラリとする。有機成分(バインダ固形分、可塑剤)と酸化物イオン伝導性材料粉末との体積比は、例えば6:4~3:4の範囲とする。
(Manufacturing process of electrolyte layer material)
As materials for the electrolyte layer, oxide ion conductive material powder (for example, ScYSZ, YSZ, GDC, etc., with a particle size of 10 nm to 1000 nm), solvents (toluene, 2-propanol (IPA), 1-butanol, terpineol , butyl acetate, ethanol, etc., 20 wt% to 30 wt% depending on the viscosity), a plasticizer (for example, adjusted from 1 wt% to 6 wt% to adjust the adhesion of the sheet), and a binder (PVB, acrylic resin, ethyl cellulose, etc.) to form a slurry. The volume ratio of the organic component (binder solid content, plasticizer) to the oxide ion conductive material powder is, for example, in the range of 6:4 to 3:4.
(焼成工程)
 まず、PET(ポリエチレンテレフタレート)フィルム上に、第1支持体用材料を塗工することで、第1支持体グリーンシートを作製する。別のPETフィルム上に、第1混合層用材料を塗工することで、第1混合層グリーンシートを作製する。別のPETフィルム上に、アノード用材料を塗工することで、アノードグリーンシートを作製する。別のPETフィルム上に、電解質層用材料を塗工することで、電解質層グリーンシートを作製する。別のPETフィルム上に、カソード用材料を塗工することで、カソードグリーンシートを作製する。別のPETフィルム上に、第2混合層用材料を塗工することで、第2混合層グリーンシートを作製する。別のPETフィルム上に、第2支持体用材料を塗工することで、第2支持体グリーンシートを作製する。例えば、第1支持体グリーンシートを複数枚、第1混合層グリーンシートを1枚、アノードグリーンシートを1枚、電解質層グリーンシートを1枚、カソードグリーンシートを1枚、第2混合層グリーンシートを1枚、第2支持体グリーンシートを複数枚の順に積層し、所定の大きさにカットする。その後、酸素分圧が10-20atm以下の還元雰囲気において1100℃~1300℃程度の温度範囲で焼成する。それにより、第1支持体10、第1混合層20、アノード30の多孔体、固体電解質層40、カソード50の多孔体、第2混合層60、第2支持体70を備えるセルを得ることができる。炉内に流す還元ガスは、H(水素)を不燃ガス(Ar(アルゴン)、He(ヘリウム)、N(窒素)など)で希釈したガスであってもよく、Hが100%のガスであってもよい。安全を考慮して、爆発限界までの上限を設けることが好ましい。例えば、HとArの混合ガスの場合には、Hの濃度は4体積%以下であることが好ましい。
(Baking process)
First, a first support green sheet is produced by coating a PET (polyethylene terephthalate) film with the material for the first support. A first mixed layer green sheet is produced by coating a first mixed layer material on another PET film. An anode green sheet is produced by coating an anode material on another PET film. An electrolyte layer green sheet is produced by coating the electrolyte layer material on another PET film. A cathode green sheet is produced by coating a cathode material on another PET film. A second mixed layer green sheet is produced by coating a second mixed layer material on another PET film. A second support green sheet is produced by coating a second support material on another PET film. For example, a plurality of first support green sheets, one first mixed layer green sheet, one anode green sheet, one electrolyte layer green sheet, one cathode green sheet, and one second mixed layer green sheet. , and a plurality of second support green sheets are laminated in this order, and cut into a predetermined size. After that, it is fired at a temperature range of about 1100° C. to 1300° C. in a reducing atmosphere with an oxygen partial pressure of 10 −20 atm or less. Thereby, a cell comprising the first support 10, the first mixed layer 20, the anode 30 porous body, the solid electrolyte layer 40, the cathode 50 porous body, the second mixed layer 60, and the second support 70 can be obtained. can. The reducing gas flowing into the furnace may be a gas obtained by diluting H 2 ( hydrogen) with a nonflammable gas (Ar (argon), He (helium), N 2 (nitrogen), etc.). It may be gas. In consideration of safety, it is preferable to set an upper limit up to the explosion limit. For example, in the case of a mixed gas of H 2 and Ar, the concentration of H 2 is preferably 4% by volume or less.
(アノード含浸工程)
 次に、酸化物イオン伝導性セラミックス33および触媒金属34の原料を、アノード30の多孔体内に含浸させる。例えば、還元雰囲気で所定の温度で焼成するとGdドープセリアあるいはSc,YドープジルコニアとNiが生成するように、Zr、Y、Sc、Ce、Gd、Niの各硝酸塩または塩化物を水またはアルコール類(エタノール、2-プロパノール、メタノールなど)に溶かし、アノード30の多孔体内に含浸、乾燥させ、熱処理を必要回数繰り返す。
(Anode impregnation step)
Next, the porous body of the anode 30 is impregnated with raw materials of the oxide ion conductive ceramics 33 and the catalyst metal 34 . For example, nitrates or chlorides of Zr, Y, Sc, Ce, Gd, and Ni are combined with water or alcohols so that Gd-doped ceria or Sc, Y-doped zirconia and Ni are produced when sintered at a given temperature in a reducing atmosphere. ethanol, 2-propanol, methanol, etc.), impregnated into the porous body of the anode 30, dried, and heat-treated repeatedly.
(カソード含浸工程)
 次に、PrOなどのカソード触媒53をカソード50の多孔体内に含浸させる。カソード触媒53としてPrOを用いる場合には、例えば、Prの硝酸塩または塩化物を水またはアルコール類(エタノール、2-プロパノール、メタノールなど)に溶かし、カソード50の多孔体内に含浸、乾燥させ、熱処理を必要回数繰り返す。カソード触媒53としてLSMを用いる場合には、例えば、Srの硝酸塩または塩化物、Laの硝酸塩または塩化物、Mnの硝酸塩または塩化物を水またはアルコール類(エタノール、2-プロパノール、メタノールなど)に溶かし、ハーフセルを含浸、乾燥させ、熱処理を必要回数繰り返す。カソード触媒53としてLSCを用いる場合には、例えば、Srの硝酸塩または塩化物、Laの硝酸塩または塩化物、Coの硝酸塩または塩化物を水またはアルコール類(エタノール、2-プロパノール、メタノールなど)に溶かし、ハーフセルを含浸、乾燥させ、熱処理を必要回数繰り返す。
(Cathode impregnation step)
A cathode catalyst 53 such as PrOx is then impregnated into the porous body of the cathode 50 . When PrO 2 x is used as the cathode catalyst 53, for example, nitrate or chloride of Pr is dissolved in water or alcohols (ethanol, 2-propanol, methanol, etc.), impregnated into the porous body of the cathode 50, dried, and heat-treated. is repeated the required number of times. When LSM is used as the cathode catalyst 53, for example, nitrate or chloride of Sr, nitrate or chloride of La, nitrate or chloride of Mn are dissolved in water or alcohols (ethanol, 2-propanol, methanol, etc.). , the half-cell is impregnated, dried, and the heat treatment is repeated a required number of times. When LSC is used as the cathode catalyst 53, for example, nitrate or chloride of Sr, nitrate or chloride of La, nitrate or chloride of Co are dissolved in water or alcohols (ethanol, 2-propanol, methanol, etc.). , the half-cell is impregnated, dried, and the heat treatment is repeated a required number of times.
 本実施形態に係る製造方法によれば、アノード30およびカソード50を焼成する際に、両方とも電子伝導性材料および酸化物イオン伝導性材料を用いているため、アノード30の多孔体とカソード50の多孔体との間の構造上の相違が小さくなる。また、アノード側に第1混合層20が焼成され、カソード側に第2混合層60が焼成される。さらに、アノード側に第1支持体10が焼成され、カソード側に第2支持体70が焼成される。このように、燃料電池100は、固体電解質層40を中心にして、対称構造を有している。それにより、焼成過程における各層の収縮挙動差が小さくなり、反りが抑制される。例えば、反り量T(%)は、3%以下となる。 According to the manufacturing method according to the present embodiment, when firing the anode 30 and the cathode 50, both the electron conductive material and the oxide ion conductive material are used. Structural differences between porous materials are reduced. Also, the first mixed layer 20 is fired on the anode side, and the second mixed layer 60 is fired on the cathode side. Furthermore, the first support 10 is fired on the anode side, and the second support 70 is fired on the cathode side. Thus, the fuel cell 100 has a symmetrical structure with the solid electrolyte layer 40 as the center. As a result, the difference in shrinkage behavior of each layer during the firing process is reduced, and warping is suppressed. For example, the amount of warp T (%) is 3% or less.
 また、アノード30の多孔体とカソード50の多孔体との間の構造上の相違が小さくなるため、アノード30とカソード50とを同時に焼成できるようになる。その結果、固体電解質層40に対するアノード30およびカソード50の密着性が向上し、膜剥がれが抑制され、燃料電池100全体のオーム抵抗が低減される。 In addition, since the structural difference between the porous body of the anode 30 and the porous body of the cathode 50 is reduced, the anode 30 and the cathode 50 can be fired at the same time. As a result, the adhesion of the anode 30 and the cathode 50 to the solid electrolyte layer 40 is improved, film peeling is suppressed, and the ohmic resistance of the fuel cell 100 as a whole is reduced.
 また、第1混合層用材料に金属材料とセラミックス材料とが含まれていることから、焼成後の第1混合層20は、金属材料21とセラミックス材料22とを含有するようになる。それにより、第1混合層20は、金属の材料性質とセラミックスの材料性質とを併せ持つ。したがって、焼成工程の際に、第1支持体10とアノード30との間の層間剥がれを抑制することができる。第2混合層用材料に金属材料とセラミックス材料とが含まれていることから、焼成後の第2混合層60は、金属材料61とセラミックス材料62とを含有するようになる。それにより、第2混合層60は、金属の材料性質とセラミックスの材料性質とを併せ持つ。したがって、焼成工程の際に、第2支持体70とカソード50との間の層間剥がれを抑制することができる。 Also, since the material for the first mixed layer contains the metallic material and the ceramic material, the first mixed layer 20 after firing contains the metallic material 21 and the ceramic material 22 . Thereby, the first mixed layer 20 has both the material properties of metal and the material properties of ceramics. Therefore, delamination between the first support 10 and the anode 30 can be suppressed during the firing process. Since the second mixed layer material contains the metal material and the ceramic material, the second mixed layer 60 after firing contains the metal material 61 and the ceramic material 62 . Thereby, the second mixed layer 60 has both the material properties of metal and the material properties of ceramics. Therefore, delamination between the second support 70 and the cathode 50 can be suppressed during the firing process.
 第1支持体10における空隙率、第1混合層20における空隙率、アノード30における空隙率との間に、(第1支持体10>第1混合層20>アノード30)の関係が成立し、第2支持体70における空隙率、第2混合層60における空隙率、カソード50における空隙率との間に、(第2支持体70>第2混合層60>カソード50)の関係が成立するように、支持体用材料、混合層用材料、アノード用材料、およびカソード用材料における消失材の量を調整することが好ましい。この関係が成立することで、支持体においては十分なガス透過性が得られる。電極では、緻密になって高い酸化物イオン伝導性が得られる。混合層では、ガス透過性が得られるとともに、支持体との接触面積が得られて支持体との密着性が得られるようになる。 A relationship of (first support 10>first mixed layer 20>anode 30) is established among the porosity of the first support 10, the porosity of the first mixed layer 20, and the porosity of the anode 30, and The porosity of the second support 70, the porosity of the second mixed layer 60, and the porosity of the cathode 50 are such that the relationship (second support 70>second mixed layer 60>cathode 50) is established. Moreover, it is preferable to adjust the amount of the vanishing material in the support material, the mixed layer material, the anode material, and the cathode material. By establishing this relationship, the support can have sufficient gas permeability. Electrodes are dense and have high oxide ion conductivity. In the mixed layer, gas permeability is obtained, and a contact area with the support is obtained, so that adhesion with the support is obtained.
 また、本実施形態に係る製造方法では、先に多孔体を焼成によって形成し、その後に複合触媒を含浸させて低温(例えば、850℃以下)で焼成することが可能である。したがって、アノード30の多孔体とアノード触媒との反応が抑制される。また、カソード50の多孔体とカソード触媒との反応が抑制される。したがって、アノード触媒およびカソード触媒を選択する自由度が大きくなる。 In addition, in the manufacturing method according to the present embodiment, it is possible to first form the porous body by sintering, and then impregnate the porous body with the composite catalyst and sinter it at a low temperature (for example, 850° C. or lower). Therefore, the reaction between the porous material of the anode 30 and the anode catalyst is suppressed. Moreover, the reaction between the porous body of the cathode 50 and the cathode catalyst is suppressed. Therefore, the degree of freedom in selecting the anode catalyst and the cathode catalyst is increased.
(第2実施形態)
 図6は、第2実施形態に係る燃料電池100aの積層構造を例示する模式的断面図である。燃料電池100aが図1の燃料電池100と異なっている点は、シール部材として機能する絶縁部材90が設けられている点である。
(Second embodiment)
FIG. 6 is a schematic cross-sectional view illustrating the laminated structure of the fuel cell 100a according to the second embodiment. The fuel cell 100a differs from the fuel cell 100 of FIG. 1 in that an insulating member 90 functioning as a sealing member is provided.
 第1支持体10、第1混合層20、アノード30、固体電解質層40、カソード50、第2混合層60、および第2支持体70は、略同サイズの形状(例えば、長方形状または正方形状)を有している。また、第1支持体10、第1混合層20、アノード30、固体電解質層40、カソード50、第2混合層60、および第2支持体70の外周(側面)の位置は、略一致している。したがって、第1支持体10、第1混合層20、アノード30、固体電解質層40、カソード50、第2混合層60および第2支持体70の各外周によって外周面が形成される。この外周面のことを、セル外周面と称する。セル外周面は、絶縁部材90によって覆われている。絶縁部材90は、絶縁性を有する材料であれば特に限定されるものではないが、例えば、ガラスなどである。 The first support 10, the first mixed layer 20, the anode 30, the solid electrolyte layer 40, the cathode 50, the second mixed layer 60, and the second support 70 have substantially the same size (for example, rectangular or square). )have. In addition, the positions of the outer peripheries (side surfaces) of the first support 10, the first mixed layer 20, the anode 30, the solid electrolyte layer 40, the cathode 50, the second mixed layer 60, and the second support 70 are substantially aligned. there is Therefore, the outer peripheries of the first support 10, the first mixed layer 20, the anode 30, the solid electrolyte layer 40, the cathode 50, the second mixed layer 60 and the second support 70 form an outer peripheral surface. This outer peripheral surface is called a cell outer peripheral surface. The outer peripheral surface of the cell is covered with an insulating member 90 . The insulating member 90 is not particularly limited as long as it is made of a material having insulating properties, and is, for example, glass.
 セル外周面が絶縁部材90によって覆われていることから、触媒を含浸させる際に毛細管現象によってセル外周面に沿って反対側の電極まで浸透することが抑制される。例えば、アノード触媒がカソード50まで浸透することが抑制され、カソード触媒がアノード30まで浸透することが抑制される。それにより、電極間の短絡を抑制することができる。 Since the outer peripheral surface of the cell is covered with the insulating member 90, when the catalyst is impregnated, it is suppressed from permeating along the outer peripheral surface of the cell to the electrode on the opposite side due to capillary action. For example, the permeation of the anode catalyst to the cathode 50 is suppressed, and the permeation of the cathode catalyst to the anode 30 is suppressed. Thereby, the short circuit between electrodes can be suppressed.
 絶縁部材90は、第1支持体10の第1混合層20とは反対側の面(下面)まで延在していることが好ましい。また、絶縁部材90は、第2支持体70の第2混合層60とは反対側の面(上面)まで延在していることが好ましい。絶縁部材90が第1支持体10の下面および第2支持体70の上面の少なくともいずれか一方まで延在していることによって、触媒が反対側の電極まで浸透することがより抑制されるようになる。 The insulating member 90 preferably extends to the surface (lower surface) of the first support 10 opposite to the first mixed layer 20 . Moreover, the insulating member 90 preferably extends to the surface (upper surface) of the second support 70 opposite to the second mixed layer 60 . By extending the insulating member 90 to at least one of the lower surface of the first support 10 and the upper surface of the second support 70, penetration of the catalyst to the electrode on the opposite side is further suppressed. Become.
 ここで、第1支持体10、第1混合層20、アノード30、固体電解質層40、カソード50、第2混合層60、および第2支持体70の矩形状の1辺の長さを長さbと称する。絶縁部材90が第1支持体10の下面に対して延在する延在距離および絶縁部材90が第2支持体70の上面に対して延在する延在距離を距離aと称する。 Here, the length of one side of the rectangular shape of the first support 10, the first mixed layer 20, the anode 30, the solid electrolyte layer 40, the cathode 50, the second mixed layer 60, and the second support 70 is b. The extension distance of the insulating member 90 with respect to the lower surface of the first support 10 and the extension distance of the insulation member 90 with respect to the upper surface of the second support 70 are referred to as distance a.
 距離aが長すぎると、第1支持体10の下面および第2支持体70の上面が絶縁部材90によって覆われる面積が大きくなるため、第1支持体10および第2支持体70が触媒含浸液に対して接触する面積が低下する。この場合、有効発電面積率が低下する。有効発電面積率とは、(触媒含浸した電極面積)/(電極全体の面積)と定義することができる。そこで、a/b比に上限を設けることが好ましい。例えば、a/b比は、1/10以下であることが好ましく、1/20以下であることがより好ましく、1/50以下であることがさらに好ましい。 If the distance a is too long, the area covered by the insulating member 90 on the lower surface of the first support 10 and the upper surface of the second support 70 will increase, so that the first support 10 and the second support 70 will not be exposed to the catalyst impregnation liquid. The area in contact with the In this case, the effective power generation area ratio decreases. The effective power generation area ratio can be defined as (area of electrode impregnated with catalyst)/(area of entire electrode). Therefore, it is preferable to set an upper limit for the a/b ratio. For example, the a/b ratio is preferably 1/10 or less, more preferably 1/20 or less, and even more preferably 1/50 or less.
 絶縁部材90は、セル外周面を覆うだけではなく、図6で例示するように、セル外周面から部分的に内方まで侵入していることが好ましい。この場合、触媒が反対側の電極まで浸透することがより抑制されるようになる。 It is preferable that the insulating member 90 not only cover the outer peripheral surface of the cell, but also partially intrude from the outer peripheral surface of the cell as illustrated in FIG. In this case, the permeation of the catalyst to the electrode on the opposite side is further suppressed.
 図7は、燃料電池100aの製造方法のフローを例示する図である。図5の製造方法と異なる点は、焼成工程と含浸工程との間に、絶縁部材形成工程を行なう点である。 FIG. 7 is a diagram illustrating the flow of the manufacturing method of the fuel cell 100a. A different point from the manufacturing method of FIG. 5 is that an insulating member forming step is performed between the baking step and the impregnating step.
 図8(a)および図8(b)は、絶縁部材形成工程の詳細を説明するための図である。図8(a)で例示するように、焼成工程によって得られたセル200のセル外周面(4つの側面)を、1面ずつ、例えばガラスのシール材を入れた容器300に付け、ディップによってセル外周面にシール材を塗布する。ディップの深さによって、シール材のコーティング範囲を制御することが可能となる。その後、図8(b)で例示するように、乾燥して焼成することによって、絶縁部材90を形成することができる。 FIGS. 8(a) and 8(b) are diagrams for explaining the details of the insulating member forming process. As exemplified in FIG. 8(a), the cell outer peripheral surfaces (four side surfaces) of the cell 200 obtained by the firing step are attached one by one to a container 300 containing, for example, a glass sealing material, and the cell is dipped. Apply sealing material to the outer peripheral surface. The depth of the dip makes it possible to control the coverage of the sealant coating. After that, as illustrated in FIG. 8B, the insulating member 90 can be formed by drying and firing.
 なお、反対側の電極への触媒の浸透を抑制するために、例えば、一方の電極面積に対して他方の電極面積を小さくすることが考えられる。しかしながら、小さい面積の電極を形成するためには、電解質層まで積層した積層体の上にスラリビルドなどの工法によって繰り返し印刷する必要がある。この工法を用いると、製造プロセスは長くなり、コストが上がる問題がある。これに対して、本実施形態に係る製造方法では、スラリビルドを行なう必要がなくなるため、コストを抑制することができる。また、セル外周面に絶縁部材を形成する手法では、上述した距離aを小さくすることができるため、有効発電面積率を大きくすることができる。 In order to suppress penetration of the catalyst into the electrode on the opposite side, for example, it is conceivable to make the area of one electrode smaller than the area of the other electrode. However, in order to form an electrode with a small area, it is necessary to repeatedly print by a construction method such as a slurry build on the laminated body laminated up to the electrolyte layer. If this method is used, there is a problem that the manufacturing process becomes long and the cost rises. On the other hand, the manufacturing method according to the present embodiment eliminates the need for slurry rebuilding, so the cost can be suppressed. Further, in the method of forming an insulating member on the outer peripheral surface of the cell, the above-described distance a can be reduced, so that the effective power generation area ratio can be increased.
 上記実施形態に係る製造方法に従って、燃料電池を作製した。 A fuel cell was manufactured according to the manufacturing method according to the above embodiment.
(実施例1)
 支持体用材料として、SUS(ステンレス)の粉末を用いた。電解質層として、ScYSZを用いた。アノードの電子伝導性セラミックスにLaCrO系材料を用いて、酸化物イオン伝導性セラミックスにはScYSZを用いた。カソードの電子伝導性セラミックスにLaCrO系材料を用いて、酸化物イオン伝導性セラミックスにはScYSZを用いた。混合層のセラミックス材料には、LaCrO系材料を用いた。混合層の金属材料には、SUSを用いた。
(Example 1)
SUS (stainless steel) powder was used as the support material. ScYSZ was used as the electrolyte layer. A LaCrO 3 -based material was used for the electron-conducting ceramics of the anode, and ScYSZ was used for the oxide ion-conducting ceramics. A LaCrO 3 -based material was used for the electron-conducting ceramics of the cathode, and ScYSZ was used for the oxide ion-conducting ceramics. A LaCrO 3 -based material was used as the ceramic material for the mixed layer. SUS was used as the metal material of the mixed layer.
 第1支持体グリーンシート、第1混合層グリーンシート、アノードグリーンシート、電解質グリーンシート、カソードグリーンシート、第2混合層グリーンシート、第2支持体グリーンシートの順で積層し、焼成工程を行ない、対称構造を有する単セルを作製した。カソードの多孔体には、カソード触媒としてPrOを含浸した。アノードの多孔体には、アノード触媒としてNiおよびGDCを含浸した。 A first support green sheet, a first mixed layer green sheet, an anode green sheet, an electrolyte green sheet, a cathode green sheet, a second mixed layer green sheet, and a second support green sheet are laminated in this order and subjected to a firing process, A single cell with a symmetrical structure was fabricated. The cathode porous body was impregnated with PrOx as a cathode catalyst. The anode porous body was impregnated with Ni and GDC as an anode catalyst.
 単セルの反り量を評価したところ、1%未満であった。これは、対称構造としたからであると考えられる。 When the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.5Ω・cmであり、反応抵抗は0.4Ω・cmであった。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.5 Ω·cm 2 and the reaction resistance was 0.4 Ω·cm 2 .
(実施例2)
 実施例2では、カソードの多孔体にLSMを含浸した。その他の条件は、実施例1と同様とした。
(Example 2)
In Example 2, the cathode porous body was impregnated with LSM. Other conditions were the same as in Example 1.
 単セル反り量を評価したところ、1%未満であった。これは、対称構造としたからであると考えられる。 When the single cell warp amount was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.3Ω・cmであり、反応抵抗は0.7Ω・cmであった。オーム抵抗および反応抵抗が実施例1と異なるのは、カソード触媒が異なるからであると考えられる。実施例1および実施例2の結果から、オーム抵抗を小さくする観点からLSMを用いることが好ましく、反応抵抗を小さくする観点からPrOを用いることが好ましいことがわかる。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.3 Ω·cm 2 and the reaction resistance was 0.7 Ω·cm 2 . It is believed that the difference in ohmic resistance and reaction resistance from Example 1 is due to the difference in the cathode catalyst. From the results of Examples 1 and 2, it can be seen that it is preferable to use LSM from the viewpoint of reducing ohmic resistance, and it is preferable to use PrOx from the viewpoint of reducing reaction resistance.
(実施例3)
 実施例3では、カソードの多孔体にGDCおよびLSCを含浸した。ScYSZとLSCとの反応を抑えるために、先にGDCを含浸してからLSCを含浸した。その他の条件は、実施例1と同様とした。
(Example 3)
In Example 3, the cathode porous body was impregnated with GDC and LSC. In order to suppress the reaction between ScYSZ and LSC, GDC was first impregnated and then LSC was impregnated. Other conditions were the same as in Example 1.
 単セルの反り量を評価したところ、1%未満であった。これは、対称構造としたからであると考えられる。 When the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.3Ω・cmであり、反応抵抗は0.6Ω・cmであった。オーム抵抗および反応抵抗が実施例1と異なるのは、カソード触媒が異なるからであると考えられる。実施例2および実施例3の結果から、反応抵抗を小さくする観点からLSCを用いることが好ましいことがわかる。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.3 Ω·cm 2 and the reaction resistance was 0.6 Ω·cm 2 . It is believed that the difference in ohmic resistance and reaction resistance from Example 1 is due to the difference in the cathode catalyst. From the results of Examples 2 and 3, it can be seen that it is preferable to use LSC from the viewpoint of reducing the reaction resistance.
(実施例4)
 単セルの製造条件は、実施例3と同様とした。単セルの反り量を評価したところ、実施例3と同様に1%未満であった。これは、対称構造としたからであると考えられる。
(Example 4)
The manufacturing conditions for the single cell were the same as in Example 3. When the amount of warpage of the single cell was evaluated, it was less than 1% as in Example 3. It is considered that this is because of the symmetrical structure.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。アノード側では単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。カソード側では単セルとインターコネクタとの間に集電体を設けず、レーザー溶接を行わなかった。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.4Ω・cmであり、反応抵抗は0.6Ω・cmであった。これらの結果から、単セルとインターコネクタとの接続に溶接を用いることが好ましいことがわかる。このことは、複数の単セルをスタック化する際に顕著になる。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. On the anode side, the single cell and the interconnector were connected by laser welding without providing a current collector. On the cathode side, no current collector was provided between the single cell and the interconnector, and no laser welding was performed. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.4 Ω·cm 2 and the reaction resistance was 0.6 Ω·cm 2 . These results show that it is preferable to use welding to connect the single cells and the interconnectors. This becomes noticeable when stacking a plurality of single cells.
(比較例1)
 比較例1では、カソード側に支持体を設けず、非対称構造とした。その他の条件は、実施例3と同様とした。単セルの反り量を評価したところ、3%となった。これは、非対称構造としたことで、各材料の熱膨張率の違いが顕著になったからであると考えられる。
(Comparative example 1)
In Comparative Example 1, an asymmetric structure was adopted without providing a support on the cathode side. Other conditions were the same as in Example 3. When the warp amount of the single cell was evaluated, it was 3%. It is considered that this is because the asymmetric structure made the difference in the coefficient of thermal expansion of each material remarkable.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。アノード側では単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。カソード側の混合層とインターコネクタとを溶接してみようと試みたが、溶接できないことがわかった。これは、混合層にセラミックス材料が混在しているからであると考えられる。そこで、カソード側は溶接ではなく、集電体を単セルとインターコネクタとの間に設置し、挟んだ状態で評価を行った。発電評価した結果、インピーダンス測定による各抵抗値を分離した。セルのオーム抵抗は0.7Ω・cmであり、反応抵抗は0.6Ω・cmであった。実施例3と比較すると、カソード側は溶接で接続してないため、オーム抵抗の増加が見られた。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. On the anode side, the single cell and the interconnector were connected by laser welding without providing a current collector. Attempts were made to weld the mixed layer on the cathode side to the interconnector, but it was found to be unweldable. It is considered that this is because the ceramic material is mixed in the mixed layer. Therefore, instead of welding on the cathode side, the current collector was installed between the single cell and the interconnector, and evaluated in a sandwiched state. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the cell was 0.7 Ω·cm 2 and the reaction resistance was 0.6 Ω·cm 2 . Compared with Example 3, the ohmic resistance increased because the cathode side was not connected by welding.
(比較例2)
 比較例2では、支持体グリーンシート、混合層グリーンシート、アノードグリーンシート、電解質グリーンシートの順で積層し、焼成工程を行ない、ハーフセルを作製した。その後、固体電解質層上にPVD成膜によって700nm程度のGDC層を成膜し、LSCペーストを用いてカソードを印刷し、焼成することで単セルを完成した。その他の条件は、実施例1と同様とした。
(Comparative example 2)
In Comparative Example 2, a support green sheet, a mixed layer green sheet, an anode green sheet, and an electrolyte green sheet were laminated in this order, and a firing process was performed to produce a half cell. Thereafter, a GDC layer having a thickness of about 700 nm was formed on the solid electrolyte layer by PVD film formation, a cathode was printed using LSC paste, and the layer was fired to complete a single cell. Other conditions were the same as in Example 1.
 単セルの反り量を評価したところ、4%となった。これは、非対称構造としたことで、各材料の熱膨張率の違いが顕著になったからであると考えられる。 When evaluating the warpage amount of the single cell, it was 4%. It is considered that this is because the asymmetric structure made the difference in the coefficient of thermal expansion of each material remarkable.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。アノード側では単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。カソード側は溶接ではなく、集電体を単セルとインターコネクタとの間に設置し、挟んだ状態で評価を行った。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.7Ω・cmであり、反応抵抗は0.6Ω・cmであった。実施例3と比較すると、カソード側は溶接で接続してないため、オーム抵抗の増加が見られた。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. On the anode side, the single cell and the interconnector were connected by laser welding without providing a current collector. On the cathode side, instead of welding, the current collector was installed between the unit cell and the interconnector, and the evaluation was performed in a sandwiched state. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.7 Ω·cm 2 and the reaction resistance was 0.6 Ω·cm 2 . Compared with Example 3, the ohmic resistance increased because the cathode side was not connected by welding.
(比較例3)
 比較例3では、メタルサポートの単セルではなく、オールセラミックスの単セルを作製した。支持体には、NiO/YSZの混合体を用いた。アノードには、NiO/ScYSZのサーメット電極を用いた。固体電解質層にはScYSZの緻密層を用いた。固体電解質層上に、PVD成膜によって700nm程度のGDC層を成膜し、LSCペーストを用いてカソードを印刷し、焼成することで単セルを完成した。混合層は設けなかった。
(Comparative Example 3)
In Comparative Example 3, an all-ceramic single cell was produced instead of a metal-supported single cell. A mixture of NiO/YSZ was used for the support. A NiO/ScYSZ cermet electrode was used as the anode. A dense layer of ScYSZ was used as the solid electrolyte layer. A GDC layer having a thickness of about 700 nm was formed on the solid electrolyte layer by PVD film formation, a cathode was printed using LSC paste, and a single cell was completed by firing. No mixed layer was provided.
 単セルの反り量を評価したところ、4%となった。これは、非対称構造としたことで、各材料の熱膨張率の違いが顕著になったからであると考えられる。 When evaluating the warpage amount of the single cell, it was 4%. It is considered that this is because the asymmetric structure made the difference in the coefficient of thermal expansion of each material remarkable.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。アノード側では単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。カソード側は溶接ではなく、集電体を単セルとインターコネクタとの間に設置し、挟んだ状態で評価を行った。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.9Ω・cmであり、反応抵抗は0.6Ω・cmであった。実施例3と比較すると、いずれの電極でも溶接で接続してないため、オーム抵抗の増加が見られた。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. On the anode side, the single cell and the interconnector were connected by laser welding without providing a current collector. On the cathode side, instead of welding, the current collector was installed between the unit cell and the interconnector, and the evaluation was performed in a sandwiched state. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.9 Ω·cm 2 and the reaction resistance was 0.6 Ω·cm 2 . Compared to Example 3, an increase in ohmic resistance was observed because none of the electrodes were connected by welding.
(比較例4)
 比較例4では、カソード用に、LSCペーストの代わりにLSMペーストを印刷した。その他の条件は、比較例3と同様とした。
(Comparative Example 4)
In Comparative Example 4, LSM paste was printed instead of LSC paste for the cathode. Other conditions were the same as in Comparative Example 3.
 単セルの反り量を評価したところ、4%となった。これは、非対称構造としたことで、各材料の熱膨張率の違いが顕著になったからであると考えられる。 When evaluating the warpage amount of the single cell, it was 4%. It is considered that this is because the asymmetric structure made the difference in the coefficient of thermal expansion of each material remarkable.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。アノード側では単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。カソード側は溶接ではなく、集電体を単セルとインターコネクタとの間に設置し、挟んだ状態で評価を行った。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.9Ω・cmであり、反応抵抗は1.2Ω・cmであった。実施例3と比較すると、いずれの電極でも溶接で接続してないため、オーム抵抗の増加が見られた。また、比較例3と比較すると、反応抵抗の増加がみられた。これは、LSMの触媒活性がLSCの触媒活性よりも低いからであると考えられる。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. On the anode side, the single cell and the interconnector were connected by laser welding without providing a current collector. On the cathode side, instead of welding, the current collector was installed between the unit cell and the interconnector, and the evaluation was performed in a sandwiched state. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.9 Ω·cm 2 and the reaction resistance was 1.2 Ω·cm 2 . Compared to Example 3, an increase in ohmic resistance was observed because none of the electrodes were connected by welding. Moreover, compared with Comparative Example 3, an increase in reaction resistance was observed. It is believed that this is because the catalytic activity of LSM is lower than that of LSC.
 実施例1~4および比較例1~4の結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
The results of Examples 1-4 and Comparative Examples 1-4 are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例5)
 実施例1と同様に焼成工程を行なうことで対称構造を有する単セルを作製した。単セルの平面視のサイズは、100mm×100mmであった。セル外周面に対して、ディップによって絶縁部材を塗布した。ディップ深さは、1mmとした。カソードの多孔体には、98mm×98mmの面積に対してカソード触媒としてLSMを含浸した。アノードの多孔体には、98mm×98mmの面積に対してアノード触媒としてNiおよびGDCを含浸した。有効発電面積利用率は、(98mm×98mm)/(100mm×100mm)=96%であった。
(Example 5)
A single cell having a symmetrical structure was produced by carrying out the firing process in the same manner as in Example 1. The size of the single cell in plan view was 100 mm×100 mm. An insulating member was applied to the outer peripheral surface of the cell by dipping. The dip depth was set to 1 mm. The cathode porous body was impregnated with LSM as a cathode catalyst for an area of 98 mm×98 mm. The porous body of the anode was impregnated with Ni and GDC as an anode catalyst for an area of 98 mm×98 mm. The effective power generation area utilization rate was (98 mm×98 mm)/(100 mm×100 mm)=96%.
 単セルの反り量を評価したところ、1%未満であった。これは、対称構造としたからであると考えられる。触媒を含浸する際に含浸液が反対側の電極に染み込む様子は見られなかった。これは、絶縁部材を設けたからであると考えられる。 When the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure. When the catalyst was impregnated, the impregnating liquid did not seep into the electrode on the opposite side. It is considered that this is because the insulating member is provided.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.3Ω・cmであり、反応抵抗は0.7Ω・cmであった。端子電圧0.9Vの際に流れた電流は19.1Aであった。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.3 Ω·cm 2 and the reaction resistance was 0.7 Ω·cm 2 . The current that flowed when the terminal voltage was 0.9V was 19.1A.
(実施例6)
 実施例1と同様に焼成工程を行なうことで対称構造を有する単セルを作製した。単セルの平面視のサイズは、100mm×100mmであった。セル外周面に対して、ディップによって絶縁部材を塗布した。ディップ深さは、2mmとした。カソードの多孔体には、96mm×96mmの面積に対してカソード触媒としてLSMを含浸した。アノードの多孔体には、96mm×96mmの面積に対してアノード触媒としてNiおよびGDCを含浸した。有効発電面積利用率は、(96mm×96mm)/(100mm×100mm)=92%であった。
(Example 6)
A single cell having a symmetrical structure was produced by carrying out the firing process in the same manner as in Example 1. The size of the single cell in plan view was 100 mm×100 mm. An insulating member was applied to the outer peripheral surface of the cell by dipping. The dip depth was set to 2 mm. The cathode porous body was impregnated with LSM as a cathode catalyst for an area of 96 mm×96 mm. The anode porous body was impregnated with Ni and GDC as an anode catalyst for an area of 96 mm×96 mm. The effective power generation area utilization rate was (96 mm×96 mm)/(100 mm×100 mm)=92%.
 単セルの反り量を評価したところ、1%未満であった。これは、対称構造としたからであると考えられる。触媒を含浸する際に含浸液が反対側の電極に染み込む様子は見られなかった。これは、絶縁部材を設けたからであると考えられる。 When the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure. When the catalyst was impregnated, the impregnating liquid did not seep into the electrode on the opposite side. It is considered that this is because the insulating member is provided.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.3Ω・cmであり、反応抵抗は0.7Ω・cmであった。端子電圧0.9Vの際に流れた電流は18.3Aであった。実施例5と実施例6との比較結果から、有効発電面積利用率が高いほど電流が大きくなることがわかる。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.3 Ω·cm 2 and the reaction resistance was 0.7 Ω·cm 2 . The current that flowed when the terminal voltage was 0.9V was 18.3A. From the results of comparison between Example 5 and Example 6, it can be seen that the higher the effective power generation area utilization rate, the larger the current.
(実施例7)
 第1支持体グリーンシート、第1混合層グリーンシート、アノードグリーンシート、電解質グリーンシートの順で積層し、積層体を得た。次に、電解質グリーンシート上に、外周から2~3mm内側に積層体よりも小さい面積でカソード層を印刷して乾燥し、混合層を印刷して乾燥し、第2支持体層を印刷して乾燥するスラリビルドを行ない、一体焼成を行なうことで、対称構造を有する単セルを作製した。単セルの平面視のサイズは、100mm×100mmであった。カソード側の面積は96mm×96mm=9216mmであった。セル外周面には絶縁部材を形成しなかった。カソードの多孔体には、96mm×96mmの面積に対してカソード触媒としてLSMを含浸した。アノードの多孔体には、96mm×96mmの面積に対してアノード触媒としてNiおよびGDCを含浸した。有効発電面積利用率は、(96mm×96mm)/(100mm×100mm)=92%であった。
(Example 7)
A first support green sheet, a first mixed layer green sheet, an anode green sheet, and an electrolyte green sheet were laminated in this order to obtain a laminate. Next, on the electrolyte green sheet, a cathode layer is printed in an area smaller than that of the laminate by 2 to 3 mm from the outer periphery and dried, a mixed layer is printed and dried, and a second support layer is printed. A unit cell having a symmetrical structure was produced by carrying out slurry build-up to dry and then co-firing. The size of the single cell in plan view was 100 mm×100 mm. The area on the cathode side was 96 mm x 96 mm = 9216 mm2 . No insulating member was formed on the outer peripheral surface of the cell. The cathode porous body was impregnated with LSM as a cathode catalyst for an area of 96 mm×96 mm. The anode porous body was impregnated with Ni and GDC as an anode catalyst for an area of 96 mm×96 mm. The effective power generation area utilization rate was (96 mm×96 mm)/(100 mm×100 mm)=92%.
 単セルの反り量を評価したところ、1%未満であった。これは、対称構造としたからであると考えられる。触媒を含浸する際に含浸液が反対側の電極に染み込む様子は見られなかった。これは、スラリビルドを行なうことで小さい面積でカソードを形成したからであると考えられる。 When the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure. When the catalyst was impregnated, the impregnating liquid did not seep into the electrode on the opposite side. It is considered that this is because the cathode was formed in a small area by carrying out the slurry rebuild.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.3Ω・cmであり、反応抵抗は0.7Ω・cmであった。端子電圧0.9Vの際に流れた電流は18.3Aであった。実施例6と実施例7との比較結果から、有効発電面積率が同じであるため発電特性はほとんど同じであった。実施例6はスラリビルドを用いていないため、コストの面で有利である。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.3 Ω·cm 2 and the reaction resistance was 0.7 Ω·cm 2 . The current that flowed when the terminal voltage was 0.9V was 18.3A. From the comparison results of Example 6 and Example 7, since the effective power generation area ratio is the same, the power generation characteristics are almost the same. Since Example 6 does not use a slurry build, it is advantageous in terms of cost.
(実施例8)
 実施例1と同様に焼成工程を行なうことで対称構造を有する単セルを作製した。単セルの平面視のサイズは、100mm×100mmであった。セル外周面には絶縁部材を形成しなかった。触媒の含浸の際には、含浸液が反対側の電極に浸透させないように外周から10mmの間隔をとった。アノードの多孔体には、80mm×80mmの面積に対してNiおよびGDCを含浸した。カソードの多孔体には、80mm×80mmの面積に対してLSMを含浸した。有効発電面積利用率は、(80mm×80mm)/(100mm×100mm)=64%であった。
(Example 8)
A single cell having a symmetrical structure was produced by carrying out the firing process in the same manner as in Example 1. The size of the single cell in plan view was 100 mm×100 mm. No insulating member was formed on the outer peripheral surface of the cell. When the catalyst was impregnated, a space of 10 mm was kept from the outer circumference so that the impregnating liquid would not permeate the electrode on the opposite side. The anode porous body was impregnated with Ni and GDC for an area of 80 mm×80 mm. The cathode porous body was impregnated with LSM over an area of 80 mm×80 mm. The effective power generation area utilization rate was (80 mm×80 mm)/(100 mm×100 mm)=64%.
 単セルの反り量を評価したところ、1%未満であった。これは、対称構造としたからであると考えられる。触媒を含浸する際に含浸液が反対側の電極に染み込む様子は見られなかった。これは、触媒を含浸する面積を小さくしたからであると考えられる。 When the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure. When the catalyst was impregnated, the impregnating liquid did not seep into the electrode on the opposite side. It is believed that this is because the area impregnated with the catalyst was reduced.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.3Ω・cmであり、反応抵抗は0.7Ω・cmであった。端子電圧0.9Vの際に流れた電流は12.7Aであった。実施例5と実施例8との比較結果から、有効発電面積利用率が高いほど電流が大きくなることがわかる。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. A single cell and an interconnector were connected by laser welding without providing a current collector. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.3 Ω·cm 2 and the reaction resistance was 0.7 Ω·cm 2 . The current that flowed when the terminal voltage was 0.9V was 12.7A. From the results of comparison between Example 5 and Example 8, it can be seen that the higher the effective power generation area utilization rate, the larger the current.
(実施例9)
 実施例1と同様に焼成工程を行なうことで対称構造を有する単セルを作製した。単セルの平面視のサイズは、100mm×100mmであった。セル外周面には絶縁部材を形成しなかった。触媒の含浸の際には、含浸液が反対側の電極に浸透させないように外周から2mmの間隔をとった。アノードの多孔体には、96mm×96mmの面積に対してNiおよびGDCを含浸した。カソードの多孔体には、96mm×96mmの面積に対してLSMを含浸した。
(Example 9)
A single cell having a symmetrical structure was produced by carrying out the firing process in the same manner as in Example 1. The size of the single cell in plan view was 100 mm×100 mm. No insulating member was formed on the outer peripheral surface of the cell. When impregnating the catalyst, a space of 2 mm was kept from the outer periphery so that the impregnating liquid would not permeate the electrode on the opposite side. The anode porous body was impregnated with Ni and GDC for an area of 96 mm×96 mm. The cathode porous body was impregnated with LSM over an area of 96 mm x 96 mm.
 単セルの反り量を評価したところ、1%未満であった。これは、対称構造としたからであると考えられる。 When the warp amount of the single cell was evaluated, it was less than 1%. It is considered that this is because of the symmetrical structure.
 触媒を含浸する際に含浸液が反対側の電極に染み込んだ様子が見られたため、発電評価は行なわなかった。  When impregnating with the catalyst, the impregnating liquid seemed to seep into the electrode on the opposite side, so power generation evaluation was not performed.
(比較例5)
 比較例5では、支持体グリーンシート、混合層グリーンシート、アノードグリーンシート、電解質グリーンシートの順で積層し、焼成工程を行ない、ハーフセルを作製した。セル外周面には絶縁部材を形成しなかった。ハーフセルの平面視のサイズは、100mm×100mmであった。アノード多孔体には、96mm×96mmの面積に対してNiおよびGDCを含浸した。その後、固体電解質層上の96mm×96mmの面積に対してLSMを印刷し、900℃以下の温度で焼成した。
(Comparative Example 5)
In Comparative Example 5, a support green sheet, a mixed layer green sheet, an anode green sheet, and an electrolyte green sheet were laminated in this order, followed by firing to produce a half cell. No insulating member was formed on the outer peripheral surface of the cell. The size of the half-cell in plan view was 100 mm×100 mm. The anode porous body was impregnated with Ni and GDC for an area of 96 mm×96 mm. After that, LSM was printed on an area of 96 mm×96 mm on the solid electrolyte layer and baked at a temperature of 900° C. or lower.
 単セルの反り量を評価したところ、4%となった。これは、非対称構造としたことで、各材料の熱膨張率の違いが顕著になったからであると考えられる。 When evaluating the warpage amount of the single cell, it was 4%. It is considered that this is because the asymmetric structure made the difference in the coefficient of thermal expansion of each material remarkable.
 次に、単セル発電評価を行なった。単セルを上下からインターコネクタで挟み込んだ状態で評価した。アノード側では単セルとインターコネクタとの間に集電体を設けず、レーザー溶接で接続した。カソード側は溶接ではなく、集電体を単セルとインターコネクタとの間に設置し、挟んだ状態で評価を行った。発電評価した結果、インピーダンス測定による各抵抗値を分離した。単セルのオーム抵抗は0.7Ω・cmであり、反応抵抗は0.7Ω・cmであった。端子電圧0.9Vの際に流れた電流は13.2Aであった。実施例6と有効発電面積は同じであるが、オーム抵抗が増大した分、発電で取り出せた電流が低下した。 Next, a single cell power generation evaluation was performed. The single cell was evaluated in a state in which it was sandwiched between interconnectors from above and below. On the anode side, the single cell and the interconnector were connected by laser welding without providing a current collector. On the cathode side, instead of welding, the current collector was installed between the unit cell and the interconnector, and the evaluation was performed in a sandwiched state. As a result of power generation evaluation, each resistance value was separated by impedance measurement. The ohmic resistance of the single cell was 0.7 Ω·cm 2 and the reaction resistance was 0.7 Ω·cm 2 . The current that flowed when the terminal voltage was 0.9V was 13.2A. Although the effective power generation area was the same as that of Example 6, the current obtained by power generation decreased by the amount corresponding to the increase in ohmic resistance.
 実施例5~9および比較例5の結果を表3および表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
The results of Examples 5-9 and Comparative Example 5 are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the scope of claims. Change is possible.

Claims (16)

  1.  酸化物イオン伝導性を有する固体酸化物を含む固体電解質層と、
     前記固体電解質層の第1面に設けられ、電子伝導性セラミックスおよび酸化物イオン伝導性セラミックスを含む多孔体を有し、当該多孔体にアノード触媒を有するアノードと、
     前記アノードの前記固体電解質層と反対側の面に設けられ、金属材料とセラミックス材料とが混合された構造を有する第1混合層と、
     前記第1混合層の前記固体電解質層と反対側の面に設けられ、金属を主成分とする第1支持体と、
     前記固体電解質層の第2面に設けられ、電子伝導性セラミックスおよび酸化物イオン伝導性セラミックスを含む多孔体を有し、当該多孔体にカソード触媒を有するカソードと、
     前記カソードの前記固体電解質層と反対側の面に設けられ、金属材料とセラミックス材料とが混合された構造を有する第2混合層と、
     前記第2混合層の前記固体電解質層と反対側の面に設けられ、金属を主成分とする第2支持体と、を備えることを特徴とする固体酸化物型燃料電池。
    a solid electrolyte layer containing a solid oxide having oxide ion conductivity;
    an anode provided on the first surface of the solid electrolyte layer, having a porous body containing electronically conductive ceramics and oxide ion conductive ceramics, and having an anode catalyst in the porous body;
    a first mixed layer provided on the surface of the anode opposite to the solid electrolyte layer and having a structure in which a metal material and a ceramic material are mixed;
    a first support provided on the surface of the first mixed layer opposite to the solid electrolyte layer and containing a metal as a main component;
    a cathode provided on the second surface of the solid electrolyte layer, having a porous body containing electronically conductive ceramics and oxide ion conductive ceramics, and having a cathode catalyst in the porous body;
    a second mixed layer provided on the surface of the cathode opposite to the solid electrolyte layer and having a structure in which a metal material and a ceramic material are mixed;
    A solid oxide fuel cell, comprising: a second support which is provided on a surface of the second mixed layer opposite to the solid electrolyte layer and is mainly composed of a metal.
  2.  前記固体酸化物型燃料電池の反り量は、3%未満であることを特徴とする請求項1に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 1, characterized in that the amount of warpage of the solid oxide fuel cell is less than 3%.
  3.  前記第1支持体、前記第1混合層、前記アノード、前記固体電解質層、前記カソード、前記第2混合層および前記第2支持体の外周を覆う絶縁部材を備えることを特徴とする請求項1または請求項2に記載の固体酸化物型燃料電池。 2. An insulating member covering outer peripheries of said first support, said first mixed layer, said anode, said solid electrolyte layer, said cathode, said second mixed layer and said second support. Or the solid oxide fuel cell according to claim 2.
  4.  前記固体酸化物型燃料電池は、平面視で略矩形状を有し、
     前記絶縁部材は前記第1支持体の前記第1混合層とは反対側の面および前記第2支持体の前記第2混合層とは反対側の面まで延在し、当該延在の距離を距離aとし、前記固体酸化物型燃料電池の1辺の長さを長さbとした場合に、a/bは、1/10以下であることを特徴とする請求項3に記載の固体酸化物型燃料電池。
    The solid oxide fuel cell has a substantially rectangular shape in plan view,
    The insulating member extends to the surface of the first support opposite to the first mixed layer and to the surface of the second support opposite to the second mixed layer, and the distance of the extension is 4. The solid oxide according to claim 3, wherein a/b is 1/10 or less, where a is the distance and b is the length of one side of the solid oxide fuel cell. Physical fuel cell.
  5.  前記絶縁部材は、ガラスであることを特徴とする請求項3または請求項4に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to claim 3 or 4, wherein the insulating member is glass.
  6.  前記絶縁部材は、前記第1支持体、前記第1混合層、前記アノード、前記カソード、前記第2混合層および前記第2支持体の外周から内方まで侵入していることを特徴とする請求項3から請求項5のいずれか一項に記載の固体酸化物型燃料電池。 The insulating member extends inward from outer peripheries of the first support, the first mixed layer, the anode, the cathode, the second mixed layer and the second support. The solid oxide fuel cell according to any one of Claims 3 to 5.
  7.  前記アノード触媒は、NiおよびGDCであり、
     前記カソード触媒は、PrO、LSM、LSC、GDCの少なくとも1種類を含むことを特徴とする請求項1から請求項6のいずれか一項に記載の固体酸化物型燃料電池。
    the anode catalyst is Ni and GDC;
    7. The solid oxide fuel cell according to any one of claims 1 to 6, wherein the cathode catalyst contains at least one of PrOx , LSM, LSC and GDC.
  8.  前記アノード触媒および前記カソード触媒のそれぞれの平均粒径は、100nm以下であることを特徴とする請求項1から請求項7のいずれか一項に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to any one of claims 1 to 7, wherein each of the anode catalyst and the cathode catalyst has an average particle size of 100 nm or less.
  9.  前記第1支持体における空隙率、前記第1混合層における空隙率、および前記アノードにおける空隙率の間には、前記第1支持体>前記第1混合層>前記アノードの関係が成立し、
     前記第2支持体における空隙率、前記第2混合層における空隙率、および前記カソードにおける空隙率の間には、前記第2支持体>前記第2混合層>前記カソードの関係が成立することを特徴とする請求項1から請求項8のいずれか一項に記載の固体酸化物型燃料電池。
    Among the porosity of the first support, the porosity of the first mixed layer, and the porosity of the anode, a relationship of the first support > the first mixed layer > the anode is established, and
    A relationship of the second support > the second mixed layer > the cathode is established among the porosity of the second support, the porosity of the second mixed layer, and the porosity of the cathode. 9. The solid oxide fuel cell according to any one of claims 1 to 8.
  10.  前記第1支持体の厚み、前記第1混合層の厚み、および前記アノードの厚みの間には、前記第1支持体>前記第1混合層>前記アノードの関係が成立し、
     前記第2支持体の厚み、前記第2混合層の厚み、および前記カソードの厚みの間には、前記第2支持体>前記第2混合層>前記カソードの関係が成立することを特徴とする請求項1から請求項9のいずれか一項に記載の固体酸化物型燃料電池。
    A relationship of the first support > the first mixed layer > the anode is established between the thickness of the first support, the thickness of the first mixed layer, and the thickness of the anode, and
    The thickness of the second support, the thickness of the second mixed layer, and the thickness of the cathode satisfy the relationship of second support>second mixed layer>cathode. The solid oxide fuel cell according to any one of claims 1 to 9.
  11.  前記第1支持体および前記第2支持体の金属成分の結晶粒径は、前記第1混合層および前記第2混合層の金属成分の結晶粒径よりも大きいことを特徴とする請求項1から請求項10のいずれか一項に記載の固体酸化物型燃料電池。 2. The crystal grain size of the metal component of the first support and the second support is larger than the crystal grain size of the metal component of the first mixed layer and the second mixed layer. 11. The solid oxide fuel cell according to claim 10.
  12.  前記アノードおよび前記カソードの断面積において、前記多孔体の空隙率は、20%以上であることを特徴とする請求項1から請求項11のいずれか一項に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to any one of claims 1 to 11, wherein the porous body has a porosity of 20% or more in the cross-sectional areas of the anode and the cathode.
  13.  前記アノードおよび前記カソードの厚みは、2μm以上であることを特徴とする請求項1から請求項12のいずれか一項に記載の固体酸化物型燃料電池。 The solid oxide fuel cell according to any one of claims 1 to 12, characterized in that the anode and the cathode have a thickness of 2 µm or more.
  14.  前記アノードおよび前記カソードの前記多孔体において、イオン伝導性セラミックスと電子伝導性セラミックスとの断面積比は、1:9~9:1であることを特徴とする請求項1から請求項13のいずれか一項に記載の固体酸化物型燃料電池。 14. Any one of claims 1 to 13, wherein in the porous bodies of the anode and the cathode, the cross-sectional area ratio of the ion-conducting ceramics and the electron-conducting ceramics is 1:9 to 9:1. 1. The solid oxide fuel cell according to claim 1.
  15.  酸化物イオン伝導性を有する固体酸化物材料粉末を含む電解質グリーンシートの両面に、電子伝導性セラミックス材料粉末および酸化物イオン伝導性セラミックス材料粉末を含む電極グリーンシートと、セラミックス材料粉末および金属材料粉末を含む混合層グリーンシートと、金属粉末を含む支持体グリーンシートとが積層された積層体を焼成する工程と、
     前記電極グリーンシートの焼成によって得られる多孔体に、触媒を含浸する工程と、を含むことを特徴とする固体酸化物型燃料電池の製造方法。
    On both sides of an electrolyte green sheet containing a solid oxide material powder having oxide ion conductivity, an electrode green sheet containing an electronically conductive ceramics material powder and an oxide ion conductive ceramics material powder, a ceramic material powder and a metal material powder A step of firing a laminate in which a mixed layer green sheet containing the metal powder and a support green sheet containing the metal powder are laminated;
    and impregnating a porous body obtained by firing the electrode green sheet with a catalyst.
  16.  前記触媒を含浸する工程の前に、前記支持体グリーシートの焼成によって得られる支持体、前記混合層グリーンシートの焼成によって得られる混合層、および前記多孔体の外周を絶縁部材によって覆う工程を含むことを特徴とする請求項15に記載の固体酸化物型燃料電池の製造方法。
     
    Before the step of impregnating with the catalyst, a step of covering the support obtained by firing the support green sheet, the mixed layer obtained by firing the mixed layer green sheet, and the outer periphery of the porous body with an insulating member. 16. The method for manufacturing a solid oxide fuel cell according to claim 15, characterized in that:
PCT/JP2022/000685 2021-03-19 2022-01-12 Solid oxide fuel cell and method for producing same WO2022196053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-046530 2021-03-19
JP2021046530A JP2022145221A (en) 2021-03-19 2021-03-19 Solid oxide type fuel cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022196053A1 true WO2022196053A1 (en) 2022-09-22

Family

ID=83320183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000685 WO2022196053A1 (en) 2021-03-19 2022-01-12 Solid oxide fuel cell and method for producing same

Country Status (2)

Country Link
JP (1) JP2022145221A (en)
WO (1) WO2022196053A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577459B1 (en) * 2023-01-30 2023-09-13 한국과학기술원 Solid oxide fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321706A (en) * 2005-03-01 2006-11-30 Air Products & Chemicals Inc Method for making electrochemical apparatus for recovery of oxygen
JP2008502113A (en) * 2004-06-10 2008-01-24 テクニカル ユニバーシティ オブ デンマーク Solid oxide fuel cell
JP2013501330A (en) * 2009-08-03 2013-01-10 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Metal-supported electrochemical cell and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502113A (en) * 2004-06-10 2008-01-24 テクニカル ユニバーシティ オブ デンマーク Solid oxide fuel cell
JP2006321706A (en) * 2005-03-01 2006-11-30 Air Products & Chemicals Inc Method for making electrochemical apparatus for recovery of oxygen
JP2013501330A (en) * 2009-08-03 2013-01-10 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Metal-supported electrochemical cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2022145221A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
US7736787B2 (en) Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
US20140223730A1 (en) All ceramics solid oxide fuel cell
JP7360276B2 (en) Solid oxide fuel cell and its manufacturing method
JP7261562B2 (en) Fuel cell, fuel cell stack, and method of making same
WO2022196053A1 (en) Solid oxide fuel cell and method for producing same
JP7377051B2 (en) Solid oxide fuel cell and its manufacturing method
CN111613798B (en) Fuel cell and method for manufacturing the same
JP7245036B2 (en) Fuel cell stack and manufacturing method thereof
WO2021192412A1 (en) Solid oxide fuel cell, solid oxide fuel cell stack, and solid oxide fuel cell production method
US20210288332A1 (en) Solid oxide fuel cell and manufacturing method of the same
JP7429568B2 (en) Solid oxide fuel cell and its manufacturing method
JP7330689B2 (en) Fuel cells and fuel cell stacks
WO2022196055A1 (en) Solid oxide fuel cell and method for manufacturing same
US11133510B2 (en) Anode for an electrochemical cell and method for producing an electrochemical cell comprising such an anode
WO2023228612A1 (en) Solid oxide fuel cell and method for manufacturing same
JP7484048B2 (en) Solid oxide fuel cell and method for producing same
CN112701298B (en) Solid oxide fuel cell and method for manufacturing same
WO2023084955A1 (en) Solid oxide fuel cell and method for producing same
JP2019075197A (en) Electrochemical reaction single cell, and electrochemical reaction cell stack
JP2005322452A (en) Cell plate for solid oxide fuel cell, and solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770815

Country of ref document: EP

Kind code of ref document: A1