WO2022196037A1 - Force measurement device, force measurement method, surgical device, and surgical system - Google Patents

Force measurement device, force measurement method, surgical device, and surgical system Download PDF

Info

Publication number
WO2022196037A1
WO2022196037A1 PCT/JP2021/049031 JP2021049031W WO2022196037A1 WO 2022196037 A1 WO2022196037 A1 WO 2022196037A1 JP 2021049031 W JP2021049031 W JP 2021049031W WO 2022196037 A1 WO2022196037 A1 WO 2022196037A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
trocar
information
surgical instrument
surgical
Prior art date
Application number
PCT/JP2021/049031
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 鈴木
知之 大月
敦史 宮本
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022196037A1 publication Critical patent/WO2022196037A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J3/00Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements

Definitions

  • the technology disclosed in this specification includes a force measuring device and a force measuring method for measuring the force acting between a living tissue and a tip of a surgical instrument during surgery, a surgical device, and a surgical device. Regarding the system.
  • Surgery is generally a difficult task that is performed by the operator's sensory movements.
  • the operator needs to perform micron-order movements.
  • a force sensor is placed near the tip of a surgical tool used in retinal microsurgery to directly measure the contact force acting between the tissue inside the eyeball and the tip of the surgical tool.
  • a force sensor is mounted on the root side (proximal end) of the surgical instrument, and compared to the method of estimating the contact force acting on the distal end of the surgical instrument from outside the eyeball, disturbance (mainly trocar).
  • disturbance mainly trocar
  • An object of the present disclosure is, for example, in retinal surgery, a force measuring device and force measuring method, a surgical device, and a surgical device for measuring the force acting between the tip of a surgical tool inserted into the eyeball via a trocar and the retina. It is to provide a system.
  • the present disclosure has been made in consideration of the above problems, and the first aspect thereof is an acquisition unit that acquires first information about an external force acting on a trocar and second information about an external force acting on a surgical instrument inserted through the trocar; a calculation unit for estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information; It is a force measuring device comprising
  • the acquisition unit acquires the first information from a first force sensor attached to the trocar that is used by being inserted into the surface of the living body, and is attached to the surgical tool at a position outside the living body.
  • the second information is obtained from a second force sensor.
  • the force measuring device may further include the first force sensor and the second force sensor.
  • the living body is an eyeball, and the computing unit estimates the force that the tip of the surgical tool receives from the fundus of the eyeball.
  • the surgical instrument is pivotally operated so that the impulse generated at the insertion point that intersects the living body via the trocar is zero. Then, the calculation unit ignores the impulse that the trocar receives from the living body and estimates the external force acting on the distal end of the surgical instrument.
  • a second aspect of the present disclosure is A first force sensor attached to a trocar that is inserted into a living body is used to obtain first information about a force acting on the trocar, including an external force that the trocar receives from the living body and an external force that the surgical instrument receives. a measuring step; Using a second force sensor attached to a surgical instrument inserted through the trocar, force acting on the surgical instrument including contact force applied to the distal end of the surgical instrument and external force received by the forceps from the trocar measuring second information about a calculation step of estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information; It is a force measurement method having
  • a third aspect of the present disclosure is a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero; a first force sensor attached to the trocar; a second force sensor attached to the surgical tool; a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; ,
  • a surgical device comprising:
  • a fourth aspect of the present disclosure is a surgical system comprising a master device and a slave device,
  • the slave device a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero; a first force sensor attached to the trocar; a second force sensor attached to the surgical tool; a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; , with The master device an operation user interface unit for inputting an operation amount instruction for the robot; a presentation unit that presents a haptic sensation based on the external force estimated by the calculation unit;
  • a surgical system comprising:
  • system refers to a logical assembly of multiple devices (or functional modules that implement specific functions), and each device or functional module is in a single housing. It does not matter whether or not
  • a force measuring device for example, in retinal surgery, a force measuring device, a force measuring method, and a surgical device for indirectly measuring the force acting between the retina and the tip of a surgical tool inserted into the eyeball via a trocar , and a surgical system.
  • FIG. 1 is a diagram showing a functional configuration example of a master-slave surgery system 100.
  • FIG. 2 is a diagram showing a general layout (ocular surface) for retinal surgery.
  • FIG. 3 is a diagram showing a general layout (eyeball section) for retinal surgery.
  • FIG. 4 is a diagram showing the configuration of the force measuring device 400.
  • FIG. 5 is a diagram showing the relationship of forces acting on the forceps 413.
  • FIG. FIG. 6 is a diagram showing the relationship of forces acting on the trocar 412.
  • FIG. 7 is a diagram showing six-axis forces measured by the first force sensor 401 and the second force sensor 402.
  • FIG. 8 is a diagram showing a configuration example of degrees of freedom of a support arm device 800 having an RCM structure.
  • FIG. 9 is a diagram showing an example of the posture of the arm section 810 that performs the pivotal movement of the third link 823 around the RCM.
  • FIG. 10 is a diagram showing an example of the posture of the arm section 810 that performs the pivotal movement of the third link 823 around the RCM.
  • FIG. 11 is a diagram showing an example of the posture of the arm section 810 that performs the pivotal movement of the third link 823 around the RCM.
  • FIG. 12 is a diagram showing an example of the posture of the arm section 810 that performs the pivotal movement of the third link 823 around the RCM.
  • A. Surgical System In this specification, an embodiment in which the present disclosure is applied to a master-slave surgical system will be mainly described.
  • a user such as an operator performs operations on the master side, and the slave side performs surgery by controlling the driving of the robot according to the user's operations.
  • the purpose of incorporating robotics technology into the surgical system is to suppress the tremor of the operator's hand, assist in operation, absorb differences in skill between operators, and perform surgery remotely.
  • FIG. 1 shows a functional configuration example of a master-slave surgical system 100 .
  • the illustrated surgery system 100 includes a master device 110 for which a user (operator) instructs operations such as surgery, and a slave device 120 for performing surgery according to instructions from the master device 110 .
  • a user operator
  • a slave device 120 for performing surgery according to instructions from the master device 110 .
  • As the surgery referred to here, retinal surgery is mainly assumed.
  • Master device 110 and slave device 120 are interconnected via transmission line 130 . It is desirable that the transmission line 130 can perform signal transmission with low delay using a medium such as an optical fiber.
  • the master device 110 includes a master-side control unit 111, an operation UI (User Interface) unit 112, a presentation unit 113, and a master-side communication unit 114.
  • the master device 110 operates under general control by the master-side control section 111 .
  • the operation UI unit 112 is a device for a user (operator, etc.) to input instructions to a slave robot 112 (described later) that operates surgical tools such as forceps in the slave device 120 .
  • the operation UI unit 112 includes, for example, a dedicated input device such as a controller and a joystick, and a general-purpose input device such as a GUI screen for inputting mouse operations and fingertip touch operations.
  • the “medical device” disclosed in Patent Document 2 can be used as the operation UI unit 112 .
  • the presentation unit 113 provides the user (operator) who is operating the operation UI unit 112 with the slave device 120 mainly based on sensor information acquired by the sensor unit 123 (described later) on the slave device 120 side. Present information about the surgery being performed.
  • the sensor unit 123 is equipped with an RGB camera or an OCT (Optical Coherence Tomography) that captures a microscope image for observing the surface of the affected area, or is equipped with an interface that captures an image captured by an RGB camera or an OCT image.
  • the presentation unit 113 displays the real-time RGB image and OCT image of the affected area on the screen.
  • the sensor unit 123 is equipped with a function to measure the external force and moment acting on the surgical tool operated by the slave robot 112, and such haptic information is transferred to the master device 110 via the transmission line 130 with low delay. If so, the presentation unit 113 presents the force sense to the user (operator). For example, the presentation unit 113 may use the operation UI unit 112 to present a force sense to the user (operator).
  • the master-side communication unit 114 Under the control of the master-side control unit 111, the master-side communication unit 114 performs transmission/reception processing of signals with the slave device 120 via the transmission line 130.
  • the master side communication unit 114 includes an electric/optical conversion unit that converts an electrical signal sent from the master device 110 into an optical signal, and an optical signal received from the transmission line 130 that is converted into an electrical signal.
  • a photoelectric conversion unit is provided.
  • the master-side communication unit 114 transfers an operation command for the slave robot 122 input by the user (operator) via the operation UI unit 112 to the slave device 120 via the transmission line 130 . Also, the master-side communication unit 114 receives sensor information sent from the slave device 120 via the transmission line 130 .
  • the slave device 120 includes a slave side control section 121, a slave robot 122, a sensor section 123, and a slave side communication section .
  • the slave device 120 performs operations according to instructions from the master device 110 under overall control by the slave-side control unit 121 .
  • the slave robot 122 is, for example, an arm-shaped robot with a multi-link structure, and has a surgical tool such as forceps as an end effector at its tip (or distal end).
  • the slave-side control unit 121 interprets the operation command sent from the master device 110 via the transmission line 130, converts it into a drive signal for the actuator that drives the slave robot 122, and outputs the drive signal.
  • the slave robot 122 operates based on the drive signal from the slave side control section 121 .
  • the slave robot 122 will mainly perform retinal surgery, and that it has an RCM (Remote Center of Motion) structure.
  • the RCM structure is a structure in which a rotation center (that is, a remote rotation center) is arranged at a position away from the rotation center of a drive mechanism such as a motor to realize pivot (fixed point) motion.
  • the RCM structure is highly safe because it can realize a structure whose fixed point is the position of a hole made in the patient's body during surgery (for example, the trocar position).
  • the sensor unit 123 includes the slave robot 122 and a plurality of sensors for detecting the condition of the affected part of the operation performed by the slave robot 122, and also has an interface for taking in sensor information from various sensor devices installed in the operating room. Equipped.
  • the sensor unit 123 includes a force sensor (Force Torque Sensor: FTS) for measuring the external force and moment acting on the surgical tool mounted on the tip (distal end) of the slave robot 122 during surgery. ing. The details of the configuration of this force sensor and the arithmetic processing for measuring the external force and moment will be given later.
  • FTS Force Torque Sensor
  • the sensor unit 123 is equipped with an RGB camera for imaging the surface of the affected area under operation by the slave robot 122, an OCT for scanning the cross section of the affected area (eyeball), or an interface that captures an image captured by the RGB camera or an OCT image. Equipped.
  • the slave-side communication unit 124 performs signal transmission/reception processing with the master device 110 via the transmission line 130 under the control of the slave-side control unit 121 .
  • the slave side communication unit 124 includes an electrical/optical conversion unit that converts an electrical signal sent from the slave device 120 into an optical signal, and an optical signal received from the transmission line 130 that is converted into an electrical signal.
  • a photoelectric conversion unit is provided.
  • the slave-side communication unit 124 transfers the haptic data of the surgical tool acquired by the sensor unit 123, the RGB image of the affected area, the OCT image obtained by scanning the cross section of the affected area, and the like to the master device 110 via the transmission path 130.
  • the slave-side communication unit 124 also receives an operation command for the slave robot 122 sent from the master device 110 via the transmission line 130 .
  • FIG. 2 shows the surface of the eyeball
  • FIG. 3 shows a cross section of the eyeball cut so that the trocar and the surgical tool (forceps) pass through.
  • an eyelid speculum 201 is attached to the eyeball 200 to be operated and fixed so that the eyelid does not close.
  • Trocars 202 to 204 are inserted into the surface of the eyeball 200 at a plurality of locations (three locations in the example shown in FIG. 2).
  • the trocars 202-204 have thin tubes for inserting surgical instruments such as forceps.
  • a trocar 301 having a small diameter tube is stuck in the surface of the eyeball 300, and forceps 302 are inserted into the eyeball 300 through the trocar 301 and reach the fundus to perform retinal surgery. is carried out.
  • the operator or the slave robot 122 remotely controlled by the operator via the master device 110
  • this intersection is the intersection of the trocar 301 and the surface of the eyeball 300 (hereinafter referred to as this intersection). (also called the “insertion point”) should always be considered so that the surgery is performed with as little stress as possible.
  • the RCM mechanism of the slave robot 122 pivots the forceps 302 with the insertion point as a fulcrum to zero the impulse generated at the insertion point.
  • the configuration of the slave robot 122 having the RCM structure will be described later.
  • Patent Literature 1 discloses a method of directly measuring the contact force acting between the living tissue inside the eyeball and the tip of the surgical instrument by arranging a force sensor near the distal end of the surgical instrument.
  • a force sensor it is structurally difficult to place a force sensor at the tip of a small-diameter surgical tool used in retinal surgery, and the manufacturing cost increases (as described above).
  • the present disclosure proposes a force measuring device capable of indirectly and highly accurately detecting an external force acting on the tip of the forceps without arranging a force sensor at the tip of the forceps inserted into a small-diameter trocar. .
  • FIG. 4 shows the configuration of a force measuring device 400 according to one embodiment of the present disclosure. This figure shows the functional configuration of the force measuring device 400 attached to the human eyeball together with the cross section of the eyeball.
  • a trocar 412 having a small diameter tube is stuck in the surface of the eyeball 411, and forceps 413 are inserted into the eyeball 411 through the trocar 412 and reach the fundus to perform retinal surgery. be implemented.
  • the forceps 413 are pivoted by the RCM mechanism of the slave robot 122 around the insertion point passing through the surface of the eyeball 411 as a fulcrum. For this reason, it is possible to perform an operation that eliminates the impulse generated at the insertion point, thereby realizing minimally invasive surgery with as little load as possible on the insertion point.
  • the force measuring device 400 includes a first force sensor (FTS1) 401 that detects the external force and torque acting on the trocar 412, and near the base of the forceps 413 (or outside the trocar 412 that is not inserted into the eyeball 411). ) and forceps 413 based on the sensor values detected by each of the first force sensor 401 and the second force sensor 402 .
  • a calculation unit 403 is provided for calculating the contact force and torque acting on the tip.
  • This force measuring device 400 can be used by being incorporated in the sensor section 123 of the surgical operation system 100 shown in FIG.
  • both the first force sensor 401 and the second force sensor 402 are 6DOF sensors having a total of 6 degrees of freedom of forces acting in the directions of the xyz axes and torques acting around the axes.
  • the long axis direction of the forceps 413 is set to the z-axis (however, the direction from the tip to the root side is the positive direction), and the xy-axis orthogonal to the z-axis is set.
  • the configurations of the first force sensor 401 and the second force sensor 402 are not particularly limited.
  • the first force sensor 401 is composed of, for example, a strain sensor attached to a strain-generating body attached near the root of the forceps 413 (or a strain-generating body structure portion formed near the root of the forceps 413). be.
  • the second force sensor 402 is a strain sensor attached to a strain-generating body attached to the surface of the trocar 412 (or a strain-generating body structure portion formed near the surface of the trocar 412). be.
  • the strain sensor may be, for example, a strain gauge or an FBG (Fiber Bragg Grating) sensor.
  • FIG. 5 shows the relationship between the forces acting on the forceps 413 (that is, the contact forces (f tip , ⁇ tip ) applied to the tips of the forceps 413 and the external forces ( ffric , ⁇ fric ) that the forceps 413 receive from the trocars 412 ). relationship).
  • FIG. 6 shows the relationship between the forces acting on the trocar 412 (that is, the external force (f eye , ⁇ eye ) that the trocar 412 receives from the eyeball 411 and the external force that the trocar 412 receives from the forceps 413 (f fric ', ⁇ fric '). relationship).
  • the six-axis force measured by the first force sensor 401 attached to the trocar 412 is (f FTS1 , ⁇ FTS1 ), and the second force sensor attached to the forceps 413 is Let the six-axis force measured by the sensor 402 be (f FTS2 , ⁇ FTS2 ).
  • the force f has three components in each of the xyz axial directions
  • the torque ⁇ has three components around each of the xyz axes.
  • the six-axis forces (f FTS1 , ⁇ FTS1 ) measured by the first force sensor 401 attached to the trocar 412 are the external forces (f eye , ⁇ eye ) received by the trocar 412 from the eyeball 411 and Based on the external forces (f fric ', ⁇ fric ') received from 413, the following equation (1) is obtained.
  • the six-axis force (f FTS2 , ⁇ FTS2 ) measured by the second force sensor 402 attached near the root of the forceps 413 is the contact force (f tip , ⁇ tip ) applied to the tip of the forceps 413.
  • the external forces (f fric , ⁇ fric ) that the forceps 413 receives from the trocar 412 are expressed by the following equation (2).
  • the contact force (f tip , ⁇ tip ) applied to the tip of the forceps 413 is calculated using only the measured values of the first force sensor 401 and the second force sensor 402. , is represented by the following equation (5).
  • the calculation unit 403 calculates the 6-axis force (f FTS1 , ⁇ FTS1 ) measured by the first force sensor 401 and the 6-axis force measured by the second force sensor 402 attached to the forceps 413 From (f FTS2 , ⁇ FTS2 ), the contact force (f tip , ⁇ tip ) applied to the tip of the forceps 413 can be calculated based on the above equation (5).
  • the 6-axis force (f FTS1 , ⁇ FTS1 ) measured by the first force sensor 401 and the 6-axis force (f FTS2 , ⁇ FTS2 ) measured by the second force sensor 402 ), the contact force (f tip , ⁇ tip ) applied to the tip of the forceps 413 is calculated.
  • Calibration may be performed in the force measuring device 400 as necessary.
  • the computing unit 403 calculates the contact forces (f tip , ⁇ tip ) applied to the tip of the forceps 413 using the correction constants and correction formulas derived by calibration without being bound by the above equation (5).
  • the force measuring device 400 uses a machine learning model to calculate the acting force of the tip of the forceps 413 based on the measured values of the first force sensor 401 and the second force sensor 402, regardless of the above equation (5). (f tip , ⁇ tip ) may be estimated.
  • force measuring device 400 When force measuring device 400 is incorporated in sensor unit 123 of surgical system 100 shown in FIG. is transferred to the master device 110. Then, on the master device 110 side, the presentation unit 113 can provide haptic feedback to the user (operator) based on the contact force (f tip , ⁇ tip ).
  • the forceps 413 used for retinal surgery are passed through the trocar 412, which is a thin tube, and therefore have an extremely small diameter. Practical problems related to are likely to occur.
  • the force acting on the tip of the forceps 413 is estimated without arranging a force sensor at the tip of the forceps 413 (in other words, inside the eyeball 411). be able to. Therefore, according to the present disclosure, it is possible to measure the acting force of the distal end of the forceps 413 while maintaining a simple structure.
  • Section E describes a robotic device with an RCM structure as applied in the slave robot 122 .
  • the RCM structure is a structure in which the center of rotation (that is, remote center of rotation) is arranged at a position away from the center of rotation of a driving mechanism such as a motor to realize pivot (fixed point) motion.
  • the RCM structure is a structure that always passes through the position of the hole made in the patient's body during surgery (for example, the trocar position). Since it is possible to realize a minimally invasive structure), it is highly safe and has already been adopted in some robots and medical devices (see Patent Document 3, for example).
  • FIG. 8 shows a configuration example of a support arm device 800 that supports a surgical instrument such as forceps at its tip.
  • the illustrated support arm device 800 is assumed to be applied to the slave robot 122 .
  • the support arm device 800 includes an arm portion 810 including at least one parallel link, and the tip of the arm portion 810 supports a surgical tool such as forceps (not shown in FIG. 8).
  • the arm portion 810 is operated by the first motor 830 and the second motor 840, so that the surgical tool supported at the distal end of the arm portion 810 can pivot about the RCM.
  • the support arm device 800 may further include a mechanism for realizing rectilinear motion of the surgical instrument supported at the distal end of the arm portion 810, but illustration and description thereof are omitted here for convenience.
  • a universal joint 831 as a first drive shaft is connected to the output shaft of the first motor 830, and the first motor 830 causes the universal joint 831 to rotate.
  • One end of the universal joint 831 is coaxially fixed to the output shaft of the first motor 830, and the other end of the universal joint 831 is rotatably connected to the base.
  • a second drive shaft 841 is coaxially connected to the output shaft of the second motor 840 , and the second motor 840 rotates the second drive shaft 841 .
  • the arm part 810 has a multi-link structure including at least one parallel link composed of a plurality of links.
  • the arm portion 810 includes a plurality of joint portions 811 to 817, and a first link 821, a second link 822, a third link 823, and a fourth link 824 rotatably connected by the joint portions 811 to 817. , and a fifth link 825 .
  • the first link 821 is assumed to have a support portion at its tip for supporting a surgical tool such as forceps (not shown in FIG. 8).
  • a first link 821, a second link 822, a third link 823, a fourth link 824, and a fifth link 825 form parallel links.
  • the fourth link 824 corresponds to the first drive link
  • the fifth link 825 corresponds to the second drive link.
  • the first motor 830 and the second motor 840 are driven so that the long axis of the third link 823 supporting the surgical tool (not shown in FIG. 8) always passes through the RCM.
  • a third link 823 can pivot about the RCM.
  • 9 to 12 show examples of postures of the arm portion 810 that performs the pivotal movement of the third link 823 around the RCM. 9 to 12, for ease of comparison with the posture (basic posture) of the arm portion 810 shown in FIG. 8, a virtual line (one point dashed line).
  • the first motor 830 is rotated counterclockwise in the drawing from the state shown in FIG. ) shows the posture of the arm portion 810 when rotated to .
  • the arm portion 810 rotates forward while rotating leftward.
  • the third link 823 supporting the surgical tool (not shown in FIG. 8) is tilted forward while rotating leftward about the RCM.
  • FIG. 10 shows the posture of the arm portion 810 when the first motor 830 is rotated clockwise from the state shown in FIG. In this case, the arm portion 810 rotates backward while the first link 821 and the second link 822 are maintained in parallel. As a result, the third link 823 supporting the surgical tool (not shown in FIG. 8) is tilted rearward around the RCM.
  • FIG. 11 shows the posture of the arm portion 810 when the second motor 840 is rotated rightward (in the direction of the arrow indicated by reference number 1101 in FIG. 11) from the state shown in FIG. .
  • the arm portion 810 is tilted rightward.
  • the third link 823 is tilted rightward around the RCM.
  • the fourth link 824 is connected to the output shaft of the first motor 830 via the universal joint 831, the rotation of the fourth link 824 is not hindered.
  • FIG. 12 shows the posture of the arm portion 810 when the second motor 840 is rotated leftward (in the direction of the arrow indicated by reference number 1201 in FIG. 12) from the state shown in FIG. .
  • the arm portion 810 is tilted leftward.
  • the third link 823 is tilted leftward around the RCM.
  • the fourth link 824 is connected to the output shaft of the first motor 830 via the universal joint 831, the rotation of the fourth link 824 is not hindered.
  • the support arm device 800 drives a first motor 830 and a second motor 840 to change the posture of the arm portion 810, thereby moving a jig such as a surgical tool.
  • a third link 823 on which is supported can be pivoted about the RCM.
  • the support arm device 800 according to the present embodiment can be applied, for example, to the operation of approaching the spherical surface Y centered on the RCM from various angles, as shown in FIGS. 8 to 12 . Further, by driving the second motor 330b, the inclination of the parallel link forming the arm portion 810 changes in the left-right direction with the second drive shaft 345 as the center.
  • the surgical instrument supported by the third link 823 (or the axial line of the surgical instrument) is supported regardless of the posture of the arm section 310. ) always pass through the RCM.
  • the support arm device 800 can pivot the surgical instrument supported by the arm section 810 around the RCM by changing the posture of the arm section 810 .
  • the support arm device 800 may further include a mechanism for realizing rectilinear movement of the surgical instrument supported at the distal end of the arm portion 810, but illustration and description thereof are omitted here for convenience.
  • the present disclosure is applied to eye surgery such as retinal surgery
  • eye surgery such as retinal surgery
  • the gist of the present disclosure is not limited to this.
  • the present disclosure can be similarly applied to various surgeries performed by inserting a surgical instrument into the body via a trocar.
  • the present disclosure can also be applied to remote control or operation support using master-slave robots, and autonomous control of surgical robots.
  • endoscopes hard endoscopes such as laparoscopes and arthroscopes, and flexible endoscopes such as gastrointestinal endoscopes and bronchoscopes
  • endoscopes hard endoscopes such as laparoscopes and arthroscopes
  • flexible endoscopes such as gastrointestinal endoscopes and bronchoscopes
  • a force measuring device comprising:
  • the acquisition unit acquires the first information from a first force sensor attached to the trocar that is used by being inserted into the surface of the living body, and also acquires the first information from the surgical tool at a position outside the living body. obtaining the second information from an attached second force sensor; The force measuring device according to (1) above.
  • the living body is an eyeball;
  • the computing unit estimates the force that the tip of the surgical tool receives from the fundus of the eyeball.
  • the force measuring device according to either (2) or (3) above.
  • the first information includes an external force that the trocar receives from the living body and an external force that the surgical instrument receives;
  • the second information includes a contact force applied to the tip of the surgical instrument and an external force that the forceps receives from the trocar,
  • the force measuring device according to any one of (2) to (4) above.
  • the surgical instrument is pivoted so that the impulse generated at the insertion point intersecting the living body via the trocar is zero;
  • the computing unit ignores the impulse that the trocar receives from the living body and estimates the external force acting on the tip of the surgical instrument.
  • the force measuring device according to any one of (2) to (5) above.
  • the first information and the second information each include information on six-axis external forces;
  • the calculation unit calculates a six-axis force acting on the distal end of the surgical tool based on a resultant force of a first six-axis force included in the first information and a second six-axis force included in the second information. estimating the external force, The force measuring device according to any one of (1) to (6) above.
  • a first force acting on the trocar including an external force received by the trocar from the living body and an external force received from the surgical instrument.
  • measuring information about Using a second force sensor attached to a surgical instrument inserted through the trocar, force acting on the surgical instrument including contact force applied to the distal end of the surgical instrument and external force received by the forceps from the trocar measuring second information about a calculation step of estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information; force measurement method.
  • a surgical device comprising:
  • a surgical system comprising a master device and a slave device, The slave device a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero; a first force sensor attached to the trocar; a second force sensor attached to the surgical instrument; a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; , with The master device an operation user interface unit for inputting an operation amount instruction for the robot; a presentation unit that presents a haptic sensation based on the external force estimated by the calculation unit;
  • a surgical system comprising:

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Manipulator (AREA)

Abstract

Provided is a force measurement device for measuring the force exerted on a surgical instrument inserted into an eyeball. This force measurement device comprises: an acquisition unit which acquires first information relating to an external force exerted on a trocar, and second information relating to an external force exerted on a surgical instrument inserted into the trocar; and a computation unit which estimates an external force exerted on the tip of the surgical instrument on the basis of the first information and the second information. The surgical instrument is pivot operated such that the impulse occurring at an insertion point intersecting a living body through the trocar is zero, and the computation unit estimates the external force exerted on the distal end of the surgical instrument while ignoring the impulse received by the trocar from the living body.

Description

力計測装置及び力計測方法、手術装置、及び手術システムForce measuring device and force measuring method, surgical device, and surgical system
 本明細書で開示する技術(以下、「本開示」とする)は、手術中に生体組織と術具先端の間に作用する力を計測する力計測装置及び力計測方法、手術装置、及び手術システムに関する。 The technology disclosed in this specification (hereinafter referred to as "the present disclosure") includes a force measuring device and a force measuring method for measuring the force acting between a living tissue and a tip of a surgical instrument during surgery, a surgical device, and a surgical device. Regarding the system.
 一般に外科手術は、術者の感覚運動によって行われる難しい作業である。とりわけ網膜手術のように、小規模で脆弱な環境下で微細な術具を使用する手術の場合、術者はミクロンオーダーの動作を行う必要がある。このような作業においては、知覚不能な微小な力による患部への侵襲を抑制するために、術者に力覚を認識させることが好ましい。 Surgery is generally a difficult task that is performed by the operator's sensory movements. In particular, in the case of surgery using fine surgical tools in a small-scale and fragile environment, such as retinal surgery, the operator needs to perform micron-order movements. In such an operation, it is preferable to make the operator perceive a sense of force in order to suppress invasion of the affected area by an imperceptible minute force.
 例えば、網膜顕微鏡手術に使用される術具の先端近傍に力覚センサを配置して、眼球内部での生体組織と術具先端の間に作用する接触力を直接的に計測する方法が提案されている(特許文献1を参照のこと)。この方法によれば、術具の根元側(近位端)に力覚センサを搭載して、眼球外部から術具先端に作用する接触力を推定する方法に比べて、外乱(主に、トロッカー拘束点で発生する摩擦力など)の影響を受けずに高精度で計測することができるという利点がある。 For example, a method has been proposed in which a force sensor is placed near the tip of a surgical tool used in retinal microsurgery to directly measure the contact force acting between the tissue inside the eyeball and the tip of the surgical tool. (See Patent Document 1). According to this method, a force sensor is mounted on the root side (proximal end) of the surgical instrument, and compared to the method of estimating the contact force acting on the distal end of the surgical instrument from outside the eyeball, disturbance (mainly trocar There is an advantage that it is possible to measure with high accuracy without being affected by frictional force generated at the restraint point, etc.).
 しかしながら、臨床で使用されている一般的な鉗子の直径は概ね0.5ミリメートル程度と極めて細径であるため、このような術具の先端に力覚センサを配置することは、以下の点において不利である。
(1)構造上の複雑さ。
(2)洗浄及び滅菌といった医療要件の対応への難しさ。
(3)一般にディスポーザブルが取られいる眼科手術用鉗子における製造コストへのインパクト。
However, the diameter of general forceps used clinically is extremely small, approximately 0.5 mm. disadvantageous.
(1) Structural complexity.
(2) difficulties in meeting medical requirements such as cleaning and sterilization;
(3) The impact on the manufacturing cost of ophthalmic surgical forceps, which are generally disposable.
特表2013-536013号公報Japanese Patent Application Publication No. 2013-536013 WO2012/020386WO2012/020386 WO2017/077755WO2017/077755
 本開示の目的は、例えば網膜手術において、トロッカーを介して眼球内に挿入された術具の先端と網膜との間に作用する力を計測する力計測装置及び力計測方法、手術装置、及び手術システムを提供することにある。 An object of the present disclosure is, for example, in retinal surgery, a force measuring device and force measuring method, a surgical device, and a surgical device for measuring the force acting between the tip of a surgical tool inserted into the eyeball via a trocar and the retina. It is to provide a system.
 本開示は、上記課題を参酌してなされたものであり、その第1の側面は、
 トロッカーに作用する外力に関する第1の情報と、前記トロッカーに挿通される術具に作用する外力に関する第2の情報を取得する取得部と、
 前記第1の情報と前記第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
を具備する力計測装置である。
The present disclosure has been made in consideration of the above problems, and the first aspect thereof is
an acquisition unit that acquires first information about an external force acting on a trocar and second information about an external force acting on a surgical instrument inserted through the trocar;
a calculation unit for estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information;
It is a force measuring device comprising
 前記取得部は、生体表面に挿入して用いられる前記トロッカーに取り付けられた第1の力覚センサから前記第1の情報を取得するとともに、前記術具の前記生体の外側の位置に取り付けられた第2の力覚センサから前記第2の情報を取得する。第1の側面に係る力計測装置は、前記第1の力覚センサ及び前記第2の力覚センサをさらに備えていてもよい。また、前記生体は眼球であり、前記演算部は、前記術具の先端が前記眼球の眼底から受ける力を推定する。 The acquisition unit acquires the first information from a first force sensor attached to the trocar that is used by being inserted into the surface of the living body, and is attached to the surgical tool at a position outside the living body. The second information is obtained from a second force sensor. The force measuring device according to the first aspect may further include the first force sensor and the second force sensor. Also, the living body is an eyeball, and the computing unit estimates the force that the tip of the surgical tool receives from the fundus of the eyeball.
 前記術具は、前記トロッカーを介して前記生体と交差する挿入点に発生する力積がゼロとなるようにピボット操作されるものとする。そして、前記演算部は、前記トロッカーが前記生体から受ける力積を無視して、前記術具の先端に作用する外力を推定する。 The surgical instrument is pivotally operated so that the impulse generated at the insertion point that intersects the living body via the trocar is zero. Then, the calculation unit ignores the impulse that the trocar receives from the living body and estimates the external force acting on the distal end of the surgical instrument.
 また、本開示の第2の側面は、
 生体に挿入されるトロッカーに取り付けられた第1の力覚センサを用いて、前記トロッカーが前記生体から受ける外力及び前記術具から受ける外力を含む、前記トロッカーに作用する力に関する第1の情報を計測するステップと、
 前記トロッカーに挿通される術具に取り付けられた第2の力覚センサを用いて、前記術具の先端に加わる接触力と前記鉗子が前記トロッカーから受ける外力を含む、前記術具に作用する力に関する第2の情報を計測するステップと、
 前記第1の情報と前記第2の情報に基づいて前記術具の先端に作用する外力を推定する演算ステップと、
を有する力計測方法である。
In addition, a second aspect of the present disclosure is
A first force sensor attached to a trocar that is inserted into a living body is used to obtain first information about a force acting on the trocar, including an external force that the trocar receives from the living body and an external force that the surgical instrument receives. a measuring step;
Using a second force sensor attached to a surgical instrument inserted through the trocar, force acting on the surgical instrument including contact force applied to the distal end of the surgical instrument and external force received by the forceps from the trocar measuring second information about
a calculation step of estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information;
It is a force measurement method having
 また、本開示の第3の側面は、
 生体に挿入されたトロッカーに挿通される術具を、前記術具が前記生体に挿入される挿入点において発生する力積がゼロとなるようにピボット操作するロボットと、
 前記トロッカーに取り付けられた第1の力覚センサと、
 前記術具に取り付けられた第2の力覚センサと、
 前記第1の力覚センサによって計測される第1の情報と前記第2の力覚センサによって計測される第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
を具備する手術装置である。
In addition, a third aspect of the present disclosure is
a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero;
a first force sensor attached to the trocar;
a second force sensor attached to the surgical tool;
a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; ,
A surgical device comprising:
 また、本開示の第4の側面は、マスタ装置とスレーブ装置からなる手術システムであって、
 前記スレーブ装置は、
 生体に挿入されたトロッカーに挿通される術具を、前記術具が前記生体に挿入される挿入点において発生する力積がゼロとなるようにピボット操作するロボットと、
 前記トロッカーに取り付けられた第1の力覚センサと、
 前記術具に取り付けられた第2の力覚センサと、
 前記第1の力覚センサによって計測される第1の情報と前記第2の力覚センサによって計測される第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
を備え、
 前記マスタ装置は、
 前記ロボットに対する操作量の指示を入力する操作ユーザインターフェース部と、
 前記演算部によって推定された外力に基づく力覚を提示する提示部と、
を備える、手術システムである。
A fourth aspect of the present disclosure is a surgical system comprising a master device and a slave device,
The slave device
a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero;
a first force sensor attached to the trocar;
a second force sensor attached to the surgical tool;
a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; ,
with
The master device
an operation user interface unit for inputting an operation amount instruction for the robot;
a presentation unit that presents a haptic sensation based on the external force estimated by the calculation unit;
A surgical system comprising:
 但し、ここで言う「システム」とは、複数の装置(又は特定の機能を実現する機能モジュール)が論理的に集合した物のことを言い、各装置や機能モジュールが単一の筐体内にあるか否かは特に問わない。 However, the "system" referred to here refers to a logical assembly of multiple devices (or functional modules that implement specific functions), and each device or functional module is in a single housing. It does not matter whether or not
 本開示によれば、例えば網膜手術において、トロッカーを介して眼球内に挿入された術具の先端と網膜との間に作用する力を間接的に計測する力計測装置及び力計測方法、手術装置、及び手術システムを提供することができる。 According to the present disclosure, for example, in retinal surgery, a force measuring device, a force measuring method, and a surgical device for indirectly measuring the force acting between the retina and the tip of a surgical tool inserted into the eyeball via a trocar , and a surgical system.
 なお、本明細書に記載された効果は、あくまでも例示であり、本開示によりもたらされる効果はこれに限定されるものではない。また、本開示が、上記の効果以外に、さらに付加的な効果を奏する場合もある。 It should be noted that the effects described in this specification are merely examples, and the effects brought about by the present disclosure are not limited to these. In addition, the present disclosure may have additional effects in addition to the effects described above.
 本開示のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。 Further objects, features, and advantages of the present disclosure will become apparent from more detailed descriptions based on the embodiments described later and the accompanying drawings.
図1は、マスタスレーブ方式の手術システム100の機能的構成例を示した図である。FIG. 1 is a diagram showing a functional configuration example of a master-slave surgery system 100. As shown in FIG. 図2は、網膜手術の一般的なレイアウト(眼球表面)を示した図である。FIG. 2 is a diagram showing a general layout (ocular surface) for retinal surgery. 図3は、網膜手術の一般的なレイアウト(眼球断面)を示した図である。FIG. 3 is a diagram showing a general layout (eyeball section) for retinal surgery. 図4は、力計測装置400の構成を示した図である。FIG. 4 is a diagram showing the configuration of the force measuring device 400. As shown in FIG. 図5は、鉗子413に作用する力の関係を示した図である。FIG. 5 is a diagram showing the relationship of forces acting on the forceps 413. As shown in FIG. 図6は、トロッカー412に作用する力の関係を示した図である。FIG. 6 is a diagram showing the relationship of forces acting on the trocar 412. As shown in FIG. 図7は、第1の力覚センサ401及び第2の力覚センサ402で計測される6軸力を示した図である。FIG. 7 is a diagram showing six-axis forces measured by the first force sensor 401 and the second force sensor 402. FIG. 図8は、RCM構造を有する支持アーム装置800の自由度構成例を示した図である。FIG. 8 is a diagram showing a configuration example of degrees of freedom of a support arm device 800 having an RCM structure. 図9は、RCMを中心とする第3のリンク823のピボット運動を行うアーム部810の姿勢の例を示した図である。FIG. 9 is a diagram showing an example of the posture of the arm section 810 that performs the pivotal movement of the third link 823 around the RCM. 図10は、RCMを中心とする第3のリンク823のピボット運動を行うアーム部810の姿勢の例を示した図である。FIG. 10 is a diagram showing an example of the posture of the arm section 810 that performs the pivotal movement of the third link 823 around the RCM. 図11は、RCMを中心とする第3のリンク823のピボット運動を行うアーム部810の姿勢の例を示した図である。FIG. 11 is a diagram showing an example of the posture of the arm section 810 that performs the pivotal movement of the third link 823 around the RCM. 図12は、RCMを中心とする第3のリンク823のピボット運動を行うアーム部810の姿勢の例を示した図である。FIG. 12 is a diagram showing an example of the posture of the arm section 810 that performs the pivotal movement of the third link 823 around the RCM.
 以下、図面を参照しながら本開示について、以下の順に従って説明する。 The present disclosure will be described in the following order with reference to the drawings.
A.手術システム
B.網膜手術について
C.外力検出機構
D.効果
E.RCM構造を有するロボット装置
A. Surgical systemB. For retinal surgeryC. external force detection mechanism D. EffectE. Robot device with RCM structure
A.手術システム
 本明細書では、主に本開示をマスタスレーブ方式の手術システムに適用した実施形態を中心に説明する。このような手術システムでは、術者などのユーザはマスタ側で操作を行い、スレーブ側ではユーザの操作に従ってロボットの駆動をコントロールすることによって手術を行う。手術システムにロボティックス技術を取り入れる目的として、術者の手の振戦の抑止、操作支援や術者間の技量の相違の吸収、遠隔からの手術の実施などが挙げられる。
A. Surgical System In this specification, an embodiment in which the present disclosure is applied to a master-slave surgical system will be mainly described. In such a surgical system, a user such as an operator performs operations on the master side, and the slave side performs surgery by controlling the driving of the robot according to the user's operations. The purpose of incorporating robotics technology into the surgical system is to suppress the tremor of the operator's hand, assist in operation, absorb differences in skill between operators, and perform surgery remotely.
 図1には、マスタスレーブ方式の手術システム100の機能的構成例を示している。図示の手術システム100は、ユーザ(術者)が手術などの作業を指示するマスタ装置110と、マスタ装置110からの指示に従って手術を実施するスレーブ装置120からなる。ここで言う手術として、主に網膜手術を想定している。マスタ装置110とスレーブ装置120間は、伝送路130を介して相互接続されている。伝送路130は、例えば光ファイバなどのメディアを用いて低遅延で信号伝送を行えることが望ましい。 FIG. 1 shows a functional configuration example of a master-slave surgical system 100 . The illustrated surgery system 100 includes a master device 110 for which a user (operator) instructs operations such as surgery, and a slave device 120 for performing surgery according to instructions from the master device 110 . As the surgery referred to here, retinal surgery is mainly assumed. Master device 110 and slave device 120 are interconnected via transmission line 130 . It is desirable that the transmission line 130 can perform signal transmission with low delay using a medium such as an optical fiber.
 マスタ装置110は、マスタ側制御部111と、操作UI(User Interface)部112と、提示部113と、マスタ側通信部114を備えている。マスタ装置110は、マスタ側制御部111による統括的な制御下で動作する。 The master device 110 includes a master-side control unit 111, an operation UI (User Interface) unit 112, a presentation unit 113, and a master-side communication unit 114. The master device 110 operates under general control by the master-side control section 111 .
 操作UI部112は、ユーザ(術者など)が、スレーブ装置120において鉗子などの術具を操作するスレーブロボット112(後述)に対する指示を入力するためのデバイスからなる。操作UI部112は、例えば、コントローラやジョイスティックなどの専用の入力デバイス、さらにはマウス操作や指先のタッチ操作を入力するGUI画面などの汎用の入力デバイスで構成される。また、特許文献2で開示される「医療用装置」を操作UI部112として利用することができる。 The operation UI unit 112 is a device for a user (operator, etc.) to input instructions to a slave robot 112 (described later) that operates surgical tools such as forceps in the slave device 120 . The operation UI unit 112 includes, for example, a dedicated input device such as a controller and a joystick, and a general-purpose input device such as a GUI screen for inputting mouse operations and fingertip touch operations. Also, the “medical device” disclosed in Patent Document 2 can be used as the operation UI unit 112 .
 提示部113は、主にスレーブ装置120側のセンサ部123(後述)で取得されるセンサ情報に基づいて、操作UI部112を操作しているユーザ(術者)に対して、スレーブ装置120において実施されている手術に関する情報を提示する。 The presentation unit 113 provides the user (operator) who is operating the operation UI unit 112 with the slave device 120 mainly based on sensor information acquired by the sensor unit 123 (described later) on the slave device 120 side. Present information about the surgery being performed.
 例えば、センサ部123が患部の表面を観察する顕微鏡画像を撮り込むRGBカメラやOCT(Optical Coherence Tomography:光干渉断層装置)を装備し、又はRGBカメラの撮像画像やOCT画像を取り込むインターフェースを装備し、これらの画像データが伝送路130を介して低遅延でマスタ装置110に転送される場合、提示部113は、リアルタイムの患部のRGB画像やOCT画像を画面表示する。 For example, the sensor unit 123 is equipped with an RGB camera or an OCT (Optical Coherence Tomography) that captures a microscope image for observing the surface of the affected area, or is equipped with an interface that captures an image captured by an RGB camera or an OCT image. When these image data are transferred to the master device 110 with low delay via the transmission path 130, the presentation unit 113 displays the real-time RGB image and OCT image of the affected area on the screen.
 また、センサ部123が、スレーブロボット112が操作する術具に作用する外力やモーメントを計測する機能を装備し、このような力覚情報が伝送路130を介して低遅延でマスタ装置110に転送される場合には、提示部113は、ユーザ(術者)に対して力覚提示を行う。例えば、提示部113は、操作UI部112を使ってユーザ(術者)に力覚提示を行うようにしてもよい。 Further, the sensor unit 123 is equipped with a function to measure the external force and moment acting on the surgical tool operated by the slave robot 112, and such haptic information is transferred to the master device 110 via the transmission line 130 with low delay. If so, the presentation unit 113 presents the force sense to the user (operator). For example, the presentation unit 113 may use the operation UI unit 112 to present a force sense to the user (operator).
 マスタ側通信部114は、マスタ側制御部111による制御下で、伝送路130を介したスレーブ装置120との信号の送受信処理を行う。例えば伝送路130が光ファイバからなる場合、マスタ側通信部114は、マスタ装置110から送出する電気信号を光信号に変換する電光変換部と、伝送路130から受信した光信号を電気信号に変換する光電変換部を備えている。 Under the control of the master-side control unit 111, the master-side communication unit 114 performs transmission/reception processing of signals with the slave device 120 via the transmission line 130. For example, when the transmission line 130 is made of optical fiber, the master side communication unit 114 includes an electric/optical conversion unit that converts an electrical signal sent from the master device 110 into an optical signal, and an optical signal received from the transmission line 130 that is converted into an electrical signal. A photoelectric conversion unit is provided.
 マスタ側通信部114は、ユーザ(術者)が操作UI部112を介して入力した、スレーブロボット122に対する操作コマンドを、伝送路130を介してスレーブ装置120に転送する。また、マスタ側通信部114は、スレーブ装置120から送られてくるセンサ情報を、伝送路130を介して受信する。 The master-side communication unit 114 transfers an operation command for the slave robot 122 input by the user (operator) via the operation UI unit 112 to the slave device 120 via the transmission line 130 . Also, the master-side communication unit 114 receives sensor information sent from the slave device 120 via the transmission line 130 .
 一方、スレーブ装置120は、スレーブ側制御部121と、スレーブロボット122と、センサ部123と、スレーブ側通信部124を備えている。スレーブ装置120は、スレーブ側制御部121による統括的な制御下で、マスタ装置110からの指示に応じた動作を行う。 On the other hand, the slave device 120 includes a slave side control section 121, a slave robot 122, a sensor section 123, and a slave side communication section . The slave device 120 performs operations according to instructions from the master device 110 under overall control by the slave-side control unit 121 .
 スレーブロボット122は、例えば多リンク構造からなるアーム型のロボットであり、先端(又は、遠位端)にエンドエフェクタとして鉗子などの術具を搭載している。スレーブ側制御部121は、伝送路130を介してマスタ装置110から送られてきた操作コマンドを解釈して、スレーブロボット122を駆動するアクチュエータの駆動信号に変換して出力する。そして、スレーブロボット122は、スレーブ側制御部121からの駆動信号に基づいて動作する。 The slave robot 122 is, for example, an arm-shaped robot with a multi-link structure, and has a surgical tool such as forceps as an end effector at its tip (or distal end). The slave-side control unit 121 interprets the operation command sent from the master device 110 via the transmission line 130, converts it into a drive signal for the actuator that drives the slave robot 122, and outputs the drive signal. The slave robot 122 operates based on the drive signal from the slave side control section 121 .
 本実施形態では、スレーブロボット122として、主に網膜手術を行うことを想定しており、RCM(Remote Center of Motion)構造を有することを想定している。RCM構造は、モータなどの駆動機構の回転中心から離れた位置に回転中心(すなわち、遠隔回転中心)を配置し、ピボット(不動点)運動を実現する構造とする。RCM構造は、手術の際に患者の身体に開けた穴の位置(例えば、トロッカ位置)を不動点とする構造を実現できることから安全性が高い。 In this embodiment, it is assumed that the slave robot 122 will mainly perform retinal surgery, and that it has an RCM (Remote Center of Motion) structure. The RCM structure is a structure in which a rotation center (that is, a remote rotation center) is arranged at a position away from the rotation center of a drive mechanism such as a motor to realize pivot (fixed point) motion. The RCM structure is highly safe because it can realize a structure whose fixed point is the position of a hole made in the patient's body during surgery (for example, the trocar position).
 センサ部123は、スレーブロボット122やスレーブロボット122が実施している手術の患部における状況を検出する複数のセンサを備え、さらに手術室内に設置された各種センサ装置からセンサ情報を取り込むためのインターフェースを装備している。 The sensor unit 123 includes the slave robot 122 and a plurality of sensors for detecting the condition of the affected part of the operation performed by the slave robot 122, and also has an interface for taking in sensor information from various sensor devices installed in the operating room. Equipped.
 例えば、センサ部123は、スレーブロボット122の先端(遠位端)に搭載された術具に、手術中に作用する外力やモーメントを計測するための力覚センサ(Force Torque Sensor:FTS)を備えている。この力覚センサの構成及び外力やモーメントを計測するための演算処理の詳細については、後述に譲る。 For example, the sensor unit 123 includes a force sensor (Force Torque Sensor: FTS) for measuring the external force and moment acting on the surgical tool mounted on the tip (distal end) of the slave robot 122 during surgery. ing. The details of the configuration of this force sensor and the arithmetic processing for measuring the external force and moment will be given later.
 また、センサ部123は、スレーブロボット122が手術中の患部の表面を撮像するRGBカメラや患部(眼球)の断面をスキャンするOCTを装備し、又はRGBカメラの撮像画像やOCT画像を取り込むインターフェースを装備している。 In addition, the sensor unit 123 is equipped with an RGB camera for imaging the surface of the affected area under operation by the slave robot 122, an OCT for scanning the cross section of the affected area (eyeball), or an interface that captures an image captured by the RGB camera or an OCT image. Equipped.
 スレーブ側通信部124は、スレーブ側制御部121による制御下で、伝送路130を介したマスタ装置110との信号の送受信処理を行う。例えば伝送路130が光ファイバからなる場合、スレーブ側通信部124は、スレーブ装置120から送出する電気信号を光信号に変換する電光変換部と、伝送路130から受信した光信号を電気信号に変換する光電変換部を備えている。 The slave-side communication unit 124 performs signal transmission/reception processing with the master device 110 via the transmission line 130 under the control of the slave-side control unit 121 . For example, when the transmission line 130 is made of an optical fiber, the slave side communication unit 124 includes an electrical/optical conversion unit that converts an electrical signal sent from the slave device 120 into an optical signal, and an optical signal received from the transmission line 130 that is converted into an electrical signal. A photoelectric conversion unit is provided.
 スレーブ側通信部124は、センサ部123によって取得される術具の力覚データや、患部のRGB画像、患部断面をスキャンしたOCT画像などを、伝送路130を介してマスタ装置110に転送する。また、スレーブ側通信部124は、マスタ装置110から送られてくるスレーブロボット122に対する操作コマンドを、伝送路130を介して受信する。 The slave-side communication unit 124 transfers the haptic data of the surgical tool acquired by the sensor unit 123, the RGB image of the affected area, the OCT image obtained by scanning the cross section of the affected area, and the like to the master device 110 via the transmission path 130. The slave-side communication unit 124 also receives an operation command for the slave robot 122 sent from the master device 110 via the transmission line 130 .
B.網膜手術について
 図2及び図3には、網膜手術の一般的なレイアウトを示している。但し、図2は眼球表面を示し、図3はトロッカー及び術具(鉗子)が通過するように切断された眼球断面を示している。
B. About Retinal Surgery Figures 2 and 3 show the general layout of a retinal surgery. However, FIG. 2 shows the surface of the eyeball, and FIG. 3 shows a cross section of the eyeball cut so that the trocar and the surgical tool (forceps) pass through.
 図2に示すように、手術の対象となる眼球200には開瞼器(eyelid speculum)201が取り付けられ、瞼が閉じないように固定されている。そして、眼球200の表面の複数箇所(図2に示す例では3箇所)に、トロッカー202~204が刺し込まれている。トロッカー202~204は、鉗子などの術具を挿入するための細径の管を有している。 As shown in FIG. 2, an eyelid speculum 201 is attached to the eyeball 200 to be operated and fixed so that the eyelid does not close. Trocars 202 to 204 are inserted into the surface of the eyeball 200 at a plurality of locations (three locations in the example shown in FIG. 2). The trocars 202-204 have thin tubes for inserting surgical instruments such as forceps.
 図3に示すように、眼球300の表面には細径の管を有するトロッカー301が刺されており、鉗子302がトロッカー301を介して眼球300内に挿入され、さらに眼底に到達して、網膜手術が実施される。ここで、術者(又は、マスタ装置110を介して術者に遠隔操作されるスレーブロボット122)は、低侵襲の都合により、トロッカー301と眼球300の表面との交点(以下、この交点のことを「挿入点」とも呼ぶ)付近に対してできるだけ小さな負荷で手術が行われるように常に配慮する。したがって、スレーブロボット122のRCM機構により、挿入点を支点として鉗子302をピボット操作することで、挿入点に発生する力積をゼロにする操作を行うことが理想的である。なお、RCM構造からなるスレーブロボット122の構成については、後述する。 As shown in FIG. 3, a trocar 301 having a small diameter tube is stuck in the surface of the eyeball 300, and forceps 302 are inserted into the eyeball 300 through the trocar 301 and reach the fundus to perform retinal surgery. is carried out. Here, the operator (or the slave robot 122 remotely controlled by the operator via the master device 110), for the convenience of minimal invasiveness, is the intersection of the trocar 301 and the surface of the eyeball 300 (hereinafter referred to as this intersection). (also called the “insertion point”) should always be considered so that the surgery is performed with as little stress as possible. Therefore, it is ideal that the RCM mechanism of the slave robot 122 pivots the forceps 302 with the insertion point as a fulcrum to zero the impulse generated at the insertion point. The configuration of the slave robot 122 having the RCM structure will be described later.
C.外力検出機構
 このC項では、本開示に係る、トロッカーを介して眼球に挿入される鉗子の先端に作用する外力を検出する機構の詳細について説明する。
C. External Force Detection Mechanism In this section C, details of a mechanism for detecting an external force acting on the tip of the forceps inserted into the eyeball via the trocar according to the present disclosure will be described.
 網膜手術のように、小規模で脆弱な環境下で微細な術具を使用する手術の場合、術者はミクロンオーダーの動作を行う必要がある。このような作業においては、知覚不能な微小な力による患部への侵襲を抑制するために、術者に力覚を認識させる必要がある。特許文献1では術具の先端近傍に力覚センサを配置して、眼球内部での生体組織と術具先端の間に作用する接触力を直接的に計測する方法が開示されている。しかしながら、網膜手術に使用される細径の術具の先端に力覚センサを配置することは、構造上難しく、製造コストも増大する(前述)。 In the case of surgery that uses fine surgical instruments in a small-scale and fragile environment, such as retinal surgery, the operator must perform micron-order movements. In such work, it is necessary to make the operator perceive force in order to suppress invasion of the affected area by an imperceptible minute force. Patent Literature 1 discloses a method of directly measuring the contact force acting between the living tissue inside the eyeball and the tip of the surgical instrument by arranging a force sensor near the distal end of the surgical instrument. However, it is structurally difficult to place a force sensor at the tip of a small-diameter surgical tool used in retinal surgery, and the manufacturing cost increases (as described above).
 そこで、本開示では、細径のトロッカーに挿入される鉗子の先端に力覚センサを配置することなく、鉗子の先端に作用する外力を間接的に且つ高精度で検出できる力計測装置について提案する。 Therefore, the present disclosure proposes a force measuring device capable of indirectly and highly accurately detecting an external force acting on the tip of the forceps without arranging a force sensor at the tip of the forceps inserted into a small-diameter trocar. .
 図4には、本開示の一実施形態に係る力計測装置400の構成を示している。同図では、人の眼球に取り付けられた状態の力計測装置400の機能的構成を、眼球の断面とともに示している。 FIG. 4 shows the configuration of a force measuring device 400 according to one embodiment of the present disclosure. This figure shows the functional configuration of the force measuring device 400 attached to the human eyeball together with the cross section of the eyeball.
 図3と同様に、眼球411の表面には細径の管を有するトロッカー412が刺されており、鉗子413がトロッカー412を介して眼球411内に挿入され、さらに眼底に到達して、網膜手術が実施される。 Similar to FIG. 3, a trocar 412 having a small diameter tube is stuck in the surface of the eyeball 411, and forceps 413 are inserted into the eyeball 411 through the trocar 412 and reach the fundus to perform retinal surgery. be implemented.
 網膜手術の間(又は、トロッカー412に挿通されている間)、鉗子413は、スレーブロボット122のRCM機構により、眼球411の表面を通過する挿入点付近を支点としてピボット操作される。このため、挿入点に発生する力積をゼロにする操作が可能となり、挿入点に対してできるだけ小さな負荷で低侵襲の手術が実現する。 During retinal surgery (or while being inserted into the trocar 412), the forceps 413 are pivoted by the RCM mechanism of the slave robot 122 around the insertion point passing through the surface of the eyeball 411 as a fulcrum. For this reason, it is possible to perform an operation that eliminates the impulse generated at the insertion point, thereby realizing minimally invasive surgery with as little load as possible on the insertion point.
 まず、鉗子413、トロッカー412、及び眼球411における相互の接触事象について考察する。図4中、患部(網膜)と鉗子413の先端の間における第1の接触事象と、トロッカー412とトロッカー412の細管に挿通される鉗子413間における第2の接触事象と、トロッカー412とトロッカー412が刺された眼球411間における第3の接触事象の、合計3つの接触事象が発生している。 First, mutual contact events in forceps 413, trocar 412, and eyeball 411 are considered. 4, the first contact event between the affected part (retina) and the tip of the forceps 413, the second contact event between the trocar 412 and the forceps 413 inserted through the tubule of the trocar 412, and the trocar 412 and the trocar 412 A total of three contact events have occurred, a third contact event between the eyeballs 411 stung by the .
 そして、力計測装置400は、トロッカー412に作用する外力及びトルクを検出する第1の力覚センサ(FTS1)401と、鉗子413の根元付近(又は、眼球411内に挿入されない、トロッカー412より外側)に作用する外力及びトルクを検出する第2の力覚センサ(FTS2)402と、第1の力覚センサ401及び第2の力覚センサ402の各々が検出するセンサ値に基づいて鉗子413の先端に作用する接触力及びトルクを計算する演算部403を備えている。この力計測装置400は、図1に示した手術システム100のセンサ部123に組み込んで使用することができる。 The force measuring device 400 includes a first force sensor (FTS1) 401 that detects the external force and torque acting on the trocar 412, and near the base of the forceps 413 (or outside the trocar 412 that is not inserted into the eyeball 411). ) and forceps 413 based on the sensor values detected by each of the first force sensor 401 and the second force sensor 402 . A calculation unit 403 is provided for calculating the contact force and torque acting on the tip. This force measuring device 400 can be used by being incorporated in the sensor section 123 of the surgical operation system 100 shown in FIG.
 本実施形態では、第1の力覚センサ401及び第2の力覚センサ402はともにxyzの各軸方向に作用する力と、各軸回りに作用するトルクの合計6自由度を持つ6DOFセンサであることを想定している。なお、説明の便宜上、鉗子413の長軸方向をz軸に設定し(但し、先端から根元側の方向を正方向)、このz軸に直交するxy軸を設定する。 In this embodiment, both the first force sensor 401 and the second force sensor 402 are 6DOF sensors having a total of 6 degrees of freedom of forces acting in the directions of the xyz axes and torques acting around the axes. I assume there is. For convenience of explanation, the long axis direction of the forceps 413 is set to the z-axis (however, the direction from the tip to the root side is the positive direction), and the xy-axis orthogonal to the z-axis is set.
 第1の力覚センサ401及び第2の力覚センサ402の構成は特に限定されない。第1の力覚センサ401は、例えば鉗子413の根元付近に取り付けられた起歪体(又は、鉗子413の根元付近に形成された起歪体構造部分)に貼設された歪みセンサで構成される。また、第2の力覚センサ402は、トロッカー412の表面に取り付けられた起歪体(又は、トロッカー412の表面付近に形成された起歪体構造部分)に貼設された歪みセンサで構成される。歪みセンサは、例えば歪みゲージ、又はFBG(Fiber Bragg Grating)センサでもよい。 The configurations of the first force sensor 401 and the second force sensor 402 are not particularly limited. The first force sensor 401 is composed of, for example, a strain sensor attached to a strain-generating body attached near the root of the forceps 413 (or a strain-generating body structure portion formed near the root of the forceps 413). be. The second force sensor 402 is a strain sensor attached to a strain-generating body attached to the surface of the trocar 412 (or a strain-generating body structure portion formed near the surface of the trocar 412). be. The strain sensor may be, for example, a strain gauge or an FBG (Fiber Bragg Grating) sensor.
 ここで、鉗子413の先端に患部(網膜など)から加わる接触力を(ftip,τtip)とし、鉗子413がトロッカー412から受ける外力(具体的には、摩擦力)を(ffric,τfric)とする。図5には、鉗子413に作用する力の関係(すなわち、鉗子413の先端に加わる接触力(ftip,τtip)と、鉗子413がトロッカー412から受ける外力(ffric,τfric)との関係)を示している。 Here, the contact force applied from the affected part (retina, etc.) to the tip of the forceps 413 is (f tip , τ tip ), and the external force (specifically, the frictional force) that the forceps 413 receives from the trocar 412 is ( ffric , τ fric ). FIG. 5 shows the relationship between the forces acting on the forceps 413 (that is, the contact forces (f tip , τ tip ) applied to the tips of the forceps 413 and the external forces ( ffric , τ fric ) that the forceps 413 receive from the trocars 412 ). relationship).
 また、トロッカー412が眼球411から受ける外力を(feye,τeye)とし、トロッカー412が鉗子413から受ける外力(具体的には、摩擦力)を(ffric´,τfric´)とする。図6には、トロッカー412に作用する力の関係(すなわち、トロッカー412が眼球411から受ける外力(feye,τeye)と、トロッカー412が鉗子413から受ける外力(ffric´,τfric´)との関係)を示している。 Also, the external force that the trocar 412 receives from the eyeball 411 is (f eye , τ eye ), and the external force (specifically, frictional force) that the trocar 412 receives from the forceps 413 is ( ffric ', τ fric '). FIG. 6 shows the relationship between the forces acting on the trocar 412 (that is, the external force (f eye , τ eye ) that the trocar 412 receives from the eyeball 411 and the external force that the trocar 412 receives from the forceps 413 (f fric ', τ fric '). relationship).
 また、図7に示すように、トロッカー412に取り付けられた第1の力覚センサ401で計測される6軸力を(fFTS1FTS1)とし、鉗子413に取り付けられた第2の力覚センサ402で計測される6軸力を(fFTS2FTS2)とする。 Further, as shown in FIG. 7, the six-axis force measured by the first force sensor 401 attached to the trocar 412 is (f FTS1 , τ FTS1 ), and the second force sensor attached to the forceps 413 is Let the six-axis force measured by the sensor 402 be (f FTS2 , τ FTS2 ).
 なお、上記において、力fはそれぞれxyzの各軸方向の3成分を有し、トルクτはそれぞれxyzの各軸回りの3成分を有するものとする。 In the above, the force f has three components in each of the xyz axial directions, and the torque τ has three components around each of the xyz axes.
 トロッカー412に取り付けられた第1の力覚センサ401で計測される6軸力(fFTS1FTS1)は、トロッカー412が眼球411から受ける外力(feye,τeye)と、トロッカー412が鉗子413から受ける外力(ffric´,τfric´)に基づいて、以下の式(1)で示される。 The six-axis forces (f FTS1 , τ FTS1 ) measured by the first force sensor 401 attached to the trocar 412 are the external forces (f eye , τ eye ) received by the trocar 412 from the eyeball 411 and Based on the external forces (f fric ', τ fric ') received from 413, the following equation (1) is obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、鉗子413の根元付近に取り付けられた第2の力覚センサ402で計測される6軸力を(fFTS2FTS2)は、鉗子413の先端に加わる接触力(ftip,τtip)と、鉗子413がトロッカー412から受ける外力(ffric,τfric)に基づいて、以下の式(2)で示される。 Further, the six-axis force (f FTS2 , τ FTS2 ) measured by the second force sensor 402 attached near the root of the forceps 413 is the contact force (f tip , τ tip ) applied to the tip of the forceps 413. and the external forces (f fric , τ fric ) that the forceps 413 receives from the trocar 412 are expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 他方、鉗子413とトロッカー412間に作用する力は、作用反作用の関係から、下式(3)のように与えられる。 On the other hand, the force acting between the forceps 413 and the trocar 412 is given by the following formula (3) from the action-reaction relationship.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、鉗子413は、スレーブロボット122のRCM機構により、挿入点を支点としてピボット操作されため、挿入点に発生する力積はゼロである。したがって、下式(4)が成り立つ。 Also, since the forceps 413 are pivoted about the insertion point by the RCM mechanism of the slave robot 122, the impulse generated at the insertion point is zero. Therefore, the following formula (4) holds.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上式(1)~(4)より、鉗子413の先端に加わる接触力(ftip,τtip)は、第1の力覚センサ401及び第2の力覚センサ402の計測値のみを用いて、下式(5)のように表される。 From the above equations (1) to (4), the contact force (f tip , τ tip ) applied to the tip of the forceps 413 is calculated using only the measured values of the first force sensor 401 and the second force sensor 402. , is represented by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 したがって、演算部403は、第1の力覚センサ401で計測される6軸力(fFTS1FTS1)と、鉗子413に取り付けられた第2の力覚センサ402で計測される6軸力(fFTS2FTS2)から、上式(5)に基づいて、鉗子413の先端に加わる接触力(ftip,τtip)を算出することができる。上式(5)では、第1の力覚センサ401で計測される6軸力(fFTS1FTS1)と、第2の力覚センサ402で計測される6軸力(fFTS2FTS2)の合力から、鉗子413の先端に加わる接触力(ftip,τtip)を算出している。 Therefore, the calculation unit 403 calculates the 6-axis force (f FTS1 , τ FTS1 ) measured by the first force sensor 401 and the 6-axis force measured by the second force sensor 402 attached to the forceps 413 From (f FTS2 , τ FTS2 ), the contact force (f tip , τ tip ) applied to the tip of the forceps 413 can be calculated based on the above equation (5). In the above equation (5), the 6-axis force (f FTS1 , τ FTS1 ) measured by the first force sensor 401 and the 6-axis force (f FTS2 , τ FTS2 ) measured by the second force sensor 402 ), the contact force (f tip , τ tip ) applied to the tip of the forceps 413 is calculated.
 なお、イナーシャが極めて小さい術具(網膜手術用の鉗子413)を用いて低速な操作を行うことを想定していることから、慣性力を無視して上式(1)~(5)を示している。 Since it is assumed that a surgical instrument with extremely small inertia (forceps 413 for retinal surgery) is used to perform a low-speed operation, the above equations (1) to (5) are shown ignoring the inertia force. ing.
 力計測装置400において、必要に応じてキャリブレーションを実施してもよい。この場合、演算部403では、上式(5)に束縛されず、キャリブレーションによって導出された補正定数や補正式を用いて、鉗子413の先端に加わる接触力(ftip,τtip)を算出するようにしてもよい。もちろん、力計測装置400は、上式(5)によらず、第1の力覚センサ401及び第2の力覚センサ402の計測値から、機械学習モデルを用いて鉗子413の先端の作用力(ftip,τtip)を推定するようにしてもよい。 Calibration may be performed in the force measuring device 400 as necessary. In this case, the computing unit 403 calculates the contact forces (f tip , τ tip ) applied to the tip of the forceps 413 using the correction constants and correction formulas derived by calibration without being bound by the above equation (5). You may make it Of course, the force measuring device 400 uses a machine learning model to calculate the acting force of the tip of the forceps 413 based on the measured values of the first force sensor 401 and the second force sensor 402, regardless of the above equation (5). (f tip , τ tip ) may be estimated.
 力計測装置400が、図1に示した手術システム100のセンサ部123に組み込んで使用される場合、演算部403で算出した接触力(ftip,τtip)に関する情報は、伝送路130を介してマスタ装置110に転送される。そして、マスタ装置110側では、提示部113が、ユーザ(術者)に対して、接触力(ftip,τtip)に基づく力覚フィードバックを行うことができる。 When force measuring device 400 is incorporated in sensor unit 123 of surgical system 100 shown in FIG. is transferred to the master device 110. Then, on the master device 110 side, the presentation unit 113 can provide haptic feedback to the user (operator) based on the contact force (f tip , τ tip ).
D.効果
 このD項では、本開示の効果について言及する。
D. Advantages This section D refers to the advantages of the present disclosure.
 例えば網膜手術に使用される鉗子413は、細管からなるトロッカー412に挿通させるため、極めて細径であり、このような鉗子413の先端に力覚センサを配置することは難しく(前述)、医療要件に関わる実用上に問題が発生し易い。 For example, the forceps 413 used for retinal surgery are passed through the trocar 412, which is a thin tube, and therefore have an extremely small diameter. Practical problems related to are likely to occur.
 これに対し、本開示に係る力計測装置400を用いれば、鉗子413の先端(言い換えれば、眼球411の内部)に力覚センサを配置せずに、鉗子413の先端に作用する力を推定することができる。したがって、本開示によれば、鉗子413をシンプルな構造に維持したまま、その先端の作用力を計測することが可能になる。 In contrast, using the force measuring device 400 according to the present disclosure, the force acting on the tip of the forceps 413 is estimated without arranging a force sensor at the tip of the forceps 413 (in other words, inside the eyeball 411). be able to. Therefore, according to the present disclosure, it is possible to measure the acting force of the distal end of the forceps 413 while maintaining a simple structure.
E.RCM構造を有するロボット装置
 このE項では、スレーブロボット122において適用される、RCM構造を有するロボット装置について説明する。
E. Robotic Device with RCM Structure This Section E describes a robotic device with an RCM structure as applied in the slave robot 122 .
 本明細書において、RCM構造は、モータなどの駆動機構の回転中心から離れた位置に回転中心(すなわち、遠隔回転中心)を配置し、ピボット(不動点)運動を実現する構造とする。RCM構造は、手術の際に患者の身体に開けた穴の位置(例えば、トロッカー位置)を常に通る構造(さらに言えば、トロッカー位置を支点としてピボット操作が可能で、トロッカー位置における力積をゼロとして低侵襲の構造)を実現できることから安全性が高く、既にいくつかのロボットや医療機器において採用されている(例えば、特許文献3を参照のこと)。 In this specification, the RCM structure is a structure in which the center of rotation (that is, remote center of rotation) is arranged at a position away from the center of rotation of a driving mechanism such as a motor to realize pivot (fixed point) motion. The RCM structure is a structure that always passes through the position of the hole made in the patient's body during surgery (for example, the trocar position). Since it is possible to realize a minimally invasive structure), it is highly safe and has already been adopted in some robots and medical devices (see Patent Document 3, for example).
 図8には、先端に鉗子などの術具を支持する支持アーム装置800の構成例を示している。図示の支持アーム装置800は、スレーブロボット122に適用されることを想定している。支持アーム装置800は、少なくとも1つの平行リンクを含むアーム部810を備えており、アーム部810の先端に鉗子などの術具(図8では図示を省略)を支持している。支持アーム装置800は、アーム部810を第1のモータ830及び第2のモータ840により動作させることで、アーム部810の先端に支持された術具の、RCMを中心とするピボット運動が実現される。また、支持アーム装置800は、アーム部810の先端に支持された術具の直進運動を実現する機構をさらに備えていてもよいが、ここでは便宜上、図示と説明を省略する。 FIG. 8 shows a configuration example of a support arm device 800 that supports a surgical instrument such as forceps at its tip. The illustrated support arm device 800 is assumed to be applied to the slave robot 122 . The support arm device 800 includes an arm portion 810 including at least one parallel link, and the tip of the arm portion 810 supports a surgical tool such as forceps (not shown in FIG. 8). In the support arm device 800, the arm portion 810 is operated by the first motor 830 and the second motor 840, so that the surgical tool supported at the distal end of the arm portion 810 can pivot about the RCM. be. In addition, the support arm device 800 may further include a mechanism for realizing rectilinear motion of the surgical instrument supported at the distal end of the arm portion 810, but illustration and description thereof are omitted here for convenience.
 第1のモータ830の出力軸には第1の駆動軸としてのユニバーサルジョイント831が連結され、第1のモータ830は、ユニバーサルジョイント831を軸回転させる。ユニバーサルジョイント831は、一端の基部が第1のモータ830の出力軸に対して同軸に固定され、他端の回動部が基部に対して回動自在に連結されている。また、第2のモータ840の出力軸には第2の駆動軸841が同軸に連結され、第2のモータ840は、第2の駆動軸841を軸回転させる。 A universal joint 831 as a first drive shaft is connected to the output shaft of the first motor 830, and the first motor 830 causes the universal joint 831 to rotate. One end of the universal joint 831 is coaxially fixed to the output shaft of the first motor 830, and the other end of the universal joint 831 is rotatably connected to the base. A second drive shaft 841 is coaxially connected to the output shaft of the second motor 840 , and the second motor 840 rotates the second drive shaft 841 .
 アーム部810は、複数のリンクによって構成される少なくとも1つの平行リンクを含む多リンク構造からなる。図8では、この多リンク構造体の自由度構成が分かり易くなるように、各リンクの形状及びリンク間を接続する関節部の構造を簡単化して描いている。アーム部810は、複数の関節部811~817と、関節部811~817によって回動可能に連結される第1のリンク821、第2のリンク822、第3のリンク823、第4のリンク824、及び第5のリンク825を含む。また、第1のリンク821は、先端に鉗子などの術具(図8では図示を省略)を支持する支持部を備えているものとする。 The arm part 810 has a multi-link structure including at least one parallel link composed of a plurality of links. In FIG. 8, the shape of each link and the structure of the joint connecting the links are simplified so that the degree of freedom configuration of this multi-link structure can be easily understood. The arm portion 810 includes a plurality of joint portions 811 to 817, and a first link 821, a second link 822, a third link 823, and a fourth link 824 rotatably connected by the joint portions 811 to 817. , and a fifth link 825 . Also, the first link 821 is assumed to have a support portion at its tip for supporting a surgical tool such as forceps (not shown in FIG. 8).
 第1のリンク821、第2のリンク822、第3のリンク823、第4のリンク824、及び第5のリンク825により平行リンクが形成されている。そして、これらの複数のリンク821~825のうち、第4のリンク824が第1の駆動リンクに相当し、第5のリンク825が第2の駆動リンクに相当する。 A first link 821, a second link 822, a third link 823, a fourth link 824, and a fifth link 825 form parallel links. Among these multiple links 821 to 825, the fourth link 824 corresponds to the first drive link, and the fifth link 825 corresponds to the second drive link.
 かかるアーム部810では、第1のモータ830及び第2のモータ840の駆動により、術具(図8では図示を省略)を支持する第3のリンク823の長軸が常にRCMを通るように、第3のリンク823がRCMを中心に回動させることができる。 In the arm part 810, the first motor 830 and the second motor 840 are driven so that the long axis of the third link 823 supporting the surgical tool (not shown in FIG. 8) always passes through the RCM. A third link 823 can pivot about the RCM.
 続いて、支持アーム装置800のアーム部810が取り得るさまざまな姿勢について説明する。図9~図12には、RCMを中心とする第3のリンク823のピボット運動を行うアーム部810の姿勢の例を示している。なお、図9~図12には、図8に示したアーム部810の姿勢(基本姿勢)との比較を容易にするために、図8に示したアーム部810の姿勢を表す仮想線(一点鎖線)を示している。 Next, various postures that the arm portion 810 of the support arm device 800 can take will be described. 9 to 12 show examples of postures of the arm portion 810 that performs the pivotal movement of the third link 823 around the RCM. 9 to 12, for ease of comparison with the posture (basic posture) of the arm portion 810 shown in FIG. 8, a virtual line (one point dashed line).
 図9には、図8に示した状態から、第1のモータ830を図示の反時計回りに回転させるとともに、第2のモータ840を左方向(図9中、参照番号901で示す矢印の方向)に回転させた場合のアーム部810の姿勢を示している。この場合、第1のリンク821及び第2のリンク822が平行な状態で維持されたまま、アーム部810は、左方向に回動しながら、前方に回動する。これにより、術具(図8では図示を省略)を支持する第3のリンク823が、RCMを中心に左方向に回動しつつ、前方に傾けられている。 9, the first motor 830 is rotated counterclockwise in the drawing from the state shown in FIG. ) shows the posture of the arm portion 810 when rotated to . In this case, while the first link 821 and the second link 822 are maintained in parallel, the arm portion 810 rotates forward while rotating leftward. As a result, the third link 823 supporting the surgical tool (not shown in FIG. 8) is tilted forward while rotating leftward about the RCM.
 図10には、図9に示した状態から、第1のモータ830を図示の時計回りに回転させた場合のアーム部810の姿勢を示している。この場合、第1のリンク821及び第2のリンク822が平行な状態で維持されたまま、アーム部810は、後方に回動する。これにより、術具(図8では図示を省略)を支持する第3のリンク823が、RCMを中心に後方に傾けられている。 FIG. 10 shows the posture of the arm portion 810 when the first motor 830 is rotated clockwise from the state shown in FIG. In this case, the arm portion 810 rotates backward while the first link 821 and the second link 822 are maintained in parallel. As a result, the third link 823 supporting the surgical tool (not shown in FIG. 8) is tilted rearward around the RCM.
 図11には、図10に示した状態から、第2のモータ840を右方向(図11中、参照番号1101で示す矢印の方向)に回転させた場合のアーム部810の姿勢を示している。この場合、アーム部810は、右方向に傾けられる。これにより、第3のリンク823が、RCMを中心に右方向に傾けられている。このとき、第4のリンク824は、ユニバーサルジョイント831を介して第1のモータ830の出力軸に連結されているために、第4のリンク824の回転動作が妨げられることがない。 FIG. 11 shows the posture of the arm portion 810 when the second motor 840 is rotated rightward (in the direction of the arrow indicated by reference number 1101 in FIG. 11) from the state shown in FIG. . In this case, the arm portion 810 is tilted rightward. As a result, the third link 823 is tilted rightward around the RCM. At this time, since the fourth link 824 is connected to the output shaft of the first motor 830 via the universal joint 831, the rotation of the fourth link 824 is not hindered.
 図12には、図11に示した状態から、第2のモータ840を左方向(図12中、参照番号1201で示す矢印の方向)に回転させた場合のアーム部810の姿勢を示している。この場合、アーム部810は、左方向に傾けられる。これにより、第3のリンク823が、RCMを中心に左方向に傾けられている。このとき、第4のリンク824は、ユニバーサルジョイント831を介して第1のモータ830の出力軸に連結されているために、第4のリンク824の回転動作が妨げられることがない。 FIG. 12 shows the posture of the arm portion 810 when the second motor 840 is rotated leftward (in the direction of the arrow indicated by reference number 1201 in FIG. 12) from the state shown in FIG. . In this case, the arm portion 810 is tilted leftward. As a result, the third link 823 is tilted leftward around the RCM. At this time, since the fourth link 824 is connected to the output shaft of the first motor 830 via the universal joint 831, the rotation of the fourth link 824 is not hindered.
 図8~図12に示したように、支持アーム装置800は、第1のモータ830及び第2のモータ840をそれぞれ駆動させ、アーム部810の姿勢を変化させることにより、術具等の治具が支持される第3のリンク823を、RCMを中心にピボット動作させることができる。本実施形態に係る支持アーム装置800は、例えば、図8~図12に示したように、RCMを中心とする球面Yに対してさまざまな角度からアプローチする動作に適用することができる。また、第2のモータ330bを駆動させることにより、アーム部810を構成する平行リンクの傾きが第2の駆動軸345を中心に左右方向に変化する。アーム部810の先端の第3のリンク823の長軸が常にRCMに向けられることから、アーム部310の姿勢にかかわらず、第3のリンク823で支持される術具(又は、術具の軸線)は常にRCMを通過する。 As shown in FIGS. 8 to 12, the support arm device 800 drives a first motor 830 and a second motor 840 to change the posture of the arm portion 810, thereby moving a jig such as a surgical tool. A third link 823 on which is supported can be pivoted about the RCM. The support arm device 800 according to the present embodiment can be applied, for example, to the operation of approaching the spherical surface Y centered on the RCM from various angles, as shown in FIGS. 8 to 12 . Further, by driving the second motor 330b, the inclination of the parallel link forming the arm portion 810 changes in the left-right direction with the second drive shaft 345 as the center. Since the long axis of the third link 823 at the tip of the arm section 810 is always directed toward the RCM, the surgical instrument supported by the third link 823 (or the axial line of the surgical instrument) is supported regardless of the posture of the arm section 310. ) always pass through the RCM.
 このように、支持アーム装置800は、アーム部810の姿勢を変化させることにより、アーム部810に支持される術具を、RCMを中心にピボット運動させることができる。なお、支持アーム装置800は、アーム部810の先端に支持された術具の直進運動を実現する機構をさらに備えていてもよいが、ここでは便宜上、図示と説明を省略する。 In this way, the support arm device 800 can pivot the surgical instrument supported by the arm section 810 around the RCM by changing the posture of the arm section 810 . Note that the support arm device 800 may further include a mechanism for realizing rectilinear movement of the surgical instrument supported at the distal end of the arm portion 810, but illustration and description thereof are omitted here for convenience.
 以上、特定の実施形態を参照しながら、本開示について詳細に説明してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。 The present disclosure has been described in detail above with reference to specific embodiments. However, it is obvious that those skilled in the art can modify or substitute the embodiments without departing from the gist of the present disclosure.
 本明細書では、本開示を網膜手術などの眼球手術に適用した実施形態を中心に説明してきたが、本開示の要旨はこれに限定されるものではない。トロッカーを介して術具を体内に挿入して行うさまざまな手術にも、同様に本開示を適用することができる。また、本開示は、例えばマスタスレーブ方式のロボットを用いた遠隔操作又は操作支援や、手術ロボットの自律制御にも適用することができる。 In the present specification, the embodiments in which the present disclosure is applied to eye surgery such as retinal surgery have been mainly described, but the gist of the present disclosure is not limited to this. The present disclosure can be similarly applied to various surgeries performed by inserting a surgical instrument into the body via a trocar. In addition, the present disclosure can also be applied to remote control or operation support using master-slave robots, and autonomous control of surgical robots.
 また、本明細書で説明した実施形態では、術具として主に鉗子を利用した例を示しているが、術具は、鉗子以外にも、攝子、気腹チューブ、エネルギー処置具、顕微鏡や内視鏡(腹腔鏡や関節鏡などの硬性内視鏡、消化管用内視鏡や気管支鏡などの軟性内視鏡)などの医療用観察装置でもよい。 In addition, in the embodiments described in this specification, an example using forceps as a surgical instrument is shown. Medical observation devices such as endoscopes (hard endoscopes such as laparoscopes and arthroscopes, and flexible endoscopes such as gastrointestinal endoscopes and bronchoscopes) may also be used.
 要するに、例示という形態により本開示について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本開示の要旨を判断するためには、特許請求の範囲を参酌すべきである。 In short, the present disclosure has been described in the form of an example, and the content of the specification should not be construed in a restrictive manner. In order to determine the gist of the present disclosure, the scope of the claims should be considered.
 なお、本開示は、以下のような構成をとることも可能である。 It should be noted that the present disclosure can also be configured as follows.
(1)トロッカーに作用する外力に関する第1の情報と、前記トロッカーに挿通される術具に作用する外力に関する第2の情報を取得する取得部と、
 前記第1の情報と前記第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
を具備する力計測装置。
(1) an acquisition unit that acquires first information about an external force acting on a trocar and second information about an external force acting on a surgical instrument inserted through the trocar;
a calculation unit for estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information;
A force measuring device comprising:
(2)前記取得部は、生体表面に挿入して用いられる前記トロッカーに取り付けられた第1の力覚センサから前記第1の情報を取得するとともに、前記術具の前記生体の外側の位置に取り付けられた第2の力覚センサから前記第2の情報を取得する、
上記(1)に記載の力計測装置。
(2) The acquisition unit acquires the first information from a first force sensor attached to the trocar that is used by being inserted into the surface of the living body, and also acquires the first information from the surgical tool at a position outside the living body. obtaining the second information from an attached second force sensor;
The force measuring device according to (1) above.
(3)前記第1の力覚センサ及び前記第2の力覚センサをさらに備える、
上記(2)に記載の力計測装置。
(3) further comprising the first force sensor and the second force sensor;
The force measuring device according to (2) above.
(4)前記生体は眼球であり、
 前記演算部は、前記術具の先端が前記眼球の眼底から受ける力を推定する、
上記(2)又は(3)のいずれかに記載の力計測装置。
(4) the living body is an eyeball;
The computing unit estimates the force that the tip of the surgical tool receives from the fundus of the eyeball.
The force measuring device according to either (2) or (3) above.
(5)前記第1の情報は、前記トロッカーが前記生体から受ける外力及び前記術具から受ける外力を含み、
 前記第2の情報は、前記術具の先端に加わる接触力と前記鉗子が前記トロッカーから受ける外力を含む、
上記(2)乃至(4)のいずれかに記載の力計測装置。
(5) the first information includes an external force that the trocar receives from the living body and an external force that the surgical instrument receives;
The second information includes a contact force applied to the tip of the surgical instrument and an external force that the forceps receives from the trocar,
The force measuring device according to any one of (2) to (4) above.
(6)前記術具は、前記トロッカーを介して前記生体と交差する挿入点に発生する力積がゼロとなるようにピボット操作され、
 前記演算部は、前記トロッカーが前記生体から受ける力積を無視して、前記術具の先端に作用する外力を推定する、
上記(2)乃至(5)のいずれかに記載の力計測装置。
(6) the surgical instrument is pivoted so that the impulse generated at the insertion point intersecting the living body via the trocar is zero;
The computing unit ignores the impulse that the trocar receives from the living body and estimates the external force acting on the tip of the surgical instrument.
The force measuring device according to any one of (2) to (5) above.
(7)前記第1の情報及び第2の情報はそれぞれ6軸の外力に関する情報を含み、
 前記演算部は、前記第1の情報に含まれる第1の6軸力と前記第2の情報に含まれる第2の6軸力の合力に基づいて、前記術具の先端に作用する6軸外力を推定する、
上記(1)乃至(6)のいずれかに記載の力計測装置。
(7) the first information and the second information each include information on six-axis external forces;
The calculation unit calculates a six-axis force acting on the distal end of the surgical tool based on a resultant force of a first six-axis force included in the first information and a second six-axis force included in the second information. estimating the external force,
The force measuring device according to any one of (1) to (6) above.
(8)生体に挿入されるトロッカーに取り付けられた第1の力覚センサを用いて、前記トロッカーが前記生体から受ける外力及び前記術具から受ける外力を含む、前記トロッカーに作用する力に関する第1の情報を計測するステップと、
 前記トロッカーに挿通される術具に取り付けられた第2の力覚センサを用いて、前記術具の先端に加わる接触力と前記鉗子が前記トロッカーから受ける外力を含む、前記術具に作用する力に関する第2の情報を計測するステップと、
 前記第1の情報と前記第2の情報に基づいて前記術具の先端に作用する外力を推定する演算ステップと、
を有する力計測方法。
(8) Using a first force sensor attached to a trocar inserted into a living body, a first force acting on the trocar including an external force received by the trocar from the living body and an external force received from the surgical instrument. measuring information about
Using a second force sensor attached to a surgical instrument inserted through the trocar, force acting on the surgical instrument including contact force applied to the distal end of the surgical instrument and external force received by the forceps from the trocar measuring second information about
a calculation step of estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information;
force measurement method.
(9)生体に挿入されたトロッカーに挿通される術具を、前記術具が前記生体に挿入される挿入点において発生する力積がゼロとなるようにピボット操作するロボットと、
 前記トロッカーに取り付けられた第1の力覚センサと、
 前記術具に取り付けられた第2の力覚センサと、
 前記第1の力覚センサによって計測される第1の情報と前記第2の力覚センサによって計測される第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
を具備する手術装置。
(9) a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero;
a first force sensor attached to the trocar;
a second force sensor attached to the surgical instrument;
a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; ,
A surgical device comprising:
(10)マスタ装置とスレーブ装置からなる手術システムであって、
 前記スレーブ装置は、
 生体に挿入されたトロッカーに挿通される術具を、前記術具が前記生体に挿入される挿入点において発生する力積がゼロとなるようにピボット操作するロボットと、
 前記トロッカーに取り付けられた第1の力覚センサと、
 前記術具に取り付けられた第2の力覚センサと、
 前記第1の力覚センサによって計測される第1の情報と前記第2の力覚センサによって計測される第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
を備え、
 前記マスタ装置は、
 前記ロボットに対する操作量の指示を入力する操作ユーザインターフェース部と、
 前記演算部によって推定された外力に基づく力覚を提示する提示部と、
を備える、手術システム。
(10) A surgical system comprising a master device and a slave device,
The slave device
a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero;
a first force sensor attached to the trocar;
a second force sensor attached to the surgical instrument;
a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; ,
with
The master device
an operation user interface unit for inputting an operation amount instruction for the robot;
a presentation unit that presents a haptic sensation based on the external force estimated by the calculation unit;
A surgical system comprising:
 100…手術システム、110…マスタ装置
 111…マスタ側制御部、112…操作UI部、113…提示部
 114…マスタ側通信部、120…スレーブ装置
 121…スレーブ側制御部、122…スレーブロボット
 123…センサ部、124…スレーブ側通信部、130…伝送路
 400…力計測装置、401…第1の力覚センサ
 402…第2の力覚センサ、403…演算部
 411…眼球、412…トロッカー、413…鉗子
DESCRIPTION OF SYMBOLS 100... Surgery system 110... Master apparatus 111... Master side control part 112... Operation UI part 113... Presentation part 114... Master side communication part 120... Slave apparatus 121... Slave side control part 122... Slave robot 123... Sensor unit 124 Slave side communication unit 130 Transmission line 400 Force measuring device 401 First force sensor 402 Second force sensor 403 Calculation unit 411 Eyeball 412 Trocar 413 …forceps

Claims (10)

  1.  トロッカーに作用する外力に関する第1の情報と、前記トロッカーに挿通される術具に作用する外力に関する第2の情報を取得する取得部と、
     前記第1の情報と前記第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
    を具備する力計測装置。
    an acquisition unit that acquires first information about an external force acting on a trocar and second information about an external force acting on a surgical instrument inserted through the trocar;
    a calculation unit for estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information;
    A force measuring device comprising:
  2.  前記取得部は、生体表面に挿入して用いられる前記トロッカーに取り付けられた第1の力覚センサから前記第1の情報を取得するとともに、前記術具の前記生体の外側の位置に取り付けられた第2の力覚センサから前記第2の情報を取得する、
    請求項1に記載の力計測装置。
    The acquisition unit acquires the first information from a first force sensor attached to the trocar that is used by being inserted into the surface of the living body, and is attached to the surgical tool at a position outside the living body. obtaining the second information from a second force sensor;
    The force measuring device according to claim 1.
  3.  前記第1の力覚センサ及び前記第2の力覚センサをさらに備える、
    請求項2に記載の力計測装置。
    Further comprising the first force sensor and the second force sensor,
    The force measuring device according to claim 2.
  4.  前記生体は眼球であり、
     前記演算部は、前記術具の先端が前記眼球の眼底から受ける力を推定する、
    請求項2に記載の力計測装置。
    the living body is an eyeball,
    The computing unit estimates the force that the tip of the surgical tool receives from the fundus of the eyeball.
    The force measuring device according to claim 2.
  5.  前記第1の情報は、前記トロッカーが前記生体から受ける外力及び前記術具から受ける外力を含み、
     前記第2の情報は、前記術具の先端に加わる接触力と前記鉗子が前記トロッカーから受ける外力を含む、
    請求項2に記載の力計測装置。
    the first information includes an external force that the trocar receives from the living body and an external force that the surgical instrument receives;
    The second information includes a contact force applied to the tip of the surgical instrument and an external force that the forceps receives from the trocar,
    The force measuring device according to claim 2.
  6.  前記術具は、前記トロッカーを介して前記生体と交差する挿入点に発生する力積がゼロとなるようにピボット操作され、
     前記演算部は、前記トロッカーが前記生体から受ける力積を無視して、前記術具の先端に作用する外力を推定する、
    請求項2に記載の力計測装置。
    The surgical instrument is pivoted so that an impulse generated at an insertion point that intersects the living body via the trocar is zero;
    The computing unit ignores the impulse that the trocar receives from the living body and estimates the external force acting on the tip of the surgical instrument.
    The force measuring device according to claim 2.
  7.  前記第1の情報及び第2の情報はそれぞれ6軸の外力に関する情報を含み、
     前記演算部は、前記第1の情報に含まれる第1の6軸力と前記第2の情報に含まれる第2の6軸力の合力に基づいて、前記術具の先端に作用する6軸外力を推定する、
    請求項1に記載の力計測装置。
    The first information and the second information each include information on six-axis external forces,
    The calculation unit calculates a six-axis force acting on the distal end of the surgical tool based on a resultant force of a first six-axis force included in the first information and a second six-axis force included in the second information. estimating the external force,
    The force measuring device according to claim 1.
  8.  生体に挿入されるトロッカーに取り付けられた第1の力覚センサを用いて、前記トロッカーが前記生体から受ける外力及び前記術具から受ける外力を含む、前記トロッカーに作用する力に関する第1の情報を計測するステップと、
     前記トロッカーに挿通される術具に取り付けられた第2の力覚センサを用いて、前記術具の先端に加わる接触力と前記鉗子が前記トロッカーから受ける外力を含む、前記術具に作用する力に関する第2の情報を計測するステップと、
     前記第1の情報と前記第2の情報に基づいて前記術具の先端に作用する外力を推定する演算ステップと、
    を有する力計測方法。
    A first force sensor attached to a trocar that is inserted into a living body is used to obtain first information about a force acting on the trocar, including an external force that the trocar receives from the living body and an external force that the surgical instrument receives. a measuring step;
    Using a second force sensor attached to a surgical instrument inserted through the trocar, force acting on the surgical instrument including contact force applied to the distal end of the surgical instrument and external force received by the forceps from the trocar measuring second information about
    a calculation step of estimating an external force acting on the distal end of the surgical instrument based on the first information and the second information;
    force measurement method.
  9.  生体に挿入されたトロッカーに挿通される術具を、前記術具が前記生体に挿入される挿入点において発生する力積がゼロとなるようにピボット操作するロボットと、
     前記トロッカーに取り付けられた第1の力覚センサと、
     前記術具に取り付けられた第2の力覚センサと、
     前記第1の力覚センサによって計測される第1の情報と前記第2の力覚センサによって計測される第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
    を具備する手術装置。
    a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero;
    a first force sensor attached to the trocar;
    a second force sensor attached to the surgical tool;
    a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; ,
    A surgical device comprising:
  10.  マスタ装置とスレーブ装置からなる手術システムであって、
     前記スレーブ装置は、
     生体に挿入されたトロッカーに挿通される術具を、前記術具が前記生体に挿入される挿入点において発生する力積がゼロとなるようにピボット操作するロボットと、
     前記トロッカーに取り付けられた第1の力覚センサと、
     前記術具に取り付けられた第2の力覚センサと、
     前記第1の力覚センサによって計測される第1の情報と前記第2の力覚センサによって計測される第2の情報に基づいて、前記術具の先端に作用する外力を推定する演算部と、
    を備え、
     前記マスタ装置は、
     前記ロボットに対する操作量の指示を入力する操作ユーザインターフェース部と、
     前記演算部によって推定された外力に基づく力覚を提示する提示部と、
    を備える、手術システム。
    A surgical system comprising a master device and a slave device,
    The slave device
    a robot that pivots a surgical instrument inserted into a trocar inserted into a living body so that an impulse generated at an insertion point where the surgical instrument is inserted into the living body is zero;
    a first force sensor attached to the trocar;
    a second force sensor attached to the surgical tool;
    a computing unit that estimates an external force acting on the distal end of the surgical instrument based on first information measured by the first force sensor and second information measured by the second force sensor; ,
    with
    The master device
    an operation user interface unit for inputting an operation amount instruction for the robot;
    a presentation unit that presents a haptic sensation based on the external force estimated by the calculation unit;
    A surgical system comprising:
PCT/JP2021/049031 2021-03-17 2021-12-30 Force measurement device, force measurement method, surgical device, and surgical system WO2022196037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043165A JP2022142902A (en) 2021-03-17 2021-03-17 Force measurement device, force measurement method, surgical device, and surgical system
JP2021-043165 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196037A1 true WO2022196037A1 (en) 2022-09-22

Family

ID=83320123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/049031 WO2022196037A1 (en) 2021-03-17 2021-12-30 Force measurement device, force measurement method, surgical device, and surgical system

Country Status (2)

Country Link
JP (1) JP2022142902A (en)
WO (1) WO2022196037A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528238A (en) * 2004-01-07 2007-10-11 ユニベルシテ・ピエール・エ・マリー・キユリー Trocar device for passing surgical instruments
US20190038369A1 (en) * 2016-02-04 2019-02-07 Preceyes B.V. Surgical master-slave robot
JP2020130607A (en) * 2019-02-20 2020-08-31 ソニー株式会社 Control device, ophthalmic microscope system, ophthalmic microscope, and image processing device
JP6754150B1 (en) * 2020-02-12 2020-09-09 リバーフィールド株式会社 Surgical robot
JP6801901B1 (en) * 2019-10-17 2020-12-16 リバーフィールド株式会社 Surgical robot system, external force estimation device, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528238A (en) * 2004-01-07 2007-10-11 ユニベルシテ・ピエール・エ・マリー・キユリー Trocar device for passing surgical instruments
US20190038369A1 (en) * 2016-02-04 2019-02-07 Preceyes B.V. Surgical master-slave robot
JP2020130607A (en) * 2019-02-20 2020-08-31 ソニー株式会社 Control device, ophthalmic microscope system, ophthalmic microscope, and image processing device
JP6801901B1 (en) * 2019-10-17 2020-12-16 リバーフィールド株式会社 Surgical robot system, external force estimation device, and program
JP6754150B1 (en) * 2020-02-12 2020-09-09 リバーフィールド株式会社 Surgical robot

Also Published As

Publication number Publication date
JP2022142902A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
JP6959264B2 (en) Control arm assembly for robotic surgery system
JP5700584B2 (en) Force and torque sensor for surgical instruments
Kübler et al. Development of actuated and sensor integrated forceps for minimally invasive robotic surger
US20190094084A1 (en) Fluid pressure based end effector force transducer
US11969225B2 (en) End effector force feedback to master controller
JP6931420B2 (en) Surgical robot system
JP6091370B2 (en) Medical system and medical instrument control method
JP7127128B2 (en) Surgical robot system and its surgical instrument
CN113038900A (en) Surgical instrument with sensor alignment cable guide
TWI695765B (en) Robotic arm
CN108210078B (en) Surgical robot system
JP2015535693A (en) Phantom freedom for manipulating machine body movement
JP3934524B2 (en) Surgical manipulator
US20240325103A1 (en) Detection of disengagement in cable driven tool
KR20220019271A (en) Estimation of joint friction and tracking error of robot end effectors
WO2017018048A1 (en) Implement for medical use and support arm device for medical use
JP3679440B2 (en) Medical manipulator
CN116098713A (en) Main wrist, main operation equipment and surgical robot
WO2022196037A1 (en) Force measurement device, force measurement method, surgical device, and surgical system
CN110772325B (en) Handle and main operation desk
KR101358668B1 (en) Apparatus for measuring force or torque of multi-DOFs gripper device on a slider of robot arms and method of the same
WO2022209099A1 (en) Surgical system and surgical assistance method
JP7345010B2 (en) surgical support robot
Thant et al. Ergonomic master controller for flexible endoscopic gastrointestinal robot manipulator
CN117100407A (en) Opening and closing input device, rotary input device, force feedback master hand and surgical robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931779

Country of ref document: EP

Kind code of ref document: A1