WO2022196035A1 - Marine biodegradation promoting additive and marine biodegradable resin composition including same - Google Patents

Marine biodegradation promoting additive and marine biodegradable resin composition including same Download PDF

Info

Publication number
WO2022196035A1
WO2022196035A1 PCT/JP2021/048956 JP2021048956W WO2022196035A1 WO 2022196035 A1 WO2022196035 A1 WO 2022196035A1 JP 2021048956 W JP2021048956 W JP 2021048956W WO 2022196035 A1 WO2022196035 A1 WO 2022196035A1
Authority
WO
WIPO (PCT)
Prior art keywords
marine
biodegradation
seawater
promoting additive
resin composition
Prior art date
Application number
PCT/JP2021/048956
Other languages
French (fr)
Japanese (ja)
Inventor
豊 常盤
Original Assignee
株式会社グリーンテクノプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グリーンテクノプラス filed Critical 株式会社グリーンテクノプラス
Publication of WO2022196035A1 publication Critical patent/WO2022196035A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a marine biodegradation promoting additive, a marine biodegradable resin composition, and a decomposition treatment method for a marine biodegradable polymer material/resin composition. More specifically, the present invention provides a marine biodegradation promoting additive characterized by containing a nitrogen compound and a phosphorus compound as active ingredients, a marine biodegradable resin composition containing a marine biodegradation promoting additive, and a marine biodegradable resin composition. The present invention relates to a decomposition treatment method for a degradable polymer material/resin composition.
  • plastic substitutes and recycling technologies are being developed, but they have problems such as high cost and deterioration of functionality. Furthermore, it is said that fine plastics such as fibrous, granular, and film-like microplastics with a size of 5 mm or less pose a threat to marine ecosystems.
  • PCL polypolycaprolactone
  • PES polybutylene succinate
  • PBSA polybutylene adipate
  • PLA polylactic acid
  • PEC polyester carbonate
  • Mitsui Chemicals, Inc. discloses polyamino acid (polyaspartic acid, polyglutamic acid, polylysine, polysuccinimide) as a biodegradation accelerator in Japanese Patent Laid-Open No. 2001-270793 "Biodegradation accelerator and biodegradation method". It is disclosed that decomposition is accelerated when added to industrial waste and compost. In JIS K0102, when measuring the BOD (Biochemical Oxygen Demand) of industrial wastewater, etc., about 10% of urban wastewater is added as a microbial inoculum, and general nutrients necessary for the growth of microorganisms are added.
  • BOD Biochemical Oxygen Demand
  • Kaneka Corporation and AIST conducted a BOD test (27°C, 28 days) using seawater from the sea area of Osaka Nanko, and found that a microorganism-derived They reported that the copolymer (PHBHH) was degraded by 31%, but no oxygen absorption due to biodegradation was observed for PBS, PBSA and PLA.
  • biodegradable plastics do not biodegrade in seawater.
  • PHB and its copolymers are reported to decompose in specific sea areas such as Tokyo Bay and the Seto Inland Sea, which are highly polluted and have a relatively large number of microorganisms.
  • biodegradation in order to solve the problem of marine plastic litter, biodegradation is carried out not only in sea areas near urban areas, but also in tropical and subtropical coastal sea areas where many coral reefs are distributed and in open ocean seawater such as subtropical circulation currents.
  • a marine biodegradation promoting additive, a marine biodegradable resin composition, and a decomposition treatment method for a marine biodegradable polymer material/resin composition are provided for rapid biodegradation of marine biodegradable materials.
  • the present invention provides a marine biodegradation-promoting additive characterized by containing a nitrogen compound and a phosphorus compound as active ingredients, a marine biodegradable resin composition containing the marine biodegradation-promoting additive, and a marine biodegradation-promoting additive. It relates to a method for decomposing biodegradable materials in seawater using
  • Biodegradable materials include natural materials and artificially chemically synthesized materials. Carbohydrates, peptides, fats, nucleic acids, lignin and the like are typical examples of natural materials. Each of them is composed of low molecular weight substances such as monosaccharides, amino acids, fatty acids, monohydric to polyhydric saturated/unsaturated alcohols, starch, cellulose, chitin, carrageenan, xanthan gum, glucomannan, guar gum, Polysaccharides such as spinogum, locust bean gum, agar, pectic acid and their chemical modifications, polyesters such as suberin, cutin and polyhydroxyalkanoates, proteins such as silk, wool, gluten, collagen, gelatin, elastin and keratin and their There are high molecular weight ones such as chemically modified products. Natural biodegradable materials include those that exhibit hydrophilicity and those that exhibit hydrophobicity.
  • Examples of chemically synthesized materials include various artificially chemically synthesized low-molecular-weight compounds whose biodegradability is recognized in the "Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances" (Chemical Substances Control Law).
  • an artificially chemically synthesized polymer material the biodegradability evaluation method for soil, activated sludge, anaerobic sludge, compost, etc.
  • polyesters include polyesters composed of aliphatic dicarboxylic acids and aliphatic diols, polyesters composed of hydroxycarboxylic acids, polyesters composed of lactones such as caprolactone and propiolactone, and acid anhydrides.
  • PHB polyhydroxybutyric acid
  • PCL polycaprolactone
  • PBS polybutylene succinate
  • PBSA polybutylene adipate
  • PLA polylactic acid
  • copolymers of aromatic polyesters such as polyethylene terephthalate and aliphatic polyesters, but not limited to these.
  • polyamides examples include polyamides composed of aliphatic dicarboxylic acids and aliphatic diamides, polyamides composed of hydroxyamides, polyamides composed of aliphatic lactams, and various amino acid polymers. Specific examples include aliphatic polyamides such as polyamide 4, polyamide 6, polyamide 4,6, polyamide 11 and polyamide 12, and ⁇ -polyamino acids such as ⁇ -polyalanine and ⁇ -polyglutamic acid, but are limited to these. not something to do.
  • polyurethanes examples include polyurethanes, aliphatic polycarbonates, copolymers of aliphatic polyesters and aromatic polyesters or polyamides, aliphatic polyesters containing vinyl bonds, polyesters containing polyethers and ether bonds, and the like.
  • Other examples include a copolymer polymer in which two or more types of polymers are chemically bonded, and a polymer blend in which two or more types of polymers are physically mixed.
  • biodegradable hydrophilic polymer materials include polyglutamic acid, polylysine, polyaspartic acid, polyethylene glycol (PEG), polyvinyl alcohol (PVA), polymalic acid, polyglyceric acid, and copolymers thereof.
  • ⁇ -polyglutamic acid and ⁇ -polylysine are also natural macromolecules produced by microorganisms.
  • hydrophilic polyesters using various sugars (sucrose, glucose, etc.) and sugar alcohols (glycerol, erythritol, sorbitol, maltitol, xylitol, etc.).
  • biodegradable hydrophilic polymer materials include sanitary products, paper coating agents, agricultural and gardening materials, civil engineering and construction materials, as well as coated paper (posters, calendars, magazine gravure, insert advertisements, etc.). etc.), antifouling agents added to paints, etc., and dispersants for pigments.
  • Another field in which the use of marine biodegradable materials is expected is marine biofouling prevention paints for preventing marine organisms from adhering to ship bottoms, fishing nets, aquaculture substrates, buoys, and seawater structures.
  • non-biodegradable high-molecular-weight polyacrylic acid-based polymers have been widely used as antifouling agents and dispersants for pigments, but there are concerns about their impact on the environment.
  • biodegradable low- to medium-molecular-weight polyacrylic acid (Na salt)-based materials and alternatives to polyacrylamide, polyvinylpyrrolidone, polypropylene glycol, and polybutylene glycol.
  • Examples of marine biodegradation accelerator additives include inorganic and organic nitrogen compounds and phosphorus compounds in addition to ammonium sulfate and potassium dihydrogen phosphate. Also included are compounds containing both nitrogen and phosphorus.
  • inorganic nitrogen compounds include various ammonium salts such as ammonium sulfate, ammonium chloride and ammonium nitrate
  • organic nitrogen compounds include various amino acids and derivatives thereof, polymers of various amino acids, peptides, proteins, and urea. but not limited to these.
  • Inorganic phosphorus compounds include various phosphates such as sodium dihydrogen phosphate, disodium hydrogen phosphate and dipotassium hydrogen phosphate, and various polymers such as polyphosphoric acid.
  • Organic phosphorus compounds include various alkyl and alkenyl compounds. Phosphate, sugar phosphate such as phytic acid, yeast extract, peptone, nucleic acid, etc., but not limited to these.
  • Compounds containing both nitrogen and phosphorus include inorganic compounds such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, nucleic acids such as ribonucleic acid and deoxyribonucleic acid, yeast extract, meat extract, seaweed extract, Extracts of microorganisms, animals and plants such as peptone, tryptone, etc. can be cited, but the examples are not limited to these.
  • the marine biodegradation-enhancing additive may be used in a state of being dissolved or dispersed in a hydrophilic or lipophilic liquid, sol, or gel, in addition to being in the form of powder or pellets.
  • marine biodegradation-promoting additives are mixed with natural or chemically synthesized low-molecular-weight, high-molecular materials, resins, etc., and processed into powders, granules, pellets, fibers, rods, films, and plates to produce various products. It can also be used by melting and mixing with plastic products or the like.
  • the marine biodegradable resin composition of the present invention may optionally contain a pigment, an antioxidant, an antistatic agent, a delustering agent, and a degrading agent for the purpose of improving functionality or adding new functions.
  • Inhibitors, fluorescent whitening agents, UV absorbers, UV stabilizers, lubricants, fillers, carbon black, thickeners, chain extenders, cross-linking agents, crystal nucleating agents, plasticizers, stabilizers, viscosity stabilizers, etc. can be added in any proportion. Specific examples include talc, boron nitride, calcium carbonate, magnesium carbonate, and titanium oxide.
  • the marine biodegradable resin composition of the present invention can also be prepared by heating, melting and mixing the marine biodegradation promoting additive and the biodegradable polymer material.
  • the present invention provides a promising technology for solving the marine debris problem.
  • biodegradable plastics but also glucose and amino acids are hardly decomposed in a short period of time in sea areas where nitrogen and phosphorus are deficient.
  • marine biodegradation-promoting additives that can supply appropriate amounts of nitrogen and phosphorus to seawater
  • biodegradable plastics that are mixed with marine biodegradation-promoting additives that decompose at a much faster rate
  • organic waste in seawater are three technologies for efficiently decomposing substances with microorganisms. Nitrogen and phosphorus are also scarce in the Pacific Ocean, Indian Ocean, and Atlantic Ocean, and the three technologies of the present invention are considered to have a wide range of application.
  • FIG. 1 Schematic diagram showing the configuration of a BOD measurement device in which a rubber holder containing a carbon dioxide gas absorbent and a pressure center for oxygen are set in a brown glass bottle.
  • FIG. 1 is a schematic diagram showing the configuration of a BOD measuring device.
  • a pressure sensor that detects the amount of oxygen consumed from changes in pressure and displays it in ppm.
  • a rubber holder that doubles as a packing between the bottle and the pressure sensor is set at the mouth of the bottle.
  • the holder contains soda lime that absorbs the carbon dioxide produced by the biodegradation of the test sample.
  • the decomposition rates of the tested samples are the theoretical oxygen demand (ThOD) determined assuming that carbon C, hydrogen H, nitrogen N and sulfur S are converted to carbon dioxide CO2, water H2O, nitrate HNO3 and sulfur oxide SO3 respectively. is 100%.
  • Glucose was selected as a representative of natural sugars, and pyrupic acid, glycine and methionine were selected as representative natural organic substances of the ocean, and biodegradation tests were conducted using seawater. Seawater was collected at Zanpa Beach, Yomitan Village, Okinawa Prefecture on February 1, 2020, and was used from the day after collection.
  • a marine biodegradation promoting additive a mixture of ammonium sulfate (reagent special grade) and potassium dihydrogen phosphate (reagent special grade) in a weight ratio of 5:1 was finely pulverized in an agate bowl (hereinafter referred to as marine biodegradation promoting additive NP) was used.
  • One group added 40 mg each of glucose, pyruvate, glycine and methionine to each BOD bottle containing 250 ml of seawater, and the other group added 40 mg each of glucose, pyruvate, glycine and methionine and added marine biodegradation enhancing additive NP.
  • the biodegradability was measured at 27° C. for 14 days in two groups, each containing 4 mg. The results are shown in Table 1.
  • the BOD value was 0 ppm and no oxygen consumption was observed in the case of only seawater or in the case of adding marine biodegradation promoting additive NP to seawater. Also, oxygen consumption was not observed when glucose, pyruvate, glycine and methionine were added to seawater, respectively.
  • Biodegradable plastic materials include poly-D-3-hydroxybutyric acid (PHB) powder produced by microorganisms (manufactured by Aldrich) and chemically synthesized polycaprolactone (PCL) powder (Tone) produced by Dow Chemical (formerly Union Carbide).
  • P-767P poly-L-lactic acid chemically synthesized using p-toluenesulfonic acid as a catalyst and a copolymer of L-lactic acid (or D-lactic acid) and D-3-hydroxybutyric acid (D-3HB) were selected. , conducted a biodegradation test in seawater.
  • the molecular weights of the copolymer of lactic acid and D-3HB and poly-L-lactic acid were measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Seawater was collected at Nakagusuku Bay in Uruma City, Okinawa Prefecture on November 6, 2020, and was used from the day of collection.
  • the marine biodegradation promoting additive the solid marine biodegradation promoting additive NP used in Example 1 was used.
  • Each BOD bottle containing 250 ml of seawater was chemically polymerized from PHB powder, PCL powder, poly-L-lactic acid, L-lactic acid and D-3-hydroxybutyric acid (D-3HB) at molar ratios of 95:5 and 90:10. and a group in which 40 mg each of a copolymer chemically polymerized from D-lactic acid and D-3HB at a molar ratio of 95:5 were added, and in addition to the polymer, the same marine biodegradable additive NP as in Example 1
  • the biodegradability was measured at 27°C for 11 days by dividing into two groups to which 4 mg of each was added. The results are shown in Table 2.
  • PHB film Poly-D-3-hydroxybutyric acid (PHB) film, three types of starch/PCL (ToneP-767P) blend (powder), and polyester carbonate were selected as biodegradable plastic materials, and biodegradation tests were conducted using seawater. rice field.
  • a PHB film was prepared by dissolving PHB powder (manufactured by Aldrich) in chloroform, pouring the solution into a flat-bottom petri dish having a diameter of 10 cm, covering the petri dish with a lid, and removing the chloroform with a fume hood for 3 days.
  • Starch/PCL blends include a blend of starch and PCL (50:50 weight ratio), a blend of acetylated starch (2.5% or less acetyl groups) and PCL (50:50 weight ratio), and a hydroxypropylated starch (50:50 weight ratio).
  • a blend of hydroxypropyl groups (7.0% or less) and PCL (weight ratio 50:50) was used.
  • Copolymers of polybutylene succinate and polybutylene carbonate (carbonate bond contents of 11.0%, 14.8% and 17.1%) were used as polyester carbonates (manufactured by Mitsubishi Gas Chemical Co., Ltd.).
  • Seawater was collected at Nakagusuku Bay in Uruma City on October 19, 2020 and used from the day of collection.
  • the marine biodegradation promoting additive the solid substance used in Example 1 (marine biodegradation promoting additive NP) was dissolved in distilled water to prepare a 1% solution for use.
  • PHB powder manufactured by Aldrich
  • polyamide 4 weight average molecular weight Mw 5,350
  • Polyamide 4 was synthesized from 2-pyrrolidone using butyryl chloride as an initiator, and the molecular weight was measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Yeast extract manufactured by Becton Dickinson
  • Yeast extract from Becton Dickinson contains 10.9% nitrogen and 3.27% phosphate (BD Bionutrients Technical Manual 3rd Edition, 2007). The results are shown in Table 4. Note that the decomposition rate is a value obtained by assuming that the theoretical oxygen demand (ThOD) of PHB and polyamide 4 is 100%.
  • Seawater was collected at Kin Bay in Uruma City on April 6, 2020, and was used from the day of collection for 7 days.
  • ⁇ -polyglutamic acid ( ⁇ -PGA, Mw 200,000 to 500,000) manufactured by Wako Pure Chemical Industries, Ltd. and ⁇ -polylysine (Mw 3,500 to 4,500) manufactured by Carbosynth (CAB) were selected as water-soluble polyamides, and A biodegradability test was performed. The same marine biodegradation promoting additive as in Example 4 was used. The results are shown in Table 5.
  • the decomposition rate is a value obtained by setting the theoretical oxygen demand (ThOD) of ⁇ -PGA and ⁇ -polylysine as 100%. Seawater was collected at Kin Bay, Uruma City on April 29, 2020 and used for measurements from May 1 to 21.
  • the biodegradability was measured at 27° C. for 21 days in two groups of spiked groups. The results are shown in Table 5. Degradation of ⁇ -PGAP and ⁇ -polylysine was observed when marine biodegradation promoting additives were added.
  • BAK2195 a copolymer of polyamide 6,6 and adipic acid-butanediol-diethylene glycol
  • BAK1095 a copolymer of polyamide 6 and polybutylene adipate developed by Bayer AG of Germany are used. selected and tested for biodegradability in seawater. At the same time, a seawater biodegradability test was conducted on BIOPOL, a copolymer (PHBV) of D-3-hydroxybutyric acid and D-3-hydroxyvaleric acid developed by Zeneca (formerly I.C.I.). rice field. A biodegradability test was performed on PHBV (8%) with a D-3-hydroxyvaleric acid content of 8 mol%. The same marine biodegradation promoting additive as in Example 4 was used. Seawater was collected at Kin Bay, Uruma City on April 29, 2020, stored in a dark place, and then used for measurements for 21 days from May 8.
  • Two groups one group added 40 mg each of BAK2195, BAK1095 and PHBV to each BOD bottle containing 250 ml of seawater, and the other group added 40 mg each of BAK2195, BAK1095 and PHBV and added 0.4 ml each of marine biodegradation promoting additives.
  • the biodegradability test was conducted while stirring at 27°C for 21 days. The results are shown in Table 6.
  • the decomposition rate of BAK2195 and BAK1095 the BOD value, which is the amount of oxygen consumed during decomposition, was expressed in ppm because the proportion of polyamide and polyester was unknown.
  • the marine biodegradation promoting additive NP used in Example 1 was added so as to be 0.0%, 0.3%, 3.0%, 13.0%, and 42.9% with respect to the weight of the PHB powder, and each was made of five glass Then, 10 ml of chloroform was added, and the reaction tube was fitted with a coiled tube condenser and refluxed at 60° C. for 16 hours with stirring. After cooling, the solution in the polymerization tube was poured into a flat-bottom petri dish having a diameter of 10 cm, the petri dish was covered, and chloroform was removed under a draft for 3 days.
  • the film of the PHB resin composition containing the marine biodegradation promoting additive produced in each petri dish was cut into about 1 cm2, and the film containing 40 mg of PHB was placed in each BOD bottle and biodegraded by seawater. did the test.
  • Seawater was collected from Nakagusuku Bay in Uruma City on September 25, 2020 and used from the day of collection.
  • ammonium phosphate finely ground in an agate bowl was added as a new marine biodegradation-promoting additive at 0.5% and 5.0% with respect to the weight of the PHB powder, and the marine biodegradation-promoting additive was added in the same manner.
  • a film of the PHB resin composition containing was prepared.
  • Each film containing 40 mg of PHB was placed in a BOD bottle and subjected to a biodegradation test with seawater while stirring at 27°C for 7 days. Further, 40 mg of filter paper (Advantech 5A) alone as cellulose was placed in a BOD bottle without adding the marine biodegradation promoting additive NP, and a similar biodegradation test with seawater was conducted.
  • the decomposition rate is a value determined assuming that the theoretical oxygen demand (ThOD) of PHB is 100%.
  • the PHB film without the marine biodegradation-promoting additive NP used in Example 1 was not biodegraded at all in 7 days, whereas additive NPs of 0.3%, 3.0%, 13.0% and 42.9% showed no biodegradation in 7 days. 6.3%, 34.0%, 80.2%, and 83.2% biodegraded respectively in days.
  • films of PHB resin compositions containing 0.5% and 5.0% of finely divided ammonium phosphate (AP) as a marine biodegradation-promoting additive were biodegraded by 10.4% and 38.8%, respectively, in 7 days.
  • the filter paper had a degradation rate of 0% in 7 days without the marine biodegradation promoting additive.
  • Bionol PBSA (#3020) manufactured by Showa Polymer Co., Ltd., and PCL, a film containing no marine biodegradation promoting additive NP used in Example 1 and a film containing 13% were prepared. Film preparation was carried out in the same manner as in Example 7. For the prepared PHB film, PBSA film, and PCL film, 40 mg without marine biodegradation promoting additive and 46 mg with 13% additive were placed in BOD bottles, respectively, and seawater biodegradation tests were conducted.
  • the decomposition rate is a value obtained by setting the theoretical oxygen demand (ThOD) of each of PHB, PBSA and PCL to 100%.
  • ThOD is obtained by assuming that the A (adipic acid) content of PBSA is 10 mol %.
  • Each prepared film was placed in a BOD bottle so that the amount of each film contained was 40 mg when the marine biodegradation promoting additive NP was not contained, and 44.4 mg when it contained 10%, and a biodegradation test by seawater was performed. Seawater was collected at Nakagusuku Bay, Uruma City on December 16, 2020 and used from the day of collection.
  • the decomposition rate is a value obtained based on the theoretical oxygen demand (ThOD) of PHBV as 100%.
  • the PHBV (6.7%) film, PHBV (15.6%) film, Easter Bio film, Mater Bi film, BAK1095 film and BAK2095 film without the marine biodegradation promoting additive NP used in Example 1 were heated at 27°C, 21 It did not biodegrade at all in days.
  • the degradation rates of PHBV (6.7%) and PHBV (15.6%) films containing marine biodegradation promoting additive NP were 80.4% and 69.1%, respectively.
  • Glucose a natural sugar
  • the biodegradable material was decomposed in seawater by changing the concentration of glucose to 0 ppm, 20 ppm, 40 ppm, 80 ppm, and 160 ppm.
  • Seawater was collected from Nakagusuku Bay in Uruma City on November 24, 2020 and used from the day of collection. The same marine biodegradation promoting additive as in Example 1 was used. Ammonium sulfate and monopotassium phosphate were used at concentrations of 20 ppm and 4 ppm, respectively, as nitrogen and phosphorus sources. Lake water, river water, ground water (spring water), tap water, inorganic salt medium, etc. can also be used instead of sea water.
  • PHB poly(R)-3-hydroxybutyric acid
  • a freshly prepared liquid marine biodegradation enhancing additive was added to obtain the concentrations of ammonium sulfate and potassium dihydrogen phosphate shown in Table 11. and reacted at 27°C for 8 days.
  • the biodegradation rate of PHB after 8 days was 82% or more when ammonium sulfate was 20 ppm and monopotassium phosphate (monopotassium dihydrogen phosphate) was 4 ppm or more.
  • the decomposition rate is a value determined assuming that the theoretical oxygen demand (ThOD) of PHB is 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] The present addresses the problem of providing a marine biodegradation promoting additive to solve the problem of marine waste such as plastic trash, etc., and to effectively utilize the same to efficiently prevent marine pollution. [Solution] The present invention is characterized by being: a marine biodegradation promoting additive containing a nitrogen compound and a phosphorus compound; a marine biodegradable resin composition including said additive; and a method for adding a nitrogen compound and a phosphorus compound to degrade a biodegradable resin composition. This method does not require the use of specific isolated microorganisms, specific seawater having a high concentration of microorganisms, etc.

Description

海洋生分解促進添加剤及びこれを含む海洋生分解性樹脂組成物Marine biodegradation promoting additive and marine biodegradable resin composition containing the same
 本発明は海洋生分解促進添加剤、海洋生分解性樹脂組成物および海洋生分解性高分子素材・樹脂組成物の分解処理方法に関するものである。より詳細には、本発明は、有効成分として窒素化合物及びリン化合物を含有することを特徴とする海洋生分解促進添加剤、海洋生分解促進添加剤を含む海洋生分解性樹脂組成物および海洋生分解性高分子素材・樹脂組成物の分解処理方法に関するものである。 The present invention relates to a marine biodegradation promoting additive, a marine biodegradable resin composition, and a decomposition treatment method for a marine biodegradable polymer material/resin composition. More specifically, the present invention provides a marine biodegradation promoting additive characterized by containing a nitrogen compound and a phosphorus compound as active ingredients, a marine biodegradable resin composition containing a marine biodegradation promoting additive, and a marine biodegradable resin composition. The present invention relates to a decomposition treatment method for a degradable polymer material/resin composition.
近年、プラスチック廃棄物による海洋汚染が問題になっている。海洋汚染を防ぐために、プラスチックの代替品やリサイクルの技術開発が行われているが、コスト高や機能低下等の問題を抱えている。さらに、5mm以下の大きさのマイクロプラスチックと言われる繊維状、粒状、フィルム状等の微細なプラスチックが海洋の生態系への脅威だと言われている。 In recent years, marine pollution by plastic waste has become a problem. In order to prevent marine pollution, plastic substitutes and recycling technologies are being developed, but they have problems such as high cost and deterioration of functionality. Furthermore, it is said that fine plastics such as fibrous, granular, and film-like microplastics with a size of 5 mm or less pose a threat to marine ecosystems.
 そこで最近、海洋において生物学的に分解する海洋生分解性プラスチックの研究開発が盛んに行われている。すでに、生分解性プラスチックとしては、ポリポリカプロラクトン(PCL)、ポリエチレンアジペート(PEA)、ポリブチレンサクシネート(PBS)、PBSとポリブチレンアジペートの共重合体(PBSA)、ポリ乳酸(PLA)、ポリエステルカーボネート(PEC)、デンプンあるいは化学修飾デンプンとPCLのブレンド体、ポリヒドロキシ酪酸(PHB)およびその共重合体等々が開発され、一部は市場にも出回っている。 Therefore, research and development of marine biodegradable plastics that are biologically degraded in the ocean have been actively carried out recently. As biodegradable plastics, polypolycaprolactone (PCL), polyethylene adipate (PEA), polybutylene succinate (PBS), copolymer of PBS and polybutylene adipate (PBSA), polylactic acid (PLA), polyester carbonate (PEC), blends of starch or chemically modified starch and PCL, polyhydroxybutyric acid (PHB) and its copolymers, etc. have been developed and some are on the market.
しかし、従来から開発されてきた生分解性プラスチックは、海洋での生分解性が大変遅いという問題を抱えている。そこで最近、サンゴ礁など沿岸や外洋において優れた生分解性を有する海洋生分解性プラスチックの開発が注目されている。一部、微生物由来のポリヒドロキシ酪酸やその共重合体が海水において生分解されることが報告されているが、都市に近く汚濁が進んだ東京湾、大阪湾、伊勢湾、瀬戸内海など微生物数が多い特定の海域に限られている。 However, conventionally developed biodegradable plastics have the problem that their biodegradation in the ocean is very slow. Therefore, recently, attention has been paid to the development of marine biodegradable plastics that have excellent biodegradability in coastal areas such as coral reefs and in the open ocean. It has been reported that some polyhydroxybutyric acid and its copolymer derived from microorganisms are biodegraded in seawater. limited to specific sea areas where there are many
三井化学株式会社は特開2001-270793号公報「生分解促進剤及び生分解方法」において、生分解促進剤として、ポリアミノ酸(ポリアスパラギン酸、ポリグルタミン酸、ポリリジン、ポリコハク酸イミド)を一般廃棄物や産業廃棄物、コンポストに添加すると分解が促進されることを開示している。
 JIS K0102には、工場排水などのBOD(生物化学的酸素要求量)を測定する場合、微生物の植種として市街地の廃水等を10%程添加するとともに、微生物の増殖に必要な一般的な栄養源として、0.025%塩化鉄溶液、2.75%塩化カルシウム、2.25%硫酸マグネシウム、0.85%リン酸二水素一カリウム溶液、3.34%リン酸一水素二カリウム溶液、2.17%リン酸一水素二カリウム、0.17%塩化アンモニウム等を含む栄養塩液を加えることが記載されている。
竹本修明らは、陸上からの汚濁物質の海域における生分解性を評価するため、海水を用いて種々の有機物のBODを測定している。この場合もJIS K0102に従って、微生物の植種として大阪府の大津川の河川水を添加するとともに、微生物の一般的な栄養源を添加している。しかし、海水を用いたBOD測定の場合の栄養源の添加効果については記載が見当たらない。 
国立研究開発法人産業技術総合研究所(産総研)の中山らは、大和川河口の大阪南港海域の海水を用いたBOD試験(27℃、28日間)により、PHB、PCLおよびPBSAは生分解が認められたが、PCLとPBSAについては海水の採取時期により分解率が大きく変動したことを報告している。
一方、株式会社カネカと産総研は、大阪南港海域の海水を用いたBOD試験(27℃、28日間)により、3-ヒドロキシ酪酸89モル%と3-ヒドロキシヘキサン酸11モル%からなる微生物由来の共重合体(PHBHH)が31%分解されたが、PBS、PBSAおよびPLAについては生分解に基づく酸素吸収が認められなかったことを報告している。
Mitsui Chemicals, Inc. discloses polyamino acid (polyaspartic acid, polyglutamic acid, polylysine, polysuccinimide) as a biodegradation accelerator in Japanese Patent Laid-Open No. 2001-270793 "Biodegradation accelerator and biodegradation method". It is disclosed that decomposition is accelerated when added to industrial waste and compost.
In JIS K0102, when measuring the BOD (Biochemical Oxygen Demand) of industrial wastewater, etc., about 10% of urban wastewater is added as a microbial inoculum, and general nutrients necessary for the growth of microorganisms are added. 0.025% iron chloride solution, 2.75% calcium chloride, 2.25% magnesium sulfate, 0.85% monopotassium dihydrogen phosphate solution, 3.34% dipotassium monohydrogen phosphate solution, 2 Addition of a nutrient solution containing .17% dipotassium monohydrogen phosphate, 0.17% ammonium chloride, etc. is described.
Nobuaki Takemoto et al. measured the BOD of various organic matter using seawater in order to evaluate the biodegradability of contaminants from land in the sea. Also in this case, in accordance with JIS K0102, river water of the Otsu River in Osaka Prefecture was added as a microbial inoculum, and a general nutrient source for microorganisms was added. However, there is no description about the effect of adding nutrient sources in the case of BOD measurement using seawater.
Nakayama et al. of the National Institute of Advanced Industrial Science and Technology (AIST) conducted a BOD test (27°C, 28 days) using seawater from the Osaka Nanko sea area at the mouth of the Yamato River, and found that PHB, PCL, and PBSA are biodegradable. However, they reported that the degradation rate of PCL and PBSA varied greatly depending on the time of seawater sampling.
On the other hand, Kaneka Corporation and AIST conducted a BOD test (27°C, 28 days) using seawater from the sea area of Osaka Nanko, and found that a microorganism-derived They reported that the copolymer (PHBHH) was degraded by 31%, but no oxygen absorption due to biodegradation was observed for PBS, PBSA and PLA.
特開2001-270793号公報Japanese Patent Application Laid-Open No. 2001-270793
 解決しようとする問題点は、生分解性プラスチックのほとんどが海水中で生分解されない点である。生分解性プラスチックの中でも、PHBやその共重合体は、東京湾や瀬戸内海など汚濁が進み微生物数が比較的多い特定の海域において分解することが報告されている。しかし、PHBやその共重合体でも、汚濁が進んでいないサンゴ礁などの沿岸での海水中では分解は非常に遅いか、まったく生分解されないことが明らかになってきた。 The problem to be solved is that most biodegradable plastics do not biodegrade in seawater. Among biodegradable plastics, PHB and its copolymers are reported to decompose in specific sea areas such as Tokyo Bay and the Seto Inland Sea, which are highly polluted and have a relatively large number of microorganisms. However, it has become clear that even PHB and its copolymers decompose very slowly or do not biodegrade at all in unpolluted coastal seawater such as coral reefs.
本発明では、海洋プラスチックごみ問題を解決するために、都市部に近い海域だけでなく、多くのサンゴ礁が分布する熱帯・亜熱帯の沿岸海域や亜熱帯循環流などの外洋の海水中においても、生分解性素材を速やかに生分解するため、海洋生分解促進添加剤、海洋生分解性樹脂組成物および海洋生分解性高分子素材・樹脂組成物の分解処理方法を提供する。
すなわち、本発明は有効成分として窒素化合物およびリン化合物を含有することを特徴とする海洋生分解促進添加剤、海洋生分解促進添加剤を含む海洋生分解性樹脂組成物および海洋生分解促進添加剤を用いた生分解性素材の海水中の分解方法に関する。
In the present invention, in order to solve the problem of marine plastic litter, biodegradation is carried out not only in sea areas near urban areas, but also in tropical and subtropical coastal sea areas where many coral reefs are distributed and in open ocean seawater such as subtropical circulation currents. A marine biodegradation promoting additive, a marine biodegradable resin composition, and a decomposition treatment method for a marine biodegradable polymer material/resin composition are provided for rapid biodegradation of marine biodegradable materials.
That is, the present invention provides a marine biodegradation-promoting additive characterized by containing a nitrogen compound and a phosphorus compound as active ingredients, a marine biodegradable resin composition containing the marine biodegradation-promoting additive, and a marine biodegradation-promoting additive. It relates to a method for decomposing biodegradable materials in seawater using
生分解性素材には天然素材と人工的に化学合成された素材が含まれる。天然素材としては、炭水化物、ペプチド、脂肪、核酸、リグニンなどが代表的なものとしてあげられる。それぞれは単糖、アミノ酸、脂肪酸、一価~多価の飽和・不飽和アルコール類等の低分子量のものから構成されているものや、デンプンやセルロース、キチン、カラギーナン、ザンサンガム、グルコマンナン、グアーガム、スピノガム、ローカストビーンガム、寒天、ペクチン酸などの多糖類およびその化学修飾物、スベリンやクチン、ポリヒドロキシアルカノエートなどのポリエステル、シルク、ウール、グルテン、コラーゲン、ゼラチン、エラスチン、ケラチンなどのタンパク質およびその化学修飾物等の高分子量のものがある。天然物系の生分解性素材には、親水性を示すものや疎水性を示すものがある。 Biodegradable materials include natural materials and artificially chemically synthesized materials. Carbohydrates, peptides, fats, nucleic acids, lignin and the like are typical examples of natural materials. Each of them is composed of low molecular weight substances such as monosaccharides, amino acids, fatty acids, monohydric to polyhydric saturated/unsaturated alcohols, starch, cellulose, chitin, carrageenan, xanthan gum, glucomannan, guar gum, Polysaccharides such as spinogum, locust bean gum, agar, pectic acid and their chemical modifications, polyesters such as suberin, cutin and polyhydroxyalkanoates, proteins such as silk, wool, gluten, collagen, gelatin, elastin and keratin and their There are high molecular weight ones such as chemically modified products. Natural biodegradable materials include those that exhibit hydrophilicity and those that exhibit hydrophobicity.
化学合成素材としては、「化学物質の審査及び製造等の規制に関する法律」(化審法)において生分解性が認められた種々の人工的に化学合成された低分子量の化合物があげられる。また、人工的に化学合成された高分子素材としては、国際標準化機構((ISO)が定めた高分子化合物の土壌、活性汚泥、嫌気汚泥、コンポストなどによる生分解性評価法ISO 17556 (JIS K6955土壌生分解試験)、ISO 14851 (JIS K6950活性汚泥生分解試験)、ISO 14852 (JIS K6951活性汚泥生分解試験)、ISO (JIS K6960嫌気汚泥生分解試験)、ISO 13975 (JIS K6961)、ISO 14855-1 (JIS K6953-1)、ISO 14855-2 (JIS K6953-2など)等によって生分解性が認められた高分子化合物があげられる。 Examples of chemically synthesized materials include various artificially chemically synthesized low-molecular-weight compounds whose biodegradability is recognized in the "Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances" (Chemical Substances Control Law). In addition, as an artificially chemically synthesized polymer material, the biodegradability evaluation method for soil, activated sludge, anaerobic sludge, compost, etc. of polymer compounds established by the International Organization for Standardization (ISO) ISO 17556 (JIS K6955 Soil biodegradation test), ISO 14851 (JIS K6950 Activated sludge biodegradation test), ISO 14852 (JIS K6951 Activated sludge biodegradation test), ISO (JIS K6960 Anaerobic sludge biodegradation test), ISO 13975 (JIS K6961), ISO 14855 -1 (JIS K6953-1), ISO 14855-2 (JIS K6953-2, etc.) and other biodegradable polymer compounds.
例えば、ポリエステル類としては脂肪族ジカルボン酸と脂肪族ジオールからなるポリエステル、ヒドロキシカルボン酸なるポリエステル、カプロラクトンやプロピオラクトンなどラクトン類や酸無水物からなるポリエステルなどがある。具体的には、ポリヒドロキシ酪酸(PHB)およびその共重合体、ポリカプロラクトン(PCL)、ポリブチレンサクシネート(PBS)、PBSとポリブチレンアジペートの共重合体(PBSA)、ポリ乳酸(PLA)、等の脂肪族ポリエステル、芳香族ポリエステルのポリエチレンテレフタレートと脂肪族ポリエステルトの共重合体があげられるが、これらに限定するものではない。 For example, polyesters include polyesters composed of aliphatic dicarboxylic acids and aliphatic diols, polyesters composed of hydroxycarboxylic acids, polyesters composed of lactones such as caprolactone and propiolactone, and acid anhydrides. Specifically, polyhydroxybutyric acid (PHB) and its copolymer, polycaprolactone (PCL), polybutylene succinate (PBS), copolymer of PBS and polybutylene adipate (PBSA), polylactic acid (PLA), and copolymers of aromatic polyesters such as polyethylene terephthalate and aliphatic polyesters, but not limited to these.
ポリアミド類としては、脂肪族ジカルボン酸と脂肪族ジアミドからなるポリアミド、ヒドロキシアミドなるポリアミド、脂肪族ラクタムからなるポリアミド、各種のアミノ酸重合体などがある。具体的には、ポリアミド4、ポリアミド6、ポリアミド4,6、ポリアミド11、ポリアミド12などの脂肪族ポリアミドやα-ポリアラニン、α-ポリグルタミン酸などのα-ポリアミノ酸があげられるが、これらに限定するものではない。
さらに、ポリウレタン、脂肪族ポリカーボネート、脂肪族ポリエステルと芳香族ポリエステルあるいはポリアミドとの共重合体、ビニル結合を含む脂肪族ポリエステル、ポリエーテルやエーテル結合を含むポリエステルなどがあげられる。
その他、2種以上の高分子を化学的に結合した共重合高分子や2種以上の高分子を物理的に混合した高分子ブレント体もあげられる。
Examples of polyamides include polyamides composed of aliphatic dicarboxylic acids and aliphatic diamides, polyamides composed of hydroxyamides, polyamides composed of aliphatic lactams, and various amino acid polymers. Specific examples include aliphatic polyamides such as polyamide 4, polyamide 6, polyamide 4,6, polyamide 11 and polyamide 12, and α-polyamino acids such as α-polyalanine and α-polyglutamic acid, but are limited to these. not something to do.
Further examples include polyurethanes, aliphatic polycarbonates, copolymers of aliphatic polyesters and aromatic polyesters or polyamides, aliphatic polyesters containing vinyl bonds, polyesters containing polyethers and ether bonds, and the like.
Other examples include a copolymer polymer in which two or more types of polymers are chemically bonded, and a polymer blend in which two or more types of polymers are physically mixed.
 生分解性を有する親水性高分子素材としては、ポリグルタミン酸、ポリリジン、ポリアスパラギン酸、ポリエチレングリコール(PEG)、ポリビルアルコール(PVA)、ポリリンゴ酸、ポリグリセリン酸およびそれらの共重合体等がある。γ-ポリグルタミン酸やε-ポリリジンは微生物により生産される天然物高分子でもある。さらに、各種の糖類(スクロース、グルコース等)や糖アルコール(グリセロール、エリスリトール、ソルビトール、マルチトール、キシリトール等)を用いた親水性ポリエステルなどもある。
生分解性を有する親水性高分子素材の用途としては、衛生用品、紙コーティング剤、農業・園芸資材、土木・建築資材などの他に、塗工紙(ポスター、カレンダー、雑誌のグラビア、折り込み広告等)や塗料などに添加される防汚剤や顔料の分散剤としても期待される。また、海洋生分解性素材の利用が期待できる分野として、船底や漁網、養殖基材、浮標、海水構造物などに海洋生物が付着するのを防止するための海洋生物付着防止塗料がある。
従来、防汚剤や顔料の分散剤として非生分解性の高分子量ポリアクリル酸系ポリマーが広く使用されてきたが、環境への影響が懸念されている。今後は生分解性を有する低・中分子量領域のポリアクリル酸(Na塩)系の素材や、ポリアクリルアミド、ポリビニルピロリドン、ポリプロピレングリコール、ポリブチレングリコールなどの代替品の開発が注目される。
Examples of biodegradable hydrophilic polymer materials include polyglutamic acid, polylysine, polyaspartic acid, polyethylene glycol (PEG), polyvinyl alcohol (PVA), polymalic acid, polyglyceric acid, and copolymers thereof. . γ-polyglutamic acid and ε-polylysine are also natural macromolecules produced by microorganisms. Further, there are hydrophilic polyesters using various sugars (sucrose, glucose, etc.) and sugar alcohols (glycerol, erythritol, sorbitol, maltitol, xylitol, etc.).
Applications of biodegradable hydrophilic polymer materials include sanitary products, paper coating agents, agricultural and gardening materials, civil engineering and construction materials, as well as coated paper (posters, calendars, magazine gravure, insert advertisements, etc.). etc.), antifouling agents added to paints, etc., and dispersants for pigments. Another field in which the use of marine biodegradable materials is expected is marine biofouling prevention paints for preventing marine organisms from adhering to ship bottoms, fishing nets, aquaculture substrates, buoys, and seawater structures.
Conventionally, non-biodegradable high-molecular-weight polyacrylic acid-based polymers have been widely used as antifouling agents and dispersants for pigments, but there are concerns about their impact on the environment. In the future, attention will be paid to the development of biodegradable low- to medium-molecular-weight polyacrylic acid (Na salt)-based materials and alternatives to polyacrylamide, polyvinylpyrrolidone, polypropylene glycol, and polybutylene glycol.
海洋生分解促進剤添加物としては、硫酸アンモニウムやリン酸二水素カリウム以外にも無機系および有機系の窒素化合物やリン化合物があげられる。また、窒素とリンの両方を含む化合物もあげられる。
例えば、無機系の窒素化合物としては硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム等の各種アンモニウム塩、有機系の窒素化合物としては各種アミノ酸およびそれらの誘導体、各種アミノ酸の重合体、ペプチド類、タンパク質、尿素などがあげられるが、これらに限定するものではない。
無機系のリン化合物としてはリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸水素二カリウム等の各種リン酸塩及びポリリン酸など各種重合体、有機系のリン化合物としては各種のアルキルおよびアルケニルリン酸エステル、フィチン酸などの糖リン酸エステル、酵母エキス、ペプトン、核酸、などがあげられるがこれらに限定するものではない。
窒素とリンの両方を含む化合物としては、リン酸二水素アンモニウムやリン酸水素二アンモニウムなどの無機系化合物の他に、リボ核酸、デオキシリボ核酸などの核酸類、酵母エキス、肉エキス、海藻エキスやペプトン、トリプトン、など微生物や動植物の抽出液などがあげられるがこれらに限定するものではない。
海洋生分解促進添加剤は、粉末やペレット状の固体の他に、親水性あるいは親油性の液体・ゾル・ゲルに溶かした状態や分散させた状態で使用することも想定される。また、海洋生分解促進添加剤を天然や化学合成した低分子・高分子素材や樹脂などと混合して粉末・粒状・ペレット状・繊維状・棒状・フィルム状・板状に加工して各種のプラスチック製品等に溶融混合して使用することもできる。
Examples of marine biodegradation accelerator additives include inorganic and organic nitrogen compounds and phosphorus compounds in addition to ammonium sulfate and potassium dihydrogen phosphate. Also included are compounds containing both nitrogen and phosphorus.
For example, inorganic nitrogen compounds include various ammonium salts such as ammonium sulfate, ammonium chloride and ammonium nitrate, and organic nitrogen compounds include various amino acids and derivatives thereof, polymers of various amino acids, peptides, proteins, and urea. but not limited to these.
Inorganic phosphorus compounds include various phosphates such as sodium dihydrogen phosphate, disodium hydrogen phosphate and dipotassium hydrogen phosphate, and various polymers such as polyphosphoric acid. Organic phosphorus compounds include various alkyl and alkenyl compounds. Phosphate, sugar phosphate such as phytic acid, yeast extract, peptone, nucleic acid, etc., but not limited to these.
Compounds containing both nitrogen and phosphorus include inorganic compounds such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, nucleic acids such as ribonucleic acid and deoxyribonucleic acid, yeast extract, meat extract, seaweed extract, Extracts of microorganisms, animals and plants such as peptone, tryptone, etc. can be cited, but the examples are not limited to these.
It is envisioned that the marine biodegradation-enhancing additive may be used in a state of being dissolved or dispersed in a hydrophilic or lipophilic liquid, sol, or gel, in addition to being in the form of powder or pellets. In addition, marine biodegradation-promoting additives are mixed with natural or chemically synthesized low-molecular-weight, high-molecular materials, resins, etc., and processed into powders, granules, pellets, fibers, rods, films, and plates to produce various products. It can also be used by melting and mixing with plastic products or the like.
本発明の海洋生分解性樹脂組成物には、機能性を向上させる目的や更に新たな機能を付加する目的で、必要に応じて、顔料、酸化防止剤、帯電防止剤、艶消剤、劣化防止剤、蛍光増白剤、紫外線吸収剤、紫外線安定剤、滑り剤、フィラー、カーボンブラック、増粘剤、鎖長延長剤、架橋剤、結晶核剤、可塑剤、安定剤、粘度安定剤等を任意の割合で添加することができる。具体例として、タルク、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、酸化チタンなどもあげられる。
本発明の海洋生分解性樹脂組成物は、海洋生分解促進添加剤と生分解性高分子素材を加熱溶融混合することによっても調整することができる。
The marine biodegradable resin composition of the present invention may optionally contain a pigment, an antioxidant, an antistatic agent, a delustering agent, and a degrading agent for the purpose of improving functionality or adding new functions. Inhibitors, fluorescent whitening agents, UV absorbers, UV stabilizers, lubricants, fillers, carbon black, thickeners, chain extenders, cross-linking agents, crystal nucleating agents, plasticizers, stabilizers, viscosity stabilizers, etc. can be added in any proportion. Specific examples include talc, boron nitride, calcium carbonate, magnesium carbonate, and titanium oxide.
The marine biodegradable resin composition of the present invention can also be prepared by heating, melting and mixing the marine biodegradation promoting additive and the biodegradable polymer material.
 本発明は、海洋ゴミ問題を解決するための有望な技術を提供するものである。窒素およびリンが不足している海域では、生分解性プラスチックだけでなく、グルコースやアミノ酸も短期間では、ほとんど分解されないこと明らかにして、種々の有機物の海水での生分解技術を開発した。具体的には、海水中に適度な窒素とリンを供給できる海洋生分解促進添加剤、海洋生分解促進添加剤を混ぜて分解速度がたいへん速くなった生分解性プラスチック、海水中の有機性廃棄物を微生物で効率的に分解処理する方法の3つの技術である。太平洋やインド洋、大西洋においても窒素とリンは不足しており、本発明の3つの技術の利用範囲はたいへん広いと思われる。 The present invention provides a promising technology for solving the marine debris problem. We have clarified that not only biodegradable plastics but also glucose and amino acids are hardly decomposed in a short period of time in sea areas where nitrogen and phosphorus are deficient. Specifically, marine biodegradation-promoting additives that can supply appropriate amounts of nitrogen and phosphorus to seawater, biodegradable plastics that are mixed with marine biodegradation-promoting additives that decompose at a much faster rate, and organic waste in seawater. These are three technologies for efficiently decomposing substances with microorganisms. Nitrogen and phosphorus are also scarce in the Pacific Ocean, Indian Ocean, and Atlantic Ocean, and the three technologies of the present invention are considered to have a wide range of application.
褐色のガラス瓶に炭酸ガス吸収剤の入ったゴム製ホルダーと酸素用の圧力センターをセットしたBOD測定装置の構成を示す概要図Schematic diagram showing the configuration of a BOD measurement device in which a rubber holder containing a carbon dioxide gas absorbent and a pressure center for oxygen are set in a brown glass bottle.
海水250 mlと被試験試料の入ったBOD測定装置(株式会社アクタック製B.O.D.センサーシステム)を27℃に保持し、炭酸ガス吸収剤の入ったゴム製ホルダーと酸素用の圧力センサーをセットして、試料の生分解にともなって発生する二酸化炭素を吸収剤に吸収させると同時に、ボトル内部の圧力変化にともなう酸素消費量をppm値で表示させる。
 図1は、BOD測定装置の構成を示した概要図である。500ml容量の褐色瓶の上部には圧力の変化により酸素消費量を検知してppmで表示する圧力センサーがセットされている。瓶の口部分には瓶と圧力センサーの間のパッキングも兼ねたゴム製のホルダーがセットしてある。ホルダーの中には被試験試料の生分解にともなって発生する二酸化炭素を吸収するソーダ石灰が入っている。被試験試料の分解率は、炭素C、水素H、窒素NおよびイオウSが、それぞれ二酸化炭素CO2、水H2O、硝酸HNO3、酸化イオウSO3に変換されるとして求めた理論的酸素要求量(ThOD)を100%として求めた値である。
A BOD measurement device (BOD sensor system manufactured by Actac Co., Ltd.) containing 250 ml of seawater and a sample to be tested was held at 27°C, and a rubber holder containing a carbon dioxide gas absorbent and a pressure sensor for oxygen were set. Absorb the carbon dioxide generated by the biodegradation of the sample, and at the same time, display the oxygen consumption in ppm value due to the pressure change inside the bottle.
FIG. 1 is a schematic diagram showing the configuration of a BOD measuring device. At the top of the 500ml brown bottle is a pressure sensor that detects the amount of oxygen consumed from changes in pressure and displays it in ppm. A rubber holder that doubles as a packing between the bottle and the pressure sensor is set at the mouth of the bottle. The holder contains soda lime that absorbs the carbon dioxide produced by the biodegradation of the test sample. The decomposition rates of the tested samples are the theoretical oxygen demand (ThOD) determined assuming that carbon C, hydrogen H, nitrogen N and sulfur S are converted to carbon dioxide CO2, water H2O, nitrate HNO3 and sulfur oxide SO3 respectively. is 100%.
以下、実施例を挙げて本発明を更に詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples.
天然の糖の代表としてグルコース、海洋の代表的な天然有機物としてピルピン酸、グリシンおよびメチオンニンを選び、海水による生分解試験を行った。海水は2020年2月1日に沖縄県読谷村残波ビーチで採取して、採取翌日から使用した。海洋生分解促進添加剤として、硫酸アンモニウム(試薬特級)とリン酸二水素カリウム(試薬特級)を重量比5:1で混合したものをメノウ鉢で細かく粉砕したもの(以下、海洋生分解促進添加剤NPと称す)を用いた。 Glucose was selected as a representative of natural sugars, and pyrupic acid, glycine and methionine were selected as representative natural organic substances of the ocean, and biodegradation tests were conducted using seawater. Seawater was collected at Zanpa Beach, Yomitan Village, Okinawa Prefecture on February 1, 2020, and was used from the day after collection. As a marine biodegradation promoting additive, a mixture of ammonium sulfate (reagent special grade) and potassium dihydrogen phosphate (reagent special grade) in a weight ratio of 5:1 was finely pulverized in an agate bowl (hereinafter referred to as marine biodegradation promoting additive NP) was used.
海水250 mlが入った各BOD瓶にグルコース、ピルビン酸、グリシンおよびメチオニンをそれぞれ40 mg添加したグループと、グルコース、ピルビン酸、グリシンおよびメチオニンをそれぞれ40 mgに加えて海洋生分解促進添加剤NPをそれぞれ4 mg添加したグループの2グループに分けて生分解性を27℃で14日間測定した。その結果を表1に示した。海水のみの場合や海水に海洋生分解促進添加剤NPを加えた場合にはBOD値が0ppmで酸素消費は認められなかった。また、海水にそれぞれグルコース、ピルビン酸、グリシンおよびメチオニンを添加した場合も酸素消費は認められなかった。一方、グルコース、ピルビン酸、グリシンおよびメチオニンに加えて、海洋生分解促進添加剤NPを添加した場合には、グルコース、ピルビン酸、グリシンおよびメチオニンの分解率は、それぞれ85.0%、82.8%、39.7%、52.5%であった。
Figure JPOXMLDOC01-appb-T000001
One group added 40 mg each of glucose, pyruvate, glycine and methionine to each BOD bottle containing 250 ml of seawater, and the other group added 40 mg each of glucose, pyruvate, glycine and methionine and added marine biodegradation enhancing additive NP. The biodegradability was measured at 27° C. for 14 days in two groups, each containing 4 mg. The results are shown in Table 1. The BOD value was 0 ppm and no oxygen consumption was observed in the case of only seawater or in the case of adding marine biodegradation promoting additive NP to seawater. Also, oxygen consumption was not observed when glucose, pyruvate, glycine and methionine were added to seawater, respectively. On the other hand, in addition to glucose, pyruvate, glycine and methionine, when the marine biodegradation promoting additive NP was added, the decomposition rates of glucose, pyruvate, glycine and methionine were 85.0%, 82.8% and 39.7%, respectively. , 52.5%.
Figure JPOXMLDOC01-appb-T000001
生分解性プラスチック素材として、微生物が生産するポリD-3-ヒドロキシ酪酸(PHB)の粉末(アルドリッチ製)、ダウ・ケミカル(旧ユニオンカーバイド)の化学合成系のポリカプロラクトン(PCL)の粉末(Tone P-767P)、p-トルエンスルフォン酸を触媒に用いて化学合成したポリL-乳酸およびL-乳酸(またはD-乳酸)とD-3-ヒドロキシ酪酸(D-3HB)の共重合体を選び、海水による生分解試験を行った。なお、乳酸とD-3HBの共重合体およびポリL-乳酸の分子量はゲルパーミエ―ションクロマトグラフィー(GPC)により測定した。海水は2020年11月6日に沖縄県うるま市の中城湾で採取して、採取当日から使用した。海洋生分解促進添加剤としては、実施例1で使用した固体状の海洋生分解促進添加剤NPを使用した。 Biodegradable plastic materials include poly-D-3-hydroxybutyric acid (PHB) powder produced by microorganisms (manufactured by Aldrich) and chemically synthesized polycaprolactone (PCL) powder (Tone) produced by Dow Chemical (formerly Union Carbide). P-767P), poly-L-lactic acid chemically synthesized using p-toluenesulfonic acid as a catalyst and a copolymer of L-lactic acid (or D-lactic acid) and D-3-hydroxybutyric acid (D-3HB) were selected. , conducted a biodegradation test in seawater. The molecular weights of the copolymer of lactic acid and D-3HB and poly-L-lactic acid were measured by gel permeation chromatography (GPC). Seawater was collected at Nakagusuku Bay in Uruma City, Okinawa Prefecture on November 6, 2020, and was used from the day of collection. As the marine biodegradation promoting additive, the solid marine biodegradation promoting additive NP used in Example 1 was used.
海水250 mlが入った各BOD瓶にPHB粉末、PCL粉末、ポリ-L-乳酸、L-乳酸とD-3-ヒドロキシ酪酸(D-3HB)からモル比95:5、90:10で化学重合した共重合体およびD-乳酸とD-3HBからモル比95:5で化学重合した共重合体をそれぞれ40mg添加したグループと、重合体に加えて実施例1と同じ海洋生分解性添加剤NPをそれぞれ4 mg添加したグループの2グループに分けて生分解性を27℃で11日間測定した。その結果を表2に示した。
海洋生分解促進添加剤NPを添加しなかった場合は、いずれも被試験物質も酸素消費は認められなかったが、海洋生分解促進添加剤NPを添加した場合は、PHB粉末、PCL粉末、ポリ-L-乳酸、L-乳酸とD-3-ヒドロキシ酪酸(D-3HB)の共重合体(モル比95:5と90:10)およびD-乳酸とD-3HBの共重合体(モル比95:5)の分解率は、それぞれ77.2%、51.9%、38.5%、53.4%、57.6%、74.6%であった。
Figure JPOXMLDOC01-appb-T000002
Each BOD bottle containing 250 ml of seawater was chemically polymerized from PHB powder, PCL powder, poly-L-lactic acid, L-lactic acid and D-3-hydroxybutyric acid (D-3HB) at molar ratios of 95:5 and 90:10. and a group in which 40 mg each of a copolymer chemically polymerized from D-lactic acid and D-3HB at a molar ratio of 95:5 were added, and in addition to the polymer, the same marine biodegradable additive NP as in Example 1 The biodegradability was measured at 27°C for 11 days by dividing into two groups to which 4 mg of each was added. The results are shown in Table 2.
When the marine biodegradation promoting additive NP was not added, oxygen consumption was not observed in any of the tested substances. -L-lactic acid, copolymers of L-lactic acid and D-3-hydroxybutyric acid (D-3HB) (molar ratios 95:5 and 90:10) and copolymers of D-lactic acid and D-3HB (molar ratios 95:5) were 77.2%, 51.9%, 38.5%, 53.4%, 57.6% and 74.6%, respectively.
Figure JPOXMLDOC01-appb-T000002
生分解性プラスチック素材として、ポリD-3-ヒドロキシ酪酸(PHB)のフィルム、3種類のデンプン/PCL(ToneP-767P)系ブレンド体(粉末)およびポリエステルカーボネートを選び、海水による生分解試験を行った。PHBフィルムはPHB粉末(アルドリッチ製)をクロロホルムに溶解させて、その溶液を直径10 cmの平底シャーレに流し込みシャーレの蓋をして3日間ドラフトでクロロホルムを除いて調製した。デンプン/PCL系ブレンド体は、デンプンとPCLのブレンド体(重量比50:50)、アセチル化デンプン(アセチル基2.5%以下)とPCLのブレンド体(重量比50:50)、ヒドロキシプロピル化デンプン(ヒドロキシプロピル基7.0%以下)とPCLのブレンド体(重量比50:50)を使用した。ポリエステルカーボネート(三菱ガス化学製)としては、ポリブチレンサクシネートとポリブチレンカーボネートの共重合体(カーボネート結合の含量11.0%、14.8%および17.1%)を使用した。海水は2020年10月19日にうるま市の中城湾で採取して、採取当日から使用した。海洋生分解促進添加剤としては、実施例1で使用した固体状のもの(海洋生分解促進添加剤NP)を蒸留水に溶かして、1%溶液を調製して使用した。 Poly-D-3-hydroxybutyric acid (PHB) film, three types of starch/PCL (ToneP-767P) blend (powder), and polyester carbonate were selected as biodegradable plastic materials, and biodegradation tests were conducted using seawater. rice field. A PHB film was prepared by dissolving PHB powder (manufactured by Aldrich) in chloroform, pouring the solution into a flat-bottom petri dish having a diameter of 10 cm, covering the petri dish with a lid, and removing the chloroform with a fume hood for 3 days. Starch/PCL blends include a blend of starch and PCL (50:50 weight ratio), a blend of acetylated starch (2.5% or less acetyl groups) and PCL (50:50 weight ratio), and a hydroxypropylated starch (50:50 weight ratio). A blend of hydroxypropyl groups (7.0% or less) and PCL (weight ratio 50:50) was used. Copolymers of polybutylene succinate and polybutylene carbonate (carbonate bond contents of 11.0%, 14.8% and 17.1%) were used as polyester carbonates (manufactured by Mitsubishi Gas Chemical Co., Ltd.). Seawater was collected at Nakagusuku Bay in Uruma City on October 19, 2020 and used from the day of collection. As the marine biodegradation promoting additive, the solid substance used in Example 1 (marine biodegradation promoting additive NP) was dissolved in distilled water to prepare a 1% solution for use.
海水250 mlが入った各BOD瓶にPHBのフィルム、3種類のデンプン/PCL系ブレンド体およびポリエステルカーボネートをそれぞれ40mgに加えて、実施例1の海洋生分解促進添加剤NPをそれぞれ4 mg添加したグループと添加しないグループの二つのグループに分けて生分解性を27℃で14日間測定した。その結果を表3に示した。なお、分解率はPHBフィルム、デンプン/PCL系のブレンド体およびポリエステルカーボネートの理論的酸素要求量(ThOD)を100%として求めた値である。海洋生分解促進添加剤NPの存在下ではPCLだけでなくデンプン系も分解されているが、NPが無いとPCLもデンプンも分解されていなかった。ポリエステルカーボネートはNPが存在する場合のみ分解が認められた。
Figure JPOXMLDOC01-appb-T000003
To each BOD bottle containing 250 ml of seawater, 40 mg each of PHB film, three starch/PCL-based blends and polyester carbonate were added, and 4 mg each of marine biodegradation promoting additive NP of Example 1 was added. The biodegradability was measured at 27°C for 14 days in two groups, a group and a non-additive group. The results are shown in Table 3. The decomposition rate is a value obtained by setting the theoretical oxygen demand (ThOD) of the PHB film, starch/PCL blend and polyester carbonate to 100%. In the presence of marine biodegradation-promoting additive NP, not only PCL but also starch was degraded, but in the absence of NP, neither PCL nor starch was degraded. Decomposition of polyester carbonate was observed only in the presence of NP.
Figure JPOXMLDOC01-appb-T000003
PHB粉末(アルドリッチ製)およびポリアミド4(重量平均分子量Mw 5,350)の海水による生分解性試験を行った。ポリアミド4は開始剤にブチリルクロリドを用いて2-ピロリドンから合成を行い、ゲルパーミエ―ションクロマトグラフィー(GPC)により分子量を測定した。海洋生分解促進添加剤としては、酵母エキス(べクトン・ディッキンソン社製)を1%の濃度になるように0.8%塩化ナトリウム溶液に溶かしたものを用いた。べクトン・ディッキンソン社製の酵母エキスには、窒素10.9%、リン酸塩3.27%が含まれている(BD Bionutrientsテクニカルマニュアル第3版、2007年発行)。その結果を表4に示した。なお、分解率はPHBおよびポリアミド4の理論的酸素要求量(ThOD)を100%として求めた値である。海水は2020年4月6日にうるま市の金武湾で採取して、採取当日から使用し7日間測定した。 PHB powder (manufactured by Aldrich) and polyamide 4 (weight average molecular weight Mw 5,350) were tested for biodegradability in seawater. Polyamide 4 was synthesized from 2-pyrrolidone using butyryl chloride as an initiator, and the molecular weight was measured by gel permeation chromatography (GPC). Yeast extract (manufactured by Becton Dickinson) dissolved in a 0.8% sodium chloride solution to a concentration of 1% was used as the marine biodegradation promoting additive. Yeast extract from Becton Dickinson contains 10.9% nitrogen and 3.27% phosphate (BD Bionutrients Technical Manual 3rd Edition, 2007). The results are shown in Table 4. Note that the decomposition rate is a value obtained by assuming that the theoretical oxygen demand (ThOD) of PHB and polyamide 4 is 100%. Seawater was collected at Kin Bay in Uruma City on April 6, 2020, and was used from the day of collection for 7 days.
海水250 mlが入った各BOD瓶にPHB粉末とポリアミド4をそれぞれ40 mg添加したグループと、PHB粉末とポリアミド4をそれぞれ40 mgに加えて海洋生分解促進添加剤をそれぞれ0.4 ml添加したグループの2グループに分けて生分解性を27℃で14日間測定した。その結果を表4に示した。海洋生分解促進添加剤を添加した場合、PHB粉末とポリアミド4の分解が認められた。
Figure JPOXMLDOC01-appb-T000004
One group added 40 mg each of PHB powder and polyamide 4 to each BOD bottle containing 250 ml of seawater, and the other group added 40 mg each of PHB powder and polyamide 4 and added 0.4 ml each of marine biodegradation promoting additives. The biodegradability was measured at 27°C for 14 days in two groups. The results are shown in Table 4. Degradation of PHB powder and polyamide 4 was observed when marine biodegradation promoting additives were added.
Figure JPOXMLDOC01-appb-T000004
水溶性のポリアミドとして和光純薬工業社製γ-ポリグルタミン酸(γ-PGA、Mw 20万~50万)およびCarbosynth(CAB)社製のε-ポリリジン(Mw 3,500~4,500))を選び、海水による生分解性試験を行った。海洋生分解促進添加剤には、実施例4と同じものを使用した。その結果を表5に示した。なお、分解率はγ-PGAおよびε-ポリリジンの理論的酸素要求量(ThOD)を100%として求めた値である。海水は2020年4月29日にうるま市金武湾で採取して、5月1日から21日間測定に使用した。 γ-polyglutamic acid (γ-PGA, Mw 200,000 to 500,000) manufactured by Wako Pure Chemical Industries, Ltd. and ε-polylysine (Mw 3,500 to 4,500) manufactured by Carbosynth (CAB) were selected as water-soluble polyamides, and A biodegradability test was performed. The same marine biodegradation promoting additive as in Example 4 was used. The results are shown in Table 5. The decomposition rate is a value obtained by setting the theoretical oxygen demand (ThOD) of γ-PGA and ε-polylysine as 100%. Seawater was collected at Kin Bay, Uruma City on April 29, 2020 and used for measurements from May 1 to 21.
海水250 mlが入った各BOD瓶にγ-PGAおよびε-ポリリジンをそれぞれ40 mg添加したグループと、γ-PGAおよびε-ポリリジンをそれぞれ40 mgに加えて海洋生分解促進添加剤をそれぞれ0.4 ml添加したグループの2グループに分けて生分解性を27℃で21日間測定した。その結果を表5に示した。海洋生分解促進添加剤を添加した場合、γ-PGA Pとε-ポリリジンの分解が認められた。
Figure JPOXMLDOC01-appb-T000005
A group that added 40 mg each of γ-PGA and ε-polylysine to each BOD bottle containing 250 ml of seawater, and a group that added 40 mg each of γ-PGA and ε-polylysine plus 0.4 ml each of marine biodegradation enhancing additives. The biodegradability was measured at 27° C. for 21 days in two groups of spiked groups. The results are shown in Table 5. Degradation of γ-PGAP and ε-polylysine was observed when marine biodegradation promoting additives were added.
Figure JPOXMLDOC01-appb-T000005
 ポリエステルとポリアミドの共重合体として、ドイツのバイエル社が開発したBAK2195(ポリアミド6,6とアジピン酸-ブタンジオール-ジエチレングリコールの共重合体)とBAK1095(ポリアミド6とポリブチレンアジペートの共重合体)を選び、海水による生分解性試験を行った。また、ゼネカ(旧I.C.I.)社が開発したD-3-ヒドロキシ酪酸とD-3-ヒドロキシ吉草酸との共重合体(PHBV)であるバイオポール(BIOPOL)の海水による生分解性試験も同時に行った。生分解性試験は、D-3-ヒドロキシ吉草酸の含量が8モル%のPHBV(8%)について行った。海洋生分解促進添加剤には、実施例4と同じものを使用した。海水は2020年4月29日にうるま市金武湾で採取し暗所で保存した後、5月8日から21日間測定に使用した。 As copolymers of polyester and polyamide, BAK2195 (a copolymer of polyamide 6,6 and adipic acid-butanediol-diethylene glycol) and BAK1095 (a copolymer of polyamide 6 and polybutylene adipate) developed by Bayer AG of Germany are used. selected and tested for biodegradability in seawater. At the same time, a seawater biodegradability test was conducted on BIOPOL, a copolymer (PHBV) of D-3-hydroxybutyric acid and D-3-hydroxyvaleric acid developed by Zeneca (formerly I.C.I.). rice field. A biodegradability test was performed on PHBV (8%) with a D-3-hydroxyvaleric acid content of 8 mol%. The same marine biodegradation promoting additive as in Example 4 was used. Seawater was collected at Kin Bay, Uruma City on April 29, 2020, stored in a dark place, and then used for measurements for 21 days from May 8.
海水250 mlが入った各BOD瓶にBAK2195、BAK1095およびPHBVをそれぞれ40mg添加したグループと、BAK2195、BAK1095およびPHBVをそれぞれ40mgに加えて海洋生分解促進添加剤をそれぞれ0.4 ml添加したグループの2グループに分けて、27℃で21日間撹拌しながら生分解性試験を行った。その結果を表6に示した。
なお、BAK2195とBAK1095の分解率については、ポリアミドとポリエステルの割合が不明なために、分解にともなう酸素消費量であるBOD値をppmで表した。PHBV(8%)については、共重合割合が分かっているのでBOD値とともに、PHBV(8%)の理論的酸素要求量(ThOD)を100%として求めた分解率も示した。その結果を表6に示した。海洋生分解促進添加剤を添加した場合、PHBV、BAK2195およびBAK1095の分解が認められた。
Figure JPOXMLDOC01-appb-T000006
Two groups: one group added 40 mg each of BAK2195, BAK1095 and PHBV to each BOD bottle containing 250 ml of seawater, and the other group added 40 mg each of BAK2195, BAK1095 and PHBV and added 0.4 ml each of marine biodegradation promoting additives. The biodegradability test was conducted while stirring at 27°C for 21 days. The results are shown in Table 6.
Regarding the decomposition rate of BAK2195 and BAK1095, the BOD value, which is the amount of oxygen consumed during decomposition, was expressed in ppm because the proportion of polyamide and polyester was unknown. For PHBV(8%), the copolymerization ratio is known, so the BOD value as well as the decomposition rate calculated based on the theoretical oxygen demand (ThOD) of PHBV(8%) as 100% are shown. The results are shown in Table 6. Degradation of PHBV, BAK2195 and BAK1095 was observed when marine biodegradation promoting additives were added.
Figure JPOXMLDOC01-appb-T000006
実施例1に用いた海洋生分解促進添加剤NPをPHB粉末の重量に対して0.0%、0.3%、3.0%、13.0%、42.9%になるように添加して、それぞれを5本のガラス製の反応管に入れた後、クロロホルム10mlを加え、反応管に蛇管冷却器を装着して、60℃で攪拌しながら16時間還流した。冷却後、重合管内の溶液を直径10 cmの平底シャーレに流し込みシャーレの蓋をして3日間ドラフトでクロロホルムを除いた。それぞれのシャーレ内にできた海洋生分解促進添加剤を含むPHB樹脂組成物のフィルムを約1 cm2にカットして、PHBが40 mg含まれるフィルムをそれぞれのBOD瓶に入れて、海水による生分解試験を行った。なお、海水は2020年9月25日にうるま市の中城湾から採取し、採取当日から使用した。
また、メノウ鉢で細かく粉砕したリン酸アンモニウムを新たな海洋生分解促進添加剤としてPHB粉末の重量に対して0.5%と5.0%になるように添加して、同様に海洋生分解促進添加剤を含むPHB樹脂組成物のフィルムを調製した。PHBが40mg含まれるそれぞれのフィルムをBOD瓶に入れて、27℃で7日間撹拌しながら海水による生分解性試験を行った。
さらに、海洋生分解促進添加剤NPを加えないで、セルロースとしてろ紙(アドバンテック5A)40mgのみをBOD瓶にいれて、同様に海水による生分解試験を行った。
The marine biodegradation promoting additive NP used in Example 1 was added so as to be 0.0%, 0.3%, 3.0%, 13.0%, and 42.9% with respect to the weight of the PHB powder, and each was made of five glass Then, 10 ml of chloroform was added, and the reaction tube was fitted with a coiled tube condenser and refluxed at 60° C. for 16 hours with stirring. After cooling, the solution in the polymerization tube was poured into a flat-bottom petri dish having a diameter of 10 cm, the petri dish was covered, and chloroform was removed under a draft for 3 days. The film of the PHB resin composition containing the marine biodegradation promoting additive produced in each petri dish was cut into about 1 cm2, and the film containing 40 mg of PHB was placed in each BOD bottle and biodegraded by seawater. did the test. Seawater was collected from Nakagusuku Bay in Uruma City on September 25, 2020 and used from the day of collection.
In addition, ammonium phosphate finely ground in an agate bowl was added as a new marine biodegradation-promoting additive at 0.5% and 5.0% with respect to the weight of the PHB powder, and the marine biodegradation-promoting additive was added in the same manner. A film of the PHB resin composition containing was prepared. Each film containing 40 mg of PHB was placed in a BOD bottle and subjected to a biodegradation test with seawater while stirring at 27°C for 7 days.
Further, 40 mg of filter paper (Advantech 5A) alone as cellulose was placed in a BOD bottle without adding the marine biodegradation promoting additive NP, and a similar biodegradation test with seawater was conducted.
その結果を表7に示した。なお分解率はPHBの理論的酸素要求量(ThOD)を100%として求めた値である。実施例1で用いた海洋生分解性促進添加剤NPを含まないPHBフィルムは7日間では全く生分解されなかったが、添加剤NPが0.3%、3.0%、13.0%および42.9%の場合、7日間でそれぞれ6.3%、34.0%、80.2%、83.2%生分解された。また、微粉砕したリン酸アンモニウム(AP)を海洋生分解性促進添加剤として0.5%および5.0%含むPHB樹脂組成物のフィルムの場合、7日間でそれぞれ10.4%、38.8%生分解された。一方、ろ紙は、海洋生分解促進添加剤が無い場合、7日間の分解率は0%であった。
Figure JPOXMLDOC01-appb-T000007
The results are shown in Table 7. The decomposition rate is a value determined assuming that the theoretical oxygen demand (ThOD) of PHB is 100%. The PHB film without the marine biodegradation-promoting additive NP used in Example 1 was not biodegraded at all in 7 days, whereas additive NPs of 0.3%, 3.0%, 13.0% and 42.9% showed no biodegradation in 7 days. 6.3%, 34.0%, 80.2%, and 83.2% biodegraded respectively in days. Also, films of PHB resin compositions containing 0.5% and 5.0% of finely divided ammonium phosphate (AP) as a marine biodegradation-promoting additive were biodegraded by 10.4% and 38.8%, respectively, in 7 days. On the other hand, the filter paper had a degradation rate of 0% in 7 days without the marine biodegradation promoting additive.
Figure JPOXMLDOC01-appb-T000007
PHB、昭和和高分子社製のビオノーレPBSA(#3020)およびPCLについて、実施例1に用いた海洋生分解促進添加剤NPを含まないフィルムと13%含むフィルムを調製した。フィルムの調製は実施例7と同様の方法で行った。調製したPHBフィルム、PBSAフィルムおよびPCLフィルムは、海洋生分解促進添加剤を含まない場合40 mg、13%含む場合46 mgを、それぞれBOD瓶に入れて、海水による生分解性試験を行った。 For PHB, Bionol PBSA (#3020) manufactured by Showa Polymer Co., Ltd., and PCL, a film containing no marine biodegradation promoting additive NP used in Example 1 and a film containing 13% were prepared. Film preparation was carried out in the same manner as in Example 7. For the prepared PHB film, PBSA film, and PCL film, 40 mg without marine biodegradation promoting additive and 46 mg with 13% additive were placed in BOD bottles, respectively, and seawater biodegradation tests were conducted.
その結果を表8に示した。海水は2020年5月8日に(中城湾港)で採取して、採取当日から使用した。実施例1で用いた海洋生分解促進添加剤を含まないPHBフィルム、PBSAフィルム(粉末にして使用)およびPCLフィルム(フレーク状にして使用)は、21日間で、それぞれ4.1%、3.7%、3.9%とわずかしか生分解されなかったが、 実施例1で用いた海洋生分解性促進添加剤を13%含むPHBフィルム、PBSAフィルム(粉末にして使用)およびPCLフィルム(フレーク状にして使用)は、21日間でそれぞれ86.9%、52.2%、71.2%分解された。なお分解率はPHB、PBSAおよびPCLのそれぞれ理論的酸素要求量(ThOD)を100%として求めた値である。ただし、PBSAのA(アジピン酸)含量は10モル%としてThODを求めた値である。
Figure JPOXMLDOC01-appb-T000008
The results are shown in Table 8. Seawater was collected at (Nakagusukuwan Port) on May 8, 2020 and used from the day of collection. The PHB film, PBSA film (used in powder form) and PCL film (used in flake form) without the marine biodegradation-enhancing additive used in Example 1 were 4.1%, 3.7%, and 3.9%, respectively, in 21 days. However, the PHB film, PBSA film (used as powder) and PCL film (used as flakes) containing 13% of the marine biodegradability promoting additive used in Example 1 were , 86.9%, 52.2%, and 71.2%, respectively, were degraded in 21 days. The decomposition rate is a value obtained by setting the theoretical oxygen demand (ThOD) of each of PHB, PBSA and PCL to 100%. However, ThOD is obtained by assuming that the A (adipic acid) content of PBSA is 10 mol %.
Figure JPOXMLDOC01-appb-T000008
D-3-ヒドロキシ吉草酸の含量が6.7モル%のPHBV(6.7%)、D-3-ヒドロキシ吉草酸の含量が15.6モル%のPHBV(15.6%)、脂肪族ポリエステルと芳香族ポリエステルの共重合体であるイーストマン社のEaster Bio、デンプン系の生分解性プラスチックであるノバモント社のMater Bi、BAK1095およびBAK2095について、実施例1に用いた海洋生分解促進添加剤NPを含まないフィルムと10%含むフィルムを調製した。フィルムの調製は実施例7と同様の方法で行った。調製したそれぞれのフィルムは海洋生分解促進添加剤NPを含まない場合40 mg、10%含む場合44.4 mgになるようにそれぞれのフィルムをBOD瓶に入れて、海水による生分解性試験を行った。海水は2020年12月16日にうるま市中城湾で採取して、採取当日から使用した。 PHBV containing 6.7 mol% of D-3-hydroxyvaleric acid (6.7%), PHBV containing 15.6 mol% of D-3-hydroxyvaleric acid (15.6%), copolymer of aliphatic polyester and aromatic polyester For Eastman's Easter Bio, which is a coalescence, Novamont's Mater Bi, which is a starch-based biodegradable plastic, BAK1095 and BAK2095, the film without the marine biodegradation promoting additive NP used in Example 1 and 10% A film was prepared containing Film preparation was carried out in the same manner as in Example 7. Each prepared film was placed in a BOD bottle so that the amount of each film contained was 40 mg when the marine biodegradation promoting additive NP was not contained, and 44.4 mg when it contained 10%, and a biodegradation test by seawater was performed. Seawater was collected at Nakagusuku Bay, Uruma City on December 16, 2020 and used from the day of collection.
その結果を表9に示した。なお分解率はPHBVの理論的酸素要求量(ThOD)を100%として求めた値である。実施例1で用いた海洋生分解性促進添加剤NPを含まないPHBV(6.7%)フィルム、PHBV(15.6%)フィルム、Easter Bioフィルム、Mater Biフィルム、BAK1095フィルムおよびBAK2095フィルムは、27℃、21日間で全く生分解されなかった。一方、海洋生分解促進添加剤NPを含むPHBV(6.7%)フィルムとPHBV(15.6%)フィルムの21日間の分解率は、それぞれ80.4%、69.1%であった。また、海洋生分解促進添加剤NPを含むEaster Bio フィルム、Mater Biフィルム、BAK1095フィルムおよびBAK2095フィルムについては、それぞれの組成が不明なためBOD値で示したが、27℃、21日間でいずれの樹脂組成物も生分解が進行していることが明らかとなった。
Figure JPOXMLDOC01-appb-T000009
The results are shown in Table 9. Note that the decomposition rate is a value obtained based on the theoretical oxygen demand (ThOD) of PHBV as 100%. The PHBV (6.7%) film, PHBV (15.6%) film, Easter Bio film, Mater Bi film, BAK1095 film and BAK2095 film without the marine biodegradation promoting additive NP used in Example 1 were heated at 27°C, 21 It did not biodegrade at all in days. On the other hand, the degradation rates of PHBV (6.7%) and PHBV (15.6%) films containing marine biodegradation promoting additive NP were 80.4% and 69.1%, respectively. For the Easter Bio film, Mater Bi film, BAK1095 film, and BAK2095 film containing the marine biodegradation-enhancing additive NP, the BOD values are shown because the respective compositions are unknown. It was found that the biodegradation of the composition also progressed.
Figure JPOXMLDOC01-appb-T000009
生分解性素材の代表の一つとして天然の糖であるグルコースを選び、グルコースの濃度を0 ppm、20 ppm、40 ppm、80 ppm、160 ppmと変えて、海水中における生分解性素材の分解方法を検討した。海水は2020年11月24日にうるま市の中城湾で採取して、採取当日から使用した。海洋生分解促進添加剤は、実施例1と同じものを用いた。
窒素源およびリン源としては、それぞれ硫酸アンモニウム20ppmとリン酸一カリウム4ppmの濃度で使用した。また、海水の代わりに湖水、河川水、地下水(湧き水)、水道水、無機塩類培地なども使用できる。
Glucose, a natural sugar, was selected as one of the representative biodegradable materials, and the biodegradable material was decomposed in seawater by changing the concentration of glucose to 0 ppm, 20 ppm, 40 ppm, 80 ppm, and 160 ppm. We considered the method. Seawater was collected from Nakagusuku Bay in Uruma City on November 24, 2020 and used from the day of collection. The same marine biodegradation promoting additive as in Example 1 was used.
Ammonium sulfate and monopotassium phosphate were used at concentrations of 20 ppm and 4 ppm, respectively, as nitrogen and phosphorus sources. Lake water, river water, ground water (spring water), tap water, inorganic salt medium, etc. can also be used instead of sea water.
  海水250 mlが入った各BOD瓶にグルコース0 mg、5mg、10 mg、20 mgおよび40 mgを添加したグループと、グルコース0 mg、5mg、10 mg、20 mgおよび40 mgに加えて海洋生分解促進添加剤をそれぞれ4 mg添加したグループの2グループに分けて分解割合を27℃で5日間測定した。その結果を表10に示した。なお、分解率はグルコースの理論的酸素要求量(ThOD)を100%として求めた値である。海洋生分解促進添加剤NPを添加した場合のみ、グルコースの分解が認められた。
Figure JPOXMLDOC01-appb-T000010
0 mg, 5 mg, 10 mg, 20 mg and 40 mg of glucose added to each BOD bottle containing 250 ml of seawater, and 0 mg, 5 mg, 10 mg, 20 mg and 40 mg of glucose plus marine biodegradation. Degradation rates were measured at 27° C. for 5 days in two groups, each containing 4 mg of the accelerating additive. The results are shown in Table 10. The decomposition rate is a value determined assuming that the theoretical oxygen demand (ThOD) of glucose is 100%. Degradation of glucose was observed only when the marine biodegradation promoting additive NP was added.
Figure JPOXMLDOC01-appb-T000010
生分解性プラスチック素材の代表として、微生物が生産するポリ(R)-3-ヒドロキシ酪酸(PHB)を選び、海水中における生分解性高分子素材の分解方法を検討した。海水は2020年7月22日にうるま市の中城湾から採取し、採取当日から使用した。海洋生分解促進添加剤としては、実施例1で使用した固体状のものを蒸留水に溶かして、1%溶液と10%溶液を調製して使用した。 We selected poly(R)-3-hydroxybutyric acid (PHB) produced by microorganisms as a typical biodegradable plastic material, and investigated the decomposition method of biodegradable polymer materials in seawater. Seawater was collected from Nakagusuku Bay in Uruma City on July 22, 2020 and used from the day of collection. As the marine biodegradation promoting additive, the solid substance used in Example 1 was dissolved in distilled water to prepare a 1% solution and a 10% solution for use.
海水250 mlが入った各BOD瓶にアルドリッチ製のPHB粉末40mg添加した後、新たに調製した液状の海洋生分解促進添加剤を加えて、硫酸アンモニウムとリン酸二水素カリウムが表11に示した濃度になるよう調整にし、27℃で8日間反応させた。8日後のPHBの分解率は、表11に示したように、硫酸アンモニウム20 ppm及びリン酸一カリウム(リン酸二水素一カリウム)4ppm以上の場合、PHBの生分解率は82%以上であった。なお、分解率はPHBの理論的酸素要求量(ThOD)を100%として求めた値である。
Figure JPOXMLDOC01-appb-T000011
After adding 40 mg of Aldrich PHB powder to each BOD bottle containing 250 ml of seawater, a freshly prepared liquid marine biodegradation enhancing additive was added to obtain the concentrations of ammonium sulfate and potassium dihydrogen phosphate shown in Table 11. and reacted at 27°C for 8 days. As shown in Table 11, the biodegradation rate of PHB after 8 days was 82% or more when ammonium sulfate was 20 ppm and monopotassium phosphate (monopotassium dihydrogen phosphate) was 4 ppm or more. . The decomposition rate is a value determined assuming that the theoretical oxygen demand (ThOD) of PHB is 100%.
Figure JPOXMLDOC01-appb-T000011
 既存の生分解性プラスチックに窒素化合物とリン化合物を添加することによって、海洋生分解性を著しく促進することができる。 By adding nitrogen compounds and phosphorus compounds to existing biodegradable plastics, marine biodegradability can be significantly promoted.
1  BODセンサー
2  BODボトル
3  CO2吸収剤を入れるホルダー
4  CO2吸収剤
5  海水
6  被試験試料
7  攪拌子
1 BOD sensor 2 BOD bottle 3 Holder for CO2 absorbent 4 CO2 absorbent 5 Sea water 6 Test sample 7 Stirrer

Claims (3)

  1. 窒素化合物およびリン化合物を有効成分として含有し、
    窒素化合物中の窒素の重量が、リン化合物中のリンの重量の2~15倍である
    ことを特徴とする海洋生分解促進添加剤。
    containing a nitrogen compound and a phosphorus compound as active ingredients,
    A marine biodegradation promoting additive characterized in that the weight of nitrogen in the nitrogen compound is 2-15 times the weight of phosphorus in the phosphorus compound.
  2. 請求項1に記載の海洋生分解促進添加剤と、生分解性高分子素材とを含むことを特徴とする海洋生分解性樹脂組成物。 A marine biodegradable resin composition comprising the marine biodegradation promoting additive according to claim 1 and a biodegradable polymer material.
  3. 被処理水中の窒素及びリンの濃度が、それぞれ1~2000ppm、0.1~400ppmであり、かつ、窒素がリンの2~15倍以上になるように、被処理水に窒素化合物及びリン化合物を添加することを特徴とする海洋生分解性樹脂組成物の分解処理方法。 The concentrations of nitrogen and phosphorus in the water to be treated are 1 to 2000 ppm and 0.1 to 400 ppm, respectively, and nitrogen compounds and phosphorus compounds are added to the water to be treated so that nitrogen is 2 to 15 times more than phosphorus. A method for decomposing a marine biodegradable resin composition, characterized by adding:
PCT/JP2021/048956 2021-03-16 2021-12-28 Marine biodegradation promoting additive and marine biodegradable resin composition including same WO2022196035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-041970 2021-03-16
JP2021041970A JP6976540B1 (en) 2021-03-16 2021-03-16 Marine biodegradation promoting additive and marine biodegradable resin composition containing it

Publications (1)

Publication Number Publication Date
WO2022196035A1 true WO2022196035A1 (en) 2022-09-22

Family

ID=78815473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048956 WO2022196035A1 (en) 2021-03-16 2021-12-28 Marine biodegradation promoting additive and marine biodegradable resin composition including same

Country Status (2)

Country Link
JP (1) JP6976540B1 (en)
WO (1) WO2022196035A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316438A (en) * 1996-05-28 1997-12-09 Giyojiyou Yudaku Higai Kiyuusai Kikin Disposing agent for oil
JPH11279201A (en) * 1998-03-31 1999-10-12 Japan Tobacco Inc Molded article of biodegradable cellulose acetate and filter plug for tobacco
JP2003154352A (en) * 2001-09-10 2003-05-27 Fuji Photo Film Co Ltd Method for restoring contaminated soil by microorganism
JP2005334727A (en) * 2004-05-25 2005-12-08 Tosoh Corp Method for decontaminating soil contaminated with oil
JP2019166703A (en) * 2018-03-23 2019-10-03 株式会社カネカ Poly(3-hydroxybutyrate)-based resin sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801385B (en) * 2018-03-30 2023-01-10 三菱化学株式会社 Molded body, sheet, container, tubular body, straw, cotton swab, and stem for balloon
JP6675690B1 (en) * 2018-10-26 2020-04-01 株式会社Tbm Biodegradable resin molded product, method for producing the same, and pellet used for the same
JPWO2021131181A1 (en) * 2019-12-27 2021-07-01

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316438A (en) * 1996-05-28 1997-12-09 Giyojiyou Yudaku Higai Kiyuusai Kikin Disposing agent for oil
JPH11279201A (en) * 1998-03-31 1999-10-12 Japan Tobacco Inc Molded article of biodegradable cellulose acetate and filter plug for tobacco
JP2003154352A (en) * 2001-09-10 2003-05-27 Fuji Photo Film Co Ltd Method for restoring contaminated soil by microorganism
JP2005334727A (en) * 2004-05-25 2005-12-08 Tosoh Corp Method for decontaminating soil contaminated with oil
JP2019166703A (en) * 2018-03-23 2019-10-03 株式会社カネカ Poly(3-hydroxybutyrate)-based resin sheet

Also Published As

Publication number Publication date
JP2022142016A (en) 2022-09-30
JP6976540B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
Wang et al. Seawater‐degradable polymers—fighting the marine plastic pollution
Manfra et al. Biodegradable polymers: A real opportunity to solve marine plastic pollution?
Shen et al. Are biodegradable plastics a promising solution to solve the global plastic pollution?
Meereboer et al. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites
Ali et al. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review
Rajan et al. Polyhydroxybutyrate (PHB): a standout biopolymer for environmental sustainability
ES2773919T3 (en) Chemical additives to make polymeric materials biodegradable
AU773904B2 (en) Biodegradable resin compositions
CN104781341B (en) Biodegradable polyester mixture
ES2333382T3 (en) NEW BIODEGRADABLE POLYMER COMPOSITION USEFUL FOR THE PREPARATION OF BIODEGRADABLE PLASTIC AND PROCESS FOR THE PREPARATION OF SUCH COMPOSITION.
US20160208062A1 (en) Biodegradable resin composition having a porous structure and method for surface treatment of same
WO1999042527A1 (en) Biodegradable molded plastic
Krasowska et al. Environmental degradability of polycaprolactone under natural conditions
Wang et al. Biodegradability of novel high Tg poly (isosorbide-co-1, 6-hexanediol) oxalate polyester in soil and marine environments
JP2017132967A (en) Biodegradation promoting method of poly(3-hydroxybutylate)-based resin, polyester resin composition by the method, and molded body
CN111848933A (en) Preparation method of degradable copolyester
Cakmak Biodegradable polymers—A review on properties, processing, and degradation mechanism
Pooja et al. An insight on sources and biodegradation of bioplastics: a review
Lavagnolo et al. Biodegradability of bioplastics in different aquatic environments: A systematic review
WO2022196035A1 (en) Marine biodegradation promoting additive and marine biodegradable resin composition including same
Chen et al. Environmental risk assessment of microplastics and nanoplastics generated from biodegradable plastics in marine ecosystem
Lee et al. Mimicking real-field degradation of biodegradable plastics in soil and marine environments: From product utility to end-of-life analysis
CN105985614A (en) Material for removing N and P in water and use thereof
Stoica et al. Biopolymers: global carbon footprint and climate change
WO2021201185A1 (en) Biodegradable resin composition and molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931777

Country of ref document: EP

Kind code of ref document: A1