WO2022195997A1 - Saddle-type vehicle - Google Patents

Saddle-type vehicle Download PDF

Info

Publication number
WO2022195997A1
WO2022195997A1 PCT/JP2021/046863 JP2021046863W WO2022195997A1 WO 2022195997 A1 WO2022195997 A1 WO 2022195997A1 JP 2021046863 W JP2021046863 W JP 2021046863W WO 2022195997 A1 WO2022195997 A1 WO 2022195997A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
blind spot
type
control device
straddle
Prior art date
Application number
PCT/JP2021/046863
Other languages
French (fr)
Japanese (ja)
Inventor
寛之 兼田
恭介 稲田
正樹 中河原
充史 小河原
晃 細川
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2023506756A priority Critical patent/JPWO2022195997A1/ja
Publication of WO2022195997A1 publication Critical patent/WO2022195997A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a straddle-type vehicle, and more particularly to a straddle-type vehicle capable of enhancing the safety of the own vehicle by paying attention to the presence of blind spots.
  • Patent Literature 1 discloses a vehicle control device that focuses on pedestrians, vehicles, etc. that exist in a blind spot when viewed from the own vehicle, and executes deceleration control, etc. on the own vehicle.
  • Patent Document 1 does not consider detecting whether or not the own vehicle has entered the blind spot of another vehicle traveling diagonally in front of the own vehicle, and notifying the driver or changing the position of the own vehicle. rice field.
  • An object of the present invention is to solve the above-described problems of the prior art and to provide a straddle-type vehicle that can control its own vehicle by taking into consideration the blind spots of other vehicles traveling diagonally in front of its own vehicle.
  • the present invention provides a front camera (80) for photographing the front of the vehicle, a vehicle position detection means (73) for detecting the vehicle position, an auto cruise control system (74) and a brake.
  • a straddle-type vehicle (1) having a control device (70) for controlling systems (BF, BR), at least based on the image captured by the front camera (80) and the vehicle position, the vehicle is:
  • a blind spot determination unit (71) for detecting whether or not the vehicle enters the blind spot of another vehicle traveling diagonally ahead of the own vehicle is provided, and the control device (70) detects whether the own vehicle is in the blind spot of the other vehicle during auto-cruise travel.
  • the first feature is that when it is determined that the vehicle has entered the vehicle, the auto cruise control system (74) or the brake system (BF, BR) is controlled to allow the vehicle to escape from the blind spot of the other vehicle.
  • a second feature of the control device (70) is that the vehicle exits the blind spot of the other vehicle after a predetermined time (T) has elapsed since the vehicle entered the blind spot of the other vehicle.
  • the blind spot determination unit (71) determines the vehicle type of another vehicle obliquely ahead by image recognition, and uses a blind spot information database (71a) that records blind spot information for each vehicle type to determine whether the vehicle is ahead of the other vehicle.
  • a third feature is that it is determined whether or not the vehicle is in the blind spot.
  • a fourth feature of the control device (70) is that it notifies the driver that the own vehicle has entered the blind spot of the other vehicle.
  • the fifth feature is that the judgment is made based on the
  • a front camera (80) for photographing the front of the vehicle for photographing the front of the vehicle, a vehicle position detection means (73) for detecting the vehicle position, an auto cruise control system (74) and a brake system (BF,
  • a saddle-ride type vehicle (1) having a control device (70) for controlling a rear brake (BR)
  • the vehicle is positioned at an angle based on at least the image captured by the front camera (80) and the vehicle position.
  • a blind spot determination unit (71) for detecting whether or not the vehicle is in the blind spot of another vehicle traveling ahead is provided, and the control device (70) determines that the own vehicle has entered the blind spot of the other vehicle during auto-cruising.
  • the auto-cruise control system (74) or the brake system (BF, BR) is controlled to allow the own vehicle to escape from the blind spot of the other vehicle.
  • the vehicle enters the blind spot of another vehicle traveling diagonally ahead it automatically accelerates or decelerates to get out of the blind spot, thereby enhancing safety.
  • the control device (70) allows the own vehicle to escape from the blind spot of the other vehicle after a predetermined time (T) has passed since the own vehicle entered the blind spot of the other vehicle. By starting the control after waiting for the passage of time, it is possible to give the driver a sense of security.
  • the blind spot determination unit (71) determines the vehicle type of other vehicles diagonally ahead by image recognition, and uses a blind spot information database (71a) in which blind spot information for each vehicle type is recorded. Since it is determined whether or not the own vehicle is in the blind spot of the other vehicle, it is determined whether the other vehicle traveling diagonally ahead is a two-wheeled vehicle, an ordinary automobile, a bus, a truck, or the like. By deriving different blind spots for each type from the database, it becomes possible to accurately determine whether or not the vehicle is in another vehicle's blind spot.
  • control device (70) notifies the driver that the own vehicle has entered the blind spot of the other vehicle. has entered the blind spot of another vehicle obliquely ahead.
  • the own vehicle enters the blind spot of the other vehicle, it is determined whether to accelerate and escape forward or decelerate and escape backward when the preceding vehicle is running on auto-cruise. For example, if the distance to the preceding vehicle becomes too narrow if the vehicle evacuates forward, it is possible to evacuate backward to maintain an appropriate inter-vehicle distance.
  • FIG. 1 is a right side view of a motorcycle according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of a blind spot avoidance system according to this embodiment
  • FIG. 4 is a schematic diagram showing a state in which the own vehicle is in the blind spot of another vehicle traveling diagonally ahead of the own vehicle; It is a block diagram which shows the structure of blind spot determination processing. 4 is a flowchart showing a procedure of blind spot avoidance control according to the present embodiment
  • FIG. 1 is a right side view of a motorcycle 1 according to one embodiment of the present invention.
  • the motorcycle 1 is a straddle-type vehicle that transmits the driving force of the power unit P to the rear wheels WR via the drive chain 14 .
  • a steering stem (not shown) is rotatably supported on a head pipe F1 positioned at the front end of the vehicle body frame F.
  • a bottom bridge 23 and a top bridge 24 that support the pair of left and right front forks 10 are fixed above and below the steering stem.
  • a steering handle 2 that supports a pair of left and right rearview mirrors 4 is attached to the top of the top bridge 24 .
  • a brake lever 50 as a front wheel brake operator is attached to the steering handle 2 on the right side.
  • a front wheel brake caliper BF and a front fender 11 are attached to the front fork 10 as a front wheel brake for applying a braking force to a front wheel brake disc 31 that rotates synchronously with the front wheel WF.
  • a pair of left and right main frames F2 extending obliquely rearward and downward, and an underframe F5 extending downward and supporting the lower side of the power unit P are attached to the rear portion of the head pipe F1.
  • a pivot frame F3 having a pivot 22 that pivotally supports the swing arm 15 is connected to the rear end of the main frame F2, and the rear end of the underframe F5 is connected to the lower end of the pivot frame F3.
  • a pair of left and right footrests 39 on which the driver's feet are placed are attached to the pivot frame F3.
  • the driving force of the power unit P surrounded and supported by the main frame F2 and the underframe F5 is transmitted to the rear wheels WR via the drive chain 14.
  • An underguard 12 is attached to the bottom portion of the power unit P near the front. Combustion gas from the power unit P is sent to the muffler 16 at the rear of the vehicle body through an exhaust pipe 37 passing through the inside of the underguard 12 .
  • a rear wheel WR is rotatably supported at the rear end of the swing arm 15 supported by the pivot 22 .
  • the swing arm 15 supports a rear wheel brake caliper BR as a rear wheel brake that applies a braking force to a rear wheel brake disc 33 rotating synchronously with the rear wheel WR.
  • a brake pedal 50 as a rear wheel brake operator operated by the driver's right foot is pivotally supported on the pivot frame F3 on the right side in the vehicle width direction.
  • a front cowl 7 that supports a headlight 9, a windbreak screen 6, and a pair of left and right front flasher lamps 8 is arranged in front of the head pipe F1.
  • a fuel tank 3 is arranged behind the front cowl 7 and above the main frame F2.
  • a rear frame F4 that supports a front seat 21 on which a driver sits and a rear seat 20 on which a passenger sits is fixed to the rear portion of the pivot frame F3.
  • the left and right sides of the rear frame F4 in the vehicle width direction are covered with a rear cowl 19, and a rear fender 38 that supports a tail light device 18 and a pair of left and right rear flasher lamps 17 is attached to the rear end of the rear cowl 19.
  • a control device 70 that controls the fuel injection device, the ignition device, the brake system, etc. is arranged above the power unit P.
  • a side brake actuator 62 is provided.
  • a front wheel brake fluid pressure sensor 53 for detecting the brake fluid pressure of the front wheel brake BF and a rear wheel brake fluid pressure sensor 63 for detecting the brake fluid pressure of the rear wheel brake BR are arranged near the actuators 52 and 62, respectively. .
  • a front wheel brake operation force sensor 51 for detecting an operation force input to the brake lever 50 is arranged near the brake lever 50 , and an operation force input to the brake pedal 60 is located near the brake pedal 60 .
  • a rear wheel brake operating force sensor 61 for detecting is provided. Note that the front wheel brake actuator 52 and the rear wheel brake actuator 62 may be integrated with the control device 70 .
  • a seating sensor 76 is provided inside the front seat 21 to detect the seating state of the driver.
  • a road surface sensor 77 is arranged inside the under guard 12 to detect whether or not the road surface is wet.
  • a front camera 80 and a front radar 81 used for automatic control of the auto cruise control system and brake system are arranged.
  • the actuators 52 and 62 normally, the actuators 52 and 62 generate brake fluid pressure corresponding to the operating force of the brake operators 50 and 60, and the obstacle detected by the front camera 80 and the front radar 81 is detected.
  • the control device 70 performs the optimum brake operation even if the brake operators 50 and 60 are not operated. It is configured to automatically generate brake fluid pressure.
  • the front/rear distribution such as front 7:rear 3 or front 6:rear 4 is automatically set according to the vehicle speed, vehicle attitude, road surface conditions, and the like.
  • engine braking can be performed by turning off the throttle or engine braking by downshifting, or the front and rear brake systems can be used in combination.
  • FIG. 2 is a block diagram showing the configuration of the blind spot avoidance system according to this embodiment.
  • FIG. 3 is a schematic diagram showing a state in which the own vehicle A is in the blind spot C of another vehicle B traveling diagonally in front of the own vehicle A. As shown in FIG. This state often occurs while driving on a road with two or more lanes in each direction, such as a highway.
  • the control device 70 includes a blind spot determination unit 71 and a blind spot avoidance control unit 72.
  • Blind spot determination unit 71 receives information from front camera 80 and front radar 81, and information from navigation system 73 that functions as vehicle position detection means using GPS (Global Positioning System).
  • Blind spot avoidance control unit 72 controls auto cruise control system 74 and notification means 75 .
  • Auto cruise control system 74 controls drive source P as a power unit and brake systems BF, BR.
  • the blind spot determination unit 71 includes a blind spot information database 71a that stores blind spot information for each vehicle type.
  • Blind spot determination unit 71 identifies the vehicle type of another vehicle traveling diagonally in front of the own vehicle based on the image captured by front camera 80 .
  • Other vehicles may be specified not only by vehicle type such as a motorcycle, ordinary car, bus, or truck, but also by individual vehicle type or model.
  • the front radar 81 is used to measure the distance to another vehicle traveling diagonally ahead of the own vehicle, but the distance can also be measured using only the image of the front camera 80 .
  • the vehicle type and blind spot information of other vehicles traveling diagonally ahead of the own vehicle can also be obtained from vehicle-to-vehicle communication or the Internet.
  • FIG. 4 is a block diagram showing the configuration of blind spot determination processing.
  • an imaging unit 100 configured by a front camera 80 captures an image of another vehicle traveling diagonally in front of the own vehicle
  • a feature amount extraction unit 101 extracts the feature amount of the outline of the other vehicle included in the image.
  • pattern matching 102 is executed with image data 103 containing images of vehicles, and vehicle types (types and models) such as two-wheeled vehicles, ordinary automobiles, buses, and trucks are discriminated.
  • the distance identification unit 105 identifies the distance to other vehicles traveling diagonally in front of the own vehicle based on the image captured by the imaging unit 100 . Also, the navigation system 73 can identify the position of the vehicle and recognize the positional relationship between the position of the other vehicle and the position of the vehicle.
  • the blind spot determination unit 71 uses the blind spot information database 71a to acquire blind spot information of the specified other vehicle, and determines whether or not the vehicle is in the blind spot of another vehicle traveling diagonally ahead. Determination of whether or not the own vehicle has entered the blind spot of another vehicle is made, for example, when the own vehicle has entered even a part of the blind spot of another vehicle in a plan view, or when the whole of the own vehicle has entered the blind spot of another vehicle. etc., various settings are possible.
  • FIG. 5 is a flowchart showing the procedure of blind spot avoidance control according to this embodiment.
  • the front camera 80 and the front radar 81 detect another vehicle obliquely ahead of the own vehicle.
  • the vehicle type vehicle type and model
  • the blind spot range is derived from the blind spot information database 71a.
  • navigation system 73, front camera 80 and front radar 81 detect the positions of the vehicle and other vehicles.
  • step S5 it is determined whether or not the vehicle is within the blind spot. Determination of whether or not it is within the blind spot range can be arbitrarily set, for example, whether the appearance of the own vehicle is in the blind spot of another vehicle in plan view, or whether it is partially in the blind spot of another vehicle. . If an affirmative determination is made in step S5, the process proceeds to step S6, where it is determined whether or not a certain period of time (for example, 3 seconds) has passed. If a negative determination is made in step S5, the process returns to the determination of step S5.
  • a certain period of time for example, 3 seconds
  • step S6 determines whether or not the vehicle is in auto-cruise mode. If a negative determination is made in step S6, the process returns to the determination in step S6.
  • step S7 If an affirmative determination is made in step S7, the process proceeds to step S8, in which an occupant (driver) is notified that the vehicle is in the blind spot of another vehicle using the notification means 75 consisting of a display device, a speaker, a vibrator, and the like. At the same time, control is executed to escape from the blind spot range by acceleration or deceleration, and the series of control ends.
  • step S7 the process advances to step S9 to notify the passenger and terminate the series of controls. In addition to notifying the occupant immediately when entering the blind spot, the occupant is notified after a first predetermined time has passed since entering the blind spot, and blind spot escape control is executed when a second predetermined time has passed. , various modifications are possible.
  • the own vehicle is in the blind spot of another vehicle traveling diagonally ahead of the own vehicle.
  • the control device 70 has a blind spot determination unit 71 for detecting whether or not the vehicle has entered the blind spot of another vehicle. , BR to move the vehicle out of the blind spot of the other vehicle. Therefore, if the vehicle enters the blind spot of another vehicle traveling diagonally ahead during auto-cruise driving, the vehicle automatically accelerates or decelerates to avoid the blind spot. can be escaped and safety can be improved.
  • control device 70 allows the own vehicle to escape from the blind spot of the other vehicle when the predetermined time T elapses after the own vehicle enters the blind spot of the other vehicle, so the control is started after waiting for the elapse of the predetermined time. By doing so, it becomes possible to give the driver a sense of security.
  • the blind spot determination unit 71 determines the vehicle type of another vehicle obliquely ahead by image recognition, and uses a blind spot information database 71a that records blind spot information for each vehicle type to determine whether the vehicle is in the blind spot of the other vehicle. Therefore, it determines whether the other vehicle running diagonally ahead is a motorcycle, a normal car, a bus, a truck, etc., and derives a different blind spot for each vehicle type from the database. , it is possible to accurately determine whether or not the vehicle is in the blind spot of another vehicle.
  • control device 70 since the control device 70 notifies the driver that the own vehicle has entered the blind spot of the other vehicle, it is possible for the own vehicle to enter the blind spot of the other vehicle obliquely ahead before executing the acceleration or deceleration of the own vehicle. It is possible to make the driver recognize that the vehicle has entered.
  • the configuration of the motorcycle, the configuration of the brake system, the configuration of the front camera and front radar, the configuration of the blind spot information database, etc. are not limited to the above embodiments, and various modifications are possible.
  • the blind spot avoidance system according to the present invention can be applied not only to motorcycles but also to straddle-type three-wheeled vehicles and four-wheeled vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

Provided is a saddle-type vehicle that is capable of performing self-control in consideration of blind spots of another vehicle traveling diagonally in front of the own vehicle. This saddle-type vehicle (1) comprises: a forward camera (80) which images forward of the vehicle; an own vehicle position detection means (73) which detects the position of the own vehicle; and a control device (70) which controls an autocruise control system (74) and a brake system (BF, BR). The saddle-type vehicle is provided with a blind spot determination unit (71) which, on the basis of at least an image captured by the forward camera (80) and the position of the own vehicle, detects whether or not the own vehicle has moved into a blind spot of another vehicle traveling diagonally in front of the own vehicle. When it is determined that the own vehicle has moved into a blind spot of the other vehicle while traveling in autocruise, the control device (70) performs control on the autocruise control system (74) or the brake system (BF, BR) so as to cause the own vehicle to exit the blind spot of the other vehicle.

Description

鞍乗型車両straddle-type vehicle
 本発明は、鞍乗型車両に係り、特に、死角の存在に注目して自車の安全性を高めることができる鞍乗型車両に関する。 The present invention relates to a straddle-type vehicle, and more particularly to a straddle-type vehicle capable of enhancing the safety of the own vehicle by paying attention to the presence of blind spots.
 従来から、車両を走行させる上で、死角の存在に注目して自車の安全性を高めるための技術が知られている。 Conventionally, there have been known techniques for improving the safety of a vehicle by paying attention to the presence of blind spots when driving a vehicle.
 特許文献1には、自車から見て死角となる場所に存在する歩行者や車両等に注視して、自車に減速制御等を実行する車両制御装置が開示されている。 Patent Literature 1 discloses a vehicle control device that focuses on pedestrians, vehicles, etc. that exist in a blind spot when viewed from the own vehicle, and executes deceleration control, etc. on the own vehicle.
国際公開第2016/104198号WO2016/104198
 しかし、特許文献1では、自車の斜め前方を走行する他車の死角に自車が入ったか否かを検知し、運転者に報知したり自車の位置を変更することは検討されていなかった。 However, Patent Document 1 does not consider detecting whether or not the own vehicle has entered the blind spot of another vehicle traveling diagonally in front of the own vehicle, and notifying the driver or changing the position of the own vehicle. rice field.
 本発明の目的は、上記従来技術の課題を解決し、自車の斜め前方を走行する他車の死角を考慮して自車を制御することができる鞍乗型車両を提供することにある。 An object of the present invention is to solve the above-described problems of the prior art and to provide a straddle-type vehicle that can control its own vehicle by taking into consideration the blind spots of other vehicles traveling diagonally in front of its own vehicle.
 前記目的を達成するために、本発明は、車両の前方を撮影する前方カメラ(80)と、自車位置を検知する自車位置検知手段(73)と、オートクルーズコントロールシステム(74)およびブレーキシステム(BF,BR)を制御する制御装置(70)とを有する鞍乗型車両(1)において、少なくとも前記前方カメラ(80)が撮影した映像と前記自車位置とに基づいて、自車が自車の斜め前方を走行する他車の死角に入ったか否かを検知する死角判断部(71)を備え、前記制御装置(70)は、オートクルーズ走行中に自車が前記他車の死角に入ったと判断されると、前記オートクルーズコントロールシステム(74)または前記ブレーキシステム(BF,BR)を制御して、前記他車の死角から自車を脱出させる点に第1の特徴がある。 In order to achieve the above object, the present invention provides a front camera (80) for photographing the front of the vehicle, a vehicle position detection means (73) for detecting the vehicle position, an auto cruise control system (74) and a brake. In a straddle-type vehicle (1) having a control device (70) for controlling systems (BF, BR), at least based on the image captured by the front camera (80) and the vehicle position, the vehicle is: A blind spot determination unit (71) for detecting whether or not the vehicle enters the blind spot of another vehicle traveling diagonally ahead of the own vehicle is provided, and the control device (70) detects whether the own vehicle is in the blind spot of the other vehicle during auto-cruise travel. The first feature is that when it is determined that the vehicle has entered the vehicle, the auto cruise control system (74) or the brake system (BF, BR) is controlled to allow the vehicle to escape from the blind spot of the other vehicle.
 また、前記制御装置(70)は、自車が前記他車の死角に入って所定時間(T)が経過すると、前記他車の死角から自車を脱出させる点に第2の特徴がある。 A second feature of the control device (70) is that the vehicle exits the blind spot of the other vehicle after a predetermined time (T) has elapsed since the vehicle entered the blind spot of the other vehicle.
 また、前記死角判断部(71)は、画像認識によって斜め前方の他車の車両種別を判断し、車両種別毎の死角情報を記録した死角情報データベース(71a)を用いて、自車が前記他車の死角に入ったか否かを判断する点に第3の特徴がある。 In addition, the blind spot determination unit (71) determines the vehicle type of another vehicle obliquely ahead by image recognition, and uses a blind spot information database (71a) that records blind spot information for each vehicle type to determine whether the vehicle is ahead of the other vehicle. A third feature is that it is determined whether or not the vehicle is in the blind spot.
 また、前記制御装置(70)は、自車が前記他車の死角に入ったことを運転者に報知する点に第4の特徴がある。 A fourth feature of the control device (70) is that it notifies the driver that the own vehicle has entered the blind spot of the other vehicle.
 さらに、自車が前記他車の死角に入った際に、加速して前方に脱出するか、または、減速して後方に脱出するかを、オートクルーズ走行時の先行車との間隔設定に応じて判断する点に第5の特徴がある。 Furthermore, when the own vehicle enters the blind spot of the other vehicle, it is determined whether to accelerate and escape forward or decelerate and escape backward according to the setting of the distance from the preceding vehicle during auto-cruise travel. The fifth feature is that the judgment is made based on the
 第1の特徴によれば、車両の前方を撮影する前方カメラ(80)と、自車位置を検知する自車位置検知手段(73)と、オートクルーズコントロールシステム(74)およびブレーキシステム(BF,BR)を制御する制御装置(70)とを有する鞍乗型車両(1)において、少なくとも前記前方カメラ(80)が撮影した映像と前記自車位置とに基づいて、自車が自車の斜め前方を走行する他車の死角に入ったか否かを検知する死角判断部(71)を備え、前記制御装置(70)は、オートクルーズ走行中に自車が前記他車の死角に入ったと判断されると、前記オートクルーズコントロールシステム(74)または前記ブレーキシステム(BF,BR)を制御して、前記他車の死角から自車を脱出させるので、オートクルーズ走行中に自車が自車の斜め前方を走行する他車の死角に入った場合に、加速または減速を自動的に行って死角を脱出し、安全性を高めることが可能となる。 According to the first feature, a front camera (80) for photographing the front of the vehicle, a vehicle position detection means (73) for detecting the vehicle position, an auto cruise control system (74) and a brake system (BF, In a saddle-ride type vehicle (1) having a control device (70) for controlling a rear brake (BR), the vehicle is positioned at an angle based on at least the image captured by the front camera (80) and the vehicle position. A blind spot determination unit (71) for detecting whether or not the vehicle is in the blind spot of another vehicle traveling ahead is provided, and the control device (70) determines that the own vehicle has entered the blind spot of the other vehicle during auto-cruising. Then, the auto-cruise control system (74) or the brake system (BF, BR) is controlled to allow the own vehicle to escape from the blind spot of the other vehicle. When the vehicle enters the blind spot of another vehicle traveling diagonally ahead, it automatically accelerates or decelerates to get out of the blind spot, thereby enhancing safety.
 第2の特徴によれば、前記制御装置(70)は、自車が前記他車の死角に入って所定時間(T)が経過すると、前記他車の死角から自車を脱出させるので、所定時間が経過するのを待ってから制御を開始することで、運転者に安心感を与えることが可能となる。 According to the second feature, the control device (70) allows the own vehicle to escape from the blind spot of the other vehicle after a predetermined time (T) has passed since the own vehicle entered the blind spot of the other vehicle. By starting the control after waiting for the passage of time, it is possible to give the driver a sense of security.
 第3の特徴によれば、前記死角判断部(71)は、画像認識によって斜め前方の他車の車両種別を判断し、車両種別毎の死角情報を記録した死角情報データベース(71a)を用いて、自車が前記他車の死角に入ったか否かを判断するので、斜め前方を走行する他車が、二輪車、普通自動車、バス、トラック等の車両種別のいずれであるかを判断し、車両種別毎に異なる死角をデータベースから導くことにより、自車が他車の死角に入ったか否かを正確に判断することが可能となる。 According to the third feature, the blind spot determination unit (71) determines the vehicle type of other vehicles diagonally ahead by image recognition, and uses a blind spot information database (71a) in which blind spot information for each vehicle type is recorded. Since it is determined whether or not the own vehicle is in the blind spot of the other vehicle, it is determined whether the other vehicle traveling diagonally ahead is a two-wheeled vehicle, an ordinary automobile, a bus, a truck, or the like. By deriving different blind spots for each type from the database, it becomes possible to accurately determine whether or not the vehicle is in another vehicle's blind spot.
 第4の特徴によれば、前記制御装置(70)は、自車が前記他車の死角に入ったことを運転者に報知するので、自車の加速または減速を実行する前に、自車が斜め前方の他車の死角に入ったことを運転者に認識させることが可能となる。 According to the fourth feature, the control device (70) notifies the driver that the own vehicle has entered the blind spot of the other vehicle. has entered the blind spot of another vehicle obliquely ahead.
 第5の特徴によれば、自車が前記他車の死角に入った際に、加速して前方に脱出するか、または、減速して後方に脱出するかを、オートクルーズ走行時の先行車との間隔設定に応じて判断するので、例えば、前方に脱出すると先行車との間隔が詰まり過ぎてしまう場合は後方に脱出するようにして、適度な車間距離を保つことが可能となる。 According to the fifth feature, when the own vehicle enters the blind spot of the other vehicle, it is determined whether to accelerate and escape forward or decelerate and escape backward when the preceding vehicle is running on auto-cruise. For example, if the distance to the preceding vehicle becomes too narrow if the vehicle evacuates forward, it is possible to evacuate backward to maintain an appropriate inter-vehicle distance.
本発明の一実施形態に係る自動二輪車の右側面図である。1 is a right side view of a motorcycle according to an embodiment of the present invention; FIG. 本実施形態に係る死角回避システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a blind spot avoidance system according to this embodiment; FIG. 自車が自車の斜め前方を走行する他車の死角に入った状態を示す模式図である。FIG. 4 is a schematic diagram showing a state in which the own vehicle is in the blind spot of another vehicle traveling diagonally ahead of the own vehicle; 死角判断処理の構成を示すブロック図である。It is a block diagram which shows the structure of blind spot determination processing. 本実施形態に係る死角回避制御の手順を示すフローチャートである。4 is a flowchart showing a procedure of blind spot avoidance control according to the present embodiment;
 以下、図面を参照して本発明の好ましい実施の形態について詳細に説明する。図1は、本発明の一実施形態に係る自動二輪車1の右側面図である。自動二輪車1は、パワーユニットPの駆動力をドライブチェーン14を介して後輪WRに伝達する鞍乗型車両である。車体フレームFの前端に位置するヘッドパイプF1には、不図示のステアリングステムが揺動自在に軸支されている。ステアリングステムの上下には、左右一対のフロントフォーク10を支持するボトムブリッジ23およびトップブリッジ24が固定されている。 Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a right side view of a motorcycle 1 according to one embodiment of the present invention. The motorcycle 1 is a straddle-type vehicle that transmits the driving force of the power unit P to the rear wheels WR via the drive chain 14 . A steering stem (not shown) is rotatably supported on a head pipe F1 positioned at the front end of the vehicle body frame F. As shown in FIG. A bottom bridge 23 and a top bridge 24 that support the pair of left and right front forks 10 are fixed above and below the steering stem.
 トップブリッジ24の上部には、左右一対のバックミラー4を支持する操向ハンドル2が取り付けられている。右側の操向ハンドル2には、前輪ブレーキ操作子としてのブレーキレバー50が取り付けられている。フロントフォーク10には、前輪WFと同期回転する前輪ブレーキディスク31に制動力を与える前輪ブレーキとしての前輪ブレーキキャリパBFと、フロントフェンダ11とが取り付けられている。 A steering handle 2 that supports a pair of left and right rearview mirrors 4 is attached to the top of the top bridge 24 . A brake lever 50 as a front wheel brake operator is attached to the steering handle 2 on the right side. A front wheel brake caliper BF and a front fender 11 are attached to the front fork 10 as a front wheel brake for applying a braking force to a front wheel brake disc 31 that rotates synchronously with the front wheel WF.
 ヘッドパイプF1の後部には、斜め後方下方に延びる左右一対のメインフレームF2と、下方に延びてパワーユニットPの下側を支持するアンダフレームF5とが取り付けられている。メインフレームF2の後端には、スイングアーム15を揺動自在に軸支するピボット22を有するピボットフレームF3が連結されており、ピボットフレームF3の下端部には、アンダフレームF5の後端部が連結されている。ピボットフレームF3には、運転者が足を乗せる足乗せステップ39が左右一対で取り付けられている。 A pair of left and right main frames F2 extending obliquely rearward and downward, and an underframe F5 extending downward and supporting the lower side of the power unit P are attached to the rear portion of the head pipe F1. A pivot frame F3 having a pivot 22 that pivotally supports the swing arm 15 is connected to the rear end of the main frame F2, and the rear end of the underframe F5 is connected to the lower end of the pivot frame F3. Concatenated. A pair of left and right footrests 39 on which the driver's feet are placed are attached to the pivot frame F3.
 メインフレームF2およびアンダフレームF5で囲まれて支持されるパワーユニットPの駆動力は、ドライブチェーン14を介して後輪WRに伝達される。パワーユニットPの前方寄りの底部には、アンダガード12が取り付けられている。パワーユニットPの燃焼ガスは、アンダガード12の内側を通る排気管37を介して車体後方のマフラ16に送られる。 The driving force of the power unit P surrounded and supported by the main frame F2 and the underframe F5 is transmitted to the rear wheels WR via the drive chain 14. An underguard 12 is attached to the bottom portion of the power unit P near the front. Combustion gas from the power unit P is sent to the muffler 16 at the rear of the vehicle body through an exhaust pipe 37 passing through the inside of the underguard 12 .
 ピボット22で軸支されるスイングアーム15の後端部には、後輪WRが回転自在に軸支されている。スイングアーム15には、後輪WRと同期回転する後輪ブレーキディスク33に制動力を与える後輪ブレーキとしての後輪ブレーキキャリパBRが支持されている。車幅方向右側のピボットフレームF3には、運転者の右足で操作する後輪ブレーキ操作子 としてのブレーキペダル50が揺動自在に軸支されている。 A rear wheel WR is rotatably supported at the rear end of the swing arm 15 supported by the pivot 22 . The swing arm 15 supports a rear wheel brake caliper BR as a rear wheel brake that applies a braking force to a rear wheel brake disc 33 rotating synchronously with the rear wheel WR. A brake pedal 50 as a rear wheel brake operator operated by the driver's right foot is pivotally supported on the pivot frame F3 on the right side in the vehicle width direction.
 ヘッドパイプF1の車体前方は、ヘッドライト9、防風スクリーン6および左右一対の前側フラッシャランプ8を支持するフロントカウル7が配設されている。フロントカウル7の車体後方かつメインフレームF2の上部には、燃料タンク3が配設されている。ピボットフレームF3の後部には、運転者が着座する前側シート21およびパッセンジャーが着座する後側シート20を支持するリヤフレームF4が固定されている。リヤフレームF4の車幅方向左右はリヤカウル19で覆われており、リヤカウル19の後端部には、尾灯装置18および左右一対の後側フラッシャランプ17を支持するリヤフェンダ38が取り付けられている。 A front cowl 7 that supports a headlight 9, a windbreak screen 6, and a pair of left and right front flasher lamps 8 is arranged in front of the head pipe F1. A fuel tank 3 is arranged behind the front cowl 7 and above the main frame F2. A rear frame F4 that supports a front seat 21 on which a driver sits and a rear seat 20 on which a passenger sits is fixed to the rear portion of the pivot frame F3. The left and right sides of the rear frame F4 in the vehicle width direction are covered with a rear cowl 19, and a rear fender 38 that supports a tail light device 18 and a pair of left and right rear flasher lamps 17 is attached to the rear end of the rear cowl 19.
 パワーユニットPの上部には、燃料噴射装置や点火装置、ブレーキシステム等の制御を行う制御装置70が配設されている。車体フレームFの上部には、前輪ブレーキBFのブレーキ液圧を生成する前輪側のブレーキアクチュエータ(以下、単にアクチュエータと示すこともある)52と、後輪ブレーキBRのブレーキ液圧を生成する後輪側のブレーキアクチュエータ62とが配設されている。前輪ブレーキBFのブレーキ液圧を検知する前輪ブレーキ液圧センサ53および後輪ブレーキBRのブレーキ液圧を検知する後輪ブレーキ液圧センサ63は、アクチュエータ52,62の近傍にそれぞれ配設されている。ブレーキレバー50の近傍には、ブレーキレバー50に入力される操作力を検出する前輪ブレーキ操作力センサ51が配設されており、ブレーキペダル60の近傍には、ブレーキペダル60に入力される操作力を検出する後輪ブレーキ操作力センサ61が配設されている。なお、前輪側ブレーキアクチュエータ52および後輪側ブレーキアクチュエータ62は制御装置70と一体で構成されていてもよい。 A control device 70 that controls the fuel injection device, the ignition device, the brake system, etc. is arranged above the power unit P. On the upper part of the vehicle body frame F, there are a front wheel side brake actuator (hereinafter also simply referred to as an actuator) 52 that generates brake fluid pressure for the front wheel brake BF, and a rear wheel side brake actuator that generates brake fluid pressure for the rear wheel brake BR. A side brake actuator 62 is provided. A front wheel brake fluid pressure sensor 53 for detecting the brake fluid pressure of the front wheel brake BF and a rear wheel brake fluid pressure sensor 63 for detecting the brake fluid pressure of the rear wheel brake BR are arranged near the actuators 52 and 62, respectively. . A front wheel brake operation force sensor 51 for detecting an operation force input to the brake lever 50 is arranged near the brake lever 50 , and an operation force input to the brake pedal 60 is located near the brake pedal 60 . A rear wheel brake operating force sensor 61 for detecting is provided. Note that the front wheel brake actuator 52 and the rear wheel brake actuator 62 may be integrated with the control device 70 .
 前側シート21の内部には、運転者の着座状態を検知する着座センサ76が配設されている。また、アンダガード12の内側には、路面が濡れているか否かを検知する路面センサ77が配設されている。 A seating sensor 76 is provided inside the front seat 21 to detect the seating state of the driver. A road surface sensor 77 is arranged inside the under guard 12 to detect whether or not the road surface is wet.
 防風スクリーン6の後方には、オートクルーズコントロールシステムやブレーキシステムの自動制御に用いられる前方カメラ80および前方レーダ81が配設されている。本実施形態に係るブレーキシステムは、通常時は、ブレーキ操作子50,60の操作力に対応したブレーキ液圧をアクチュエータ52,62によって生成すると共に、前方カメラ80および前方レーダ81によって検知される障害物の接近等の自動制御条件が満たされたり、オートクルーズコントロール中の先行車の減速等による減速条件が満たされると、ブレーキ操作子50,60の操作が行われなくとも制御装置70によって最適なブレーキ液圧を自動的に生成するように構成されている。ブレーキシステムの自動制御時は、前7:後3や前6:後4等の前後配分も、車速や車体姿勢、路面状況等に応じて自動的に設定される。なお、オートクルーズ走行中の減速は、減速の程度に応じてスロットルオフによるエンジンブレーキやシフトダウンによるエンジンブレーキで行うほか、前後ブレーキシステムを併用して行うこともできる。 Behind the windbreak screen 6, a front camera 80 and a front radar 81 used for automatic control of the auto cruise control system and brake system are arranged. In the brake system according to the present embodiment, normally, the actuators 52 and 62 generate brake fluid pressure corresponding to the operating force of the brake operators 50 and 60, and the obstacle detected by the front camera 80 and the front radar 81 is detected. When an automatic control condition such as an approaching object is satisfied, or a deceleration condition such as deceleration of the preceding vehicle during auto cruise control is satisfied, the control device 70 performs the optimum brake operation even if the brake operators 50 and 60 are not operated. It is configured to automatically generate brake fluid pressure. During automatic control of the brake system, the front/rear distribution such as front 7:rear 3 or front 6:rear 4 is automatically set according to the vehicle speed, vehicle attitude, road surface conditions, and the like. Depending on the degree of deceleration during auto-cruise driving, engine braking can be performed by turning off the throttle or engine braking by downshifting, or the front and rear brake systems can be used in combination.
 図2は、本実施形態に係る死角回避システムの構成を示すブロック図である。また、図3は自車Aが自車Aの斜め前方を走行する他車Bの死角Cに入った状態を示す模式図である。この状態は、高速道路等の片側2車線以上の道路を走行中にしばしば発生する。 FIG. 2 is a block diagram showing the configuration of the blind spot avoidance system according to this embodiment. FIG. 3 is a schematic diagram showing a state in which the own vehicle A is in the blind spot C of another vehicle B traveling diagonally in front of the own vehicle A. As shown in FIG. This state often occurs while driving on a road with two or more lanes in each direction, such as a highway.
 制御装置70には、死角判断部71および死角回避制御部72が含まれる。死角判断部71には、前方カメラ80および前方レーダ81の情報と、GPS(グローバル・ポジショニング・システム)を用いた自車位置検知手段として機能するナビゲーションシステム73からの情報とが入力される。死角回避制御部72は、オートクルーズコントロールシステム74および報知手段75を制御する。オートクルーズコントロールシステム74は、パワーユニットとしての駆動源PおよびブレーキシステムBF,BRを制御する。 The control device 70 includes a blind spot determination unit 71 and a blind spot avoidance control unit 72. Blind spot determination unit 71 receives information from front camera 80 and front radar 81, and information from navigation system 73 that functions as vehicle position detection means using GPS (Global Positioning System). Blind spot avoidance control unit 72 controls auto cruise control system 74 and notification means 75 . Auto cruise control system 74 controls drive source P as a power unit and brake systems BF, BR.
 死角判断部71には、車両種別毎の死角情報を収納する死角情報データベース71aが含まれる。死角判断部71は、前方カメラ80によって撮影した映像に基づいて自車の斜め前方を走行する他車の車両種別を特定する。他車の特定は、二輪車、普通自動車、バス、トラック等の車両種別を特定するだけでなく、個々の車種や型式を特定するようにしてもよい。また、本実施形態において、前方レーダ81は、自車の斜め前方を走行する他車との距離を計測するために用いられるが、前方カメラ80の映像のみで距離を計測することもできる。なお、自車の斜め前方を走行する他車の車両種別や死角情報は、車車間通信やインターネットから取得することもできる。 The blind spot determination unit 71 includes a blind spot information database 71a that stores blind spot information for each vehicle type. Blind spot determination unit 71 identifies the vehicle type of another vehicle traveling diagonally in front of the own vehicle based on the image captured by front camera 80 . Other vehicles may be specified not only by vehicle type such as a motorcycle, ordinary car, bus, or truck, but also by individual vehicle type or model. Further, in this embodiment, the front radar 81 is used to measure the distance to another vehicle traveling diagonally ahead of the own vehicle, but the distance can also be measured using only the image of the front camera 80 . The vehicle type and blind spot information of other vehicles traveling diagonally ahead of the own vehicle can also be obtained from vehicle-to-vehicle communication or the Internet.
 図4は、死角判断処理の構成を示すブロック図である。前方カメラ80によって構成される撮像部100により、自車の斜め前方を走行する他車が撮影されると、特徴量抽出部101によって映像に含まれる他車の輪郭の特徴量が抽出される。次に、車両の映像が収納される画像データ103とのパターンマッチング102が実行され、二輪車、普通自動車、バス、トラック等の車両種別(車種や型式)が判別される。 FIG. 4 is a block diagram showing the configuration of blind spot determination processing. When an imaging unit 100 configured by a front camera 80 captures an image of another vehicle traveling diagonally in front of the own vehicle, a feature amount extraction unit 101 extracts the feature amount of the outline of the other vehicle included in the image. Next, pattern matching 102 is executed with image data 103 containing images of vehicles, and vehicle types (types and models) such as two-wheeled vehicles, ordinary automobiles, buses, and trucks are discriminated.
 距離識別部105は、撮像部100で撮影された映像に基づいて、自車の斜め前方を走行する他車との距離を識別する。また、ナビゲーションシステム73によって自車位置を特定し、他車位置と自車位置との位置関係を認識することができる。 The distance identification unit 105 identifies the distance to other vehicles traveling diagonally in front of the own vehicle based on the image captured by the imaging unit 100 . Also, the navigation system 73 can identify the position of the vehicle and recognize the positional relationship between the position of the other vehicle and the position of the vehicle.
 死角判断部71は、死角情報データベース71aを用いて、特定された他車の死角情報を獲得し、自車が斜め前方を走行する他車の死角に入ったか否かを判定する。自車が他車死角に入ったか否かの判定は、例えば、平面視において、自車が他車の死角に一部でも侵入した場合や、自車のすべてが他車の死角に入った場合等、種々の設定が可能である。 The blind spot determination unit 71 uses the blind spot information database 71a to acquire blind spot information of the specified other vehicle, and determines whether or not the vehicle is in the blind spot of another vehicle traveling diagonally ahead. Determination of whether or not the own vehicle has entered the blind spot of another vehicle is made, for example, when the own vehicle has entered even a part of the blind spot of another vehicle in a plan view, or when the whole of the own vehicle has entered the blind spot of another vehicle. etc., various settings are possible.
 図5は、本実施形態に係る死角回避制御の手順を示すフローチャートである。ステップS1では、前方カメラ80および前方レーダ81により、自車の斜め前方の他車を検知する。ステップS2では、前方カメラ80で撮影した映像に基づいて車両タイプ(車両種別や車両型式)を特定する。ステップS3では、死角情報データベース71aより死角範囲を導出する。ステップS4では、ナビゲーションシステム73および前方カメラ80および前方レーダ81によって、自車および他車の位置を検知する。 FIG. 5 is a flowchart showing the procedure of blind spot avoidance control according to this embodiment. In step S1, the front camera 80 and the front radar 81 detect another vehicle obliquely ahead of the own vehicle. In step S<b>2 , the vehicle type (vehicle type and model) is specified based on the image captured by the front camera 80 . In step S3, the blind spot range is derived from the blind spot information database 71a. In step S4, navigation system 73, front camera 80 and front radar 81 detect the positions of the vehicle and other vehicles.
 続くステップS5では、死角範囲内であるか否かが判定される。死角範囲内であるか否かの判定は、例えば、平面視において自車の姿が他車の死角にすべて入ったか、または、一部入ったか等の設定を任意に設定することが可能である。ステップS5で肯定判定されると、ステップS6に進んで一定時間(例えば、3秒)が経過したか否かが判定される。ステップS5で否定判定されると、ステップS5の判定に戻る。 In the subsequent step S5, it is determined whether or not the vehicle is within the blind spot. Determination of whether or not it is within the blind spot range can be arbitrarily set, for example, whether the appearance of the own vehicle is in the blind spot of another vehicle in plan view, or whether it is partially in the blind spot of another vehicle. . If an affirmative determination is made in step S5, the process proceeds to step S6, where it is determined whether or not a certain period of time (for example, 3 seconds) has passed. If a negative determination is made in step S5, the process returns to the determination of step S5.
 ステップS6で肯定判定される、すなわち、他車の死角に入った状態で一定時間が経過した場合は、ステップS7に進んでオートクルーズ走行中であるか否かが判定される。ステップS6で否定判定されるとステップS6の判定に戻る。 If the determination in step S6 is affirmative, that is, if the vehicle is in the blind spot of another vehicle and a certain amount of time has passed, the process proceeds to step S7 to determine whether or not the vehicle is in auto-cruise mode. If a negative determination is made in step S6, the process returns to the determination in step S6.
 ステップS7で肯定判定されると、ステップS8に進んで、表示装置やスピーカ、バイブレータ等からなる報知手段75を用いて自車が他車の死角に入っていることを乗員(運転者)に報知すると共に、加速または減速により死角範囲を脱出する制御が実行され、一連の制御を終了する。一方、ステップS7で否定判定されると、ステップS9に進んで乗員に報知して一連の制御を終了する。なお、死角に入った場合に即座に乗員に報知するほか、死角に入ってから第1所定時間経過後に乗員に報知すると共に第2所定時間が経過した場合に死角脱出制御を実行したりする等、種々の変形が可能である。 If an affirmative determination is made in step S7, the process proceeds to step S8, in which an occupant (driver) is notified that the vehicle is in the blind spot of another vehicle using the notification means 75 consisting of a display device, a speaker, a vibrator, and the like. At the same time, control is executed to escape from the blind spot range by acceleration or deceleration, and the series of control ends. On the other hand, if a negative determination is made in step S7, the process advances to step S9 to notify the passenger and terminate the series of controls. In addition to notifying the occupant immediately when entering the blind spot, the occupant is notified after a first predetermined time has passed since entering the blind spot, and blind spot escape control is executed when a second predetermined time has passed. , various modifications are possible.
 上記したように、本発明に係る死角回避システムによれば、少なくとも前方カメラ80が撮影した映像と前記自車位置とに基づいて、自車が自車の斜め前方を走行する他車の死角に入ったか否かを検知する死角判断部71を備え、制御装置70は、オートクルーズ走行中に自車が前記他車の死角に入ったと判断されると、オートクルーズコントロールシステム74または前記ブレーキシステムBF,BRを制御して、前記他車の死角から自車を脱出させるので、オートクルーズ走行中に斜め前方を走行する他車の死角に入った場合に、加速または減速を自動的に行って死角を脱出し、安全性を高めることが可能となる。 As described above, according to the blind spot avoidance system according to the present invention, based on at least the image captured by the front camera 80 and the position of the own vehicle, the own vehicle is in the blind spot of another vehicle traveling diagonally ahead of the own vehicle. The control device 70 has a blind spot determination unit 71 for detecting whether or not the vehicle has entered the blind spot of another vehicle. , BR to move the vehicle out of the blind spot of the other vehicle. Therefore, if the vehicle enters the blind spot of another vehicle traveling diagonally ahead during auto-cruise driving, the vehicle automatically accelerates or decelerates to avoid the blind spot. can be escaped and safety can be improved.
 また、制御装置70は、自車が前記他車の死角に入って所定時間Tが経過すると、他車の死角から自車を脱出させるので、所定時間が経過するのを待ってから制御を開始することで、運転者に安心感を与えることが可能となる。 Further, the control device 70 allows the own vehicle to escape from the blind spot of the other vehicle when the predetermined time T elapses after the own vehicle enters the blind spot of the other vehicle, so the control is started after waiting for the elapse of the predetermined time. By doing so, it becomes possible to give the driver a sense of security.
 また、死角判断部71は、画像認識によって斜め前方の他車の車両種別を判断し、車両種別毎の死角情報を記録した死角情報データベース71aを用いて、自車が前記他車の死角に入ったか否かを判断するので、斜め前方を走行する他車が、二輪車、普通自動車、バス、トラック等の車両種別のいずれであるかを判断し、車両種別毎に異なる死角をデータベースから導くことにより、自車が他車の死角に入ったか否かを正確に判断することが可能となる。 In addition, the blind spot determination unit 71 determines the vehicle type of another vehicle obliquely ahead by image recognition, and uses a blind spot information database 71a that records blind spot information for each vehicle type to determine whether the vehicle is in the blind spot of the other vehicle. Therefore, it determines whether the other vehicle running diagonally ahead is a motorcycle, a normal car, a bus, a truck, etc., and derives a different blind spot for each vehicle type from the database. , it is possible to accurately determine whether or not the vehicle is in the blind spot of another vehicle.
 また、制御装置70は、自車が前記他車の死角に入ったことを運転者に報知するので、自車の加速または減速を実行する前に、自車が斜め前方の他車の死角に入ったことを運転者に認識させることが可能となる。 In addition, since the control device 70 notifies the driver that the own vehicle has entered the blind spot of the other vehicle, it is possible for the own vehicle to enter the blind spot of the other vehicle obliquely ahead before executing the acceleration or deceleration of the own vehicle. It is possible to make the driver recognize that the vehicle has entered.
 さらに、自車が前記他車の死角に入った際に、加速して前方に脱出するか、または、減速して後方に脱出するかを、オートクルーズ走行時の先行車との間隔設定に応じて判断するので、例えば、前方に脱出すると先行車との間隔が詰まり過ぎてしまう場合は後方に脱出するようにして、適度な車間距離を保つことが可能となる。 Furthermore, when the own vehicle enters the blind spot of the other vehicle, it is determined whether to accelerate and escape forward or decelerate and escape backward according to the setting of the distance from the preceding vehicle during auto-cruise travel. Therefore, for example, if the distance between the vehicle and the preceding vehicle becomes too small if the vehicle evacuates forward, it is possible to evacuate backward to maintain an appropriate inter-vehicle distance.
 なお、自動二輪車の形態、ブレーキシステムの構成、前方カメラおよび前方レーダの態様、死角情報データベースの態様等は、上記実施形態に限られず、種々の変更が可能である。本発明に係る死角回避システムは、自動二輪車に限られず、鞍乗型の三輪車や四輪車等に適用することが可能である。 The configuration of the motorcycle, the configuration of the brake system, the configuration of the front camera and front radar, the configuration of the blind spot information database, etc. are not limited to the above embodiments, and various modifications are possible. The blind spot avoidance system according to the present invention can be applied not only to motorcycles but also to straddle-type three-wheeled vehicles and four-wheeled vehicles.
 1…自動二輪車(鞍乗型車両)、70…制御装置、71…死角判断部、71a…死角情報データベース、72…死角回避制御部、73…ナビゲーションシステム(自車位置検知手段)、74…オートクルーズコントロールシステム、75…報知手段、80…前方カメラ、81…前方レーダ、BF…前輪ブレーキ(ブレーキシステム)、BR…後輪ブレーキ(ブレーキシステム)、P…パワーユニット(駆動源) DESCRIPTION OF SYMBOLS 1... Motorcycle (straddle-type vehicle), 70... Control device, 71... Blind spot judgment part, 71a... Blind spot information database, 72... Blind spot avoidance control part, 73... Navigation system (self-vehicle position detection means), 74... Auto Cruise control system 75 Notification means 80 Front camera 81 Front radar BF Front wheel brake (brake system) BR Rear wheel brake (brake system) P Power unit (driving source)

Claims (5)

  1.  車両の前方を撮影する前方カメラ(80)と、自車位置を検知する自車位置検知手段(73)と、オートクルーズコントロールシステム(74)およびブレーキシステム(BF,BR)を制御する制御装置(70)とを有する鞍乗型車両(1)において、
     少なくとも前記前方カメラ(80)が撮影した映像と前記自車位置とに基づいて、自車が自車の斜め前方を走行する他車の死角に入ったか否かを検知する死角判断部(71)を備え、
     前記制御装置(70)は、オートクルーズ走行中に自車が前記他車の死角に入ったと判断されると、前記オートクルーズコントロールシステム(74)または前記ブレーキシステム(BF,BR)を制御して、前記他車の死角から自車を脱出させることを特徴とする鞍乗型車両。
    A front camera (80) that captures the front of the vehicle, a vehicle position detection means (73) that detects the position of the vehicle, an auto cruise control system (74) and a control device that controls the brake system (BF, BR) ( 70) in a straddle-type vehicle (1) having
    A blind spot determination unit (71) for detecting whether or not the own vehicle has entered the blind spot of another vehicle traveling diagonally ahead of the own vehicle based on at least the image captured by the front camera (80) and the position of the own vehicle. with
    The control device (70) controls the auto-cruise control system (74) or the brake system (BF, BR) when it is determined that the own vehicle has entered the blind spot of the other vehicle during auto-cruise travel. and a saddle-riding type vehicle characterized in that the vehicle is allowed to escape from the blind spot of the other vehicle.
  2.  前記制御装置(70)は、自車が前記他車の死角に入って所定時間(T)が経過すると、前記他車の死角から自車を脱出させることを特徴とする請求項1に記載の鞍乗型車両。 2. The control device (70) according to claim 1, wherein when a predetermined time (T) elapses after the vehicle enters the blind spot of the other vehicle, the control device (70) causes the vehicle to exit the blind spot of the other vehicle. Saddle-type vehicle.
  3.  前記死角判断部(71)は、画像認識によって斜め前方の他車の車両種別を判断し、車両種別毎の死角情報を記録した死角情報データベース(71a)を用いて、自車が前記他車の死角に入ったか否かを判断することを特徴とする請求項1または2に記載の鞍乗型車両。 The blind spot judging section (71) judges the vehicle type of another vehicle diagonally ahead by image recognition, and uses a blind spot information database (71a) in which blind spot information for each vehicle type is recorded to determine whether the own vehicle is ahead of the other vehicle. 3. The straddle-type vehicle according to claim 1, wherein it is determined whether or not the vehicle is in a blind spot.
  4.  前記制御装置(70)は、自車が前記他車の死角に入ったことを運転者に報知することを特徴とする請求項1ないし3のいずれかに記載の鞍乗型車両。 The straddle-type vehicle according to any one of claims 1 to 3, wherein the control device (70) notifies the driver that the own vehicle has entered the blind spot of the other vehicle.
  5.  自車が前記他車の死角に入った際に、加速して前方に脱出するか、または、減速して後方に脱出するかを、オートクルーズ走行時の先行車との間隔設定に応じて判断することを特徴とする請求項1ないし4のいずれかに記載の鞍乗型車両。 When the vehicle enters the blind spot of another vehicle, it determines whether to accelerate and exit forward or decelerate and exit backward according to the distance setting from the preceding vehicle during auto-cruise travel. The straddle-type vehicle according to any one of claims 1 to 4, characterized in that:
PCT/JP2021/046863 2021-03-19 2021-12-17 Saddle-type vehicle WO2022195997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506756A JPWO2022195997A1 (en) 2021-03-19 2021-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021046190 2021-03-19
JP2021-046190 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022195997A1 true WO2022195997A1 (en) 2022-09-22

Family

ID=83320070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046863 WO2022195997A1 (en) 2021-03-19 2021-12-17 Saddle-type vehicle

Country Status (2)

Country Link
JP (1) JPWO2022195997A1 (en)
WO (1) WO2022195997A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237407A (en) * 2002-02-13 2003-08-27 Toyota Central Res & Dev Lab Inc Vehicle speed control device
JP2015028672A (en) * 2013-05-24 2015-02-12 パナソニックIpマネジメント株式会社 Information server, information service method, program, server, and information service system
JP2019119310A (en) * 2017-12-28 2019-07-22 株式会社デンソー Traveling control device
JP2020091672A (en) * 2018-12-06 2020-06-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Processing apparatus and processing method for system for supporting rider of saddle-riding type vehicle, system for supporting rider of saddle-riding type vehicle, and saddle-riding type vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237407A (en) * 2002-02-13 2003-08-27 Toyota Central Res & Dev Lab Inc Vehicle speed control device
JP2015028672A (en) * 2013-05-24 2015-02-12 パナソニックIpマネジメント株式会社 Information server, information service method, program, server, and information service system
JP2019119310A (en) * 2017-12-28 2019-07-22 株式会社デンソー Traveling control device
JP2020091672A (en) * 2018-12-06 2020-06-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Processing apparatus and processing method for system for supporting rider of saddle-riding type vehicle, system for supporting rider of saddle-riding type vehicle, and saddle-riding type vehicle

Also Published As

Publication number Publication date
JPWO2022195997A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6375310B2 (en) Vehicle and driving support method thereof
JP7261865B2 (en) CONTROL DEVICE AND CONTROL METHOD FOR CONTROLLING MOTORCYCLE OPERATION
JP7354292B2 (en) Control device and control method
CN113631440A (en) Driving support device for saddle-ride type vehicle
CN113631471A (en) Driving support device for saddle-ride type vehicle
WO2022195997A1 (en) Saddle-type vehicle
JP2022096469A (en) Control device and control method
US20140240119A1 (en) Turn signal canceling device for a laterally tilting vehicle
JP7135308B2 (en) Driving support device
US20220250615A1 (en) Vehicle, and method for controlling vehicle
US9002577B2 (en) Turn signal cancelling device for vehicle
JP7261866B2 (en) CONTROL DEVICE AND CONTROL METHOD FOR CONTROLLING MOTORCYCLE OPERATION
WO2021060357A1 (en) Leaning vehicle comprising fcw control device
WO2022195999A1 (en) Automatic horn honking device for motorcycle
JP6992487B2 (en) Driving support device
JP7170682B2 (en) Straddle-type vehicle and control device
WO2021064799A1 (en) Vehicle information notification device for saddled vehicles
JP6972952B2 (en) Vehicle behavior recognition device and driving support device
US20220306101A1 (en) Automatic control device for motorcycle
JP7145179B2 (en) Straddle-type vehicle and control device
US20240123955A1 (en) Brake system of saddle-type vehicle
US20240123956A1 (en) Brake system for saddled vehicle
WO2022168235A1 (en) Saddle-ride type vehicle, information processing device and information processing method
US20230249778A1 (en) Controller for straddle-type vehicle, rider-assistance system, and control method for straddle-type vehicle
WO2022185698A1 (en) Brake system for saddled vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506756

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931739

Country of ref document: EP

Kind code of ref document: A1