WO2022195763A1 - Learning device, learning method, and recording medium - Google Patents

Learning device, learning method, and recording medium Download PDF

Info

Publication number
WO2022195763A1
WO2022195763A1 PCT/JP2021/010828 JP2021010828W WO2022195763A1 WO 2022195763 A1 WO2022195763 A1 WO 2022195763A1 JP 2021010828 W JP2021010828 W JP 2021010828W WO 2022195763 A1 WO2022195763 A1 WO 2022195763A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
inference
loss
weak
correct
Prior art date
Application number
PCT/JP2021/010828
Other languages
French (fr)
Japanese (ja)
Inventor
周平 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/010828 priority Critical patent/WO2022195763A1/en
Priority to JP2023506589A priority patent/JPWO2022195763A5/en
Publication of WO2022195763A1 publication Critical patent/WO2022195763A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • This disclosure relates to a learning method for a machine learning model.
  • recognition technology based on machine learning has shown extremely high performance, mainly in the field of image recognition.
  • the high accuracy of such recognition technology based on machine learning is supported by a large amount of data with correct answers. That is, high accuracy is achieved by preparing a large amount of data with correct answers and performing learning.
  • Patent Document 1 uses the probability of belonging an input image to each class and the estimated true/false probability representing the likelihood of an artificial image of the input image, even if there are few learning images. also disclosed a method for accurately classifying classes.
  • One purpose of this disclosure is to reduce data collection costs and generate highly accurate machine learning models.
  • a learning device includes: a first inference means for performing a first data augmentation on data with weak correct answers and performing a first inference from the obtained data; a first loss calculation means for calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer; a second inference means for performing a second data augmentation on the weak correct data and performing a second inference from the obtained data; a third inference means for performing a third data augmentation on the weak correct data and performing a third inference from the obtained data; Pseudo-label generation means for generating a pseudo-label from the result of the third inference; a second loss calculation means for calculating a second loss based on the result of the second inference and the pseudo label; updating means for updating parameters of the first reasoning means, the second reasoning means and the third reasoning means based on the first loss and the second loss.
  • a learning method comprises: Performing a first data augmentation on data with weak answers, performing a first inference from the obtained data using a first model, calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer; Performing a second data augmentation on the weak correct data, performing a second inference from the obtained data using a second model, Performing a third data augmentation on the weak correct data, performing a third inference from the obtained data using a third model, generating pseudo-labels from the results of the third inference; calculating a second loss based on the result of the second inference and the pseudo label; Parameters of the first model, the second model and the third model are updated based on the first loss and the second loss.
  • the recording medium comprises Performing a first data augmentation on data with weak answers, performing a first inference from the obtained data using a first model, calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer; Performing a second data augmentation on the weak correct data, performing a second inference from the obtained data using a second model, Performing a third data augmentation on the weak correct data, performing a third inference from the obtained data using a third model, generating pseudo-labels from the results of the third inference; calculating a second loss based on the result of the second inference and the pseudo label;
  • a program is recorded which causes a computer to execute a process of updating parameters of the first model, the second model and the third model based on the first loss and the second loss.
  • FIG. 2 is a block diagram showing the hardware configuration of the learning device of the first embodiment;
  • FIG. 2 is a block diagram showing the functional configuration of the learning device of the first embodiment;
  • FIG. 4 is a flowchart of learning processing by the learning device of the first embodiment;
  • 1 shows the configuration of an inference device according to a first embodiment;
  • FIG. 11 is a block diagram showing the functional configuration of a learning device according to a second embodiment;
  • FIG. 9 is a flowchart of learning processing by the learning device of the second embodiment;
  • the weak correct label z ⁇ Z is determined according to p(z
  • a data set of weak labels has the following form.
  • Examples of learning using weak labels include Positive and Unlabeled (PU) learning, Complementary-label learning, Partial-label learning, and Expert dataset learning.
  • PU Positive and Unlabeled
  • partial label learning In multi-class classification, expert dataset-based learning can be viewed as a special case of partial label-based learning.
  • a “partial label” is a label in which a subset Z of Y is given as a set of correct candidates instead of a correct category y, which is an element of the set Y of all correct candidates, for the data x to be classified.
  • the subset Z contains the true correct category y.
  • the complement of set A will be referred to as " -A ".
  • label - Z can be viewed as partial label - Z in the above sense.
  • a label z that is an element of the subset Z can be regarded as a partial label ⁇ z ⁇ in the above sense.
  • partial labels in the above sense are also called weak labels, ambiguous labels, etc., depending on the literature.
  • the terms partial labels, weak labels, and ambiguous labels may be used with different meanings, but in this specification, the term "partial labels" is used as a concept that includes the above partial labels, weak labels, and ambiguous labels. use.
  • An "expert data set” is a training data set that can be used when learning a multi-class classification model, and is composed of a plurality of partial data sets. Specifically, the expert data set is configured to meet the following conditions.
  • Each of the plurality of partial data sets is assigned at least a portion of all categories to be recognized as a scope of responsibility.
  • All categories to be recognized are assigned to one of a plurality of partial data sets.
  • Each data contained in a partial dataset shall have either one of the categories belonging to the scope of responsibility assigned to the partial dataset, or the category to be recognized does not belong to the scope of responsibility of the partial dataset. A correct label indicating is given.
  • FIG. 1 shows an example of a normal dataset and an expert dataset for a multiclass classification problem.
  • FIG. 1(A) shows a typical dataset used for training.
  • an object recognition model that performs multi-class classification of 100 classes based on image data is learned.
  • As a normal training data set one of 100 classes, ie, 100 categories, is assigned as a correct label to each prepared image data.
  • FIG. 1(B) shows an example of an expert data set. Note that multi-class classification of a total of 100 classes is also performed with this expert data set as in the example of FIG. 1(A).
  • For the expert dataset prepare multiple partial datasets. In the example of FIG. 1B, a plurality of partial data sets such as "aquatic mammal” and “human” are prepared. A responsibility range is set for each partial data set. In the “Aquatic Mammals” subdataset, five aquatic mammals, "Beaver”, “Dolphin”, “Otter”, “Seal” and “Whale” are assigned as areas of responsibility.
  • the scope of responsibility is determined so that all classes (categories) to be recognized are assigned to one of the plurality of partial data sets. That is, 100 classes are assigned to multiple partial data sets so that there is no class that is not assigned to any partial data set. In other words, the scope of responsibility is determined so that all recognition targets of 100 classes are covered by a plurality of partial data sets.
  • the expert data set it is possible to learn 100-class multi-class classification in the same way as with the normal data set shown in FIG. 1(A).
  • Such an expert data set is an example of data with weak answers.
  • the weak-correct labels as described above require easier correct-correct labeling work than normal correct labels, and can be prepared at a low cost. Therefore, correct class classification can be learned from data with weak answers by using weak labels and losses with weak answers. However, weak answers have a small amount of information, and learning using only losses with weak answers tends to cause over-learning. Therefore, in the embodiment of the present disclosure, in addition to the loss with weak correct answer, overfitting is prevented by introducing a loss without correct answer that imposes that the output of the model does not change significantly due to data augmentation and performing regularization.
  • FIG. 2 is a block diagram showing the hardware configuration of the learning device 100 of the first embodiment.
  • the learning device 100 includes an interface (I/F) 11 , a processor 12 , a memory 13 , a recording medium 14 and a database (DB) 15 .
  • I/F interface
  • processor 12 processor 12
  • memory 13 memory
  • recording medium 14 recording medium
  • DB database
  • the interface 11 performs data input/output with an external device. Specifically, data with weak answers used for learning is input through the interface 11 .
  • the processor 12 is a computer such as a CPU (Central Processing Unit), and controls the entire study device 100 by executing a program prepared in advance.
  • the processor 12 may be a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array).
  • the processor 12 executes learning processing, which will be described later.
  • the memory 13 is composed of ROM (Read Only Memory), RAM (Random Access Memory), and the like. Memory 13 is also used as a working memory during execution of various processes by processor 12 .
  • the recording medium 14 is a non-volatile, non-temporary recording medium such as a disk-shaped recording medium or semiconductor memory, and is configured to be detachable from the learning device 100 .
  • the recording medium 14 records various programs executed by the processor 12 .
  • the learning device 100 executes various processes, a program recorded on the recording medium 14 is loaded into the memory 13 and executed by the processor 12 .
  • the DB 15 stores data with weak answers for learning as needed.
  • FIG. 3 is a block diagram showing the functional configuration of the learning device 100 of the first embodiment.
  • the learning device 100 includes data extension units 21a to 21c, inference units 22a to 22c, a weak correct loss calculation unit 23, a no correct loss calculation unit 24, a pseudo label generation unit 25, a mask generation unit 26, It includes a gradient calculator 27, an updater 28, and parameter holders 29a and 29b.
  • Weakly correct data includes input data and weakly correct labels corresponding to the input data.
  • input data is an image used for learning, and a weak correct label is assigned to the image.
  • the input data is input to the data expansion units 21a to 21c, and the weak correct label is input to the loss calculation unit 23 with weak correct answers.
  • the data extension unit 21a performs random conversion on the input data, and outputs the converted input data to the inference unit 22a.
  • the inference unit 22a makes inferences on input data using a machine learning model. For example, when learning an image recognition model, the inference unit 22 a infers the class of the object included in the input data, and outputs it to the weak-correct loss calculation unit 23 .
  • the weak-correct loss calculation unit 23 calculates a weak-correct loss from the inference result input from the inference unit 22a and the weak-correct label.
  • the weak-correct loss calculator 23 outputs the calculated weak-correct loss to the gradient calculator 27 .
  • the data extension unit 21b performs random conversion on the input data, and outputs the converted data to the inference unit 22b.
  • the data expansion unit 21c performs random conversion on the input data and outputs the converted data to the inference unit 22c.
  • the three data extension units 21a to 21c, including the data extension unit 21a independently perform random transformations on the input data, but the types of transformations may be the same or different.
  • the conversion by the data extension unit 21b is stronger than the conversion by the data extension units 21a and 21c.
  • a strong conversion is a conversion that greatly changes the input data. For example, when the input data is an image, it is a conversion that greatly changes the content of the image.
  • the inference unit 22b uses a machine learning model to infer the input data converted by the data extension unit 21b, and outputs the inference result to the no-correct loss calculation unit 24.
  • the inference unit 22 c also uses a machine learning model to infer the input data after conversion by the data extension unit 21 c and outputs the inference result to the pseudo label generation unit 25 .
  • the pseudo-label generation unit 25 generates pseudo-labels based on the inference result of the inference unit 22c.
  • a “pseudo-label” is a label generated from the inference result of a model during learning or after learning.
  • the pseudo-label generation unit 25 may convert the inference result of the inference unit 22c into a one-hot vector.
  • a one-hot vector is a vector that has a value of "1" only for the correct class and "0" for the other classes.
  • the pseudo-label generation unit 25 may convert the inference result of the inference unit 22c into a soft label compared to a so-called hard label using "0" or "1".
  • the pseudo-label generation unit 25 outputs the generated pseudo-label to the no-correct loss calculation unit 24 .
  • the mask generation unit 26 compares the reliability score of the inference result output by the inference unit 22c, that is, the maximum value of the scores for each class, with a predetermined threshold, and determines the reliability of the inference result by the inference unit 22c.
  • a mask is generated that indicates whether or not it is equal to or greater than a predetermined threshold. Specifically, the mask generation unit 26 generates a mask “1” when the maximum score of the inference result is greater than the threshold, and generates a mask “0” when the maximum value of the score of the inference result is equal to or less than the threshold.
  • Output to the calculation unit 24 This mask serves as an index indicating whether or not the pseudo label generated by the pseudo label generator 25 should be used for loss calculation by the no-correct loss calculator 24 .
  • the no-correct loss calculation unit 24 uses the inference result input from the inference unit 22b and the pseudo labels generated by the pseudo-label generation unit 25 to calculate the no-correct loss.
  • the no-correct loss calculation unit 24 determines whether or not to perform loss calculation using the pseudo label. Specifically, when the mask input from the mask generation unit 26 is "1", the no-correct loss calculation unit 24 calculates the no-correct loss by assuming that the reliability of the pseudo label is high. On the other hand, when the mask input from the mask generation unit 26 is "0", the no-correct loss calculation unit 24 does not calculate the no-correct loss because the reliability of the pseudo label is low. Then, when the no-correct loss is calculated, the no-correct loss calculator 24 outputs the obtained no-correct loss to the gradient calculator 27 .
  • the gradient calculation unit 27 calculates the gradients of the inputted weak correct loss and non-correct loss, and outputs them to the updating unit 28 .
  • the gradient calculation unit 27 calculates the gradient of the sum of the weak correct loss and the non-correct loss or the weighted sum, and outputs it to the updating unit 28 .
  • the update unit 28 uses the input gradient to update the parameters of the inference units 22a and 22b (hereinafter referred to as "parameter P1") and outputs them to the parameter holding unit 29a.
  • the parameter holding unit 29a sets updated parameters P1 for the inference units 22a and 22b.
  • the same parameter P1 is set for the inference section 22a and the inference section 22b.
  • the update unit 28 also uses the input gradient to update the parameter of the inference unit 22c (hereinafter referred to as "parameter P2") and outputs it to the parameter holding unit 29b.
  • the parameter holding unit 29a sets the updated parameter P2 in the inference unit 22c.
  • the parameter P2 held by the parameter holding unit 29b may be the same as the parameter P1 held by the parameter holding unit 29a. may be taken as
  • the data extension unit 21a and the inference unit 22a are an example of the first inference means, and the loss calculation unit with weak correct answer 23 is an example of the first loss calculation means.
  • the data extension unit 21b and the inference unit 22b are examples of second inference means, and the data extension unit 21c and inference unit 22c are examples of third inference means.
  • the pseudo-label generation unit 25 is an example of pseudo-label generation means, and the no-correct loss calculation unit 24 is an example of second loss calculation means.
  • the gradient calculator 27, updater 28, and parameter holders 29a and 29b are examples of update means.
  • FIG. 4 is a flowchart of learning processing by the learning device 100 of the first embodiment. This processing is realized by executing a program prepared in advance by the processor 12 shown in FIG. 1 and operating as each element shown in FIG. It should be noted that this process is repeatedly executed each time data with a weak correct answer is input.
  • the input data included in the data with weak correct answers are input to the data extension units 21a to 21c.
  • the data extension unit 21a converts the input data of data with weak correct answers, and outputs the converted data to the inference unit 22a (step S11).
  • the inference unit 22a makes an inference from the converted input data, and outputs the inference result to the weak-correct loss calculation unit 23 (step S12).
  • the weak-correct loss calculator 23 calculates a weak-correct loss from the inference result and the weak-correct label, and outputs it to the gradient calculator 27 (step S13).
  • the data extension unit 21c converts the data with weak correct answers and outputs the data to the inference unit 22c (step S14).
  • the inference unit 22c infers from the converted input data, and outputs the inference result to the pseudo label generation unit 25 (step S15).
  • the pseudo-label generation unit 25 generates a pseudo-label from the inference result and outputs it to the no-correct loss calculation unit 24 (step S16).
  • the mask generation unit 26 also generates a mask based on the inference result of the inference unit 22c, and outputs it to the no-correct loss calculation unit 24 (step S17).
  • the data extension unit 21b converts the data with weak answers and outputs it to the inference unit 22b (step S18).
  • the inference unit 22b performs inference from the converted input data, and outputs the inference result to the no-correct loss calculation unit 24 (step S19).
  • the no-correct loss calculation unit 24 calculates a A no-correct loss is calculated and output to the gradient calculator 27 (step S20).
  • the gradient calculation unit 27 calculates the gradients of the input weak-correct loss and non-correct loss, and outputs them to the updating unit 28 (step S21).
  • the update unit 28 updates the parameter P1 of the inference units 22a and 22b based on the input gradient and outputs it to the parameter storage unit 29a, and updates the parameter P2 of the inference unit 22c and outputs it to the parameter storage unit 29b. (step S22).
  • the parameter holding unit 29a sets the parameter P1 to the inference units 22a and 22b
  • the parameter holding unit 29b sets the parameter P2 to the inference unit 22c (step S23).
  • the parameters of the inference units 22a to 22c are updated.
  • the same input data with weak correct answers that is, the input image is input to the data expansion units 21a to 21c.
  • the image input to the data extension unit 21a may be different from the images input to the data extension units 21b and 21c. That is, the image used by the inference unit 22b for inference and the image used by the inference unit 22c for inference and the pseudo-label generation unit 25 for pseudo-label generation need to be the same. It may be different from the image used for inference by the inference unit 22a.
  • FIG. 5 shows the configuration of the inference device of the first embodiment.
  • the inference device 200 includes an inference unit 201 .
  • the inference unit 201 uses the machine learning model learned by the learning process described above. That is, the inference unit 201 is set with the parameter P1 obtained by the above learning process.
  • input data to be inferred is input to the inference unit 201 .
  • This input data is data such as a photographed image acquired in an environment in which the inference apparatus 200 is actually operated, and is data to be subjected to actual image recognition or the like.
  • the inference unit 201 infers from input data and outputs an inference result. For example, in the case of image recognition that performs multi-class classification, the inference unit 201 outputs the probability value of each class as an inference result based on the input image.
  • FIG. 6 is a block diagram showing the functional configuration of the learning device of the second embodiment.
  • the learning device 70 includes a first inference means 71, a first loss calculation means 72, a second inference means 73, a third inference means 74, a pseudo label generation means 75, and a second loss calculation means. Means 76 and updating means 77 are provided.
  • FIG. 7 is a flowchart of learning processing by the learning device 70 of the second embodiment.
  • the first inference means 71 performs the first data extension on the data with weak correct answers, and performs the first inference from the obtained data (step S41).
  • the first loss calculation means 72 calculates the first loss from the result of the first inference and the weak correct answers given to the data with weak correct answers (step S42).
  • the second inference means 73 performs the second data extension on the weak correct data, and performs the second inference from the obtained data (step S43).
  • the third inference means 74 performs a third data extension on the weak correct data, and makes a third inference from the obtained data (step S44).
  • the pseudo-label generating means 75 generates a pseudo-label from the result of the third inference (step S45).
  • the second loss calculator 76 calculates a second loss based on the result of the second inference and the pseudo label (step S46).
  • the update means 77 updates the parameters of the first inference means, the second inference means and the third inference means based on the first loss and the second loss (step S47).
  • the learning device of the second embodiment it is possible to generate a highly accurate machine learning model using data with weak answers.
  • (Appendix 1) a first inference means for performing a first data augmentation on data with weak correct answers and performing a first inference from the obtained data; a first loss calculation means for calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer; a second inference means for performing a second data augmentation on the weak correct data and performing a second inference from the obtained data; a third inference means for performing a third data augmentation on the weak correct data and performing a third inference from the obtained data; Pseudo-label generation means for generating a pseudo-label from the result of the third inference; a second loss calculation means for calculating a second loss based on the result of the second inference and the pseudo label; updating means for updating parameters of the first reasoning means, the second reasoning means and the third reasoning means based on the first loss and the second loss; A learning device with
  • (Appendix 2) A mask generating means for generating a mask indicating whether the reliability of the result of the third inference is equal to or greater than a predetermined value; 1.
  • the learning device according to Supplementary Note 1, wherein the second loss calculation means calculates the second loss based on the mask when the reliability of the result of the third inference is equal to or higher than a predetermined value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Image Analysis (AREA)

Abstract

In the present invention, a first inference means subjects weak correctness-labeled data to first data extension, and performs first inference using the obtained data. A first loss calculation means calculates a first loss using the result of first inference and weak correctness assigned to the weak correctness-labeled data. A second inference means subjects the weakly correct labeled data to second data extension, and performs second inference using the obtained data. A third inference means subjects the weakly correct labeled data to third data extension, and performs third inference using the obtained data. A pseudo label generation means generates a pseudo label using the result of third inference. A second loss calculation means calculates a second loss on the basis of the result of second inference and the pseudo label. An update means updates the parameters of the first inference means, the second inference means, and the third inference means on the basis of the first loss and the second loss.

Description

学習装置、学習方法、及び、記録媒体LEARNING DEVICE, LEARNING METHOD, AND RECORDING MEDIUM
 本開示は、機械学習モデルの学習方法に関する。 This disclosure relates to a learning method for a machine learning model.
 近年、機械学習に基づく認識技術は、画像認識の分野を中心に極めて高い性能を示している。このような機械学習に基づく認識技術の高い精度は、大量の正解付きデータにより支えられている。即ち、大量の正解付きデータを用意して学習を行うことにより、高い精度が実現されている。 In recent years, recognition technology based on machine learning has shown extremely high performance, mainly in the field of image recognition. The high accuracy of such recognition technology based on machine learning is supported by a large amount of data with correct answers. That is, high accuracy is achieved by preparing a large amount of data with correct answers and performing learning.
 しかし、大量の正解付きデータを用意するにはコストと時間を要する。この観点から、特許文献1は、入力された画像の各クラスへの帰属確率、及び、入力された画像の人工画像らしさを表す推定真偽確率を用いて、学習用画像が少ない場合であっても精度よくクラスを識別する手法を開示している。 However, preparing a large amount of data with correct answers requires cost and time. From this point of view, Patent Document 1 uses the probability of belonging an input image to each class and the estimated true/false probability representing the likelihood of an artificial image of the input image, even if there are few learning images. also disclosed a method for accurately classifying classes.
特開2020-16935号公報JP 2020-16935 A
 本開示の1つの目的は、データ収集コストを抑えて、高精度な機械学習モデルを生成することにある。 One purpose of this disclosure is to reduce data collection costs and generate highly accurate machine learning models.
 本開示の一つの観点では、学習装置は、
 弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1の推論を行う第1の推論手段と、
 前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算する第1の損失計算手段と、
 弱正解データに対して第2のデータ拡張を行い、得られたデータから第2の推論を行う第2の推論手段と、
 弱正解データに対して第3のデータ拡張を行い、得られたデータから第3の推論を行う第3の推論手段と、
 前記第3の推論の結果から疑似ラベルを生成する疑似ラベル生成手段と、
 前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算する第2の損失計算手段と、
 前記第1の損失及び前記第2の損失に基づいて、前記第1の推論手段、前記第2の推論手段及び前記第3の推論手段のパラメータを更新する更新手段と、を備える。
In one aspect of the present disclosure, a learning device includes:
a first inference means for performing a first data augmentation on data with weak correct answers and performing a first inference from the obtained data;
a first loss calculation means for calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
a second inference means for performing a second data augmentation on the weak correct data and performing a second inference from the obtained data;
a third inference means for performing a third data augmentation on the weak correct data and performing a third inference from the obtained data;
Pseudo-label generation means for generating a pseudo-label from the result of the third inference;
a second loss calculation means for calculating a second loss based on the result of the second inference and the pseudo label;
updating means for updating parameters of the first reasoning means, the second reasoning means and the third reasoning means based on the first loss and the second loss.
 本開示の他の観点では、学習方法は、
 弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1のモデルを用いて第1の推論を行い、
 前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算し、
 弱正解データに対して第2のデータ拡張を行い、得られたデータから第2のモデルを用いて第2の推論を行い、
 弱正解データに対して第3のデータ拡張を行い、得られたデータから第3のモデルを用いて第3の推論を行い、
 前記第3の推論の結果から疑似ラベルを生成し、
 前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算し、
 前記第1の損失及び前記第2の損失に基づいて、前記第1のモデル、前記第2のモデル及び前記第3のモデルのパラメータを更新する。
In another aspect of the disclosure, a learning method comprises:
Performing a first data augmentation on data with weak answers, performing a first inference from the obtained data using a first model,
calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
Performing a second data augmentation on the weak correct data, performing a second inference from the obtained data using a second model,
Performing a third data augmentation on the weak correct data, performing a third inference from the obtained data using a third model,
generating pseudo-labels from the results of the third inference;
calculating a second loss based on the result of the second inference and the pseudo label;
Parameters of the first model, the second model and the third model are updated based on the first loss and the second loss.
 本開示のさらに他の観点では、記録媒体は、
 弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1のモデルを用いて第1の推論を行い、
 前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算し、
 弱正解データに対して第2のデータ拡張を行い、得られたデータから第2のモデルを用いて第2の推論を行い、
 弱正解データに対して第3のデータ拡張を行い、得られたデータから第3のモデルを用いて第3の推論を行い、
 前記第3の推論の結果から疑似ラベルを生成し、
 前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算し、
 前記第1の損失及び前記第2の損失に基づいて、前記第1のモデル、前記第2のモデル及び前記第3のモデルのパラメータを更新する処理をコンピュータに実行させるプログラムを記録する。
In yet another aspect of the present disclosure, the recording medium comprises
Performing a first data augmentation on data with weak answers, performing a first inference from the obtained data using a first model,
calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
Performing a second data augmentation on the weak correct data, performing a second inference from the obtained data using a second model,
Performing a third data augmentation on the weak correct data, performing a third inference from the obtained data using a third model,
generating pseudo-labels from the results of the third inference;
calculating a second loss based on the result of the second inference and the pseudo label;
A program is recorded which causes a computer to execute a process of updating parameters of the first model, the second model and the third model based on the first loss and the second loss.
 本開示によれば、データ収集コストを抑えて、高精度な機械学習モデルを生成することが可能となる。 According to the present disclosure, it is possible to reduce data collection costs and generate highly accurate machine learning models.
多クラス分類問題の場合のデータセットの例を示す。An example dataset for a multi-class classification problem is shown. 第1実施形態の学習装置のハードウェア構成を示すブロック図である。2 is a block diagram showing the hardware configuration of the learning device of the first embodiment; FIG. 第1実施形態の学習装置の機能構成を示すブロック図である。2 is a block diagram showing the functional configuration of the learning device of the first embodiment; FIG. 第1実施形態の学習装置による学習処理のフローチャートである。4 is a flowchart of learning processing by the learning device of the first embodiment; 第1実施形態の推論装置の構成を示す。1 shows the configuration of an inference device according to a first embodiment; 第2実施形態の学習装置の機能構成を示すブロック図である。FIG. 11 is a block diagram showing the functional configuration of a learning device according to a second embodiment; FIG. 第2実施形態の学習装置による学習処理のフローチャートである。9 is a flowchart of learning processing by the learning device of the second embodiment;
 以下、図面を参照して、本開示の好適な実施形態について説明する。
 <第1実施形態>
 [概念説明]
 (弱いラベル)
 本実施形態では、弱いラベル(以下、「弱正解ラベル」とも呼ぶ。)が付いたデータセットを用いて機械学習モデルを学習する。通常の「正解」はそのデータが属する正解クラスを正しくただ一つ指定するのに対し、「弱正解」はあいまいさやノイズなどを含む正解である。
Preferred embodiments of the present disclosure will be described below with reference to the drawings.
<First Embodiment>
[Concept explanation]
(weak label)
In this embodiment, a machine learning model is trained using a data set with weak labels (hereinafter also referred to as "weak correct labels"). A normal "correct answer" correctly specifies a single correct answer class to which the data belongs, whereas a "weak correct answer" is a correct answer containing ambiguity, noise, and the like.
 いま、データ空間Xの要素xを正解候補集合Yの要素である正解カテゴリー(クラス)yに分類する多クラス分類問題を考える。
(1)多クラス分類問題における通常のデータセット
 通常のデータセットは、データ空間Xの要素であるデータxと、正解候補集合Yの要素である正解カテゴリーyとの組(x,y)の集合D
Figure JPOXMLDOC01-appb-M000001
である。
Now, consider a multi-class classification problem in which an element x of a data space X is classified into a correct answer category (class) y which is an element of a set Y of correct answer candidates.
(1) Ordinary dataset for multi-class classification problem An ordinary dataset is a set of pairs (x, y) of data x, which is an element of data space X, and correct category y, which is an element of correct candidate set Y. D.
Figure JPOXMLDOC01-appb-M000001
is.
(2)多クラス分類問題における弱正解データセット
 弱正解ラベルz∈Zは、真の正解yが定まっているとき、p(z|y)に従って決まる。弱正解ラベルのデータセットは、下記の形をしている。
Figure JPOXMLDOC01-appb-M000002
(2) Weak Correct Dataset in Multiclass Classification Problem The weak correct label zεZ is determined according to p(z|y) when the true correct answer y is determined. A data set of weak labels has the following form.
Figure JPOXMLDOC01-appb-M000002
 弱正解ラベルを用いた学習の例としては、PU(Positive and Unlabeled)学習、補ラベル(Complementary-label)学習、部分ラベル(Partial-label)学習、エキスパートデータセット学習などがあげられる。 Examples of learning using weak labels include Positive and Unlabeled (PU) learning, Complementary-label learning, Partial-label learning, and Expert dataset learning.
 (部分ラベル学習)
 多クラス分類において、エキスパートデータセットに基づく学習は、部分ラベルに基づく学習の特殊な場合と見なせる。「部分ラベル」とは、分類されるデータxに対して、正解候補全体の集合Yの要素である正解カテゴリーyの代わりに、Yの部分集合Zが正解候補の集合として与えられるものである。ここで、部分集合Zは、本当の正解カテゴリーyを含む。以下、記述の便宜上、集合Aの補集合を「A」と記す。
(partial label learning)
In multi-class classification, expert dataset-based learning can be viewed as a special case of partial label-based learning. A “partial label” is a label in which a subset Z of Y is given as a set of correct candidates instead of a correct category y, which is an element of the set Y of all correct candidates, for the data x to be classified. Here the subset Z contains the true correct category y. Hereinafter, for convenience of description, the complement of set A will be referred to as " -A ".
 エキスパートデータセットにおいて、ラベルZは上述の意味での部分ラベルZと見なせる。部分集合Zの要素であるラベルzは、上述の意味での部分ラベル{z}と見なせる。 In the expert data set, label - Z can be viewed as partial label - Z in the above sense. A label z that is an element of the subset Z can be regarded as a partial label {z} in the above sense.
 なお、上述の意味での部分ラベルは、文献によって、弱ラベル(weak labels)、曖昧ラベル(ambiguous labels)等とも呼ばれる。なお、partial labels、weak labels、ambiguous labelsの語が別の意味で用いられる場合もあるが、本明細書では、上記の部分ラベル、弱ラベル、曖昧ラベルを含む概念として「部分ラベル」の語を用いる。 It should be noted that partial labels in the above sense are also called weak labels, ambiguous labels, etc., depending on the literature. The terms partial labels, weak labels, and ambiguous labels may be used with different meanings, but in this specification, the term "partial labels" is used as a concept that includes the above partial labels, weak labels, and ambiguous labels. use.
 (エキスパートデータセット)
 次に、エキスパートデータセットの具体例を説明する。「エキスパートデータセット」とは、多クラス分類のモデルを学習する際に使用できる学習用データセットであり、複数の部分データセットにより構成されるものである。具体的に、エキスパートデータセットは、以下の条件を具備するように構成される。
(A)複数の部分データセットの各々には、認識対象とする全てのカテゴリーの少なくとも一部が責任範囲として割り当てられている。
(B)認識対象とする全てのカテゴリーが、複数の部分データセットのいずれかに割り当てられている。
(C)部分データセットに含まれる各データには、当該部分データセットに割り当てられた責任範囲に属するカテゴリーのいずれか、又は、当該認識対象のカテゴリーが当該部分データセットの責任範囲に属さないことを示す正解ラベルが付与されている。
(expert dataset)
A specific example of the expert data set will now be described. An "expert data set" is a training data set that can be used when learning a multi-class classification model, and is composed of a plurality of partial data sets. Specifically, the expert data set is configured to meet the following conditions.
(A) Each of the plurality of partial data sets is assigned at least a portion of all categories to be recognized as a scope of responsibility.
(B) All categories to be recognized are assigned to one of a plurality of partial data sets.
(C) Each data contained in a partial dataset shall have either one of the categories belonging to the scope of responsibility assigned to the partial dataset, or the category to be recognized does not belong to the scope of responsibility of the partial dataset. A correct label indicating is given.
 図1は、多クラス分類問題の場合の通常のデータセットと、エキスパートデータセットの例を示す。図1(A)は、学習に使用される通常のデータセットを示す。いま、画像データに基づいて100クラスの多クラス分類を行う物体認識モデルを学習するものとする。通常の学習用データセットとしては、用意された画像データの各々について、100クラス、即ち、100カテゴリーのうちの1つが正解ラベルとして割り当てられる。 Figure 1 shows an example of a normal dataset and an expert dataset for a multiclass classification problem. FIG. 1(A) shows a typical dataset used for training. Assume now that an object recognition model that performs multi-class classification of 100 classes based on image data is learned. As a normal training data set, one of 100 classes, ie, 100 categories, is assigned as a correct label to each prepared image data.
 図1(B)は、エキスパートデータセットの例を示す。なお、このエキスパートデータセットでも、図1(A)の例と同様に全体で100クラスの多クラス分類を行うものとする。エキスパートデータセットでは、複数の部分データセットを用意する。図1(B)の例では、「水生哺乳類」、「人」などの複数の部分データセットが用意される。そして、各部分データセットには、それぞれ責任範囲が設定される。「水生哺乳類」の部分データセットには、5種類の水生哺乳類、「ビーバー」、「イルカ」、「カワウソ」、「アザラシ」、「クジラ」が責任範囲として割り当てられる。「人」の部分データセットには、5種類の人、「赤ん坊」、「男の子」、「女の子」、「男性」、「女性」が責任範囲として割り当てられる。ここで、責任範囲は、認識対象とする全てのクラス(カテゴリー)が、複数の部分データセットのいずれかに割り当てられるように決定されている。即ち、いずれの部分データセットにも割り当てられていないクラスが存在しないように、100個のクラスが複数の部分データセットに割り当てられている。言い換えると、複数の部分データセットにより、100個のクラスの認識対象全てが網羅されるように責任範囲が決定されている。これにより、エキスパートデータセットによっても、図1(A)に示す通常のデータセットと同様に、100クラスの多クラス分類の学習が可能となる。このようなエキスパートデータセットは、弱正解付きデータの一例である。 FIG. 1(B) shows an example of an expert data set. Note that multi-class classification of a total of 100 classes is also performed with this expert data set as in the example of FIG. 1(A). For the expert dataset, prepare multiple partial datasets. In the example of FIG. 1B, a plurality of partial data sets such as "aquatic mammal" and "human" are prepared. A responsibility range is set for each partial data set. In the "Aquatic Mammals" subdataset, five aquatic mammals, "Beaver", "Dolphin", "Otter", "Seal" and "Whale" are assigned as areas of responsibility. In the "People" partial data set, five types of people, "Baby", "Boy", "Girl", "Male", and "Female" are assigned as areas of responsibility. Here, the scope of responsibility is determined so that all classes (categories) to be recognized are assigned to one of the plurality of partial data sets. That is, 100 classes are assigned to multiple partial data sets so that there is no class that is not assigned to any partial data set. In other words, the scope of responsibility is determined so that all recognition targets of 100 classes are covered by a plurality of partial data sets. As a result, even with the expert data set, it is possible to learn 100-class multi-class classification in the same way as with the normal data set shown in FIG. 1(A). Such an expert data set is an example of data with weak answers.
 (弱正解ラベルの利用)
 上記のような弱正解ラベルは、通常の正解ラベルと比べて正解付け作業が用意であり、低コストで用意することができる。よって、弱正解ラベルと弱正解付き損失を用いることにより、弱正解付きデータから正しいクラス分類を学習することができる。しかし、弱正解は情報量が少なく、弱正解付き損失のみを用いた学習では過学習が生じやすい。そこで、本開示の実施形態では、弱正解付き損失に加え、データ拡張によってモデルの出力が大きく変化しないことを課す正解なし損失を導入して正則化を行うことにより、過学習を防止する。
(Use of weak label)
The weak-correct labels as described above require easier correct-correct labeling work than normal correct labels, and can be prepared at a low cost. Therefore, correct class classification can be learned from data with weak answers by using weak labels and losses with weak answers. However, weak answers have a small amount of information, and learning using only losses with weak answers tends to cause over-learning. Therefore, in the embodiment of the present disclosure, in addition to the loss with weak correct answer, overfitting is prevented by introducing a loss without correct answer that imposes that the output of the model does not change significantly due to data augmentation and performing regularization.
 [学習装置]
 (ハードウェア構成)
 図2は、第1実施形態の学習装置100のハードウェア構成を示すブロック図である。図示のように、学習装置100は、インタフェース(I/F)11と、プロセッサ12と、メモリ13と、記録媒体14と、データベース(DB)15と、を備える。
[Learning device]
(Hardware configuration)
FIG. 2 is a block diagram showing the hardware configuration of the learning device 100 of the first embodiment. As illustrated, the learning device 100 includes an interface (I/F) 11 , a processor 12 , a memory 13 , a recording medium 14 and a database (DB) 15 .
 インタフェース11は、外部装置との間でデータの入出力を行う。具体的に、学習に使用される弱正解付きデータは、インタフェース11を通じて入力される。 The interface 11 performs data input/output with an external device. Specifically, data with weak answers used for learning is input through the interface 11 .
 プロセッサ12は、CPU(Central Processing Unit)などのコンピュータであり、予め用意されたプログラムを実行することにより学習装置100の全体を制御する。なお、プロセッサ12は、GPU(Graphics Processing Unit)またはFPGA(Field-Programmable Gate Array)であってもよい。プロセッサ12は、後述する学習処理を実行する。 The processor 12 is a computer such as a CPU (Central Processing Unit), and controls the entire study device 100 by executing a program prepared in advance. The processor 12 may be a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array). The processor 12 executes learning processing, which will be described later.
 メモリ13は、ROM(Read Only Memory)、RAM(Random Access Memory)などにより構成される。メモリ13は、プロセッサ12による各種の処理の実行中に作業メモリとしても使用される。 The memory 13 is composed of ROM (Read Only Memory), RAM (Random Access Memory), and the like. Memory 13 is also used as a working memory during execution of various processes by processor 12 .
 記録媒体14は、ディスク状記録媒体、半導体メモリなどの不揮発性で非一時的な記録媒体であり、学習装置100に対して着脱可能に構成される。記録媒体14は、プロセッサ12が実行する各種のプログラムを記録している。学習装置100が各種の処理を実行する際には、記録媒体14に記録されているプログラムがメモリ13にロードされ、プロセッサ12により実行される。DB15は、必要に応じて、学習のための弱正解付きデータを記憶する。 The recording medium 14 is a non-volatile, non-temporary recording medium such as a disk-shaped recording medium or semiconductor memory, and is configured to be detachable from the learning device 100 . The recording medium 14 records various programs executed by the processor 12 . When the learning device 100 executes various processes, a program recorded on the recording medium 14 is loaded into the memory 13 and executed by the processor 12 . The DB 15 stores data with weak answers for learning as needed.
 (機能構成)
 図3は、第1実施形態の学習装置100の機能構成を示すブロック図である。学習装置100は、データ拡張部21a~21cと、推論部22a~22cと、弱正解付き損失計算部23と、正解なし損失計算部24と、疑似ラベル生成部25と、マスク生成部26と、勾配計算部27と、更新部28と、パラメータ保持部29a、29bと、を備える。
(Functional configuration)
FIG. 3 is a block diagram showing the functional configuration of the learning device 100 of the first embodiment. The learning device 100 includes data extension units 21a to 21c, inference units 22a to 22c, a weak correct loss calculation unit 23, a no correct loss calculation unit 24, a pseudo label generation unit 25, a mask generation unit 26, It includes a gradient calculator 27, an updater 28, and parameter holders 29a and 29b.
 弱正解付きデータは、入力データと、その入力データに対応する弱正解ラベルとを含む。例えば画像認識モデルを学習する場合、入力データは学習に使用される画像であり、その画像に対して弱正解ラベルが付与される。弱正解付きデータのうち、入力データはデータ拡張部21a~21cに入力され、弱正解ラベルは弱正解付き損失計算部23へ入力される。 Weakly correct data includes input data and weakly correct labels corresponding to the input data. For example, when learning an image recognition model, input data is an image used for learning, and a weak correct label is assigned to the image. Of the data with weak correct answers, the input data is input to the data expansion units 21a to 21c, and the weak correct label is input to the loss calculation unit 23 with weak correct answers.
 データ拡張部21aは、入力データに対してランダムな変換を行い、変換後の入力データを推論部22aに出力する。推論部22aは、機械学習モデルを用いて、入力データに対する推論を行う。例えば画像認識モデルを学習する場合、推論部22aは、入力データに含まれる対象物のクラスを推論し、弱正解付き損失計算部23へ出力する。 The data extension unit 21a performs random conversion on the input data, and outputs the converted input data to the inference unit 22a. The inference unit 22a makes inferences on input data using a machine learning model. For example, when learning an image recognition model, the inference unit 22 a infers the class of the object included in the input data, and outputs it to the weak-correct loss calculation unit 23 .
 弱正解付き損失計算部23は、推論部22aから入力される推論結果と、弱正解ラベルとから弱正解付き損失を計算する。弱正解付き損失計算部23は、計算した弱正解付き損失を勾配計算部27へ出力する。 The weak-correct loss calculation unit 23 calculates a weak-correct loss from the inference result input from the inference unit 22a and the weak-correct label. The weak-correct loss calculator 23 outputs the calculated weak-correct loss to the gradient calculator 27 .
 データ拡張部21bは、入力データに対してランダムな変換行い、変換後のデータを推論部22bへ出力する。同様に、データ拡張部21cは、入力データに対してランダムな変換を行い、変換後のデータを推論部22cへ出力する。なお、データ拡張部21aを含む3つのデータ拡張部21a~21cは、それぞれ入力データに対して独立にランダムな変換を作用させるが、その変換の種類は同一であってもよく、異なってもよい。なお、好適な例では、データ拡張部21bによる変換は、データ拡張部21a、21cによる変換よりも強い変換とする。強い変換とは、入力データに対する変化が大きい変換を言い、例えば入力データが画像である場合、画像の内容をより大きく変えるような変換である。 The data extension unit 21b performs random conversion on the input data, and outputs the converted data to the inference unit 22b. Similarly, the data expansion unit 21c performs random conversion on the input data and outputs the converted data to the inference unit 22c. The three data extension units 21a to 21c, including the data extension unit 21a, independently perform random transformations on the input data, but the types of transformations may be the same or different. . In a preferred example, the conversion by the data extension unit 21b is stronger than the conversion by the data extension units 21a and 21c. A strong conversion is a conversion that greatly changes the input data. For example, when the input data is an image, it is a conversion that greatly changes the content of the image.
 推論部22bは、機械学習モデルを用いて、データ拡張部21bによる変換後の入力データに対する推論を行い、推論結果を正解なし損失計算部24へ出力する。また、推論部22cは、機械学習モデルを用いて、データ拡張部21cによる変換後の入力データに対する推論を行い、推論結果を疑似ラベル生成部25へ出力する。 The inference unit 22b uses a machine learning model to infer the input data converted by the data extension unit 21b, and outputs the inference result to the no-correct loss calculation unit 24. The inference unit 22 c also uses a machine learning model to infer the input data after conversion by the data extension unit 21 c and outputs the inference result to the pseudo label generation unit 25 .
 疑似ラベル生成部25は、推論部22cによる推論結果に基づいて疑似ラベルを生成する。「疑似ラベル」とは、学習途中又は学習済みのモデルの推論結果から生成したラベルをいう。具体的に、疑似ラベル生成部25は、推論部22cの推論結果をワン・ホット(one-hot)ベクトルに変換してもよい。ワン・ホットベクトルは、正解クラスだけが「1」、そのほかのクラスは「0」の値を有するベクトルである。その代わりに、疑似ラベル生成部25は、推論部22cの推論結果を、「0」又は「1」を用いたいわゆるハードなラベルと比べてソフトなラベルに変換するものであってもよい。疑似ラベル生成部25は、生成した疑似ラベルを正解なし損失計算部24へ出力する。 The pseudo-label generation unit 25 generates pseudo-labels based on the inference result of the inference unit 22c. A “pseudo-label” is a label generated from the inference result of a model during learning or after learning. Specifically, the pseudo-label generation unit 25 may convert the inference result of the inference unit 22c into a one-hot vector. A one-hot vector is a vector that has a value of "1" only for the correct class and "0" for the other classes. Instead, the pseudo-label generation unit 25 may convert the inference result of the inference unit 22c into a soft label compared to a so-called hard label using "0" or "1". The pseudo-label generation unit 25 outputs the generated pseudo-label to the no-correct loss calculation unit 24 .
 マスク生成部26は、推論部22cが出力した推論結果の信頼度のスコア、即ち、各クラスについてのスコアのうちの最大値を所定の閾値と比較し、推論部22cによる推定結果の信頼度が所定の閾値以上であるか否かを示すマスクを生成する。具体的には、マスク生成部26は、推論結果のスコアの最大値が閾値より大きい場合にマスク「1」を生成し、閾値以下である場合にマスク「0」を生成して、正解なし損失計算部24へ出力する。このマスクは、疑似ラベル生成部25が生成した疑似ラベルを、正解なし損失計算部24における損失計算に使用すべきか否かを示す指標となる。 The mask generation unit 26 compares the reliability score of the inference result output by the inference unit 22c, that is, the maximum value of the scores for each class, with a predetermined threshold, and determines the reliability of the inference result by the inference unit 22c. A mask is generated that indicates whether or not it is equal to or greater than a predetermined threshold. Specifically, the mask generation unit 26 generates a mask “1” when the maximum score of the inference result is greater than the threshold, and generates a mask “0” when the maximum value of the score of the inference result is equal to or less than the threshold. Output to the calculation unit 24 . This mask serves as an index indicating whether or not the pseudo label generated by the pseudo label generator 25 should be used for loss calculation by the no-correct loss calculator 24 .
 正解なし損失計算部24は、推論部22bから入力された推論結果と、疑似ラベル生成部25が生成した疑似ラベルとを用いて、正解なし損失を計算する。ここで、正解なし損失計算部24は、マスク生成部26から入力されたマスクに基づいて、その疑似ラベルを用いた損失計算を行うか否かを決定する。具体的に、正解なし損失計算部24は、マスク生成部26から入力されたマスクが「1」である場合、疑似ラベルの信頼性が高いとして、正解なし損失を計算する。一方、正解なし損失計算部24は、マスク生成部26から入力されたマスクが「0」である場合、疑似ラベルの信頼性が低いとして、正解なし損失を計算しない。そして、正解なし損失計算部24は、正解なし損失を計算した場合、得られた正解なし損失を勾配計算部27へ出力する。 The no-correct loss calculation unit 24 uses the inference result input from the inference unit 22b and the pseudo labels generated by the pseudo-label generation unit 25 to calculate the no-correct loss. Here, based on the mask input from the mask generation unit 26, the no-correct loss calculation unit 24 determines whether or not to perform loss calculation using the pseudo label. Specifically, when the mask input from the mask generation unit 26 is "1", the no-correct loss calculation unit 24 calculates the no-correct loss by assuming that the reliability of the pseudo label is high. On the other hand, when the mask input from the mask generation unit 26 is "0", the no-correct loss calculation unit 24 does not calculate the no-correct loss because the reliability of the pseudo label is low. Then, when the no-correct loss is calculated, the no-correct loss calculator 24 outputs the obtained no-correct loss to the gradient calculator 27 .
 勾配計算部27は、入力された弱正解付き損失及び正解なし損失の勾配を計算し、更新部28へ出力する。例えば、勾配計算部27は、弱正解付き損失と正解なし損失の和又は重み付き和の勾配を算出し、更新部28へ出力する。 The gradient calculation unit 27 calculates the gradients of the inputted weak correct loss and non-correct loss, and outputs them to the updating unit 28 . For example, the gradient calculation unit 27 calculates the gradient of the sum of the weak correct loss and the non-correct loss or the weighted sum, and outputs it to the updating unit 28 .
 更新部28は、入力された勾配を用いて推論部22a、22bのパラメータ(以下、「パラメータP1」と呼ぶ。)を更新し、パラメータ保持部29aへ出力する。パラメータ保持部29aは、推論部22a、22bに対して更新後のパラメータP1を設定する。こうして、推論部22aと推論部22bに、同一のパラメータP1が設定される。 The update unit 28 uses the input gradient to update the parameters of the inference units 22a and 22b (hereinafter referred to as "parameter P1") and outputs them to the parameter holding unit 29a. The parameter holding unit 29a sets updated parameters P1 for the inference units 22a and 22b. Thus, the same parameter P1 is set for the inference section 22a and the inference section 22b.
 また、更新部28は、入力された勾配を用いて、推論部22cのパラメータ(以下、「パラメータP2」と呼ぶ。)を更新し、パラメータ保持部29bへ出力する。パラメータ保持部29aは、更新後のパラメータP2を推論部22cに設定する。ここで、パラメータ保持部29bが保持するパラメータP2は、パラメータ保持部29aが保持するパラメータP1と同一であってもよく、推論部22a、22bのパラメータP1が更新されるごとに、その指数移動平均を取ったものとしてもよい。 The update unit 28 also uses the input gradient to update the parameter of the inference unit 22c (hereinafter referred to as "parameter P2") and outputs it to the parameter holding unit 29b. The parameter holding unit 29a sets the updated parameter P2 in the inference unit 22c. Here, the parameter P2 held by the parameter holding unit 29b may be the same as the parameter P1 held by the parameter holding unit 29a. may be taken as
 上記の構成において、データ拡張部21a及び推論部22aは第1の推論手段の一例であり、弱正解付き損失計算部23は第1の損失計算手段の一例である。データ拡張部21b及び推論部22bは第2の推論手段の一例であり、データ拡張部21c及び推論部22cは第3の推論手段の一例である。疑似ラベル生成部25は疑似ラベル生成手段の一例であり、正解なし損失計算部24は第2の損失計算手段の一例である。勾配計算部27、更新部28、パラメータ保持部29a、29bは、更新手段の一例である。 In the above configuration, the data extension unit 21a and the inference unit 22a are an example of the first inference means, and the loss calculation unit with weak correct answer 23 is an example of the first loss calculation means. The data extension unit 21b and the inference unit 22b are examples of second inference means, and the data extension unit 21c and inference unit 22c are examples of third inference means. The pseudo-label generation unit 25 is an example of pseudo-label generation means, and the no-correct loss calculation unit 24 is an example of second loss calculation means. The gradient calculator 27, updater 28, and parameter holders 29a and 29b are examples of update means.
 (学習処理)
 図4は、第1実施形態の学習装置100による学習処理のフローチャートである。この処理は、図1に示すプロセッサ12が予め用意されたプログラムを実行し、図3に示す各要素として動作することにより実現される。なお、この処理は、弱正解付きデータが入力される毎に繰り返し実行される。
(learning process)
FIG. 4 is a flowchart of learning processing by the learning device 100 of the first embodiment. This processing is realized by executing a program prepared in advance by the processor 12 shown in FIG. 1 and operating as each element shown in FIG. It should be noted that this process is repeatedly executed each time data with a weak correct answer is input.
 まず、弱正解付きデータに含まれる入力データがデータ拡張部21a~21cに入力される。データ拡張部21aは、弱正解付きデータの入力データを変換し、推論部22aへ出力する(ステップS11)。推論部22aは、変換後の入力データから推論を行い、推論結果を弱正解付き損失計算部23へ出力する(ステップS12)。弱正解付き損失計算部23は、推論結果と、弱正解ラベルとから弱正解付き損失を計算し、勾配計算部27へ出力する(ステップS13)。 First, the input data included in the data with weak correct answers are input to the data extension units 21a to 21c. The data extension unit 21a converts the input data of data with weak correct answers, and outputs the converted data to the inference unit 22a (step S11). The inference unit 22a makes an inference from the converted input data, and outputs the inference result to the weak-correct loss calculation unit 23 (step S12). The weak-correct loss calculator 23 calculates a weak-correct loss from the inference result and the weak-correct label, and outputs it to the gradient calculator 27 (step S13).
 また、ステップS11~S13と並行して、データ拡張部21cは、弱正解付きデータを変換し、推論部22cへ出力する(ステップS14)。推論部22cは、変換後の入力データから推論を行い、推論結果を疑似ラベル生成部25へ出力する(ステップS15)。疑似ラベル生成部25は、推論結果から疑似ラベルを生成し、正解なし損失計算部24へ出力する(ステップS16)。また、マスク生成部26は、推論部22cの推論結果に基づいてマスクを生成し、正解なし損失計算部24へ出力する(ステップS17)。 Also, in parallel with steps S11 to S13, the data extension unit 21c converts the data with weak correct answers and outputs the data to the inference unit 22c (step S14). The inference unit 22c infers from the converted input data, and outputs the inference result to the pseudo label generation unit 25 (step S15). The pseudo-label generation unit 25 generates a pseudo-label from the inference result and outputs it to the no-correct loss calculation unit 24 (step S16). The mask generation unit 26 also generates a mask based on the inference result of the inference unit 22c, and outputs it to the no-correct loss calculation unit 24 (step S17).
 データ拡張部21bは、弱正解付きデータを変換し、推論部22bへ出力する(ステップS18)。推論部22bは、変換後の入力データから推論を行い、推論結果を正解なし損失計算部24へ出力する(ステップS19)。正解なし損失計算部24は、マスク生成部26から入力されたマスクが「1」である場合に、推論部22bから入力された推論結果と、疑似ラベル生成部25から入力された疑似ラベルとから正解なし損失を計算し、勾配計算部27へ出力する(ステップS20)。 The data extension unit 21b converts the data with weak answers and outputs it to the inference unit 22b (step S18). The inference unit 22b performs inference from the converted input data, and outputs the inference result to the no-correct loss calculation unit 24 (step S19). When the mask input from the mask generation unit 26 is "1", the no-correct loss calculation unit 24 calculates a A no-correct loss is calculated and output to the gradient calculator 27 (step S20).
 勾配計算部27は、入力された弱正解付き損失及び正解なし損失の勾配を計算し、更新部28へ出力する(ステップS21)。更新部28は、入力された勾配に基づいて、推論部22a、22bのパラメータP1を更新してパラメータ保持部29aへ出力するとともに、推論部22cのパラメータP2を更新してパラメータ保持部29bへ出力する(ステップS22)。そして、パラメータ保持部29aはパラメータP1を推論部22a、22bに設定し、パラメータ保持部29bはパラメータP2を推論部22cに設定する(ステップS23)。こうして、推論部22a~22cのパラメータが更新される。 The gradient calculation unit 27 calculates the gradients of the input weak-correct loss and non-correct loss, and outputs them to the updating unit 28 (step S21). The update unit 28 updates the parameter P1 of the inference units 22a and 22b based on the input gradient and outputs it to the parameter storage unit 29a, and updates the parameter P2 of the inference unit 22c and outputs it to the parameter storage unit 29b. (step S22). Then, the parameter holding unit 29a sets the parameter P1 to the inference units 22a and 22b, and the parameter holding unit 29b sets the parameter P2 to the inference unit 22c (step S23). Thus, the parameters of the inference units 22a to 22c are updated.
 (変形例)
 上記の実施形態では、学習処理の各ステップにおいて、同一の弱正解付きデータの入力データ、即ち入力画像がデータ拡張部21a~21cに入力されている。その代わりに、学習処理の各ステップにおいて、データ拡張部21aに入力される画像と、データ拡張部21b、21cに入力される画像とは異なっていてもよい。即ち、推論部22bが推論に使用する画像と、推論部22cが推論に使用し疑似ラベル生成部25が疑似ラベルの生成に使用する画像とは、同一である必要があるが、その画像と、推論部22aが推論に使用する画像とは異なっていてもよい。
(Modification)
In the above embodiment, in each step of the learning process, the same input data with weak correct answers, that is, the input image is input to the data expansion units 21a to 21c. Alternatively, in each step of the learning process, the image input to the data extension unit 21a may be different from the images input to the data extension units 21b and 21c. That is, the image used by the inference unit 22b for inference and the image used by the inference unit 22c for inference and the pseudo-label generation unit 25 for pseudo-label generation need to be the same. It may be different from the image used for inference by the inference unit 22a.
 [推論装置]
 図5は、第1実施形態の推論装置の構成を示す。推論装置200は、推論部201を備える。推論部201には、上記の学習処理により学習された機械学習モデルを使用する。即ち、推論部201には、上記の学習処理により得られたパラメータP1が設定される。
[Inference device]
FIG. 5 shows the configuration of the inference device of the first embodiment. The inference device 200 includes an inference unit 201 . The inference unit 201 uses the machine learning model learned by the learning process described above. That is, the inference unit 201 is set with the parameter P1 obtained by the above learning process.
 推論時には、推論部201に、推論の対象となる入力データが入力される。この入力データは、推論装置200が実際に運用される環境において取得された撮影画像などのデータであり、実際の画像認識などの対象となるデータである。推論部201は、入力データから推論を行い、推論結果を出力する。例えば多クラス分類を行う画像認識の場合、推論部201は、入力画像に基づいて各クラスの確率値を推論結果として出力する。 At the time of inference, input data to be inferred is input to the inference unit 201 . This input data is data such as a photographed image acquired in an environment in which the inference apparatus 200 is actually operated, and is data to be subjected to actual image recognition or the like. The inference unit 201 infers from input data and outputs an inference result. For example, in the case of image recognition that performs multi-class classification, the inference unit 201 outputs the probability value of each class as an inference result based on the input image.
 <第2実施形態>
 図6は、第2実施形態の学習装置の機能構成を示すブロック図である。学習装置70は、第1の推論手段71と、第1の損失計算手段72と、第2の推論手段73と、第3の推論手段74と、疑似ラベル生成手段75と、第2の損失計算手段76と、更新手段77と、を備える。
<Second embodiment>
FIG. 6 is a block diagram showing the functional configuration of the learning device of the second embodiment. The learning device 70 includes a first inference means 71, a first loss calculation means 72, a second inference means 73, a third inference means 74, a pseudo label generation means 75, and a second loss calculation means. Means 76 and updating means 77 are provided.
 図7は、第2実施形態の学習装置70による学習処理のフローチャートである。第1の推論手段71は、弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1の推論を行う(ステップS41)。第1の損失計算手段72は、第1の推論の結果と、弱正解付きデータに付与された弱正解とから第1の損失を計算する(ステップS42)。第2の推論手段73は、弱正解データに対して第2のデータ拡張を行い、得られたデータから第2の推論を行う(ステップS43)。第3の推論手段74は、弱正解データに対して第3のデータ拡張を行い、得られたデータから第3の推論を行う(ステップS44)。疑似ラベル生成手段75は、第3の推論の結果から疑似ラベルを生成する(ステップS45)。第2の損失計算手段76は、第2の推論の結果と、疑似ラベルとに基づいて第2の損失を計算する(ステップS46)。更新手段77は、第1の損失及び第2の損失に基づいて、第1の推論手段、第2の推論手段及び第3の推論手段のパラメータを更新する(ステップS47)。 FIG. 7 is a flowchart of learning processing by the learning device 70 of the second embodiment. The first inference means 71 performs the first data extension on the data with weak correct answers, and performs the first inference from the obtained data (step S41). The first loss calculation means 72 calculates the first loss from the result of the first inference and the weak correct answers given to the data with weak correct answers (step S42). The second inference means 73 performs the second data extension on the weak correct data, and performs the second inference from the obtained data (step S43). The third inference means 74 performs a third data extension on the weak correct data, and makes a third inference from the obtained data (step S44). The pseudo-label generating means 75 generates a pseudo-label from the result of the third inference (step S45). The second loss calculator 76 calculates a second loss based on the result of the second inference and the pseudo label (step S46). The update means 77 updates the parameters of the first inference means, the second inference means and the third inference means based on the first loss and the second loss (step S47).
 第2実施形態の学習装置によれば、弱正解付きデータを用いて高精度な機械学習モデルを生成することが可能となる。 According to the learning device of the second embodiment, it is possible to generate a highly accurate machine learning model using data with weak answers.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments can also be described as the following additional remarks, but are not limited to the following.
 (付記1)
 弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1の推論を行う第1の推論手段と、
 前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算する第1の損失計算手段と、
 弱正解データに対して第2のデータ拡張を行い、得られたデータから第2の推論を行う第2の推論手段と、
 弱正解データに対して第3のデータ拡張を行い、得られたデータから第3の推論を行う第3の推論手段と、
 前記第3の推論の結果から疑似ラベルを生成する疑似ラベル生成手段と、
 前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算する第2の損失計算手段と、
 前記第1の損失及び前記第2の損失に基づいて、前記第1の推論手段、前記第2の推論手段及び前記第3の推論手段のパラメータを更新する更新手段と、
 を備える学習装置。
(Appendix 1)
a first inference means for performing a first data augmentation on data with weak correct answers and performing a first inference from the obtained data;
a first loss calculation means for calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
a second inference means for performing a second data augmentation on the weak correct data and performing a second inference from the obtained data;
a third inference means for performing a third data augmentation on the weak correct data and performing a third inference from the obtained data;
Pseudo-label generation means for generating a pseudo-label from the result of the third inference;
a second loss calculation means for calculating a second loss based on the result of the second inference and the pseudo label;
updating means for updating parameters of the first reasoning means, the second reasoning means and the third reasoning means based on the first loss and the second loss;
A learning device with
 (付記2)
 前記第3の推論の結果の信頼度が所定値以上であるか否かを示すマスクを生成するマスク生成手段を備え、
 前記第2の損失計算手段は、前記マスクに基づき、前記第3の推論の結果の信頼度が所定値以上である場合に、前記第2の損失を計算する付記1に記載の学習装置。
(Appendix 2)
A mask generating means for generating a mask indicating whether the reliability of the result of the third inference is equal to or greater than a predetermined value;
1. The learning device according to Supplementary Note 1, wherein the second loss calculation means calculates the second loss based on the mask when the reliability of the result of the third inference is equal to or higher than a predetermined value.
 (付記3)
 前記第1のデータ拡張、前記第2のデータ拡張及び前記第3のデータ拡張は、同一の弱正解付きデータに対して行われる付記1又は2に記載の学習装置。
(Appendix 3)
3. The learning device according to appendix 1 or 2, wherein the first data expansion, the second data expansion, and the third data expansion are performed on the same data with weak correct answers.
 (付記4)
 前記第2のデータ拡張及び前記第3のデータ拡張は同一の弱正解付きデータに対して行われ、前記第1のデータ拡張は、前記第2のデータ拡張及び前記第3のデータ拡張とは異なる弱正解付きデータに対して行われる付記1又は2に記載の学習装置。
(Appendix 4)
The second data extension and the third data extension are performed on the same data with weak answers, and the first data extension is different from the second data extension and the third data extension. 3. The learning device according to appendix 1 or 2, which is performed on data with weak answers.
 (付記5)
 前記更新手段は、前記第1の推論手段及び前記第2の推論手段に対して同一のパラメータを設定する付記1乃至4のいずれか一項に記載の学習装置。
(Appendix 5)
5. The learning device according to any one of Supplements 1 to 4, wherein the update means sets the same parameter for the first inference means and the second inference means.
 (付記6)
 前記更新手段は、前記第1の推論手段及び前記第2の推論手段に設定したパラメータに基づいて別のパラメータを生成し、前記第3の推論手段に設定する付記5に記載の学習装置。
(Appendix 6)
6. The learning device according to Supplementary Note 5, wherein the update means generates another parameter based on the parameters set in the first inference means and the second inference means, and sets the parameter in the third inference means.
 (付記7)
 弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1のモデルを用いて第1の推論を行い、
 前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算し、
 弱正解データに対して第2のデータ拡張を行い、得られたデータから第2のモデルを用いて第2の推論を行い、
 弱正解データに対して第3のデータ拡張を行い、得られたデータから第3のモデルを用いて第3の推論を行い、
 前記第3の推論の結果から疑似ラベルを生成し、
 前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算し、
 前記第1の損失及び前記第2の損失に基づいて、前記第1のモデル、前記第2のモデル及び前記第3のモデルのパラメータを更新する学習方法。
(Appendix 7)
Performing a first data augmentation on data with weak answers, performing a first inference from the obtained data using a first model,
calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
Performing a second data augmentation on the weak correct data, performing a second inference from the obtained data using a second model,
Performing a third data augmentation on the weak correct data, performing a third inference from the obtained data using a third model,
generating pseudo-labels from the results of the third inference;
calculating a second loss based on the result of the second inference and the pseudo label;
A learning method for updating parameters of the first model, the second model and the third model based on the first loss and the second loss.
 (付記8)
 弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1のモデルを用いて第1の推論を行い、
 前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算し、
 弱正解データに対して第2のデータ拡張を行い、得られたデータから第2のモデルを用いて第2の推論を行い、
 弱正解データに対して第3のデータ拡張を行い、得られたデータから第3のモデルを用いて第3の推論を行い、
 前記第3の推論の結果から疑似ラベルを生成し、
 前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算し、
 前記第1の損失及び前記第2の損失に基づいて、前記第1のモデル、前記第2のモデル及び前記第3のモデルのパラメータを更新する処理をコンピュータに実行させるプログラムを記録した記録媒体。
(Appendix 8)
Performing a first data augmentation on data with weak answers, performing a first inference from the obtained data using a first model,
calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
Performing a second data augmentation on the weak correct data, performing a second inference from the obtained data using a second model,
Performing a third data augmentation on the weak correct data, performing a third inference from the obtained data using a third model,
generating pseudo-labels from the results of the third inference;
calculating a second loss based on the result of the second inference and the pseudo label;
A recording medium recording a program for causing a computer to execute a process of updating parameters of the first model, the second model and the third model based on the first loss and the second loss.
 以上、実施形態及び実施例を参照して本開示を説明したが、本開示は上記実施形態及び実施例に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present disclosure has been described above with reference to the embodiments and examples, the present disclosure is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present disclosure within the scope of the present disclosure.
 21a~21c データ拡張部
 22a~22c 推論部
 23 弱正解付き損失計算部
 24 正解なし損失計算部
 25 疑似ラベル生成部
 26 マスク生成部
 27 勾配計算部
 28 更新部
 29a、29b パラメータ保持部
 100 学習装置
 200 推論装置
21a to 21c data extension unit 22a to 22c inference unit 23 loss calculation unit with weak answer 24 loss calculation unit without correct answer 25 pseudo label generation unit 26 mask generation unit 27 gradient calculation unit 28 update unit 29a, 29b parameter storage unit 100 learning device 200 inference device

Claims (8)

  1.  弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1の推論を行う第1の推論手段と、
     前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算する第1の損失計算手段と、
     弱正解データに対して第2のデータ拡張を行い、得られたデータから第2の推論を行う第2の推論手段と、
     弱正解データに対して第3のデータ拡張を行い、得られたデータから第3の推論を行う第3の推論手段と、
     前記第3の推論の結果から疑似ラベルを生成する疑似ラベル生成手段と、
     前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算する第2の損失計算手段と、
     前記第1の損失及び前記第2の損失に基づいて、前記第1の推論手段、前記第2の推論手段及び前記第3の推論手段のパラメータを更新する更新手段と、
     を備える学習装置。
    a first inference means for performing a first data augmentation on data with weak correct answers and performing a first inference from the obtained data;
    a first loss calculation means for calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
    a second inference means for performing a second data augmentation on the weak correct data and performing a second inference from the obtained data;
    a third inference means for performing a third data augmentation on the weak correct data and performing a third inference from the obtained data;
    Pseudo-label generation means for generating a pseudo-label from the result of the third inference;
    a second loss calculation means for calculating a second loss based on the result of the second inference and the pseudo label;
    updating means for updating parameters of the first reasoning means, the second reasoning means and the third reasoning means based on the first loss and the second loss;
    A learning device with
  2.  前記第3の推論の結果の信頼度が所定値以上であるか否かを示すマスクを生成するマスク生成手段を備え、
     前記第2の損失計算手段は、前記マスクに基づき、前記第3の推論の結果の信頼度が所定値以上である場合に、前記第2の損失を計算する請求項1に記載の学習装置。
    A mask generating means for generating a mask indicating whether the reliability of the result of the third inference is equal to or greater than a predetermined value;
    2. The learning device according to claim 1, wherein said second loss calculation means calculates said second loss based on said mask when the reliability of said third inference result is equal to or greater than a predetermined value.
  3.  前記第1のデータ拡張、前記第2のデータ拡張及び前記第3のデータ拡張は、同一の弱正解付きデータに対して行われる請求項1又は2に記載の学習装置。 The learning device according to claim 1 or 2, wherein the first data extension, the second data extension and the third data extension are performed on the same data with weak correct answers.
  4.  前記第2のデータ拡張及び前記第3のデータ拡張は同一の弱正解付きデータに対して行われ、前記第1のデータ拡張は、前記第2のデータ拡張及び前記第3のデータ拡張とは異なる弱正解付きデータに対して行われる請求項1又は2に記載の学習装置。 The second data extension and the third data extension are performed on the same data with weak answers, and the first data extension is different from the second data extension and the third data extension. 3. The learning device according to claim 1, wherein the learning is performed on data with weak answers.
  5.  前記更新手段は、前記第1の推論手段及び前記第2の推論手段に対して同一のパラメータを設定する請求項1乃至4のいずれか一項に記載の学習装置。 The learning device according to any one of claims 1 to 4, wherein the update means sets the same parameter for the first inference means and the second inference means.
  6.  前記更新手段は、前記第1の推論手段及び前記第2の推論手段に設定したパラメータに基づいて別のパラメータを生成し、前記第3の推論手段に設定する請求項5に記載の学習装置。 6. The learning device according to claim 5, wherein the updating means generates another parameter based on the parameters set in the first inference means and the second inference means, and sets the parameter in the third inference means.
  7.  弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1のモデルを用いて第1の推論を行い、
     前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算し、
     弱正解データに対して第2のデータ拡張を行い、得られたデータから第2のモデルを用いて第2の推論を行い、
     弱正解データに対して第3のデータ拡張を行い、得られたデータから第3のモデルを用いて第3の推論を行い、
     前記第3の推論の結果から疑似ラベルを生成し、
     前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算し、
     前記第1の損失及び前記第2の損失に基づいて、前記第1のモデル、前記第2のモデル及び前記第3のモデルのパラメータを更新する学習方法。
    Performing a first data augmentation on data with weak answers, performing a first inference from the obtained data using a first model,
    calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
    Performing a second data augmentation on the weak correct data, performing a second inference from the obtained data using a second model,
    Performing a third data augmentation on the weak correct data, performing a third inference from the obtained data using a third model,
    generating pseudo-labels from the results of the third inference;
    calculating a second loss based on the result of the second inference and the pseudo label;
    A learning method for updating parameters of the first model, the second model and the third model based on the first loss and the second loss.
  8.  弱正解付きデータに対して第1のデータ拡張を行い、得られたデータから第1のモデルを用いて第1の推論を行い、
     前記第1の推論の結果と、前記弱正解付きデータに付与された弱正解とから第1の損失を計算し、
     弱正解データに対して第2のデータ拡張を行い、得られたデータから第2のモデルを用いて第2の推論を行い、
     弱正解データに対して第3のデータ拡張を行い、得られたデータから第3のモデルを用いて第3の推論を行い、
     前記第3の推論の結果から疑似ラベルを生成し、
     前記第2の推論の結果と、前記疑似ラベルとに基づいて第2の損失を計算し、
     前記第1の損失及び前記第2の損失に基づいて、前記第1のモデル、前記第2のモデル及び前記第3のモデルのパラメータを更新する処理をコンピュータに実行させるプログラムを記録した記録媒体。
    Performing a first data augmentation on data with weak answers, performing a first inference from the obtained data using a first model,
    calculating a first loss from the result of the first inference and the weak correct answer given to the data with the weak correct answer;
    Performing a second data augmentation on the weak correct data, performing a second inference from the obtained data using a second model,
    Performing a third data augmentation on the weak correct data, performing a third inference from the obtained data using a third model,
    generating pseudo-labels from the results of the third inference;
    calculating a second loss based on the result of the second inference and the pseudo label;
    A recording medium recording a program for causing a computer to execute a process of updating parameters of the first model, the second model and the third model based on the first loss and the second loss.
PCT/JP2021/010828 2021-03-17 2021-03-17 Learning device, learning method, and recording medium WO2022195763A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/010828 WO2022195763A1 (en) 2021-03-17 2021-03-17 Learning device, learning method, and recording medium
JP2023506589A JPWO2022195763A5 (en) 2021-03-17 Learning devices, learning methods, and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010828 WO2022195763A1 (en) 2021-03-17 2021-03-17 Learning device, learning method, and recording medium

Publications (1)

Publication Number Publication Date
WO2022195763A1 true WO2022195763A1 (en) 2022-09-22

Family

ID=83322004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010828 WO2022195763A1 (en) 2021-03-17 2021-03-17 Learning device, learning method, and recording medium

Country Status (1)

Country Link
WO (1) WO2022195763A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004326200A (en) * 2003-04-21 2004-11-18 Mitsubishi Heavy Ind Ltd Automatic machine, and system and method for automatically operating same
JP2018200685A (en) * 2017-05-05 2018-12-20 ダッソー システムズDassault Systemes Forming of data set for fully supervised learning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004326200A (en) * 2003-04-21 2004-11-18 Mitsubishi Heavy Ind Ltd Automatic machine, and system and method for automatically operating same
JP2018200685A (en) * 2017-05-05 2018-12-20 ダッソー システムズDassault Systemes Forming of data set for fully supervised learning

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PAPANDREOU GEORGE; CHEN LIANG-CHIEH; MURPHY KEVIN P.; YUILLE ALAN L.: "Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation", 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), IEEE, 7 December 2015 (2015-12-07), pages 1742 - 1750, XP032866476, DOI: 10.1109/ICCV.2015.203 *
SHUHEI M. YOSHIDA; TAKASHI TAKENOUCHI; MASASHI SUGIYAMA: "Lower-bounded proper losses for weakly supervised classification", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 4 March 2021 (2021-03-04), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081905416 *
TAKAHIRO OHGA, MASAKI YANO, MASATERU ONISHI: "Effect verification of ensemble learning by Data and Test Time Augmentation", IEICE TECHNICAL REPORT, PRMU, vol. 117, no. 391 (PRMU2017-128), 11 January 2018 (2018-01-11), JP, pages 135 - 140, XP009539926 *

Also Published As

Publication number Publication date
JPWO2022195763A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2021023202A1 (en) Self-distillation training method and device for convolutional neural network, and scalable dynamic prediction method
US11200483B2 (en) Machine learning method and apparatus based on weakly supervised learning
Mao et al. Imagegcn: Multi-relational image graph convolutional networks for disease identification with chest x-rays
Khadangi et al. EM-net: Deep learning for electron microscopy image segmentation
Viaene et al. Cost-sensitive learning and decision making revisited
CN110046707B (en) Evaluation optimization method and system of neural network model
CN116644755B (en) Multi-task learning-based few-sample named entity recognition method, device and medium
Liu et al. Co-correcting: noise-tolerant medical image classification via mutual label correction
JP2022548187A (en) Target re-identification method and device, terminal and storage medium
CN114722892A (en) Continuous learning method and device based on machine learning
Zhang et al. Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification
Zhao et al. Deeply supervised active learning for finger bones segmentation
Ghosh et al. Dividing and conquering a blackbox to a mixture of interpretable models: route, interpret, repeat
Platanios et al. Learning from imperfect annotations
WO2022195763A1 (en) Learning device, learning method, and recording medium
CN115908947A (en) Multi-modal periodontal image identification method and system based on inverse deductive learning
Bhuvana et al. Efficient generative transfer learning framework for the detection of COVID-19
CN116306681A (en) Method and system for constructing interpretive visual question-answer model based on fact scene
WO2022195762A1 (en) Learning device, learning method, and recording medium
Breitholtz et al. Unsupervised domain adaptation by learning using privileged information
WO2021059527A1 (en) Learning device, learning method, and recording medium
CN112489012A (en) Neural network architecture method for CT image recognition
WO2021220341A1 (en) Learning device, learning method, recording medium for learning device, inference device, inference method, and recording medium for inference device
Qiu et al. The Diagnosis of Alzheimer's Disease: An Ensemble Approach.
Sherif et al. STG-MTL: Scalable Task Grouping For Multi-Task Learning Using Data Maps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506589

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931515

Country of ref document: EP

Kind code of ref document: A1