WO2022194640A1 - Machine électrique tournante - Google Patents

Machine électrique tournante Download PDF

Info

Publication number
WO2022194640A1
WO2022194640A1 PCT/EP2022/056051 EP2022056051W WO2022194640A1 WO 2022194640 A1 WO2022194640 A1 WO 2022194640A1 EP 2022056051 W EP2022056051 W EP 2022056051W WO 2022194640 A1 WO2022194640 A1 WO 2022194640A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
machine
electrical
winding
gearbox
Prior art date
Application number
PCT/EP2022/056051
Other languages
English (en)
Inventor
Paul Armiroli
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to DE112022001607.8T priority Critical patent/DE112022001607T5/de
Priority to CN202280028412.9A priority patent/CN117203878A/zh
Publication of WO2022194640A1 publication Critical patent/WO2022194640A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/008Arrangement or mounting of electrical propulsion units with means for heating the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotating electrical machine for a vehicle.
  • the electric machine is for example an alternator-starter or an electric motor, powered by a nominal voltage of 12V or 48V, or even more.
  • This electric machine can be integrated into a vehicle with hybrid or purely electric propulsion, for example an automobile.
  • the losses of an electrical machine are the sum of the Joule losses and the iron losses.
  • the object of the invention is to meet this need and it achieves this, according to one of its aspects, with the aid of a rotating electrical machine, comprising:
  • stator comprising a polyphase electrical winding
  • Is designating the maximum rms value of the phase current and being expressed in A
  • N designating the number of phases of the electrical stator winding.
  • the loss dissipation of the machine can be considered proportional to the heat exchange area of the machine, and this heat exchange area depends on the product between the outside diameter of the machine stator frame and the axial dimension of the carcass of this stator.
  • the invention thus consists in sizing this product in such a way as to limit the losses of the machine.
  • “nominal power” designates the peak mechanical power available on the rotor shaft.
  • the rotating electrical machine can have a nominal supply voltage of 48V.
  • the rotor may comprise any number of pairs of poles, for example four, six, or eight pairs of poles.
  • the rotating electrical machine may have a nominal power greater than or equal to 4 kW, 8 kW, 15 kW, 25 kW or more.
  • the electric machine can be a synchronous machine.
  • the rotor may include a plurality of permanent magnets and be devoid of electrical excitation winding.
  • the rotor can be formed by a stack of laminations inside which the permanent magnets are arranged.
  • the polyphase electrical winding of the stator can be formed by wires or by conducting bars connected to each other.
  • Each notch of the stator frame can receive several conductors, for example 2, 4 or 6.
  • the electrical machine may include a stator cooling circuit in which fluid such as air or liquid circulates.
  • fluid such as air or liquid circulates.
  • This liquid can be water or oil.
  • the rotor can be cooled by this same cooling circuit or by another cooling circuit in which air circulates, or liquid such as water or oil.
  • the invention can make it possible, considering the dimensions of a known electrical machine whose outer diameter of the stator carcass and the axial dimension of this carcass are optimized with respect to the aforementioned iron losses, to obtain a range of values for the diameter outside and the axial dimension of the carcass of the stator of a target electrical machine of different nominal power, so as to also optimize the iron losses of this electrical machine of different nominal power.
  • the invention can make it possible, considering the dimensions of a known electrical machine whose outer diameter of the stator carcass and the axial dimension of this carcass are optimized with respect to the aforementioned iron losses, to obtain a range of values others for the external diameter and the axial dimension of the carcass of the stator of a target electric machine of the same nominal power, so as to also optimize the iron losses of this electric machine of the same nominal power.
  • a propulsion assembly for an electric or hybrid vehicle comprising:
  • an inverter/rectifier electrically connected to the electrical winding of the stator and capable of being connected to the vehicle's on-board network.
  • the on-board network of the vehicle comprises for example two sub-networks between which is interposed a switching system defining a DC/DC voltage converter.
  • One of the inverter/rectifier and the DC/DC voltage converter can implement controllable electronic switches, such as galium nitride (GaN), silicon carbide (SiC), or silicon transistors.
  • controllable electronic switches such as galium nitride (GaN), silicon carbide (SiC), or silicon transistors.
  • the first electrical sub-network being the one capable of being connected to the inverter/rectifier, has for example a nominal voltage of 48V or a nominal voltage of a value greater than 300V, and the second electrical sub-network has for example a voltage nominal 12V.
  • the first sub-network may have a battery and an electrical energy storage unit formed by one or more capacitors and arranged in parallel with the DC output of the inverter/rectifier.
  • the capacity of this electrical energy storage unit is in particular between 2000 pF and 4000m F, for example of the order of 3000m F.
  • phase resistance value of the electric stator winding and the resistance value of the inverter/rectifier can be chosen so as to verify the following relationship: where P mec max designates the rated power of the rotating electrical machine.
  • Another subject of the invention is a hybrid or electric vehicle powertrain, comprising:
  • gearbox comprising pinions, defining gearbox ratios
  • the shaft of the rotating electrical machine being integral in rotation: - a gearbox input shaft, or
  • the shaft of the electric machine can be integral in rotation with the crankshaft of the heat engine of the vehicle, when the powertrain comprises such a heat engine.
  • the rotating electrical machine may comprise a pulley or any other means of connection to the rest of the vehicle's powertrain.
  • the electric machine is for example connected, in particular via a belt, to the crankshaft of the heat engine of the vehicle.
  • the powertrain can include a double clutch, dry or wet, each of the output shafts of the double clutch then forming an input shaft for the gearbox.
  • Another subject of the invention is a method for producing a rotating electrical machine, comprising:
  • stator comprising a polyphase electrical winding
  • the machine is manufactured with a stator carcass whose outer diameter and axial dimension have values thus determined.
  • Another subject of the invention is a method for producing a target rotating electric machine, comprising a stator comprising a polyphase electric winding, and a rotor mobile in rotation around an axis, the method including the steps according to which:
  • the target machine is manufactured with a stator carcass whose outer diameter and axial dimension have values thus determined.
  • the invention thus makes it possible, knowing an electrical machine optimized in terms of iron losses, to have a design rule for sizing an electrical machine of different nominal power or not, which is also optimized in terms of iron losses.
  • FIG.l schematically and partially represents a powertrain to which an example of implementation of the invention can be applied
  • FIG. 2 schematically represents an example of a rotating electrical machine of the system of figure 1, bathed in oil,
  • FIG. 3 represents in isolation an example of a rotor of the rotating electrical machine of Figure 2
  • FIG 4 schematically shows the electrical circuit of the rotating electrical machine of the power unit of Figures 1 and 2.
  • the powertrain 1 here comprises a double clutch 6 which can be dry or wet, with discs or lamellae.
  • This double clutch has two output shafts 2 and 3 which are here concentric. Each of these shafts defines a gearbox input shaft 4.
  • the gearbox 4 comprises, inside an oil-filled casing, a plurality of pinions defining a plurality of speed ratios Rl-Rn .
  • Shaft 2 is here associated with odd gear ratios and shaft 3 is associated with even gear ratios.
  • the torque at the output of gearbox 4 is transmitted to the wheels of the vehicle, in order to ensure propulsion of this vehicle.
  • the powertrain 1 is hybrid or electric, comprising a rotating electrical machine 7.
  • This rotating machine 7 is installed inside the casing of the gearbox 4.
  • the shaft of the rotating machine 7 is capable of cooperating by meshing with a pinion 8 integral with the input shaft 2 of the gearbox associated with the odd speed ratios, but other positions are possible for the rotary electrical machine 7, for example its meshing with a pinion secured to the input shaft 3 of the gearbox associated with the even speed ratios. Locations outside the gearbox housing 4 are also possible.
  • This rotating electric machine 7 can form a source of electric propulsion for the vehicle.
  • the rotating electrical machine 7 comprises a housing not shown in Figure 2. Inside this housing, it further comprises a shaft 13, a rotor 12 integral in rotation with the shaft 13, and a stator 10 surrounding the rotor 12. The rotational movement of the rotor 12 takes place around an axis X.
  • the housing may comprise a front bearing and a rear bearing which are assembled together, and each may have a hollow shape and centrally carry a respective ball bearing for the rotational mounting of the shaft 13.
  • the stator 10 comprises a carcass 15 in the form of a stack of laminations provided with notches, for example of the semi-closed or open type, equipped with notch insulation for mounting the electrical winding polyphase of the stator.
  • Each phase comprises a winding passing through the notches of the carcass 15 and forming, with all the phases, a front bun 16 and a rear bun 17 on either side of the carcass 15 of the stator.
  • the windings are for example obtained from a continuous wire covered with enamel or from bar-shaped conductive elements such as pins connected together.
  • Each notch can receive several conductors, for example 2 or 4 or 6 conductors.
  • the electrical winding of the stator here defines a double three-phase system, only one of these systems being represented in FIG. 4, each of these three-phase systems then implementing a star or delta connection whose outputs are connected to an inverter/ rectifier 20.
  • the electrical winding of the stator may define a single three-phase system.
  • the rotor 12 of FIG. 2 is formed by a stack of sheets, as represented in FIG. 3.
  • the number of pairs of poles defined by the rotor 12 can be arbitrary, for example be between three and eight, being for example equal six or eight.
  • the machine also comprises sensors for measuring the position of the rotor, not shown in FIG. 2. These sensors are for example three Hall effect sensors interacting with a magnetic target integral in rotation with the rotor, but other sensors are possible such as resolvers or inductive sensors.
  • the electric winding of the stator of the rotating electric machine 7 belongs to an electric circuit comprising the inverter/rectifier 20. This inverter/rectifier 20 is interposed between the electric winding of the stator and a first sub-network of the on-board network of the vehicle whose nominal voltage is in the example described equal to 48V.
  • the inverter/rectifier 20 comprises for example several switching arms, each arm implementing two transistors mounted in series and separated by a midpoint.
  • Each transistor is for example a galium nitride (GaN), silicon carbide (SiC), or silicon transistor.
  • the first sub-network of the on-board network also includes, in the example described, a battery 21 connected to the rest of this first sub-network by a disconnection switch 22.
  • the first sub-network may or may not also include one or more consumers 23 , including for example but not limited to an electric supercharger.
  • an electrical energy storage unit 25 which is for example formed by a capacitor or by the assembly of several capacitors. This electrical energy storage unit 25 has for example a capacity of between 3000 ⁇ F and 4000 ⁇ F.
  • the electric circuit also comprises in the example considered a DC/DC voltage converter 27 interposed between the first sub-network and a second sub-network of the on-board network. Similar to the inverter/rectifier 20, the DC/DC voltage converter comprises for example transistors which may be of the same type as those mentioned above.
  • the second sub-network of the on-board network has for example a nominal voltage of 12V. In a known manner, this second sub-network can comprise a battery 30 as well as consumers, not shown, which can be chosen from the following non-exhaustive list: lighting system, electric power steering system, braking system, system air conditioning or car radio system.
  • the electrical circuit further comprises in the example considered a control unit 32, which can be the central computer of the vehicle or be dedicated to all or part of the powertrain powertrain1.
  • This control unit 32 communicates via a data network 33, which is for example of the CAN type, with various components of the electrical circuit, as can be seen in FIG. 4.
  • the present invention consists, knowing: the value of the outside diameter D1 and the value of the axial dimension L1 of the frame 15 of the stator of a reference electric machine as represented in FIG. 2, to be determined for a target rotating electrical machine of structure similar to that of FIG.
  • the equation below provides a link between the values of Di and Li on the one hand and those of D2 and L2 on the other hand in the case where the losses of the reference electrical machine are equal to 5000W.
  • the reference machine has a nominal power of 25 kW and it is desired that the target rotating electrical machine has a nominal power of 35 kW.

Abstract

Machine électrique tournante (7), comprenant : - un stator (10) comprenant un enroulement électrique polyphasé, et - un rotor (12) mobile en rotation autour d'un axe (X), la machine (7) étant configurée de manière à ce que le produit en mm2 entre le diamètre extérieur (D) et la dimension axiale (L) de la carcasse (15) du stator (10) vérifie la relation suivante : (Formule AA) Rs désignant la résistance d'une phase de l'enroulement électrique de stator, Is désignant la valeur efficace maximale du courant de phase, et N désignant le nombre de phases de l'enroulement électrique de stator.

Description

Machine électrique tournante
La présente invention concerne une machine électrique tournante pour véhicule.
La machine électrique est par exemple un alterno-démarreur ou un moteur électrique, alimenté par une tension nominale de 12V ou de 48V, voire plus.
Cette machine électrique peut être intégrée à un véhicule à propulsion hybride ou purement électrique, par exemple une automobile.
Les pertes d’une machine électrique sont la somme des pertes Joule et des pertes fer.
Il existe un besoin pour dimensionner la machine électrique de manière à limiter autant que possible ces pertes.
L’invention a pour but de répondre à ce besoin et elle y parvient, selon l’un de ses aspects, à l’aide d’une machine électrique tournante, comprenant :
- un stator comprenant un enroulement électrique polyphasé, et
- un rotor mobile en rotation autour d’un axe, la machine étant configurée de manière à ce que le produit en mm2 entre le diamètre extérieur (D) et la dimension axiale (L) de la carcasse du stator vérifie la relation suivante : [Math 1]
(5000 + N X (Rs X /J - 900)) X 2,1252 £ D x L £ (6000 + N X (Rs X /J - 900)) X 2,1252
Rs désignant la résistance d’une phase de l’enroulement électrique de stator et étant exprimée en W,
Is désignant la valeur efficace maximale du courant de phase et étant exprimée en A, et N désignant le nombre de phases de l’enroulement électrique de stator.
La dissipation des pertes de la machine peut être considérée comme proportionnelle à la surface d’échange thermique de la machine, et cette surface d’échange thermique dépend du produit entre le diamètre extérieur de la carcasse du stator de la machine et la dimension axiale de la carcasse de ce stator. L’invention consiste ainsi à dimensionner ce produit de manière à limiter les pertes de la machine.
Au sens de la présente demande :
- « axialement » signifie « parallèlement à l’axe de rotation de l’arbre »,
- « radialement » signifie « dans un plan perpendiculaire à l’axe de rotation de l’arbre et le long d’une droite coupant cet axe de rotation »,
- « circonférentiellement » signifie « dans un plan perpendiculaire à l’axe de rotation de l’arbre et en se déplaçant autour de cet axe », et
- « puissance nominale » désigne la puissance mécanique pic disponible sur l’arbre rotor.
La machine électrique tournante peut avoir une tension nominale d’alimentation de 48V. Dans tout ce qui précède, le rotor peut comprendre un nombre de paires de pôles quelconque, par exemple quatre, six, ou huit paires de pôles.
La machine électrique tournante peut présenter une puissance nominale supérieure ou égale à 4 kW, 8 kW, 15 kW, 25 kW ou plus.
La machine électrique peut être une machine synchrone. Le rotor peut comporter une pluralité d’aimants permanents et être dépourvu d’enroulement électrique d’excitation. Le rotor peut être formé par un paquet de tôles à l’intérieur duquel sont disposés les aimants permanents.
Dans tout ce qui précède, l’enroulement électrique polyphasé du stator peut être formé par des fils ou par des barres conductrices reliées les unes les autres. Chaque encoche de la carcasse du stator peut recevoir plusieurs conducteurs, par exemple 2, 4 ou 6.
Dans tout ce qui précède, la machine électrique peut comprendre un circuit de refroidissement du stator dans lequel circule du fluide tel que de l’air ou du liquide. Ce liquide peut être de l’eau ou de l’huile.
Le rotor peut être refroidi par ce même circuit de refroidissement ou par un autre circuit de refroidissement dans lequel circule de l’air, ou du liquide tel que de l’eau ou de l’huile.
L’invention peut permettre, considérant les dimensions d’une machine électrique connue dont le diamètre extérieur de la carcasse de stator et la dimension axiale de cette carcasse sont optimisées par rapport aux pertes fer précitées, d’obtenir une plage de valeurs pour le diamètre extérieur et la dimension axiale de la carcasse du stator d’une machine électrique cible de puissance nominale différente, de manière à optimiser également les pertes fer de cette machine électrique de puissance nominale différente. En variante, l’invention peut permettre, considérant les dimensions d’une machine électrique connue dont le diamètre extérieur de la carcasse de stator et la dimension axiale de cette carcasse sont optimisées par rapport aux pertes fer précitées, d’obtenir une plage de valeurs autres pour le diamètre extérieur et la dimension axiale de la carcasse du stator d’une machine électrique cible de même puissance nominale, de manière à optimiser également les pertes fer de cette machine électrique de même puissance nominale.
Considérant que la machine électrique tournante connue, référencée ensuite par l’indice « 1 », présente les mêmes pertes fer optimisées que la machine électrique tournante cible que l’on cherche à dimensionner, référencée ensuite par l’indice « 2 », chacune de ces machines ayant par exemple un enroulement électrique de stator définissant un double système triphasé, on obtient les équations suivantes :
Figure imgf000004_0001
Considérant les pertes fer Pf pour cette machine cible, on obtient :
Figure imgf000005_0001
Sac ant que a mac ne connue à ses pertes P1 comprises entre 5000 W et 6000 W, on obtient les équations suivantes :
Figure imgf000005_0002
Par ailleurs, en combinant les équations [Math2] et [Math3], on obtient
Figure imgf000005_0003
D’où il vient, en combinant d’une part les équations [Math8] et [Math6], et [Math8] et
Figure imgf000005_0004
Pour [Math 10], on utilise au dénominateur comme valeur de pertes 5000W, et non 6000W. On obtient ainsi les bornes selon les équations [Math9] et [Math10] pour les valeurs du produit entre D2 et L2 de la machine cible que l’on cherche à dimensionner à partir du produit entre D1 et L1 de la machine connue. En choisissant par exemple pour les valeurs de D1, L1, RS1 et IS1 les valeurs respectives suivantes : 161 mm, 66 mm, 8,8 mΩ et 320 Arms, on arrive aux bornes suivantes pour le produit en mm2 entre D2 et L2:
Figure imgf000005_0005
L’invention n’est bien entendu pas limitée au choix de valeurs précité pour Di et Li, le choix de 5000W et de 6000W comme valeurs de puissance traduisant une large plage de valeurs pour les dimensions Li, Di, Rsi, et Isi.
L’invention a encore pour objet, selon un autre de ses aspects, un ensemble de propulsion d’un véhicule électrique ou hybride, comprenant :
- une machine électrique tournante, telle que définie ci-dessus, et
- un onduleur/redresseur connecté électriquement à l’enroulement électrique du stator et apte à être connecté au réseau de bord du véhicule.
Le réseau de bord du véhicule comprend par exemple deux sous-réseaux entre lesquels est interposé un système de commutation définissant un convertisseur de tension continu/continu.
L’un de l’onduleur/redresseur et du convertisseur de tension continu/continu peut mettre en œuvre des interrupteurs électroniques commandables, tels que des transistors en nitrure de galium (GaN), en carbure de silicium (SiC), ou en silicium.
Le premier sous-réseau électrique, étant celui apte à être connecté à l’onduleur/redresseur, présente par exemple une tension nominale de 48V ou une tension nominale de valeur supérieure à 300V, et le deuxième sous-réseau électrique présente par exemple une tension nominale de 12V.
Le premier sous-réseau peut présenter une batterie et une unité de stockage d’énergie électrique formée par un ou plusieurs condensateurs et disposée en parallèle de la sortie continue de l’onduleur/redresseur. La capacité de cette unité de stockage d’énergie électrique est notamment comprise entre 2000 pF et 4000m F, par exemple de l’ordre de 3000m F.
La valeur de la résistance de phase de l’enroulement électrique de stator et la valeur de la résistance de l’onduleur/redresseur peuvent être choisies de manière à vérifier la relation suivante :
Figure imgf000006_0001
où Pmec max désigne la puissance nominale de la machine électrique tournante.
Cette relation est explicitée dans la demande WO 2020/025611 de la Déposante. L’invention a encore pour objet, selon un autre de ses aspects, un groupe motopropulseur de véhicule hybride ou électrique, comprenant :
- l’ensemble défini ci-dessus, et
- une boîte de vitesses, comprenant des pignons, définissant des rapports de boîte, et
- un essieu avant et un essieu arrière, l’arbre de la machine électrique tournante étant solidaire en rotation : - d’un arbre d’entrée de la boîte de vitesses, ou
- de l’arbre de sortie de la boîte de vitesses, ou
- de pignons fous de la boîte de vitesses, ou
- de l’essieu avant ou de l’essieu arrière.
En variante, l’arbre de la machine électrique peut être solidaire en rotation du vilebrequin du moteur thermique du véhicule, lorsque le groupe motopropulseur comprend un tel moteur thermique. Dans un tel cas, la machine électrique tournante peut comprendre une poulie ou tout autre moyen de liaison vers le reste du groupe motopropulseur du véhicule. La machine électrique est par exemple reliée, notamment via une courroie, au vilebrequin du moteur thermique du véhicule.
Le groupe motopropulseur peut comprendre un double embrayage, à sec ou humide, chacun des arbres de sortie du double embrayage formant alors un arbre d’entrée pour la boîte de vitesses.
L’invention a encore pour objet, selon un autre de ses aspects, un procédé de réalisation d’une machine électrique tournante, comprenant :
- un stator comprenant un enroulement électrique polyphasé, et
- un rotor mobile en rotation autour d’un axe, le procédé comprenant les étapes selon lesquelles :
- on détermine la valeur du diamètre extérieur (D) et de la dimension axiale (L) de la carcasse du stator de manière à ce que le produit en mm2 entre lesdites valeurs vérifie la relation suivante :
Figure imgf000007_0001
- on fabrique la machine avec une carcasse de stator dont le diamètre extérieur et la dimension axiale ont des valeurs ainsi déterminées.
Tout ou partie de ce qui précède s’applique encore à cet autre aspect de l’invention. L’invention a encore pour objet, selon un autre de ses aspects, un procédé de réalisation d’une machine électrique tournante cible, comprenant un stator comprenant un enroulement électrique polyphasé, et un rotor mobile en rotation autour d’un axe, le procédé comprenant les étapes selon lesquelles :
- on dispose pour une machine de référence de la valeur du diamètre extérieur (Di) et de la valeur de la dimension axiale (Li) de la carcasse du stator de cette machine de référence,
- on détermine la valeur du diamètre extérieur (D2) et de la dimension axiale (L2) de la carcasse du stator de la machine cible, de manière à ce que le produit en mm2 entre lesdites valeurs vérifie la relation
Figure imgf000008_0001
- on fabrique la machine cible avec une carcasse de stator dont le diamètre extérieur et la dimension axiale ont des valeurs ainsi déterminées.
L’invention permet ainsi, connaissant une machine électrique optimisée en termes de pertes fer, d’avoir une règle de conception pour dimensionner une machine électrique de puissance nominale différente ou non, qui soit également optimisée en termes de pertes fer.
L’invention pourra être mieux comprise à la lecture de la description qui va suivre d’exemples non limitatifs de celle-ci et à l’examen du dessin annexé sur lequel :
- [Fig.l] représente de façon schématique et partielle un groupe motopropulseur auquel peut s’appliquer un exemple de mise en œuvre de l’invention,
- [Fig. 2] représente de façon schématique un exemple de machine électrique tournante du système de la figure 1, baignant dans l’huile,
- [Fig 3] représente de façon isolée un exemple de rotor de la machine électrique tournante de la figure 2, et
- [Fig 4] représente de façon schématique, le circuit électrique de la machine électrique tournante du groupe motopropulseur des figures 1 et 2.
On a représenté sur la figure 1 un groupe motopropulseur 1 auquel peut s’appliquer l’invention. Le groupe motopropulseur 1 comprend ici un double embrayage 6 pouvant être à sec ou humide, à disques ou à lamelles.
Ce double embrayage présente deux arbres de sortie 2 et 3 qui sont ici concentriques. Chacun de ces arbres définit un arbre d’entrée de boîte de vitesses 4. La boite de vitesses 4 comprend, à l’intérieur d’un carter rempli d’huile, une pluralité de pignons définissant une pluralité de rapports de vitesse Rl-Rn. L’arbre 2 est ici associé à des rapports de vitesse impairs et l’arbre 3 est associé à des rapports de vitesse pairs.
Le couple en sortie de la boîte de vitesses 4 est transmis aux roues du véhicule, afin d’assurer une propulsion de ce véhicule.
Le groupe motopropulseur 1 est hybride ou électrique, comprenant une machine électrique tournante 7. Cette machine tournante 7 est implantée à l’intérieur du carter de la boîte de vitesses 4. Dans l’exemple considéré, l’arbre de la machine tournante 7 est apte à coopérer par engrènement avec un pignon 8 solidaire de l’arbre 2 d’entrée de la boîte de vitesses associé aux rapports de vitesse impairs, mais d’autres positions sont possibles pour la machine électrique tournante 7, par exemple son engrènement avec un pignon solidaire de l’arbre 3 d’ entrée de la boîte de vitesses associé aux rapports de vitesse pairs. Des emplacements en dehors du carter de la boîte de vitesses 4 sont par ailleurs possibles.
Cette machine électrique tournante 7 peut former une source de propulsion électrique du véhicule. La machine électrique tournante 7 comporte un carter non représenté sur la figure 2. A l'intérieur de ce carter, elle comporte, en outre, un arbre 13, un rotor 12 solidaire en rotation de l’arbre 13, et un stator 10 entourant le rotor 12. Le mouvement de rotation du rotor 12 se fait autour d’un axe X.
Bien que non représenté, le carter peut comporter un palier avant et un palier arrière qui sont assemblés ensemble, et peuvent chacun avoir une forme creuse et porter centralement un roulement à billes respectif pour le montage à rotation de l'arbre 13.
Dans cet exemple de réalisation, le stator 10 comporte une carcasse 15 en forme d'un paquet de tôles doté d'encoches, par exemple du type semi fermée ou ouverte, équipées d’isolant d’encoches pour le montage de l’enroulement électrique polyphasé du stator. Chaque phase comporte un enroulement traversant les encoches de la carcasse 15 et formant, avec toutes les phases, un chignon avant 16 et un chignon arrière 17 de part et d'autre de la carcasse 15 du stator. Les enroulements sont par exemple obtenus à partir d’un fil continu recouvert d’émail ou à partir d’éléments conducteurs en forme de barre tels que des épingles reliées entre elles. Chaque encoche peut recevoir plusieurs conducteurs, par exemple 2 ou 4 ou 6 conducteurs.
L’ enroulement électrique du stator définit ici un double système triphasé, un seul de ces systèmes étant représenté sur la figure 4, chacun de ces systèmes triphasés mettant alors en œuvre un montage en étoile ou en triangle dont les sorties sont reliées à un onduleur/redresseur 20. En variante, l’enroulement électrique du stator peut définir un unique système triphasé.
Le rotor 12 de la figure 2 est formé par un empilement de tôles, comme représenté sur la figure 3. Le nombre de paires de pôles défini par le rotor 12 peut être quelconque, par exemple être compris entre trois et huit, étant par exemple égal à six ou à huit.
On constate encore sur la figure 2 que l’arbre 13 est creux, de l’huile circulant à travers celui-ci. Des ouvertures ménagées dans l’arbre 13 et visibles sur la figure 2 permettent la projection radiale d’huile dans la machine, de sorte que le rotor et le stator baignent dans l’huile, dans l’exemple considéré.
La machine comprend encore des capteurs de mesure de la position du rotor, non représentés sur la figure 2. Ces capteurs sont par exemple trois capteurs à effet Hall interagissant avec une cible magnétique solidaire en rotation du rotor, mais d’autres capteurs sont possibles tels que des résolveurs ou des capteurs inductifs. L’enroulement électrique du stator de la machine électrique tournante 7 appartient à un circuit électrique comprenant l’onduleur/redresseur 20. Cet onduleur/redresseur 20 est interposé entre l’enroulement électrique du stator et un premier sous-réseau du réseau de bord du véhicule dont la tension nominale est dans l’exemple décrit égale à 48V. L’onduleur/redresseur 20 comprend par exemple plusieurs bras de commutation, chaque bras mettant en œuvre deux transistors montés en série et séparés par un point milieu. Chaque transistor est par exemple un transistor en nitrure de galium (GaN), en carbure de silicium (SiC), ou en silicium. Le premier sous-réseau du réseau de bord comprend également dans l’exemple décrit une batterie 21 reliée au reste de ce premier sous-réseau par un interrupteur de déconnexion 22. Le premier sous-réseau peut encore comprendre ou non un ou plusieurs consommateurs 23, dont par exemple mais de façon non limitative un compresseur électrique de suralimentation. Aux bornes de l’entrée continue 24 de l’onduleur/redresseur 20 est disposée dans l’exemple décrit une unité de stockage d’énergie électrique 25, qui est par exemple formée par un condensateur ou par l’assemblage de plusieurs condensateurs. Cette unité de stockage d’énergie électrique 25 a par exemple une capacité comprise entre 3000µF et 4000µF. Le circuit électrique comprend également dans l’exemple considéré un convertisseur de tension continu/continu 27 interposé entre le premier sous-réseau et un deuxième sous-réseau du réseau de bord. Similairement à l’onduleur/redresseur 20, le convertisseur de tension continu/ continu comprend par exemple des transistors qui peuvent être du même type que ceux mentionnés précédemment. Le deuxième sous-réseau du réseau de bord présente par exemple une tension nominale de 12V. De façon connue, ce deuxième sous- réseau peut comprendre une batterie 30 ainsi que des consommateurs non représentés, pouvant être choisi(s) dans la liste suivante non limitative: système d’éclairage, système de direction assistée électrique, système de freinage, système de climatisation ou système d’autoradio. Le circuit électrique comprend encore dans l’exemple considéré une unité de contrôle 32, qui peut être le calculateur central du véhicule ou être dédiée à tout ou partie du groupe motopropulseur groupe motopropulseur1. Cette unité de contrôle 32 communique via un réseau de données 33, qui est par exemple de type CAN, avec différents composants du circuit électrique, comme on peut le voir sur la figure 4. La présente invention consiste, connaissant : la valeur du diamètre extérieur D1 et la valeur de la dimension axiale L1 de la carcasse 15 du stator d’une machine électrique de référence telle que représentée à la figure 2, à déterminer pour une machine électrique tournante cible de structure similaire à celle de la figure 2 et, par exemple de puissance nominale différente, la valeur du diamètre extérieur D2 et la valeur de la dimension axiale L2 de la carcasse 15 du stator, de manière à vérifier une relation donnée entre Li Di, L2 et D2 afin d'évacuer les pertes de la machine cible.
Comme déjà mentionné ci-dessus, l’équation ci-dessous fournit un lien entre les valeurs de Di et Li d’une part et celles de D2 et L2 d’autre part dans le cas où les pertes de la machine électrique de référence sont égales à 5000W.
Figure imgf000011_0001
Dans l’exemple considéré, la machine de référence a une puissance nominale de 25kW et l’on souhaite que la machine électrique tournante cible ait une puissance nominale de 35 kW. Avec les données suivantes : Di= 161 mm, Li= 66 mm, Rsi-8,8 mQ, et Isi- 320 Arms, l’équation ci-dessus devient :
Figure imgf000011_0002
Considérant que la valeur efficace maximale du courant de phase Is2 dans le cas de la machine électrique tournante cible sera égal à 400 Arms, et que la résistance Rond de G onduleur/redresseur 20 est égale à 1,5 ihW, on obtient, en utilisant l’équation suivante :
Figure imgf000011_0003
une valeur de 6,4 mQ pour la résistance de phase Rs2 de l’enroulement électrique de stator de la machine électrique tournante cible.
L’ équation précédente pour le produit entre D2 et L2 devient alors [Math 18]
Figure imgf000011_0004
Soit avec les valeurs ci-dessus pour DI et Ll,
[Math 19]
Figure imgf000011_0005
Toujours pour cette machine électrique tournante cible dont la puissance nominale est de 35 kW, on considère que le courant continu maximal dans la batterie 48 V associée est de 790 A. Pour conserver les mêmes pertes Joule que dans le cas de la machine électrique tournante de référence dont la puissance nominale est de 25 kW et dont la résistance de la batterie 48 V associée est de 6 mQ avec un courant maximal dans cette batterie 48V associée de 550 A, on choisira une résistance batterie de 3 mQ pour la batterie 48 V associée à cette machine électrique tournante cible 7.
L’invention n’est pas limitée à l’exemple qui vient d’être décrit.

Claims

Revendications
1. Machine électrique tournante (7), comprenant :
- un stator (10) comprenant un enroulement électrique polyphasé, et
- un rotor (12) mobile en rotation autour d’un axe (X), la machine (7) étant configurée de manière à ce que le produit en mm2 entre le diamètre extérieur (D) et la dimension axiale (L) de la carcasse (15) du stator (10) vérifie la relation suivante :
[Math 20]
Figure imgf000013_0001
Rs désignant la résistance d’une phase de l’enroulement électrique de stator et étant exprimée en W,
Is désignant la valeur efficace maximale du courant de phase et étant exprimée en A, et N désignant le nombre de phases de l’enroulement électrique de stator, la machine électrique tournante (7) présentant une puissance nominale supérieure ou égale à 4 kW.
2. Machine électrique tournante selon la revendication 1, dans lequel le rotor (12) comporte une pluralité d’aimants permanents et est dépourvu d’enroulement électrique d’excitation.
3. Ensemble de propulsion d’un véhicule électrique ou hybride, comprenant :
- une machine électrique tournante (7), selon la revendication 1 ou 2, et
- un onduleur/redresseur (20) connecté électriquement à l’enroulement électrique du stator et apte à être connecté au réseau de bord du véhicule.
4. Ensemble selon la revendication précédente, la résistance (Rs) d’une phase de l’enroulement électrique de stator et la résistance (Rond) de G onduleur/redresseur (20) vérifiant la relation suivante
[Math 21]
Figure imgf000013_0002
Pmec max désignant la puissance nominale de la machine électrique.
5. Ensemble selon la revendication 4, l’enroulement électrique de stator étant triphasé ou définissant un double système triphasé.
6. Ensemble selon l’une quelconque des revendications 3 à 5, la machine électrique (7) tournante ayant une tension nominale d’alimentation de 48V.
7. Groupe motopropulseur (1) de véhicule hybride ou électrique, comprenant :
- l’ensemble selon l’une quelconque des revendications 3 à 6, - une boîte de vitesses (4), comprenant des pignons, définissant des rapports de boîte, et
- un essieu avant et un essieu arrière, l’arbre de la machine électrique tournante étant solidaire en rotation :
- d’un arbre d’entrée de la boîte de vitesses, ou
- de l’arbre de sortie de la boîte de vitesses, ou
- de pignons fous de la boîte de vitesses, ou
- de l’essieu avant ou de l’essieu arrière.
8. Groupe motopropulseur (1) selon la revendication 7, comprenant un double embrayage (6), à sec ou humide, chacun des arbres de sortie du double embrayage formant alors un arbre d’entrée pour la boîte de vitesses (4).
9. Procédé de réalisation d’une machine électrique tournante (7), comprenant :
- un stator (10) comprenant un enroulement électrique polyphasé, et
- un rotor (12) mobile en rotation autour d’un axe (X), le procédé comprenant les étapes selon lesquelles :
- on détermine la valeur du diamètre extérieur (D) et de la dimension axiale (L) de la carcasse (15) du stator (10) de manière à ce que le produit en mm2 entre lesdites valeurs vérifie la relation suivante:
Figure imgf000014_0001
- on fabrique la machine avec une carcasse (15) de stator (10) dont le diamètre extérieur (D) et la dimension axiale (L) ont des valeurs ainsi déterminées, la machine électrique tournante présentant une puissance nominale supérieure ou égale à 4 kW.
10. Procédé de réalisation d’une machine électrique tournante cible (7), comprenant un stator (10) comprenant un enroulement électrique polyphasé, et un rotor (12) mobile en rotation autour d’un axe (X), le procédé comprenant les étapes selon lesquelles :
- on dispose pour une machine de référence de la valeur du diamètre extérieur (Di) et de la valeur de la dimension axiale (Li) de la carcasse (15) du stator (10) de cette machine de référence,
- on détermine la valeur du diamètre extérieur (D2) et de la dimension axiale (L2) de la carcasse (15) du stator (10) de la machine cible de manière à ce que le produit en mm2 entre lesdites valeurs vérifie la relation
Figure imgf000014_0002
900)) X 2,1252 et
- on fabrique la machine cible (7) avec une carcasse (15) de stator (10) dont le diamètre extérieur (D2) et la dimension axiale (L2) ont des valeurs ainsi déterminées, la machine de référence et la machine cible présentant une puissance nominale supérieure ou égale à 4 kW.
PCT/EP2022/056051 2021-03-19 2022-03-09 Machine électrique tournante WO2022194640A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022001607.8T DE112022001607T5 (de) 2021-03-19 2022-03-09 Rotierende elektrische Maschine
CN202280028412.9A CN117203878A (zh) 2021-03-19 2022-03-09 旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2102755 2021-03-19
FR2102755A FR3121001A1 (fr) 2021-03-19 2021-03-19 Machine électrique tournante

Publications (1)

Publication Number Publication Date
WO2022194640A1 true WO2022194640A1 (fr) 2022-09-22

Family

ID=76034755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/056051 WO2022194640A1 (fr) 2021-03-19 2022-03-09 Machine électrique tournante

Country Status (4)

Country Link
CN (1) CN117203878A (fr)
DE (1) DE112022001607T5 (fr)
FR (1) FR3121001A1 (fr)
WO (1) WO2022194640A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817603A1 (fr) * 2000-07-18 2002-06-07 Luk Lamellen & Kupplungsbau Boite de vitesses
US20180062490A1 (en) * 2016-08-31 2018-03-01 Uti Limited Partnership Induction machine with integrated magnetic gear and related methods
WO2020025611A1 (fr) 2018-08-02 2020-02-06 Valeo Equipements Electriques Moteur Machine électrique tournante à dimensionnement optimisé
FR3098038A1 (fr) * 2019-06-26 2021-01-01 Valeo Equipements Electriques Moteur Machine electrique tournante à configuration co-axiale

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817603A1 (fr) * 2000-07-18 2002-06-07 Luk Lamellen & Kupplungsbau Boite de vitesses
US20180062490A1 (en) * 2016-08-31 2018-03-01 Uti Limited Partnership Induction machine with integrated magnetic gear and related methods
WO2020025611A1 (fr) 2018-08-02 2020-02-06 Valeo Equipements Electriques Moteur Machine électrique tournante à dimensionnement optimisé
FR3098038A1 (fr) * 2019-06-26 2021-01-01 Valeo Equipements Electriques Moteur Machine electrique tournante à configuration co-axiale

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU LONGFEI ET AL: "Loss Analysis of the Permanent Magnet Motor with an Amorphous Stator Core by Considering the Influences of Manufacturing Processes", 2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), IEEE, 11 August 2019 (2019-08-11), pages 1 - 6, XP033643394, DOI: 10.1109/ICEMS.2019.8921802 *

Also Published As

Publication number Publication date
DE112022001607T5 (de) 2024-01-04
CN117203878A (zh) 2023-12-08
FR3121001A1 (fr) 2022-09-23

Similar Documents

Publication Publication Date Title
EP1174988B1 (fr) Stator de machine électrique tournante
WO2005076443A1 (fr) Coupleur electromagnetique
EP0097170A1 (fr) Machine electrique tournante formant notamment variateur de vitesse ou convertisseur de couple.
FR2947115A1 (fr) Machine dynamoelectrique
EP3602755A1 (fr) Machine électrique tournante à configuration optimisée
FR2910736A1 (fr) Stator d'une machine electrique tournante polyphasee, machine electrique tournante polyphasee comportant un tel stator et procede de realisation d'un tel stator
WO2022194640A1 (fr) Machine électrique tournante
FR3051295B1 (fr) Machine electrique tournante a puissance augmentee
FR3033957A1 (fr) Machine electrique tournante, notamment a commutation de flux
WO2022199957A1 (fr) Composant électronique de commande d'un onduleur/redresseur
JP3937950B2 (ja) 両面空隙型回転電機
WO2022171457A1 (fr) Procédé de décharge d'au moins une unité de stockage d'énergie électrique d'un circuit
FR3098038A1 (fr) Machine electrique tournante à configuration co-axiale
EP4324087A1 (fr) Dispositif de commande d'un onduleur/redresseur
FR3128836A1 (fr) Dispositif de détermination de la position angulaire d’un rotor de machine électrique tournante
WO2019170482A1 (fr) Machine electrique tournante a bobinage fractionne
FR3056833B1 (fr) Machine electrique tournante equipee de deux bobinages
FR3098040A1 (fr) Machine electrique tournante à refroidissement par eau
FR3121804A1 (fr) Dispositif de commande d’un onduleur/redresseur
WO2022238256A1 (fr) Bobinage en fonction d'une typologie d'une machine électrique tournante synchrone à aimant pour dispositif mobile à autopropulsion
FR3101490A1 (fr) Stator pour machine électrique tournante
CA3179832A1 (fr) Une machine electrique a flux axial. moteur / generateur a
EP4101057A1 (fr) Chambre de refroidissement pour machine électrique tournante
FR3098041A1 (fr) Machine electrique tournante à refroidissement par huile
EP3499692A1 (fr) Moteur electrique a courant continu sans balai et vehicule associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22713626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022001607

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22713626

Country of ref document: EP

Kind code of ref document: A1