WO2022194043A1 - 一种发声装置 - Google Patents

一种发声装置 Download PDF

Info

Publication number
WO2022194043A1
WO2022194043A1 PCT/CN2022/080349 CN2022080349W WO2022194043A1 WO 2022194043 A1 WO2022194043 A1 WO 2022194043A1 CN 2022080349 W CN2022080349 W CN 2022080349W WO 2022194043 A1 WO2022194043 A1 WO 2022194043A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
generating
vibrating piece
electromagnet
component
Prior art date
Application number
PCT/CN2022/080349
Other languages
English (en)
French (fr)
Inventor
姚璐鹏
贺真
戴娜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022194043A1 publication Critical patent/WO2022194043A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the present application relates to the technical field of terminals, and in particular, to a sound producing device.
  • portable terminal devices such as mobile phones and tablet computers have become an important carrier for users to perform daily entertainment activities such as voice and video playback, audio playback, and game competition due to their small size, thin thickness, and easy portability. .
  • the sound quality of the speaker is an important indicator that affects the user experience.
  • the sound quality of a loudspeaker can be affected by factors such as the effective radiation area of the loudspeaker, the excursion (the physical vibration boundary of the diaphragm), and the volume of the sound cavity.
  • increasing the size of the speaker is conducive to increasing the effective radiation area, increasing the stroke and increasing the volume of the sound cavity, which is conducive to improving the sound quality.
  • the size of the loudspeaker tends to be further reduced, making it difficult to improve the sound quality of the loudspeaker.
  • the reduction in the size of the loudspeaker leads to poorer low-frequency sensitivity, which affects the low-frequency performance of the loudspeaker.
  • the embodiments of the present application provide a sound-generating device, so as to improve the sound quality of the sound-generating device without increasing the thickness and volume of the sound-generating device.
  • an embodiment of the present application provides a sound-generating device: comprising: a housing, a part of the housing includes a first sound-generating component; a second sound-generating component located inside the device and disposed opposite the first sound-generating component; the first sound-generating component Or the second sound-generating component includes a vibrating piece; the first sound-generating component and the second sound-generating component are used to cooperate with each other to drive the vibrating piece to vibrate and emit sound.
  • a part of the casing is used as a sound-generating component for vibration sounding, which reduces the complexity of the internal structure of the device. Therefore, compared with the traditional technical solution, the sound-emitting device of the embodiment of the present application has smaller volume and thickness under the same sound quality, and better sound quality under the same volume and thickness.
  • the first sound-generating component includes a vibrating sheet, and the vibrating sheet and the housing are connected by a flexible connecting member.
  • the vibrating piece is movably connected to the casing through the flexible connecting member, which can not only vibrate and produce sound, but also protect the devices inside the device as a part of the casing.
  • the vibrating sheet and the housing are located on the same plane. In this way, when the vibrating piece does not need to vibrate and emit sound, the vibrating piece and the casing have high integrity, which can improve the aesthetics of the device.
  • the first sound generating component and the second sound generating component are attached to each other;
  • the first sound-emitting component and the second sound-emitting component are used to cooperate with each other to generate a repulsive force, so as to push the vibrating piece to a first position, and the first position is located outside the plane where the shell is located; during the sound-emitting process of the sound-emitting device , the vibrating piece is used to vibrate at the first position. Since the first position is located outside the plane where the housing is located, during the sounding process of the sounding device, the vibrating piece can achieve a larger amplitude and have better low-frequency performance.
  • the vibrating piece is located outside the plane where the housing is located, and there is a gap between the first sound-emitting component and the second sound-emitting component .
  • the vibrating piece can achieve a larger amplitude and have better low-frequency performance; and, when the sounding device needs to emit sound, the vibrating piece can directly start to vibrate and sound, and the vibrating piece does not need to be pushed out first, So the response is faster.
  • the first sound-emitting component includes a permanent magnet, and the permanent magnet is disposed on the vibrating sheet facing the second sound-emitting component
  • the second sound-emitting component includes an electromagnet, and the electromagnet is arranged opposite to the permanent magnet. In this way, the permanent magnet is connected with the vibrating piece.
  • the first sound-generating component includes an electromagnet, and the electromagnet is disposed on the vibrating plate facing the second sound-generating component one side; the second sound-emitting component includes a permanent magnet, and the permanent magnet is arranged opposite to the electromagnet.
  • the electromagnet is connected with the vibrating piece.
  • the first sound-emitting component includes a first electromagnet, and the first electromagnet is disposed on the surface of the vibrating piece.
  • both sound-emitting components include electromagnets, and both can change the magnetic properties by changing the current, so that finer vibration control of the vibrating piece can be achieved.
  • the sound-emitting device further includes a first secondary magnet and a second secondary magnet; the first secondary magnet is provided on the permanent magnet. The outer side is connected to the vibrating sheet; the second secondary magnet is arranged on the outside of the coil of the electromagnet and the first secondary magnet; the second secondary magnet is spaced apart from the first secondary magnet in the direction perpendicular to the axis of the vibrating sheet; the first secondary magnet is The magnetic pole direction of the magnet and the magnetic pole direction of the second auxiliary magnet are both perpendicular to the axis direction of the vibrating piece; In this way, a repulsion force is generated between the first auxiliary magnet and the second auxiliary magnet in the direction perpendicular to the axis of the vibrating piece, and the repulsion force can prevent the lateral displacement of the first sound-generating part relative to the second sound-generating part, so as to prevent the first sound-generating part from being displaced laterally. the centering effect.
  • the sound generating device further includes a third sub-magnet; the third sub-magnet is arranged on the iron of the electromagnet In the core, the magnetic poles of the third auxiliary magnet and the magnetic poles of the permanent magnets are arranged opposite to each other with the same polarity. In this way, a repulsion force will be generated between the first sound-generating part and the third auxiliary magnet, which cancels out part of the static force, so that the first sound-generating part and the second sound-generating part are easier to separate under the action of the current.
  • the second sound-emitting component is provided with an annular groove matching the coil structure of the electromagnet;
  • the axial direction of the vibrating plate passes through the cladding structure and the permanent magnet; the coil of the electromagnet is embedded in the annular groove.
  • the annular groove increases the displacement amplitude of the first sound-generating component, so that the amplitude of the vibrating piece is larger.
  • the first sound-emitting component further includes an auxiliary permanent magnet, and the auxiliary permanent magnet is arranged on the iron of the first electromagnet. in the core.
  • the auxiliary permanent magnet can generate a static force for attracting the first sound-emitting part and the second sound-emitting part together when the first electromagnet and the second electromagnet are not energized, so that the vibrating piece is located in the plane of the casing .
  • the flexible connecting member includes an arc-shaped extension portion, a The first folded ear and the second folded ear arranged on the inner side of the extension part; the extension part is arranged between the gap between the shell and the vibrating piece, and the width of the extension part after the extension is greater than the width of the gap between the shell and the vibration piece; the first fold The ear is arranged on the inner side of the casing and is connected with the casing; the second folding ear is arranged on the inner side of the vibration piece and connected with the vibration piece.
  • the vibrating piece connected to the flexible connecting member can have a larger displacement margin in the axial direction thereof, thereby increasing the amplitude of the vibrating piece.
  • the first sound-generating component includes a base, and the base is connected to the housing to form an internal cavity of the sound-generating device; the second sound-generating component is disposed in the cavity Inside, the second sound-generating part includes a vibrating piece, and the vibrating piece and the base are connected by a flexible connecting part.
  • the vibrating piece can be hidden inside the sound generating device, and when the vibrating piece vibrates and emits sound, the user cannot perceive the vibration of the vibrating piece, which improves the user experience.
  • the first sound-generating component includes an electromagnet, and the electromagnet is disposed on the base facing the second sound-generating component. one side; the second sound-generating component includes a permanent magnet, and the permanent magnet is arranged on the side of the vibrating piece facing the first sound-generating component. In this way, the permanent magnet is connected with the vibrating piece.
  • the sound generating device needs to emit sound, it is only necessary to apply a changing current in the electromagnet to drive the permanent magnet to drive the vibrating piece to vibrate and make sound.
  • the first sound-generating component includes a permanent magnet, and the permanent magnet is disposed on the vibration plate facing the second sound-generating component. one side; the second sound-generating component includes an electromagnet, and the electromagnet is arranged on the side of the vibrating piece facing the first sound-generating component. In this way, the electromagnet is connected with the vibrating piece.
  • the sound generating device needs to emit sound, it is only necessary to apply a changing current in the electromagnet to drive the electromagnet to drive the vibrating piece to vibrate and make sound.
  • the flexible connecting member includes an arc-shaped extension portion, which is disposed outside the extension portion.
  • the first folded ear and the second folded ear arranged on the inner side of the extension part; the extension part is arranged between the gap between the base and the vibrating piece, and the width after the extension part is extended is greater than the width of the gap between the base and the vibrating piece;
  • the first folding ear is arranged on the inner side of the base and is connected with the base;
  • the second folding ear is arranged on the inner side of the vibration piece and is connected with the vibration piece.
  • the vibrating piece connected to the flexible connecting member can have a larger displacement margin in the axial direction thereof, thereby increasing the amplitude of the vibrating piece.
  • the first sounding component and the second sounding Alternate repulsion and attraction are generated between the components, which drive the vibrating piece to vibrate. In this way, the vibrating piece can vibrate back and forth under the action of alternating repulsion and attraction, and will not be stuck due to the single direction of force.
  • an embodiment of the present application provides a terminal device, where the terminal device includes the sounding device provided in the first aspect and any implementation manner thereof.
  • FIG. 1 is a schematic diagram of a terminal device combining a device body and a speaker according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of setting a speaker on a back cover of a terminal device according to an embodiment of the present application
  • FIG. 3 is an exploded view of a structure in which a speaker is arranged on a back cover of a terminal device according to an embodiment of the present application;
  • FIG. 4 is an exploded view of the structure of the sounding device provided by the first embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the electromagnet of the first magnetic component provided by the first embodiment of the present application.
  • FIG. 6 is a cross-sectional view of a sounding device provided by the first embodiment of the present application.
  • Fig. 7 is the schematic diagram of vibrating plate in equilibrium position
  • FIG. 8 is a diagram showing the relationship between the static force and the distance between the first sound-emitting component and the second sound-emitting component according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram of a circuit structure exemplarily provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the direction of the magnetic field of the electromagnet and the permanent magnet provided by the embodiment of the present application;
  • FIG. 11 is a flowchart of the driving method provided by the first embodiment of the present application.
  • FIG. 12 is a schematic diagram of a first driving signal provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the shape of the sound-emitting device according to the first embodiment of the present application in different states;
  • 15 is a schematic diagram of a second driving signal provided by an embodiment of the present application.
  • 16 is a schematic diagram of a third driving signal provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of the lateral displacement of the first sound-generating component relative to the second sound-generating component
  • 18 is a schematic diagram of an anti-dislocation structure provided by an embodiment of the present application.
  • FIG. 19 is a perspective exploded view of a third sub-magnet, an iron core and a coil provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of the first sub-magnet and the second sub-magnet shown in the embodiment of the present application;
  • 21 is a cross-sectional view of a sound-emitting device provided by a second embodiment of the present application.
  • FIG. 22 is an exploded perspective view of a cladding structure provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of the shape of the sounding device according to the second embodiment of the present application in different states
  • FIG. 25 is a cross-sectional view of a sounding device provided by a third embodiment of the present application.
  • FIG. 26 is a flowchart of the driving method provided by the third embodiment of the present application.
  • FIG. 27 is a schematic diagram of the shape of the sound-emitting device according to the third embodiment of the present application in different states;
  • FIG. 28 is a schematic structural diagram of an optional flexible connecting member shown in the fourth embodiment of the present application.
  • FIG. 29 is a cross-sectional view of a sounding device provided by a fifth embodiment of the present application.
  • FIG. 30 is a schematic structural diagram of a flexible connecting member of a sound-emitting device provided in a fifth embodiment of the present application.
  • FIG. 31 is a cross-sectional view of a sound-emitting device provided by a sixth embodiment of the present application.
  • FIG. 34 is a comparison diagram of frequency response curves of the sound generating device provided by the embodiment of the present application and a conventional speaker.
  • the sound quality of the speaker is an important indicator that affects the user experience.
  • the sound quality of a loudspeaker can be affected by factors such as the effective radiation area of the loudspeaker, the excursion (the physical vibration boundary of the diaphragm), and the volume of the sound cavity.
  • increasing the size of the speaker is conducive to increasing the effective radiation area, increasing the stroke and increasing the volume of the sound cavity, which is conducive to improving the sound quality.
  • the size of the loudspeaker tends to be further reduced, making it difficult to improve the sound quality of the loudspeaker.
  • the reduction in the size of the loudspeaker leads to poorer low-frequency sensitivity, which affects the low-frequency performance of the loudspeaker.
  • some terminal devices In order to improve the sound quality of the speaker, some terminal devices currently adopt a screen sound generation scheme, which uses the screen of the terminal device as a part of the speaker, and the vibrator directly drives the screen to vibrate and sound, so as to achieve the purpose of increasing the effective radiation area.
  • the screen since the screen is mostly made of rigid glass and other materials, the low-frequency performance is very poor, so the sound quality of the screen sounding scheme still has great problems.
  • other terminal devices adopt the combination of the device body and the speaker, that is, the terminal device 10 is provided with a large-sized speaker 20 that is equivalent to the size of the audio speaker. However, this will make the terminal device 10 extremely Thick and heavy, destroying the portability of the terminal device.
  • a current solution is to set the speaker on the back cover 11 of the terminal device as shown in FIG. 2 and FIG. 3 .
  • the back cover 11 of the terminal device is provided with a vibrating sheet 12
  • the vibrating sheet 12 is connected with the back cover 11 of the mobile phone through the piezoelectric ceramic sheet 13
  • the terminal device controls the vibration of the piezoelectric ceramic sheet 13 to drive the The vibrating piece 12 vibrates to generate sound.
  • Embodiments of the present application provide a sound generating device and a driving method thereof, which can improve the sound quality of the speaker, especially the low-frequency sound effect of the speaker, without increasing the size of the terminal device and without destroying the structural integrity of the terminal device.
  • the sound-emitting device can be any terminal device, including but not limited to: mobile phones, tablet computers, personal computers, workstation devices, large-screen devices (such as smart screens, smart TVs, etc.), wearable devices (such as smart bracelets) , smart watches) handheld game consoles, home game consoles, virtual reality devices, augmented reality devices, mixed reality devices, etc., car smart terminals, etc.
  • the basic idea of the sound-generating device provided by the embodiment of the present application is to design a part of the structure of the shell of the terminal device as a part of the structure of the speaker (corresponding to the first sound-generating component in the following embodiments), and set the device body in the shell to set the speaker's structure. Another part of the structure (corresponding to the second sound-emitting component in the following embodiment), the two parts of the structure can generate sound through the interaction of the magnetic field to generate relative vibration, thereby reducing the size of the terminal device.
  • FIG. 4 is an exploded view of the structure of the sound generating device provided by the first embodiment of the present application.
  • the sound-generating device includes: a device body 100 , a housing 110 , a first sound-generating part 400 and a second sound-generating part 200 .
  • the housing 110 is fastened on the device body 100 .
  • the first sound-emitting member 400 is used to constitute a part of the housing 110 .
  • the casing 110 is provided with an opening 111 .
  • the first sound-generating component 400 includes a vibrating piece 300 and a permanent magnet 470; wherein, the vibrating piece 300 is located at the opening 111 as a part of the housing 110, and the shape of the vibrating piece 300 is the same as that of the opening 111, and the size is smaller than or equal to that of the opening.
  • the size is preferably smaller than the size of the opening; the permanent magnet 470 is fixed on the side of the vibrating piece 300 facing the second sound-emitting part 200 , and has a fixed magnetic pole.
  • the direction of the magnetic pole of the permanent magnet 470 is preferably the same as the direction of the axis C of the vibrating piece 300 .
  • the magnetic pole direction refers to the direction of the magnetic object from one magnetic pole (for example, N pole) to another magnetic pole (for example, S pole).
  • the second sound-emitting member 200 is located inside the vibrating piece 300 and is fixedly arranged inside the device main body 100 .
  • the second sound-generating part 200 may include, for example, an electromagnet 270, and the electromagnet 270 is used to generate the magnetism of the corresponding magnetic pole according to the direction of the current in an electrified state.
  • FIG. 5 is a schematic structural diagram of the electromagnet 270 provided by the first embodiment of the present application.
  • the electromagnet 270 includes an iron core 210 and a coil 220 disposed around the iron core.
  • the coil 220 can be connected to the driving circuit.
  • a magnetic field B as shown in FIG. 5 will be generated near the coil 220, which can also magnetize the iron core 210 to strengthen the magnetic field.
  • the direction of the magnetic field is determined by the direction of the current, and the strength of the magnetic field can be determined by the number of turns of the coil 220 and the strength of the current.
  • the magnetic pole direction of the electromagnet is preferably the same as the axial direction of the vibrating piece 300 .
  • the iron core 210 is preferably made of a soft iron or silicon steel material that demagnetizes quickly.
  • the permanent magnet 470 will generate a magnetic force on the iron core 210 no matter when the coil of the electromagnet 270 is energized or when the coil is de-energized. This magnetic force is called static force.
  • the coil 220 When the coil 220 is powered off, the first sound-generating part 400 and the second sound-generating part 200 will be adsorbed together under the action of the static force.
  • FIG. 6 is a cross-sectional view of the sound generating device provided by the first embodiment of the present application. As shown in FIG. 6 , in the installed state of the first sound emitting member 400 and the second sound emitting member 200 , the second sound emitting member 200 is hidden in the plane of the housing 110 .
  • the sound-generating device further includes a flexible connecting member 500.
  • the flexible connecting member 500 is an annular structure and matches the shape of the vibrating piece 300 and the opening 111. It is preferably larger than or equal to the size of the opening 111 .
  • One end of the flexible connecting member 500 close to the inner ring is connected to the vibrating piece 300, and one end of the flexible connecting member 500 close to the outer ring is connected to the housing 110, so that the vibrating sheet 300 and the flexible connecting member 500 can close the opening 111 to make sound
  • the structure of the casing 110 of the device remains intact, and meanwhile, the second sound-emitting component 200 , the permanent magnet 470 and other components in the casing 110 are isolated from water and dust from the external environment.
  • the flexible connecting member 500 has certain ductility and deformability, thereby allowing the vibrating piece 300 and the permanent magnet 470 to produce a certain displacement change relative to the second sound-emitting member 200 , for example, the vibrating piece 300 and the permanent magnet 470 move to a certain extent.
  • a certain displacement occurs in a direction close to the second sound-emitting part 200 , or a certain displacement occurs in a direction away from the second sound-emitting part 200 by the vibrating piece 300 and the permanent magnet 470 .
  • the flexible connecting member 500 may be made of a soft material with certain elasticity, such as flexible rubber, flexible plastic, etc., which is not specifically limited in this embodiment of the present application.
  • the vibrating piece 300 and the casing 110 are located in the same plane, or the vibrating piece 300 is located on the inner side of the plane where the casing 110 is located, so that when When the sound-generating device does not emit sound, there will be no additional protrusions on the casing 110 of the sound-generating device, thereby improving the integrity of the sound-generating device.
  • the housing 110 of the sounding device may be made of metal or non-metallic materials, which is not specifically limited here.
  • common materials for the housing 110 may include glass, ceramics, aluminum-magnesium alloys, and polycarbonates. Ester, ABS resin, etc.
  • the vibrating piece 300 may be made of metal or non-metal material, such as glass, ceramic, aluminum-magnesium alloy, polycarbonate, ABS resin, etc., which is not specifically limited here.
  • the vibrating piece 300 and the casing 110 can be made of the same material, so that the sound-generating device has a stronger overall appearance. If the vibrating piece 300 and the housing 110 are made of different materials, some surface processes can be used to make the vibrating piece 300 and the housing 110 visually identical or similar.
  • the permanent magnet may be a natural lodestone or an artificial magnet, which is not specifically limited here.
  • natural magnets from iron ore, ferrite magnets, alnico magnets, rare earth magnets, magnetic steel, platinum magnets, nanostructured magnets, etc.
  • the permanent magnets are preferably of a sheet-like structure.
  • the vibrating piece is used to vibrate at the first position.
  • “vibrating at the first position” refers to: the first position is the basis for the vibrating piece to vibrate.
  • the position is also a position with an amplitude of 0. It can also be understood as the middle position of the vibration of the vibrating sheet. The vibrating sheet will vibrate up and down with this middle position as the center when it vibrates.
  • FIG. 7 is a schematic diagram of the vibrating piece 300 in the equilibrium position.
  • FIG. 8 is a diagram showing the relationship between the static force and the distance between the first sound-emitting component and the second sound-emitting component according to an embodiment of the present application.
  • one of the magnetic poles (for example, the N-stage) of the permanent magnet 470 is disposed facing the iron core 210
  • the other magnetic pole for example, the S-stage
  • the magnitude of the static force will be related to the distance between the second sound-emitting part 200 and the first sound-emitting part 400, specifically: The smaller the distance S between the second sound-generating part 200 and the first sound-generating part 400, the greater the static force; the greater the distance S between the second sound-generating part 200 and the first sound-generating part 400, the smaller the static force; When a sound-generating part 400 is far away from the second sound-generating part 200 to a certain critical position (ie, the position where the distance S in FIG.
  • the static force becomes 0; when the first sound-generating part 400 continues to move away from the second sound-generating part from the critical position With component 200, the static force is always 0.
  • the position where the vibrating piece is located when the first sound-emitting component 400 is located at the critical position is referred to as the equilibrium position.
  • the position where the corresponding vibrating piece is located can also be called the equilibrium position. This equilibrium position is a position where the amplitude of the vibrating piece 300 when vibrating and producing sound is zero.
  • the embodiment of the present application also provides a driving method, and the driving method is used to drive the sound-emitting device provided by the embodiment of the present application to switch between a non-working state, a working-ready state, and a working state.
  • FIG. 9 exemplarily provides a circuit structure for implementing the driving method. As shown in Figure 9, the circuit structure includes a decoder, a digital to analog D/A converter (DAC), a power amplifier, a controller, a non-DC blocking circuit and a sounding device.
  • DAC digital to analog D/A converter
  • the output end of the decoder is connected with the input end of the digital-to-analog converter, and is used for decoding the audio source (such as audio stream, audio file) to obtain the audio digital signal, and input the audio digital signal to the digital-to-analog converter; digital-to-analog conversion
  • the output end of the power amplifier is connected to the input end of the power amplifier, which is used to convert the audio digital signal into an audio analog signal, and input the audio analog signal to the power amplifier;
  • the output end of the power amplifier is connected to the input end without a DC blocking circuit, and the It is used to amplify the power of the audio analog signal to obtain the AC component of the driving signal;
  • the output end of the controller is connected to the input end of the power amplifier, and the controller is used to generate a DC signal and input it to the power amplifier.
  • the DC signal is amplified by the power amplifier. It becomes the DC component of the driving signal; the output end of the non-DC blocking circuit is connected to the coil of the sounding device. The DC component can be sent to the coil.
  • the driving signals in the embodiments of the present application may be described by current signals or voltage signals, and different descriptions do not affect the implementation of the embodiments of the present application.
  • circuit structure provided in FIG. 9 is only used as an example of the driving method that can realize the embodiment of the present application, and does not constitute a limitation on the technical solution of the present application.
  • Those skilled in the art can design the driving method when implementing the driving method.
  • Other circuits capable of realizing all or part of the functions of the circuit shown in FIG. 9 do not exceed the protection scope of the embodiments of the present application.
  • the DC component in the driving signal is used to cause the electromagnet 270 to generate a magnetic field with a constant magnetic pole direction when flowing through the coil 220
  • the magnetic pole direction of the magnetic field may be specifically related to the direction of the DC component.
  • a magnetic pole direction makes the electromagnet 270 and the permanent magnet 470 opposite to the same pole, for example, the N pole of the electromagnet 270 is opposite to the N pole of the permanent magnet 470, so that the electromagnet 270 and the permanent magnet 470 are opposite to each other.
  • a repulsion force is generated between them, pushing the permanent magnet 470 to move away from the electromagnet 270; another magnetic pole direction makes the electromagnet 270 and the permanent magnet 470 opposite to each other, for example, the N pole of the electromagnet 270 is opposite to the S pole of the permanent magnet 470 , so that an attractive force is generated between the electromagnet 270 and the permanent magnet 470 , and the permanent magnet 470 is pushed to move toward the direction close to the electromagnet 270 .
  • the embodiments of the present application may define: the direction of the DC component of the repulsive force generated between the electromagnet 270 and the permanent magnet 470 is the forward direction, and the DC component of the attractive force generated between the electromagnet 270 and the permanent magnet 470 is forward.
  • the directions of the components are reversed.
  • FIG. 11 is a flowchart of the driving method provided by the first embodiment of the present application. The method may include the following steps:
  • Step S101 when the sounding device starts to work, the driving circuit applies a first driving signal to the coil 220 , and the first driving signal includes a forward direct current component.
  • FIG. 12 is a schematic diagram of a first driving signal provided by an embodiment of the present application.
  • the first driving signal includes a forward DC component I dc , that is, the dotted line part in FIG. 11 , and the forward DC component I dc can be amplified by a DC signal generated by the controller through a power amplifier.
  • FIG. 13 is a schematic diagram of the shape of the sound generating device according to the first embodiment of the present application in different states.
  • the forward DC component I dc is used to generate a repulsive force between the electromagnet 270 and the permanent magnet 470, which can counteract the static force,
  • the first sound-generating part 400 and the second sound-generating part 200 are separated from the adsorption state, and the vibrating piece 300 is pushed to move to the equilibrium position, so that the sound-generating device enters the working ready state.
  • FIG. 14 is a diagram showing the relationship between the repulsion force and the position of the vibrating piece according to the embodiment of the present application.
  • the repulsive force shows a decreasing trend as the distance S between the electromagnet 270 and the permanent magnet 470 increases, and when the vibrating piece 300 is in the equilibrium position, the repulsive force still exists, which makes the repulsive force have the ability to reduce The ability of the vibrating plate 300 to push to an equilibrium position.
  • the first driving signal when a sound is played when the sound generating device starts to work, the first driving signal also includes an AC component I ac corresponding to the sound source, that is, the solid line part in FIG. 12 , the AC component I ac can make the electromagnet 270 and the permanent magnet 470 The repulsive force and the attractive force are alternately generated, so that the vibrating piece 300 vibrates and emits sound.
  • Step S102 during the operation of the sound generating device, the driving circuit applies a second driving signal to the coil 220, and the second driving signal includes an AC component corresponding to the sound source.
  • FIG. 15 is a schematic diagram of a second driving signal provided by an embodiment of the present application.
  • the second drive signal includes the AC component I ac , but does not include the DC component I dc .
  • the AC component I ac is obtained by performing analog-to-digital conversion and power amplification on the audio digital signal obtained by decoding the audio source by the decoder through a digital-analog converter and a power amplifier.
  • the AC component I ac causes the current direction in the coil 220 to alternately change, so that the electromagnet 270 generates a magnetic field with alternate directions, so the electrical field between the electromagnet 270 and the permanent magnet 470 changes alternately.
  • the repulsive force and the attractive force can be alternately changed, so that the vibrating piece 300 vibrates with the equilibrium position as the center, so as to emit sound, and the sound-emitting device enters the working state as shown in FIG. 13 .
  • step S103 when the sound generating device finishes working, the driving circuit applies a third driving signal to the coil 220, and the third driving signal includes a reverse current component.
  • FIG. 16 is a schematic diagram of a third driving signal provided by an embodiment of the present application.
  • the third driving signal includes an inverse direct current component -I dc , and the inverse direct current component -I dc can be obtained by amplifying an inverse direct current signal generated by the controller through a power amplifier.
  • the reverse DC component -I dc is used to generate an attractive force between the electromagnet 270 and the permanent magnet 470, and the attractive force can attract the first sound-emitting part 400, so that the The first sound emitting member 400 moves from the equilibrium position to the direction of approaching the second sound emitting member 200 , and is re-adsorbed on the second sound emitting member 200 .
  • the controller can stop generating the third driving signal, and the sound-generating device enters the non-working state as shown in FIG. 13 .
  • the second sound-generating part 200 and the first A sound-emitting component 400 can be maintained in an adsorbed state by static force.
  • the electromagnet 270 and the permanent magnet 470 repel each other of the same nature, the magnetic field generated by the electromagnet 270 and the permanent magnet 470 has a lateral distribution between them, so the difference between the electromagnet 270 and the permanent magnet 470 is laterally distributed.
  • the repulsive force between the two may include a lateral force, resulting in a tendency for the first sound-emitting member 400 and the second sound-emitting member 200 to be laterally displaced.
  • the first sound-generating component 400 When the lateral force is large, as shown in FIG. 17 , the first sound-generating component 400 will be laterally displaced relative to the second sound-generating component 200 and may be adsorbed to the peripheral structure of the second sound-generating component 200 . At this time, the flexible connecting component 500 It is in a twisted state, so that the vibrating piece 300 cannot vibrate normally and produce sound.
  • FIG. 18 is a schematic diagram of the dislocation preventing structure.
  • the dislocation preventing structure may include a first sub-magnet 600 and a second sub-magnet 700 .
  • the first secondary magnet 600 is arranged on the outer side of the permanent magnet around the permanent magnet 470 and is connected to the vibrating piece 300 .
  • the magnetic pole direction of the first secondary magnet 600 (ie the direction from the N pole to the S pole) is preferably the direction of the axis C of the vibrating piece 300 . vertical.
  • the iron core 210 of the electromagnet extends from the bottom of the coil 220 to the outside of the coil 220 along the direction away from the axis C.
  • the second auxiliary magnet 700 is arranged around the electromagnet on the outside of the coil 220 of the electromagnet and the first auxiliary magnet 600 .
  • the portion of the iron core 210 of the electromagnet that is located outside the coil 220 is connected.
  • the second sub-magnet 700 has a certain distance 760 from the first sub-magnet 600 in the direction perpendicular to the axis C of the vibrating piece 300 .
  • the direction of the magnetic pole of the second sub-magnet 700 is preferably perpendicular to the direction of the axis C of the vibrating piece 300 .
  • the magnetic poles of the first sub-magnet 600 and the second sub-magnet 700 are arranged opposite to each other, for example, the S-poles are arranged oppositely or the N-poles are arranged oppositely.
  • a repulsion force is generated in the direction of the axis C of the sheet 300 , which can weaken the effect of the lateral force, prevent the lateral displacement of the first sound-emitting part 400 relative to the second sound-emitting part 200 , and play a role in centering the first sound-emitting part 400 .
  • the first secondary magnet 600 and the second secondary magnet 700 may be made of permanent magnet materials, or may be made of electromagnets, which are not specifically limited here.
  • the forward DC component of the first driving signal is used to generate a repulsive force between the second sound-emitting part 200 and the first sound-emitting part 400 to cancel the static force, so that the second The sound emitting member 200 is separated from the first sound emitting member 400 in a suction state.
  • the static force is relatively large, there may be a situation where the positive DC component cannot cancel the static force, resulting in the inability of the second sound-emitting component 200 to be separated from the first sound-emitting component 400 .
  • the electromagnet further includes a third sub-magnet 800 (the dark gray part pointed to by the reference numeral 800 in FIG. 18 ),
  • the third sub-magnet 800 may be disposed in the iron core 210 in the center of the coil 220 of the electromagnet, for example.
  • the direction of the magnetic poles of the third sub-magnet 800 is preferably perpendicular to the direction of the axis C of the vibrating piece 300, and the magnetic poles of the first sound-emitting component 400 and the third sub-magnet 800 are arranged opposite to each other in the same polarity, for example, the S poles are arranged oppositely or the N poles are arranged oppositely, In this way, a repulsion force will be generated between the first sound-generating part 400 and the third sub-magnet 800 to cancel out part of the static force, so that the second sound-generating part 200 and the first sound-generating part 400 are more easily separated under the action of the positive DC component.
  • FIG. 19 provides an exploded perspective view of the third sub-magnet 800 , the iron core 210 and the coil 220 .
  • the iron core 210 may include an upper iron core 211 and a lower iron core 212 , the diameter of the upper iron core 211 is smaller than that of the lower iron core 212 , and the upper iron core 211 is disposed at the upper center of the lower iron core 212 .
  • the third auxiliary magnet 800 is disposed between the upper iron core 211 and the lower iron core 212 , the upper surface of the third auxiliary magnet 800 is connected to the upper iron core 211 , and the lower surface of the third auxiliary magnet 800 lowers the iron core 212 .
  • the third sub-magnet 800 is press-fitted and fixed in the iron core 210 by the upper iron core 211 and the lower iron core 212 , and becomes a part of the iron core 210 .
  • the coil 220 is installed with the iron core 210
  • the coil 220 is located on the lower iron core 212 , and the coil 220 surrounds the upper iron core 211 and the outside of the third sub-magnet 800 .
  • FIG. 20 is a schematic structural diagram of the first sub-magnet 600 and the second sub-magnet 700 shown in the embodiment of the present application.
  • the first sub-magnet 600 and the second sub-magnet 700 may both be annular structures.
  • the first auxiliary magnet 600 is arranged around the outside of the coil 220; the second auxiliary magnet 700 is arranged around the outside of the permanent magnet 470, and the inner ring of the second auxiliary magnet 700 is connected to the outer ring of the permanent magnet 470; the first auxiliary magnet 600
  • the diameter of the second sub-magnet 700 is larger than that of the second sub-magnet 700 , so that the first sub-magnet 600 is arranged around the outside of the second sub-magnet 700 at the same time.
  • the first secondary magnet 600 may include a plurality of magnet blocks 610 , and the plurality of magnet blocks 610 are distributed in an array around the permanent magnet 470 , and the second secondary magnet 700 includes The number of the magnet blocks 710 is the same as that of the first secondary magnet 600 , and the magnet blocks 710 are distributed in an array around the coil 220 .
  • the magnet blocks 610 of the first secondary magnet 600 and the magnet blocks 710 of the second secondary magnet 700 are one A corresponding setting.
  • first sub-magnet 600 and the second sub-magnet 700 may also have other structures, for example, the first sub-magnet 600 is a ring structure, and the second sub-magnet 700 is a magnetic The block structure, or the first secondary magnet 600 is a magnetic block structure, the second secondary magnet 700 is a ring structure, etc., which are not limited in this embodiment of the present application.
  • the second embodiment of the present application provides a sounding device, which is different from the sounding device provided by the first embodiment of the present application in that the second sounding component 200 includes a permanent magnet 280 , and the first sounding component 400 includes an electromagnet 480 .
  • the structure of the sound generating device provided in the second embodiment of the present application will be described in detail below with reference to FIG. 21 . It should be supplemented here that, for the content that is not described in the sound generating device of the second embodiment of the present application, please refer to the first embodiment of the present application for implementation.
  • the main body of the device may be provided with a covering structure 120 for fixing the second sound-emitting part 200
  • the second sound-emitting part 200 ie, the permanent magnet 280
  • the covering structure 120 may form a cavity for accommodating the second sound-emitting part 200
  • the electromagnet 480 of the first sound-generating part 400 is fixed on the side of the vibrating piece 300 facing the second sound-generating part 200 .
  • the electromagnet 480 includes an iron core 410 and a coil 420 disposed around the iron core 410 .
  • the direction of the magnetic pole of the electromagnet 480 is preferably the same as the direction of the axis C of the vibrating piece 300 .
  • the device body is also provided with an annular groove 130 matching the structure of the coil 420 , the width of the annular groove 130 is preferably larger than the width of the coil 420 , so that the coil 420 can be embedded in the annular groove 130 , the annular groove 130 can prevent the first sound-generating part 400 from being displaced relative to the second sound-generating part 200 in addition to providing an active space for the coil 420 .
  • the annular groove 130 may be disposed through the covering structure 120 and the second sound-emitting part 200 along the axial direction of the vibrating piece 300 . .
  • FIG. 22 shows an exploded perspective view of the cladding structure 120 .
  • the opening 111 on the device body may be circular or other shapes.
  • the second sound-emitting part 200 is disposed in the opening 111 , and the diameter of the second sound-emitting part 200 is smaller than the diameter of the opening, so that an annular groove 130 is formed between the device main body and the second sound-emitting part 200 .
  • the covering structure 120 includes a covering sheet 121, the diameter of the covering sheet 121 is smaller than the diameter of the opening 111, preferably the same as the diameter of the second sound-emitting part 200, and the covering sheet 121 is pressed on the second sound-emitting part 200 to achieve The wrapping of the second sound-producing part 200 .
  • the cladding structure is preferably made of a non-conductive material, such as plastic, foam, etc., so as not to interfere with the normal operation of other magnetic components.
  • a part of the second sound-emitting component 200 may also be embedded in the hole wall 112 of the opening 111.
  • a part of the casing 122 of the device body located outside the opening It is pressed on the hole wall 112 , so this part of the casing 122 also belongs to the cladding structure 120 .
  • the sound-emitting device provided in the second embodiment of the present application can be driven by the driving circuit shown in FIG. 9 to realize switching between the non-working state, the working-ready state and the working state.
  • FIG. 23 is a flowchart of the driving method provided by the second embodiment of the present application. The method may include the following steps:
  • Step S201 when the sound generating device starts to work, the drive circuit applies a first drive signal to the coil 420 , and the first drive signal includes a forward direct current component.
  • FIG. 24 is a schematic diagram of the shape of the sound generating device according to the second embodiment of the present application in different states.
  • the forward DC component I dc causes a repulsion force between the permanent magnet 280 and the electromagnet 480, which can counteract the static force and make the first
  • the first sound-generating part 400 is separated from the device body from the attached state, and pushes the vibrating piece 300 away from the second sound-generating part 200 to move to the equilibrium position, and the sound-generating device enters the working ready state as shown in FIG. 24 .
  • Step S202 during the operation of the sound generating device, the driving circuit applies a second driving signal to the coil 420, and the second driving signal includes an AC component corresponding to the sound source.
  • the reverse DC component -I dc causes an attractive force between the permanent magnet 280 and the electromagnet 480, and the attractive force can attract the first sound-emitting part 400, so that the first sound-emitting part 400 is attracted.
  • the sound-generating member 400 moves from the equilibrium position to the direction of approaching the second sound-generating member 200, and is re-fitted to the device body.
  • the controller may stop generating the third driving signal. At this time, the first sound-generating part 400 and the device body can be kept in contact by static force, and the sound-generating device enters the The non-operating state shown in Figure 24.
  • the third embodiment of the present application provides a sound-generating device.
  • the sound-generating device differs from the sound-generating device provided in the first embodiment in that the first sound-generating component 400 includes a first electromagnet 490 , and the second sound-generating component 200 includes a second electromagnet Iron 290.
  • the structure of the sound generating device provided in Embodiment 3 of the present application will be described in detail below with reference to FIG. 25 . It should be supplemented here that, for the content that is not described in the sound generating device of the third embodiment of the present application, please refer to the first embodiment of the present application for implementation.
  • the sound generating device provided by the third embodiment of the present application can be driven by the driving circuit shown in FIG. 9 to realize switching between the non-working state, the working preparation state and the working state.
  • FIG. 27 is a schematic diagram of the shape of the sound generating device according to the third embodiment of the present application in different states.
  • the driving circuit applies the forward direct current component I dc to the first coil 440 and/or the second coil 240 , the first electromagnet 490 and the second electromagnet 290 are magnetized to generate a repulsive force, which The repulsive force can counteract the static force, so that the first sound-generating part 400 and the second sound-generating part 200 are separated from the adsorption state, push the vibrating piece 300 away from the second sound-generating part 200 to move to the equilibrium position, and the sound-generating device enters the working preparation as shown in FIG. 27 . state.
  • the direction in which the first coil 440 and the second coil 240 apply the DC component can be determined according to the winding directions of the first coil 440 and the second coil 240. For example, if the winding directions of the first coil 440 and the second coil 240 are the same, then The directions of the DC components applied in the first coil 440 and the second coil 240 are opposite; if the winding directions of the first coil 440 and the second coil 240 are opposite, the directions of the DC components applied in the first coil 440 and the second coil 240 same.
  • Step S302 during the operation of the sound generating device, the driving circuit applies a second driving signal to the first coil 440 and the second coil 240, and the second driving signal includes an AC component corresponding to the sound source.
  • step S303 when the sound generating device finishes working, the driving circuit applies a third driving signal to the first coil 440 and/or the second coil 240, where the third driving signal includes a reverse current component.
  • the driving circuit applies the reverse DC component -I dc in the first coil 440 and the second coil 240, the first electromagnet 490 and the second electromagnet 290 are magnetized to generate an attractive force, which can make the first sound-emitting part
  • the 400 moves from the equilibrium position to the direction close to the second sound-emitting part 200 , and is re-adsorbed on the second sound-emitting part 200 .
  • the driving circuit may stop applying the reverse direct current component -I dc , at this time, the second sound-generating part 200 and the first sound-generating part 400 can remain adsorbed by static force, The sounding device enters the non-operating state shown in FIG. 27 .
  • the first coil 440 and the second coil 240 may not be energized, and the first sound generating member 400 may be supported by the flexible connecting member 500 .
  • the vibrating piece 300 is always located outside the plane where the housing 110 is located no matter when it needs to emit sound or not, and there is a gap between the first sound-emitting part 400 and the second sound-emitting part 200 .
  • the first embodiment of the present application provides a flexible connecting member 500 that can be applied to any of the above embodiments.
  • FIG. 28 shows a schematic diagram of an alternative structure of the flexible connecting member 500 .
  • the extension part 510 Since the extension part 510 has an arc-shaped structure, its width after extension is larger than the width of the gap between the casing 110 and the vibrating piece 300 , which makes the vibrating piece 300 connected to the flexible connecting member 500 have a larger displacement margin in the axial direction thereof. amount to increase the amplitude of the vibrating piece 300 .
  • the flexible connection member 500 may be as shown in structure 2 of FIG. 28 .
  • the flexible connecting member 500 is a plane structure, one end of the plane structure is disposed inside the casing 110 and connected to the casing 110 ; the other end is disposed inside the vibration plate 300 and connected to the vibration plate 300 .
  • the flexible connecting member 500 is preferably made of a material with good ductility and strong deformability, so as to provide a displacement margin for the vibrating piece 300 by using the deformation.
  • the flexible connecting member 500 may be shown as structure 3 in FIG. 28 .
  • the flexible connecting member 500 is a fan-shaped structure, so it has a spring-like elastic property.
  • One end of the flexible connecting portion is connected to the vibrating piece 300 , and the other end is connected to the device body.
  • the flexible connecting member 500 can be compressed or stretched in the axial direction of the vibration piece 300, thereby providing a displacement margin of the vibration piece 300 and increasing the amplitude of the vibration piece 300.
  • FIG. 29 is an exploded view of the structure of the sound generating device provided by the fifth embodiment of the present application.
  • the sound generating device includes: a device main body 100 and a casing 110 .
  • the casing 110 is fastened on the device main body 100 , and a part of the casing 110 is provided with a first sound-emitting component 400 , and the first sound-producing component 400 is fixedly connected to the casing 110 as a part of the casing.
  • the casing 110 may be provided with an opening 111
  • the first sound-generating component 400 may be provided at the opening
  • the second sound-generating component may be provided with a matching structure matching the shape and size of the opening 111, for It is connected with the housing 110 so as to form an integral body with the housing 110 .
  • the first sound-generating component 400 may include a base 450 and an electromagnet 460 .
  • the base 450 may be a flat sheet-like structure, disposed at the opening 111 , and the edge of the base 450 is connected to the housing 110 .
  • the specific connection method between the edge of the base 450 and the housing 110 may be gluing, embedded connection, snap connection, etc., which is not limited in this embodiment of the present application.
  • the electromagnet 460 may be disposed on the inner side of the base 450 , that is, on the side facing the device body 100 , and the electromagnet 460 may have any conventional electromagnet structure, for example, including a coil and an iron core. For details, refer to any of the above embodiments.
  • the electromagnet structure in FIG. 1 is realized, and details are not repeated in Embodiment 5 of the present application.
  • a region of the device body 100 corresponding to the first sound-generating part 400 is provided with a second sound-generating part 200 .
  • the first sound-generating part 400 vibrates in a direction perpendicular to the casing 110 , thereby emitting sound.
  • the second sound-generating part 200 may include a vibrating piece 300 , a permanent magnet 250 and a flexible connecting part 500 .
  • the vibrating piece 300 is disposed in the cavity between the first sound-emitting component 400 and the device main body 100 .
  • FIG. 30 is a schematic diagram of the connection mode of the vibrating piece shown in the fifth embodiment of the present application.
  • the edge of the vibrating piece 300 is connected to the inner ring of the flexible connecting member 500
  • the outer ring of the flexible connecting member 500 is connected to the base 450 .
  • the vibrating piece 300 can be suspended between the first sound-generating part 400 and the device body 100 under the elastic support of the flexible connecting part 500 , and has a certain distance from the first sound-generating part 400 and the device body 100 .
  • the flexible connection member 500 may also have other connection modes, for example, the outer ring of the flexible connection member 500 is connected to the device main body 100 , etc. Do limit.
  • the permanent magnet 250 is disposed on the side of the vibrating piece 300 facing the first sound-emitting component 400 , and the permanent magnet 250 is disposed facing the electromagnet 460 . In this way, when the electromagnet 460 is energized, an attractive force or a repulsive force can be generated between the permanent magnet 250 and the electromagnet 460, thereby driving the vibrating piece 300 to vibrate and emit sound.
  • the base 450 may have a structure protruding to the outside of the device, such as a "ji"-shaped structure, so that a larger cavity can be formed between the second sound-emitting component 200 and the device main body 100 .
  • the vibrating piece 300 can have a larger amplitude, and the sound emitted is more surging.
  • one or more sound outlet holes 140 may be provided on the casing 110, and the sound outlet holes 140 may adopt a conventional sound outlet and dustproof structure design.
  • the embodiment does not limit this.
  • FIG. 31 is an exploded view of the structure of the sound generating device provided by the sixth embodiment of the present application.
  • the sound generating device includes: a device main body 100 and a casing 110 .
  • the first sounding component 400 includes a base 450 and a permanent magnet 250 , and the permanent magnet 250 may be disposed on the inner side of the base 450 , that is, facing the base 450 .
  • the permanent magnet 250 can be a natural magnet or an artificial magnet, which can be specifically realized with reference to the permanent magnet structure in any of the above-mentioned embodiments, and will not be repeated in Embodiment 6 of the present application.
  • the second sounding component 200 may include a vibrating sheet 300 , a coil 260 and a flexible connecting component 500 .
  • the coil 260 is disposed on the side of the vibrating piece 300 facing the first sound-emitting component 400 , and the coil 260 is disposed facing the permanent magnet 250 .
  • the coil 260 and the permanent magnet 250 are arranged coaxially, and the diameter of the coil 260 is preferably larger than that of the permanent magnet 250 , and the thickness of the coil 260 in the direction perpendicular to the vibrating piece 300 is greater than that of the permanent magnet 250 and the vibrating piece 300 the distance between.
  • a part of the coil 260 can be sleeved on the periphery of the permanent magnet 250 , and when the coil 260 is energized, the magnetic field generated by the coil 260 can pass through the permanent magnet 250 more.
  • an attractive force or a repulsive force can be generated between the permanent magnet 250 and the coil 260, thereby driving the vibrating piece 300 to vibrate and emit sound.
  • Embodiment 6 of the present application can be implemented with reference to Embodiment 5 of the present application, and details are not described herein again.
  • the seventh embodiment of the present application provides an arrangement of the vibrating piece 300 on the sound-emitting device by taking the sound-generating device as a mobile phone as an example.
  • FIG. 32 is a schematic diagram of the arrangement of the vibrating piece 300 .
  • a circular camera module 30 is provided on the back of the mobile phone, and is centrally located on the upper part of the back of the mobile phone.
  • the vibrating plate 300 is also designed in a circular shape, and is arranged side by side with the camera module 30, and its diameter is preferably the same as that of the camera module 30, so as to improve the appearance of the back of the mobile phone.
  • a circular camera module 30 is arranged on the back of the mobile phone, for example, the “star ring design” is centered on the upper part of the back of the mobile phone.
  • the vibrating plate 300 is also designed to be circular, and is arranged at the center of the circular ring, and its diameter is smaller than or equal to the inner diameter of the camera module 30 . In this way, from a visual point of view, the vibrating piece 300 is integrated into the design of the camera module 30, and forms an integrated structure with the camera module 30, with high aesthetics.
  • a circular camera module 30 is provided on the back of the mobile phone, and is centrally located on the upper side of the back of the mobile phone.
  • the vibrating plate 300 is designed in a ring shape, the diameter of the inner circle is greater than or equal to the diameter of the camera module 30 , and is arranged around the outside of the camera module 30 . In this way, the vibrating piece 300 plays a decorative role on the camera module 30, and is more visually coordinated and has a high aesthetics.
  • a square camera module 30 is provided on the back of the mobile phone, and is centrally located on the upper side of the back of the mobile phone.
  • the vibrating plate 300 is also designed in a square shape, and is arranged side by side with the camera module 30, and its size is preferably the same as that of the camera module 30, so as to improve the appearance of the back of the mobile phone.
  • a rectangular camera module 30 is disposed on the back of the mobile phone, and the camera module 30 is located at the upper left corner of the back of the mobile phone.
  • the vibrating plate 300 is also designed in a rectangular shape, and is arranged side by side with the camera module 30, and its size is preferably the same as that of the camera module 30, so as to improve the appearance of the back of the mobile phone.
  • a rectangular camera module 30 is disposed on the back of the mobile phone, and the camera module 30 is located at the upper left corner of the back of the mobile phone.
  • the vibrating plate 300 is also designed to be rectangular, and is arranged side by side with the camera module 30, and its size is preferably the same as that of the camera module 30, so as to improve the appearance of the back of the mobile phone.
  • the arrangement of the vibrating plate 300 and the camera module 30 shown in FIG. 32 in the embodiment of the present application is only an example, and does not constitute a specific limitation to the embodiment of the present application.
  • the arrangement of the vibrating piece 300 and the camera module 30 can be reasonably designed according to the structural form, size, and shape of the camera module 30 of the terminal device, which do not exceed the protection scope of the embodiments of the present application.
  • the eighth embodiment of the present application provides an arrangement of the base 450 on the sound-emitting device by taking the sound-emitting device as a mobile phone as an example.
  • FIG. 33 is a schematic diagram of the arrangement of the base 450 .
  • a camera module 30 with rounded corners and a rectangle is provided on the back of the mobile phone, and the camera module 30 is centered on the left and right at the upper position of the back of the mobile phone.
  • each camera of the camera module 30 can be distributed on the upper part of the camera module 30, the base 450 can be arranged on the lower part of the camera module 30, the base 450 is also designed to be circular, and the base 450 can be connected with the camera
  • the modules 30 are located on the same plane to improve the appearance of the back of the mobile phone.
  • a circular camera module 30 is arranged on the back of the mobile phone, for example, the “star ring design” is centered on the upper part of the back of the mobile phone.
  • the base 450 is also designed to be circular, and is arranged at the center of the circular ring, and its diameter is smaller than or equal to the inner diameter of the camera module 30 , and the base 450 and the camera module 30 can be located on the same plane. In this way, from a visual point of view, the base 450 is integrated into the design of the camera module 30, and forms an integrated structure with the camera module 30, with high aesthetics.
  • a rectangular camera module 30 is provided on the back of the mobile phone, and is centered on the left and right at the upper position of the back of the mobile phone.
  • each camera of the camera module 30 can be distributed on the upper part of the camera module 30, the base 450 can be arranged on the lower part of the camera module 30, the base 450 is also designed to be circular, and the base 450 can be connected with the camera
  • the modules 30 are located on the same plane to improve the appearance of the back of the mobile phone.
  • a rectangular camera module 30 is provided on the back of the mobile phone, and is centered on the left and right at an upper position on the back of the mobile phone.
  • each camera of the camera module 30 can be distributed on the left part of the camera module 30, the base 450 can be arranged on the right part of the camera module 30, the base 450 is also designed to be circular, and the base 450 can be It is located on the same plane as the camera module 30 to improve the appearance of the back of the mobile phone.
  • a rectangular camera module 30 is provided on the back of the mobile phone, and is centered at the upper left corner of the back of the mobile phone.
  • each camera of the camera module 30 can be distributed on the left part of the camera module 30, the base 450 can be arranged on the right part of the camera module 30, the base 450 is also designed to be circular, and the base 450 can be It is located on the same plane as the camera module 30 to improve the appearance of the back of the mobile phone.
  • the arrangement of the base 450 and the camera module 30 shown in FIG. 32 in the embodiment of the present application is only an example, and does not constitute a specific limitation to the embodiment of the present application.
  • the arrangement of the base 450 and the camera module 30 can be reasonably designed according to the structure, size, and shape of the camera module 30 of the terminal device, which do not exceed the protection scope of the embodiments of the present application.
  • the sound generating device provided by the embodiment of the present application is provided with an opening on the casing, and the vibrating piece and the casing are connected by a flexible connecting member, so that the opening is closed and the casing structure of the sound generating device is kept intact.
  • the first sound-generating part and the second sound-generating part are adsorbed together by static force, so that the vibrating piece and the casing are in the same plane, so as not to increase the size and thickness of the sound-generating device.
  • the driving signal When the sound-generating device is working, the driving signal generates a repulsion force between the first sound-generating part and the second sound-generating part through the positive DC component, and pushes the vibrating piece to the equilibrium position, so that the vibrating piece has a balance between the balance position and the second sound-generating part. A certain distance, in this way, the vibrating piece can have a larger amplitude when vibrating and sounding, so the low-frequency performance is better.
  • the applicant has respectively adopted the technical solution of the embodiment of the present application and the traditional speaker solution on the terminal equipment, and measured that the two solutions play the same
  • the frequency response curve of the sound source and the same power is shown in Figure 34.
  • the abscissa in Figure 34 represents the frequency output to the sound-generating device (or traditional speaker)
  • the ordinate represents the effective sound pressure level (SPL) output by the sound-generating device (or traditional speaker), expressed in decibels dB, The higher the effective sound pressure, the better the response. It can be seen from FIG.
  • the effective sound pressure of the technical solution of the embodiment of the present application is always greater than that of the traditional speaker solution. It can be seen that the technology of the embodiment of the present application The solution has better low frequency performance and can improve low frequency sound quality.

Abstract

本申请实施例提供了一种发声装置。该发声装置包括:外壳,外壳的一部分区域包括第一发声部件;第二发声部件,位于装置内部,与第一发声部件相对设置;第一发声部件或者第二发声部件包括振动片;第一发声部件和第二发声部件用于相互配合以驱动振动片产生振动而发出声音。本申请实施例提供的发声装置,将外壳的一部分作为发声部件用于振动发音,降低了装置内部结构的复杂度。因此,与传统的技术方案相比,本申请实施例的发声装置在相同音质下,体积和厚度更小,在相同的体积和厚度下,音质更好。

Description

一种发声装置
本申请要求于2021年3月15日提交到国家知识产权局、申请号为202110274748.0、发明名称为“一种发声装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种发声装置。
背景技术
随着移动互联网技术的普及,手机、平板电脑等便携式终端设备由于具备体积小、厚度薄、便于携带等特点,已经成为目前用户进行语音视频播放、音频播放、游戏竞技等日常娱乐活动的重要载体。
在用户使用终端设备时,扬声器的音质是影响用户使用体验的一个重要指标。扬声器的音质可受到扬声器的有效辐射面积、冲程(振膜的物理振动边界)和音腔体积等因素影响。一般来说,增大扬声器的尺寸有利于增大有效辐射面积、提高冲程和增加音腔体积,有利于提高音质。
然而,由于手机、平板电脑等便携式终端设备体积小、厚度薄,其机身内难以防止较大尺寸的扬声器,并且随着终端设备复杂度的提高,机身内零部件越来越多,使得扬声器的尺寸还有进一步减小的趋势,使得扬声器的音质难以提高,尤其是扬声器尺寸的减小导致其低频灵敏度较差,影响扬声器的低频性能。
发明内容
本申请实施例提供了一种发声装置,以在不增加发声装置的厚度和体积的情况下,提高发声装置的音质。
第一方面,本申请实施例提供了一种发声装置:包括:外壳,外壳的一部分区域包括第一发声部件;第二发声部件,位于装置内部,与第一发声部件相对设置;第一发声部件或者第二发声部件包括振动片;第一发声部件和第二发声部件用于相互配合以驱动振动片产生振动而发出声音。本申请实施例提供的发声装置,将外壳的一部分作为发声部件用于振动发音,降低了装置内部结构的复杂度。因此,与传统的技术方案相比,本申请实施例的发声装置在相同音质下,体积和厚度更小,在相同的体积和厚度下,音质更好。
结合第一方面,在第一方面的第一种可能的实现方式中,第一发声部件包括振动片,振动片与外壳通过柔性连接部件连接。这样,振动片通过柔性连接部件可活动地与外壳连接,既可以振动发声,又可以作为外壳的一部分保护装置内部的器件。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,在发声装置不需要发声时,振动片与外壳位于同一平面。这样,在振动片不需要振动发声时,振动片与外壳具有很高的整体性,能够提高设备美观度。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,在发声装置不需要发声时,第一发声部件与第二发声部件相互贴合;在发声装置需要发声时,第一发声部件与第二发声部件用于通过相互配合以产生斥力,从而将振动片推动至第一位置, 第一位置位于外壳所在的平面之外;在发声装置发声过程中,振动片用于在第一位置处进行振动。由于第一位置位于外壳所在平面之外,因此在发声装置发声过程中,振动片可以实现更大的振幅,具有更好的低频性能。
结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,振动片位于外壳所在的平面之外,第一发声部件与第二发声部件之间具有间隙。这样,在发声装置发声过程中,振动片可以实现更大的振幅,具有更好的低频性能;并且,在发声装置需要发声时,振动片可以直接开始振动发声,振动片不需要首先被推出,因此响应更快。
结合第一方面的第一至第四种可能的实现方式,在第一方面的第五种可能的实现方式中,第一发声部件包括永磁体,永磁体设置于振动片的面向第二发声部件的一侧;第二发声部件包括电磁铁,电磁铁与永磁体相对设置。这样,永磁体与振动片连接,当发声装置需要发声时,只需要在电磁铁中施加变化的电流,就可以驱动永磁体带动振动片产生振动而发声。
结合第一方面的第一至第四种可能的实现方式,在第一方面的第六种可能的实现方式中,第一发声部件包括电磁铁,电磁铁设置于振动片的面向第二发声部件的一侧;第二发声部件包括永磁体,永磁体与电磁铁相对设置。这样,电磁铁与振动片连接,当发声装置需要发声时,只需要在电磁铁中施加变化的电流,就可以驱动电磁铁带动振动片产生振动而发声。
结合第一方面的第一至第四种可能的实现方式,在第一方面的第七种可能的实现方式中,第一发声部件包括第一电磁铁,第一电磁铁设置于振动片的面向第二发声部件的一侧;第二发声部件包括第二电磁铁,第一电磁铁与第二电磁铁相对设置。这样,两个发声部件都包括电磁铁,都可以通过电流变化而改变磁性,因此可以对振动片实现更精细的振动控制。
结合第一方面的第五种可能的实现方式,在第一方面的第八种可能的实现方式中,发声装置还包括第一副磁体和第二副磁体;第一副磁体设置在永磁体的外侧,与振动片连接;第二副磁体设置在电磁铁的线圈和第一副磁体的外侧;第二副磁体在垂直于振动片的轴线的方向上与第一副磁体具有间隔;第一副磁体的磁极方向和第二副磁体的磁极方向均与振动片的轴线方向垂直;第一副磁体的磁极与第二副磁体的磁极呈同极相对设置。这样,第一副磁体与第二副磁体之间会在垂直于振动片的轴线方向产生斥力,该斥力可以阻止第一发声部件相对于第二发声部件发生横向错位,起到对第一发声部件的定心作用。
结合第一方面的第五种或第八种可能的实现方式,在第一方面的第九种可能的实现方式中,发声装置还包括第三副磁体;第三副磁体设置于电磁铁的铁芯内,第三副磁体的磁极与永磁体的磁极呈同极相对设置。这样,第一发声部件与第三副磁体之间会产生一个斥力,抵消掉一部分静态力,使得第一发声部件和第二发声部件在电流作用下更容易分离。
结合第一方面的第六种可能的实现方式,在第一方面的第十种可能的实现方式中,发声装置还包括包覆结构;包覆结构包括包覆片,包覆片压合设置在在第二发声部件上。这样通过包覆结构可以将第二发声部件保护起来,提高第二发声部件的使用寿命。
结合第一方面的第十种可能的实现方式,在第一方面的第十一种可能的实现方式中,第二发声部件设置有与电磁铁的线圈结构匹配的环形凹槽;环形凹槽沿着振动片的轴线方向穿过包覆结构和永磁体;电磁铁的线圈嵌入到环形凹槽中。这样,环形凹槽增加了第一发声部件的位移幅度,使得振动片的振幅更大。
结合第一方面的第七种可能的实现方式,在第一方面的第十二种可能的实现方式中,述第一发声部件还包括副永磁体,副永磁体设置于第一电磁铁的铁芯中。这样,副永磁体可以产生静态力,用于在第一电磁铁和第二电磁铁都未通电的时候,将第一发声部件和第二发声 部件吸附在一起,使振动片位于外壳的平面内。
结合第一方面的第二至第十二种可能的实现方式,在第一方面的第十三种可能的实现方式中,柔性连接部件包括截面为弧形的延展部、设置于延展部外侧的第一折耳、以及设置于延展部内侧的第二折耳;延展部设置于外壳与振动片的缝隙之间,延展部延展之后的宽度大于外壳与振动片之间的缝隙宽度;第一折耳设置于外壳的内侧,与外壳连接;第二折耳设置于振动片内侧,与振动片连接。这样,与柔性连接部件连接的振动片在其轴线方向可以具有较大的位移余量,增加振动片的振幅。
结合第一方面,在第一方面的第十四种可能的实现方式中,第一发声部件包括基座,基座与外壳连接,形成发声装置的内部空腔;第二发声部件设置于空腔内,第二发声部件包括振动片,振动片与基座通过柔性连接部件连接。这样,振动片可以隐藏到发声装置内部,当振动片振动发声时,用户感知不到振动片的振动,提高用户使用体验。
结合第一方面的第十四种可能的实现方式,在第一方面的第十五种可能的实现方式中,第一发声部件包括电磁铁,电磁铁设置于基座的面向第二发声部件的一侧;第二发声部件包括永磁体,永磁体设置于振动片的面向第一发声部件的一侧。这样,永磁体与振动片连接,当发声装置需要发声时,只需要在电磁铁中施加变化的电流,就可以驱动永磁体带动振动片产生振动而发声。
结合第一方面的第十四种可能的实现方式,在第一方面的第十六种可能的实现方式中,第一发声部件包括永磁体,永磁体设置于振动片的面向第二发声部件的一侧;第二发声部件包括电磁铁,电磁铁设置于振动片的面向第一发声部件的一侧。这样,电磁铁与振动片连接,当发声装置需要发声时,只需要在电磁铁中施加变化的电流,就可以驱动电磁铁带动振动片产生振动而发声。
结合第一方面的第十四至第十六种可能的实现方式,在第一方面的第十七种可能的实现方式中,柔性连接部件包括截面为弧形的延展部、设置于延展部外侧的第一折耳、以及设置于延展部内侧的第二折耳;延展部设置于基座与振动片的缝隙之间,延展部延展之后的宽度大于基座与振动片之间的缝隙宽度;第一折耳设置于基座的内侧,与基座连接;第二折耳设置于振动片内侧,与振动片连接。这样,与柔性连接部件连接的振动片在其轴线方向可以具有较大的位移余量,增加振动片的振幅。
结合第一方面和第一方面的第一至第十七种可能的实现方式,在第一方面的第十八种可能的实现方式中,在发声装置工作期间,第一发声部件与第二发声部件之间产生交替变化的斥力和引力,驱动振动片产生振动。这样,振动片可以在交替变化的斥力和引力的作用下往复震动而发声,并且不会由于受力方向单一而卡住。
第二方面,本申请实施例提供了一种终端设备,该终端设备包括第一方面及其任意实现方式提供的发声装置。
附图说明
图1是本申请实施例示出的设备本体与音响二合一的终端设备示意图;
图2是本申请实施例示出的在终端设备的后盖设置扬声器的示意图;
图3是本申请实施例示出的在终端设备的后盖设置扬声器的结构分解图;
图4是本申请第一实施例提供的发声装置的结构分解图;
图5是本申请第一实施例提供的第一磁性部件的电磁铁的结构示意图;
图6是本申请第一实施例提供的发声装置的剖面视图;
图7是振动片在平衡位置的示意图;
图8是本申请实施例示出的静态力与第一发声部件和第二发声部件之间的距离关系图;
图9是本申请实施例示例性提供的一种电路结构示意图;
图10是本申请实施例提供的电磁铁和永磁体的磁场方向示意图;
图11是本申请第一实施例提供的驱动方法的流程图;
图12是本申请实施例提供的第一驱动信号的示意图;
图13是本申请第一实施例的发声装置在不同状态下的形态示意图;
图14是本申请实施例示出的斥力与振动片位置的关系图;
图15是本申请实施例提供的第二驱动信号的示意图;
图16是本申请实施例提供的第三驱动信号的示意图;
图17是第一发声部件相对于第二发声部件产生横向错位的示意图;
图18是本申请实施例提供的防错位结构的示意图;
图19是本申请实施例提供的第三副磁体、铁芯和线圈的立体分解图;
图20是本申请实施例示出的第一副磁体和第二副磁体的结构示意图;
图21是本申请第二实施例提供的发声装置的剖面视图;
图22是本申请实施例提供的包覆结构的立体分解图;
图23是本申请第二实施例提供的驱动方法的流程图;
图24是本申请第二实施例的发声装置在不同状态下的形态示意图;
图25是本申请第三实施例提供的发声装置的剖面视图;
图26是本申请第三实施例提供的驱动方法的流程图;
图27是本申请第三实施例的发声装置在不同状态下的形态示意图;
图28是本申请第四实施例示出的柔性连接部件可选择的结构示意图;
图29是本申请第五实施例提供的发声装置的剖面视图;
图30是本申请第五实施例提供的发声装置的柔性连接部件的结构示意图;
图31是本申请第六实施例提供的发声装置的剖面视图;
图32是本申请实施例示出的振动片的布置方式示意图;
图33是本申请实施例示出的振动片的布置方式示意图;
图34是本申请实施例提供的发声装置与传统扬声器的频响曲线对比图。
具体实施方式
随着移动互联网技术的普及,手机、平板电脑等便携式终端设备由于具备体积小、厚度薄、便于携带等特点,已经成为目前用户进行语音视频播放、音频播放、游戏竞技等日常娱乐活动的重要载体。在用户使用终端设备时,扬声器的音质是影响用户使用体验的一个重要指标。扬声器的音质可受到扬声器的有效辐射面积、冲程(振膜的物理振动边界)和音腔体积等因素影响。一般来说,增大扬声器的尺寸有利于增大有效辐射面积、提高冲程和增加音腔体积,有利于提高音质。
然而,由于手机、平板电脑等便携式终端设备体积小、厚度薄,其机身内难以防止较大尺寸的扬声器,并且随着终端设备复杂度的提高,机身内零部件越来越多,使得扬声器的尺寸还有进一步减小的趋势,使得扬声器的音质难以提高,尤其是扬声器尺寸的减小导致其低 频灵敏度较差,影响扬声器的低频性能。
为了改善扬声器的音质,目前一些终端设备采用了屏幕发声方案,该方案将终端设备的屏幕作为扬声器的一部分,由振子直接驱动屏幕振动发声,以实现增大有效辐射面积的目的。然而,由于屏幕多采用刚性较大的玻璃等材质,低频性能很差,因此屏幕发声方案的音质依然存在很大问题。另一些终端设备如图1所示采用了设备本体与音响二合一的方式,即在终端设备10上设置了与音响扬声器尺寸相当的大尺寸扬声器20,然而这样会使得终端设备10变得极其厚重,破坏了终端设备的便携性。
为了在不破坏终端设备便携性的前提下提高扬声器的低频性能,目前一种方案如图2和图3所示将扬声器设置在了终端设备的后盖11上。具体来说,该终端设备的后盖11内部设置有振动片12,该振动片12与手机后盖11之间通过压电陶瓷片13连接,终端设备通过控制压电陶瓷片13的振动来带动振动片12产生振动,进而发出声音。然而,如图2和3所示,由于该方案的振动片12、压电陶瓷片13等发声单元均位于终端设备的后盖11内部,因此,为了使声音向外导出,需要在后盖11上进行打孔14,然而打孔14会破坏终端设备一体化结构的完整性和美观性,使终端设备失去防水和防尘性能,影响用户使用体验。
本申请实施例提供了一种发声装置及其驱动方法,能够在不增大终端设备尺寸,不破坏终端设备结构完整性的情况下,提高扬声器的音质,尤其是提高扬声器的低频音效。该发声装置例如可以是任一终端设备,包括但不限于:手机、平板电脑、个人电脑、工作站设备、大屏设备(例如:智慧屏、智能电视等)、可穿戴设备(例如:智能手环、智能手表)掌上游戏机、家用游戏机、虚拟现实设备、增强现实设备、混合现实设备等、车载智能终端等。
本申请实施例提供的发声装置的基本思路是:将终端设备的外壳的一部分结构设计成扬声器的一部分结构(对应以下实施例中的第一发声部件),在外壳内的设备主体上设置扬声器的另一部分结构(对应以下实施例中的第二发声部件),这两部分结构可以通过磁场的相互作用产生相对振动而发出声音,由此减小终端设备的体积。
下面是本申请的第一实施例。
本申请第一实施例提供了一种发声装置。图4是本申请第一实施例提供的发声装置的结构分解图。如图4所示,该发声装置包括:装置主体100,外壳110,第一发声部件400和第二发声部件200。外壳110扣合在装置主体100上。
第一发声部件400用于构成外壳110的一部分。具体实现中,外壳110上设置有开孔111。第一发声部件400包括振动片300和永磁体470;其中,振动片300作为外壳110的一部分位于开孔111处,振动片300的形状与开孔111的形状相同,尺寸小于或者等于开孔的尺寸,优选小于开孔的尺寸;永磁体470固定在振动片300的面向第二发声部件200的一侧,具有磁极固定的磁性。永磁体470的磁极方向优选与振动片300的轴线C方向相同。其中,磁极方向指的是具备磁性的物体从一个磁极(例如N极)到另一个磁极(例如S极)的方向。
第二发声部件200位于振动片300内侧,并且固定设置于装置主体100内部。第二发声部件200例如可以包括电磁铁270,电磁铁270用于在通电状态下,根据电流的方向产生相应磁极的磁性。
图5是本申请第一实施例提供的电磁铁270的结构示意图。如图5所示,电磁铁270包括铁芯210,以及环绕铁芯设置的线圈220。线圈220可以与驱动电路连接,当线圈220通电时,线圈220附近会产生如图5所示磁场B,该磁场同时能够将铁芯210磁化,使磁场得到加强。磁场的方向则由电流的方向决定,磁场的强度则可以由线圈220的匝数和电流的强度 决定。电磁铁的磁极方向优选与振动片300的轴线方向相同。当线圈220断电时,磁场消失,铁芯消磁,此时电磁铁没有磁性。另外,为了实现线圈220断电铁芯210消磁的特性,铁芯210优选采用消磁较快的软铁或硅钢材料来制作。
可以理解的是,由于永磁体470具有磁性,因此无论是在电磁铁270的线圈通电还是在线圈断电状态下,永磁体470都会对铁芯210产生一个磁力,为便于描述,本申请可以将这个磁力称作静态力。在线圈220断电状态下,第一发声部件400与第二发声部件200会在这个静态力的作用下吸附在一起。
图6是本申请第一实施例提供的发声装置的剖面视图。如图6所示,在第一发声部件400和第二发声部件200的安装状态下,第二发声部件200隐藏于外壳110的平面内。发声装置还包括柔性连接部件500,柔性连接部件500为环形结构,与振动片300和开孔111的形状相匹配,其内环的尺寸优选小于或者等于振动片300的尺寸,其外环的尺寸优选大于或者等于开孔111的尺寸。柔性连接部件500的靠近内环的一端与振动片300连接,柔性连接部件500的靠近外环的一端与外壳110连接,这样,振动片300与柔性连接部件500能够将开孔111封闭,使发声装置的外壳110结构保持完整,同时使外壳110内的第二发声部件200、永磁体470以及其他部件与外部环境实现防水防尘的隔离。
本申请实施例中,柔性连接部件500具有一定的延展性和形变能力,从而允许振动片300和永磁体470相对于第二发声部件200产生一定的位移变化,例如振动片300和永磁体470向靠近第二发声部件200的方向产生一定的位移或者振动片300和永磁体470向远离第二发声部件200的方向产生一定的位移。柔性连接部件500可以使用柔软且具备一定弹性的材料制成,例如柔性橡胶、柔性塑料等,本申请实施例对此不作具体限定。
作为一种优选的实现方式,在第二发声部件200与第一发声部件400吸附的状态下,振动片300与外壳110位于同一平面内,或者振动片300位于外壳110所在平面的内侧,从而当发声装置不发声时,发声装置的外壳110上不会出现额外的凸起,提高发声装置的整体性。
本申请实施例中,发声装置的外壳110可以采用金属或者非金属材料制成,这里不做具体限定,以手机为例,外壳110常见的材料例如可以包括玻璃、陶瓷、铝镁合金、聚碳酸酯、ABS树脂等。
本申请实施例中,振动片300可以采用金属或者非金属材料制成,例如玻璃、陶瓷、铝镁合金、聚碳酸酯、ABS树脂等,这里不做具体限定。作为一种优选的实施方式,振动片300可以与外壳110使用相同的材料,以使得发声装置在外观上的整体性更强。如果振动片300与外壳110使用的材料不同,则可以使用一些表面工艺使振动片300与外壳110在视觉上看起来相同或者接近。
本申请实施例中,永磁体可以是天然磁石,也可以是人造磁体,这里不做具体限定。例如:取自铁矿石的天然磁石、铁氧体磁体、铝镍钴磁体、稀土磁体、磁钢、铂磁体、纳米结构磁体等。为减少空间占用,永磁体优选为薄片状结构。
本申请实施例中,在发声装置发声过程中,振动片用于在第一位置处进行振动,这里的“在第一位置处进行振动”指的是:第一位置是振动片发生振动的基础位置,也是一个振幅为0的位置,还可以理解成是振动片振动的中间位置,振动片在振动时会以这个中间位置为中心上下振动。
图7是振动片300在平衡位置的示意图。图8是本申请实施例示出的静态力与第一发声部件和第二发声部件之间的距离关系图。如图7和图8所示,永磁体470的其中一个磁极(例 如N级)面向铁芯210设置,另一个磁极(例如S级)面向振动片300设置。可以理解的是,由于永磁体470所产生的磁场的强度会在远离磁极的方向衰减,因此静态力的大小会与第二发声部件200和第一发声部件400之间的距离有关,具体为:第二发声部件200和第一发声部件400之间的距离S越小,静态力越大;第二发声部件200和第一发声部件400之间的距离S越大,静态力越小;当第一发声部件400远离第二发声部件200至某一临界位置(即图18中的距离S为0的位置)时,静态力变为0;当第一发声部件400从临界位置继续远离第二发声部件200时,静态力始终为0。本申请实施例将上述第一发声部件400位于临界位置时振动片所在的位置称作平衡位置。除上述临界位置外,如果第一发声部件还存在其他能够使静态力为0的位置,则相应的振动片所在的位置也可以称作平衡位置。该平衡位置是振动片300振动发声时的振幅为零的位置。
本申请实施例还提供了一种驱动方法,该驱动方法用于驱动本申请实施例提供的发声装置在在非工作状态、工作预备状态和工作状态之间切换。图9示例性地提供一种用于实现该驱动方法的电路结构。如图9所示,该电路结构包括解码器、数字模拟D/A转换器(digital to analog converter,DAC)、功率放大器、控制器、无隔直电路和发声装置。其中,解码器的输出端与数字模拟转换器的输入端连接,用于音源(例如音频流、音频文件)进行解码得到音频数字信号,并将音频数字信号输入到数字模拟转换器;数字模拟转换器的输出端与功率放大器的输入端连接,用于将音频数字信号转换成音频模拟信号,并将音频模拟信号输入到功率放大器;功率放大器的输出端与无隔直电路的输入端连接,用于对音频模拟信号进行功率放大,得到驱动信号的交流分量;控制器的输出端与功率放大器的输入端连接,控制器用于产生直流电信号,并输入到功率放大器,该直流电信号由功率放大器放大之后成为驱动信号的直流分量;无隔直电路的输出端与发声装置的线圈连接,无隔直电路用于避免驱动信号中的直流分量被电路中可能存在的电容等部件阻隔,确保驱动信号中的直流分量能够送达到线圈。这里需要补充说明的是,本申请实施例的驱动信号可以用电流信号描述也可以用电压信号描述,不同的描述不影响本申请实施例的实现方式。
需要补充说明的是,图9提供的电路结构仅仅作为能够实现本申请实施例的驱动方法的一个示例,其不构成对本申请技术方案的限定,本领域技术人员在实施该驱动方法时,可以设计其他能够实现图9所示电路全部或者部分功能的电路,这些都没有超出本申请实施例的保护范围。
本申请实施例中,驱动信号中的直流分量用于在流过线圈220时,使电磁铁270产生一个磁极方向不变的磁场,该磁场的磁极方向具体可以由直流分量的方向有关。如图10所示,具体来说:一种磁极方向使电磁铁270和永磁体470同极相对,例如电磁铁270的N极与永磁体470的N极相对,使得电磁铁270和永磁体470之间产生斥力,推动永磁体470向远离电磁铁270的方向移动;另一种磁极方向使电磁铁270和永磁体470异极相对,例如电磁铁270的N极与永磁体470的S极相对,使得电磁铁270和永磁体470之间产生引力,推动永磁体470向靠近电磁铁270的方向移动。为便于描述直流分量的方向,本申请实施例可以定义:使电磁铁270和永磁体470之间产生斥力的直流分量的方向为正向,使电磁铁270和永磁体470之间产生引力的直流分量的方向为反向。
图11是本申请第一实施例提供的驱动方法的流程图。该方法可以包括如下步骤:
步骤S101,在发声装置开始工作时,驱动电路向线圈220施加第一驱动信号,第一驱动信号包括正向直流分量。
图12是本申请实施例提供的第一驱动信号的示意图。如图12所示,第一驱动信号包括正向直流分量I dc,即图11中的虚线部分,该正向直流分量I dc可以由控制器生成的直流电信号经由功率放大器放大得到。
图13是本申请第一实施例的发声装置在不同状态下的形态示意图。
如图13所示,当驱动电路在线圈220中施加正向直流分量I dc时,正向直流分量I dc用于使电磁铁270和永磁体470之间产生斥力,该斥力可以抵消静态力,使第一发声部件400与第二发声部件200从吸附状态分离,并且推动振动片300移动至平衡位置,使发声装置进入到工作预备状态。
图14是本申请实施例示出的斥力与振动片位置的关系图。如图14所示,斥力随电磁铁270和永磁体470之间距离S的增大而呈现出减小的趋势,并且当振动片300位于平衡位置时,斥力依然存在,这就使得斥力具备将振动片300推动到平衡位置的能力。
另外,发声装置开始工作时有声音播放时,第一驱动信号还包括对应音源的交流分量I ac,即图12中的实线部分,该交流分量I ac能够使的电磁铁270和永磁体470之间交替产生斥力和引力,使振动片300产生振动而发出声音。
步骤S102,在发声装置工作期间,驱动电路向线圈220施加第二驱动信号,第二驱动信号包括对应音源的交流分量。
图15是本申请实施例提供的第二驱动信号的示意图。如图15所示,第二驱动信号包含交流分量I ac,但是不包含直流分量I dc。其中,交流分量I ac由解码器解码音源得到的音频数字信号经由数字模拟转换器和功率放大器进行模数转换和功率放大而得到。
当驱动电路在线圈220中施加交流分量I ac时,交流分量I ac使得线圈220中的电流方向交替变化,使电磁铁270产生方向交替变化的磁场,因此电磁铁270和永磁体470之间的能够在斥力和引力之间交替变化,使振动片300以平衡位置为中心产生振动,从而发出声音,使发声装置进入到如图13所示的工作状态。
步骤S103,在发声装置结束工作时,驱动电路向线圈220施加第三驱动信号,第三驱动信号包括反向电流分量。
图16是本申请实施例提供的第三驱动信号的示意图。如图16所示,第三驱动信号包括反向直流分量-I dc,该反向直流分量-I dc可以由控制器生成的反向直流电信号经由功率放大器放大得到。
当驱动电路在线圈220中施加反向直流分量-I dc时,反向直流分量-I dc用于使电磁铁270和永磁体470之间产生引力,该引力可以吸引第一发声部件400,使第一发声部件400从平衡位置向靠近第二发声部件200的方向移动,并且重新吸附在第二发声部件200上。在第二发声部件200和第一发声部件400重新吸附之后,控制器可以停止产生第三驱动信号,发声装置进入到如图13所示的非工作状态,此时,第二发声部件200和第一发声部件400可以藉由静态力保持吸附状态。
进一步地,如图10所示,当电磁铁270和永磁体470同性相斥时,电磁铁270和永磁体470产生的磁场在两者之间具有横向分布,因此电磁铁270和永磁体470之间的斥力会包括横向力,导致第一发声部件400与第二发声部件200会具有横向错位的趋势。
当横向力较大时,如图17所示,第一发声部件400会相对于第二发声部件200产生横向错位,并可能吸附到第二发声部件200的外围结构上,此时柔性连接部件500是扭曲状态,导致振动片300无法正常振动发声。
在一种可选择的实现方式中,为了避免第二发声部件200与第一发声部件400产生横向错位,本申请实施例还提供了一种防错位结构。图18是该防错位结构的示意图。如图18所示,该防错位结构可以包括第一副磁体600和第二副磁体700。第一副磁体600围绕永磁体470设置在永磁体的外侧,与振动片300连接,第一副磁体600的磁极方向(即从N极到S极的方向)优选与振动片300的轴线C方向垂直。电磁铁的铁芯210从线圈220的下方沿着远离轴线C的方向延长至线圈220的外侧,第二副磁体700围绕电磁铁设置在电磁铁的线圈220和第一副磁体600的外侧,与电磁铁的铁芯210的位于线圈220外侧的部分连接。第二副磁体700在垂直于振动片300的轴线C的方向上与第一副磁体600具有一定的间隔760。第二副磁体700的磁极方向优选与振动片300的轴线C方向垂直。第一副磁体600与第二副磁体700的磁极呈同极相对设置,例如S极相对设置或者N极相对设置,这样,第一副磁体600与第二副磁体700之间会在垂直于振动片300的轴线C方向产生斥力,该斥力可以削弱横向力的作用,阻止第一发声部件400相对于第二发声部件200发生横向错位,起到对第一发声部件400的定心作用。本申请实施例中,第一副磁体600和第二副磁体700可以采用永磁材料制成,也可以采用电磁铁方式制成,此处不做具体限定。
进一步地,根据本申请实施例在先描述的内容,第一驱动信号的正向直流分量,用于使第二发声部件200和第一发声部件400之间产生斥力以抵消静态力,使第二发声部件200与第一发声部件400吸附状态分离。然而,可以理解的是,当静态力较大时,可能会存在正向直流分量无法抵消静态力的情况,导致第二发声部件200与第一发声部件400无法分离。为了避免致第二发声部件200与第一发声部件400无法分离的情况发生,如图18所示,电磁铁还包括第三副磁体800(图18中附图标记800指向的深灰色部分),第三副磁体800例如可以设置在电磁铁的线圈220中心的铁芯210内。第三副磁体800的磁极方向优选与振动片300的轴线C方向垂直,并且第一发声部件400与第三副磁体800的磁极呈同极相对设置,例如S极相对设置或者N极相对设置,这样,第一发声部件400与第三副磁体800之间会产生一个斥力,抵消掉一部分静态力,使得第二发声部件200和第一发声部件400在正向直流分量的作用下更容易分离。
为便于进一步理解第三副磁体800、铁芯210和线圈220的结构关系,图19提供了第三副磁体800、铁芯210和线圈220的立体分解图。如图19所示,铁芯210可以包括上铁芯211和下铁芯212,上铁芯211的直径小于下铁芯212的直径,上铁芯211设置于下铁芯212的上方中心位置。其中,第三副磁体800设置于上铁芯211和下铁芯212之间,第三副磁体800的上表面与上铁芯211连接,第三副磁体800的下表面下铁芯212。这样,第三副磁体800由上铁芯211和下铁芯212压合固定于铁芯210内,成为铁芯210的一部分。当线圈220与铁芯210安装时,线圈220坐落于下铁芯212之上,并且线圈220环绕于上铁芯211和第三副磁体800外侧。
图20是本申请实施例示出的第一副磁体600和第二副磁体700的结构示意图。
在一种实现方式中,如图20中的结构1所示,第一副磁体600和第二副磁体700可以均为环形结构。其中,第一副磁体600环绕设置在线圈220外侧;第二副磁体700环绕设置在永磁体470的外侧,第二副磁体700的内圈与永磁体470的外圈连接;第一副磁体600的直径大于第二副磁体700的直径,使得第一副磁体600的同时环绕设置在第二副磁体700的外侧。
在一种实现方式中,如图20中的结构2所示,第一副磁体600可以包括多个磁块610, 并且多个磁块610围绕永磁体470呈阵列分布,第二副磁体700包括多个与第一副磁体600数量相同的多个磁块710,并且多个磁块710围绕线圈220呈阵列分布,第一副磁体600的磁块610与第二副磁体700的磁块710一一对应设置。需要补充说明的是,除上述结构1和结构2以外,第一副磁体600和第二副磁体700还可以具有其他的结构,例如第一副磁体600为环形结构、第二副磁体700为磁块结构,或者第一副磁体600为磁块结构、第二副磁体700为环形结构等,本申请实施例对此不做限定。
下面是本申请的第二实施例。
本申请第二实施例提供了一种发声装置,该发声装置与本申请第一实施例提供的发声装置的区别在于:第二发声部件200包括永磁体280,第一发声部件400包括电磁铁480。下面结合图21对本申请实施例二提供的发声装置的结构进行具体说明。这里需要补充说明的是,对本申请第二实施例的发声装置未展开描述的内容,请参照本申请的第一实施例实施。
如图21所示,装置主体可以设置有用于固定第二发声部件200的包覆结构120,第二发声部件200(即永磁体280)可以由包覆结构120包覆在装置主体内,该包覆结构120例如可以形成一个容纳第二发声部件200的腔体。第一发声部件400的电磁铁480固定在振动片300的面向第二发声部件200的一侧。电磁铁480包括铁芯410,以及环绕铁芯410设置的线圈420,电磁铁480的磁极方向优选与振动片300的轴线C方向相同。
进一步如图21所示,装置主体上还设置有与线圈420结构相匹配的环形凹槽130,该环形凹槽130的宽度优选大于线圈420的宽度,使得线圈420可以嵌入到环形凹槽130中,该环形凹槽130除了提供线圈420的活动空间外,还能避免第一发声部件400相对于第二发声部件200产生错位。
作为一种可选择的实现方式,当第二发声部件200被包覆结构120包覆时,环形凹槽130可以沿着振动片300的轴线方向穿过包覆结构120和第二发声部件200设置。
为便于进一步理解第二发声部件200和包覆结构120的结构关系,图22示出了包覆结构120的立体分解图。如图22所示,在一种实现方式中,装置主体上的开孔111可以呈圆形或者其他形状。第二发声部件200设置于开孔111内,并且第二发声部件200的直径小于开孔的直径,从而在装置主体与第二发声部件200之间形成环形凹槽130。包覆结构120包括包覆片121,包覆片121的直径小于开孔111的直径,优选与第二发声部件200的直径相同,包覆片121压合在第二发声部件200之上,实现对第二发声部件200的包裹。本申请实施例中,包覆结构优选采用非导体材料制成,例如塑料、泡棉等,从而不会干扰其他磁性部件的正常工作。
在一种实现方式中,第二发声部件200还可以有一部分嵌入设置在开孔111的孔壁112上,这时,装置主体的位于开孔111外侧的一部分壳体122将第二发声部件200压合在孔壁112上,因此这一部分壳体122也属于包覆结构120。
本申请第二实施例提供的发声装置可以使用图9示出的驱动电路进行驱动,以实现在非工作状态、工作预备状态和工作状态之间切换。
图23是本申请第二实施例提供的驱动方法的流程图。该方法可以包括如下步骤:
步骤S201,在发声装置开始工作时,驱动电路向线圈420施加第一驱动信号,第一驱动信号包括正向直流分量。
图24是本申请第二实施例的发声装置在不同状态下的形态示意图。
如图24所示,当驱动电路在线圈420中施加正向直流分量I dc时,正向直流分量I dc使永 磁体280和电磁铁480之间产生斥力,该斥力可以抵消静态力,使第一发声部件400与装置主体从贴合状态分离,并且推动振动片300远离第二发声部件200移动至平衡位置,发声装置进入到如图24所示的工作预备状态。
步骤S202,在发声装置工作期间,驱动电路向线圈420施加第二驱动信号,第二驱动信号包括对应音源的交流分量。
当驱动电路在线圈420中施加交流分量I ac时,交流分量I ac使得线圈420中的电流方向交替变化,使电磁铁480产生方向交替变化的磁场,因此永磁体280和电磁铁480之间的能够在斥力和引力之间交替变化,使振动片300以平衡位置为中心产生振动,从而发出声音,使发声装置进入到如图24所示的工作状态。
步骤S203,在发声装置结束工作时,驱动电路向线圈420施加第三驱动信号,第三驱动信号包括反向电流分量。
当驱动电路在线圈420中施加反向直流分量-I dc时,反向直流分量-I dc使永磁体280和电磁铁480之间产生引力,该引力可以吸引第一发声部件400,使第一发声部件400从平衡位置向靠近第二发声部件200的方向移动,并且重新贴合在装置主体上。另外,在第一发声部件400和装置主体重新贴合之后,控制器可以停止产生第三驱动信号,此时,第一发声部件400和装置主体可以藉由静态力保持贴合,发声装置进入到图24所示的非工作状态。
下面是本申请的第三实施例。
本申请第三实施例提供了一种发声装置,该发声装置与第一实施例提供的发声装置的区别在于:第一发声部件400包括第一电磁铁490,第二发声部件200包括第二电磁铁290。下面结合图25对本申请实施例三提供的发声装置的结构进行具体说明。这里需要补充说明的是,对本申请第三实施例的发声装置未展开描述的内容,请参照本申请的第一实施例实施。
如图25所示第一电磁铁490包括第一铁芯430,以及环绕第一铁芯430设置的第一线圈440,第一铁芯430中还可以设置有副永磁体900,例如,副永磁体900可以内嵌于第一铁芯430内部,用于产生静态力。第二电磁铁290包括第二铁芯230,以及环绕第二铁芯230设置的第二线圈240。第一电磁铁490和第二电磁铁290的磁极方向优选与振动片300的轴线方向相同。
本申请第三实施例提供的发声装置可以使用图9所示的驱动电路进行驱动,以实现在非工作状态、工作预备状态和工作状态之间切换。
图26是本申请第三实施例提供的驱动方法的流程图。该方法可以包括如下步骤:
步骤S301,在发声装置开始工作时,驱动电路向第一线圈440和/或第二线圈240施加第一驱动信号,第一驱动信号包括正向直流分量。
图27是本申请第三实施例的发声装置在不同状态下的形态示意图。
如图27所示,当驱动电路在第一线圈440和/或第二线圈240中施加正向直流分量I dc时,第一电磁铁490和第二电磁铁290会被磁化而产生斥力,该斥力可以抵消静态力,使第一发声部件400与第二发声部件200从吸附状态分离,推动振动片300远离第二发声部件200移动至平衡位置,发声装置进入到如图27所示的工作预备状态。
其中,第一线圈440和第二线圈240施加直流分量的方向可以根据第一线圈440和第二线圈240的缠绕方向确定,例如:如果第一线圈440和第二线圈240的缠绕方向相同,那么第一线圈440和第二线圈240中施加的直流分量的方向相反;如果第一线圈440和第二线圈240的缠绕方向相反,那么第一线圈440和第二线圈240中施加的直流分量的方向相同。
步骤S302,在发声装置工作期间,驱动电路向第一线圈440和第二线圈240施加第二驱动信号,第二驱动信号包括对应音源的交流分量。
当驱动电路在第一线圈440和第二线圈240中施加交流分量I ac时,交流分量I ac使得第一线圈440和第二线圈240中的电流方向交替变化,使第一电磁铁490和第二电磁铁290之产生方向交替变化的磁场,因此第二发声部件200和第一发声部件400之间的能够在斥力和引力之间交替变化,使振动片300以平衡位置为中心产生振动,从而发出声音,使发声装置进入到如图27所示的工作状态。
步骤S303,在发声装置结束工作时,驱动电路向第一线圈440和/或第二线圈240施加第三驱动信号,第三驱动信号包括反向电流分量。
当驱动电路在第一线圈440和第二线圈240中施加反向直流分量-I dc时,第一电磁铁490和第二电磁铁290会被磁化而产生引力,该引力可以使第一发声部件400从平衡位置向靠近第二发声部件200的方向移动,并且重新吸附在第二发声部件200上。在第二发声部件200和第一发声部件400重新吸附之后,驱动电路可以停止施加反向直流分量-I dc,此时第二发声部件200和第一发声部件400可以藉由静态力保持吸附,发声装置进入到图27所示的非工作状态。
其中,第一线圈440和第二线圈240施加直流分量的方向可以根据第一线圈440和第二线圈240的缠绕方向确定,例如:如果第一线圈440和第二线圈240的缠绕方向相同,那么第一线圈440和第二线圈240中施加的直流分量的方向相同;如果第一线圈440和第二线圈240的缠绕方向相反,那么第一线圈440和第二线圈240中施加的直流分量的方向相反。
这里需要补充说明的是,本申请实施例三中,在发声装置不发声的状态下,第一线圈440和第二线圈240中可以不通电,第一发声部件400可以在柔性连接部件500的支撑下保持静止状态,这时,振动片300无论是在需要发声时或者不需要发声时均始终位于外壳110所在的平面之外,第一发声部件400与第二发声部件200之间具有间隙。
下面是本申请的第四实施例。
本申请第一实施例提供了一种可以应用于上述任一实施例的柔性连接部件500。图28示出了柔性连接部件500可选择的结构示意图。
在一种实现方式中,柔性连接部件500可以如图28的结构1所示。具体来说,柔性连接部件500包括截面为弧形的延展部510,设置于延展部外侧的第一折耳520,以及设置于延展部内侧的第二折耳530。其中,延展部510设置于外壳110与振动片300的缝隙之间;第一折耳520设置于外壳110的内侧,与外壳110连接;第二折耳530设置于振动片300内侧,与振动片300连接。由于延展部510具有弧形结构,因此其延展之后的宽度大于外壳110与振动片300之间的缝隙宽度,这使得与柔性连接部件500连接的振动片300在其轴线方向具有较大的位移余量,增加振动片300的振幅。
在另一种实现方式中,柔性连接部件500可以如图28的结构2所示。具体来说,柔性连接部件500为平面结构,该平面结构一端设置于外壳110的内侧,与外壳110连接;另一端设置于振动片300内侧,与振动片300连接。柔性连接部件500优选采用延展性好、形变能力强的材料制作,从而利用的形变为振动片300提供位移余量。
在又一种实现方式中,柔性连接部件500可以如图28的结构3所示。具体来说,柔性连接部件500为折扇型结构,因此具有类似弹簧一样的可伸缩特性。柔性连接部一端与振动片300连接,另一端与装置主体连接。这样,柔性连接部件500可以在振动片300的轴线方向 上压缩或者伸展,从而提供振动片300的位移余量,增加振动片300的振幅。
下面是本申请的第五实施例。
本申请第五实施例提供了一种发声装置。图29是本申请第五实施例提供的发声装置的结构分解图。如图29所示,该发声装置包括:装置主体100,外壳110。
外壳110扣合在装置主体100上,外壳110的一部分区域设置有第一发声部件400,第一发声部件400作为外壳的一部分与外壳110固定连接。在一种实现方式中,外壳110可以设置有开孔111,第一发声部件400设置于开孔处,第二发声部件的可以设置有与开孔111形状和尺寸相匹配的配合结构,用于与外壳110连接,从而与外壳110形成一个整体。
在一种实现方式中,第一发声部件400可以包括基座450和电磁铁460。其中,基座450可以是一个扁平的片状结构,设置于开孔111处,其边缘与外壳110连接。基座450边缘与外壳110的具体连接方式可以是胶粘、嵌入连接、卡扣连接等,本申请实施例对此不做限定。电磁铁460可以设置于基座450的内侧,即面向装置主体100的一侧,电磁铁460可以具有任一常规的电磁铁结构,例如包括线圈和铁芯等,具体可以参照上述任一实施例中的电磁铁结构实现,本申请实施例五中不再赘述。
装置主体100的与第一发声部件400相对应的区域设置有第二发声部件200,第二发声部件200与第一发声部件400面对面设置,并且与装置主体100柔性连接。第一发声部件400在第二发声部件200的作用下,沿着垂直于外壳110的方向产生振动,从而发出声音。
在一种实现方式中,第二发声部件200可以包括振动片300、永磁体250和柔性连接部件500。其中,振动片300设置于第一发声部件400与装置主体100之间的腔体中。
图30是本申请实施例五示出的振动片的连接方式示意图。如图30所示,振动片300的边缘与柔性连接部件500的内环连接,柔性连接部件500的外环与基座450连接。振动片300可以在柔性连接部件500的弹性支撑下,悬浮于第一发声部件400与装置主体100之间,与第一发声部件400和装置主体100均具有一定的距离。可以理解的是,除了图30示出的连接方式以外,柔性连接部件500还可以有其他的连接方式,例如,柔性连接部件500的外环与装置主体100连接等,本申请实施例对此不做限定。
进一步地,永磁体250设置于振动片300的面向第一发声部件400的一侧,永磁体250与电磁铁460面对面设置。这样,当电磁铁460通电时,永磁体250与电磁铁460之间可以产生引力或者斥力,从而驱动振动片300产生振动而发出声音。
在一种实现方式中,基座450可以具有向装置外部凸出的结构,例如“几”字型结构,这样可以使得第二发声部件200与装置主体100之间形成一个较大的腔体。这样,振动片300可以具有更大的振幅,发出的声音更加澎湃。
在一种实现方式中,为了便于声音从外壳110内部向外传递,外壳110上可以设置一个或者多个出音孔140,该出音孔140可以采用常规的出音防尘结构设计,本申请实施例对此不做限定。
下面是本申请的第六实施例。
本申请第六实施例提供了一种发声装置。图31是本申请第六实施例提供的发声装置的结构分解图。如图31所示,该发声装置包括:装置主体100,外壳110。
本申请实施例六提供的发声装置与实施例五提供的发声装置的一个区别在于:第一发声部件400包括基座450和永磁体250,永磁体250可以设置于基座450的内侧,即面向装置主体100的一侧。永磁体250可以是天然磁石,也可以是人造磁体,具体可以参照上述任一 实施例中的永磁体结构实现,本申请实施例六中不再赘述。
本申请实施例六提供的发声装置与实施例五提供的发声装置的另一个区别在于:第二发声部件200可以包括振动片300、线圈260和柔性连接部件500。其中,线圈260设置于振动片300的面向第一发声部件400的一侧,线圈260与永磁体250面对面设置。
在一种实现方式中,线圈260与永磁体250同轴设置,并且线圈260的直径优选大于永磁体250的直径,线圈260在垂直于振动片300方向上的厚度大于永磁体250与振动片300之间的距离。这样,线圈260可以有一部分套接在永磁体250的外围,当线圈260通电时,线圈260产生的磁场能够更多地穿过永磁体250。
基于本申请实施例六提供的结构,当线圈260通电时,永磁体250与线圈260之间可以产生引力或者斥力,从而驱动振动片300产生振动而发出声音。
本申请实施例六未具体展开说明的部分可以参照本申请实施例五实现,此处不再赘述。
下面是本申请的第七实施例。
本申请第七实施例以发声装置为手机为例,提供了振动片300在发声装置上的布置方式。图32是振动片300的布置方式示意图。
在第一种实现方式中,如图32的方式1所示,手机背部设置有一圆形的摄像头模组30,左右居中设置在手机背部的偏上方的位置。振动片300也相应地设计成圆形,与摄像头模组30上下并列设置,并且其直径优选与摄像头模组30的直径相同,以提高手机背部外观的美观度。
在第二种实现方式中,如图32的方式2所示,手机背部设置有一圆环形的摄像头模组30,例如“星环设计”左右居中设置在手机背部的偏上方的位置。振动片300也相应地设计成圆形,并且设置于圆形环的中心,其直径小于或者等于摄像头模组30的内圆直径。这样,从视觉上看,振动片300被融入到了摄像头模组30的设计中,与摄像头模组30形成了一体化的结构,美观度高。
在第三种实现方式中,如图32中的方式3所示,手机背部设置有一圆形的摄像头模组30,左右居中设置在手机背部的偏上方的位置。振动片300设计成圆环形,其内圆的直径大于或者等于摄像头模组30的直径,并且环绕设置在摄像头模组30的外部。这样,振动片300对摄像头模组30起到了装饰作用,并且视觉上更加协调,美观度高。
在第四种实现方式中,如图32中的方式4所示,手机背部设置有一方形的摄像头模组30,左右居中设置在手机背部的偏上方的位置。振动片300也相应地设计成方形,与摄像头模组30上下并列设置,并且其尺寸优选与摄像头模组30的尺寸相同,以提高手机背部外观的美观度。
在第五种实现方式中,如图32中的方式5所示,手机背部设置有一矩形的摄像头模组30,该摄像头模组30位于手机背部的左上角。振动片300也相应地设计成矩形,与摄像头模组30左右并列设置,并且其尺寸优选与摄像头模组30的尺寸相同,以提高手机背部外观的美观度。
在第六种实现方式中,如图32中的方式6所示,手机背部设置有一矩形的摄像头模组30,该摄像头模组30位于手机背部的左上角。振动片300也相应地设计成矩形,与摄像头模组30上下并列设置,并且其尺寸优选与摄像头模组30的尺寸相同,以提高手机背部外观的美观度。
这里需要补充说明的是,本申请实施例在图32中示出的振动片300与摄像头模组30的 布置方式仅作为示例,不构成对本申请实施例的具体限定,本领域技术人员在实施本申请时,可以根据其终端设备的结构形态、尺寸、摄像头模组30的形状等合理设计振动片300与摄像头模组30的布置方式,这些都没有超出本申请实施例的保护范围。
下面是本申请的第八实施例。
本申请第八实施例以发声装置为手机为例,提供了基座450在发声装置上的布置方式。图33是基座450的布置方式示意图。
在第一种实现方式中,如图32的方式1所示,手机背部设置有一圆角矩形的摄像头模组30,左右居中设置在手机背部的偏上方的位置。其中,摄像头模组30的各个摄像头可以分布在摄像头模组30的上部,基座450可以设置在摄像头模组30的下部,基座450也相应地设计成圆形,并且基座450可以与摄像头模组30位于同一平面,以提高手机背部外观的美观度。
在第二种实现方式中,如图32的方式2所示,手机背部设置有一圆环形的摄像头模组30,例如“星环设计”左右居中设置在手机背部的偏上方的位置。基座450也相应地设计成圆形,并且设置于圆形环的中心,其直径小于或者等于摄像头模组30的内圆直径,并且基座450可以与摄像头模组30位于同一平面。这样,从视觉上看,基座450被融入到了摄像头模组30的设计中,与摄像头模组30形成了一体化的结构,美观度高。
在第三种实现方式中,如图32中的方式3所示,手机背部设置有一矩形的摄像头模组30,左右居中设置在手机背部的偏上方的位置。其中,摄像头模组30的各个摄像头可以分布在摄像头模组30的上部,基座450可以设置在摄像头模组30的下部,基座450也相应地设计成圆形,并且基座450可以与摄像头模组30位于同一平面,以提高手机背部外观的美观度。
在第四种实现方式中,如图32中的方式4所示,手机背部设置有一矩形的摄像头模组30,左右居中设置在手机背部的偏上方的位置。其中,摄像头模组30的各个摄像头可以分布在摄像头模组30的左部,基座450可以设置在摄像头模组30的右部,基座450也相应地设计成圆形,并且基座450可以与摄像头模组30位于同一平面,以提高手机背部外观的美观度。
在第五种实现方式中,如图32中的方式5所示,手机背部设置有一矩形的摄像头模组30,左右居中设置在手机背部的左上角的位置。其中,摄像头模组30的各个摄像头可以分布在摄像头模组30的左部,基座450可以设置在摄像头模组30的右部,基座450也相应地设计成圆形,并且基座450可以与摄像头模组30位于同一平面,以提高手机背部外观的美观度。
这里需要补充说明的是,本申请实施例在图32中示出的基座450与摄像头模组30的布置方式仅作为示例,不构成对本申请实施例的具体限定,本领域技术人员在实施本申请时,可以根据其终端设备的结构形态、尺寸、摄像头模组30的形状等合理设计基座450与摄像头模组30的布置方式,这些都没有超出本申请实施例的保护范围。
由以上技术方案可知,本申请实施例提供的发声装置,在外壳上设置有开孔,振动片和外壳之间通过柔性连接部件连接,将开孔封闭,使发声装置的外壳结构保持完整。当发声装置不工作时,第一发声部件与第二发声部件通过静态力吸附在一起,使得振动片与外壳在同一平面内,从而不增加发声装置的尺寸和厚度。当发声装置工作时,驱动信号通过正向直流分量使第一发声部件与第二发声部件之间产生斥力,将振动片推动到平衡位置,使振动片在平衡位置与第二发声部件之间具有一定的距离,这样,振动片在振动发声时,可以具有更大的振幅,因此低频性能更好。
为便于直观展示本申请实施例提供的发声装置所具有的出色的低频性能,申请人分别在终端设备上采用了本申请实施例的技术方案以及传统扬声器方案,并测量得到两种方案在播 放相同音源、相同功率情况下的频响曲线,如图34所示。其中,图34中的横坐标表示输出到发声装置(或传统扬声器)上的频率,纵坐标表示发声装置(或传统扬声器)输出的有效声压(sound pressure level,SPL),以分贝dB表示,有效声压越大,即表示响应越好。从图34中可以看出,在低频区域(例如100Hz至接近1000Hz的区域内),本申请实施例的技术方案的有效声压始终大于传统扬声器方案的有效声压,可见本申请实施例的技术方案具有更加出色的低频性能,能够改善低频音质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种发声装置,其特征在于,包括:
    外壳,所述外壳的一部分区域包括第一发声部件;
    第二发声部件,位于所述装置内部,与所述第一发声部件相对设置;
    所述第一发声部件或者所述第二发声部件包括振动片;
    所述第一发声部件和所述第二发声部件用于相互配合以驱动所述振动片产生振动而发出声音。
  2. 根据权利要求1所述的发声装置,其特征在于,
    所述第一发声部件包括所述振动片,所述振动片与所述外壳通过柔性连接部件连接。
  3. 根据权利要求2所述的发声装置,其特征在于,
    在所述发声装置不需要发声时,所述振动片与所述外壳位于同一平面。
  4. 根据权利要求3所述的发声装置,其特征在于,
    在所述发声装置不需要发声时,所述第一发声部件与所述第二发声部件相互贴合;
    在所述发声装置需要发声时,所述第一发声部件与所述第二发声部件用于通过相互配合以产生斥力,从而将所述振动片推动至第一位置,所述第一位置位于所述外壳所在的平面之外;
    在所述发声装置发声过程中,所述振动片用于在所述第一位置处进行振动。
  5. 根据权利要求2所述的发声装置,其特征在于,
    所述振动片位于所述外壳所在的平面之外,所述第一发声部件与所述第二发声部件之间具有间隙。
  6. 根据权利要求2-5任一项所述的发声装置,其特征在于,
    所述第一发声部件包括永磁体,所述永磁体设置于所述振动片的面向所述第二发声部件的一侧;
    所述第二发声部件包括电磁铁,所述电磁铁与所述永磁体相对设置。
  7. 根据权利要求2-5任一项所述的发声装置,其特征在于,
    所述第一发声部件包括电磁铁,所述电磁铁设置于所述振动片的面向所述第二发声部件的一侧;
    所述第二发声部件包括永磁体,所述永磁体与所述电磁铁相对设置。
  8. 根据权利要求2-5任一项所述的发声装置,其特征在于,
    所述第一发声部件包括第一电磁铁,所述第一电磁铁设置于所述振动片的面向所述第二发声部件的一侧;
    所述第二发声部件包括第二电磁铁,所述第一电磁铁与所述第二电磁铁相对设置。
  9. 根据权利要求6所述的发声装置,其特征在于,还包括:第一副磁体和第二副磁体;
    所述第一副磁体设置在所述永磁体的外侧,与所述振动片连接;
    所述第二副磁体设置在所述电磁铁的线圈和所述第一副磁体的外侧;
    所述第二副磁体在垂直于所述振动片的轴线的方向上与所述第一副磁体具有间隔;
    所述第一副磁体的磁极方向和所述第二副磁体的磁极方向均与振动片的轴线方向垂直;所述第一副磁体的磁极与所述第二副磁体的磁极呈同极相对设置。
  10. 根据权利要求6或9所述的发声装置,其特征在于,还包括:第三副磁体;
    所述第三副磁体设置于所述电磁铁的铁芯内,所述第三副磁体的磁极与所述永磁体的磁极呈同极相对设置。
  11. 根据权利要求7所述的发声装置,其特征在于,还包括:包覆结构;
    所述包覆结构包括包覆片,所述包覆片压合设置在所述在第二发声部件上。
  12. 根据权利要求11所述的发声装置,其特征在于,所述第二发声部件设置有与所述电磁铁的线圈结构匹配的环形凹槽;所述环形凹槽沿着所述振动片的轴线方向穿过所述包覆结构和所述永磁体;所述电磁铁的线圈嵌入到所述环形凹槽中。
  13. 根据权利要求8所述的发声装置,其特征在于,所述第一发声部件还包括副永磁体,所述副永磁体设置于所述第一电磁铁的铁芯中。
  14. 根据权利要求2-13任一项所述的发声装置,其特征在于,
    所述柔性连接部件包括截面为弧形的延展部、设置于所述延展部外侧的第一折耳、以及设置于所述延展部内侧的第二折耳;
    所述延展部设置于所述外壳与所述振动片的缝隙之间,所述延展部延展之后的宽度大于所述外壳与所述振动片之间的缝隙宽度;
    所述第一折耳设置于所述外壳的内侧,与所述外壳连接;
    所述第二折耳设置于所述振动片内侧,与所述振动片连接。
  15. 根据权利要求1所述的发声装置,其特征在于,
    所述第一发声部件包括基座,所述基座与所述外壳连接,形成所述发声装置的内部空腔;
    所述第二发声部件设置于所述空腔内,所述第二发声部件包括所述振动片,所述振动片与所述基座通过柔性连接部件连接。
  16. 根据权利要求15所述的发声装置,其特征在于,
    所述第一发声部件包括电磁铁,所述电磁铁设置于所述基座的面向所述第二发声部件的一侧;
    所述第二发声部件包括永磁体,所述永磁体设置于所述振动片的面向所述第一发声部件的一侧。
  17. 根据权利要求15所述的发声装置,其特征在于,
    所述第一发声部件包括永磁体,所述永磁体设置于所述振动片的面向所述第二发声部件的一侧;
    所述第二发声部件包括电磁铁,所述电磁铁设置于所述振动片的面向所述第一发声部件的一侧。
  18. 根据权利要求15-17任一项所述的发声装置,其特征在于,
    所述柔性连接部件包括截面为弧形的延展部、设置于所述延展部外侧的第一折耳、以及设置于所述延展部内侧的第二折耳;
    所述延展部设置于所述基座与所述振动片的缝隙之间,所述延展部延展之后的宽度大于所述基座与所述振动片之间的缝隙宽度;
    所述第一折耳设置于所述基座的内侧,与所述基座连接;
    所述第二折耳设置于所述振动片内侧,与所述振动片连接。
  19. 根据权利要求1-18任一项所述的发声装置,其特征在于,
    在所述发声装置工作期间,所述第一发声部件与所述第二发声部件之间产生交替变化的斥力和引力,驱动所述振动片产生振动。
PCT/CN2022/080349 2021-03-15 2022-03-11 一种发声装置 WO2022194043A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110274748.0A CN115086840A (zh) 2021-03-15 2021-03-15 一种发声装置
CN202110274748.0 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022194043A1 true WO2022194043A1 (zh) 2022-09-22

Family

ID=83241128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080349 WO2022194043A1 (zh) 2021-03-15 2022-03-11 一种发声装置

Country Status (2)

Country Link
CN (1) CN115086840A (zh)
WO (1) WO2022194043A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006459A (ja) * 2005-05-24 2007-01-11 Matsushita Electric Ind Co Ltd スピーカ装置
CN203416403U (zh) * 2013-07-17 2014-01-29 瑞声科技(南京)有限公司 平板发声装置
CN203896474U (zh) * 2014-01-10 2014-10-22 瑞声科技(南京)有限公司 发声装置
CN204069312U (zh) * 2014-03-13 2014-12-31 朱双贵 一种弯曲形电视机的超薄弯曲形喇叭
CN206820827U (zh) * 2016-11-29 2017-12-29 汉得利(常州)电子股份有限公司 手机一体共振发声终端
CN107846648A (zh) * 2017-11-15 2018-03-27 歌尔智能科技有限公司 一种发声装置
CN209283512U (zh) * 2018-11-27 2019-08-20 歌尔股份有限公司 表面发声装置以及电子设备
CN209642963U (zh) * 2019-05-07 2019-11-15 歌尔科技有限公司 振动发声装置以及电子产品
US20200213719A1 (en) * 2018-12-28 2020-07-02 AAC Technologies Pte. Ltd. Sound generating device
CN111479199A (zh) * 2020-04-16 2020-07-31 浙江省东阳市东磁诚基电子有限公司 一种新型屏幕发声结构及其实现方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006459A (ja) * 2005-05-24 2007-01-11 Matsushita Electric Ind Co Ltd スピーカ装置
CN203416403U (zh) * 2013-07-17 2014-01-29 瑞声科技(南京)有限公司 平板发声装置
CN203896474U (zh) * 2014-01-10 2014-10-22 瑞声科技(南京)有限公司 发声装置
CN204069312U (zh) * 2014-03-13 2014-12-31 朱双贵 一种弯曲形电视机的超薄弯曲形喇叭
CN206820827U (zh) * 2016-11-29 2017-12-29 汉得利(常州)电子股份有限公司 手机一体共振发声终端
CN107846648A (zh) * 2017-11-15 2018-03-27 歌尔智能科技有限公司 一种发声装置
CN209283512U (zh) * 2018-11-27 2019-08-20 歌尔股份有限公司 表面发声装置以及电子设备
US20200213719A1 (en) * 2018-12-28 2020-07-02 AAC Technologies Pte. Ltd. Sound generating device
CN209642963U (zh) * 2019-05-07 2019-11-15 歌尔科技有限公司 振动发声装置以及电子产品
CN111479199A (zh) * 2020-04-16 2020-07-31 浙江省东阳市东磁诚基电子有限公司 一种新型屏幕发声结构及其实现方法

Also Published As

Publication number Publication date
CN115086840A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
KR100698256B1 (ko) 디스플레이 윈도우를 이용한 스피커 장치
CN113132867B (zh) 用于产生振动的布置结构和声音产生设备
WO2018170939A1 (zh) 动磁式扬声器
KR20050014748A (ko) 음향재생장치 및 휴대가능한 단말장치
KR102167474B1 (ko) 하이브리드 액추에이터
JP2005159479A (ja) 音響装置
CN110166907B (zh) 发声装置
WO2024045238A1 (zh) 振动发声器件
WO2021003602A1 (zh) 激励器
WO2021098563A1 (zh) 扬声器模组及便携式电子设备
WO2022194043A1 (zh) 一种发声装置
CN201947438U (zh) 扬声器及具有该扬声器的音响设备
CN211909149U (zh) 移动终端
US10869135B2 (en) Speaker
WO2021000208A1 (zh) 发声器件及电子设备
WO2021174577A1 (zh) 发声器件
WO2018170946A1 (zh) 动磁式扬声器
CN216087005U (zh) 一种振动系统稳定的扬声器及其电子设备
KR20060009112A (ko) 라운드형 스피커
CN216122883U (zh) 一种带有弹性件的扬声器及其电子设备
CN219981033U (zh) 一种用于入耳式耳机的高性能10mm动圈式换能器
CN213073079U (zh) 一种小型无线耳机平面扬声器
CN211321502U (zh) 双磁驱动的喇叭单体
KR102664375B1 (ko) 트랜스듀서 장치
WO2024050874A1 (zh) 一种多功能发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770398

Country of ref document: EP

Kind code of ref document: A1