WO2022194034A1 - 电子设备、通信方法和存储介质 - Google Patents

电子设备、通信方法和存储介质 Download PDF

Info

Publication number
WO2022194034A1
WO2022194034A1 PCT/CN2022/080284 CN2022080284W WO2022194034A1 WO 2022194034 A1 WO2022194034 A1 WO 2022194034A1 CN 2022080284 W CN2022080284 W CN 2022080284W WO 2022194034 A1 WO2022194034 A1 WO 2022194034A1
Authority
WO
WIPO (PCT)
Prior art keywords
network slice
cell
slice type
electronic device
network
Prior art date
Application number
PCT/CN2022/080284
Other languages
English (en)
French (fr)
Inventor
赵友平
梁逸飞
田中
孙晨
Original Assignee
索尼集团公司
赵友平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 赵友平 filed Critical 索尼集团公司
Priority to CN202280020046.2A priority Critical patent/CN116982349A/zh
Priority to US18/549,169 priority patent/US20240163757A1/en
Publication of WO2022194034A1 publication Critical patent/WO2022194034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • H04W36/008357Determination of target cell based on access point [AP] properties, e.g. AP service capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/13Cell handover without a predetermined boundary, e.g. virtual cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00838Resource reservation for handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength

Definitions

  • the present disclosure relates to the field of wireless communication, and more particularly, to an electronic device, a communication method and a storage medium for cell selection or cell reselection.
  • Network slicing Network Slicing technology is introduced in the 5G New Radio (NR) system.
  • Network slicing technology is based on Network Function Virtualization (NFV), by implementing multiple virtual network functions on common devices, allowing the communication network to be divided into multiple network slices, and operators can assign differentiated network slices to different network slices. Virtual network resources to meet different business needs.
  • NFV Network Function Virtualization
  • the existing mechanism in the process of serving network slice users, it is difficult for the existing mechanism to provide efficient and fast cell selection/reselection.
  • the main reason is that in the existing cell selection/reselection mechanism, the user's cell selection behavior is usually based on the cell selection sequence with fixed priority, and the user does not know whether the cell supports the current service slice type during the access selection process. . Therefore, it may happen that the cell that the user chooses to access does not support the slice type expected by the user, resulting in deterioration or even interruption of the user's service quality, and cell reselection has to be triggered again. This will result in reduced access delay and service quality for network slice users.
  • the present disclosure provides various aspects to meet the above needs.
  • the present disclosure proposes a network slicing user service guarantee mechanism based on the user's network slicing information, so as to help users quickly and efficiently access cells that can provide them with required services.
  • an electronic device for a network control device comprising a processing circuit configured to: interact with one or more neighboring cells of a user equipment (UE) to obtain information fed back by the neighboring cells.
  • UE user equipment
  • Support information about a network slice type suitable for the UE based on the support information, evaluating a service capability metric of each neighboring cell for the network slice type; and determining that the UE selects each neighboring cell based on at least the service capability metric Cell priority.
  • an electronic device for a user equipment including processing circuitry configured to receive information regarding selection priorities of one or more neighboring cells, wherein the selection priorities are It is determined by the network control device based on the service capability measurement of each neighboring cell for the network slice type suitable for the UE; based on the selection priority, the neighboring cell to be accessed is selected.
  • an electronic device for a cell including a processing circuit configured to: feed back support information about a specific network slice type to a network control device, so that the network control device can determine that the cell is suitable for all the service capability measurement of the specific network slice type; receive RACH resource reservation information for the specific network slice type determined by the network control device based on the service capability measurement; The network slice type reserves the determined RACH resources.
  • a communication method comprising: interacting with one or more neighboring cells of a user equipment (UE) to obtain support information fed back by each neighboring cell on a network slice type suitable for the UE ; evaluating the service capability metric of each neighboring cell for the network slice type based on the support information; and determining the priority of the UE to select each neighboring cell based on at least the service capability metric.
  • UE user equipment
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the communication method as described above.
  • FIG. 1 is a simplified diagram illustrating the architecture of a 5G NR communication system
  • Fig. 2 simply shows the functional division of NG-RAN and 5GC in the NR communication system
  • Figure 3 shows a non-roaming reference architecture for an NR communication system showing various service-based interfaces used within the control plane;
  • Fig. 4 schematically shows a scenario of cell reselection
  • Figure 5 shows three RRC states and their transitions in an NR communication system
  • FIG. 6 is a block diagram showing an electronic device according to the first embodiment
  • FIG. 7 is a flowchart showing a communication method according to the first embodiment
  • Figure 8 illustrates an example of interaction according to the first embodiment
  • FIG. 9 illustrates another example of interaction according to the first embodiment
  • Figure 10 shows an exemplary random access procedure
  • FIG. 11 shows a block diagram of an electronic device according to a second embodiment
  • FIG. 13 is a signaling flow diagram showing the second embodiment
  • Figure 14 is a schematic diagram illustrating a scenario according to a simulation
  • Figure 15 is a performance comparison diagram as a simulation result
  • 16 is a block diagram showing a first application example of a schematic configuration of a base station
  • FIG. 17 is a block diagram showing a second application example of a schematic configuration of a base station
  • FIG. 18 is a block diagram showing a schematic configuration example of a smartphone
  • FIG. 19 is a block diagram showing a schematic configuration example of a car navigation apparatus.
  • FIG. 1 is a simplified diagram showing the architecture of a 5G NR communication system.
  • the radio access network (NG-RAN) nodes of the NR communication system include gNB and ng-eNB, where gNB is a node newly defined in the 5G NR communication standard, which provides communication with terminals NR user plane and control plane protocols terminated by a device (also referred to as "user equipment", hereinafter referred to as "UE"); ng-eNB is a node defined for compatibility with 4G LTE communication systems, which may be LTE Upgrade of Evolved Node Bs (eNBs) of the radio access network and provides Evolved Universal Terrestrial Radio Access (E-UTRA) user plane and control plane protocols for UE termination.
  • eNBs Evolved Node Bs
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the term "base station” as used in this disclosure is not limited to the above two kinds of nodes, but has the full breadth of its usual meaning.
  • the “base station” may also be, for example, an eNB, a remote radio head in an LTE/LTE-A communication system terminal, wireless access point, or communication device or element thereof that performs similar functions. Subsequent chapters will describe the application examples of the base station in detail.
  • the coverage area of a base station may be referred to as a "cell".
  • Cell as used in the present disclosure includes various types of cells, eg, depending on the transmit power and coverage of the base station, a cell may include a macro cell, a micro cell, a pico cell, a home cell, and the like. A cell is usually identified by a cell ID (cell_id). Typically, there is a one-to-one correspondence between base stations and cells, but other correspondences between base stations and cells may also exist. Although the behavior of a cell described in this disclosure is actually performed by a base station, for ease of understanding, "cell” and “base station” are often used interchangeably.
  • the term "UE” as used in this disclosure has the full breadth of its usual meaning, including various terminal or vehicle-mounted devices that communicate with a base station.
  • the UE may be, for example, a terminal device such as a mobile phone, a laptop computer, a tablet computer, and an in-vehicle communication device.
  • a terminal device such as a mobile phone, a laptop computer, a tablet computer, and an in-vehicle communication device.
  • UE and “user” are often used interchangeably. Subsequent chapters will describe the application examples of the UE in detail.
  • the UE can wirelessly access a base station, such as a gNB or ng-eNB, via the air interface (Uu interface), which in turn is connected to the 5G core network (5GC) via the NG interface.
  • NG-RAN and 5GC can forward and backhaul data through the bearer network. They are responsible for different functions at different levels and cooperate with each other to realize network-side control of wireless communication.
  • Figure 2 simply shows the functional division of NG-RAN and 5GC.
  • a gNB or ng-eNB may handle inter-cell radio resource management (RRM), radio bearer (RB) control, radio admission control, connection mobility control, dynamic resource allocation for uplink and downlink, and the like.
  • RRM radio resource management
  • RB radio bearer
  • connection mobility control dynamic resource allocation for uplink and downlink, and the like.
  • Core networks such as 5GC are the brains of wireless communication networks and are responsible for managing and controlling the entire network.
  • 5GC adopts a microservices architecture, i.e., a service-based architecture, so as to realize "a single function of multiple network elements".
  • 5GC provides many network element equipment, each network element equipment provides its own network element functions, such as access and mobility management function (AMF), session management function (SMF), user plane function (UPF), policy control function (PCF) ), Network Slice Selection Function (NSSF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • PCF policy control function
  • NSSF Network Slice Selection Function
  • the AMF may provide functions such as NAS security, idle state mobility management, access authentication and authorization, and communicate with the UE via the N1 interface and with the access network ((R)AN) via the N2 interface;
  • the SMF may Provides functions such as session management, UE IP address allocation and management, and PDU session control, and communicates with UPF via N4 interface;
  • UPF can provide functions such as mobility anchoring, PDU processing, packet routing and forwarding, and communicate with access via N3 interface Network ((R)AN) communication, and data network (DN) communication via N6 interface.
  • Figure 3 shows a non-roaming reference architecture for a 5G NR system showing various service-based interfaces used within the control plane.
  • the AMF presents the Namf interface
  • the SMF presents the Nsmf interface
  • the PCF presents the Npcf interface, and so on.
  • each network function can provide its own services as a whole.
  • AMF may provide Namf_Communication (for enabling NF users to communicate with UE or access network via AMF), Namf_EventExposure (for enabling NF users to subscribe to mobility related events or statistics), Namf_MT (for enabling NF users to subscribe to mobility related events or statistics), Namf_MT Services such as enabling other NF users to confirm that the UE is reachable), Namf_Location (for enabling NF users to request the location information of the target UE).
  • Namf_Communication for enabling NF users to communicate with UE or access network via AMF
  • Namf_EventExposure for enabling NF users to subscribe to mobility related events or statistics
  • Namf_MT for enabling NF users to subscribe to mobility related events or statistics
  • Namf_MT Services such as enabling other NF users to confirm that the UE is reachable
  • Namf_Location for enabling NF users to request the location information of the target UE.
  • each network slice represents a type of service requirements of a certain type of UE, and the network device selects corresponding network functions and services according to the service requirements of the UE to form corresponding network slices.
  • the network device dynamically combines the functions of the core network device and/or the access network device according to the service requirements of the UE, and then configures it for the UE to use.
  • a dynamic network configuration method has high complexity and is very cumbersome to implement. Therefore, the simplified solution is that the network device forms multiple network slices in advance according to the UE type and service type oriented to match it. When the UE needs to use the corresponding network slice, it sends the requirement to the network device, and then the network device follows the corresponding network slice. Slicing requirements allocate resources to the UE.
  • each network slicing operator's operating network slicing operator can provide various network slicing services.
  • services can be divided into the following three types: enhanced Mobile Broadband (eMBB) services, which feature high bandwidth; massive Machine-type Communication (mMTC) services, which feature It lies in the high number of users; the Ultra-relaible and Low Latency Communication (URLLC) service is characterized by high reliability and low delay. Therefore, typically, the above three types of services can be divided into three network slices, and the charging policies, security policies, and QoS (Quality of Service) policies of each network slice may be different. Large-scale service congestion in the network will not affect the normal operation of services in other network slices. However, the actual types of network slices may not be limited to these, and slice operators can provide several, dozens, or even hundreds of network slices to meet various business needs.
  • FIG. 4 schematically shows a scenario of cell reselection.
  • the UE is currently registered with the network and has received the allowed network slice selection assistance information (NSSAI), accesses the network slice Slice-A in the current cell 1, and maintains the RRC-IDLE state.
  • NSSAI network slice selection assistance information
  • the UE moves towards the edge of cell 1, since the UE is at the edge of the cell, the UE performs a cell reselection evaluation and triggers cell reselection.
  • the UE may access the cell 3 that does not support the current network slice type according to the cell selection priority list provided by the AMF, resulting in the interruption of the user-customized slice service and the need to perform cell reselection again. , until the cell 2 that supports Slice-A is selected to be accessed.
  • An inefficient cell selection (reselection) process may result in reduced service quality and worse user experience.
  • the present disclosure envisages taking network slice information into account in cell selection/reselection, so that a network slice user can quickly access cells that can provide communication services in compliance with his/her registered Service Level Agreement (SLA).
  • SLA Service Level Agreement
  • cell selection As used in this disclosure, the terms “cell selection”, “cell reselection” are UE procedures described in wireless communication standards for different RRC states.
  • Figure 5 shows three RRC states and their transitions in a 5G NR system, the three are RRC_IDLE (idle) state, RRC_INACTIVE (inactive) state, and RRC_CONNECTED (connected) state.
  • RRC_IDLE Idle
  • RRC_INACTIVE active
  • RRC_CONNECTED connected
  • the UE in the RRC_CONNECTED state can enter the RRC_IDLE or RRC_INACTIVE state by releasing the RRC connection, and the UE transitioning to the RRC_IDLE or RRC_INACTIVE state can reselect the cell to camp on. This process is called “cell reselection”.
  • the process that the UE in the RRC_CONNECTED state accesses from the current serving cell to the target neighboring cell is called "handover".
  • cell selection includes both initial cell selection and cell selection using stored information
  • the UE has no prior knowledge about which RF channels are NR frequencies and must scan all RF channels according to its capabilities to find appropriate community.
  • the UE can pre-store information about the NR frequency, possibly also cell parameters from previously received measurement control information elements or from previously detected cells, and use this information to find an appropriate cell. Once a suitable cell is found, the UE selects that cell.
  • the UE measures the signal quality and signal strength of the current serving cell and neighboring cells according to the measurement criteria in the RRC_IDLE or RRC_INACTIVE state, and determines the cell to camp on according to certain cell reselection criteria.
  • the core network may generate selection priority information of neighboring cells based on the UE's network slice information, so as to help the UE to perform cell selection/reselection efficiently.
  • cell priority information obtained according to embodiments of the disclosure can also be used in handover scenarios in RRC_CONNECTED state to facilitate efficient cell handover procedures.
  • FIG. 6 is a block diagram illustrating the electronic device 100 according to the first embodiment
  • FIG. 7 illustrates a communication method that can be implemented by the electronic device 100 in FIG. 6 .
  • the electronic device 100 includes a processing circuit, which can be configured or programmed to perform various steps of the communication method shown in FIG. 7 , thereby forming a plurality of modules implementing corresponding functions, such as an interaction module 101 and a service capability evaluation module 102 , the priority determination module 103 .
  • Processing circuitry may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuits may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of individual processor cores, entire processor cores, individual processors, such as field programmable arrays (FPGAs). ), and/or a system including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable arrays
  • the electronic device 100 may be implemented as a network control device in a core network or a component thereof.
  • functional modules such as the interaction module 101 , the service capability evaluation module 102 , and the priority determination module 103 can be implemented in the AMF of the core network. Therefore, it can also be considered that the communication method according to the first embodiment is performed by the AMF.
  • the interaction module 101 of the electronic device 100 is configured to, for a certain network slice user (hereinafter referred to as "UE"), interact with one or more neighboring cells of the UE, that is, perform step S101 in FIG. 7 .
  • the purpose of the interaction module 101 is to obtain from each neighboring cell of the UE various supporting information of the neighboring cell regarding the type of network slice required by the UE.
  • FIG. 8 illustrates an example of interaction according to the first embodiment.
  • the network slice information of the UE can be obtained from the NSSF.
  • the UE can sign contracts with network slicing operators through offline business halls, online business halls, APP, etc., to determine the required SLA parameters, such as transmission delay, transmission rate, service priority, security, reliability and other indicators, and initially register with the core network of the network slice operator.
  • the NSSF of the core network can select the type of network slice suitable for the UE.
  • the NSSF can also select the set of network slice instances to serve the UE, determine the allowed NSSAI, and if required, determine the mapping to the subscribed S-NSSAI.
  • the NSSF may report the information of the network slice selected for the UE to the AMF.
  • the interaction module 101 broadcasts the network slice information of the UE to each neighboring cell of the UE. Even if the UE is in the RRC_IDLE or RRC_INACTIVE state, the core network can still know the tracking area (TA) where the UE is located, so as to determine all the neighboring cells of the UE, such as gNB 1, ..., gNB N in Figure 8.
  • the adjacent cells gNB 1 to gNB N may include cells in the own communication network of the slice operator subscribed by the UE, and may also include cells in the communication networks of other slice operators that cooperate with the slice operator subscribed by the UE.
  • the interaction module 101 may send the UE's network slice information to each neighboring cell via, for example, the N2 interface.
  • the interaction module 101 may send a network slice type (eg, URLLC slice) as slice information.
  • a network slice type eg, URLLC slice
  • the interaction module 101 may directly send SLA parameters for selecting a network slice for the UE as slice information, which is especially useful when communication networks of different slice operators are involved, because different slice operators may provide different Network slice classification.
  • the slice operator contracted by the UE may choose network slice A to serve the UE, but the slice operator of the neighboring cell gNB N does not provide network slice A, but the network slice B provided by it can meet the SLA parameters of the UE. Therefore, The neighboring cell gNB N that has received the slice information may determine, according to the SLA parameters included in the slice information, that the network slice B is a network slice type that meets the requirements of the UE.
  • the neighbor cell determines whether it supports a network slice type suitable for the UE. If there is a network slice type suitable for the UE in the network slice provided by the neighboring cell, a positive indication is fed back to the interaction module 101. On the contrary, if the neighboring cell cannot provide the network slice type indicated in the slice information or fails to provide a network slice type that meets the requirements contained in the slice information The network slice type of the SLA parameter, and a negative indication is fed back to the interaction module 101 .
  • slice information eg, network slice type or SLA parameters
  • the interaction module 101 selects a neighboring cell that supports a network slice type suitable for the UE, and interacts again to obtain further support information.
  • Such support information may describe the service capabilities of neighboring cells for this network slice type.
  • how many UEs can be served by neighboring cells can be known through interaction.
  • FIG. 8 it is assumed that the neighboring cell gNB 1 supports the network slice type through the result of the first step of interaction, while the neighboring cell gNB N does not support the network slice type, so the interaction module 101 can only feed back the supported neighboring cells (eg gNB 1) ask them about their current service load on that network slice type.
  • the neighboring cells that have received the inquiry may feed back their current service load to the interaction module 101, such as the number of UEs of the network slice type currently served, resource usage rate, and the like.
  • the quality of service of neighboring cells for the network slice type may be known through interaction.
  • the interaction module 101 may query the neighboring cells for the service index compliance rate of the network slice type, and the like. It should be understood that the content of the second interaction may not be limited to these, and may additionally or alternatively include any support information for subsequent calculation of service capability metrics of neighboring cells for the network slice type, such as the upper limit of the number of UEs for the network slice type , QoS metrics, etc.
  • FIG. 9 illustrates another example of interaction according to the first embodiment.
  • the interaction module 101 broadcasts the UE's network slice information, such as network slice type or SLA parameters, to all neighboring cells.
  • each neighboring cell feeds back support information about the network slice type suitable for the UE at one time, including but not limited to whether the network slice type is supported, the current service load of the network slice type, and so on.
  • the form of the support information fed back by the neighboring cells is not limited.
  • the support information may include a binary value indicating whether the network slice type is supported, a value of the current load, etc.; but in another example, the support information may only include a value of the current load, when the network suitable for the UE is not supported For slice type, neighboring cells can feed back the current load of 0, otherwise, they can feed back the actual load value. Compared to the interaction process in FIG. 8 , the number of interactions shown in FIG. 9 is reduced.
  • the service capability evaluation module 102 of the electronic device 102 is configured to evaluate the service capability metric of each adjacent cell for the network slice type based on the support information of each adjacent cell on the network slice type suitable for the UE obtained by the interaction module 101 , that is, step S102 in FIG. 7 is performed.
  • the service capability evaluation module 102 is designed to evaluate the service support capability of the neighboring cells for the relevant network slice types, and perform quantitative calculation, so as to provide the UE with a reference basis for which neighboring cell is the best choice.
  • the service capability evaluation module 102 may evaluate the remaining accessible amount of each neighboring cell, because in general, the higher the service load that the neighboring cell can support, the higher the success rate of network slice user access. higher. For example, for each neighboring cell, it can be calculated by subtracting the number of currently serving UEs (obtained from neighboring cells by the interaction module 101 ) from the upper limit of the number of accessible UEs of the above-mentioned network slice type (which can be obtained from the policy control function PCF) The number of network slice users that the neighboring cell can still bear, so as to obtain the service capability measure of the neighboring cell for the network slice type.
  • the service capability evaluation module 102 may evaluate the quality of service of each neighboring cell for the aforementioned network slice types, because the higher the quality of service provided by the neighboring cells, the better the communication experience obtained by the network slice users. For example, for each neighboring cell, the service capability evaluation module 102 may obtain the average satisfaction level that the neighboring cell currently serves all users of the network slice type from the slice management module (eg NSSF) in the core network or through the interaction module 101 (For example, the satisfaction score given by the UE) is used as the service quality indicator, so as to obtain the service capability measure of the neighboring cell for the network slice type.
  • the slice management module eg NSSF
  • the service capability evaluation module 102 can use the following formula to calculate the service capability metric ⁇ ⁇ of each neighboring cell:
  • N SLA_ ⁇ is the network slice
  • the current service load of type ⁇ (for example, the number of currently served UEs) is obtained by the interaction module 101 from neighboring cells through the above interaction process
  • N SLA_ ⁇ max represents the predetermined upper limit value of the service load of network slice type ⁇ , which is given by PCF.
  • ⁇ ⁇ is a binary variable. When ⁇ ⁇ is 0, it indicates that the configuration of the neighboring cell does not support the network slice type, and when ⁇ ⁇ is 1, it indicates that the configuration of the neighboring cell can support the network slice type.
  • the calculation method of the service capability measure is not limited to the above formula (1).
  • the algorithm adopted by the service capability evaluation module 102 can make the number of users that can be afforded in the neighboring cells larger and the service quality higher, the calculated value of the service capability metric is also higher.
  • the priority determination module 103 may determine the selection priority of the neighboring cells, that is, perform step S103 in FIG. 7 .
  • the selection priority of neighboring cells may indicate the order in which the UE selects to access the neighboring cells when performing cell selection/reselection.
  • the priority determination module 103 may sort neighboring cells according to the calculated value of the service capability metric to obtain a priority list of neighboring cells.
  • the obtained priority list may only include neighboring cells that support the UE's network slice type, that is, neighboring cells whose service capability metric is not zero, because neighboring cells with zero service capability metric cannot provide the corresponding network slice service even if they are accessed. .
  • the priority determination module 103 may also optimize, ie, secondary order, the existing priority list of neighboring cells based on the calculated value of the service capability metric. For each neighboring cell, its service capability metric can be added to the calculation of its priority according to a predetermined weighting factor, and the resulting priority list will be able to reflect the neighboring cell's ability to support network slice types.
  • the selection priority information of the neighboring cells determined by the priority determination module 103 may be delivered to the UE, for example, via the interface N1 in FIG. 3 .
  • the UE may select or reselect a cell based at least on the received selection priority information of neighboring cells.
  • the UE may first select a neighboring cell with the highest priority, perform an initial access procedure, and attempt access on the RACH frequency point of the neighboring cell.
  • UE 110 may notify cell 120 of its access behavior by sending a random access preamble (eg, included in MSG-1) to cell 120.
  • the transmission of the random access preamble enables the cell 120 to estimate the uplink timing advance (Timing Advance) of the terminal device.
  • the cell 120 may notify the UE 110 of the above timing advance by sending a random access response (eg, included in MSG-2) to the UE 110.
  • the UE 110 may achieve uplink cell synchronization through this timing advance.
  • the random access response may also include information on uplink resources, and the UE 110 may use the uplink resources in the following operation 104.
  • the UE 110 may transmit the terminal equipment identification and possibly other information (eg, included in MSG-3) through the above-mentioned scheduled uplink resources.
  • the cell 120 can determine the contention resolution result through the terminal equipment identification.
  • the cell 120 may inform the UE 110 of the contention resolution result (eg, included in MSG-4).
  • the competition is successful, the UE 110 successfully accesses the cell 120, and the random access procedure ends; otherwise, the access fails this time.
  • the UE may select the neighboring cell with the second highest priority, and so on. Alternatively, the UE may also select or reselect the cell to be accessed by the selection priority of the neighboring cells and other factors, such as the signal strength or signal quality of the neighboring cells. After the UE completes cell selection/re-camping on a neighboring cell, the UE can report the updated slice state information to the AMF through the NSSF.
  • the selection priority information of neighboring cells determined by the priority determination module 103 may be delivered to the serving cell of the UE, for example, via the interface N2 in FIG. 3 , for use in cell "handover". That is to say, when the UE is in the RRC_CONNECTED state, when the UE moves to the edge of the serving cell, it can request to switch to a neighboring cell. If there are multiple neighboring cells to choose from at this time, the base station can at least select based on their priority. Determine the cell to handover to.
  • the electronic device 100 may be triggered to execute the communication method in FIG. 7 when a predefined situation occurs.
  • the wireless device information collection and monitoring module in the UE's serving cell is responsible for collecting UE-side data, such as the UE's transmission rate, transmission delay, etc., and the AMF determines the services currently provided by the serving cell based on the information collected by the serving cell. Whether the quality meets the SLA parameters registered by the UE, and if the quality of service provided by the serving cell does not meet the requirements, triggering the execution of the communication method according to this embodiment, the electronic device 100 can start interacting with the updated neighboring cell to determine the updated neighboring cell The selection priority information is sent to the UE for the UE to perform cell selection/reselection.
  • Another situation is that the UE moves away from the current tracking area (TA) and enters another TA. At this time, the neighboring cell of the UE changes. After monitoring the change of the TA of the UE, the core network triggers the execution of the communication according to this embodiment. method. Alternatively, the electronic device 100 may also periodically execute the communication method according to the present embodiment, thereby dynamically updating the selection priority information of neighboring cells.
  • TA current tracking area
  • the UE can avoid access failure and service interruption because the target cell does not support the relevant network slice type, thereby improving the speed and speed of cell selection/reselection/handover.
  • the success rate ensures that important network slice users receive services that meet their registration needs.
  • the UE may access the selected target cell in a contention-based manner.
  • network slice users of important services.
  • users such as URLLC slices compete for access with other slice type users (such as eMBB users)
  • access may occur due to possible congestion of RACH resources.
  • it is difficult to carry out strict service quality assurance for users of key services. This is because the current RACH resources adopt the manner of sharing resource pools, which cannot achieve differentiated cell access for users of different service types.
  • FIG. 11 is a block diagram illustrating an electronic device 100' according to the second embodiment
  • FIG. 12 illustrates a communication method that can be implemented by the electronic device 100' in FIG. 11 .
  • the electronic device 100' includes a processing circuit that may be configured or programmed to perform the various steps of the communication method shown in FIG. 12, thereby forming a plurality of modules that implement corresponding functions.
  • the difference between the electronic device 100' shown in FIG. 11 and the electronic device 100 in FIG. 6 is that a resource reservation module 104 is further included.
  • the resource reservation module 104 may also be implemented in the AMF.
  • the interaction module 101 and the service capability evaluation module 102 in the electronic device 100' are the same as those in the electronic device 100, that is, the interaction module 101 acquires network slices suitable for the UE for each neighboring cell by interacting with one or more neighboring cells of the UE Type support information, the service capability evaluation module 102 evaluates the service capability metrics of each neighboring cell for the network slice type based on the acquired support information, which will not be described in detail here.
  • the resource reservation module 104 of the electronic device 100 ′ is configured to determine the RACH resources reserved by the neighboring cell based on the service capability metric of the neighboring cell calculated by the service capability evaluation module 102 , ie, to perform the RACH resource in FIG. 12 . step S104.
  • the resource reservation module 104 may formulate a RACH resource reservation scheme for neighboring cells for some important network slice types. For example, for URLLC slices, the resource reservation module 104 can allow neighboring cells to reserve some RACH resources for slice users to access, so as to avoid the situation that key service users cannot obtain service quality assurance due to the common competition of eMBB slice users.
  • a reservation scheme may be formulated only for some neighboring cells, such as neighboring cells whose service capability measure is higher than a predetermined threshold, because the selection priority of these neighboring cells tends to be higher, and the pressure of competing for access is greater.
  • the resource reservation module 104 may determine RACH resource reservations only for the previous, top two, top three, or other number of neighboring cells with the highest service capability metric.
  • the RACH resources may be, for example, partial frequency points in the RACH resources allocated to neighboring cells.
  • the resource reservation module 104 may be configured such that the larger the service capability metric of the neighboring cells, the larger the amount of RACH resources that should be reserved. For example, idle RACH resources of neighboring cells can be recycled.
  • a dynamic resource reservation scheme is preferably used to ensure flexibility and efficiency of system resource allocation, and avoid excessive degradation of service quality for general users due to excessive resource reservation. An example of the calculation of the resource reservation is given below.
  • the resource reservation module 104 can calculate the resource reservation amount Nr ⁇ of the cell as follows:
  • Nr ⁇ tanh(N ⁇ ) ⁇ ⁇ ⁇ (2)
  • N ⁇ is the number of UEs that may select the network slice type ⁇ of the neighboring cell, and the number of UEs can be estimated by the number of slice information broadcasts of the network slice type received by the cell;
  • n ⁇ is, for example, according to the above The service capability measure calculated by the formula (1);
  • is the handover frequency parameter, which is between 0 and 1, indicating the frequency of user handover in this area, which is obtained from historical statistical data. The higher the frequency, the closer the parameter is to 1, otherwise it is close to 0, so this parameter can describe the mobility requirements and handover frequency requirements of users in the area, and this parameter is used to reduce the resources caused by resource reservation. Utilization is reduced.
  • the resource reservation module 104 determines the resources that should be reserved, such as the RACH corresponding to the reserved amount, from the RACH resources (preferably, idle RACH resources) allocated to neighboring cells. Frequency.
  • FIG. 13 illustrates an interaction flowchart according to the second embodiment. As shown in FIG. 13 , after determining the RACH resource reservation scheme of the neighboring cells, the electronic device 100 ′ may notify the neighboring cells of corresponding resource reservation information, such as the one determined to be reserved, via, for example, the N2 interface in FIG. 3 . or multiple RACH frequency points. After receiving the RACH resource reservation information, the neighboring cell restricts these RACH resources to only be accessed by UEs of the corresponding network slice type.
  • the electronic device 100' may notify the UE of the RACH resource reservation information of the neighboring cells via, for example, the N1 interface in FIG. 3 .
  • the RACH resource reservation information may be delivered to the UE together with the selection priority information obtained by the priority determination module 103 . After receiving the RACH resource reservation information, when the UE selects to access a certain neighboring cell, it may directly access the cell initially on the reserved RACH resource.
  • step S104 of determining the RACH reserved resources is placed after the step S103 of determining the selection priority in FIG. 12, it is not necessary for them to be performed in this order.
  • step S104 may be performed before step S103, or step S104 may be performed simultaneously with step S103.
  • the priority determination module 103 of the electronic device 100 ′ may further base on both the service capability measurement obtained by the service capability evaluation module 102 and the RACH resource reservation scheme determined by the resource reservation module 104 The priority of each neighboring cell is determined. For example, the prioritization module 103 may tend to give higher priority to neighboring cells with higher service capability metrics and larger RACH resource reservations.
  • the core network realizes resource isolation between user access of a specific network slice type and general user access by means of resource reservation, thereby reducing or eliminating the competitive pressure of key service users, and improving cell efficiency. access efficiency.
  • Figure 14 is a schematic diagram of a simulation scene.
  • the simulation scene is set to a rectangular area of 1000m ⁇ 1000m, where cell 1, cell 2, and cell 3 provide eMBB slices, URLLC slices, and mMTC slices, respectively.
  • Other specific simulation parameters are shown in Table 1:
  • Simulation parameters parameter value Simulation area 1000m ⁇ 1000m Center frequency 3.6GHz channel bandwidth 1MHz path loss factor 3.2 Number of base stations 20 Number of slice users 100 slice type 3
  • FIG. 15 is a performance comparison diagram of implementing the slice user service guarantee mechanism according to the second embodiment of the present disclosure and not implementing the mechanism. As indicated in the figure, the two curves in the figure represent the user's service satisfaction with and without the mechanism of the present disclosure, respectively. It can be seen that after using this solution, the user's service satisfaction is increased by about 24%.
  • modules of the electronic devices 100 and 100' described in the above embodiments are only logical modules divided according to the specific functions implemented by them, and are not used to limit the specific implementation manner.
  • the above units may be implemented as independent physical entities, or may also be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • An electronic device for a network control device comprising: a processing circuit configured to: interact with one or more neighboring cells of a user equipment (UE) to obtain feedback from each neighboring cell regarding information suitable for the UE. Support information of the network slice type; based on the support information, evaluating the service capability metric of each adjacent cell for the network slice type; and determining the priority of the UE for selecting each adjacent cell based at least on the service capability metric.
  • UE user equipment
  • processing circuit is further configured to: determine, based on the assessed service capability metric, the RACH resources reserved by the corresponding neighboring cells for the network slice type; The cell and the UE notify the determined RACH resource reservation information.
  • the electronic device includes one of the following: determining a network slice type suitable for the UE according to a service level agreement (SLA) parameter registered by the UE, and reporting to the one sending information about the network slice type or sending the SLA parameters registered by the UE to the one or more neighboring cells.
  • SLA service level agreement
  • the electronic device of 3, wherein the interaction comprises: receiving support information from each of the one or more neighboring cells as to whether the neighboring cell supports the network slice type.
  • interaction further comprises: querying a neighboring cell supporting the network slice type for a current service load of the network slice type; receiving a current service load for the network slice type from a neighboring cell Supporting information for service loads.
  • the electronic device of 3, wherein the interaction comprises: receiving information from each of the one or more neighboring cells regarding whether the neighboring cell supports the network slice type and the network slice type. Supporting information for the current service load.
  • the SLA parameters include at least one of the following: transmission delay, transmission rate, service priority, security, and reliability.
  • the network slice type includes one of the following: URLLC slice, eMBB slice, and mMTC slice.
  • the processing circuit is configured to initiate the interaction when one of the following occurs: the UE moves to another tracking area; a network slice currently provided by the UE's serving cell The quality of service does not meet the service level agreement (SLA) parameters registered by the UE; or every predetermined time interval.
  • SLA service level agreement
  • N SLA_ ⁇ is the current service load of the network slice type ⁇ of the adjacent cell
  • N SLA_ ⁇ max is the service load of the network slice type ⁇ of the adjacent cell upper limit
  • ⁇ ⁇ is a binary variable indicating whether the neighbor cell supports network slice type ⁇ .
  • Nr ⁇ tanh(N ⁇ ) ⁇ ⁇ ⁇
  • N ⁇ is the number of UEs that may select the network slice type ⁇ of the neighboring cell
  • is the service capability measure of the neighboring cell for the network slice type ⁇
  • is the selection frequency parameter.
  • processing circuit is further configured to: send information about selection priorities of neighboring cells to the UE, so that the UE selects/reviews based on at least the selection priorities. Select the cell you want to access.
  • processing circuit is further configured to: send information about a selection priority of neighboring cells to a serving cell of the UE, such that the serving cell is based at least on the selection priority to determine the target cell to be handed over to.
  • An electronic device for a user equipment comprising: a processing circuit configured to receive information about a selection priority of one or more neighboring cells, wherein the selection priority is determined by a network control device based on each The neighboring cells are determined for the service capability measurement of the network slice type suitable for the UE; based on the selection priority, the neighboring cells to be accessed are selected.
  • processing circuit is further configured to receive information about RACH resources reserved by a particular neighboring cell for the network slice type, the reserved RACH resources being the network
  • the control device is determined based on the service capability metric of the specific neighbor cell; and accesses the specific neighbor cell on the reserved RACH resource.
  • the network slice type comprises one of the following: URLLC slice, eMBB slice, mMTC slice.
  • An electronic device for a cell comprising: a processing circuit configured to feed back support information about a specific network slice type to a network control device, so that the network control device can determine the cell's support for the specific network slice type. service capability measurement; receiving RACH resource reservation information for the specific network slice type determined by the network control device based on the service capability measurement; Determined RACH resources.
  • a communication method comprising: interacting with one or more neighboring cells of a user equipment (UE) to obtain support information fed back by each neighboring cell on a network slice type suitable for the UE; based on the support information, evaluating a service capability metric of each neighboring cell for the network slice type; and determining a priority for the UE to select each neighboring cell based at least on the service capability metric.
  • UE user equipment
  • a non-transitory computer-readable storage medium storing executable instructions that, when executed, implement the communication method of 19.
  • the electronic device 100, 100' may be implemented as a network control device in a core network.
  • the communication method according to the embodiment of the present disclosure may be implemented by relevant network functions in the core network.
  • a UE according to an embodiment of the present disclosure may be implemented as or in various user equipments, and a base station according to an embodiment of the present disclosure may be implemented as or in various base stations.
  • the base stations referred to in the present disclosure may be implemented as any type of base station, preferably, such as macro gNB and small gNB in the 5G communication standard New Radio (NR) access technology of 3GPP.
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as NodeB, eNodeB, and base transceiver station (BTS).
  • the base station may also include a main body configured to control wireless communications and one or more remote radio heads (RRHs), wireless relay stations, drone towers, etc. located at a different location than the main body.
  • RRHs remote radio heads
  • User equipment may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras or vehicle-mounted terminals such as car navigation devices.
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication, a drone, or the like.
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • base station has the full breadth of its ordinary meaning and includes at least a wireless communication station used as a wireless communication system or part of a radio system to facilitate communication.
  • Examples of base stations may be, for example, but not limited to the following: one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM communication system; a radio network controller (RNC) in a 3G communication system One or both of NodeBs and NodeBs; eNBs in 4G LTE and LTE-Advanced systems; corresponding network nodes in future communication systems (such as gNBs that may appear in 5G communication systems, etc.).
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • NodeBs and NodeBs eNBs in 4G LTE and LTE-Advanced systems
  • corresponding network nodes in future communication systems such as gNBs that may appear in 5G communication systems, etc.
  • FIG. 16 is a block diagram showing a first application example of a schematic configuration of a base station to which the technology described in this disclosure can be applied.
  • the base station is shown as gNB 800.
  • the gNB 800 includes multiple antennas 810 and base station equipment 820 .
  • the base station apparatus 820 and each antenna 810 may be connected to each other via an RF cable.
  • Antenna 810 may include one or more antenna arrays including multiple antenna elements, such as those included in a multiple-input multiple-output (MIMO) antenna, and used for base station device 820 to transmit and receive wireless signals.
  • gNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by gNB 800.
  • FIG. 16 shows an example in which gNB 800 includes multiple antennas 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 may include the processing circuit 301 or 601 described above, execute the communication methods described in the first to fourth embodiments above, or control various components of the electronic devices 500 , 700 , 1000 , 1500 , 1600 .
  • the controller 821 generates data packets from data in the signal processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate with a core network node or another gNB via a network interface 823 .
  • gNB 800 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • Wireless communication interface 825 supports any cellular communication scheme (such as Long Term Evolution (LTE), LTE-A, NR) and provides wireless connectivity to terminals located in the cell of gNB 800 via antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have some or all of the above-described logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 826 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by gNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 825 includes multiple BB processors 826 and multiple RF circuits 827 , the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827 .
  • one or more units included in the processing circuitry may be implemented in the wireless communication interface 825.
  • at least some of these components may be implemented in the controller 821 .
  • gNB 800 includes a portion (eg, BB processor 826) or the entirety of wireless communication interface 825, and/or a module including controller 821, and one or more components may be implemented in the module.
  • the module may store and execute a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operations of the one or more components).
  • a program for allowing a processor to function as one or more components may be installed in gNB 800, and wireless communication interface 825 (eg, BB processor 826) and/or controller 821 may execute the program.
  • the gNB 800, the base station apparatus 820, or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as the one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 17 is a block diagram showing a second example of a schematic configuration of a base station to which the techniques of the present disclosure can be applied.
  • the base station is shown as gNB 830.
  • gNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via high-speed lines such as fiber optic cables.
  • Antenna 840 includes one or more antenna arrays that include multiple antenna elements (such as those included in a MIMO antenna) and are used by RRH 860 to transmit and receive wireless signals.
  • gNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 17 shows an example in which the gNB 830 includes multiple antennas 840.
  • the base station apparatus 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 , and a connection interface 857 .
  • the controller 851 , the memory 852 and the network interface 853 are the same as the controller 821 , the memory 822 and the network interface 823 described with reference to FIG. 16 .
  • Wireless communication interface 855 supports any cellular communication scheme (such as LTE, LTE-A, NR) and provides wireless communication via RRH 860 and antenna 840 to terminals located in a sector corresponding to RRH 860.
  • Wireless communication interface 855 may generally include, for example, BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 16, except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 17 shows an example in which the wireless communication interface 855 includes multiple BB processors 856
  • the wireless communication interface 855 may include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station apparatus 850 (the wireless communication interface 855 ) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station apparatus 850 (the wireless communication interface 855) to the RRH 860.
  • RRH 860 includes connection interface 861 and wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (the wireless communication interface 863 ) to the base station apparatus 850.
  • the connection interface 861 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • RF circuitry 864 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864 , the wireless communication interface 863 may include a single RF circuit 864 .
  • one or more units included in the processing circuitry may be implemented in the wireless communication interface 855.
  • at least some of these components may be implemented in the controller 851 .
  • gNB 830 includes a portion (eg, BB processor 856) or the entirety of wireless communication interface 855, and/or a module including controller 851, and one or more components may be implemented in the module.
  • the module may store and execute a program for allowing the processor to function as one or more components (in other words, a program for allowing the processor to perform the operations of the one or more components).
  • a program for allowing a processor to function as one or more components may be installed in gNB 830, and wireless communication interface 855 (eg, BB processor 856) and/or controller 851 may execute the program.
  • wireless communication interface 855 eg, BB processor 856
  • controller 851 may execute the program.
  • the gNB 830, the base station apparatus 850, or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as the one or more components may be provided.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the techniques of the present disclosure can be applied.
  • Smartphone 900 includes processor 901, memory 902, storage device 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 900 .
  • the processor 901 may include or function as the processing circuits 501, 701, 1001, 1501, 1601 described in the embodiments.
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 900 .
  • USB Universal Serial Bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, keypad, keyboard, button, or switch configured to detect a touch on the screen of the display device 910, and receives operations or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme (such as LTE, LTE-A, NR) and performs wireless communication.
  • Wireless communication interface 912 may typically include, for example, BB processor 913 and RF circuitry 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 .
  • FIG. 18 shows an example in which the wireless communication interface 912 includes multiple BB processors 913 and multiple RF circuits 914
  • the wireless communication interface 912 may include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 may include the BB processor 913 and the RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912, such as circuits for different wireless communication schemes.
  • Antenna 91 may include one or more antenna arrays, and each antenna array includes multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 18 shows an example in which the smartphone 900 includes multiple antennas 916 , the smartphone 900 may also include a single antenna 916 .
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 18 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900, eg, in a sleep mode.
  • one or more components included in the processing circuitry may be implemented in the wireless communication interface 912 .
  • at least some of these components may be implemented in processor 901 or auxiliary controller 919 .
  • smartphone 900 includes a portion (eg, BB processor 913 ) or the entirety of wireless communication interface 912 , and/or a module including processor 901 and/or auxiliary controller 919 , and one or more components may be implemented in this module.
  • the module may store and execute a program that allows the processor to function as one or more components (in other words, a program for allowing the processor to perform the operations of the one or more components).
  • a program for allowing a processor to function as one or more components may be installed in smartphone 900, and wireless communication interface 912 (eg, BB processor 913), processor 901, and/or auxiliary
  • the controller 919 can execute the program.
  • a smartphone 900 or a module may be provided, and a program for allowing a processor to function as the one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless A communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and a battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the position (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 927 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 928 .
  • the input device 929 includes, for example, a touch sensor, button, or switch configured to detect a touch on the screen of the display device 930, and receives operations or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme (such as LTE, LTE-A, NR), and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935 .
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935 .
  • FIG. 19 shows an example in which the wireless communication interface 933 includes multiple BB processors 934 and multiple RF circuits 935
  • the wireless communication interface 933 may include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include the BB processor 934 and the RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Antenna 937 may include one or more antenna arrays, each antenna array multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used by wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 19 shows an example in which the car navigation device 920 includes a plurality of antennas 937 , the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation apparatus 920 .
  • the battery 938 provides power to the various blocks of the car navigation device 920 shown in FIG. 19 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • one or more components included in the processing circuit may be implemented in the wireless communication interface 933 .
  • at least some of these components may be implemented in the processor 921 .
  • car navigation device 920 includes a portion (eg, BB processor 934) or the entirety of wireless communication interface 933, and/or a module including processor 921, and one or more components may be implemented in the module.
  • the module may store and execute a program that allows the processor to function as one or more components (in other words, a program for allowing the processor to perform the operations of the one or more components).
  • a program for allowing the processor to function as one or more components may be installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and/or the processor 921 may be installed Execute the program.
  • the wireless communication interface 933 eg, the BB processor 934
  • the processor 921 may be installed Execute the program.
  • a device including one or more components a car navigation device 920 or a module may be provided, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 940 that includes one or more blocks of an automotive navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941 .
  • a readable medium in which the program is recorded may be provided. Accordingly, the present disclosure also relates to a computer-readable storage medium having stored thereon a program comprising instructions for implementing a communication method when loaded and executed by a processing circuit.
  • a plurality of functions included in one module in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple modules in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple modules. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信系统中的电子设备、通信方法和存储介质。一种用于网络控制设备的电子设备,包括处理电路,被配置为:与用户设备(UE)的一个或多个邻近小区交互,以获取各邻近小区反馈的关于适合所述UE的网络切片类型的支持信息;基于所述支持信息,评估各邻近小区对于所述网络切片类型的服务能力度量;以及至少基于所述服务能力度量,确定所述UE选择各邻近小区的优先级。

Description

电子设备、通信方法和存储介质 技术领域
本公开涉及无线通信领域,更特别地,涉及用于小区选择或小区重选的电子设备、通信方法和存储介质。
背景技术
近年来,制造业、交通运输与医疗保健等垂直行业对移动互联网的需求呈爆炸式增长趋势。这些多样化的垂直服务在网络吞吐量、延迟、可靠性等业务需求指标方面差异显著,传统单一的网络部署模式难以满足网络业务类型的多样性与业务需求的差异化。
5G新无线电(New Radio,NR)系统中引入了网络切片(Network Slicing)技术。网络切片技术以网络功能虚拟化(NFV)为基础,通过在通用设备上实现多种虚拟网络功能,允许将通信网络划分为多个网络切片,并且运营商可以为不同的网络切片分配差异化的虚拟网络资源,从而满足不同的业务需求。
然而,在对网络切片用户的服务过程中,现有的机制难以提供高效快速的小区选择/重选。主要原因在于,在现有的小区选择/重选机制中,用户的小区选择行为通常依据固定优先级的小区选择顺序,用户在选择接入过程中并不了解该小区是否支持当前业务的切片类型。因此可能出现用户选择接入的小区不支持用户期望的切片类型,导致用户业务质量劣化甚至中断,并不得不再次触发小区重选。这将导致网络切片用户的接入延迟与服务质量降低。
因此,存在提高网络切片用户选择或重选小区的效率以实现对关键用户的服务连续性保障的需求。
发明内容
本公开提供了多个方面,以满足上述需求。本公开提出了基于用户的网络切片信息的网络切片用户服务保障机制,以帮助用户快速高效地接入能够为其提供所需服务的小区。
在下文中给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
根据本公开的一个方面,提供了一种用于网络控制设备的电子设备,包括处理电路,被配置为:与用户设备(UE)的一个或多个邻近小区交互,以获取各邻近小区反馈的关于适合所述UE的网络切片类型的支持信息;基于所述支持信息,评估各邻近小区对于所述网络切片类型的服务能力度量;以及至少基于所述服务能力度量,确定所述UE选择各邻近小区的优先级。
根据本公开的一个方面,提供了一种用于用户设备(UE)的电子设备,包括处理电路,被配置为:接收关于一个或多个邻近小区的选择优先级的信息,其中选择优先级是由网络控制设备基于各邻近小区对于适合该UE的网络切片类型的服务能力度量而确定的;基于所述选择优先级,选择要接入的邻近小区。
根据本公开的一个方面,提供了一种用于小区的电子设备,包括处理电路,被配置为:向网络控制设备反馈关于特定网络切片类型的支持信息,以供网络控制设备确定该小区对于所述特定网络切片类型的服务能力度量;接收由网络控制设备基于所述服务能力度量确定的针对所述特定网络切片类型的RACH资源预留信息;基于所述RACH资源预留信息,为所述特定网络切片类型预留所确定的RACH资源。
根据本公开的一个方面,提供了一种通信方法,包括:与用户设备 (UE)的一个或多个邻近小区交互,以获取各邻近小区反馈的关于适合所述UE的网络切片类型的支持信息;基于所述支持信息,评估各邻近小区对于所述网络切片类型的服务能力度量;以及至少基于所述服务能力度量,确定所述UE选择各邻近小区的优先级。
根据本公开的一个方面,提供了一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如上所述的通信方法。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的要素。所有附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的实施例和解释本公开的原理和优点。其中:
图1是示出了5G NR通信系统的体系架构的简化示图;
图2简单示出了在NR通信系统中NG-RAN和5GC的功能划分;
图3示出了NR通信系统的非漫游参考架构,其中示出了控制平面内使用的各种基于服务的接口;
图4示意性地示出了一种小区重选的场景;
图5示出了NR通信系统中的三种RRC状态及其转变;
图6是示出了根据第一实施例的电子设备的框图;
图7是示出了根据第一实施例的通信方法的流程图;
图8例示了根据第一实施例的交互的一个示例;
图9例示了根据第一实施例的交互的另一个示例;
图10示出了例示性的随机接入过程;
图11示出了根据第二实施例的电子设备的框图;
图12是示出了根据第二实施例的通信方法的流程图;
图13是示出了根据第二实施例的信令流程图;
图14是示出了根据仿真场景示意图;
图15是作为仿真结果的性能对比图;
图16是示出了基站的示意性配置的第一应用示例的框图;
图17是示出了基站的示意性配置的第二应用示例的框图;
图18是示出了智能电话的示意性配置示例的框图;
图19是示出了汽车导航设备的示意性配置示例的框图。
通过参照附图阅读以下详细描述,本公开的特征和方面将得到清楚的理解。
具体实施方式
在下文中将参照附图来详细描述本公开的各种示例性实施例。为了清楚和简明起见,在本说明书中并未描述实施例的所有实现方式。然而应注意,在实现本公开的实施例时可以根据特定需求做出很多特定于实现方式的设置,以便实现开发人员的具体目标。此外,还应该了解,虽然开发工作有可能是较复杂和费事的,但对得益于本公开内容的本领域技术人员来说,这种开发公开仅仅是例行的任务。
此外,还应注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与本公开的技术方案密切相关的处理步骤和/或设备结构。以下对于示例性实施例的描述仅仅是说明性的,不意在作为对本公开及其应用的任何限制。
为了方便解释本公开的技术方案,下面将在5G NR的背景下描述本公开的各个方面。但是应注意,这不是对本公开的应用范围的限制,本公开的一个或多个方面还可以被应用于各种现有的无线通信系统,例如4G LTE/LTE-A等,或者未来发展的各种无线通信系统。下面的描述中 提及的架构、实体、功能、过程等可以在NR或其它的通信标准中找到对应。
【概述】
图1是示出了5G NR通信系统的体系架构的简化示图。如图1中所示,在网络侧,NR通信系统的无线接入网(NG-RAN)节点包括gNB和ng-eNB,其中gNB是在5G NR通信标准中新定义的节点,其提供与终端设备(也可称为“用户设备”,下文中简称为“UE”)终接的NR用户平面和控制平面协议;ng-eNB是为了与4G LTE通信系统兼容而定义的节点,其可以是LTE无线接入网的演进型节点B(eNB)的升级,并且提供与UE终接的演进通用陆地无线接入(E-UTRA)用户平面和控制平面协议。在NG-RAN节点(例如,gNB、ng-eNB)之间具有Xn接口,以便于节点之间的相互通信。下文中将gNB和ng-eNB统称为“基站”。
但是应注意,本公开中所使用的术语“基站”不仅限于上面这两种节点,而是具有其通常含义的全部广度。例如,除了5G通信标准中规定的gNB和ng-eNB之外,取决于本公开的技术方案被应用的场景,“基站”例如还可以是LTE/LTE-A通信系统中的eNB、远程无线电头端、无线接入点或者执行类似功能的通信装置或其元件。后面的章节将详细描述基站的应用示例。
基站的覆盖范围可以被称为“小区”。本公开中所使用的“小区”包括各种类型的小区,例如,取决于基站的发射功率和覆盖范围,小区可以包括宏小区、微小区、微微小区、家庭小区等。小区通常由小区ID(cell_id)标识。典型地,基站与小区是一一对应的,但是也可能存在基站与小区的其它对应关系。虽然本公开中描述的小区的行为实际上是由基站完成的,但是为了便于理解,常常可互换地使用“小区”和“基站”。
另外,本公开中所使用的术语“UE”具有其通常含义的全部广度,包括与基站通信的各种终端设备或车载设备。作为例子,UE例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备等终端设备。在本公开的描述中,常常可互换地使用“UE”和“用户”。后面的章节将详细描述UE的 应用示例。
UE可以通过空中接口(Uu接口)无线接入到基站,诸如gNB或ng-eNB,而后者又经由NG接口连接到5G核心网(5GC)。NG-RAN和5GC可以通过承载网来进行数据的前传和回传。它们在不同的层级分别负责不同的功能,并相互合作以实现无线通信的网络侧控制。图2简单示出了NG-RAN和5GC的功能划分。如图2中所示,gNB或ng-eNB可以处理小区间无线电资源管理(RRM)、无线电承载(RB)控制、无线电准入控制、连接移动性控制、上下行的动态资源分配,等等。
5GC等核心网是无线通信网络的大脑,负责对整个网络进行管理和控制。5GC采用微服务架构,即,基于服务的架构,从而实现“多个网元单个功能”。5GC提供许多网元设备,每个网元设备提供各自的网元功能,诸如接入和移动性管理功能(AMF)、会话管理功能(SMF)、用户平面功能(UPF)、策略控制功能(PCF)、网络切片选择功能(NSSF),等等。其中,作为示例,AMF可以提供NAS安全、空闲状态移动性管理、接入认证和授权等功能,并经由N1接口与UE通信、经由N2接口与接入网((R)AN)通信;SMF可以提供会话管理、UE IP地址分配和管理、PDU会话控制等功能,并经由N4接口与UPF通信;UPF可以提供移动性锚定、PDU处理、分组路由和转发等功能,并经由N3接口与接入网((R)AN)通信、经由N6接口与数据网络(DN)通信。
图3示出了5G NR系统的非漫游参考架构,其中示出了控制平面内使用的各种基于服务的接口。例如,如图3中所示,AMF呈现Namf接口,SMF呈现Nsmf接口,PCF呈现Npcf接口,等等。通过各自的接口,各个网络功能可以作为整体向外提供各自的服务。作为示例,AMF可以通过Namf接口提供Namf_Communication(用于使得NF使用者能够通过AMF与UE或接入网通信)、Namf_EventExposure(用于使得NF使用者能够订阅移动性相关事件或统计)、Namf_MT(用于使得其它NF使用者确认UE可达)、Namf_Location(用于使得NF使用者能够请求目标UE的位置信息)等服务。
通过提供各种基于服务的接口,5GC的网络功能被虚拟化,从而底层硬件资源与网络功能解耦,实现了系统功能软件化和硬件资源通用化。网络功能虚拟化使得网络切片技术成为可能。这里所言的“网络切片(Network Slice)”是指一组网络功能(包括核心网功能和/或接入网功能)的集合,任何其它具有相同功能的描述具有等同效果。从逻辑上看,每个网络切片代表某类UE的一类业务需求,网络设备按照UE的业务需求选取相应的网络功能与业务进行匹配,形成相应的网络切片。最理想的方式是网络设备根据UE的业务需求动态地将核心网设备和/或接入网设备功能进行组合,然后配置给UE使用。但是这样的动态网络配置方式复杂度较高,实现非常繁琐。因此简化的方案是网络设备按照面向的UE类型和业务类型事先形成多个网络切片与之匹配,当UE需要使用相应的网络切片时,将需求发送给网络设备,再由网络设备按照相应的网络切片需求将资源配置给UE。
取决于经营策略,每个网络切片运营商的经营网络切片运营商可以提供各种各样的网络切片业务。在5G系统中,可将业务划分为如下三种类型:增强型移动宽带(enhanced MobileBroadband,eMBB)业务,其特色在于高带宽;大规模机器通信(massive Machine-type Communication,mMTC)业务,其特色在于高用户数;超可靠低延迟通信(Ultra-relaible and Low Latency Communication,URLLC)业务,其特色在于高可靠性、低延迟。因此,典型地,可以将上述三种类型的业务划分到三个网络切片中,各个网络切片的计费策略、安全策略、QoS(Quality of Service,服务质量)策略等都可能不同,一个网络切片中出现大规模的业务拥塞不会影响到其它网络切片中业务的正常运转。然而,实际的网络切片类型可能不限于这些,切片运营商可以提供几种、几十种、甚至上百种网络切片,以满足各种业务需求。
在引入网络切片之后,UE的小区接入变得更加复杂。图4示意性地示出了一种小区重选的场景。如图4中所示,UE当前已注册到网络,并已收到允许的网络切片选择辅助信息(NSSAI),在当前小区1中接入 网络切片Slice-A,并保持RRC-IDLE状态。当UE向小区1的边缘移动时,由于UE处于小区边缘,UE执行小区重选评估并且触发小区重选。根据目前的小区重选机制,UE有可能根据AMF提供的小区选择优先级列表而接入到不支持当前网络切片类型的小区3,从而导致用户定制的切片服务中断,并需再次进行小区重选,直至选择接入支持Slice-A的小区2。低效的小区选择(重选)过程可能带来服务质量的降低,使用户体验变差。
有鉴于此,本公开设想在小区选择/重选中将网络切片信息纳入考虑,使得网络切片用户可快速接入能够提供符合他/她注册的服务等级协议(SLA)的通信服务的小区。
如本公开中所使用的,术语“小区选择”、“小区重选”是无线通信标准中针对不同RRC状态描述的UE过程。图5示出了5G NR系统中的三种RRC状态及其转变,这三种分别是RRC_IDLE(空闲)状态、RRC_INACTIVE(非活跃)状态、RRC_CONNECTED(已连接)状态。一般而言,在UE开机后,UE处于RRC_IDLE状态,可以在选择PLMN或SNPN之后首次选择要驻留的小区,这个过程被称为“小区选择”,然后可以通过建立RRC连接而进入RRC_CONNECTED状态。此外,处于RRC_CONNECTED状态的UE可以通过释放RRC连接而进入RRC_IDLE或RRC_INACTIVE状态,转变为RRC_IDLE或RRC_INACTIVE状态的UE可以重新选择要驻留的小区,这个过程被称为“小区重选”。相对地,处于RRC_CONNECTED状态的UE从当前服务小区接入到目标邻近小区的过程被称为“切换(handover)”。
一般地,小区选择包括初始小区选择和利用存储信息的小区选择这两种,对于前者,UE没有关于哪些RF信道是NR频率的先验知识,必须根据其能力扫描所有的RF信道以找到适当的小区。对于后者,UE可以预先存储关于NR频率的信息,可能还有来自先前接收的测量控制信息元素或来自先前检测的小区的小区参数,并利用这些信息找到适当的小区。一旦找到适当的小区,则UE选择该小区。
此外,UE在RRC_IDLE或RRC_INACTIVE状态下根据测量准则来进行对当前服务小区和邻近小区的信号质量和信号强度的测量,并根据一定的小区重选准则来确定要驻留的小区。
根据本公开的实施例,核心网可以产生基于UE的网络切片信息的邻近小区的选择优先级信息,以帮助UE高效地进行小区选择/重选。然而,应注意,虽然本公开主要讨论了小区选择/重选场景,但是根据本公开的实施例获得的小区优先级信息也可以用于RRC_CONNECTED状态下的切换场景,以促进高效的小区切换过程。
下面将详细介绍本公开的示例性实施例。
【第一实施例】
将参照图6和图7描述根据本公开的第一实施例。图6是示出了根据第一实施例的电子设备100的框图,图7示出了可以由图6中的电子设备100实现的通信方法。
电子设备100包括处理电路,处理电路可以被配置为或被编程为执行图7中所示的通信方法的各个步骤,从而形成实现对应功能的多个模块,诸如交互模块101、服务能力评估模块102、优先级确定模块103。
处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟信号和数字信号的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)之类的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程们阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
电子设备100可以被实现为核心网中的网络控制设备或其中的部件。在网络功能层面,可以在核心网的AMF中实现交互模块101、服务能力评估模块102和优先级确定模块103等功能模块。因此,也可以认为,由AMF执行根据第一实施例的通信方法。
电子设备100的交互模块101被配置为对于某个网络切片用户(下 文中用“UE”代指),与该UE的一个或多个邻近小区交互,即,执行图7中的步骤S101。交互模块101的用途是从UE的每个邻近小区获取邻近小区关于UE所需的网络切片类型的各种支持信息。
图8例示了根据第一实施例的交互的一个示例。作为交互模块101(AMF)的交互之前的预备工作,可以从NSSF获得UE的网络切片信息。一般而言,UE可以通过线下营业厅、线上营业厅、APP等途径与网络切片运营商签约,确定需要的SLA参数,诸如传输时延、传输速率、服务优先级、安全性、可靠性等各项指标,并初始注册到网络切片运营商的核心网。基于UE的SLA参数,核心网的NSSF可以选择适合UE的网络切片类型,例如,如果UE需要高传输速率,则可以为其选择eMBB切片,或者如果UE需要高可靠性、低延迟,则可以为其选择URLLC切片,当然实际选择的切片类型不限于此。此外,NSSF还可以选择为UE服务的网络切片实例集,确定允许的NSSAI,以及在需要时确定到签约的S-NSSAI的映射。NSSF可以将为UE选择的网络切片的信息上报给AMF。
如图8中所示,交互模块101将UE的网络切片信息广播给UE的各个邻近小区。即使UE处于RRC_IDLE或RRC_INACTIVE状态,核心网仍然可以知道UE所在的跟踪区域(TA),从而确定UE的所有邻近小区,例如图8中的gNB 1、…、gNB N。邻近小区gNB 1~gNB N可以包括UE签约的切片运营商自己的通信网络内的小区,也可以包括与UE签约的切片运营商合作的其它切片运营商的通信网络内的小区。交互模块101可以经由例如N2接口将UE的网络切片信息发送给每个邻近小区。
在一个示例中,交互模块101可以发送网络切片类型(例如URLLC切片)作为切片信息。这需要接收到切片信息的邻近小区与交互模块101达成网络切片类型的共识,由此邻近小区可以从切片信息中正确识别出网络切片类型。
在另一个示例中,交互模块101可以直接发送用于为UE选择网络 切片的SLA参数作为切片信息,这在涉及不同切片运营商的通信网络时尤其有用,因为不同的切片运营商可能提供不同的网络切片分类。举例来说,UE签约的切片运营商可能选择网络切片A为UE服务,但是邻近小区gNB N的切片运营商不提供网络切片A,但是其提供的网络切片B可以符合UE的SLA参数,因此,接收到切片信息的邻近小区gNB N可以根据切片信息中包含的SLA参数确定网络切片B是符合UE需求的网络切片类型。
响应于接收到切片信息(例如,网络切片类型或SLA参数),邻近小区判断其是否支持适合UE的网络切片类型。如果邻近小区可提供的网络切片中有适合UE的网络切片类型,则向交互模块101反馈肯定指示,反之,如果邻近小区无法提供切片信息中指示的网络切片类型或者无法提供符合切片信息中包含的SLA参数的网络切片类型,在向交互模块101反馈否定指示。
接下来,交互模块101选出支持适合UE的网络切片类型的邻近小区,并进行再次交互,以便获取进一步的支持信息。这种支持信息可以描述邻近小区对于该网络切片类型的服务能力。在一个示例中,可以通过交互获知邻近小区还能服务多少UE。如图8中所示,假设通过第一步交互的结果,邻近小区gNB 1支持该网络切片类型,而邻近小区gNB N不支持该网络切片类型,因此交互模块101可以仅向反馈支持的邻近小区(例如gNB 1)询问它们在该网络切片类型上的当前服务负荷。接收到询问的邻近小区可以向交互模块101反馈其当前服务负荷,诸如当前服务的该网络切片类型的UE数量、资源使用率等。在另一个示例中,可以通过交互获知邻近小区对于该网络切片类型的服务质量。例如,交互模块101可以向邻近小区询问该网络切片类型的服务指标达标率等。应理解,第二次交互的内容可以不限于这些,可以额外地或替代地包括用于后续计算邻近小区关于该网络切片类型的服务能力度量的任何支持信息,诸如该网络切片类型的UE数量上限、QoS指标,等等。
交互模块101执行的交互可以不使用图8中所示的两步交互过程。 图9例示了根据第一实施例的交互的另一个示例。如图9中所示,交互模块101(AMF)向所有邻近小区广播UE的网络切片信息,诸如网络切片类型或SLA参数。响应于接收到切片信息,各邻近小区一次性反馈关于适合UE的网络切片类型的支持信息,包括但不限于:是否支持该网络切片类型、该网络切片类型的当前服务负荷,等等。这里,邻近小区反馈的支持信息的形式不受限制。在一个示例中,支持信息可以包括指示关于是否支持网络切片类型的二进制值、当前负荷的值等;但是在另一个示例中,支持信息可以仅包括当前负荷的值,当不支持适合UE的网络切片类型,邻近小区可以反馈当前负荷为0,反之则可以反馈实际的负荷值。相比于图8中的交互过程,图9中所示的交互次数减少。
回到图6,电子设备102的服务能力评估模块102被配置为基于交互模块101获取的各邻近小区关于适合UE的网络切片类型的支持信息,评估各邻近小区对于该网络切片类型的服务能力度量,即,执行图7中的步骤S102。服务能力评估模块102旨在评估邻近小区对于相关网络切片类型的服务支持能力,并进行量化计算,从而为UE提供哪个邻近小区是最佳选择的参考依据。
作为一个示例性的考虑因素,服务能力评估模块102可以评估每个邻近小区的剩余可接入量,因为一般而言,邻近小区还能支持的服务负荷越高,网络切片用户接入的成功率越高。例如,对于每个邻近小区,可以通过将上述网络切片类型的可接入UE数量上限(可以从策略控制功能PCF获得)减去当前服务的UE数量(由交互模块101从邻近小区获得)来计算邻近小区还能承受的网络切片用户数量,以此获得该邻近小区对于该网络切片类型的服务能力度量。
作为另一个示例性的考虑因素,服务能力评估模块102可以评估每个邻近小区对于上述网络切片类型的服务质量,因为邻近小区提供的服务质量越高,网络切片用户获得的通信体验越好。例如,对于每个邻近小区,服务能力评估模块102可以从核心网中的切片管理模块(例如NSSF)或者通过交互模块101获取该邻近小区当前为该网络切片类型的 所有用户提供服务的平均满意度(例如,UE给出的满意度得分)作为服务质量指标,以此获得该邻近小区对于该网络切片类型的服务能力度量。
除了上述以外,还可以存在其他的考虑因素。优选地,可以综合考虑所有因素,从而较为全面地刻画各邻近小区对于该网络切片类型的服务能力。例如,假设符合UE的SLA需求的切片被确定为网络切片类型α,服务能力评估模块102可以采用以下公式来计算各邻近小区的服务能力度量η α
Figure PCTCN2022080284-appb-000001
在上式中,
Figure PCTCN2022080284-appb-000002
为邻近小区当前所服务的网络切片类型α的平均满意度得分,由切片管理模块(例如NSSF)根据该小区下的用户反馈统计得出,取值为0~1之间;N SLA_α为网络切片类型α的当前服务负荷(例如当前服务的UE数量),由交互模块101通过上述交互过程从邻近小区获取;N SLA_αmax表示网络切片类型α的服务负荷上限预定值,由PCF给出。γ α为二值变量,当γ α为0时,表示该邻近小区的配置中不支持该网络切片类型,而当γ α为1时,表示该邻近小区的配置可以支持该网络切片类型。
当然,服务能力度量的计算方式并不限于上面的公式(1)。通常来说,只要服务能力评估模块102采用的算法能够使得邻近小区的可承受用户量越大、服务质量越高,所计算的服务能力度量的值也越高即可。
至少基于服务能力评估模块102计算的各邻近小区的服务能力度量,优先级确定模块103可以确定邻近小区的选择优先级,即,执行图7中的步骤S103。邻近小区的选择优先级可以指示UE在进行小区选择/重选时选择接入该邻近小区的顺序。
在最简单的实现方式中,优先级确定模块103可以按照所计算的服务能力度量的值来对邻近小区进行排序,以得到邻近小区的优先级列表。得到的优先级列表可以仅包括支持UE的网络切片类型的邻近小区,即,服务能力度量不为零的邻近小区,因为服务能力度量为零的邻近小区即使接入也无法提供相应的网络切片服务。
除了上述实现方式以外,优先级确定模块103还可以基于所计算的服务能力度量的值来对现有的邻近小区的优先级列表进行优化,即,二次排序。对于每个邻近小区,其服务能力度量可以按照预定的加权因子加入到其优先级的计算中,由此最终得到的优先级列表将能反映出该邻近小区对于网络切片类型的支持能力。
由优先级确定模块103确定的邻近小区的选择优先级信息可以下发给UE,例如经由图3中的接口N1。当需要时,UE可以至少基于接收到的邻近小区的选择优先级信息来选择或重选小区。UE可以首先选择具有最高优先级的邻近小区,并执行初始接入过程,在该邻近小区的RACH频点上尝试接入。
这里参考图10简单介绍示例性的初始接入过程操作。在S02处,UE 110可以通过向小区120发送随机接入前导码(例如包括在MSG-1中)来向小区120通知自己的接入行为。随机接入前导码的发送使小区120能够估计终端设备的上行链路定时提前(Timing Advance)。在S03处,小区120可以通过向UE 110发送随机接入响应(例如包括在MSG-2中)来向UE 110通知上述定时提前。UE 110可以通过该定时提前实现上行链路小区同步。随机接入响应中还可以包括上行链路资源的信息,UE 110可以在以下操作104中使用该上行链路资源。对于竞争型的随机接入过程,在S04处,UE 110可以通过上述调度的上行链路资源发送终端设备标识以及可能的其他信息(例如包括在MSG-3中)。小区120可以通过终端设备标识确定竞争解决结果。在S05处,小区120可以告知UE 110该竞争解决结果(例如包括在MSG-4中)。此时,如果竞争成功,则UE 110成功接入小区120,该随机接入过程结束;否则,本次接入失败。
如果由于例如该邻近小区当前已经达到UE的网络切片类型的接入上限或者发生RACH资源拥挤而导致接入失败,则UE可以选择具有第二高优先级的邻近小区,依次类推。可替代地,UE还可以邻近小区的选择优先级以及其他因素,例如邻近小区的信号强度或信号质量,来选择或重选要接入的小区。在UE完成小区选择/重新并驻留到邻近小区上后, UE可以通过NSSF向AMF上报更新后的切片状态信息。
可选地,由优先级确定模块103确定的邻近小区的选择优先级信息可以下发给UE的服务小区,例如经由图3中的接口N2,以供小区“切换”时使用。也就是说,在UE处于RRC_CONNECTED状态下,当UE移动到服务小区的边缘时可以请求切换至邻近小区,如果此时存在多个邻近小区可供选择,则基站可以至少基于它们的选择优先级来确定要切换到的小区。
可以在出现预定义的情况时触发电子设备100执行图7中的通信方法。其中一种情况是通过UE的服务小区中的无线设备信息采集与监控模块负责收集UE侧数据,诸如UE的传输速率、传输时延等,AMF基于服务小区收集的信息判断服务小区当前提供的服务质量是否符合UE注册的SLA参数,而如果服务小区提供的服务质量不符合需求,则触发执行根据本实施例的通信方法,电子设备100可以开始与更新的邻近小区交互,确定更新后的邻近小区的选择优先级信息,并下发给UE,以供UE进行小区选择/重选。另一种情况是UE移动离开当前的跟踪区域(TA)、进入另一个TA,此时UE的邻近小区发生改变,则核心网在监测到UE的TA改变后,触发执行根据本实施例的通信方法。可替代地,电子设备100还可以定期地执行根据本实施例的通信方法,由此动态地更新邻近小区的选择优先级信息。
通过使用根据本实施例确定的选择优先级信息,UE可以避免因为目标小区不支持相关网络切片类型而出现的接入失败与服务中断的情况,从而提高了小区选择/重选/切换的速度和成功率、保障了重要网络切片用户得到与其注册需求相符的服务。
【第二实施例】
UE可能以基于竞争的方式接入选择好的目标小区。然而,目前针对重要业务的网络切片用户并无特殊接入保障,当诸如URLLC切片用户在与其它切片类型用户(如eMBB用户)进行竞争接入时,由于可能发生的RACH资源拥挤从而产生接入失败的情况,难以对关键业务的用户 进行严格的服务质量保证。这是因为目前的RACH资源采用共享资源池的方式,无法为不同业务类型的用户实现差异化的小区接入。
有鉴于此,本公开的第二实施例旨在针对不同业务类型的用户实现无线网络资源隔离。图11是示出了根据第二实施例的电子设备100’的框图,图12示出了可以由图11中的电子设备100’实现的通信方法。接下来着重介绍第二实施例与第一实施例不同的方面,其余方面可以参考上面关于第一实施例描述的那些。
电子设备100’包括处理电路,处理电路可以被配置为或被编程为执行图12中所示的通信方法的各个步骤,从而形成实现对应功能的多个模块。图11中所示的电子设备100’与图6中的电子设备100的区别在于还包括资源预留模块104。资源预留模块104同样可以被实现在AMF中。
电子设备100’中的交互模块101和服务能力评估模块102与电子设备100中的相同,即,交互模块101通过与UE的一个或多个邻近小区交互来获取各邻近小区关于适合UE的网络切片类型的支持信息,服务能力评估模块102基于所获取的支持信息来评估各邻近小区对于该网络切片类型的服务能力度量,这里不再详细描述。根据第二实施例,电子设备100’的资源预留模块104被配置为基于由服务能力评估模块102计算的邻近小区的服务能力度量来确定该邻近小区预留的RACH资源,即执行图12中的步骤S104。
一般而言,网络切片用户希望接入服务能力强的小区,但是有限的RACH资源可能制约竞争接入的成功率。因此,资源预留模块104可以针对某些重要的网络切片类型,为邻近小区制定RACH资源预留方案。例如,针对URLLC切片,资源预留模块104可以让邻近小区预留一些RACH资源,以供切片用户接入,从而避免因eMBB切片用户的共同竞争而导致关键业务用户无法得到服务质量保障的情况。非限制性地,可以仅针对部分邻近小区制定预留方案,例如服务能力度量高于预定阈值的邻近小区,因为这些邻近小区的选择优先级趋于靠前,竞争接入的压力更大。例如,资源预留模块104可以仅为服务能力度量最高的前一个、 前两个、前三个或其他数量的邻近小区确定RACH资源预留。RACH资源例如可以是被分配给邻近小区的RACH资源中的部分频点。
资源预留模块104可以被配置为使得邻近小区的服务能力度量越大,应预留的RACH资源量越多。例如,可以对邻近小区的空闲RACH资源进行回收利用。在进行小区资源预留时,优选地使用动态的资源预留方案以保障系统资源分配的灵活性与高效性,避免因过多的资源预留而导致一般用户的服务质量过度下降。下面给出的资源预留量的计算示例。
当服务能力评估模块102确定各邻近小区的服务能力度量后,对于被选择预留RACH资源的邻近小区,资源预留模块104可以按下式计算该小区的资源预留量Nr α
Nr α=tanh(N Σ)·η α·λ   (2)
在上式中,N Σ为可能选择该邻近小区的网络切片类型α的UE数量,该UE数量可以通过该小区收到的该网络切片类型的切片信息广播数目来估计;η α为例如按上面的(1)式计算的服务能力度量;λ为切换频度参数,取值在0-1之间,表示该区域用户切换发生频度高低,由历史统计数据得出,在该区域内用户切换频度越高则该参数越接近于1,反之则接近于0,因此该参数可刻画区域中用户的移动性需求与切换频度要求,该参数用以降低由资源预留而带来的资源利用率降低。
基于计算出的资源预留量Nr α,资源预留模块104从被分配给邻近小区的RACH资源(优选地,空闲的RACH资源)中确定应预留的资源,诸如与预留量对应的RACH频点。图13例示了根据第二实施例的交互流程图。如图13中所示,在确定邻近小区的RACH资源预留方案后,电子设备100’可以经由例如图3中的N2接口向邻近小区通知相应的资源预留信息,诸如被确定预留的一个或多个RACH频点。在接收到RACH资源预留信息之后,该邻近小区将这些RACH资源限制为仅供对应的网络切片类型的UE接入。
另一方面,如图13中所示,电子设备100’可以经由例如图3中的N1接 口向UE通知邻近小区的RACH资源预留信息。RACH资源预留信息可以与优先级确定模块103获得的选择优先级信息一起下发给UE。在接收到RACH资源预留信息之后,当UE选择接入某个邻近小区时,可以直接在预留的RACH资源上初始接入该小区。
应理解,虽然图12中将确定RACH预留资源的步骤S104放在确定选择优先级的步骤S103之后,但是这并非它们必须按照此顺序执行。例如,步骤S104可以在步骤S103之前执行,或者步骤S104与步骤S103同时执行。
此外,根据第二实施例,电子设备100’的优先级确定模块103还可以基于由服务能力评估模块102得到的服务能力度量和由资源预留模块104确定的RACH资源预留方案这两者来确定各邻近小区的优先级。例如,优先级确定模块103可以倾向于给服务能力度量更高、RACH资源预留量更大的邻近小区更高的优先级。
根据本公开的第二实施例,核心网以资源预留的方式实现特定网络切片类型的用户接入与一般用户接入的资源隔离,从而减少或消除了关键业务用户的竞争压力,提高了小区接入的效率。
【仿真】
下面通过仿真来验证本公开的技术方案。
图14是仿真场景示意图,仿真场景设定为1000m×1000m的矩形区域,其中小区1、小区2、小区3分别提供eMBB切片、URLLC切片和mMTC切片。其他具体仿真参数如表1所示:
表1:仿真参数设置表
仿真参数 参数取值
仿真区域 1000m×1000m
中心频率 3.6GHz
信道带宽 1MHz
路径损耗系数 3.2
基站数目 20
切片用户数目 100
切片类型 3
图15是实行根据本公开的第二实施例的切片用户服务保障机制与未实行该机制的性能对比图。如图中所标示的,图中的两条曲线分别表示使用本公开的机制与未使用该机制时用户的服务满意度。可以看出使用该方案后,用户的服务满意度提升约24%。
可见,在使用第二实施例的技术方案后,由于对SLA要求较高网络切片用户进行资源预留,使用户在进行切换过程中的切换成功率明显提升,使服务连续性得到了保障。
上面已经详细描述了本公开的实施例的各个方面,但是应注意,上面为了描述了所示出的天线阵列的结构、布置、类型、数量等,端口,参考信号,通信设备,通信方法等等,都不是为了将本公开的方面限制到这些具体的示例。
应当理解,上述各实施例中描述的电子设备100、100’的各个模块仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各单元可被实现为独立的物理实体,或者也可以由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
【本公开的示例性实现】
根据本公开的实施例,可以想到各种实现本公开的概念的实现方式,包括但不限于:
1、一种用于网络控制设备的电子设备,包括:处理电路,被配置为:与用户设备(UE)的一个或多个邻近小区交互,以获取各邻近小区反馈的关于适合所述UE的网络切片类型的支持信息;基于所述支持信息,评估各邻近小区对于所述网络切片类型的服务能力度量;以及至少基于所述服务能力度量,确定所述UE选择各邻近小区的优先级。
2、如1所述的电子设备,其中所述处理电路还被配置为:基于所评估的服务能力度量,确定相应邻近小区为所述网络切片类型预留的RACH资源;以及向所述相应邻近小区和所述UE通知所确定的RACH资源预留信息。
3、如1或2所述的电子设备,其中所述交互包括以下之一:根据所述UE注册的服务等级协议(SLA)参数,确定适合所述UE的网络切片类型,并向所述一个或多个邻近小区发送关于所述网络切片类型的信息;或者向所述一个或多个邻近小区发送所述UE注册的SLA参数。
4、如3所述的电子设备,其中所述交互包括:从所述一个或多个邻近小区中的每个邻近小区接收关于该邻近小区是否支持所述网络切片类型的支持信息。
5、如4所述的电子设备,其中所述交互还包括:向支持所述网络切片类型的邻近小区询问所述网络切片类型的当前服务负荷;从邻近小区接收关于所述网络切片类型的当前服务负荷的支持信息。
6、如3所述的电子设备,其中所述交互包括:从所述一个或多个邻近小区中的每个邻近小区接收关于该邻近小区是否支持所述网络切片类型以及所述网络切片类型的当前服务负荷的支持信息。
7、如3所述的电子设备,其中所述SLA参数包括以下至少之一:传输时延、传输速率、服务优先级、安全性、可靠性。
8、如1所述的电子设备,其中所述网络切片类型包括以下之一:URLLC切片、eMBB切片、mMTC切片。
9、如1所述的电子设备,其中所述处理电路被配置为在出现以下情况之一时开始所述交互:所述UE移动到另一个跟踪区域;所述UE的服务小区当前提供的网络切片服务质量不符合所述UE注册的服务等级协议(SLA)参数;或者每隔预定时间间隔。
10、如5或6所述的电子设备,其中所述处理电路被配置为根据下式评估各邻近小区对于所述网络切片类型的服务能力度量η α
Figure PCTCN2022080284-appb-000003
其中,
Figure PCTCN2022080284-appb-000004
是所述邻近小区当前提供网络切片类型α的服务的平均满意度,N SLA_α是所述邻近小区的网络切片类型α的当前服务负荷,N SLA_αmax是所述 邻近小区的网络切片类型α的服务负荷上限,γ α是指示所述邻近小区是否支持网络切片类型α的二进制变量。
11、如2所述的电子设备,其中所述处理电路被配置为根据下式确定邻近小区应预留的RACH资源量Nr α
Nr α=tanh(N Σ)·η α·λ
其中,N Σ是可能选择所述邻近小区的网络切片类型α的UE数量,η α是所述邻近小区对于网络切片类型α的服务能力度量,λ是选择频度参数。
12、如2所述的电子设备,其中所述处理电路被配置为在邻近小区的空闲RACH资源中为所述网络切片类型预留RACH资源。
13、如1所述的电子设备,其中所述处理电路还被配置为:将关于邻近小区的选择优先级的信息发送给UE,以使得所述UE至少基于所述选择优先级来选择/重选要接入的小区。
14、如1所述的电子设备,其中所述处理电路还被配置为:将关于邻近小区的选择优先级的信息发送给UE的服务小区,以使得所述服务小区至少基于所述选择优先级来确定要切换到的目标小区。
15、一种用于用户设备(UE)的电子设备,包括:处理电路,被配置为:接收关于一个或多个邻近小区的选择优先级的信息,其中选择优先级是由网络控制设备基于各邻近小区对于适合该UE的网络切片类型的服务能力度量而确定的;基于所述选择优先级,选择要接入的邻近小区。
16、如1所述的电子设备,其中所述处理电路还被配置为:接收关于特定邻近小区为所述网络切片类型预留的RACH资源的信息,所述预留的RACH资源是所述网络控制设备基于所述特定邻近小区的服务能力度量而确定的;以及在所述预留的RACH资源上接入所述特定邻近小区。
17、如15所述的电子设备,其中所述网络切片类型包括以下之一:URLLC切片、eMBB切片、mMTC切片。
18、一种用于小区的电子设备,包括:处理电路,被配置为:向网 络控制设备反馈关于特定网络切片类型的支持信息,以供网络控制设备确定该小区对于所述特定网络切片类型的服务能力度量;接收由网络控制设备基于所述服务能力度量确定的针对所述特定网络切片类型的RACH资源预留信息;基于所述RACH资源预留信息,为所述特定网络切片类型预留所确定的RACH资源。
19、一种通信方法,包括:与用户设备(UE)的一个或多个邻近小区交互,以获取各邻近小区反馈的关于适合所述UE的网络切片类型的支持信息;基于所述支持信息,评估各邻近小区对于所述网络切片类型的服务能力度量;以及至少基于所述服务能力度量,确定所述UE选择各邻近小区的优先级。
20、一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如19所述的通信方法。
【本公开的应用示例】
本公开中描述的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备100、100’可以被实现为核心网中的网络控制设备。根据本公开的实施例的通信方法可以由核心网中的相关网络功能实现。此外,根据本公开的实施例的UE可以被实现为各种用户设备或在各种用户设备中,根据本公开的实施例的基站可以被实现为各种基站或在各种基站中。
本公开中所说的基站可以被实现为任何类型的基站,优选地,诸如3GPP的5G通信标准新无线电(New Radio,NR)接入技术中的宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB、eNodeB和基站收发台(BTS)。基站还可以包括:被配置为控制无线通信的主体以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)、无线中继站、无人机塔台等。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机 (PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)、无人机等。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
1.关于基站的应用示例
应当理解,本公开中使用的术语“基站”具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:GSM通信系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者;3G通信系统中的无线电网络控制器(RNC)和NodeB中的一者或两者;4G LTE和LTE-Advanced系统中的eNB;未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,等等)。在D2D、M2M以及V2V通信场景下,也可以将对通信具有控制功能的逻辑实体称为基站。在认知无线电通信场景下,还可以将起频谱协调作用的逻辑实体称为基站。
(第一应用示例)
图16是示出可以应用本公开中描述的技术的基站的示意性配置的第一应用示例的框图。在图16中,基站被示出为gNB 800。其中,gNB800包括多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810可以包括一个或多个天线阵列,天线阵列包括多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图16所示,gNB 800可以包括多个天线810。例如,多个天线810可以与gNB 800使用的多个频带兼容。图16示出其中gNB 800包括多个天线810的示例。
基站设备820包括控制器821、存储器822、网络接口823以及无线 通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821可以包括上面所述的处理电路301或601,执行上面第一至第四实施例描述的通信方法,或者控制电子设备500、700、1000、1500、1600的各个部件。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的gNB进行通信。在此情况下,gNB 800与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE)、LTE-A、NR),并且经由天线810来提供到位于gNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被 配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图16所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与gNB 800使用的多个频带兼容。如图16所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图16示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
在图16中示出的gNB 800中,处理电路中包括的一个或多个单元可被实现在无线通信接口825中。可替代地,这些组件中的至少一部分可被实现在控制器821中。例如,gNB 800包含无线通信接口825的一部分(例如,BB处理器826)或者整体,和/或包括控制器821的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 800中,并且无线通信接口825(例如,BB处理器826)和/或控制器821可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 800、基站装置820或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
(第二应用示例)
图17是示出可以应用本公开内容的技术的基站的示意性配置的第二示例的框图。在图17中,基站被示出为gNB 830。gNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可 以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840包括一个或多个天线阵列,天线阵列包括多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图17所示,gNB 830可以包括多个天线840。例如,多个天线840可以与gNB 830使用的多个频带兼容。图17示出其中gNB 830包括多个天线840的示例。
基站设备850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图16描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE、LTE-A、NR),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图16描述的BB处理器826相同。如图17所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与gNB 830使用的多个频带兼容。虽然图17示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。RF电路 864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图17所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图17示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图17中示出的gNB 830中,处理电路中包括的一个或多个单元可被实现在无线通信接口855中。可替代地,这些组件中的至少一部分可被实现在控制器851中。例如,gNB 830包含无线通信接口855的一部分(例如,BB处理器856)或者整体,和/或包括控制器851的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 830中,并且无线通信接口855(例如,BB处理器856)和/或控制器851可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 830、基站装置850或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。
2.关于用户设备的应用示例
(第一应用示例)
图18是示出可以应用本申请内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入设备909、显示设备910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。处理器901可以包括或充当实施例中描述的处理电路501、701、1001、1501、1601。存储器902包括RAM 和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入设备909包括例如被配置为检测显示设备910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示设备910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE、LTE-A、NR),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图18所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图18示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的 地。
天线91可以包括一个或多个天线阵列,并且每个天线阵列包括多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图18所示,智能电话900可以包括多个天线916。虽然图18示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入设备909、显示设备910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图18所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图18中示出的智能电话900中,处理电路中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分可被实现在处理器901或者辅助控制器919中。作为一个示例,智能电话900包含无线通信接口912的一部分(例如,BB处理器913)或者整体,和/或包括处理器901和/或辅助控制器919的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在智能电话900中,并且无线通信接口912(例如,BB处理器913)、处理器901和/或辅助控制器919可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话900或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
(第二应用示例)
图19是示出可以应用本申请内容的技术的汽车导航设备920的示意 性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入设备929、显示设备930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入设备929包括例如被配置为检测显示设备930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示设备930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE、LTE-A、NR),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图19所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图19示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937可以包括一个或多个天线阵列,每个天线阵列多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图19所示,汽车导航设备920可以包括多个天线937。虽然图19示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图19所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图19中示出的汽车导航装置920中,处理电路中包括的一个或多个组件可被实现在无线通信接口933中。可替代地,这些组件中的至少一部分可被实现在处理器921中。作为一个示例,汽车导航装置920包含无线通信接口933的一部分(例如,BB处理器934)或者整体,和/或包括处理器921的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置920中,并且无线通信接口933(例如,BB处理器934)和/或处理器921可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置920或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
本申请内容的技术也可以被实现为包括汽车导航设备920、车载网络 941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
另外,可以提供将程序记录在其中的可读介质。因此,本公开还涉及一种计算机可读存储介质,上面存储有包括指令的程序,所述指令在由处理电路载入并执行时用于实施通信方法。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个模块中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个模块实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个模块来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (20)

  1. 一种用于网络控制设备的电子设备,包括:
    处理电路,被配置为:
    与用户设备(UE)的一个或多个邻近小区交互,以获取各邻近小区反馈的关于适合所述UE的网络切片类型的支持信息;
    基于所述支持信息,评估各邻近小区对于所述网络切片类型的服务能力度量;以及
    至少基于所述服务能力度量,确定所述UE选择各邻近小区的优先级。
  2. 如权利要求1所述的电子设备,其中所述处理电路还被配置为:
    基于所评估的服务能力度量,确定相应邻近小区为所述网络切片类型预留的RACH资源;以及
    向所述相应邻近小区和所述UE通知所确定的RACH资源预留信息。
  3. 如权利要求1或2所述的电子设备,其中所述交互包括以下之一:
    根据所述UE注册的服务等级协议(SLA)参数,确定适合所述UE的网络切片类型,并向所述一个或多个邻近小区发送关于所述网络切片类型的信息;或者
    向所述一个或多个邻近小区发送所述UE注册的SLA参数。
  4. 如权利要求3所述的电子设备,其中所述交互包括:
    从所述一个或多个邻近小区中的每个邻近小区接收关于该邻近小区是否支持所述网络切片类型的支持信息。
  5. 如权利要求4所述的电子设备,其中所述交互还包括:
    向支持所述网络切片类型的邻近小区询问所述网络切片类型的当前服务负荷;
    从邻近小区接收关于所述网络切片类型的当前服务负荷的支持信息。
  6. 如权利要求3所述的电子设备,其中所述交互包括:
    从所述一个或多个邻近小区中的每个邻近小区接收关于该邻近小区是否支持所述网络切片类型以及所述网络切片类型的当前服务负荷的支持信息。
  7. 如权利要求3所述的电子设备,其中所述SLA参数包括以下至少之一:传输时延、传输速率、服务优先级、安全性、可靠性。
  8. 如权利要求1所述的电子设备,其中所述网络切片类型包括以下之一:URLLC切片、eMBB切片、mMTC切片。
  9. 如权利要求1所述的电子设备,其中所述处理电路被配置为在出现以下情况之一时开始所述交互:
    所述UE移动到另一个跟踪区域;
    所述UE的服务小区当前提供的网络切片服务质量不符合所述UE注册的服务等级协议(SLA)参数;或者
    每隔预定时间间隔。
  10. 如权利要求5或6所述的电子设备,其中所述处理电路被配置为根据下式评估各邻近小区对于所述网络切片类型的服务能力度量η α
    Figure PCTCN2022080284-appb-100001
    其中,
    Figure PCTCN2022080284-appb-100002
    是所述邻近小区当前提供网络切片类型α的服务的平均满意度,N SLA_α是所述邻近小区的网络切片类型α的当前服务负荷,N SLA_αmax是所述邻近小区的网络切片类型α的服务负荷上限,γ α是指示所述邻近小区是否支持网络切片类型α的二进制变量。
  11. 如权利要求2所述的电子设备,其中所述处理电路被配置为根据下式确定邻近小区应预留的RACH资源量Nr α
    Nr α=tanh(N )·η α·λ
    其中,N 是可能选择所述邻近小区的网络切片类型α的UE数量,η α是所述邻近小区对于网络切片类型α的服务能力度量,λ是选择频度参数。
  12. 如权利要求2所述的电子设备,其中所述处理电路被配置为在邻近小区的空闲RACH资源中为所述网络切片类型预留RACH资源。
  13. 如权利要求1所述的电子设备,其中所述处理电路还被配置为:
    将关于邻近小区的选择优先级的信息发送给UE,以使得所述UE至少基于所述选择优先级来选择/重选要接入的小区。
  14. 如权利要求1所述的电子设备,其中所述处理电路还被配置为:
    将关于邻近小区的选择优先级的信息发送给UE的服务小区,以使得所述服务小区至少基于所述选择优先级来确定要切换到的目标小区。
  15. 一种用于用户设备(UE)的电子设备,包括:
    处理电路,被配置为:
    接收关于一个或多个邻近小区的选择优先级的信息,其中选择优先级是由网络控制设备基于各邻近小区对于适合该UE的网络切片类型的服务能力度量而确定的;
    基于所述选择优先级,选择要接入的邻近小区。
  16. 如权利要求1所述的电子设备,其中所述处理电路还被配置为:
    接收关于特定邻近小区为所述网络切片类型预留的RACH资源的信息,所述预留的RACH资源是所述网络控制设备基于所述特定邻近小区的服务能力度量而确定的;以及
    在所述预留的RACH资源上接入所述特定邻近小区。
  17. 如权利要求15所述的电子设备,其中所述网络切片类型包括以下之一:URLLC切片、eMBB切片、mMTC切片。
  18. 一种用于小区的电子设备,包括:
    处理电路,被配置为:
    向网络控制设备反馈关于特定网络切片类型的支持信息,以供网络控制设备确定该小区对于所述特定网络切片类型的服务能力度量;
    接收由网络控制设备基于所述服务能力度量确定的针对所述特定网络切片类型的RACH资源预留信息;
    基于所述RACH资源预留信息,为所述特定网络切片类型预留所确定的RACH资源。
  19. 一种通信方法,包括:
    与用户设备(UE)的一个或多个邻近小区交互,以获取各邻近小区反馈的关于适合所述UE的网络切片类型的支持信息;
    基于所述支持信息,评估各邻近小区对于所述网络切片类型的服务能力度量;以及
    至少基于所述服务能力度量,确定所述UE选择各邻近小区的优先级。
  20. 一种存储有可执行指令的非暂时性计算机可读存储介质,所述可执行指令当被执行时实现如权利要求19所述的通信方法。
PCT/CN2022/080284 2021-03-16 2022-03-11 电子设备、通信方法和存储介质 WO2022194034A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280020046.2A CN116982349A (zh) 2021-03-16 2022-03-11 电子设备、通信方法和存储介质
US18/549,169 US20240163757A1 (en) 2021-03-16 2022-03-11 Electronic device, communication method and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110279634.5A CN115087057A (zh) 2021-03-16 2021-03-16 电子设备、通信方法和存储介质
CN202110279634.5 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022194034A1 true WO2022194034A1 (zh) 2022-09-22

Family

ID=83246229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080284 WO2022194034A1 (zh) 2021-03-16 2022-03-11 电子设备、通信方法和存储介质

Country Status (3)

Country Link
US (1) US20240163757A1 (zh)
CN (2) CN115087057A (zh)
WO (1) WO2022194034A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513322A (zh) * 2018-02-07 2018-09-07 电信科学技术研究院有限公司 一种确定候选小区的方法、装置及计算机存储介质
CN111386727A (zh) * 2020-01-20 2020-07-07 北京小米移动软件有限公司 小区重选、信息传输方法及装置、通信设备及存储介质
US20210037455A1 (en) * 2019-07-30 2021-02-04 Qualcomm Incorporated Mobility enhancement with network slicing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513322A (zh) * 2018-02-07 2018-09-07 电信科学技术研究院有限公司 一种确定候选小区的方法、装置及计算机存储介质
US20210037455A1 (en) * 2019-07-30 2021-02-04 Qualcomm Incorporated Mobility enhancement with network slicing
CN111386727A (zh) * 2020-01-20 2020-07-07 北京小米移动软件有限公司 小区重选、信息传输方法及装置、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Consideration on RAN Slicing", 3GPP DRAFT; R2-2007302, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051912070 *

Also Published As

Publication number Publication date
US20240163757A1 (en) 2024-05-16
CN115087057A (zh) 2022-09-20
CN116982349A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US20220408298A1 (en) Electronic device and method for wireless communications
WO2018171580A1 (zh) 用于无线通信的电子装置以及无线通信方法
JP6146832B2 (ja) デバイス間通信のハンドオーバのための方法及び装置
US20220256388A1 (en) Device and method for user equipment side and base station side in wireless communication
US11516653B2 (en) 5G NR service based cell mobility
US11330489B2 (en) Apparatus, method and computer program
CN109076349A (zh) 频谱管理装置及方法、基站侧和用户设备侧的装置及方法
US10681774B2 (en) Electronic device and communication method
US10820337B2 (en) Device in wireless communication system, and wireless communication method
WO2022194034A1 (zh) 电子设备、通信方法和存储介质
CN112449384B (zh) 数据处理方法、装置和系统
US9742677B2 (en) Methods and apparatus for managing communications network loading
US10736122B2 (en) Wireless communication system, base station, and wireless communication method
WO2022017265A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
JP2023142472A (ja) 通信装置、端末装置、通信システム及び通信制御方法
US20170111838A1 (en) Offloading mechanism using load-dependent offloading criteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549169

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280020046.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770389

Country of ref document: EP

Kind code of ref document: A1