WO2022193520A1 - 一种波长选择系统 - Google Patents

一种波长选择系统 Download PDF

Info

Publication number
WO2022193520A1
WO2022193520A1 PCT/CN2021/108221 CN2021108221W WO2022193520A1 WO 2022193520 A1 WO2022193520 A1 WO 2022193520A1 CN 2021108221 W CN2021108221 W CN 2021108221W WO 2022193520 A1 WO2022193520 A1 WO 2022193520A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
lens
sub
polarized light
prism
Prior art date
Application number
PCT/CN2021/108221
Other languages
English (en)
French (fr)
Inventor
杨柳
杨睿
郭金平
王凡
禤颖仪
徐钰鹏
吕程
马雨虹
胡强高
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2022193520A1 publication Critical patent/WO2022193520A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/288Filters employing polarising elements, e.g. Lyot or Solc filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms

Definitions

  • the present application relates to the technical field of optical communication, and in particular, to a wavelength selection system.
  • wavelength selection systems all require gridless to realize flexible and adjustable bandwidth, and at the same time, the port integration is higher and the module size is smaller.
  • idle ports need to be set, resulting in low integration of the ports; at the same time, as the number of ports increases, the indicators of the ports farther from the central port cannot be guaranteed; therefore, how to improve the relative The index of the port farther from the center port is a technical problem that needs to be solved.
  • Embodiments of the present application provide a wavelength selection system.
  • An embodiment of the present application provides a wavelength selection system, including: a first polarization beam splitting component, a first sub-lens, a first reflecting mirror, a second sub-lens, a first prism, and a first dividing device;
  • the first light beam After the first light beam is incident on the first polarized light splitting component, it is divided into a first polarized light beam and a second polarized light beam by the first polarized light splitting component; the first polarized light beam and the second polarized light beam are respectively passed through the After the first sub-lens and the first reflecting mirror, the second sub-lens is incident on the first prism in parallel;
  • the first prism converts the first polarized light beam into a second light beam, and the second light beam is incident on the first dividing device after being reflected by the second sub-lens and the first reflecting mirror;
  • the first prism converts the second polarized light beam into a third light beam, and the third light beam is incident on the first dividing device after being reflected by the second sub-lens and the first reflecting mirror;
  • the second light beam includes at least one light beam with completely different wavelengths;
  • the third light beam includes at least one light beam with completely different wavelengths; the wavelengths of the light beams included in the second light beam and the third light beam are the same; Different regions of the first dividing means receive light beams of different wavelengths.
  • the second sub-lens and the first reflecting mirror are the same element.
  • the curvature of the first surface of the first reflecting mirror is not zero.
  • the propagation distance of the first polarized light between the first sub-lens and the first reflecting mirror is the absolute value of the focal length of the first sub-lens and the focal length of the first reflecting mirror or, the propagation distance of the first polarized light between the first sub-lens and the first reflecting mirror is the absolute value of the focal length of the first sub-lens and the focal length of the first reflecting mirror sum of values.
  • the propagation distance of the first polarized light between the first sub-lens and the second sub-lens is the absolute value of the focal length of the first sub-lens and the focal length of the second sub-lens or, the propagation distance of the first polarized light between the first sub-lens and the second sub-lens is the absolute focal length of the first sub-lens and the focal length of the second sub-lens sum of values.
  • the system further includes: a first optical fiber array and a first lens array;
  • the first light beam After the light beam emitted from the first optical fiber array is collimated by the first lens array, the first light beam is formed.
  • the system further includes: a first half-wave plate;
  • the first half-wave plate is used to change the polarization direction of the third polarized light beam emitted from the first polarization beam splitter, and the third polarized light beam after changing the polarization direction is the second polarized light beam.
  • the first reflector includes a concave reflector or a cylindrical reflector.
  • the first prism includes a prism and a grating
  • the first prism is formed by gluing a reflective grating and a beam splitting prism.
  • the first dividing device includes at least a digital light processing (Digital Light Processing, DLP) micro-mirror array, a liquid crystal on silicon (Liquid Crystal on Silicon, LCOS) pixel unit array or a liquid crystal (Liquid Crystal, LC) unit one of the arrays.
  • DLP Digital Light Processing
  • LCOS liquid crystal on Silicon
  • LC liquid crystal
  • the system at least includes: a first polarization beam splitting component, a first sub-lens, a first reflection mirror, a second sub-lens, a first prism, and a first dividing device; the first light beam is incident After reaching the first polarized beam splitting component, the first polarized beam splitting component is divided into a first polarized beam and a second polarized beam; the first polarized beam and the second polarized beam are respectively passed through the first After the lens and the first reflecting mirror, the second sub-lens is incident on the first prism in parallel; the first prism converts the first polarized light beam into a second light beam, and the second light beam is After the second sub-lens and the first reflecting mirror are reflected, it is incident on the first dividing device; the first prism converts the second polarized light beam into a third light beam, and the third light beam passes through the After being reflected by the second sub-lens and the first reflecting mirror
  • 1 is a schematic structural diagram of a wavelength selection system in the related art
  • Fig. 2 is the X-Z plane development schematic diagram of a kind of wavelength selection system in the related art
  • FIG. 3 is a schematic structural diagram of a wavelength selection system according to an embodiment of the present application.
  • FIG. 4 is an X-Z plane development schematic diagram of a wavelength selection system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another wavelength selection system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an X-Z plane development of another wavelength selection system provided by an embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a wavelength selection system in the related art
  • FIG. 2 shows a schematic diagram of an X-Z plane development of a wavelength selection system in the related art, which will be explained according to each part.
  • the wavelength selection system 100 shown in FIG. 1 at least includes an optical fiber array 101, a lens array 102, a Wollaston prism 103, a 45° half-wave plate 104, a concave mirror 105, a switching direction focusing device 106, a prism 107, and an attenuation switch Spectral segmentation means 108 .
  • the light beam emitted from the optical fiber array 101 and collimated by the lens array 102 is polarized and split into the seventh polarized light beam and the ninth polarized light beam by the Wollaston prism 103 , After the ninth polarized light beam passes through the 45° half-wave plate 104, the polarization direction is rotated by 90°, and the light beam after the polarization direction is changed is the eighth polarized light beam; the seventh polarized light beam and the eighth polarized light beam the same polarization state.
  • the seventh polarized light beam and the eighth polarized light beam are reflected by the concave mirror 105 , they are incident on the prism 107 through the switching direction focusing device 106 .
  • the prism 107 converts the seventh polarized light beam into a seventh light beam, and the seventh light beam is reflected by the switching direction focusing device 106 and the concave mirror 105, and then enters the attenuation switching spectral division device 108; the prism 107 converts the eighth polarized beam into an eighth beam, and the eighth beam is incident on the attenuation switching spectrum after being reflected by the switching direction focusing device 106 and the concave mirror 105 Segmentation device 108 .
  • the seventh light beam includes at least one light beam with completely different wavelengths distributed according to the angle; the eighth light beam includes at least one light beam with completely different wavelengths distributed according to the angle; the seventh light beam and the eighth light beam are distributed according to the angle.
  • the light beams comprise light beams of the same wavelength; different regions of the attenuation-switched spectral splitting device 108 receive light beams of different wavelengths.
  • Light beams with different wavelengths are incident on different positions of the spectral band of the attenuation-switching spectral splitting device 108, and occupy a corresponding number of control units of the attenuation-switching spectral splitting device 108 according to bandwidth requirements.
  • the attenuation switches the same point on the spectral division device 108.
  • the attenuated switching spectral dividing device 108 outputs at least one beam of the same wavelength based on different ports; after the at least one beam of the same wavelength is reflected by the concave mirror 105, it passes through the switching direction focusing device 106 Incident to the prism 107, after being reflected by the prism 107, it is incident on the concave mirror 105 through the switching direction focusing device 106, and passes through the concave mirror 105, 45° half-wave plate 104, The Wollaston prism 103 and the lens array 102 are incident on the fiber array 101 .
  • the embodiment of the present application proposes a wavelength selection system, which can solve the technical difficulties and shortcomings that cannot be solved by the related technical solutions shown in FIG. 1 and FIG. 2 .
  • FIG. 3 shows a schematic structural diagram of a wavelength selection system provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of an X-Z plane development of a wavelength selection system provided by an embodiment of the present application, which will be described according to each part.
  • the wavelength selection system 300 includes at least: a first polarization beam splitting component 303 , a first sub-lens 306A, a first mirror 305 , a second sub-lens 306B, a first prism 307 and a first dividing device 308 ;
  • the first light beam After the first light beam is incident on the first polarized beam splitting component 303, it is divided into a first polarized beam and a second polarized beam by the first polarized beam splitting component 303; the first polarized beam and the second polarized beam are respectively After passing through the first sub-lens 306A and the first reflecting mirror 305, the second sub-lens 306B is parallel incident on the first prism 307;
  • the first prism 307 converts the first polarized light beam into a second light beam, and the second light beam is reflected by the second sub-lens 306B and the first reflecting mirror 305, and then enters the first division device 308;
  • the first prism 307 converts the second polarized light beam into a third light beam, and the third light beam is reflected by the second sub-lens 306B and the first reflecting mirror 305, and then enters the first division device 308;
  • the second light beam includes at least one light beam with completely different wavelengths;
  • the third light beam includes at least one light beam with completely different wavelengths; the wavelengths of the light beams included in the second light beam and the third light beam are the same; Different regions of the first dividing means receive light beams of different wavelengths.
  • the second light beam includes at least a first wavelength light beam, a second wavelength light beam and a third wavelength light beam; wherein the wavelengths of the first wavelength light beam, the second wavelength light beam and the third wavelength light beam are different from each other the third light beam includes at least a fourth wavelength light beam, a fifth wavelength light beam and a sixth wavelength light beam; wherein the wavelengths of the fourth wavelength light beam, the fifth wavelength light beam and the sixth wavelength light beam are different from each other same.
  • the wavelength of the first wavelength light beam may be the same as the wavelength of the fourth wavelength light beam
  • the wavelength of the second wavelength light beam may be the same as the wavelength of the fifth wavelength light beam
  • the wavelength of the sixth wavelength light beam may be the same.
  • the formed second light beam includes the first wavelength light beam, the second wavelength light beam and the third wavelength light beam are distributed according to angles;
  • the fourth wavelength light beam, the fifth wavelength light beam and the sixth wavelength light beam included in the formed third light beam are distributed according to angles;
  • Different regions of the splitting device 308 receive light beams of different wavelengths.
  • the first region of the first dividing device 308 receives the first wavelength light beam and the fourth wavelength light beam
  • the second region of the first dividing device 308 receives the second wavelength light beam and the fourth wavelength light beam
  • the third region of the first dividing device 308 receives the third wavelength light beam and the sixth wavelength light beam.
  • the first area, the second area and the third area are completely non-overlapping or partially overlapping.
  • light beams with the same wavelength are output from different regions of the first dividing device 308 , and the light beams with the same wavelength are incident on the first reflecting mirror 305 at a certain angle, and pass through the
  • the second sub-lens 306B is incident on the first prism 307, and after being reflected by the first prism 307, it is reflected by the second sub-lens 306B and the first reflecting mirror, and is reflected by the first sub-lens 306A.
  • the first polarization beam splitting component 303 is incident on the first optical fiber array 301 included in the wavelength selection system 300 .
  • the light beams with the same wavelength are incident on each port included in the first fiber array 301 , wherein some light beams are incident on the ports relatively close to the center port of the first fiber array, and other light beams are incident on the ports The port is relatively far from the center port of the first fiber array 301 .
  • the propagation distance of the first polarized light between the first sub-lens 306A and the second sub-lens 306B is the focal length of the first sub-lens and the second sub-lens
  • the difference between the absolute values of the focal lengths; or, the propagation distance of the first polarized light between the first sub-lens 306A and the second sub-lens 306B is the focal length of the first sub-lens and the second sub-lens 306B.
  • the first polarized light is between the first sub-lens 306A and the second sub-lens 306B
  • the propagation distance is the sum of the absolute value of the focal length of the first sub-lens and the focal length of the second sub-lens; or, if there is a positive lens in the first sub-lens 306A and the second sub-lens 306B and a negative lens, the propagation distance of the first polarized light between the first sub-lens 306A and the second sub-lens 306B is the focal length of the first sub-lens and the second sub-lens The difference between the absolute values of the focal lengths.
  • the wavelength selective system 300 may further include a first lens array 302 .
  • the light beam emitted from the first optical fiber array 301 is collimated by the first lens array 302 to form the first light beam.
  • the wavelength selection system 300 may further include: a first half-wave plate 304;
  • the first half-wave plate 304 is used to change the polarization direction of the third polarized light beam emitted from the first polarization beam splitting component 303 , and the third polarized light beam after changing the polarization direction is the second polarized light beam.
  • the first half-wave plate may be a 45° half-wave plate, and after the polarization direction of the third polarized light beam is changed by 90°, it becomes the second polarized light beam.
  • the curvature of the first surface of the first mirror 305 is not zero.
  • the first reflector 305 may be a concave reflector or a cylindrical reflector.
  • the first sub-lens 306A may include one of a positive lens, a negative lens, and a concave mirror; the second sub-lens 306B may include one of a positive lens, a negative lens, and a concave mirror.
  • the first polarized beam splitting component 303 may include a Wollaston prism; the first prism 307 may include a prism and a grating.
  • the first prism 307 includes a prism and a grating
  • the first prism is formed by gluing a piece of reflective grating and a beam splitting prism.
  • the first dividing device 308 includes at least one of a digital light processing micro-mirror array, a liquid crystal-on-silicon pixel cell array, or a liquid crystal cell array.
  • the light beam output from the first dividing device 308 is deflected by a certain angle in the X direction and incident on the first reflecting mirror 305 , and is refracted by the second sub-lens 306B to be combined with the first mirror 306B.
  • the two light beams or the third light beam are incident on the first prism 307 at a parallel angle; by using the first sub-lens 306A and the second sub-lens 306B to reduce the pitch angle of entering the first prism 307 when the output port is far from the center port, Thereby, the influence of the grating cone diffraction on the port farther from the center port is reduced or eliminated, the increase of wavelength-dependent loss and insertion loss of the output port farther from the center port is avoided, and the index of the port farther from the center port is improved.
  • FIG. 5 shows a schematic structural diagram of another wavelength selection system provided by an embodiment of the present application
  • FIG. 6 shows a schematic diagram of an X-Z plane development of another wavelength selection system provided by an embodiment of the present application, which will be described according to each part. .
  • the wavelength selection system 500 includes at least: a second polarization beam splitting component 503, a third sub-lens 506A, a second mirror 505, a second prism 507, and a second splitting device 508;
  • the fourth light beam After the fourth light beam is incident on the second polarized light splitting component 503, it is divided into a fourth polarized light beam and a fifth polarized light beam by the second polarized light splitting component 503; the fourth polarized light beam and the fifth polarized light beam are respectively After passing through the third sub-lens 506A and the second reflecting mirror 505, it is incident on the second prism 507 in parallel;
  • the second prism 507 converts the fourth polarized light beam into a fifth light beam, and the fifth light beam is reflected by the second reflecting mirror 505 and then enters the second dividing device 508;
  • the second prism 507 converts the fifth polarized light beam into a sixth light beam, and the sixth light beam is reflected by the second reflecting mirror 505 and then enters the second dividing device 508;
  • the fifth light beam includes at least one light beam with completely different wavelengths; the sixth light beam includes at least one light beam with completely different wavelengths; the wavelengths of the light beams included in the fifth light beam and the sixth light beam are the same; Different regions of the second dividing device 508 receive light beams of different wavelengths.
  • the fifth light beam includes at least a seventh wavelength light beam, an eighth wavelength light beam and a ninth wavelength light beam; wherein the wavelengths of the seventh wavelength light beam, the eighth wavelength light beam and the ninth wavelength light beam are different from each other the same;
  • the sixth light beam includes at least a tenth wavelength light beam, an eleventh wavelength light beam and a twelfth wavelength light beam; wherein, the tenth wavelength light beam, the eleventh wavelength light beam and the twelfth wavelength light beam wavelengths are different from each other.
  • the wavelength of the seventh wavelength light beam may be the same as the wavelength of the tenth wavelength light beam; the wavelength of the eighth wavelength light beam may be the same as the wavelength of the eleventh wavelength light beam; The wavelength may be the same as the wavelength of the twelfth wavelength light beam.
  • the seventh wavelength light beam, the eighth wavelength light beam and the ninth wavelength light beam included in the formed fifth light beam are distributed according to angles;
  • the fifth polarized light beam is converted by the second prism 507, the tenth wavelength light beam, the eleventh wavelength light beam and the twelfth wavelength light beam included in the sixth light beam are angularly distributed; the Different regions of the second dividing means 508 receive light beams of different wavelengths.
  • the first region of the second dividing device 508 receives the seventh wavelength light beam and the tenth wavelength light beam
  • the second region of the second dividing device 508 receives the eighth wavelength light beam and the first wavelength light beam Eleven wavelength light beams
  • the third region of the second dividing device 508 receives the ninth wavelength light beam and the twelfth wavelength light beam.
  • the first area of the second dividing device 508 , the second area of the second dividing device 508 and the third area of the second dividing device 508 do not overlap at all or partially overlap.
  • light beams with the same wavelength are output from different regions of the second dividing device 508, and the light beams with the same wavelength are reflected to the second prism 507 by the second mirror 505 at a certain angle, After being reflected by the second prism 507, it is reflected by the second reflecting mirror 505, and then incident on the second optical fiber array included in the wavelength selection system 500 through the third sub-lens 506A and the second polarization splitting component 503. 501.
  • the light beams with the same wavelength are incident on each port included in the second fiber array 501 , wherein some light beams are incident on ports relatively close to the center port of the second fiber array 501 , and other light beams are relatively close to the center port of the second fiber array 501 .
  • the incident port is relatively far from the center port of the second fiber array 501 .
  • the propagation distance of the fourth polarized light beam between the third sub-lens 506A and the second mirror 505 is the focal length of the third sub-lens 506A and the second mirror 505; or, the propagation distance of the fourth polarized light beam between the third sub-lens 506A and the second mirror 505 is the difference between the focal length of the third sub-lens 506A and the The sum of the absolute values of the focal lengths of the second mirror 505. Referring to FIG. 6 , the propagation distance of the fourth polarized light beam between the third sub-lens 506A and the second mirror 505 is between the third sub-lens 506A and the second mirror 505 the distance.
  • the fourth polarized light is between the third sub-lens 506A and the second reflecting mirror 505
  • the propagation distance is the sum of the absolute value of the focal length of the third sub-lens 506A and the focal length of the second sub-lens; lens and a negative lens
  • the propagation distance of the fourth polarized light between the third sub-lens 506A and the second mirror 505 is the focal length of the third sub-lens 506A and the second reflection The difference between the absolute values of the focal lengths of the mirror 505.
  • the wavelength selective system 500 may also include a second lens array 502 . After the light beam emitted from the second optical fiber array 501 is collimated by the second lens array 502, the fourth light beam is formed.
  • the wavelength selection system 500 may further include: a second half-wave plate 504;
  • the second half-wave plate 504 is used to change the polarization direction of the sixth polarized light beam emitted from the second polarization beam splitting component 503 , and the sixth polarized light beam after changing the polarization direction is the fifth polarized light beam.
  • the curvature of the first surface of the second mirror 505 is not zero; that is, the curvature of the second mirror 505 in the X direction and the Y direction is not zero.
  • the second mirror 505 may be a concave mirror or a cylindrical mirror.
  • the third sub-lens 506A may include one of a positive lens, a negative lens, and a concave mirror.
  • the second polarized light splitting component 503 may include a Wollaston prism; the second prism 507 may include a prism and a grating.
  • the second prism 507 includes a prism and a grating
  • the second prism is formed by gluing a piece of reflective grating and a beam splitting prism.
  • the second dividing means 508 includes at least one of a digital light processing micro-mirror array, an array of liquid crystal on silicon pixel cells, or an array of liquid crystal cells.
  • the light beam output from the second dividing device 508 is deflected by a certain angle in the X direction and is reflected by the second reflecting mirror 505 , and then incident at an angle parallel to the fifth light beam or the sixth light beam to the second prism 507; by using the third sub-lens 506A and the second mirror 505 to reduce the pitch angle of the second prism 507 when the output port is farther from the center port, thereby reducing or eliminating the grating cone diffraction pair relative to The influence of the port farther from the center port avoids the increase of wavelength-related loss and insertion loss of the output port farther from the center port, and improves the index of the port farther from the center port.
  • the first sub-lens 306A and the third sub-lens 506A in FIGS. 2 and 4 may be negative lenses; the first sub-lens 306A is located between the first half-wave plate 304 and the first mirror 305 ; the third sub-lens 506A is located between the second half-wave plate 504 and the second mirror 505 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请公开一种波长选择系统,所述系统至少包括:第一偏振分光部件、第一子透镜、第一反射镜、第二子透镜、第一棱镜和第一分割装置;第一光束入射至第一偏振分光部件后,经第一偏振分光部件分为第一偏振光束和第二偏振光束;第一偏振光束和第二偏振光束分别经第一子透镜和第一反射镜之后,经第二子透镜平行入射至第一棱镜;第一棱镜将第一偏振光束转换为第二光束;第一棱镜将第二偏振光束转换为第三光束;第二光束和第三光束分别经第二子透镜和第一反射镜反射后,入射至第一分割装置;其中,第二光束和第三光束包括的光束的波长相同;第一分割装置的不同区域接收不同波长的光束。

Description

一种波长选择系统
相关申请的交叉引用
本申请基于申请号为202110286491.0、申请日为2021年03月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光通信技术领域,尤其涉及一种波长选择系统。
背景技术
新一代波长选择系统都要求具备无栅格性(Gridless)即可实现带宽灵活可调,同时端口集成度更高,模块尺寸更小。相关技术的波长选择系统中,需要设置闲置的端口,导致端口的集成度不高;同时,随着端口数增多,相对于中心端口较远的端口的指标也无法保障;因此,如何提升相对于中心端口较远的端口的指标,是需要解决的技术问题。
发明内容
本申请实施例提供一种波长选择系统。
本申请实施例的技术方案是这样实现的:
本申请实施例提供一种波长选择系统,包括:第一偏振分光部件、第一子透镜、第一反射镜、第二子透镜、第一棱镜和第一分割装置;
第一光束入射至所述第一偏振分光部件后,经所述第一偏振分光部件分为第一偏振光束和第二偏振光束;所述第一偏振光束和所述第二偏振光束分别经所述第一子透镜和所述第一反射镜之后,经所述第二子透镜平行 入射至所述第一棱镜;
所述第一棱镜将所述第一偏振光束转换为第二光束,所述第二光束经所述第二子透镜和所述第一反射镜反射后,入射至所述第一分割装置;
所述第一棱镜将所述第二偏振光束转换为第三光束,所述第三光束经所述第二子透镜和所述第一反射镜反射后,入射至所述第一分割装置;
其中,所述第二光束包括波长完全不同的至少一束光束;所述第三光束包括波长完全不同的至少一束光束;所述第二光束和所述第三光束包括的光束的波长相同;所述第一分割装置的不同区域接收不同波长的光束。
上述方案中,所述第二子透镜和所述第一反射镜为同一元件。
上述方案中,所述第一反射镜的第一面的曲率不为0。
上述方案中,所述第一偏振光在所述第一子透镜与所述第一反射镜之间的传播距离为所述第一子透镜的焦距与所述第一反射镜的焦距的绝对值之差;或者,所述第一偏振光在所述第一子透镜与所述第一反射镜之间的传播距离为所述第一子透镜的焦距与所述第一反射镜的焦距的绝对值之和。
上述方案中,所述第一偏振光在所述第一子透镜与所述第二子透镜之间的传播距离为所述第一子透镜的焦距与所述第二子透镜的焦距的绝对值之差;或者,所述第一偏振光在所述第一子透镜与所述第二子透镜之间的传播距离为所述第一子透镜的焦距与所述第二子透镜的焦距的绝对值之和。
上述方案中,所述系统还包括:第一光纤阵列和第一透镜阵列;
从所述第一光纤阵列发出的光束经所述第一透镜阵列准直后,形成所述第一光束。
上述方案中,所述系统还包括:第一半波片;
所述第一半波片用于改变从所述第一偏振分光部件射出的第三偏振光 束的偏振方向,改变偏振方向后的第三偏振光束为第二偏振光束。
上述方案中,所述第一反射镜包括凹面反射镜,或者柱面反射镜。
上述方案中,所述第一棱镜包括棱镜和光栅;
所述第一棱镜由一片反射式光栅和分光棱镜胶合而成。
上述方案中,所述第一分割装置至少包括数字光处理(Digital Light Processing,DLP)微反射镜阵列、硅基液晶(Liquid Crystal on Silicon,LCOS)像素单元阵列或液晶(Liquid Crystal,LC)单元阵列之一。
本申请实施例提供的波长选择系统,所述系统至少包括:第一偏振分光部件、第一子透镜、第一反射镜、第二子透镜、第一棱镜和第一分割装置;第一光束入射至所述第一偏振分光部件后,经所述第一偏振分光部件分为第一偏振光束和第二偏振光束;所述第一偏振光束和所述第二偏振光束分别经所述第一子透镜和所述第一反射镜之后,经所述第二子透镜平行入射至所述第一棱镜;所述第一棱镜将所述第一偏振光束转换为第二光束,所述第二光束经所述第二子透镜和所述第一反射镜反射后,入射至所述第一分割装置;所述第一棱镜将所述第二偏振光束转换为第三光束,所述第三光束经所述第二子透镜和所述第一反射镜反射后,入射至所述第一分割装置;其中,所述第二光束包括波长完全不同的至少一束光束;所述第三光束包括波长完全不同的至少一束光束;所述第二光束和所述第三光束包括的光束的波长相同;所述第一分割装置的不同区域接收不同波长的光束。如此,可以提升相对于中心端口较远的端口的指标。
附图说明
图1为相关技术中的一种波长选择系统的结构示意图;
图2为相关技术中的一种波长选择系统的X-Z平面展开示意图;
图3为本申请实施例提供的一种波长选择系统的结构示意图;
图4为本申请实施例提供的一种波长选择系统的X-Z平面展开示意图;
图5为本申请实施例提供的另一种波长选择系统的结构示意图;
图6为本申请实施例提供的另一种波长选择系统的X-Z平面展开示意图。
具体实施方式
以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
图1示出了相关技术中的一种波长选择系统的结构示意图,图2示出了相关技术中的一种波长选择系统的X-Z平面展开示意图,将根据各个部分进行说明。
图1所示的波长选择系统100至少包括光纤阵列101、透镜阵列102、沃拉斯顿棱镜103、45°半波片104、凹面反射镜105、切换方向聚焦装置106、棱栅107以及衰减切换光谱分割装置108。
如图1和图2所示,从所述光纤阵列101射出并经由所述透镜阵列102准直的光束,经过所述沃拉斯顿棱镜103偏振分光为第七偏振光束和第九偏振光束,所述第九偏振光束经过所述45°半波片104后,偏振方向旋转90°,所述偏振方向改变后的光束为第八偏振光束;所述第七偏振光束与所述第八偏振光束的偏振态相同。
所述第七偏振光束和所述第八偏振光束经所述凹面反射镜105反射后,经所述切换方向聚焦装置106入射至所述棱栅107。
所述棱栅107将所述第七偏振光束转换为第七光束,所述第七光束经所述切换方向聚焦装置106和所述凹面反射镜105反射后,入射至所述衰减切换光谱分割装置108;所述棱栅107将所述第八偏振光束转换为第八光束,所述第八光束经所述切换方向聚焦装置106和所述凹面反射镜105反射后,入射至所述衰减切换光谱分割装置108。
其中,所述第七光束包括的波长完全不同的至少一束光束按照角度分 布;所述第八光束包括的波长完全不同的至少一束光束按照角度分布;所述第七光束和所述第八光束包括的光束的波长相同;所述衰减切换光谱分割装置108的不同区域接收不同波长的光束。不同波长的光束入射至所述衰减切换光谱分割装置108的光谱带的不同位置,并依据带宽需求占据相应数量的所述衰减切换光谱分割装置108的控制单元,同一波长的两个光束相交于所述衰减切换光谱分割装置108上的同一个点。
然后,所述衰减切换光谱分割装置108基于不同的端口输出波长相同的至少一束光束;所述波长相同的至少一束光束经所述凹面反射镜105反射后,经由所述切换方向聚焦装置106入射至所述棱栅107,再经由所述棱栅107反射后,经所述切换方向聚焦装置106入射至所述凹面反射镜105,经由所述凹面反射镜105、45°半波片104、沃拉斯顿棱镜103和透镜阵列102入射至所述光纤阵列101。
然而,如图2所示,从衰减切换光谱分割装置108返回的光束经所述凹面反射镜105和所述切换方向聚焦装置106再次入射到所述棱栅107上时,在X方向不再是平行入射,而是以一定角度入射,因此会造成圆锥衍射,导致在光纤阵列101接收时,距离中心端口较远的输出端口波长相关损耗和插损增加,降低了相对于中心端口较远的端口的指标。
基于图1和图2所示的波长选择系统中存在的问题,本申请实施例提出一种波长选择系统,能够解决图1和图2所示的相关技术方案无法解决的技术难题和缺点。
图3示出了本申请实施例提供的一种波长选择系统的结构示意图,图4示出了本申请实施例提供的一种波长选择系统的X-Z平面展开示意图,将根据各个部分进行说明。
在一些实施例中,所述波长选择系统300至少包括:第一偏振分光部件303、第一子透镜306A、第一反射镜305、第二子透镜306B、第一棱镜 307和第一分割装置308;
第一光束入射至所述第一偏振分光部件303后,经所述第一偏振分光部件303分为第一偏振光束和第二偏振光束;所述第一偏振光束和所述第二偏振光束分别经所述第一子透镜306A和所述第一反射镜305之后,经所述第二子透镜306B平行入射至所述第一棱镜307;
所述第一棱镜307将所述第一偏振光束转换为第二光束,所述第二光束经所述第二子透镜306B和所述第一反射镜305反射后,入射至所述第一分割装置308;
所述第一棱镜307将所述第二偏振光束转换为第三光束,所述第三光束经所述第二子透镜306B和所述第一反射镜305反射后,入射至所述第一分割装置308;
其中,所述第二光束包括波长完全不同的至少一束光束;所述第三光束包括波长完全不同的至少一束光束;所述第二光束和所述第三光束包括的光束的波长相同;所述第一分割装置的不同区域接收不同波长的光束。
例如,所述第二光束至少包括第一波长光束、第二波长光束和第三波长光束;其中,所述第一波长光束、所述第二波长光束和所述第三波长光束的波长互不相同;所述第三光束至少包括第四波长光束、第五波长光束和第六波长光束;其中,所述第四波长光束、所述第五波长光束和所述第六波长光束的波长互不相同。这里,所述第一波长光束的波长与所述第四波长光束的波长可以相同;所述第二波长光束的波长与所述第五波长光束的波长可以相同;所述第三波长光束的波长与所述第六波长光束的波长可以相同。
其中,所述第一偏振光束经所述第一棱镜307转换后,形成的第二光束包括的所述第一波长光束、所述第二波长光束和所述第三波长光束按照角度分布;所述第二偏振光束经所述第一棱镜307转换后,形成的第三光 束包括的所述第四波长光束、所述第五波长光束和所述第六波长光束按照角度分布;所述第一分割装置308的不同区域接收不同波长的光束。
例如,所述第一分割装置308的第一区域接收所述第一波长光束和所述第四波长光束,所述第一分割装置308的第二区域接收所述第二波长光束和所述第五波长光束,所述第一分割装置308的第三区域接收所述第三波长光束和所述第六波长光束。其中,所述第一区域、第二区域和第三区域完全不重合或部分重合。
在一些实施例中,如图4所示,波长相同的光束从所述第一分割装置308的不同区域输出,所述波长相同的光束以一定角度入射至所述第一反射镜305,经所述第二子透镜306B入射至所述第一棱镜307,经所述第一棱镜307反射后,经所述第二子透镜306B和所述第一反射镜反射,经所述第一子透镜306A、所述第一偏振分光部件303入射至所述波长选择系统300包括的第一光纤阵列301。
在一些实施例中,所述波长相同的光束入射至所述第一光纤阵列301包括的各个端口,其中一些光束入射的端口距离所述第一光纤阵列的中心端口相对较近,另一些光束入射的端口距离所述第一光纤阵列301的中心端口相对较远。
在一些实施例中,所述第一偏振光在所述第一子透镜306A与所述第二子透镜306B之间的传播距离为所述第一子透镜的焦距与所述第二子透镜的焦距的绝对值之差;或者,所述第一偏振光在所述第一子透镜306A与所述第二子透镜306B之间的传播距离为所述第一子透镜的焦距与所述第二子透镜的焦距的绝对值之和。参考图4,所述第一偏振光在所述第一子透镜306A与所述第二子透镜306B之间的传播距离,为所述第一子透镜306A与所述第二子透镜306B之间的距离。
具体实施时,若所述第一子透镜306A与所述第二子透镜306B均为正 透镜,则所述第一偏振光在所述第一子透镜306A与所述第二子透镜306B之间的传播距离为所述第一子透镜的焦距与所述第二子透镜的焦距的绝对值之和;或者,若所述第一子透镜306A与所述第二子透镜306B中存在一个正透镜和一个负透镜,则所述第一偏振光在所述第一子透镜306A与所述第二子透镜306B之间的传播距离为所述第一子透镜的焦距与所述第二子透镜的焦距的绝对值之差。
在一些实施例中,所述波长选择系统300还可以包括第一透镜阵列302。从所述第一光纤阵列301发出的光束经所述第一透镜阵列302准直后,形成所述第一光束。
在一些实施例中,所述波长选择系统300还可以包括:第一半波片304;
所述第一半波片304用于改变从所述第一偏振分光部件303射出的第三偏振光束的偏振方向,改变偏振方向后的第三偏振光束为第二偏振光束。
在一些实施例中,所述第一半波片可以是45°半波片,所述第三偏振光束的偏振方向改变90°后,为第二偏振光束。
在一些实施例中,所述第一反射镜305的第一面的曲率不为0。所述第一反射镜305可以为凹面反射镜或者柱面反射镜。
在一些实施例中,所述第一子透镜306A可以包括正透镜、负透镜和凹面反射镜之一;所述第二子透镜306B可以包括正透镜、负透镜和凹面反射镜之一。
在一些实施例中,所述第一偏振分光部件303可以包括沃拉斯顿棱镜;所述第一棱镜307可以包括棱镜和光栅。
具体实施时,若所述第一棱镜307包括棱镜和光栅,所述第一棱镜由一片反射式光栅和分光棱镜胶合而成。
在一些实施例中,所述第一分割装置308至少包括数字光处理微反射镜阵列、硅基液晶像素单元阵列或液晶单元阵列之一。
如图4所示,从所述第一分割装置308输出的光束,在X方向偏转一定角度入射至所述第一反射镜305,经所述第二子透镜306B折射后,以与所述第二光束或第三光束平行的角度入射至所述第一棱镜307;通过使用第一子透镜306A和第二子透镜306B降低输出端口距离中心端口较远时,进入第一棱镜307的俯仰角度,从而减少或消除光栅圆锥衍射对相对于中心端口较远的端口的影响,避免距离中心端口较远的输出端口波长相关损耗和插损增加,提升了相对于中心端口较远的端口的指标。
图5示出了本申请实施例提供的另一种波长选择系统的结构示意图,图6示出了本申请实施例提供的另一种波长选择系统的X-Z平面展开示意图,将根据各个部分进行说明。
在一些实施例中,所述波长选择系统500至少包括:第二偏振分光部件503、第三子透镜506A、第二反射镜505、第二棱镜507和第二分割装置508;
第四光束入射至所述第二偏振分光部件503后,经所述第二偏振分光部件503分为第四偏振光束和第五偏振光束;所述第四偏振光束和所述第五偏振光束分别经所述第三子透镜506A和所述第二反射镜505之后,平行入射至所述第二棱镜507;
所述第二棱镜507将所述第四偏振光束转换为第五光束,所述第五光束经所述第二反射镜505反射后,入射至所述第二分割装置508;
所述第二棱镜507将所述第五偏振光束转换为第六光束,所述第六光束经所述第二反射镜505反射后,入射至所述第二分割装置508;
其中,所述第五光束包括波长完全不同的至少一束光束;所述第六光束包括波长完全不同的至少一束光束;所述第五光束和所述第六光束包括的光束的波长相同;所述第二分割装置508的不同区域接收不同波长的光束。
例如,所述第五光束至少包括第七波长光束、第八波长光束和第九波长光束;其中,所述第七波长光束、所述第八波长光束和所述第九波长光束的波长互不相同;所述第六光束至少包括第十波长光束、第十一波长光束和第十二波长光束;其中,所述第十波长光束、所述第十一波长光束和所述第十二波长光束的波长互不相同。这里,所述第七波长光束的波长与所述第十波长光束的波长可以相同;所述第八波长光束的波长与所述第十一波长光束的波长可以相同;所述第九波长光束的波长与所述第十二波长光束的波长可以相同。
其中,所述第四偏振光束经所述第二棱镜507转换后,形成的第五光束包括的所述第七波长光束、所述第八波长光束和所述第九波长光束按照角度分布;所述第五偏振光束经所述第二棱镜507转换后,形成的第六光束包括的所述第十波长光束、所述第十一波长光束和所述第十二波长光束按照角度分布;所述第二分割装置508的不同区域接收不同波长的光束。
例如,所述第二分割装置508的第一区域接收所述第七波长光束和所述第十波长光束,所述第二分割装置508的第二区域接收所述第八波长光束和所述第十一波长光束,所述第二分割装置508的第三区域接收所述第九波长光束和所述第十二波长光束。其中,所述第二分割装置508的第一区域、所述第二分割装置508的第二区域和所述第二分割装置508的第三区域完全不重合或部分重合。
在一些实施例中,波长相同的光束从所述第二分割装置508的不同区域输出,所述波长相同的光束以一定角度经所述第二反射镜505反射至所述第二棱镜507,经所述第二棱镜507反射后,经所述第二反射镜505反射,经所述第三子透镜506A、所述第二偏振分光部件503入射至所述波长选择系统500包括的第二光纤阵列501。
在一些实施例中,所述波长相同的光束入射至所述第二光纤阵列501 包括的各个端口,其中一些光束入射的端口距离所述第二光纤阵列501的中心端口相对较近,另一些光束入射的端口距离所述第二光纤阵列501的中心端口相对较远。
在一些实施例中,所述第四偏振光束在所述第三子透镜506A与所述第二反射镜505之间的传播距离为所述第三子透镜506A的焦距与所述第二反射镜505的焦距的绝对值之差;或者,所述第四偏振光束在所述第三子透镜506A与所述第二反射镜505之间的传播距离为所述第三子透镜506A的焦距与所述第二反射镜505的焦距的绝对值之和。参考图6,所述第四偏振光束在所述第三子透镜506A与所述第二反射镜505之间的传播距离,为所述第三子透镜506A与所述第二反射镜505之间的距离。
具体实施时,若所述第三子透镜506A与所述第二反射镜505均为正透镜,则所述第四偏振光在所述第三子透镜506A与所述第二反射镜505之间的传播距离为所述第三子透镜506A的焦距与所述第二子透镜的焦距的绝对值之和;或者,若所述第三子透镜506A与所述第二反射镜505中存在一个正透镜和一个负透镜,则所述第四偏振光在所述第三子透镜506A与所述第二反射镜505之间的传播距离为所述第三子透镜506A的焦距与所述第二反射镜505的焦距的绝对值之差。
在一些实施例中,所述波长选择系统500还可以包括第二透镜阵列502。从所述第二光纤阵列501发出的光束经所述第二透镜阵列502准直后,形成所述第四光束。
在一些实施例中,所述波长选择系统500还可以包括:第二半波片504;
所述第二半波片504用于改变从所述第二偏振分光部件503射出的第六偏振光束的偏振方向,改变偏振方向后的第六偏振光束为第五偏振光束。
在一些实施例中,所述第二反射镜505的第一面的曲率不为0;即所述第二反射镜505在X方向和Y方向的曲率均不为0。所述第二反射镜505 可以为凹面反射镜或者柱面反射镜。
在一些实施例中,所述第三子透镜506A可以包括正透镜、负透镜和凹面反射镜之一。
在一些实施例中,所述第二偏振分光部件503可以包括沃拉斯顿棱镜;所述第二棱镜507可以包括棱镜和光栅。
具体实施时,若所述第二棱镜507包括棱镜和光栅,所述第二棱镜由一片反射式光栅和分光棱镜胶合而成。
在一些实施例中,所述第二分割装置508至少包括数字光处理微反射镜阵列、硅基液晶像素单元阵列或液晶单元阵列之一。
如图6所示,从所述第二分割装置508输出的光束,在X方向偏转一定角度经所述第二反射镜505反射后,以与所述第五光束或第六光束平行的角度入射至所述第二棱镜507;通过使用第三子透镜506A和第二反射镜505降低输出端口距离中心端口较远时,进入第二棱镜507的俯仰角度,从而减少或消除光栅圆锥衍射对相对于中心端口较远的端口的影响,避免距离中心端口较远的输出端口波长相关损耗和插损增加,提升了相对于中心端口较远的端口的指标。
在一些实施例中,图2和图4中的第一子透镜306A和第三子透镜506A可以为负透镜;所述第一子透镜306A位于所述第一半波片304与第一反射镜305之间;所述第三子透镜506A位于所述第二半波片504与第二反射镜505之间。
但本领域的技术人员应该能够理解,改变图3中第一子透镜306A和第二子透镜306B的位置和焦距以及正负配置,甚至增加组合透镜数量;或者,改变图5中第三子透镜506A和第二反射面505的位置和焦距以及正负配置,甚至增加组合透镜数量;均可以设计出更多的透镜组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种波长选择系统,至少包括:第一偏振分光部件、第一子透镜、第一反射镜、第二子透镜、第一棱镜和第一分割装置;
    第一光束入射至所述第一偏振分光部件后,经所述第一偏振分光部件分为第一偏振光束和第二偏振光束;所述第一偏振光束和所述第二偏振光束分别经所述第一子透镜和所述第一反射镜之后,经所述第二子透镜平行入射至所述第一棱镜;
    所述第一棱镜将所述第一偏振光束转换为第二光束,所述第二光束经所述第二子透镜和所述第一反射镜反射后,入射至所述第一分割装置;
    所述第一棱镜将所述第二偏振光束转换为第三光束,所述第三光束经所述第二子透镜和所述第一反射镜反射后,入射至所述第一分割装置;
    其中,所述第二光束包括波长完全不同的至少一束光束;所述第三光束包括波长完全不同的至少一束光束;所述第二光束和所述第三光束包括的光束的波长相同;所述第一分割装置的不同区域接收不同波长的光束。
  2. 根据权利要求1所述的系统,其中,
    所述第二子透镜和所述第一反射镜为同一元件。
  3. 根据权利要求2所述的系统,其中,
    所述第一反射镜的第一面的曲率不为0。
  4. 根据权利要求2所述的系统,其中,
    所述第一偏振光在所述第一子透镜与所述第一反射镜之间的传播距离为所述第一子透镜的焦距与所述第一反射镜的焦距的绝对值之差;或者,所述第一偏振光在所述第一子透镜与所述第一反射镜之间的传播距离为所述第一子透镜的焦距与所述第一反射镜的焦距的绝对值之和。
  5. 根据权利要求1所述的系统,其中,
    所述第一偏振光在所述第一子透镜与所述第二子透镜之间的传播距离为所述第一子透镜的焦距与所述第二子透镜的焦距的绝对值之差;或者,所述第一偏振光在所述第一子透镜与所述第二子透镜之间的传播距离为所述第一子透镜的焦距与所述第二子透镜的焦距的绝对值之和。
  6. 根据权利要求1所述的系统,其中,所述系统还包括:第一光纤阵列和第一透镜阵列;
    从所述第一光纤阵列发出的光束经所述第一透镜阵列准直后,形成所述第一光束。
  7. 根据权利要求1所述的系统,其中,所述系统还包括:第一半波片;
    所述第一半波片用于改变从所述第一偏振分光部件射出的第三偏振光束的偏振方向,改变偏振方向后的第三偏振光束为第二偏振光束。
  8. 根据权利要求1至7任一项所述的系统,其中,
    所述第一反射镜包括凹面反射镜,或者柱面反射镜。
  9. 根据权利要求1至7任一项所述的系统,其中,
    所述第一棱镜包括棱镜和光栅;
    所述第一棱镜由一片反射式光栅和分光棱镜胶合而成。
  10. 根据权利要求1至7任一项所述的系统,其中,
    所述第一分割装置至少包括数字光处理DLP微反射镜阵列、硅基液晶LCOS像素单元阵列或液晶LC单元阵列之一。
PCT/CN2021/108221 2021-03-17 2021-07-23 一种波长选择系统 WO2022193520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110286491.0A CN113031293A (zh) 2021-03-17 2021-03-17 一种波长选择系统
CN202110286491.0 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022193520A1 true WO2022193520A1 (zh) 2022-09-22

Family

ID=76471172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108221 WO2022193520A1 (zh) 2021-03-17 2021-07-23 一种波长选择系统

Country Status (2)

Country Link
CN (1) CN113031293A (zh)
WO (1) WO2022193520A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031293A (zh) * 2021-03-17 2021-06-25 武汉光迅科技股份有限公司 一种波长选择系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050074204A1 (en) * 2003-10-02 2005-04-07 Gordon Wilson Spectral plane method and apparatus for wavelength-selective optical switching
US20050276537A1 (en) * 2004-06-14 2005-12-15 Engana Pty Ltd Dual-source optical wavelength processor
CN101194194A (zh) * 2005-04-11 2008-06-04 卡佩拉光子学公司 减小了镜边沿衍射效应的光分插复用器结构
US20080218872A1 (en) * 2007-03-08 2008-09-11 Haijun Yuan Optical device with stable optical configuration
US20090067780A1 (en) * 2007-09-10 2009-03-12 Ntt Electronics Corporation Wavelength selective switch
CN102077129A (zh) * 2008-07-04 2011-05-25 Ntt电子股份有限公司 波长选择开关
CN104583824A (zh) * 2012-07-19 2015-04-29 菲尼萨公司 极化不同波长选择开关
CN109001865A (zh) * 2017-06-06 2018-12-14 朗美通经营有限责任公司 多路传送的波长选择开关
CN113031293A (zh) * 2021-03-17 2021-06-25 武汉光迅科技股份有限公司 一种波长选择系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050074204A1 (en) * 2003-10-02 2005-04-07 Gordon Wilson Spectral plane method and apparatus for wavelength-selective optical switching
US20050276537A1 (en) * 2004-06-14 2005-12-15 Engana Pty Ltd Dual-source optical wavelength processor
CN101194194A (zh) * 2005-04-11 2008-06-04 卡佩拉光子学公司 减小了镜边沿衍射效应的光分插复用器结构
US20080218872A1 (en) * 2007-03-08 2008-09-11 Haijun Yuan Optical device with stable optical configuration
US20090067780A1 (en) * 2007-09-10 2009-03-12 Ntt Electronics Corporation Wavelength selective switch
CN102077129A (zh) * 2008-07-04 2011-05-25 Ntt电子股份有限公司 波长选择开关
CN104583824A (zh) * 2012-07-19 2015-04-29 菲尼萨公司 极化不同波长选择开关
CN109001865A (zh) * 2017-06-06 2018-12-14 朗美通经营有限责任公司 多路传送的波长选择开关
CN113031293A (zh) * 2021-03-17 2021-06-25 武汉光迅科技股份有限公司 一种波长选择系统

Also Published As

Publication number Publication date
CN113031293A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US7233716B2 (en) Optical switch
US6795182B2 (en) Diffractive fourier optics for optical communications
US6104536A (en) High efficiency polarization converter including input and output lenslet arrays
US5381278A (en) Polarization conversion unit, polarization illumination apparatus provided with the unit, and projector provided with the apparatus
JP2986295B2 (ja) 光アイソレータ
US8391654B2 (en) Wavelength selection switch
US20040033528A1 (en) Dynamic optical devices
US7054561B2 (en) Reduction of polarization-dependent loss from grating used in double-pass configuration
CN103185970A (zh) 平移偏振光、控制光信号、选择波长的光路由方法和装置
CN109212766B (zh) 一种分光装置、波长选择开关和分光方法
WO2022193520A1 (zh) 一种波长选择系统
US20070279738A1 (en) Single-Pole Optical Wavelength Selector
US20170023741A1 (en) Wavelength-selecting optical switch device
CN108897102B (zh) 一种双波长选择开关
WO2021051960A1 (zh) 一种光谱处理装置以及可重构光分插复用器
EP2413179A1 (en) Light beam processing device for focusing light beam emitted by semiconductor laser
US6728041B2 (en) Optical device
CN111399130B (zh) 一种双反射式波长选择开关
CN112255814A (zh) 一种窄带可调滤波器
CN210894900U (zh) 一种基于液晶芯片的波长选择开关
US20020085801A1 (en) Wavelength division multiplexing and de-multiplexing element and wavelength router
WO2022193747A1 (zh) 波长选择交换装置以及相关方法
CN213715621U (zh) 一种窄带可调滤波器
CN117706688A (zh) 一种大端口波长选择光开关和波长选择方法
WO2024089485A1 (en) Wavelength selective switch with multiple deflector arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931098

Country of ref document: EP

Kind code of ref document: A1