WO2022193342A1 - 一种矿井巷道高精度风流测量方法 - Google Patents

一种矿井巷道高精度风流测量方法 Download PDF

Info

Publication number
WO2022193342A1
WO2022193342A1 PCT/CN2021/082505 CN2021082505W WO2022193342A1 WO 2022193342 A1 WO2022193342 A1 WO 2022193342A1 CN 2021082505 W CN2021082505 W CN 2021082505W WO 2022193342 A1 WO2022193342 A1 WO 2022193342A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
roadway
ultrasonic
control unit
probe
Prior art date
Application number
PCT/CN2021/082505
Other languages
English (en)
French (fr)
Inventor
李秉芮
刘娜
井上雅弘
陈凤梅
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2022193342A1 publication Critical patent/WO2022193342A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of wind flow measurement in mine roadways, in particular to a high-precision wind flow measurement method in mine roadways.
  • the purpose of the present invention is to provide a high-precision wind flow measurement method in a mine roadway, which is used to achieve high-precision measurement of the wind flow at a low wind speed in a mine roadway.
  • a high-precision wind flow measurement method for mine roadway adopts a high-precision wind flow measuring instrument
  • the high-precision wind flow measuring instrument comprises a first sensor, a second sensor, a temperature measurement module and a control unit;
  • the first sensor is movably connected with a first fixed seat , the first sensor is provided with a first ultrasonic transmitting probe, a first ultrasonic receiving probe, a first laser positioning transmitter and a first laser positioning receiving end;
  • the second sensor is movably connected with a second fixing seat, and the second sensor is provided with a The second ultrasonic transmitting probe, the second ultrasonic receiving probe, the second laser positioning transmitter and the second laser positioning receiving end;
  • the control unit is connected to the first ultrasonic transmitting probe, the first ultrasonic receiving probe, and the second ultrasonic transmitting probe through a signal cable , the second ultrasonic receiving probe and temperature measurement module;
  • the method includes the following steps:
  • Step 1 the first sensor is arranged on one side of the roadway through the first fixing seat, the second sensor is arranged on the other side of the roadway through the second fixing seat, and the connecting line between the first sensor and the second sensor obliquely passes through the roadway;
  • Step 2 Adjust the swing posture of the first sensor relative to the first fixed seat, and adjust the swing posture of the second sensor relative to the second fixed seat, so that the laser line emitted by the first laser positioning transmitter is aligned with the second laser positioning receiver. end, so that the laser line emitted by the second laser positioning transmitter is aligned with the first laser positioning receiving end;
  • Step 3 The control unit triggers the first ultrasonic transmitting probe to transmit ultrasonic waves, the control unit receives the ultrasonic waves from the first ultrasonic transmitting probe through the second ultrasonic receiving probe, and the control unit records the ultrasonic waves transmitted by the first ultrasonic transmitting probe to the second ultrasonic receiving probe.
  • Ultrasonic time t AB The control unit triggers the first ultrasonic transmitting probe to transmit ultrasonic waves, the control unit receives the ultrasonic waves from the first ultrasonic transmitting probe through the second ultrasonic receiving probe, and the control unit records the ultrasonic waves transmitted by the first ultrasonic transmitting probe to the second ultrasonic receiving probe.
  • the control unit triggers the second ultrasonic transmitting probe to transmit ultrasonic waves, the control unit receives the ultrasonic waves from the second ultrasonic transmitting probe through the first ultrasonic receiving probe, and the control unit records the time from when the second ultrasonic transmitting probe transmits the ultrasonic wave to when the first ultrasonic receiving probe receives the ultrasonic wave tBA ;
  • the control unit measures the roadway air temperature T through the temperature measurement module
  • Step 4 The control unit calculates the wind speed in the roadway, and the calculation process is as follows:
  • the wind flow direction of the roadway be the X axis, and the wind flow direction perpendicular to the roadway is the Y axis;
  • v m [(331.45+0.607 T )/cos a ] ⁇ [( t BA - t AB )/ ( t AB + t BA )];
  • L is the distance between the first sensor and the second sensor, in m
  • C is the transmission speed of ultrasonic waves in the roadway, the unit is m/s;
  • v ( y ) is the wind speed distribution along the Y-axis, in m/s;
  • a is the angle between the connection line of the first sensor and the second sensor and the X axis, the unit is °;
  • v m is the average wind speed on the connection between the first sensor and the second sensor, in m/s.
  • the method for measuring the high-precision wind flow in the mine roadway of the present invention is based on the ultrasonic time difference method, and the wind speed of the mine roadway is calculated by the ultrasonic wave carrying the wind speed information, so as to realize the high-precision measurement of the low wind speed wind flow and wind speed in the mine roadway;
  • the distance L is an intermediate variable and does not need to be measured, which can reduce the wind speed calculation error caused by the distance L measurement error; make the first sensor and the second sensor emit ultrasonic waves at the same time to reduce the error caused by the clock difference;
  • the measurement of the wind speed can obtain the average wind speed of the roadway section in real time; at the same time of the wind speed measurement, the cross-sectional area of the roadway can be measured, and the wind flow of the roadway can be obtained in real time.
  • Fig. 1 is the layout diagram 1 of the high-precision wind flow measuring instrument in the mine roadway according to the embodiment of the present invention, wherein the high-precision wind flow measuring instrument comprises a sensor group;
  • FIG. 2 is a schematic structural diagram of a laser positioning transmitter and a laser positioning receiving end in a high-precision wind flow measuring instrument according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a high-precision wind flow measuring instrument according to an embodiment of the present invention.
  • FIG. 4 is a second layout diagram of a high-precision wind flow measuring instrument in a mine roadway according to an embodiment of the present invention, wherein the high-precision wind flow measuring instrument includes four sensor groups;
  • FIG. 5 is a layout diagram of a cross-sectional area measuring device in a high-precision wind flow measuring instrument according to an embodiment of the present invention.
  • orientations or positional relationships indicated by the terms “inside”, “outside”, “upper”, “lower”, “front”, “rear”, etc. are based on those shown in the accompanying drawings.
  • the orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.
  • first and “second” are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
  • FIGS. 1 to 5 A high-precision air flow measurement method for a mine roadway in this embodiment is shown in FIGS. 1 to 5 .
  • a high-precision air flow measurement method in a mine roadway adopts a high-precision air-flow measuring instrument
  • the high-precision air-flow measuring instrument comprises a first sensor A, a second sensor B, a temperature measurement module and a control unit.
  • the first sensor A is movably connected to the first fixed seat through a ball hinge, and the first fixed seat is installed on one side wall of the roadway.
  • the first sensor A can swing relative to the first fixed seat to adjust the relative The swinging posture of a fixed seat.
  • the first sensor A is provided with a first ultrasonic transmitting probe A1, a first ultrasonic receiving probe A2, a first laser positioning transmitter A3 and a first laser positioning receiving end A4.
  • the second sensor B is movably connected to the second fixed seat through the ball hinge, and the second fixed seat is installed on the other side wall of the roadway.
  • the second sensor B can swing relative to the second fixed seat to adjust the relative The swinging posture of the second fixed seat.
  • the second sensor B is provided with a second ultrasonic transmitting probe B1, a second ultrasonic receiving probe B2, a second laser positioning transmitter B3 and a second laser positioning receiving end B4.
  • the control unit is connected to the first ultrasonic transmitting probe A1, the first ultrasonic receiving probe A2, the second ultrasonic transmitting probe B1, the second ultrasonic receiving probe B2 and the temperature measurement module through a signal cable.
  • the control unit of this embodiment includes a computer, a single-chip microcomputer and a peripheral circuit, and the arrangement and connection with the first sensor A and the second sensor B are shown in FIG. 3 .
  • the method includes the following steps:
  • Step 1 The first sensor A is arranged on one side of the roadway through the first fixing seat, the second sensor B is arranged on the other side of the roadway through the second fixing seat, and the connecting line between the first sensor A and the second sensor B is obliquely passed through. roadway;
  • Step 2 Adjust the swing posture of the first sensor A relative to the first fixed seat, and adjust the swing posture of the second sensor B relative to the second fixed seat, so that the laser line emitted by the first laser positioning transmitter A3 is aligned with the second sensor.
  • the laser positioning receiving end B4 so that the laser line emitted by the second laser positioning transmitter B3 is aligned with the first laser positioning receiving end A4.
  • the orientation of the first sensor A and the second sensor B is calibrated to improve the accuracy of ultrasonic transmission and reception.
  • Step 3 The control unit triggers the first ultrasonic transmitting probe A1 to transmit ultrasonic waves, the control unit receives the ultrasonic waves from the first ultrasonic transmitting probe A1 through the second ultrasonic receiving probe B2, and the control unit records the ultrasonic waves transmitted by the first ultrasonic transmitting probe A1 to the second ultrasonic wave transmitting probe A1.
  • the control unit triggers the second ultrasonic transmitting probe B1 to transmit ultrasonic waves, the control unit receives the ultrasonic waves from the second ultrasonic transmitting probe B1 via the first ultrasonic receiving probe A2, and the control unit records the ultrasonic waves transmitted by the second ultrasonic transmitting probe B1 to the first ultrasonic receiving probe.
  • the single-chip microcomputer realizes the conversion and processing of signals in real time, and the computer is used for process monitoring and data transmission, reception and processing.
  • the computer controls the single-chip microcomputer to trigger the ultrasonic transmitting circuit in the peripheral circuit to generate a high-voltage pulse, which stimulates the first ultrasonic transmitting probe A1 and the second ultrasonic transmitting probe B1 to transmit high-power ultrasonic waves at the same time, and starts the timer.
  • the single-chip microcomputer synchronously triggers the digital-to-analog converter to collect the ultrasonic signals of the first ultrasonic receiving probe A2 and the second ultrasonic receiving probe B2, and interrupts the timing after the collection.
  • the first ultrasonic receiving probe A2 and the second ultrasonic receiving probe B2 are always in the receiving state during the above-mentioned ultrasonic transmission period.
  • the signals of the first ultrasonic receiving probe A2 and the second ultrasonic receiving probe B2 are conditioned by the process-controlled amplifier, and the digital-to-analog converter is controlled by the signal processing program to identify the first arrival wave, realize high-frequency data sampling, and the computer extracts and records t AB and t BA .
  • the control unit measures the roadway air temperature T through the temperature measurement module
  • the single-chip microcomputer collects the roadway air temperature T through the temperature measurement module, and corrects the transmission speed of ultrasonic waves in the roadway through temperature compensation to improve the measurement and calculation accuracy.
  • Step 4 The control unit calculates the wind speed in the roadway, and the calculation process is as follows:
  • the wind flow direction of the roadway be the X axis, and the wind flow direction perpendicular to the roadway is the Y axis;
  • v m [(331.45+0.607 T )/cos a ] ⁇ [( t BA - t AB )/ ( t AB + t BA )];
  • L is the distance between the first sensor and the second sensor, in m
  • C is the transmission speed of ultrasonic waves in the roadway, the unit is m/s;
  • v ( y ) is the wind speed distribution along the Y-axis, in m/s;
  • a is the angle between the connection line of the first sensor and the second sensor and the X axis, the unit is °;
  • v m is the average wind speed on the connection between the first sensor and the second sensor, in m/s.
  • the high-precision wind flow measurement method for mine roadway in this embodiment can realize high-precision measurement of low wind speed wind flow and wind speed in mine roadway.
  • step 4 the control unit compares the magnitudes of t AB and t BA ; if t BA > t AB , then v m > 0, and the wind flow direction of the roadway is from the roadway section where the first sensor A is located toward the second The direction of the roadway section where the sensor B is located; if t BA ⁇ t AB , then vm ⁇ 0, the wind flow direction of the roadway is the direction from the roadway section where the second sensor B is located to the roadway section where the first sensor A is located. In this way, the direction of the wind flow in the roadway can be judged, and the direction information of the wind flow can be fed back in real time.
  • the high-precision air flow measuring instrument of this embodiment also includes a pressure measurement module, and the control unit is connected to the pressure measurement module through a signal cable; in step 3, the control unit measures the pressure P in the roadway through the pressure measurement module, so as to measure the pressure in the roadway. real-time feedback of wind pressure information.
  • a sensor group includes a first sensor A and a second sensor B
  • the high-precision wind flow measuring instrument includes a plurality of sensor groups, and the set distance of the roadway interval defines the front section of the roadway and the back section of the roadway; each The first sensor A of each sensor group is located in the front section of the roadway, and the second sensor B of each sensor group is located in the back section of the roadway; in the step 4, the control unit calculates and obtains the same number of vm as the number of sensor groups, and analyzes multiple Take the average value of v m to obtain the average wind speed V j of the roadway section.
  • the high-precision wind flow measuring instrument includes four sensor groups; the first sensor A of the first sensor group is located at the upper left position of the front section of the roadway, and the second sensor B of the first sensor group is located at the lower right of the back section of the roadway Position; the first sensor A of the second sensor group is located at the lower left position of the front section of the roadway, the second sensor B of the second sensor group is located at the upper right position of the rear section of the roadway; the first sensor A of the third sensor group Located in the upper right position of the front section of the roadway, the second sensor B of the third sensor group is located in the lower left position of the rear section of the roadway; the first sensor A of the fourth sensor group is located in the lower right position of the front section of the roadway, and the fourth sensor The second sensor B of the sensor group is located at the upper left position of the rear section of the roadway;
  • control unit calculates and obtains four vms , and takes the average value of the four vms to obtain the average wind speed Vj of the roadway section.
  • the cross-sectional area measuring device includes a stepping motor 1 , a support frame 2 is arranged on the bottom plate in the roadway, and the stepping motor 1 is arranged on the support frame 2 .
  • a support table 12 is arranged on the rotating shaft 11 of the stepping motor 1, a third ultrasonic transmitting probe and a third ultrasonic receiving probe are arranged on the supporting table 12, and the rotating shaft 11 of the stepping motor 1 rotates to drive the third ultrasonic transmitting probe and the third ultrasonic wave
  • the receiving probe rotates along the section of the roadway, the third ultrasonic transmitting probe and the third ultrasonic receiving probe are located at the axis position of the rotating shaft 11, the third ultrasonic transmitting probe and the third ultrasonic receiving probe are in the same direction, and the control unit is connected by a signal cable.
  • Motor 1 a third ultrasonic transmitting probe and a third ultrasonic receiving probe.
  • the control unit calculates the cross-sectional area S of the roadway:
  • the method for measuring the high-precision wind flow of mine roadway of the present invention is based on the ultrasonic time difference method, and the wind speed of the mine roadway is calculated by the ultrasonic wave carrying the wind speed information, so as to realize the high-precision measurement of the low wind speed wind flow and wind speed of the mine roadway; the first sensor A and the second sensor The distance L between B is an intermediate variable and does not need to be measured, which can reduce the wind speed calculation error caused by the measurement error of the distance L; make the first sensor A and the second sensor B transmit ultrasonic waves at the same time to reduce the error caused by the clock difference; For the measurement of the wind speed in the three-dimensional space of the roadway, the average wind speed of the roadway section can be obtained in real time; while the wind speed is measured, the cross-sectional area of the roadway can be

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

本发明提供了一种矿井巷道高精度风流测量方法,涉及矿井巷道风流测量技术领域。本发明的矿井巷道高精度风流测量方法,基于超声波时差法,通过超声波携带风速信息来计算矿井巷道的风速,实现对矿井巷道的低风速风流风速进行高精度测量;第一传感器和第二传感器之间的距离 L为中间变量,不需要测量,可以减少距离 L测量误差而引起的风速计算误差;使第一传感器和第二传感器同时发射超声波,以减少时钟差引起的误差;通过对巷道立体空间风速的测量,可以实时得到巷道截面平均风速;在风速测量的同时,测量巷道的截面面积,可以实时得到巷道风流流量。

Description

一种矿井巷道高精度风流测量方法 技术领域
本发明涉及矿井巷道风流测量技术领域,具体地说是涉及一种矿井巷道高精度风流测量方法。
背景技术
煤矿安全规程》规定:运输机巷、采区进、回风巷,采煤工作面、掘进中的煤巷和半煤岩巷的最低容许风速为0.25m/s;掘进中的岩巷和其他通风人行巷道最低容许风速为0.15m/s。
技术问题
但矿井监测监控系统中常用的压差风速计、热敏风速计和超声波风速计等,其启动风速大于0.3m/s,不能满足《规程》规定的最低容许风速的测风要求,而且不能判别风流风向。因此煤矿急迫需要对低风速进行高精度测量,以实现矿井全覆盖精准测风,特别是随着矿山智能通风建设和按需通风技术的推进,对高精度测风的需求越来越大。
技术解决方案
本发明的目的在于提供一种矿井巷道高精度风流测量方法,用于对矿井巷道的低风速的风流实现高精度测量。
为了达到上述目的,本发明所采用的技术解决方案如下:
一种矿井巷道高精度风流测量方法,采用高精度风流测量仪,所述高精度风流测量仪包括第一传感器、第二传感器、温度测定模块和控制单元;第一传感器活动连接有第一固定座,第一传感器上设置有第一超声波发射探头、第一超声波接收探头、第一激光定位发射器和第一激光定位接收端;第二传感器活动连接有第二固定座,第二传感器上设置有第二超声波发射探头、第二超声波接收探头、第二激光定位发射器和第二激光定位接收端;控制单元经信号线缆连接第一超声波发射探头、第一超声波接收探头、第二超声波发射探头、第二超声波接收探头和温度测定模块;
所述方法包括如下步骤:
步骤1、第一传感器经第一固定座布置于巷道的一侧,第二传感器经第二固定座布置于巷道的另一侧,第一传感器和第二传感器的连线斜穿巷道;
步骤2、调节第一传感器相对于第一固定座的摆动姿态,调节第二传感器相对于第二固定座的摆动姿态,使第一激光定位发射器发射出的激光线对准第二激光定位接收端,使第二激光定位发射器发射出的激光线对准第一激光定位接收端;
步骤3、控制单元触发第一超声波发射探头发射超声波,控制单元经第二超声波接收探头接收来自第一超声波发射探头的超声波,控制单元记录由第一超声波发射探头发射超声波至第二超声波接收探头接收超声波的时间 t AB
同时,
控制单元触发第二超声波发射探头发射超声波,控制单元经第一超声波接收探头接收来自第二超声波发射探头的超声波,控制单元记录由第二超声波发射探头发射超声波至第一超声波接收探头接收超声波的时间 t BA
同时,
控制单元经温度测定模块测得巷道空气温度 T
步骤4、控制单元计算得到巷道内风速,计算过程如下:
令巷道的风流方向为X轴,垂直于巷道的风流方向为Y轴;
 
Figure dest_path_image002aaa
公式1
 
Figure dest_path_image004aa
公式2
    
Figure dest_path_image006a
公式3
由公式1、2、3可得:
t AB = L/( C+ v m ×cos a) 公式4
t BA = L/( C- v m ×cos a) 公式5
由公式4、5可得:
v m =[ C/cos a]×[( t BA - t AB )/ ( t AB + t BA )]  公式6
当巷道空气温度为 T时,
C=331.45+0.607 T  公式7
由公式6、7可得:
v m =[(331.45+0.607 T)/cos a]×[( t BA - t AB )/ ( t AB + t BA )];
其中,
L为第一传感器与第二传感器之间的距离,单位为m;
C为超声波在巷道内的传输速度,单位为m/s;
v( y)为沿Y轴的风速分布,单位为m/s;
a为第一传感器、第二传感器连线与X轴的夹角,单位为°;
v m 为第一传感器、第二传感器连线上的平均风速,单位为m/s。
有益效果
本发明的矿井巷道高精度风流测量方法,基于超声波时差法,通过超声波携带风速信息来计算矿井巷道的风速,实现对矿井巷道的低风速风流风速进行高精度测量;第一传感器和第二传感器之间的距离 L为中间变量,不需要测量,可以减少距离 L测量误差而引起的风速计算误差;使第一传感器和第二传感器同时发射超声波,以减少时钟差引起的误差;通过对巷道立体空间风速的测量,可以实时得到巷道截面平均风速;在风速测量的同时,测量巷道的截面面积,可以实时得到巷道风流流量。
附图说明
图1为本发明实施例高精度风流测量仪在矿井巷道的布置图一,其中,高精度风流测量仪包括一个传感器组;
图2为本发明实施例高精度风流测量仪中激光定位发射器和激光定位接收端的结构示意图;
图3为本发明实施例高精度风流测量仪的原理图;
图4为本发明实施例高精度风流测量仪在矿井巷道的布置图二,其中,高精度风流测量仪包括四个传感器组;
图5为本发明实施例高精度风流测量仪中截面面积测量装置的布置图。
本发明的实施方式
为使本发明的目的、技术方案和有益效果更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。本发明某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本发明的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本发明满足适用的法律要求。
在本发明的描述中,需要说明的是,术语“内”、“外”、“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本实施例的一种矿井巷道高精度风流测量方法,请参考图1至图5所示。
一种矿井巷道高精度风流测量方法,采用高精度风流测量仪,所述高精度风流测量仪包括第一传感器A、第二传感器B、温度测定模块和控制单元。
第一传感器A经球铰链活动连接第一固定座,将第一固定座安装在巷道的一侧侧壁,第一传感器A可以相对于第一固定座摆动,以调节第一传感器A相对于第一固定座的摆动姿态。第一传感器A上设置第一超声波发射探头A1、第一超声波接收探头A2、第一激光定位发射器A3和第一激光定位接收端A4。
第二传感器B经球铰链活动连接第二固定座,将第二固定座安装在巷道的另一侧侧壁,第二传感器B可以相对于第二固定座摆动,以调节第二传感器B相对于第二固定座的摆动姿态。第二传感器B上设置第二超声波发射探头B1、第二超声波接收探头B2、第二激光定位发射器B3和第二激光定位接收端B4。
控制单元经信号线缆连接第一超声波发射探头A1、第一超声波接收探头A2、第二超声波发射探头B1、第二超声波接收探头B2和温度测定模块。
本实施例的控制单元包括电脑、单片机及外围电路,其布置及与第一传感器A、第二传感器B的连接参照图3所示。
所述方法包括如下步骤:
步骤1、第一传感器A经第一固定座布置于巷道的一侧,第二传感器B经第二固定座布置于巷道的另一侧,第一传感器A和第二传感器B的连线斜穿巷道;
步骤2、调节第一传感器A相对于第一固定座的摆动姿态,调节第二传感器B相对于第二固定座的摆动姿态,使第一激光定位发射器A3发射出的激光线对准第二激光定位接收端B4,使第二激光定位发射器B3发射出的激光线对准第一激光定位接收端A4。通过激光定位发射器和激光定位接收端的对准,校准第一传感器A和第二传感器B的朝向,以提高超声波发射和接收的精准度。
步骤3、控制单元触发第一超声波发射探头A1发射超声波,控制单元经第二超声波接收探头B2接收来自第一超声波发射探头A1的超声波,控制单元记录由第一超声波发射探头A1发射超声波至第二超声波接收探头B2接收超声波的时间 t AB
同时,
控制单元触发第二超声波发射探头B1发射超声波,控制单元经第一超声波接收探头A2接收来自第二超声波发射探头B1的超声波,控制单元记录由第二超声波发射探头B1发射超声波至第一超声波接收探头A2接收超声波的时间 t BA
单片机实时实现信号的转换、处理,电脑用于过程监控,并进行数据的收发、处理。
具体的,单片机上电后,通过电脑控制单片机触发外围电路中的超声波发射电路产生高压脉冲,激励第一超声波发射探头A1、第二超声波发射探头B1同时发射大功率的超声波,并启动定时器计时,单片机同步触发数模转换器采集第一超声波接收探头A2、第二超声波接收探头B2的超声波信号,采集后中断计时。第一超声波接收探头A2、第二超声波接收探头B2在上述超声波发射期间一直处于接收状态。第一超声波接收探头A2、第二超声波接收探头B2的信号经过程控放大器的调理,由信号处理程序控制数模转换器识别初至波,实现高频数据采样,电脑提取、记录 t AB t BA
同时,
控制单元经温度测定模块测得巷道空气温度 T,单片机经温度测定模块采集巷道空气温度 T,通过温度补偿对超声波在巷道内的传输速度进行校正,以提高测量、计算精度。
步骤4、控制单元计算得到巷道内风速,计算过程如下:
令巷道的风流方向为X轴,垂直于巷道的风流方向为Y轴;
 
Figure dest_path_image007a
公式1
 
Figure dest_path_image008a
公式2
 
Figure dest_path_image009
公式3
由公式1、2、3可得:
t AB = L/( C+ v m ×cos a) 公式4
t BA = L/( C- v m ×cos a) 公式5
由公式4、5可得:
v m =[ C/cos a]×[( t BA - t AB )/ ( t AB + t BA )] 公式6
当巷道空气温度为 T时,
C=331.45+0.607 T  公式7
由公式6、7可得:
v m =[(331.45+0.607 T)/cos a]×[( t BA - t AB )/ ( t AB + t BA )];
其中,
L为第一传感器与第二传感器之间的距离,单位为m;
C为超声波在巷道内的传输速度,单位为m/s;
v( y)为沿Y轴的风速分布,单位为m/s;
a为第一传感器、第二传感器连线与X轴的夹角,单位为°;
v m 为第一传感器、第二传感器连线上的平均风速,单位为m/s。
基于本实施例上述描述可知,本实施例的矿井巷道高精度风流测量方法,实现对矿井巷道的低风速风流风速进行高精度测量。
在此基础上,在步骤4中,控制单元比较 t AB t BA 的大小;若 t BA > t AB ,则 v m >0,巷道的风流方向为从第一传感器A所在巷道截面朝向第二传感器B所在巷道截面的方向;若 t BA < t AB ,则 v m <0,巷道的风流方向为从第二传感器B所在巷道截面朝向第一传感器A所在巷道截面的方向。如此,可以判断巷道内风流的方向,并将风流的方向信息实时反馈。
此外,本实施例的高精度风流测量仪还包括压力测定模块,控制单元经信号线缆连接压力测定模块;在步骤3中,控制单元经压力测定模块测得巷道内压力P,以将巷道内的风压信息实时反馈。
如图1至4所示,一个传感器组包括一个第一传感器A和一个第二传感器B,高精度风流测量仪包括多个传感器组,巷道间隔设定距离定义巷道前截面和巷道后截面;每个传感器组的第一传感器A位于巷道前截面,每个传感器组的第二传感器B位于巷道后截面;所述步骤4中,控制单元计算得到与传感器组数量相同的 v m ,并对多个 v m 取平均值得到巷道截面平均风速V j
优选的,高精度风流测量仪包括四个传感器组;第一个传感器组的第一传感器A位于巷道前截面的左上方位置,第一个传感器组的第二传感器B位于巷道后截面的右下方位置;第二个传感器组的第一传感器A位于巷道前截面的左下方位置,第二个传感器组的第二传感器B位于巷道后截面的右上方位置;第三个传感器组的第一传感器A位于巷道前截面的右上方位置,第三个传感器组的第二传感器B位于巷道后截面的左下方位置;第四个传感器组的第一传感器A位于巷道前截面的右下方位置,第四个传感器组的第二传感器B位于巷道后截面的左上方位置;
所述步骤4中,控制单元计算得到四个 v m ,并对四个 v m 取平均值得到巷道截面平均风速V j
本实施例的高精度风流测量仪还包括截面面积测量装置;步骤3中,截面面积测量装置测得巷道截面面积为 S,则在步骤4中,控制单元计算得到巷道风流流量Q= S·V j
优选的,截面面积测量装置包括步进电机1,在巷道内的底板上设置支撑架2,将步进电机1设置于支撑架2上。步进电机1的转轴11上设置支撑台12,在支撑台12上设置第三超声波发射探头和第三超声波接收探头,步进电机1的转轴11转动以带动第三超声波发射探头和第三超声波接收探头沿着巷道的截面转动,第三超声波发射探头和第三超声波接收探头位于转轴11的轴线位置,第三超声波发射探头和第三超声波接收探头的朝向相同,控制单元经信号电缆连接步进电机1、第三超声波发射探头和第三超声波接收探头。
步骤3中,步进电机1每输入一个脉冲信号,步进电机1的转轴11转动角度为 q, 步进电机1的转轴11转动n个 q角度完成360°转动;在步进电机1的转轴11每次转动前,控制单元触发第三超声波发射探头发射超声波,控制单元经第三超声波接收探头接收来自第三超声波发射探头并经巷道内壁反射的超声波,控制单元记录由第三超声波发射探头发射超声波至第三超声波接收探头接收超声波的时间 t c 0t c 1t c 2…… t c n-1 t c n
控制单元计算得到巷道截面面积 S
S= C 2×sin q×( t c 0 t c 1+ t c 1 t c 2+ t c 2 t c 3+……+ t c n-1 t c n)/8,
S=(331.45+0.607 T) 2×sin q×( t c 0 t c 1+ t c 1 t c 2+ t c 2 t c 3+……+ t c n-1 t c n)/8。
如此,可以得到巷道风流流量,以将巷道风流流量信息实时反馈。
至此,已经结合附图对本实施例进行了详细描述。依据以上描述,本领域技术人员应当对本发明一种矿井巷道高精度风流测量方法有了清楚的认识。本发明的矿井巷道高精度风流测量方法,基于超声波时差法,通过超声波携带风速信息来计算矿井巷道的风速,实现对矿井巷道的低风速风流风速进行高精度测量;第一传感器A和第二传感器B之间的距离L为中间变量,不需要测量,可以减少距离L测量误差而引起的风速计算误差;使第一传感器A和第二传感器B同时发射超声波,以减少时钟差引起的误差;通过对巷道立体空间风速的测量,可以实时得到巷道截面平均风速;在风速测量的同时,测量巷道的截面面积,可以实时得到巷道风流流量。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种矿井巷道高精度风流测量方法,其特征在于,采用高精度风流测量仪,所述高精度风流测量仪包括第一传感器、第二传感器、温度测定模块和控制单元;第一传感器活动连接有第一固定座,第一传感器上设置有第一超声波发射探头、第一超声波接收探头、第一激光定位发射器和第一激光定位接收端;第二传感器活动连接有第二固定座,第二传感器上设置有第二超声波发射探头、第二超声波接收探头、第二激光定位发射器和第二激光定位接收端;控制单元经信号线缆连接第一超声波发射探头、第一超声波接收探头、第二超声波发射探头、第二超声波接收探头和温度测定模块;
    所述方法包括如下步骤:
    步骤1、第一传感器经第一固定座布置于巷道的一侧,第二传感器经第二固定座布置于巷道的另一侧,第一传感器和第二传感器的连线斜穿巷道;
    步骤2、调节第一传感器相对于第一固定座的摆动姿态,调节第二传感器相对于第二固定座的摆动姿态,使第一激光定位发射器发射出的激光线对准第二激光定位接收端,使第二激光定位发射器发射出的激光线对准第一激光定位接收端;
    步骤3、控制单元触发第一超声波发射探头发射超声波,控制单元经第二超声波接收探头接收来自第一超声波发射探头的超声波,控制单元记录由第一超声波发射探头发射超声波至第二超声波接收探头接收超声波的时间 t AB
    同时,
    控制单元触发第二超声波发射探头发射超声波,控制单元经第一超声波接收探头接收来自第二超声波发射探头的超声波,控制单元记录由第二超声波发射探头发射超声波至第一超声波接收探头接收超声波的时间 t BA
    同时,
    控制单元经温度测定模块测得巷道空气温度 T
    步骤4、控制单元计算得到巷道内风速,计算过程如下:
    令巷道的风流方向为X轴,垂直于巷道的风流方向为Y轴;
    Figure dest_path_image002aa
    公式1
    Figure dest_path_image004a
    公式2
    Figure dest_path_image006a
    公式3
    由公式1、2、3可得:
    t AB = L/( C+ v m ×cos a) 公式4
    t BA = L/( C- v m ×cos a) 公式5
    由公式4、5可得:
    v m =[ C/cos a]×[( t BA - t AB )/ ( t AB + t BA )]  公式6
    当巷道空气温度为 T时,
    C=331.45+0.607 T  公式7
    由公式6、7可得:
    v m =[(331.45+0.607 T)/cos a]×[( t BA - t AB )/ ( t AB + t BA )];
    其中,
    L为第一传感器与第二传感器之间的距离,单位为m;
    C为超声波在巷道内的传输速度,单位为m/s;
    v( y)为沿Y轴的风速分布,单位为m/s;
    a为第一传感器、第二传感器连线与X轴的夹角,单位为°;
    v m 为第一传感器、第二传感器连线上的平均风速,单位为m/s。
  2. 根据权利要求1所述的一种矿井巷道高精度风流测量方法,其特征在于:在步骤4中,控制单元比较 t AB t BA 的大小;若 t BA > t AB ,则v m>0,巷道的风流方向为从第一传感器所在巷道截面朝向第二传感器所在巷道截面的方向;若 t BA < t AB ,则v m<0,巷道的风流方向为从第二传感器所在巷道截面朝向第一传感器所在巷道截面的方向。
  3. 根据权利要求1所述的一种矿井巷道高精度风流测量方法,其特征在于:所述高精度风流测量仪还包括压力测定模块,控制单元经信号线缆连接压力测定模块;步骤3中,控制单元经压力测定模块测得巷道内压力P。
  4. 根据权利要求1所述的一种矿井巷道高精度风流测量方法,其特征在于:一个传感器组包括一个第一传感器和一个第二传感器,高精度风流测量仪包括多个传感器组,巷道间隔设定距离定义巷道前截面和巷道后截面;每个传感器组的第一传感器位于巷道前截面,每个传感器组的第二传感器位于巷道后截面;
    所述步骤4中,控制单元计算得到与传感器组数量相同的 v m ,并对多个 v m 取平均值得到巷道截面平均风速V j
  5. 根据权利要求4所述的一种矿井巷道高精度风流测量方法,其特征在于:高精度风流测量仪包括四个传感器组;第一个传感器组的第一传感器位于巷道前截面的左上方位置,第一个传感器组的第二传感器位于巷道后截面的右下方位置;第二个传感器组的第一传感器位于巷道前截面的左下方位置,第二个传感器组的第二传感器位于巷道后截面的右上方位置;第三个传感器组的第一传感器位于巷道前截面的右上方位置,第三个传感器组的第二传感器位于巷道后截面的左下方位置;第四个传感器组的第一传感器位于巷道前截面的右下方位置,第四个传感器组的第二传感器位于巷道后截面的左上方位置;
    所述步骤4中,控制单元计算得到四个 v m ,并对四个 v m 取平均值得到巷道截面平均风速V j
  6. 根据权利要求4或5所述的一种矿井巷道高精度风流测量方法,其特征在于:高精度风流测量仪还包括截面面积测量装置;步骤3中,所述截面面积测量装置测得巷道截面面积为 S,则在步骤4中,控制单元计算得到巷道风流流量Q= S·V j
  7. 根据权利要求6所述的一种矿井巷道高精度风流测量方法,其特征在于:所述截面面积测量装置包括步进电机,所述步进电机的转轴上设置有第三超声波发射探头和第三超声波接收探头,步进电机的转轴转动以带动第三超声波发射探头和第三超声波接收探头沿着巷道的截面转动,第三超声波发射探头和第三超声波接收探头位于转轴的轴线位置,第三超声波发射探头和第三超声波接收探头的朝向相同,所述控制单元经信号电缆连接步进电机、第三超声波发射探头和第三超声波接收探头;
    步骤3中,步进电机每输入一个脉冲信号,步进电机的转轴转动角度为 q, 步进电机的转轴转动n个 q角度完成360°转动;在步进电机的转轴每次转动前,控制单元触发第三超声波发射探头发射超声波,控制单元经第三超声波接收探头接收来自第三超声波发射探头并经巷道内壁反射的超声波,控制单元记录由第三超声波发射探头发射超声波至第三超声波接收探头接收超声波的时间 t c 0t c 1t c 2…… t c (n-1 t c n
    控制单元计算得到巷道截面面积 S
    S=(331.45+0.607 T) 2×sin q×( t c 0 t c 1+ t c 1 t c 2+ t c 2 t c 3+……+ t c (n-1 t c n)/8。
PCT/CN2021/082505 2021-03-16 2021-03-24 一种矿井巷道高精度风流测量方法 WO2022193342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110281536.5 2021-03-16
CN202110281536.5A CN113092814B (zh) 2021-03-16 2021-03-16 一种矿井巷道高精度风流测量方法

Publications (1)

Publication Number Publication Date
WO2022193342A1 true WO2022193342A1 (zh) 2022-09-22

Family

ID=76668170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082505 WO2022193342A1 (zh) 2021-03-16 2021-03-24 一种矿井巷道高精度风流测量方法

Country Status (2)

Country Link
CN (1) CN113092814B (zh)
WO (1) WO2022193342A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109470B (zh) * 2021-11-18 2024-04-02 中国矿业大学 一种矿井巷道风量精准测量系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046853A (ja) * 1998-07-29 2000-02-18 Kaijo Corp 超音波式トンネル内風速測定システム
CN103018482A (zh) * 2012-12-07 2013-04-03 辽宁工程技术大学 基于风速时差的矿用智能巷道检测装置及方法
CN107942092A (zh) * 2017-12-01 2018-04-20 山东科技大学 矿井巷道大跨度中低风速测量装置及方法
CN207395798U (zh) * 2017-11-11 2018-05-22 纪红日 一种矿井用便携式多功能检测仪
CN109736869A (zh) * 2017-10-30 2019-05-10 中国矿业大学 一种基于多传感器信息融合的高精度智能矿井通风风量在线测量方法
CN110988392A (zh) * 2019-11-11 2020-04-10 安徽理工大学 一种煤矿井下使用的超声波风速传感器
CN111693731A (zh) * 2020-06-23 2020-09-22 中煤科工集团重庆研究院有限公司 一种基于超声波原理的巷道断面风速测量装置及方法
CN112081627A (zh) * 2020-09-02 2020-12-15 中国矿业大学 一种矿井分布式煤岩变形点定位方法及装置
CN112377260A (zh) * 2020-10-22 2021-02-19 中国矿业大学 一种巷道全断面风量测量系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266578A (ja) * 1999-03-18 2000-09-29 Toshiba Corp 非接触式流体流量測定装置
KR100492308B1 (ko) * 2000-09-15 2005-06-02 주식회사 하이드로소닉 초음파 유량 측정 방법
WO2008053193A1 (en) * 2006-10-31 2008-05-08 Imi Vision Limited Ultrasonic flow-rate measurement device and system
CN101846507B (zh) * 2010-03-23 2012-07-04 江汉大学 巷道断面自动测定方法
CN105698714B (zh) * 2016-02-26 2018-09-25 江汉大学 移动扫描隧巷道断面及体积测量装置及其测量方法
CN110346600B (zh) * 2019-08-21 2021-04-06 南京信息工程大学 一种超声波风速风向测量方法
CN111060172A (zh) * 2019-12-31 2020-04-24 华中科技大学 一种不规则断面的自发电测流系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046853A (ja) * 1998-07-29 2000-02-18 Kaijo Corp 超音波式トンネル内風速測定システム
CN103018482A (zh) * 2012-12-07 2013-04-03 辽宁工程技术大学 基于风速时差的矿用智能巷道检测装置及方法
CN109736869A (zh) * 2017-10-30 2019-05-10 中国矿业大学 一种基于多传感器信息融合的高精度智能矿井通风风量在线测量方法
CN207395798U (zh) * 2017-11-11 2018-05-22 纪红日 一种矿井用便携式多功能检测仪
CN107942092A (zh) * 2017-12-01 2018-04-20 山东科技大学 矿井巷道大跨度中低风速测量装置及方法
CN110988392A (zh) * 2019-11-11 2020-04-10 安徽理工大学 一种煤矿井下使用的超声波风速传感器
CN111693731A (zh) * 2020-06-23 2020-09-22 中煤科工集团重庆研究院有限公司 一种基于超声波原理的巷道断面风速测量装置及方法
CN112081627A (zh) * 2020-09-02 2020-12-15 中国矿业大学 一种矿井分布式煤岩变形点定位方法及装置
CN112377260A (zh) * 2020-10-22 2021-02-19 中国矿业大学 一种巷道全断面风量测量系统及方法

Also Published As

Publication number Publication date
CN113092814A (zh) 2021-07-09
CN113092814B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
CN100455999C (zh) 一种超声波测量液位的装置及方法
CN206193270U (zh) 一种一维超声波无线风速风向仪
CN106483327A (zh) 一种超声波测风系统及方法
US4031756A (en) Ultrasonic air movement and temperature measuring apparatus
CN101750516B (zh) 一种测风仪和测量风速风向的方法
CN107314749A (zh) 基于激光测距原理的地铁隧道变形实时监测与预警系统
CN104316721A (zh) 一种带有运动姿态补偿的风速风向动态测量方法及装置
CN105223380A (zh) 输电线路超声波自校正风速风向监测系统
US10739371B2 (en) Acoustic airspeed sensors
CN103018481A (zh) 带温度修正的三维超声波测风仪及其测量方法
CN203519637U (zh) 一种超声波风速风向仪
WO2022193342A1 (zh) 一种矿井巷道高精度风流测量方法
CN108195436A (zh) 带自校准功能的插入式气体超声波流量计测量装置及方法
CN107942092A (zh) 矿井巷道大跨度中低风速测量装置及方法
CN114088151B (zh) 外夹式多声道超声波流量检测装置及检测方法
CN102288779B (zh) 一种高精度抗干扰超声波风速风向测量方法
CN202024746U (zh) 一种矿用巷道断面变形测量装置
CN102735212B (zh) 路基沉降的监测装置
CN205861901U (zh) 一种激光测距装置
CN210690825U (zh) 一种基于激光测距仪的两点式车辆参数测量装置
CN106321370B (zh) 通过求测量点坐标的风电叶片弯曲测量装置及方法
CN2491806Y (zh) 多通道超声波速差法气体流量计
Ghahramani et al. An Inexpensive Low-Power Ultrasonic 3-Dimensional Air Velocity Sensor
CN201576003U (zh) 一种测风仪
CN207907959U (zh) 带自校准功能的插入式气体超声波流量计测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930931

Country of ref document: EP

Kind code of ref document: A1