WO2022193131A1 - 振动传感器以及麦克风 - Google Patents

振动传感器以及麦克风 Download PDF

Info

Publication number
WO2022193131A1
WO2022193131A1 PCT/CN2021/081083 CN2021081083W WO2022193131A1 WO 2022193131 A1 WO2022193131 A1 WO 2022193131A1 CN 2021081083 W CN2021081083 W CN 2021081083W WO 2022193131 A1 WO2022193131 A1 WO 2022193131A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
vibration
electrode sheet
vibration sensor
base
Prior art date
Application number
PCT/CN2021/081083
Other languages
English (en)
French (fr)
Inventor
邓文俊
周文兵
袁永帅
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to CN202180078571.5A priority Critical patent/CN116670470A/zh
Priority to PCT/CN2021/081083 priority patent/WO2022193131A1/zh
Publication of WO2022193131A1 publication Critical patent/WO2022193131A1/zh
Priority to US18/200,798 priority patent/US20230300536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • H04R17/025Microphones using a piezoelectric polymer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/02Transducers using more than one principle simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • H04R7/20Securing diaphragm or cone resiliently to support by flexible material, springs, cords, or strands
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/308Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Interconnections, e.g. connection electrodes of multilayer piezoelectric or electrostrictive devices

Definitions

  • This specification relates to the technical field of audio collection, and in particular, to a vibration sensor and a microphone.
  • microphones often use vibration sensors to receive external vibration signals, convert the vibration signals into electrical signals, and output electrical signals after processing by the back-end circuit, so as to collect sound signals.
  • the air conduction microphone can collect the air vibration signal caused by the user when making a sound, and convert the air vibration signal into an electrical signal.
  • Bone conduction microphones can collect the mechanical vibration signals of the bones and skin caused by the user's speech, and convert the mechanical vibration signals into electrical signals.
  • the strain of the piezoelectric layer at the edge connection is large, the piezoelectric effect is obvious, the output voltage of the effective electrical signal is high, and the strain in the middle area is small, and the output of the effective electrical signal is small. lower voltage.
  • the piezoelectric vibration sensor connected with the counterweight the output voltage of the effective electrical signal in the installation area of the counterweight is low. The above phenomena result in low sensitivity of the microphone and cause a certain waste of space.
  • This specification provides a vibration sensor and a microphone with high sensitivity and high space utilization.
  • the present specification provides a vibration sensor including a base, a vibration part, a piezoelectric sensing part, a fixed substrate, and a capacitive sensing part, the vibration part being connected to the base and responding to the base.
  • the seat vibrates to generate target displacement and target deformation;
  • the piezoelectric sensing component is connected with the vibration component, and converts the target deformation into a first electrical signal;
  • the fixed substrate is arranged opposite to the vibration component at intervals;
  • the capacitive sensing component is connected to the fixed substrate and the vibration component, and converts the distance change between the fixed substrate and the vibration component caused by the target displacement into a second electrical signal.
  • the vibration component includes an elastic layer and a counterweight
  • the elastic layer is connected to the base, and generates the target deformation in response to the excitation of vibration of the base;
  • the counterweight is connected to the elastic layer, and generates the target displacement based on the target deformation.
  • the base includes a cavity therethrough, and at least a part of the vibration component is suspended in the cavity.
  • the elastic layer includes a fixed end and a free end, the fixed end is fixedly connected to the base; the free end is suspended in the cavity, wherein the counterweight is connected to the base.
  • the free end of the elastic layer is fixedly connected and suspended in the cavity.
  • the elastic layer includes a plurality of elastic support beams, one end of which is fixedly connected to the base, and the other end is connected to the counterweight and suspended in the cavity.
  • the elastic layer includes a suspended membrane structure, a peripheral side of the suspended membrane structure is fixedly connected to the base, and a central area of the suspended membrane structure is connected to the counterweight and suspended above the base. in the cavity.
  • the position of the capacitive sensing component is aligned with the position of the counterweight and covers the corresponding area of the counterweight.
  • the capacitive sensing component includes a first capacitive electrode sheet and a second capacitive electrode sheet, the first capacitive electrode sheet is attached to a side of the fixed substrate close to the vibration member; the first capacitive electrode sheet Two capacitor electrode sheets are attached to the side of the vibrating member close to the fixed substrate, and are arranged opposite to the first capacitor electrode sheet.
  • the position of the second capacitor electrode sheet is aligned with the position of the counterweight block and covers the area where the counterweight block is located.
  • the first capacitor electrode sheet includes a limit protection structure, which is located on the first capacitor electrode sheet and protrudes from a side close to the vibration member to limit the target displacement of the vibration member , to prevent the second capacitor electrode sheet from contacting the first capacitor electrode sheet.
  • the fixed substrate includes an upper fixed substrate located on a side of the vibrating component away from the counterweight;
  • the first capacitor electrode sheet includes a first upper capacitor electrode sheet attached to the upper the side of the fixed substrate close to the vibration part;
  • the second capacitor electrode sheet includes a second upper capacitor electrode sheet, which is attached to the side of the vibration part close to the upper fixed substrate, and is connected with the first upper capacitor electrode slice-relative settings.
  • the fixed substrate further includes a lower fixed substrate, which is located on the side of the vibration component close to the counterweight;
  • the first capacitor electrode sheet further includes a first lower capacitor electrode sheet, which is attached to the The lower fixed substrate is close to the side of the vibration member;
  • the second capacitor electrode sheet further includes a second lower capacitor electrode sheet, which is attached to the side of the vibration member close to the lower fixed substrate, and is connected with the first capacitor electrode.
  • the lower capacitor electrodes are arranged opposite each other.
  • the piezoelectric sensing component is located in at least one of: a circumferential region adjacent to and surrounding the weight; and adjacent to the elastic layer and the base area of the connection.
  • the piezoelectric sensing component includes a piezoelectric layer fixedly connected to the base, attached to the surface of the elastic layer, and generating a voltage based on the target deformation.
  • the piezoelectric sensing component further includes a first piezoelectric electrode layer and a second piezoelectric electrode layer, which are respectively distributed on both sides of the piezoelectric layer, and convert the voltage into the desired voltage.
  • the first electrical signal, the first piezoelectric electrode layer is aligned with the position of the second piezoelectric electrode layer, and is located in at least one of the following regions: a region close to and surrounding the weight block a circumferential region; and a region proximate the junction of the elastic layer with the base.
  • the first piezoelectric electrode layer includes at least one first piezoelectric electrode sheet
  • the second piezoelectric electrode layer includes at least one second piezoelectric electrode sheet
  • the at least one first piezoelectric electrode sheet Each of the electrode sheets is aligned with at least one of the at least one second piezoelectric electrode sheet.
  • the present specification further provides a microphone, comprising a casing, the vibration sensor described in the first aspect of the present specification, and a signal synthesizing circuit, the vibration sensor is installed in the casing, the base is connected to the The casing is fixedly connected; the signal synthesis circuit is connected with the piezoelectric sensing component and the capacitive sensing component, and is synthesized into a third electrical signal based on the first electrical signal and the second electrical signal during operation, The signal strength of the third electrical signal is greater than the signal strength of the first electrical signal and the signal strength of the second electrical signal.
  • the vibration sensor and the microphone provided in this specification are composed of a piezoelectric system and a capacitive system.
  • the piezoelectric system includes a vibrating component and a piezoelectric sensing component that collects electrical signals.
  • the vibration member may include an elastic layer and a weight connected to the elastic layer.
  • the elastic layer is deformed under the excitation of vibration of the base.
  • the counterweight is displaced under the action of the deformation.
  • the piezoelectric sensing part collects the first electrical signal generated by the deformation of the vibrating part.
  • the capacitive system is directly connected to the piezoelectric system, including a fixed substrate and a capacitive sensing component that collects electrical signals.
  • the capacitive system uses the vibrating components in the piezoelectric system as the movable capacitive plate in the capacitive system.
  • a fixed substrate is added and the movable capacitive plate composed of the vibrating components is placed opposite to form a capacitive vibration sensor.
  • the displacement of the counterweight in the vibrating component changes the distance between the vibrating component and the fixed substrate, and the capacitive sensing component collects the second electrical signal generated by the distance change in the capacitive system.
  • the piezoelectric sensing component is arranged in the area of the piezoelectric system where the output intensity of the first electrical signal is high, such as the area around the counterweight and the area where the elastic layer is connected to the base.
  • the capacitive sensing component is arranged in the area of the piezoelectric system where the output intensity of the first electrical signal is low, such as the area corresponding to the position of the counterweight.
  • FIG. 1 shows a cross-sectional view of a vibration sensor provided according to an embodiment of the present specification
  • Fig. 2 shows the sectional view of the direction A-A in Fig. 1;
  • FIG. 3 shows a cross-sectional view of another vibration sensor provided according to an embodiment of the present specification
  • FIG. 4 shows a cross-sectional view of another vibration sensor provided according to an embodiment of the present specification
  • FIG. 5 shows a cross-sectional view of another vibration sensor provided according to an embodiment of the present specification.
  • FIG. 6 shows a flowchart of a method for manufacturing a vibration sensor according to an embodiment of the present specification.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting signals into signals.
  • unit means for converting signals into signals.
  • module means for converting signals into signals.
  • the vibration sensor and microphone provided in this specification can be used to collect external vibration signals and convert the vibration signals into electrical signals.
  • the vibration sensor and the microphone can be used not only to collect air vibration signals, but also to collect mechanical vibration signals, such as bone vibration, skin vibration, and the like when a person speaks.
  • the vibration sensor and the microphone can be used not only as an air conduction microphone, but also as a bone conduction microphone.
  • a capacitance system is added to the piezoelectric system, and the area where the effective electrical signal output is small in the piezoelectric system is effectively used as the electrical signal output area of the capacitance system, so as to make reasonable use of the space of the vibration sensor. Without affecting the output strength of the electrical signal of the piezoelectric system, the electrical signal collected by the capacitive system is increased, the overall electrical signal output strength of the vibration sensor is improved, the sensitivity of the vibration sensor is improved, the space utilization rate is increased, and the equipment volume is reduced.
  • FIG. 1 shows a cross-sectional view of a vibration sensor 001 provided according to an embodiment of the present specification.
  • FIG. 2 shows a cross-sectional view in the direction A-A of FIG. 1 .
  • the vibration sensor 001 may include a base 200 , a piezoelectric system 400 , and a capacitive system 600 .
  • the base 200 may be a mounting base for the vibration sensor 001 .
  • Other components of vibration sensor 001 such as piezoelectric system 400 and capacitive system 600 may be directly or indirectly attached to base 200 .
  • the connection can be any connection, such as welding, riveting, snap-fitting, bolting, etc., or a connection by physical deposition (eg, physical vapor deposition) or chemical deposition (eg, chemical vapor deposition).
  • the piezoelectric system 400 may be spaced opposite to the capacitive system 600 .
  • the base 200 can be a structure of any shape, for example, a regular-shaped structure such as a cube, a cuboid, a cylinder, a prism, a truncated cone, or any irregular-shaped structure.
  • the base 200 may include a cavity 220 therethrough. As exemplarily illustrated in FIGS. 1 to 2 , the cavity 220 may penetrate the upper and lower surfaces of the base 200 .
  • the cross section of the cavity 220 may be any shape, such as a regular shape such as a square, a rectangle, a circle, a polygon, etc., or any irregular shape.
  • the piezoelectric system 400 may be connected to the base 200 .
  • the connection may be a direct or indirect connection.
  • the vibration sensor 001 can receive external vibration signals and convert the external vibration signals into electrical signals.
  • the external vibration signal can generate pressure on the piezoelectric material in the piezoelectric system 400, so that the piezoelectric material generates a voltage, thereby converting the external vibration signal into an electrical signal.
  • the piezoelectric system 400 may be connected to one side of the base 200 .
  • at least part of the structure of the piezoelectric system 400 may be fixed to the upper surface or the lower surface of the base 200 .
  • the piezoelectric system 400 may also be connected to other parts of the base 200 .
  • the piezoelectric system 400 may also be connected to the side wall of the base 200 .
  • At least part of the structure of the piezoelectric system 400 may be fixed to the inner wall of the cavity 220 of the base 200 .
  • the piezoelectric system 400 may be located in the cavity 220 . At least a portion of the piezoelectric system 400 is not connected to the base 200 .
  • the piezoelectric system 400 is suspended in the cavity 220 .
  • the “suspended in the cavity 220 ” may mean suspended inside, below or above the cavity 220 of the base 200 and not in contact with the base 200 .
  • the piezoelectric system 400 may be connected with the upper surface of the base 200 for illustrative purposes only.
  • the piezoelectric system 400 may include a vibration part 420 and a piezoelectric sensing part 440 .
  • the piezoelectric system 400 may be a laminated structure composed of the vibrating part 420 and the piezoelectric sensing part 440 .
  • the vibration part 420 may be connected with the base 200 and generate target displacement and target deformation in response to the vibration of the base 200 .
  • the connection can be any connection, such as welding, riveting, snap-fitting, bolting, etc., or a connection by physical deposition (eg, physical vapor deposition) or chemical deposition (eg, chemical vapor deposition).
  • the base 200 may vibrate based on an external vibration signal, and the vibration component 420 generates the target deformation in response to the vibration of the base 200 , and the target deformation further generates the target displacement.
  • the vibration member 420 includes the aforementioned piezoelectric material. The piezoelectric material is stressed at the target deformation, thereby generating a voltage.
  • the piezoelectric sensing part 440 may be connected with the vibration part 420 and convert the target deformation of the vibration part 420 into a first electrical signal. Specifically, the piezoelectric sensing part 440 can be connected with the vibration part 420, and collect the voltage generated in the piezoelectric material, and convert the voltage into the first electrical signal for output.
  • the vibration member 420 and the base 200 may be connected in an insulating manner, for example, the vibration member 420 is connected to the base 200 through the first insulating layer 201 .
  • the vibration member 420 may be a portion that is easily deformed by external force. At least a part of the vibration member 420 is suspended in the cavity 220 . As shown in FIGS. 1 to 2 , the vibration member may include an elastic layer 424 . In some embodiments, the vibrating member 420 may also include a counterweight 426 .
  • the elastic layer 424 may be directly or indirectly fixedly connected with the base 200 .
  • the connection can be any connection, such as welding, riveting, snap-fitting, bolting, etc., or a connection by physical deposition (eg, physical vapor deposition) or chemical deposition (eg, chemical vapor deposition).
  • the elastic layer 424 When the base 200 receives an external vibration signal, the elastic layer 424 generates the target deformation based on the vibration excitation of the base 200 .
  • the elastic layer 424 is made of a material that is easily deformed under the action of an external force.
  • the elastic layer 424 may be a deformable structure made of semiconductor material.
  • the semiconductor material may include silicon dioxide, silicon nitride, gallium nitride, zinc oxide, silicon carbide, and the like.
  • the elastic layer 424 may include a fixed end and a free end. The fixed end can be fixedly connected with the base 200 directly or indirectly. The free end can be suspended in the cavity 220 .
  • the elastic layer 424 may be a support beam structure. As shown in FIGS. 1-2, the elastic layer 424 may include a plurality of elastic support beams 424-1. One end of the elastic support beam 424 - 1 may be fixedly connected with the upper surface, the lower surface of the base 200 or the inner wall of the cavity 220 . The other end of the elastic support beam 424 - 1 can be connected with the counterweight 426 and suspended in the cavity 220 . That is, two ends of each elastic support beam 424-1 are the fixed end and the free end, respectively.
  • the elastic support beam 424-1 may be a plate-like structure of any shape.
  • the elastic layer 424 may include any number of elastic support beams 424 - 1 and may be distributed circumferentially around the center of the cavity 220 . For example, 2, 3, 4, 5, 6, 7, 8, 10. As shown in FIG. 2, the elastic layer 424 may include four elastic support beams 424-1.
  • FIG. 3 shows a cross-sectional view of another vibration sensor 001 provided according to an embodiment of the present specification.
  • the elastic layer 424 may also be a suspended film structure 424-2.
  • the peripheral side of the suspended film structure 424-2 is connected with the base 200 and fixed on the base 200, and the central area of the suspended film structure 424-2 can be connected with the counterweight 426 and suspended on the base 200. on the cavity 220 . That is, the fixed end includes the peripheral side of the suspended membrane structure 424-2, and the free end includes the central area of the suspended membrane structure 424-2.
  • the shape of the suspended membrane structure 424-2 may be a circle, an ellipse, a triangle, a quadrangle, a polygon, etc., or any other shape.
  • the suspended membrane structure 424-2 may include at least one hole. The at least one hole may be located near the free end of the suspended membrane structure 424 - 2 , and may be distributed along the circumference of the counterweight 426 around the center of the counterweight 426 . By arranging the at least one hole on the suspended film structure 424-2, the stiffness of the suspended film structure 424-2 at different positions can be adjusted, so that the suspended film structure 424- The stiffness of the suspension membrane 424-2 is relatively high at a distance from the at least one hole.
  • the suspended film structure 424-2 and the base 200 move relative to each other, the suspended film structure 424-2 in the vicinity of the at least one hole is deformed to a greater degree, and the suspended film structure 424-2 in the area away from the at least one hole area is greatly deformed.
  • the suspended film structure 424-2 is less deformed.
  • placing the piezoelectric sensing component 440 in the area near the at least one hole on the suspended membrane structure 424-2 can be more conducive to the piezoelectric sensing component 440 to collect vibration signals, thereby effectively improving vibration Sensitivity of sensor 001.
  • the structure of each component in the vibration sensor 001 is relatively simple, which is convenient for production or assembly.
  • the at least one hole may be any shape, such as a circular hole, an oval hole, a square hole, and other polygonal holes.
  • the vibration sensor 001 can also adjust the resonance frequency and stress distribution of the vibration sensor 001 by changing the size, number, spacing, and position of the at least one hole, so as to improve the sensitivity of the vibration sensor 001 .
  • the vibration sensor 001 can also change the deformation stress at different positions of the suspended film structure 424-2 by adjusting the thickness or density of the different regions of the suspended film structure 424-2.
  • the piezoelectric sensing member 440 may be configured as a ring-shaped structure. The thickness of the region on the inner side of the annular structure on the suspended film structure 424-2 is greater than the thickness of the region located outside the annular structure. In other embodiments, the density of the suspended membrane structure 424-2 in the inner region of the annular structure is greater than that in the outer region of the annular structure.
  • the vibration sensor 001 can change the density or thickness of the suspended film structure 424-2 at different positions, so that the suspended film quality in the inner region of the annular structure is greater than that in the outer region of the annular structure.
  • the suspended film structure 424-2 moves relative to the base 200, the suspended film structure 424-2 in the vicinity of the annular structure of the piezoelectric sensing component 440 is deformed to a greater degree, and the resulting deformation stress is also larger, thereby increasing the output electrical signal of the vibration sensor 001.
  • FIG. 4 shows a cross-sectional view of another vibration sensor 001 provided according to an embodiment of the present specification.
  • the elastic layer 424 may also be a cantilever beam structure 424-3.
  • the elastic layer 424 may include a cantilever beam 424-3.
  • One end of the cantilever beam 424 - 3 may be fixedly connected with the upper surface, the lower surface of the base 200 or the inner wall of the cavity 220 .
  • the other end of the cantilever beam 424 - 3 can be suspended in the cavity 220 .
  • the other end of the cantilever beam 424-3 may or may not be connected to the counterweight 426. That is, the two ends of the cantilever beam 424-3 are the fixed end and the free end, respectively.
  • the cantilever beam 424-3 may be a plate-like structure of any shape. For example, its shape can be a rectangular beam, a trapezoidal beam, an L-shaped beam or other shapes, and so on.
  • the elastic layer 424 may also be in other structural forms capable of generating deformation based on external vibration signals, which are not limited in this specification.
  • the elastic layer 424 we will describe the elastic layer 424 as the supporting beam structure. Those skilled in the art should understand that other structures of the elastic layer 424 are also within the protection scope of this specification.
  • the vibrating member 420 may also include a counterweight 426 .
  • the counterweight 426 can be directly connected to the elastic layer 424 or indirectly connected to the elastic layer 424 .
  • the elastic layer 424 When the base 200 is subjected to an external vibration signal, the elastic layer 424 generates the target deformation based on the vibration excitation of the base 200, and the counterweight 426 generates the target displacement based on the target deformation.
  • the weight block 426 can be fixedly connected with the free end of the elastic layer 424 .
  • the weight block 426 may protrude to one side relative to the elastic layer 424 and be suspended in the cavity 220 .
  • the counterweight 426 may protrude upward relative to the elastic layer 424 and be suspended in the cavity 220 .
  • the counterweight 426 may also protrude downward relative to the elastic layer 424 and be suspended in the cavity 220 .
  • the weight 426 can make the elastic layer 424 more easily deformed under the action of external force, thereby increasing the output voltage of the first electrical signal of the piezoelectric sensing component 440 .
  • the counterweight 426 may be located in the center of the cavity 220 .
  • the planar shape of the weight 426 may be a circle, a triangle, a quadrangle, a polygon, and the like.
  • the voltage of the first electrical signal output by the piezoelectric sensing component 440 can be increased by changing the size, shape, and position of the weight block 426 .
  • the setting of the counterweight 426 can change the natural frequency and vibration amplitude of the vibration member 420 when it vibrates.
  • the first electrical signal can be enhanced by changing the size, shape, and position of the weights 426 .
  • the piezoelectric sensing part 440 may include a piezoelectric layer 441 .
  • the piezoelectric layer 441 is a structure capable of generating voltage on both end surfaces thereof when subjected to external force.
  • the piezoelectric layer 441 may be directly or indirectly fixedly connected to the base 200 .
  • the connection can be any connection, such as welding, riveting, snap-fitting, bolting, etc., or a connection by physical deposition (eg, physical vapor deposition) or chemical deposition (eg, chemical vapor deposition).
  • the piezoelectric layer 441 may undergo the target deformation when subjected to a vibration signal, and generate a voltage based on the target deformation.
  • the piezoelectric layer 441 may be directly or indirectly attached to the surface of the elastic layer 424 .
  • the elastic layer 424 may be directly connected to the base 200 , and the piezoelectric layer 441 is indirectly connected to the base 200 through the elastic layer 424 .
  • the vibration component 420 is located on the upper surface of the base 200 as an example for illustration.
  • the piezoelectric layer 441 may be located on the side of the elastic layer 424 away from the base 200.
  • the vibration component 420 and the piezoelectric sensing component 440 are composed of
  • the stacked structure includes a piezoelectric layer 441 , an elastic layer 424 and a counterweight 426 in sequence from top to bottom.
  • the piezoelectric layer 441 may be located on the side of the elastic layer 424 close to the base 200 , and the stacked structure composed of the vibration component 420 and the piezoelectric sensing component 440 includes a counterweight 426 in sequence from top to bottom , elastic layer 424 , piezoelectric layer 441 .
  • the elastic layer 424 is directly connected to the base 200
  • the piezoelectric layer 441 is connected to the elastic layer 424 on the side of the elastic layer 424 away from the base 200 , that is, on the side of the elastic layer 424 .
  • the weight block 426 is connected to the elastic layer 424 and is located under the elastic layer 424 .
  • the piezoelectric layer 441 may be a piezoelectric polymer film obtained by a semiconductor deposition process (eg, magnetron sputtering, MOCVD).
  • the material of the piezoelectric layer 441 may include piezoelectric crystal material and piezoelectric ceramic material.
  • Piezoelectric crystal refers to a piezoelectric single crystal.
  • the piezoelectric crystal material may include crystal, sphalerite, boronite, tourmaline, hematite, GaAs, barium titanate and its derivative structure crystals, KH2PO4, NaKC4H4O6 ⁇ 4H2O (roshi salt) etc., or any combination thereof.
  • Piezoelectric ceramic materials refer to piezoelectric polycrystals formed by random collection of fine crystal grains obtained by solid-phase reaction and sintering between powders of different materials.
  • the piezoelectric ceramic material may include barium titanate (BT), lead zirconate titanate (PZT), lead barium lithium niobate (PBLN), modified lead titanate (PT), aluminum nitride (AIN) ), zinc oxide (ZnO), or any combination thereof.
  • the material of the piezoelectric layer 441 may also be a piezoelectric polymer material, such as polyvinylidene fluoride (PVDF) or the like.
  • the piezoelectric sensing part 440 may further include a first piezoelectric electrode layer 442 and a second piezoelectric electrode layer 444 .
  • the first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 are respectively distributed on both sides of the piezoelectric layer 441 .
  • the piezoelectric layer 441 may be located between the first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 .
  • the piezoelectric layer 441 can deform with the target deformation of the elastic layer 424 under the action of an external vibration signal, and generate a voltage under the action of the deformation stress.
  • the first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 can collect the voltage to generate the first electrical signal.
  • the positions of the first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 are aligned.
  • the piezoelectric layer 441 is connected to the elastic layer 424 , and the piezoelectric layer 441 is distributed on one side of the elastic layer 424 .
  • the first piezoelectric electrode layer 442 may be distributed between the piezoelectric layer 441 and the elastic layer 424
  • the second piezoelectric electrode layer 444 may be distributed on a side of the piezoelectric layer 441 away from the elastic layer 424 .
  • the second piezoelectric electrode layer 444 may be distributed between the piezoelectric layer 441 and the elastic layer 424
  • the first piezoelectric electrode layer 442 may be distributed on the side of the piezoelectric layer 441 away from the elastic layer 424 .
  • the first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 are conductive material structures.
  • Exemplary conductive materials may include metals, alloy materials, metal oxide materials, graphene, etc., or any combination thereof.
  • the metal and alloy materials may include nickel, iron, lead, platinum, titanium, copper, molybdenum, zinc, or any combination thereof.
  • the alloy material may include copper-zinc alloy, copper-tin alloy, copper-nickel-silicon alloy, copper-chromium alloy, copper-silver alloy, etc., or any combination thereof.
  • the metal oxide material may include RuO2, MnO2, PbO2, NiO, etc., or any combination thereof.
  • the piezoelectric sensing component 440 can only be disposed at a position where the vibration component 420 is deformed to a greater degree, thereby improving the sensitivity of the vibration sensor 001 .
  • the position where the vibration part 420 is deformed to a greater degree as the first region, and the position where the vibration part 420 is less deformed is defined as the second region.
  • the voltage of the first electrical signal in the first region is higher than that in the second region.
  • the piezoelectric sensing member 440 can be provided only in the first region. It should be noted that the first area and the second area refer to the area corresponding to the cavity 220 , excluding the area at the connection between the vibration component 420 and the base 200 .
  • the vibration component 420 may include a weight 426 . Since the counterweight 426 is rigidly connected to the elastic layer 424, the deformation of the piezoelectric layer 441 corresponding to the position of the counterweight 426 is relatively small, and the voltage of the effective electrical signal is relatively small. However, at a position close to the weight block 426 or a position close to the connection between the elastic layer 424 and the base 200 , the deformation of the piezoelectric layer 441 is larger, and the voltage of the effective electrical signal is also larger. Therefore, at the position where the weight 426 is located, the piezoelectric sensing member 440 may not be provided.
  • the first region may include at least one of a circumferential region proximate to and surrounding the weight 426 and a region proximate the connection of the elastic layer 424 to the base 200 .
  • the second area may include an area corresponding to the position of the weight block 426 .
  • the second region may substantially cover the surface area of the counterweight 426 . That is, the area of the second region may be equal to, slightly smaller, or slightly larger than the surface area of the counterweight 426 .
  • the piezoelectric sensing part 440 may be disposed in the first region. That is, the piezoelectric sensing member 440 may be disposed at at least one of a circumferential region near and surrounding the weight 426 and a region near the connection of the elastic layer 424 and the base 200 .
  • first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 may be disposed adjacent to the counterweight 426 and a circumferential region surrounding the counterweight 426 and a region close to the connection of the elastic layer 424 and the base 200 at least one of the.
  • the first piezoelectric electrode layer 442 may include at least one first piezoelectric electrode sheet.
  • the second piezoelectric electrode layer 444 may include at least one second piezoelectric electrode sheet.
  • Each of the at least one first piezoelectric electrode sheet is aligned with at least one position of the at least one second piezoelectric electrode sheet.
  • the position of each of the first piezoelectric electrode sheets corresponds to one second piezoelectric electrode sheet.
  • each position of the first piezoelectric electrode sheet corresponds to a plurality of second piezoelectric electrode sheets, such as 2, 3, 4, and so on.
  • the plurality of second piezoelectric electrode pieces use the first piezoelectric electrode pieces as a common terminal to form a series output unit, so as to increase the output voltage. Improve sensitivity.
  • the plurality of second piezoelectric electrode sheets may also form a parallel output unit with the first piezoelectric electrode sheets, so as to increase the output charge and improve the sensitivity.
  • the elastic layer 424 including four elastic support beams 424-1 as an example, the first piezoelectric electrode sheet and the second piezoelectric electrode sheet in the piezoelectric sensing component 440 between different elastic support beams Combinations can vary.
  • the piezoelectric sensing component 440 may include only series output units, may only include parallel output units, or may include both series output units and parallel output units.
  • the first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 may also be disposed on the same side of the piezoelectric layer 441 at intervals.
  • the first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 may be arranged at intervals on the side of the piezoelectric layer 441 close to the vibration unit 420 , or may be arranged at intervals on the side away from the vibration unit 420 .
  • the first piezoelectric electrode sheet can be bent into a first comb-shaped structure, and the first piezoelectric electrode sheet can be bent into a first comb-shaped structure.
  • the two piezoelectric electrode sheets can be bent into a second comb-like structure (not shown in FIG. 1 to FIG. 4 ).
  • the first comb-tooth-like structure may include a plurality of comb-tooth-like structures. A first spacing is provided between adjacent comb-tooth structures of the first comb-tooth-like structure. The first pitches may be the same or different.
  • the second comb-tooth structure may include a plurality of comb-tooth structures. A second spacing is provided between adjacent comb-tooth structures of the second comb-tooth-like structures. The second pitches may be the same or different.
  • the first comb-tooth-like structure may cooperate with the second comb-tooth-like structure to form a piezoelectric sensing component 440 . Further, the comb-tooth structure of the first comb-tooth-like structure may extend into the second interval of the second comb-tooth-like structure.
  • the comb-tooth structure of the second comb-tooth-like structure may extend into the first interval of the first comb-tooth-like structure, so as to cooperate with each other to form the piezoelectric sensing component 440 .
  • the first comb-shaped structure and the second comb-shaped structure cooperate with each other, so that the first piezoelectric electrode layer 442 and the second piezoelectric electrode layer 444 are arranged compactly, but do not intersect.
  • the first comb-shaped structure and the second comb-shaped structure extend along a length direction of the cantilever arm 424-3 (eg, a direction from the fixed end to the free end).
  • the piezoelectric sensing part 440 may further include a first connection terminal 446 connected to the first piezoelectric electrode layer 442 or the second piezoelectric electrode layer 444 to output the first electrical signal to the outside processing circuit.
  • the capacitive system 600 may be directly or indirectly fixedly connected to the base 200 and disposed opposite to the piezoelectric system 400 at intervals.
  • Capacitive system 600 may include stationary substrate 620 and capacitive sensing component 640 .
  • Capacitive system 600 may utilize vibrating member 420 in piezoelectric system 400 as a movable capacitive plate in capacitive system 600.
  • the capacitance system 600 may change the distance between the vibration member 420 and the fixed substrate 620 based on the target displacement of the vibration member 420 to generate a voltage and convert the voltage into the second electrical signal.
  • the fixed substrate 620 may be directly or indirectly connected with the base 200 . Taking the connection between the piezoelectric system 400 and the upper surface of the base 200 as an example, the fixed substrate 620 may be located above the piezoelectric system 400 (as shown in FIG. 1 to FIG. 4 ), that is, the side of the piezoelectric system 400 away from the base 200 , can also be located below the piezoelectric system 400 , that is, the side of the piezoelectric system 400 close to the base 200 , or can be located above and below the piezoelectric system 400 at the same time (as shown in FIG. 5 ).
  • the connection can be any connection, such as welding, riveting, snap-fitting, bolting, etc., or a connection by physical deposition (eg, physical vapor deposition) or chemical deposition (eg, chemical vapor deposition).
  • the fixed substrate 620 and the base 200 may be in an insulating connection, for example, the fixed substrate 620 is connected to the base 200 through the second insulating layer 202 .
  • the fixed substrate 620 may be a structure of any shape, for example, a regular-shaped structure such as a cube, a cuboid, a cylinder, a prism, a truncated cone, or any irregular-shaped structure.
  • the fixed substrate 620 may be disposed opposite to the vibrating member 420 at intervals to form a set of parallel plate capacitors.
  • the vibrating member 420 can serve as a movable capacitive plate in the parallel plate capacitor.
  • the distance between the fixed substrate 620 and the vibrating member 420 may be preset, and may be changed or adjusted.
  • the distance between the fixed substrate 620 and the vibration member 420 can be set or changed according to the parameters of the vibration member 420 .
  • the capacitive sensing part 640 may be connected to the fixed substrate 620 and the vibration part 420, and generate the second electrical signal based on a change in the distance between the fixed substrate 620 and the vibration part 420 caused by the target displacement.
  • the vibration member 420 in the first region is deformed to a greater degree, and the vibration member 420 in the second region is less deformed.
  • the piezoelectric sensing member 440 may be provided only in the first region.
  • the capacitive sensing component 640 may be located in the second area of the vibration component 420 .
  • the position of the capacitive sensing component 640 may be aligned with the position of the counterweight 426 and cover the corresponding area of the counterweight 426 . That is, the capacitive sensing component 640 may be disposed directly above or below the counterweight 426 .
  • the vibration sensor 001 can distribute the piezoelectric sensing part 440 and the capacitive sensing part 640 in different areas in the space based on the distribution characteristics of the electrical signal, and distribute the piezoelectric sensing part 440 in the area where the first electrical signal is stronger , the capacitive sensing components 640 are distributed in the area where the first electrical signal is weak and the second electrical signal is strong, so as to improve the space utilization rate in the vibration sensor 001 , reduce the waste of space, and improve the sensitivity of the vibration sensor 001 .
  • the second region may include a region within a preset range near the center of the cavity 220 . That is, the second area may include an area corresponding to the position of the weight block 426 . The second region may substantially cover the surface area of the counterweight 426 .
  • the first region may include at least one of a circumferential region proximate to and surrounding the second region and a region proximate the connection of the elastic layer 424 to the base 200 .
  • the piezoelectric sensing part 440 may provide the first region.
  • the capacitive sensing part 640 may be disposed in the second region. Piezoelectric sensing elements 440 may be distributed around the circumference of capacitive sensing elements 640 .
  • the second area may include the central area of the vibration part 420 .
  • the capacitive sensing part 640 may include a first capacitive electrode sheet 642 and a second capacitive electrode sheet 644 .
  • the first capacitor electrode sheet 642 and the second capacitor electrode sheet 644 may be disposed opposite to each other.
  • the first capacitive electrode sheet 642 may be attached to the side of the fixed substrate 620 close to the vibration part 420.
  • the first capacitor electrode sheet 642 may be connected to the fixed substrate 620 in an insulating manner. That is, the first capacitor electrode sheet 642 may be connected to the fixed substrate 620 through the third insulating layer 203 .
  • the second capacitive electrode sheet 644 may be attached to the side of the vibration member 420 close to the fixed substrate 620 .
  • the position of the second capacitor electrode sheet 644 may be aligned with the position of the counterweight block 426 and cover the area corresponding to the counterweight block 426 .
  • the piezoelectric sensing components 440 are distributed around the circumference of the second capacitive electrode sheet 644 .
  • the patterns of the first capacitor electrode sheet 642 and the second capacitor electrode sheet 644 are completely consistent with each other through patterned etching, so as to correspond completely.
  • the first capacitor electrode sheet 642 may include a limit protection structure 6421 , which is located on the first capacitor electrode sheet 642 and protrudes from a side close to the vibration member 420 .
  • the limiting protection structure 6421 may be located at any position on the first capacitor electrode sheet 642 .
  • the limit protection structure 6421 can play the role of limit protection. When a large impact is received, the limit protection structure 6421 can limit the amplitude of the vibration component 420 to prevent the device (such as the elastic layer 424 ) from being damaged due to severe vibration.
  • the limiting protection structure 6421 may be located on the first capacitor electrode sheet 642 at a position opposite to the second capacitor electrode sheet 644 to prevent the first capacitor electrode sheet 642 and the second capacitor electrode sheet 644 from contacting and causing a short circuit, The first capacitor electrode sheet 642 and the second capacitor electrode sheet 644 are prevented from being adsorbed and adhered.
  • the limit protection structure may be a rigid structure (for example, a limit block), or a structure with certain elasticity (for example, an elastic soft pad, a buffer cantilever beam, or a buffer support arm and a limiter at the same time) block, etc.).
  • the material of the limiting protection structure 6421 can be a polymer material such as polyimide and parylene.
  • the first capacitor electrode sheet 642 and the second capacitor electrode sheet 644 are conductive material structures.
  • Exemplary conductive materials may include metals, alloy materials, metal oxide materials, graphene, etc., or any combination thereof.
  • the metal and alloy materials may include nickel, iron, lead, platinum, titanium, copper, molybdenum, zinc, or any combination thereof.
  • the alloy material may include copper-zinc alloy, copper-tin alloy, copper-nickel-silicon alloy, copper-chromium alloy, copper-silver alloy, etc., or any combination thereof.
  • the metal oxide material may include RuO2, MnO2, PbO2, NiO, etc., or any combination thereof.
  • the capacitive sensing component 640 may further include a second connection terminal 646 connected to the second capacitive electrode sheet 644 to output the second electrical signal to an external processing circuit.
  • the stationary substrate 620 may be positioned above and below the piezoelectric system 400 at the same time.
  • FIG. 5 shows a cross-sectional view of a vibration sensor 001 provided according to an embodiment of the present specification.
  • the fixed substrate 620 may be located above and below the piezoelectric system 400 at the same time.
  • the fixed substrate 620 may include an upper fixed substrate 621 and a lower fixed substrate 622 .
  • the first capacitive electrode sheet 642 may include a first upper capacitive electrode sheet 6423 and a first lower capacitive electrode sheet 6424 .
  • the second capacitive electrode sheet 644 may include a second upper capacitive electrode sheet 6443 and a second lower capacitive electrode sheet 6444 .
  • the upper fixed substrate 621 and the lower fixed substrate 622 can be fixedly connected to the base 200 respectively, and are located on both sides of the vibration member 420 respectively.
  • the upper fixed base plate 621 may be located on the side of the vibration member 420 away from the counterweight 426 , that is, the upper fixed base plate 621 is located above the vibration member 420 .
  • the lower fixed base plate 622 may be located on the side of the vibration member 420 close to the counterweight 426 , and the lower fixed base plate 622 is located below the vibration member 420 .
  • the first upper capacitive electrode sheet 6423 may be attached to the side of the upper fixed substrate 621 close to the vibration member 420 .
  • the second upper capacitive electrode sheet 6443 may be attached to the side of the vibration member 621 close to the upper fixed substrate 621 and disposed opposite to the first upper capacitive electrode sheet 6423 .
  • the first lower capacitor electrode sheet 6424 may be attached to the side 420 of the lower fixed substrate 622 close to the vibrating part.
  • the second lower capacitor electrode sheet 6444 may be attached to a side of the vibration member 620 close to the lower fixed substrate 622 and disposed opposite to the first lower capacitor electrode sheet 6421 .
  • the vibration member 420 When the vibration member 420 generates the target displacement based on the vibration of the base 200 , the distance of the vibration member 420 relative to the upper fixed substrate 621 and the lower fixed substrate 622 changes simultaneously. When the distance of the vibration member 420 from the upper fixed substrate 621 decreases, the distance from the lower fixed substrate 622 increases. When the distance of the vibration member 420 from the upper fixed substrate 621 increases, the distance from the lower fixed substrate 622 decreases.
  • the first upper capacitive electrode sheet 6423 and the second upper capacitive electrode sheet 6443 collect the upper second electrical signal generated by the change in the distance of the vibrating component 420 relative to the upper fixed substrate 621 .
  • the first lower capacitive electrode sheet 6421 and the second lower capacitive electrode sheet 6444 collect the lower second electrical signal generated by the change in the distance of the vibrating member 420 relative to the lower fixed substrate 622 .
  • the second electrical signal includes the upper second electrical signal and the lower second electrical signal.
  • the first upper capacitor electrode sheet 6423 may include a limit protection structure 6421 , which is located on the first upper capacitor electrode sheet 6423 and protrudes from a side close to the vibration member 420 .
  • the first lower capacitor electrode sheet 6424 may also include a limiting protection structure 6421 , which is located on the first lower capacitor electrode sheet 6424 and protrudes from the side close to the vibration member 420 .
  • the second connection terminal 646 outputs the upper second electrical signal and the lower second electrical signal to an external processing circuit for synthesis through a differential algorithm, so as to increase the second electrical signal output by the capacitance system 600, thereby further improving vibration Sensitivity of sensor 001.
  • This specification also provides a microphone, which may include a housing and the vibration sensor 001 provided in this specification.
  • the vibration sensor 001 may be installed in the housing.
  • the housing can be fixedly connected with the base 200 .
  • the housing and the base 200 may be an integral structure or a separate structure, and are connected together by a fixed connection, such as welding, riveting, bolting, gluing, and the like.
  • the casing vibration causes the base 200 to vibrate. Due to the different properties of the vibration member 420 and the housing structure (or the base 200 ), the vibration member 420 and the housing structure (or the base 200 ) cannot maintain a completely consistent movement, resulting in relative motion. , so that the vibration member 420 generates the target deformation and the target displacement.
  • the piezoelectric sensing part 440 and the capacitive sensing part 640 convert the target deformation and the target displacement into the first electrical signal and the second electrical signal.
  • the microphone may also include a signal synthesis circuit.
  • the signal synthesis circuit is connected to the piezoelectric sensing component 440 and the capacitive sensing component 640, and is synthesized into a third electrical signal based on the first electrical signal and the second electrical signal during operation.
  • the signal strength of the third electrical signal is greater than the signal strength of the first electrical signal and the signal strength of the second electrical signal.
  • the signal combining circuit may further combine the upper second electrical signal and the lower second electrical signal into the second electrical signal. The strength of the second electrical signal is greater than that of the upper second electrical signal and the lower second electrical signal.
  • earphones eg, bone conduction earphones or air conduction earphones, wireless earphones, wired earphones
  • smart glasses e.g., smart glasses, smart wearable devices, smart helmets, smart watches, and other devices with a voice acquisition function.
  • the vibration sensor 001 and the microphone 002 provided in this specification are composed of the piezoelectric system 400 and the capacitive system 600 .
  • the vibration component 420 in the piezoelectric system 400 deforms and moves up and down relative to the base 200 under the action of external vibration excitation.
  • the piezoelectric sensing part 440 collects the first electrical signal generated based on the deformation of the target.
  • the capacitor system 600 uses the vibration member 420 as a movable capacitor plate in the capacitor system 600. When the vibration member 420 moves up and down relative to the base 200, the distance between the vibration member 420 and the fixed substrate 620 changes accordingly, and the capacitance also changes accordingly. .
  • first capacitive electrode sheets 642 and second capacitive electrode sheets 644 are respectively disposed on the vibrating component 420 and the fixed substrate 620 , the second electrical signal in the capacitive system 600 is collected, and the second electrical signal is obtained voltage output.
  • the vibration sensor 001 outputs the first electrical signal and the second electrical signal to the external processing circuit.
  • the external processing circuit performs signal processing on the first electrical signal and the second electrical signal, so that the first electrical signal and the second electrical signal are superimposed, thereby improving the output electrical signal of the vibration sensor 001.
  • the overall voltage increases the sensitivity of the vibration sensor 001.
  • the vibration sensor is rationally used. 001 internal space, avoid wasting space and improve the sensitivity of the vibration sensor 001.
  • connection relationship between the base 200, the piezoelectric system 400, and the capacitance system 600 in the vibration sensor 001 can be achieved by mechanical fixing connection methods such as welding, riveting, clamping, bolts, etc., or by physical deposition (for example, physical vapor deposition). ) or chemical deposition (eg, chemical vapor deposition) and other deposition connections.
  • FIG. 6 shows a flowchart of a manufacturing method P100 of a vibration sensor 001 according to an embodiment of the present specification.
  • the vibration sensor 001 is fabricated by deposition.
  • the method P100 may include:
  • the step S120 may be to etch the overall structure of the base 200 and the vibration component 420 composed of the Si substrate.
  • Step S120 may include sequentially depositing and etching the second capacitor electrode sheet 644, the first piezoelectric electrode layer 442, the piezoelectric layer 224 and the second piezoelectric electrode layer 444 on the upper surface of the SOI silicon wafer, and performing each deposition step.
  • Two insulating layers 202 Two insulating layers 202 .
  • the vibrating member 420 may also include a seed layer (not shown in FIGS. 1-2 ) to provide a good growth surface structure for other layers, and the seed layer may be located on the surface of the piezoelectric layer 441 .
  • the material of the seed layer may be the same as the material of the piezoelectric layer 441 .
  • the material of the seed layer is also AlN.
  • the material of the seed layer may also be different from the material of the piezoelectric layer 122 .
  • step S140 may include sequentially depositing a SiO 2 layer (the third insulating layer 203 ) and a polysilicon layer on a Si substrate; patterning and etching the polysilicon layer to obtain a first capacitor electrode sheet 642 ; A polymer material is deposited and etched on the surface to obtain the limiting protection structure 6421; the fixed substrate 620 is combined with the third insulating layer 203, such as wafer bonding.
  • step S160 may include performing patterned through hole etching on the fixed substrate 620 to obtain the installation positions of the first connection terminals 446 and the second connection terminals 646; and fabricating the first connection terminals 446 and the second connection terminals 646.
  • step S180 may include patterning and etching the Si substrate of the base 200 to obtain the cavity 220 and the counterweight 426 ; and etching the SiO 2 in the first insulating layer 201 to release the elastic layer 424 , the free end of the elastic layer 424 is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

本说明书提供的振动传感器以及麦克风,由压电系统和电容系统组成。压电系统包括振动部件以及采集由于振动部件的形变产生的第一电信号的压电传感部件。电容系统利用压电系统中的振动部件作为电容系统中的可动电容板,将固定基板与振动部件相对设置,构成电容式振动传感器。振动部件的形变使得振动部件与固定基板间的距离发生变化,电容传感部件采集所述距离变化所产生的第二电信号。电容传感部件设置在压电系统中的第一电信号低的区域,从而合理利用振动传感器的空间,在不影响压电系统的第一电信号输出的情况下增加电容系统采集的第二电信号,从而提高振动传感器的灵敏度的同时增加空间利用率。

Description

振动传感器以及麦克风 技术领域
本说明书涉及音频采集技术领域,尤其涉及一种振动传感器以及麦克风。
背景技术
目前,麦克风常采用振动传感器接收外界振动信号,并将振动信号转换为电信号,通过后端电路处理后输出电信号,从而进行声音信号的采集。气传导麦克风可以采集用户在发出声音时引起的空气振动信号,并将空气振动信号转化为电信号。骨传导麦克风可以采集用户在说话时引起的骨骼和皮肤的机械振动信号,并将机械振动信号转化为电信号。现有的压电式振动传感器中,压电层在边缘连接处的应变较大,压电效应明显,有效电信号的输出电压较高,而在中间区域的应变较小,有效电信号的输出电压较低。特别是对于连接有配重块的压电式振动传感器,在配重块的安装区域有效电信号的输出电压较低。以上现象导致麦克风灵敏度较低,并且造成一定的空间浪费。
因此,需要提供一种灵敏度高以及空间利用率高的振动传感器以及麦克风。
发明内容
本说明书提供一种灵敏度高以及空间利用率高的振动传感器以及麦克风。
第一方面,本说明书提供一种振动传感器,包括基座、振动部件、压电传感部件、固定基板以及电容传感部件,所述振动部件与所述基座连接,并响应于所述基座振动产生目标位移和目标形变;所述压电传感部件与所述振动部件连接,将所述目标形变转化为第一电信号;所述固定基板与所述振动部件间隔相对设置;所述电容传感部件与所述固定基板以及所述振动部件连接,并将所述目标位移引起的所述固定基板与所述振动部件间的距离变化转化为第二电信号。
在一些实施例中,所述振动部件包括弹性层以及配重块,所述弹性层与所述基座连接,并响应于所述基座振动的激励产生所述目标形变;所述配重块与所述弹性层连接,并基于所述目标形变产生所述目标位移。
在一些实施例中,所述基座包括贯穿的腔体,所述振动部件中至少有一部分悬空于所述腔体中。
在一些实施例中,所述弹性层包括固定端和自由端,所述固定端与所述基座固定连接;所述自由端悬空于所述腔体中,其中,所述配重块与所述弹性层的所述自由端固定连接,悬空于所述腔体中。
在一些实施例中,所述弹性层包括多个弹性支撑梁,一端与所述基座固定连接,另一端与所述配重块连接悬空于所述腔体中。
在一些实施例中,所述弹性层包括悬膜结构,所述悬膜结构的周侧与所述基座固定连接,所述悬膜结构的中心区域与所述配重块连接悬空于所述腔体中。
在一些实施例中,所述电容传感部件的位置与所述配重块的位置对齐,并覆盖所述配重块对应的区域。
在一些实施例中,所述电容传感部件包括第一电容电极片以及第二电容电极片,所述第一电容电极片附着在所述固定基板靠近所述振动部件的一侧;所述第二电容电极片附着在所述振动部件靠近所述固定基板的一侧,与所述第一电容电极片相对设置。
在一些实施例中,所述第二电容电极片的位置与所述配重块的位置对齐,并覆盖所述配重块所在的区域。
在一些实施例中,所述第一电容电极片包括限位保护结构,位于所述第一电容电极片上并向靠近所述振动部件的一侧凸起,限制所述振动部件的所述目标位移,避免所述第二电容电极片与所述第一电容电极片接触。
在一些实施例中,所述固定基板包括上固定基板,位于所述振动部件远离所述配重块的一侧;所述第一电容电极片包括第一上电容电极片,附着在所述上固定基板靠近所述振动部件的一侧;所述第二电容电极片包括第二上电容电极片,附着在所述振动部件靠近所述上固定基板的一侧,与所述第一上电容电极片相对设置。
在一些实施例中,所述固定基板还包括下固定基板,位于所述振动部件靠近所述配重块的一侧;所述第一电容电极片还包括第一下电容电极片,附着在所述下固定基板靠近所述振动部件的一侧;以及所述第二电容电极片还包括第二下电容电极片,附着在所述振动部件靠近所述下固定基板的一侧,与所述第一下电容电极片相对设置。
在一些实施例中,所述压电传感部件位于以下区域中的至少一个:靠近所述配重块且围绕所述配重块的周向区域;以及靠近所述弹性层与所述基座的连接处的区域。
在一些实施例中,所述压电传感部件包括压电层,与所述基座固定连接,附着在所述弹性层的表面上,并基于所述目标形变产生电压。
在一些实施例中,所述压电传感部件还包括第一压电电极层以及第二压电电极层,分别分布于所述压电层的两侧表面,并将所述电压转化为所述第一电信号,所述第一压电电极层与所述第二压电电极层的位置对齐,并位于以下区域中的至少一个:靠近所述配重块且围绕所述配重块的周向区域;以及靠近所述弹性层与所述基座的连接处的区域。
在一些实施例中,所述第一压电电极层包括至少一个第一压电电极片,所述第二压电电极层包括至少一个第二压电电极片,所述至少一个第一压电电极片中的每个与所述至少一个第二压电电极片中的至少一个位置对齐。
第二方面,本说明书还提供一种麦克风,包括壳体、本说明书第一方面所述的振动传感器以及信号合成电路,所述振动传感器安装在所述壳体中,所述基座与所述壳体固定连接;所述信号合成电路同所述压电传感部件和所述电容传感部件连接,运行时基于所述第一电信号和所述第二电信号合成为第三电信号,所述第三电信号的信号强度大于所述第一电信号的信号强度和所述第二电信号的信号强度。
由以上技术方案可知,本说明书提供的振动传感器以及麦克风,由压电系统和电容系统组成。压电系统包括振动部件以及采集电信号的压电传感部件。振动部件可以包括弹性层和与弹性层连接的配重块。弹性层在基座振动的激励下产生形变。配重块在所述形变作用下产生位移。压电传感部件采集由于振动部件的形变产生的第一电信号。电容系统直接连接在压电系统上,包括固定基板和采集电信号的电容传感部件。电容系统利用压电系统中的振动部件作为电容系统中的可动电容板,在此基础上增设固定基板与由振动部件组成的可动电容板相对设置,构成电容式振动传感器。振动部件中的配重块的位移使得振动部件与固定基板间的距离发生变化,电容传感部件采集电容系统中的距离变化所产生的第二电信号。压电传感部件设置在压电系统中的第一电信号输出强度高的区域,比如配重块周围的区域以及弹性层与基座连接的区域。而电容传感部件设置在压电系统中的第一电信号输出强度低的区域,比如配重块所在位置对应的区域。通过将压电传感部件和电容传感部件分布在不同的区域,合理利用振动传感器的空间,在不影响压电系统的第一电信号输出强度的情况下增设电容系统,增加电容系统采集的第二电信号,从而提高振动传感器的整体电信号输出强度,在提高振动传感器的灵敏度的同时增加空间利用率,降低设备体积。
本说明书提供的振动传感器以及麦克风的其他功能将在以下说明中部分列出。根据描述,以下数字和示例介绍的内容将对那些本领域的普通技术人员显而易见。本说明书提供的振动传感器以及麦克风的创造性方面可以通过实践或使用下面详细示例中所述的方法、装置和组合得到充分解释。
附图说明
为了更清楚地说明本说明书实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本说明书的实施例提供的一种振动传感器的剖面图;
图2示出了图1中A-A方向的剖面图;
图3示出了根据本说明书的实施例提供的另一种振动传感器的剖面图;
图4示出了根据本说明书的实施例提供的另一种振动传感器的剖面图;
图5示出了根据本说明书的实施例提供的另一种振动传感器的剖面图;以及
图6示出了根据本说明书的实施例提供的一种振动传感器的制作方法流程图。
具体实施方式
以下描述提供了本说明书的特定应用场景和要求,目的是使本领域技术人员能够制造和使用本说明书中的内容。对于本领域技术人员来说,对所公开的实施例的各种局部修改是显而易见的,并且在不脱离本说明书的精神和范围的情况下,可以将这里定义的一般原理应用于其他实施例和应用。因此,本说明书不限于所示的实施例,而是与权利要求一致的最宽范 围。
这里使用的术语仅用于描述特定示例实施例的目的,而不是限制性的。比如,除非上下文另有明确说明,这里所使用的,单数形式“一”,“一个”和“该”也可以包括复数形式。当在本说明书中使用时,术语“包括”、“包含”和/或“含有”意思是指所关联的整数,步骤、操作、元素和/或组件存在,但不排除一个或多个其他特征、整数、步骤、操作、元素、组件和/或组的存在或在该系统/方法中可以添加其他特征、整数、步骤、操作、元素、组件和/或组。
考虑到以下描述,本说明书的这些特征和其他特征、以及结构的相关元件的操作和功能、以及部件的组合和制造的经济性可以得到明显提高。参考附图,所有这些形成本说明书的一部分。然而,应该清楚地理解,附图仅用于说明和描述的目的,并不旨在限制本说明书的范围。还应理解,附图未按比例绘制。
需要理解的是,为了便于对本说明书的描述,术语“中心”、“上表面”、“下表面”、“上”、“下”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“外周”、“外部”等指示的位置关系为基于附图所示的位置关系,而不是指示所指的装置、组件或单元必须具有特定的位置关系,不能理解为是对本说明书的限制。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
本说明书中使用的流程图示出了根据本说明书中的一些实施例的系统实现的操作。应该清楚地理解,流程图的操作可以不按顺序实现。相反,操作可以以反转顺序或同时实现。此外,可以向流程图添加一个或多个其他操作。可以从流程图中移除一个或多个操作。
本说明书提供的振动传感器以及麦克风可以用于采集外界振动信号,并将所述振动信号转换为电信号。所述振动传感器和所述麦克风不仅可以用于采集空气振动信号,还可以用于采集机械振动信号,比如人在说话时的骨骼振动、皮肤振动,等等。所述振动传感器以及所述麦克风不仅可以用作气传导麦克风,还可以用作骨传导麦克风。
本说明书提供的振动传感器以及麦克风,在压电系统中增设电容系统,有效利用压电系统中有效电信号输出较小的区域作为电容系统的电信号输出区域,从而合理利用振动传感器的空间,在不影响压电系统的电信号输出强度的情况下增加电容系统采集的电信号,提高振动传感器的整体电信号输出强度,在提高振动传感器的灵敏度的同时增加空间利用率,降低设备体积。
图1示出了根据本说明书的实施例提供的一种振动传感器001的剖面图。图2示出了图1中A-A方向的剖面图。如图1至图2所示,振动传感器001可以包括基座200、压电系统400以及电容系统600。
基座200可以是振动传感器001的安装基体。振动传感器001的其他零部件比如压电系统400和电容系统600可以直接或间接地连接在基座200上。所述连接可以是任意连接方式,比如焊接、铆接、卡接、螺栓等固定连接方式,或者通过物理沉积(例如,物理气相沉积)或者化学沉积(例如,化学气相沉积)等沉积的连接。压电系统400可以与电容系统600相对间隔设置。
基座200可以是任意形状的结构体,比如,正方体、长方体、圆柱体、棱柱体、圆台等规则形状的结构体,或者任何不规则形状的结构体等。在一些实施例中,基座200可以包括贯穿的腔体220。如图1至图2所示的示例性说明,腔体220可以贯穿基座200的上表面和下表面。腔体220的截面可以是任意形状,比如,正方形、长方形、圆形、多边形等规则形状, 或者任何不规则形状等。
压电系统400可以与基座200连接。所述连接可以是直接或间接连接。如前所述,振动传感器001可以接收外部振动信号,并将外部振动信号转换为电信号。对于振动传感器001的压电系统400来说,所述外部振动信号可以对压电系统400中的压电材料产生压力,使压电材料产生电压,从而将外部的振动信号转换为电信号。
压电系统400可以与基座200的一侧连接。比如,压电系统400的至少部分结构可以固定于基座200的上表面或下表面。压电系统400也可以与基座200的其他部位连接。比如,压电系统400也可以与基座200的侧壁连接。压电系统400的至少部分结构可以固定于基座200的腔体220的内壁。压电系统400可以位于所述腔体220中。压电系统400中至少有一部分不与基座200连接。即压电系统400中至少有一部分悬空于所述腔体220中。所述“悬空于所述腔体220中”可以表示悬空设置于基座200的腔体220的内部、下方或者上方,不与基座200接触。为了方便展示,如图1所示,仅作为示例性说明,压电系统400可以与基座200的上表面连接。
如图1至图2所示,压电系统400可以包括振动部件420以及压电传感部件440。压电系统400可以是由振动部件420以及压电传感部件440组成的叠层结构。
振动部件420可以与基座200连接,并响应于基座200的振动产生目标位移和目标形变。所述连接可以是任意连接方式,比如焊接、铆接、卡接、螺栓等固定连接方式,或者通过物理沉积(例如,物理气相沉积)或者化学沉积(例如,化学气相沉积)等沉积的连接。具体地,基座200可以基于外部振动信号产生振动,振动部件420响应于基座200的振动产生所述目标形变,所述目标形变进一步产生所述目标位移。需要说明的是,振动部件420中包括前述的压电材料。所述压电材料在所述目标形变下受 到压力,从而产生电压。压电传感部件440可以与振动部件420连接,并将振动部件420的所述目标形变转化为第一电信号。具体地,压电传感部件440可以与振动部件420连接,并采集所述压电材料中产生的电压,并将所述电压转换为所述第一电信号进行输出。振动部件420与基座200可以是绝缘连接,比如,振动部件420通过第一绝缘层201与基座200连接。振动部件420可以是受到外力容易发生形变的部分。振动部件420中至少有一部分悬空于所述腔体220中。如图1至图2所示,振动部件可以包括弹性层424。在一些实施例中,振动部件420还可以包括配重块426。
弹性层424可以与基座200直接或间接地固定连接。所述连接可以是任意连接方式,比如焊接、铆接、卡接、螺栓等固定连接方式,或者通过物理沉积(例如,物理气相沉积)或者化学沉积(例如,化学气相沉积)等沉积的连接。当基座200受到外界振动信号时,弹性层424基于所述基座200的振动激励产生所述目标形变。弹性层424由在外力作用下容易发生形变的材料制成。弹性层424可以为采用半导体材料制成的易变形的结构。在一些实施例中,半导体材料可以包括二氧化硅、氮化硅、氮化镓、氧化锌、碳化硅等。弹性层424可以包括固定端和自由端。所述固定端可以与基座200直接或间接地固定连接。所述自由端可以悬空于所述腔体220中。
在一些实施例中,弹性层424可以是支撑梁结构。如图1至图2所示,弹性层424可以包括多个弹性支撑梁424-1。弹性支承梁424-1的一端可以与基座200的上表面、下表面或腔体220的内壁固定连接。弹性支撑梁424-1的另一端可以与配重块426连接并悬空于所述腔体220中。即每个弹性支撑梁424-1的两端分别是所述固定端和所述自由端。弹性支撑梁424-1可以是任意形状的板状结构体。比如,其形状可以矩形梁,也可以是梯形梁、L形梁或其它形状,等等。弹性层424可以包括任意数量的弹性支撑梁424-1, 并可以围绕腔体220的中心沿周向分布。比如,2、3、4、5、6、7、8、10个。如图2所示,弹性层424可以包括4个弹性支撑梁424-1。
图3示出了根据本说明书的实施例提供的另一种振动传感器001的剖面图。如图3所示,弹性层424还可以是悬膜结构424-2。所述悬膜结构424-2的周侧与基座200连接而固定在基座200上,所述悬膜结构424-2的中心区域可以与配重块426连接并悬空设置于基座200的腔体220上。即所述固定端包括所述悬膜结构424-2的周侧,所述自由端包括所述悬膜结构424-2的中心区域。在一些实施例中,所述悬膜结构424-2的形状可以为圆形、椭圆形、三角形、四边形、多边形等,或者其他任意形状。在一些实施例中,所述悬膜结构424-2可以包括至少一个孔。所述至少一个孔可以位于所述悬膜结构424-2靠近所述自由端的位置,并可以围绕配重块426的中心沿配重块426的周向分布。在所述悬膜结构424-2上设置所述至少一个孔,可以调整所述悬膜结构424-2不同位置的刚度,使得所述至少一个孔附近的区域处的所述悬膜结构424-2的刚度降低,远离所述至少一个孔处的所述悬膜结构424-2的刚度则相对较大。当所述悬膜结构424-2与基座200发生相对运动时,所述至少一个孔附近区域处的所述悬膜结构424-2形变程度较大,远离所述至少一个孔区域的所述悬膜结构424-2形变程度较小。此时,将压电传感部件440放置在所述悬膜结构424-2上的所述至少一个孔附近的区域处,可以更有利于压电传感部件440采集振动信号,从而有效提高振动传感器001的灵敏度。同时振动传感器001中的各部件结构较为简单,便于生产或组装。在一些实施例中,所述至少一个孔可以为圆形孔、椭圆形孔、方形孔、其他多边形孔等任意形状。在一些实施例中,振动传感器001还可以通过改变所述至少一个孔的大小、数量、间隔距离、位置来调整振动传感器001的谐振频率和应力分布等,以提高振动传感器001的灵敏度。
在一些实施例中,振动传感器001还可以通过调整所述悬膜结构424-2 不同区域的厚度或密度来改变所述悬膜结构不同位置的形变应力。在一些实施例中,压电传感部件440可以设置为环状结构。所述悬膜结构424-2上位于环状结构内侧区域的厚度大于位于环状结构外侧区域的厚度。在另一些实施例中,所述悬膜结构424-2位于所述环状结构内侧区域的密度大于位于环状结构外侧区域的密度。振动传感器001可以通过改变所述悬膜结构424-2不同位置的密度或厚度,使得位于环状结构内侧区域的悬膜质量大于位于环状结构外侧区域的悬膜质量。当所述悬膜结构424-2与基座200发生相对运动时,压电传感部件440的环状结构附近的所述悬膜结构424-2发生的形变程度较大,产生的形变应力也较大,从而提高振动传感器001的输出电信号。
图4示出了根据本说明书的实施例提供的另一种振动传感器001的剖面图。如图4所示,弹性层424还可以是悬臂梁结构424-3。弹性层424可以包括一个悬臂梁424-3。悬臂梁424-3的一端可以与基座200的上表面、下表面或腔体220的内壁固定连接。悬臂梁424-3的另一端可以悬空于所述腔体220中。悬臂梁424-3的另一端可以连接配重块426,也可以不连接配重块426。即悬臂梁424-3的两端分别是所述固定端和所述自由端。悬臂梁424-3可以是任意形状的板状结构体。比如,其形状可以矩形梁,也可以是梯形梁、L形梁或其它形状,等等。
弹性层424还可以是其他能够基于外界振动信号产生形变的结构形式,本说明书对此不进行限定。为了方便展示,下面的描述中,我们将以弹性层424为支撑梁结构进行描述。本领域技术人员应当明白,当弹性层424为其他结构时,也在本说明书的保护范围内。
在一些实施例中,振动部件420还可以包括配重块426。配重块426可以直接与弹性层424连接,也可以间接与弹性层424连接。当基座200受到外界振动信号时,弹性层424基于所述基座200的振动激励产生所述目 标形变,配重块426基于所述目标形变产生所述目标位移。配重块426可以与弹性层424的所述自由端固定连接。在一些实施例中,配重块426可以相对于弹性层424向一侧凸出,悬空于腔体220中。比如,配重块426可以相对于弹性层424向上方凸出,悬空于腔体220中。配重块426也可以相对于弹性层424向下方凸出,悬空于腔体220中。
配重块426可以使得弹性层424在外力作用下更容易发生变形,从而增加压电传感部件440的所述第一电信号的输出电压。配重块426可以位于腔体220的中心。配重块426的平面形状可以是圆形、三角形、四边形、多边形,等等。在一些实施例中,可以通过改变配重块426的大小、形状、位置可以提高压电传感部件440的输出的所述第一电信号的电压。配重块426的设置可以改变振动部件420振动时的固有频率和振动幅值。在一些实施例中,可以通过改变配重块426的大小、形状、位置来提高所述第一电信号。
压电传感部件440可以包括压电层441。压电层441是指受到外力作用时可以在其两端面产生电压的结构。压电层441可以与基座200直接或间接地固定连接。所述连接可以是任意连接方式,比如焊接、铆接、卡接、螺栓等固定连接方式,或者通过物理沉积(例如,物理气相沉积)或者化学沉积(例如,化学气相沉积)等沉积的连接。在一些实施例中,压电层441在受到振动信号时可以发生所述目标形变,并基于所述目标形变产生电压。
压电层441可以直接或间接地附着在弹性层424的表面。在一些实施例中,弹性层424可以与基座200直接连接,压电层441通过弹性层424与基座200间接连接。以振动部件420位于基座200上表面为例进行说明,在一些实施例中,压电层441可以位于弹性层424远离基座200的一侧,振动部件420以及压电传感部件440组成的所述叠层结构从上至下依次包括压电层441、弹性层424和配重块426。在一些实施例中,压电层441可 以位于弹性层424靠近基座200的一侧,振动部件420以及压电传感部件440组成的所述叠层结构从上至下依次包括配重块426、弹性层424、压电层441。如图1至图2所示的示例性说明,弹性层424直接与基座200连接,压电层441与弹性层424连接,位于弹性层424远离基座200的一侧,即弹性层424的上方。配重块426与弹性层424连接,位于弹性层424的下方。当基座200受到外界振动信号时,弹性层424基于所述振动信号产生所述目标形变;压电层441可以基于压电效应,在弹性层424的所述目标形变作用下受到应力产生电压(电势差)。
在一些实施例中,压电层441可以是半导体的沉积工艺(例如磁控溅射、MOCVD)获得的压电聚合物薄膜。在一些实施例中,压电层441的材料可以包括压电晶体材料和压电陶瓷材料。压电晶体是指压电单晶体。在一些实施例中,压电晶体材料可以包括水晶、闪锌矿、方硼石、电气石、红锌矿、GaAs、钛酸钡及其衍生结构晶体、KH2PO4、NaKC4H4O6·4H2O(罗息盐)等,或其任意组合。压电陶瓷材料是指由不同材料粉粒之间的固相反应和烧结而获得的微细晶粒无规则集合而成的压电多晶体。在一些实施例中,压电陶瓷材料可以包括钛酸钡(BT)、锆钛酸铅(PZT)、铌酸铅钡锂(PBLN)、改性钛酸铅(PT)、氮化铝(AIN)、氧化锌(ZnO)或其任意组合。在一些实施例中,压电层441的材料还可以为压电聚合物材料,例如聚偏氟乙烯(PVDF)等。
压电传感部件440还可以包括第一压电电极层442以及第二压电电极层444。第一压电电极层442以及第二压电电极层444分别分布于压电层441的两侧表面。压电层441可以位于第一压电电极层442以及第二压电电极层444之间。压电层441可以在外界振动信号的作用下随着弹性层424的所述目标形变产生形变,在形变应力作用下,产生电压。第一压电电极层442以及第二压电电极层444可以将所述电压进行采集生成所述第一电 信号。其中,所述第一压电电极层442与所述第二压电电极层444的位置对齐。
如前所述,压电层441与弹性层424连接,压电层441分布于弹性层424的一侧。在一些实施例中,第一压电电极层442可以分布于压电层441和弹性层424之间,第二压电电极层444分布于压电层441远离弹性层424的一侧。在另一些实施例中,第二压电电极层444可以分布于压电层441和弹性层424之间,第一压电电极层442分布于压电层441远离弹性层424的一侧。
在一些实施例中,第一压电电极层442以及第二压电电极层444为导电材质结构。示例性的导电材质可以包括金属、合金材料、金属氧化物材料、石墨烯等,或其任意组合。在一些实施例中,金属与合金材料可以包括镍、铁、铅、铂、钛、铜、钼、锌,或其任意组合。在一些实施例中,合金材料可以包括铜锌合金、铜锡合金、铜镍硅合金、铜铬合金、铜银合金等,或其任意组合。在一些实施例中,金属氧化物材料可以包括RuO2、MnO2、PbO2、NiO等,或其任意组合。
振动部件420与基座200之间发生相对运动时,振动部件420不同位置的形变程度不同。也就是说,振动部件420不同位置对压电层441产生的形变应力不同。为了提高振动传感器001的灵敏度,在一些实施例中,压电传感部件440能够仅设置于振动部件420形变程度较大的位置,从而提高振动传感器001的灵敏度。为了方便描述,我们将振动部件420形变程度较大的位置定义为第一区域,将振动部件420形变程度较小的位置定义为第二区域。所述第一电信号在所述第一区域的电压高于所述第二区域。在一些实施例中,压电传感部件440能够仅设置于所述第一区域。需要说明的是,所述第一区域和所述第二区域是指腔体220对应的区域,不包括振动部件420与基座200的连接处的区域。
为了提高振动传感器001的灵敏度,振动部件420中可以包括配重块426。由于配重块426与弹性层424刚性连接,配重块426所在位置对应的压电层441的形变较小,有效电信号的电压较小。而在靠近所述配重块426的位置或者靠近弹性层424与基座200的连接处的位置,压电层441的形变较大,有效电信号的电压也较大。因此,在配重块426所在的位置,可以不设置压电传感部件440。所述第一区域可以包括靠近配重块426且围绕配重块426的周向区域以及靠近弹性层424与基座200的连接处的区域中的至少一个。所述第二区域可以包括配重块426所在位置对应的区域。所述第二区域可以基本覆盖配重块426的表面面积。即所述第二区域的面积可以等于、略小于或略大于配重块426的表面面积。压电传感部件440可以设置在所述第一区域。即压电传感部件440可以设置在靠近配重块426且围绕配重块426的周向区域以及靠近弹性层424与基座200的连接处的区域中的至少一个。具体地,第一压电电极层442和第二压电电极层444可以设置在靠近配重块426且围绕配重块426的周向区域以及靠近弹性层424与基座200的连接处的区域中的至少一个。
第一压电电极层442可以包括至少一个第一压电电极片。第二压电电极层444可以包括至少一个第二压电电极片。所述至少一个第一压电电极片中的每个与所述至少一个第二压电电极片中的至少一个位置对齐。在一些实施例中,每个所述第一压电电极片的位置对应一个第二压电电极片。在一些实施例中,每个所述第一压电电极片的位置对应多个第二压电电极片,比如,2个、3个、4个,等等。所述多个第二压电电极片以所述第一压电电极片为公共端组成串联输出单元,以增大输出电压。提高灵敏度。所述多个第二压电电极片也可以与所述第一压电电极片组成并联输出单元,以增大输出电荷,提高灵敏度。以弹性层424包括4个弹性支撑梁424-1为例,不同的弹性支撑梁之间的压电传感部件440中的所述第一压电电极片和所述第二压电电极片的组合可以不同。压电传感部件440中可以只包 括串联输出单元,也可以只包括并联输出单元,也可以既包括串联输出单元又包括并联输出单元。
在一些实施例中,第一压电电极层442和第二压电电极层444也可以间隔设置在压电层441的同一侧。比如,第一压电电极层442和第二压电电极层444可以间隔设置在压电层441靠近振动单元420的一侧,也可以间隔设置在远离振动单元420的一侧。当第一压电电极层442和第二压电电极层444间隔设置在压电层441的同一侧时,所述第一压电电极片可以弯折成第一梳齿状结构,所述第二压电电极片可以弯折成第二梳齿状结构(图1至图4中未示出)。所述第一梳齿状结构可以包括多个梳齿结构。所述第一梳齿状结构的相邻梳齿结构之间具有第一间距。所述第一间距可以相同或不同。所述第二梳齿状结构可以包括多个梳齿结构。所述第二梳齿状结构的相邻梳齿结构之间具有第二间距。所述第二间距可以相同或不同。所述第一梳齿状结构可以与所述第二梳齿状结构相配合形成压电传感部件440。进一步地,所述第一梳齿状结构的梳齿结构可以伸入所述第二梳齿状结构的第二间距处。所述第二梳齿状结构的梳齿结构可以伸入所述第一梳齿状结构的第一间距处,从而相互配合形成压电传感部件440。所述第一梳齿状结构和所述第二梳齿状结构互相配合,使得第一压电电极层442和第二压电电极层444排列紧凑,但不相交。在一些实施例中,所述第一梳齿状结构和所述第二梳齿状结构沿悬梁臂424-3的长度方向(例如,从所述固定端向所述自由端的方向)延伸。
在一些实施例中,压电传感部件440还可以包括第一连接端子446,与第一压电电极层442或第二压电电极层444连接,以将所述第一电信号输出至外部处理电路。
电容系统600可以与基座200直接或间接地固定连接,并与压电系统400间隔相对设置。电容系统600可以包括固定基板620以及电容传感部件640。电容系统600可以利用压电系统400中的振动部件420作为电容系统 600中的可动电容板。电容系统600可以基于振动部件420的所述目标位移,使得振动部件420与固定基板620之间的距离发生变化,从而产生电压,并将所述电压转化为所述第二电信号。
固定基板620可以直接或间接地与基座200连接。以压电系统400与基座200的上表面连接为例,固定基板620可以位于压电系统400的上方(如图1至图4所示),即压电系统400远离基座200的一侧,也可以位于压电系统400的下方,即压电系统400靠近基座200的一侧,还可以同时位于压电系统400的上方和下方(如图5所示)。所述连接可以是任意连接方式,比如焊接、铆接、卡接、螺栓等固定连接方式,或者通过物理沉积(例如,物理气相沉积)或者化学沉积(例如,化学气相沉积)等沉积的连接。固定基板620与基座200可以是绝缘连接,比如,固定基板620通过第二绝缘层202与基座200连接。固定基板620可以是任意形状的结构体,比如,正方体、长方体、圆柱体、棱柱体、圆台等规则形状的结构体,或者任何不规则形状的结构体等。
固定基板620可以与振动部件420间隔相对设置,以构成一组平行板电容器。振动部件420可以作为所述平行板电容器中的可动电容板。当振动部件420基于基座200的振动激励相对于基座200以及固定基板620产生相对运动,发生所述目标形变和所述目标位移时,振动部件420与固定基板620之间的距离发生变化,从而引起所述平行板电容器中的电容值的变化。在给定偏置电压的情况下,所述电容值的变化可进一步转化电信号的变化,从而实现力电转化,产生所述第二电信号。
固定基板620与振动部件420之间的距离可以预先设定,也可以进行更改或调整。固定基板620与振动部件420之间的距离可以根据振动部件420的参数进行设定或更改。
电容传感部件640可以与固定基板620以及振动部件420连接,并基于由所述目标位移引起的固定基板620与振动部件420间的距离变化产生 所述第二电信号。如前所述,所述第一区域中的振动部件420形变程度较大,所述第二区域中的振动部件420形变程度较小。压电传感部件440可以仅设置于所述第一区域。为了提高空间利用率,尽可能降低振动传感器001的空间体积,电容传感部件640可以位于振动部件420的所述第二区域。即电容传感部件640的位置可以与配重块426的位置对齐,并覆盖所述配重块426对应的区域。即电容传感部件640可以设置于配重块426的正上方或正下方。
振动传感器001可以基于电信号的分布特点将压电传感部件440和电容传感部件640分布于空间内的不同区域,将压电传感部件440分布在所述第一电信号较强的区域,将电容传感部件640分布于第一电信号较弱第二电信号较强的区域,以提高振动传感器001中的空间利用率,减少空间浪费,同时可以提高振动传感器001的灵敏度。
以图1至图2作为示例性说明,所述第二区域可以包括所述腔体220的中心附近的预设范围内的区域。即所述第二区域可以包括配重块426所在位置对应的区域。所述第二区域可以基本覆盖配重块426的表面面积。所述第一区域可以包括靠近所述第二区域且围绕所述第二区域的周向区域以及靠近弹性层424与基座200的连接处的区域中的至少一个。压电传感部件440可以设置所述第一区域。电容传感部件640可以设置于所述第二区域。压电传感部件440可以围绕电容传感部件640的周向分布。另外,振动部件420在相对于基座200运动过程中,位于振动部件420的中心区域的位置的位移较大,配重块426所在位置的位移也较大。因此,所述第二区域可以包括振动部件420的中心区域。将电容传感部件640分布在振动部件420的所述中心区域或者配重块426所在位置对应的区域,可以获取更大的距离变化,从而提高所述第二电信号的输出电压。
电容传感部件640可以包括第一电容电极片642和第二电容电极片644。第一电容电极片642和第二电容电极片644可以相对设置。第一电容电极 片642可以附着在固定基板620靠近振动部件420的一侧。第一电容电极片642可以与固定基板620绝缘连接。即第一电容电极片642可以与固定基板620通过第三绝缘层203连接。第二电容电极片644可以附着在振动部件420靠近固定基板620的一侧。其中,第二电容电极片644的位置可以与配重块426的位置对齐,并覆盖所述配重块426对应的区域。所述压电传感部件440围绕第二电容电极片644的周向分布。第一电容电极片642和第二电容电极片644通过图案化刻蚀使其图形完全一致,以完全对应。
在一些实施例中,第一电容电极片642可以包括限位保护结构6421,位于第一电容电极片642上并向靠近振动部件420的一侧凸起。限位保护结构6421可以位于第一电容电极片642上的任意位置。限位保护结构6421可以起到限位保护作用,在受到较大冲击时限位保护结构6421可以限制振动部件420的振幅,避免振动剧烈而使器件(比如弹性层424)损坏。在一些实施例中,限位保护结构6421可以位于第一电容电极片642上与第二电容电极片644相对的位置,以防止第一电容电极片642和第二电容电极片644接触造成短路,防止第一电容电极片642和第二电容电极片644吸附粘结。在一些实施例中,限位保护结构可以是刚性的结构(例如,限位块),也可以是具有一定弹性的结构(例如,弹性软垫、缓冲悬臂梁或同时设置缓冲支撑臂和限位块等)。限位保护结构6421材料可以为聚酰亚胺(Polyimide)、派瑞林(Parylene)等高分子材料。
在一些实施例中,第一电容电极片642以及第二电容电极片644为导电材质结构。示例性的导电材质可以包括金属、合金材料、金属氧化物材料、石墨烯等,或其任意组合。在一些实施例中,金属与合金材料可以包括镍、铁、铅、铂、钛、铜、钼、锌,或其任意组合。在一些实施例中,合金材料可以包括铜锌合金、铜锡合金、铜镍硅合金、铜铬合金、铜银合金等,或其任意组合。在一些实施例中,金属氧化物材料可以包括RuO2、MnO2、PbO2、NiO等,或其任意组合。
在一些实施例中,电容传感部件640还可以包括第二连接端子646,与第二电容电极片644连接,以将所述第二电信号输出至外部处理电路。
如前所述,在一些实施例中,固定基板620可以同时位于压电系统400的上方和下方。图5示出了根据本说明书的实施例提供的一种振动传感器001的剖面图。如图5所示,固定基板620可以同时位于压电系统400的上方和下方。如图5所示,固定基板620可以包括上固定基板621和下固定基板622。第一电容电极片642可以包括第一上电容电极片6423和第一下电容电极片6424。第二电容电极片644可以包括第二上电容电极片6443和第二下电容电极片6444。
上固定基板621和下固定基板622可以分别与基座200固定连接,并分别位于振动部件420的两侧。比如,上固定基板621可以位于振动部件420远离配重块426的一侧,即上固定基板621位于振动部件420的上方。下固定基板622可以位于振动部件420靠近配重块426的一侧,下固定基板622位于振动部件420的下方。
第一上电容电极片6423可以附着在上固定基板621靠近振动部件420的一侧。第二上电容电极片6443可以附着在振动部件621靠近上固定基板621的一侧,并与第一上电容电极片6423相对设置。
第一下电容电极片6424可以附着在下固定基板622靠近振动部件的420一侧。第二下电容电极片6444可以附着在振动部件620靠近下固定基板622的一侧,并与第一下电容电极片6421相对设置。
当振动部件420基于基座200的振动产生所述目标位移时,振动部件420相对于上固定基板621和下固定基板622的距离同时发生变化。当振动部件420相对于上固定基板621的距离减小时,则相对于下固定基板622的距离增大。当振动部件420相对于上固定基板621的距离增大时,则相对于下固定基板622的距离减小。第一上电容电极片6423与第二上电容电极片6443采集振动部件420相对于上固定基板621的距离变化而产生的上 第二电信号。第一下电容电极片6421与第二下电容电极片6444采集振动部件420相对于下固定基板622的距离变化而产生的下第二电信号。所述第二电信号包括所述上第二电信号和所述下第二电信号。
第一上电容电极片6423上可以包括限位保护结构6421,位于第一上电容电极片6423上并向靠近振动部件420的一侧凸起。第一下电容电极片6424也可以包括限位保护结构6421,位于第一下电容电极片6424上并向靠近振动部件420的一侧凸起。
第二连接端子646将所述上第二电信号和所述下第二电信号输出至外部处理电路通过差分算法进行合成,以增加电容系统600输出的所述第二电信号,从而进一步提高振动传感器001的灵敏度。
本说明书还提供一种麦克风,所述麦克风可以包括壳体和本说明书提供的振动传感器001。振动传感器001可以安装在所述壳体中。所述壳体可以与基座200固定连接。所述壳体与基座200可以是一体结构,也可以是分体式结构,并通过固定连接方式连接在一起,比如,焊接、铆接、螺栓连接、粘接,等等。当所述壳体受到外力振动时(例如,人体说话时脸部的振动带动壳体振动),所述壳体振动带动基座200振动。由于振动部件420与所述壳体结构(或基座200)各自的属性不同,使得振动部件420与所述壳体结构(或基座200)之间无法保持完全一致的移动,从而产生相对运动,进而使振动部件420产生所述目标形变和所述目标位移。压电传感部件440和电容传感部件640将所述目标形变和所述目标位移转换为所述第一电信号和所述第二电信号。
在一些实施例中,所述麦克风还可以包括信号合成电路。所述信号合成电路同压电传感部件440和电容传感部件640连接,运行时基于所述第一电信号和所述第二电信号合成为第三电信号。所述第三电信号的信号强度大于所述第一电信号的信号强度和所述第二电信号的信号强度。在一些实施例中,所述信号合成电路还可以将所述上第二电信号和所述下第二电 信号合成为所述第二电信号。所述第二电信号的强度大于所述上第二电信号和所述下第二电信号。
仅作为示例性说明,本说明书描述的所述麦克风可以应用于各种电子产品。比如,耳机(例如,骨传导耳机或空气传导耳机、无线耳机、有线耳机)、智能眼镜、智能穿戴式设备、智能头盔、智能腕表等具有语音采集功能的设备。
综上所述,本说明书提供的振动传感器001和麦克风002,由压电系统400和电容系统600组成。压电系统400中的振动部件420在外界振动激励的作用下发生形变并相对于基座200上下运动。压电传感部件440采集基于所述目标形变产生的所述第一电信号。电容系统600以振动部件420作为电容系统600中的可动电容板,振动部件420相对于基座200上下运动时,振动部件420与固定基板620之间的距离随之变化,电容也随之变化。电容系统600在振动部件420和固定基板620上分别设置相对的第一电容电极片642和第二电容电极片644,采集电容系统600中的所述第二电信号,获取所述第二电信号的电压输出。振动传感器001将所述第一电信号和所述第二电信号输出至所述外部处理电路。所述外部处理电路对所述第一电信号以及所述第二电信号进行信号处理,以使所述第一电信号和所述第二电信号叠加,从而提高振动传感器001的输出电信号的整体电压,提高振动传感器001的灵敏度。同时,通过将压电传感部件440分布在所述第一电信号输出电压较高的位置,将电容传感部件640分布在所述第二电信号输出电压较高的位置,合理利用振动传感器001内部空间,避免空间浪费的同时提高振动传感器001的灵敏度。
振动传感器001中基座200、压电系统400以及电容系统600之间的连接关系可以通过比如焊接、铆接、卡接、螺栓等机械固定连接方式实现,也可以通过物理沉积(例如,物理气相沉积)或者化学沉积(例如,化学气相沉积)等沉积连接的方式实现。
图6示出了根据本说明书的实施例提供的一种振动传感器001的制作方法P100的流程图。所述方法P100中,通过沉积方式实现振动传感器001的制作。以图1至图2所示的振动传感器001为例,如图6所示,所述方法P100可以包括:
S120:制作基座200、振动部件420、压电传感部件440以及第二电容电极片644。
具体地,步骤S120可以是对由Si衬底构成的基座200与振动部件420的整体结构进行刻蚀。步骤S120可以包括在SOI硅片上表面依次沉积并刻蚀第二电容电极片644、第一压电电极层442、压电层224和第二压电电极层444,并在每一次沉积后作对应的图案化刻蚀,得到符合设计的电极与引线图案;刻蚀弹性层424至第一绝缘层201;在弹性层424表面沉积SiO 2绝缘层材料,并进行图案化刻蚀,抛光得到第二绝缘层202。
在一些实施例中,振动部件420还可以包括种子层(图1至图2中未示出),用于为其它层提供良好的生长表面结构体,种子层可以位于压电层441的表面。在一些实施例中,种子层的材料可以与压电层441的材料相同。例如,压电层441的材料为AlN时,种子层的材料也为AlN。在其他实施例中,种子层的材料也可以与压电层122的材料不同。
S140:制作固定基板620以及第一电容电极片642。
具体地,步骤S140可以包括在一块Si基底上依次沉积SiO 2层(第三绝缘层203)和多晶硅层;对所述多晶硅层进行图案化刻蚀得到第一电容电极片642;在所述多晶硅表面沉积并刻蚀高分子材料,得到限位保护结构6421;将固定基板620与第三绝缘层203结合,比如晶圆键合。
S160:制作第一连接端子446和第二连接端子646:
具体地,步骤S160可以包括对固定基板620进行图案化通孔刻蚀,得到第一连接端子446和第二连接端子646的安装位置;制作第一连接端子 446和第二连接端子646。
S180:制作腔体220。
具体地,步骤S180可以包括对基座200的Si衬底进行图案化刻蚀,得到腔体220及配重块426;对第一绝缘层201中的SiO 2进行刻蚀,从而释放弹性层424,得到弹性层424的自由端。
上述对本说明书特定实施例进行了描述。其他实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者是可能有利的。
综上所述,在阅读本详细公开内容之后,本领域技术人员可以明白,前述详细公开内容可以仅以示例的方式呈现,并且可以不是限制性的。尽管这里没有明确说明,本领域技术人员可以理解本说明书需求囊括对实施例的各种合理改变,改进和修改。这些改变,改进和修改旨在由本说明书提出,并且在本说明书的示例性实施例的精神和范围内。
此外,本说明书中的某些术语已被用于描述本说明书的实施例。例如,“一个实施例”,“实施例”和/或“一些实施例”意味着结合该实施例描述的特定特征,结构或特性可以包括在本说明书的至少一个实施例中。因此,可以强调并且应当理解,在本说明书的各个部分中对“实施例”或“一个实施例”或“替代实施例”的两个或更多个引用不一定都指代相同的实施例。此外,特定特征,结构或特性可以在本说明书的一个或多个实施例中适当地组合。
应当理解,在本说明书的实施例的前述描述中,为了帮助理解一个特征,出于简化本说明书的目的,本说明书将各种特征组合在单个实施例、附图或其描述中。然而,这并不是说这些特征的组合是必须的,本领域技 术人员在阅读本说明书的时候完全有可能将其中一部分特征提取出来作为单独的实施例来理解。也就是说,本说明书中的实施例也可以理解为多个次级实施例的整合。而每个次级实施例的内容在于少于单个前述公开实施例的所有特征的时候也是成立的。
本文引用的每个专利,专利申请,专利申请的出版物和其他材料,例如文章,书籍,说明书,出版物,文件,物品等,可以通过引用结合于此。用于所有目的的全部内容,除了与其相关的任何起诉文件历史,可能与本文件不一致或相冲突的任何相同的,或者任何可能对权利要求的最宽范围具有限制性影响的任何相同的起诉文件历史。现在或以后与本文件相关联。举例来说,如果在与任何所包含的材料相关联的术语的描述、定义和/或使用与本文档相关的术语、描述、定义和/或之间存在任何不一致或冲突时,使用本文件中的术语为准。
最后,应理解,本文公开的申请的实施方案是对本说明书的实施方案的原理的说明。其他修改后的实施例也在本说明书的范围内。因此,本说明书披露的实施例仅仅作为示例而非限制。本领域技术人员可以根据本说明书中的实施例采取替代配置来实现本说明书中的申请。因此,本说明书的实施例不限于申请中被精确地描述过的实施例。

Claims (17)

  1. 一种振动传感器,其特征在于,包括:
    基座;
    振动部件,与所述基座连接,并响应于所述基座振动产生目标位移和目标形变;
    压电传感部件,与所述振动部件连接,将所述目标形变转化为第一电信号;
    固定基板,与所述振动部件间隔相对设置;以及
    电容传感部件,与所述固定基板以及所述振动部件连接,并将所述目标位移引起的所述固定基板与所述振动部件间的距离变化转化为第二电信号。
  2. 如权利要求1所述的振动传感器,其特征在于,所述振动部件包括:
    弹性层,与所述基座连接,并响应于所述基座振动的激励产生所述目标形变;以及
    配重块,与所述弹性层连接,并基于所述目标形变产生所述目标位移。
  3. 如权利要求2所述的振动传感器,其特征在于,所述基座包括贯穿的腔体,所述振动部件中至少有一部分悬空于所述腔体中。
  4. 如权利要求3所述的振动传感器,其特征在于,所述弹性层包括:
    固定端,与所述基座固定连接;以及
    自由端,悬空于所述腔体中,
    其中,所述配重块与所述弹性层的所述自由端固定连接,悬空于所述腔体中。
  5. 如权利要求4所述的振动传感器,其特征在于,所述弹性层包括:
    多个弹性支撑梁,一端与所述基座固定连接,另一端与所述配重块连接悬空于所述腔体中。
  6. 如权利要求4所述的振动传感器,其特征在于,所述弹性层包括:
    悬膜结构,所述悬膜结构的周侧与所述基座固定连接,所述悬膜结构的中心区域与所述配重块连接悬空于所述腔体中。
  7. 如权利要求2所述的振动传感器,其特征在于,所述电容传感部件的位置与所述配重块的位置对齐,并覆盖所述配重块对应的区域。
  8. 如权利要求7所述的振动传感器,其特征在于,所述电容传感部件包括:
    第一电容电极片,附着在所述固定基板靠近所述振动部件的一侧;以及
    第二电容电极片,附着在所述振动部件靠近所述固定基板的一侧,与所述第一电容电极片相对设置。
  9. 如权利要求8所述的振动传感器,其特征在于,所述第二电容电极片的位置与所述配重块的位置对齐,并覆盖所述配重块所在的区域。
  10. 如权利要求8所述的振动传感器,其特征在于,所述第一电容电极片包括:
    限位保护结构,位于所述第一电容电极片上并向靠近所述振动部件的一侧凸起,限制所述振动部件的所述目标位移,避免所述第二电容电极片与所述第一电容电极片接触。
  11. 如权利要求8所述的振动传感器,其特征在于,所述固定基板包括上固定基板,位于所述振动部件远离所述配重块的一侧;
    所述第一电容电极片包括第一上电容电极片,附着在所述上固定基板靠近所述振动部件的一侧;以及
    所述第二电容电极片包括第二上电容电极片,附着在所述振动部件靠近所述上固定基板的一侧,与所述第一上电容电极片相对设置。
  12. 如权利要求8所述的振动传感器,其特征在于,所述固定基板还包括下固定基板,位于所述振动部件靠近所述配重块的一侧;
    所述第一电容电极片还包括第一下电容电极片,附着在所述下固定基板靠近所述振动部件的一侧;以及
    所述第二电容电极片还包括第二下电容电极片,附着在所述振动部件靠近所述下固定基板的一侧,与所述第一下电容电极片相对设置。
  13. 如权利要求7所述的振动传感器,其特征在于,所述压电传感部件位于以下区域中的至少一个:
    靠近所述配重块且围绕所述配重块的周向区域;以及
    靠近所述弹性层与所述基座的连接处的区域。
  14. 如权利要求13所述的振动传感器,其特征在于,所述压电传感部件包括:
    压电层,与所述基座固定连接,附着在所述弹性层的表面上,并基于所述目标形变产生电压。
  15. 如权利要求14所述的振动传感器,其特征在于,所述压电传感部件还包括:
    第一压电电极层以及第二压电电极层,分别分布于所述压电层的两侧表面,并将所述电压转化为所述第一电信号,所述第一压电电极层与所述第二压电电极层的位置对齐,并位于以下区域中的至少一个:
    靠近所述配重块且围绕所述配重块的周向区域;以及
    靠近所述弹性层与所述基座的连接处的区域。
  16. 如权利要求15所述的振动传感器,其特征在于,所述第一压电电极层包括至少一个第一压电电极片,所述第二压电电极层包括至少一个第二压电电极片,所述至少一个第一压电电极片中的每个与所述至少一个第二压电电极片中的至少一个位置对齐。
  17. 一种麦克风,其特征在于,包括:
    壳体;
    权利要求1-16中任一项所述的振动传感器,安装在所述壳体中,所述基座与所述壳体固定连接;以及
    信号合成电路,同所述压电传感部件和所述电容传感部件连接,运行时基于所述第一电信号和所述第二电信号合成为第三电信号,所述第三电信号的信号强度大于所述第一电信号的信号强度和所述第二电信号的信号强度。
PCT/CN2021/081083 2021-03-16 2021-03-16 振动传感器以及麦克风 WO2022193131A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180078571.5A CN116670470A (zh) 2021-03-16 2021-03-16 振动传感器以及麦克风
PCT/CN2021/081083 WO2022193131A1 (zh) 2021-03-16 2021-03-16 振动传感器以及麦克风
US18/200,798 US20230300536A1 (en) 2021-03-16 2023-05-23 Vibration sensor and microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081083 WO2022193131A1 (zh) 2021-03-16 2021-03-16 振动传感器以及麦克风

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/200,798 Continuation US20230300536A1 (en) 2021-03-16 2023-05-23 Vibration sensor and microphone

Publications (1)

Publication Number Publication Date
WO2022193131A1 true WO2022193131A1 (zh) 2022-09-22

Family

ID=83321789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081083 WO2022193131A1 (zh) 2021-03-16 2021-03-16 振动传感器以及麦克风

Country Status (3)

Country Link
US (1) US20230300536A1 (zh)
CN (1) CN116670470A (zh)
WO (1) WO2022193131A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754456A (zh) * 2009-11-24 2012-10-24 Med-El电气医疗器械有限公司 用于助听系统的可植入麦克风
WO2013027741A1 (ja) * 2011-08-23 2013-02-28 日本電気株式会社 圧電振動センサ
US20170156002A1 (en) * 2015-12-01 2017-06-01 Apple Inc. Integrated mems microphone and vibration sensor
CN107277724A (zh) * 2017-07-05 2017-10-20 杭州双弯月电子科技有限公司 一种可体感控制的压电陶瓷骨传导麦克风
CN111337119A (zh) * 2020-01-10 2020-06-26 武汉大学 一种高灵敏度的振动传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102754456A (zh) * 2009-11-24 2012-10-24 Med-El电气医疗器械有限公司 用于助听系统的可植入麦克风
WO2013027741A1 (ja) * 2011-08-23 2013-02-28 日本電気株式会社 圧電振動センサ
US20170156002A1 (en) * 2015-12-01 2017-06-01 Apple Inc. Integrated mems microphone and vibration sensor
CN107277724A (zh) * 2017-07-05 2017-10-20 杭州双弯月电子科技有限公司 一种可体感控制的压电陶瓷骨传导麦克风
CN111337119A (zh) * 2020-01-10 2020-06-26 武汉大学 一种高灵敏度的振动传感器

Also Published As

Publication number Publication date
US20230300536A1 (en) 2023-09-21
CN116670470A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
EP4050910A1 (en) Bone conduction microphone
US10433068B2 (en) MEMS acoustic transducer with combfingered electrodes and corresponding manufacturing process
US10343898B1 (en) MEMS microphone with tunable sensitivity
WO2016107975A1 (en) Piezoelectric mems transducer
US20230247352A1 (en) Bone conduction microphones
KR101758017B1 (ko) 피에조 멤스 마이크로폰 및 그 제조방법
WO2022193131A1 (zh) 振动传感器以及麦克风
CN216649989U (zh) 梳状电容式麦克风
CN114697822A (zh) 一种传声器装置
CN115086815A (zh) 振动传感器以及麦克风
CN216626050U (zh) 附加压电元件的麦克风
RU2802593C1 (ru) Микрофон костной проводимости
RU2809949C1 (ru) Звукопередающие устройства с костной проводимостью
RU2809760C1 (ru) Микрофоны с костной проводимостью
WO2023221069A1 (zh) 振动传感器以及麦克风
CN117135550A (zh) 振动传感器以及麦克风
TW202308406A (zh) 傳聲器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078571.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930727

Country of ref document: EP

Kind code of ref document: A1