WO2022190440A1 - Traveling device and unmanned transport vehicle including traveling device - Google Patents

Traveling device and unmanned transport vehicle including traveling device Download PDF

Info

Publication number
WO2022190440A1
WO2022190440A1 PCT/JP2021/035767 JP2021035767W WO2022190440A1 WO 2022190440 A1 WO2022190440 A1 WO 2022190440A1 JP 2021035767 W JP2021035767 W JP 2021035767W WO 2022190440 A1 WO2022190440 A1 WO 2022190440A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
wheels
traveling device
driving
driven
Prior art date
Application number
PCT/JP2021/035767
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 長末
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2022190440A1 publication Critical patent/WO2022190440A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/06Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with only three wheels

Definitions

  • the present invention relates to an omnidirectional traveling device that uses omni-wheels as drive wheels, and an unmanned guided vehicle equipped with the traveling device.
  • the traveling device disclosed in Utility Model Registration No. 3168451 (Patent Document 1 below) is known.
  • four driving wheels which are omni wheels, are arranged at equal intervals in the circumferential direction on the lower surface of a disk-shaped vehicle body.
  • Each omniwheel has a body wheel that rotates about an axle and circumferentially spaced barrel rollers attached to the periphery of the body wheel and rotatable about the axle.
  • Each omni wheel is arranged such that the axis of each axle passes through the center of the disk-shaped vehicle body.
  • Each omniwheel is independently driven to rotate about its respective axle by a different motor.
  • the traveling device can travel in an arbitrary direction obtained by synthesizing velocity vectors around the axle of each omni wheel.
  • each drive wheel is rotationally driven by a motor, a relatively large frictional force acts from the floor when starting or turning. This frictional force generally increases in proportion to the gravitational load acting on each drive wheel. Therefore, when the weight of the object mounted on the travel device increases, the frictional force from the floor surface acting on each driving wheel increases, and there is a problem that each driving wheel is likely to wear out and deteriorate.
  • the present invention has been made in view of the above circumstances, and is an omnidirectional mobile traveling device in which each driving wheel is composed of an omni-wheel.
  • the purpose is to suppress wear deterioration due to friction with the floor surface.
  • One aspect of the present invention for solving the above problems is at least three driving wheels provided on the vehicle body, circumferentially spaced around a predetermined vertically extending axis and each comprising an omni-wheel movable in all directions; and the at least three driving wheels.
  • a traveling device comprising a wheel drive unit that enables the vehicle body to move in all directions by independently driving the
  • the at least three drive wheels are arranged such that the axes of the respective axles pass through the predetermined axis in a plan view
  • a driven wheel comprising an omni-wheel that is provided inside or outside in a radial direction about the predetermined axis relative to each of the at least three drive wheels and is movable in all directions following the movement of the vehicle body.
  • a support arm provided for each of the at least three driving wheels and supporting each driving wheel and a driven wheel corresponding to each driving wheel as a set;
  • the support arms provided for the respective drive wheels are connected to the vehicle body so as to be capable of swinging up and down about the middle portion in the arm length direction as a fulcrum. and a traveling device configured to be biased toward the driven wheels between a set of the driving wheels and the driven wheels supported by a pair of wheels.
  • the vehicle main body is provided with at least three driving wheels arranged in a circumferential direction at intervals about a predetermined axis, and the driving wheels are arranged in a radial direction about the predetermined axis (hereinafter referred to as a vehicle inward/outward direction). ), a driven wheel is provided inside or outside each driving wheel.
  • Each drive wheel and a driven wheel corresponding to each drive wheel are supported by a support arm, and each support arm is connected to the vehicle body so as to be able to swing up and down about the middle part in the length direction of the arm as a fulcrum. .
  • the weight of the load (vehicle body, workpiece, etc.) mounted on the traveling device is distributed to the driving wheels and driven wheels via each support arm. Therefore, the load in the gravitational direction acting on each wheel can be reduced, and the size of the omni wheel used for each wheel can be reduced, thereby reducing the parts cost.
  • the weight of the mounted object is distributed to the driving wheels and the driven wheels through each support arm, and the swing center position of each support arm is supported by the support arm. Since a pair of driving wheels and driven wheels are biased toward the driven wheels, the load in the direction of gravity acting on each driving wheel is transferred to the driven wheels based on the principle of leverage (moment balance). It can be reduced more than the load in the gravitational direction that acts. Therefore, deterioration of the drive wheels, which are more likely to wear than the driven wheels, can be suppressed as much as possible.
  • one of the driving wheels and the driven wheels is an inner ring positioned inside in the vehicle inside-out direction, and the other is an outer ring positioned outside in the vehicle inside-out direction.
  • the size of the outer wheel is made smaller than the outer wheel (driving wheel) of a conventional traveling device having no driven wheels.
  • the thickness of the outer ring is generally reduced. Therefore, for example, if the thickness of the outer ring is reduced while maintaining the outer dimensions of the traveling device constant (while maintaining the position of the outer end surface of the outer ring on the vehicle outer side), the ground contact position of the omni wheel that constitutes the outer ring will move in the vehicle inner-outer direction in plan view. move outside the As a result, the distance from the predetermined axis of the traveling device to the ground contact position of the outer ring is increased, so that the outer ring is effective when the traveling device is turning and the running stability can be improved.
  • the support arms that support the drive wheels and the driven wheels are configured to be able to swing about their intermediate portions as fulcrums. Therefore, when the driving wheels and the driven wheels get over a step or protrusion on the floor surface, the support arm swings up and down about its intermediate portion as a fulcrum, and the posture of the vehicle body hardly changes. Therefore, it is possible to realize stable running without dropping loads such as works loaded on the vehicle body.
  • the wheel driving unit is provided for each of the at least three driving wheels, and has a motor connected to each driving wheel so as to be capable of power transmission.
  • the motors connected to the respective driving wheels are arranged inside the respective driven wheels corresponding to the respective driving wheels in the radial direction (inward and outward directions of the vehicle) about the predetermined axis. can be adopted.
  • each driving wheel and the motor connected to each driving wheel are arranged inside the driven wheel corresponding to each driving wheel in the vehicle inward/outward direction. Therefore, it is possible to reduce the moment of inertia of the traveling device about the predetermined axis by concentrating heavy objects such as motors inside the traveling device (that is, on the predetermined axis side) as much as possible. As a result, the traveling performance (particularly turning response) of the traveling device can be improved.
  • each of the motors is connected to each of the drive wheels with its output shaft being coaxial with the axle of each of the drive wheels.
  • the output shaft of the motor and the driving wheels are coaxially connected, so that the weight balance of the entire vehicle including the motor is improved, and the traveling stability of the traveling device is improved. can be improved.
  • the motors for driving the respective driving wheels are arranged inside the respective driving wheels in a radial direction (vehicle inward/outward direction) about the predetermined axis. be able to.
  • the moment of inertia of the travel device about the predetermined axis can be further reduced by arranging the motor, which is a heavy object, further inside the vehicle than the drive wheels.
  • the traveling performance (particularly turning response) of the traveling device can be improved as much as possible.
  • the motors for driving the respective driving wheels are arranged outside the respective driving wheels in a radial direction (vehicle inward/outward direction) about the predetermined axis. be able to.
  • the motor is arranged outside the vehicle for each drive wheel. Therefore, it is possible to prevent the motors from congregating in the central portion of the traveling device and degrading the maintainability thereof.
  • Another aspect of the present invention relates to an automatic guided vehicle that includes the traveling device and the vehicle body.
  • the load in the gravitational direction acting on each drive wheel can be reduced, and the omni wheel that constitutes each drive wheel can be made smaller.
  • the vehicle body can be arranged at a position as low as possible from the floor, and the center of gravity of the vehicle as a whole can be lowered. Therefore, it is possible to sufficiently secure the turning performance of an automatic guided vehicle that is frequently required to turn sharply in a narrow space in a factory.
  • each driving wheel and a driven wheel provided for each driving wheel can be vertically swung.
  • the load in the gravitational direction acting on each drive wheel is reduced by displacing the swing center position of the support arm toward the driven wheel between the drive wheel and the driven wheel. can be reduced.
  • FIG. 1 is an external perspective view showing an automatic guided vehicle equipped with a traveling device according to an embodiment.
  • FIG. 2 is a plan view of the automatic guided vehicle provided with the traveling device according to the embodiment, viewed from below.
  • FIG. 3 is an axial side view showing an omni-wheel constituting a drive wheel and a driven wheel of the travel device.
  • 4 is a view in the direction of arrow IV in FIG. 3.
  • FIG. 5 is a cross-sectional view taken along line VV of FIG. 6 is a view in the direction of arrow VI in FIG. 5.
  • FIG. FIG. 7 is a diagrammatic representation of the wheel support structure in FIG.
  • FIG. 8 is a comparison diagram comparing the traveling device according to the embodiment and the conventional traveling device.
  • FIG. 9 is a view corresponding to FIG. 7 showing Modification 1.
  • FIG. 10 is a view corresponding to FIG. 7 showing Modification 2.
  • FIG. 9 is a view corresponding to FIG. 7 showing Modification 1.
  • the automatic guided vehicle 1 of this example includes an omnidirectional traveling device 10, a support base 2 (an example of a vehicle main body) mounted on the traveling device 10, and the traveling device 10. and a control device (not shown) that controls running.
  • the support base 2 has a shape of an equilateral triangle with three chamfered tops in a plan view.
  • the unmanned guided vehicle 1 is driven and traveled by the travel device 10 with an article such as a work loaded on the upper surface of the support base 2 .
  • the traveling route of the automatic guided vehicle by the traveling device 10 may be a fixed route stored in advance in the ROM of the control device, or an automatically calculated route calculated by the control device based on AI search or the like. good too.
  • the travel device 10 includes a frame 11 and three travel wheel portions 12 attached to the bottom surface of the frame 11 .
  • the three traveling wheel portions 12 are arranged around the center axis C of the automatic guided vehicle 1 at equal intervals (at intervals of 60°) in the circumferential direction.
  • a central axis C (an example of a predetermined axis) is an imaginary axis that passes through the central position of the automatic guided vehicle 1 and extends vertically.
  • the central position of the automatic guided vehicle 1 is the centroid position of the support base 2 in a plan view and coincides with the center of gravity of the automatic guided vehicle 1 as a whole.
  • the radial direction centered on the central axis C is defined as the "vehicle inner-outer direction”.
  • the terms “inner side” and “outer side” mean the inner side and the outer side in the vehicle inward-outward direction.
  • the frame 11 includes a substantially equilateral triangular frame-shaped portion 11a formed along the outer edge of the support base 2, and three corners of the frame-shaped portion 11a extending radially from the center position of the automatic guided vehicle 1 in plan view. and a projecting plate portion 11c formed on the lower surface of each extending portion 11b for swingingly supporting a support arm 15 (described later) of the traveling wheel portion 12. ing.
  • the three running wheel portions 12 are arranged below the extension portions 11b of the frame 11, respectively.
  • Each running wheel portion 12 includes a driving wheel 13, a driven wheel 14 arranged outside the driving wheel 13 in the vehicle inward/outward direction, and a support arm 15 supporting the driving wheel 13 and the driven wheel 14 in a one-to-one pair.
  • the drive wheels 13 of each running wheel portion 12 are arranged on the same circumference around the central axis C at equal intervals in the circumferential direction, and the axis of each drive wheel 12 (the axis of the axle 19) is passes through the central axis C of the travel device 10 at .
  • each driven wheel 14 of each running wheel portion 12 are arranged on the same circumference outside each driving wheel 13 at equal intervals in the circumferential direction, and the axis of each driven wheel 14 (axis of axle 20) passes through the central axis C of the travel device 10 in plan view.
  • the driving wheels 13 and the driven wheels 14 are composed of omni wheels that are omnidirectional wheels.
  • the driving wheels 13 and the driven wheels 14 are composed of omni wheels of the same type having the same wheel diameter and wheel width.
  • FIG. Each figure shows an omni wheel of the drive wheels 13 .
  • the omni wheel of the driven wheel 14 can be easily understood by replacing the reference numeral 13 in the drawing with the reference numeral 14 and using the same suffixes a to h, so detailed description thereof will be omitted.
  • the omni wheel of the drive wheel 13 comprises a main body 13a having a central hole 13b through which the axle 19 is inserted, rotating bodies 13c, 13d and 13e provided on the right side of the main body 13a in FIG. It is composed of rotating bodies 13f, 13g and 13h provided.
  • the main body 13a has a disk-shaped base, and ribs are provided on the left and right sides of the base for supporting the rotating bodies 13c, 13d, 13e, 13f, 13g, and 13h so that they can rotate freely on a vertical plane. formed.
  • the rotating bodies 13c, 13d, 13e, 13f, 13g, and 13h each have a barrel shape with the same curvature, and are rotatably supported by respective support shafts, each of which is positioned in a vertical plane. It is supported by the rib portion.
  • the rotating bodies 13c, 13d, and 13e are arranged at equal intervals in the circumferential direction of the main body 13a, and the rotating bodies 13f, 13g, and 13h are similarly arranged at equal intervals in the circumferential direction of the main body 13a.
  • the bodies 13c, 13d, 13e and the rotating bodies 13f, 13g, 13h have a positional relationship in which the phases are shifted by 60° in the circumferential direction.
  • the outer surfaces of the rotating bodies 13c, 13d, and 13e are positioned on the same arc on the vertical plane including the supporting shafts. , the outer surfaces are located on the same arc.
  • the omniwheel of the drive wheel 13 can move in its direction of rotation by rotating about its axle 19. It can be slid in the horizontal direction intersecting the rotation direction of the axle 19 .
  • the support arm 15 is connected to a rectangular plate-like rocking plate portion 15a horizontally disposed under the extended portion 11b of the frame 11 and to the rocking plate portion 15a. It has an inner mounting plate portion 15b and an outer mounting plate portion 15c.
  • the rocking plate portion 15a extends along the vehicle inside-outside direction, and is supported by the projecting plate portion 11c on the lower surface of the frame 11 via the rocking pin 18. As shown in FIG.
  • the protruding plate portion 11c protrudes downward from the lower surface of the extending portion 11b with its plate width direction coinciding with the width direction of the extending portion 11b.
  • a U-shaped concave portion 11d that opens downward when viewed from the extending direction of the extending portion 11b (perpendicular to the paper surface of FIG. 6) is formed.
  • the rocking plate portion 15a of the support arm 15 is fitted into the concave portion 11d of the projecting plate portion 11c from below and supported by the projecting plate portion 11c via a pair of rocking pins 18 .
  • Each rocking pin 18 consists of a screw-fixed pin bolt with a male threaded portion formed in the axially intermediate portion.
  • Each rocking pin 18 is fixed through the walls on both sides of the concave portion 11d of the projecting plate portion 11c.
  • the tip of the swing pin 18 is inserted into a support hole (not shown) formed in both end surfaces of the swing plate portion 15a of the support arm 15 in the plate width direction.
  • the intermediate portion of the support arm 15 in the arm length direction is supported by a pair of swing pins 18 .
  • the support arm 15 can swing up and down along a vertical plane including the central axis C with the pair of swing pins 18 as fulcrums.
  • the arm length direction is the separation direction between the driving wheel 13 and the driven wheel 14, and coincides with the radial direction about the center axis C in this example.
  • the inner mounting plate portion 15b is a rectangular plate portion that hangs down from the inner edge of the rocking plate portion 15a in the vehicle inside-outside direction.
  • a motor 17 is fixed via a speed reducer 16 to the outer side surface (the right side surface in FIG. 5) of the inner mounting plate portion 15b.
  • the driving wheel 13 is arranged inside the inner mounting plate portion 15b (on the left side in FIG. 5), and the output shaft (not shown) of the speed reducer 16 passes through the inner mounting plate portion 15b to drive the driving wheel. 13 is connected to an axle 19 to rotate integrally.
  • the motor 17 (an example of a wheel drive unit) is arranged so that its output shaft is coaxial with the axle 19 of the drive wheel 13 .
  • the speed reducer 16 is configured by a coaxial speed reducer in which the input shaft and the output shaft are coaxially arranged.
  • the motor 17 may be arranged non-coaxially with respect to the axle 19 of the drive wheel 13 .
  • the speed reducer 16 may be composed of a non-coaxial speed reducer.
  • the outer mounting plate portion 15c is a rectangular plate portion that hangs down from the outer edge of the rocking plate portion 15a in the vehicle inward/outward direction.
  • a driven wheel 14 is arranged outside the outer mounting plate portion 15c, and an axle 20 of the driven wheel 14 is rotatably supported by the outer mounting plate portion 15c via a bearing (not shown).
  • FIG. 7 is a diagrammatic view of the support structure of each wheel 13, 14 in FIG.
  • the three extensions 11b and the support arm 15 are indicated by thick lines, and the swing pins 18 are indicated by white circles.
  • the rocking pin 18 supports the middle portion of the rocking plate portion 15a of the support arm 15 in the longitudinal direction.
  • the support position of the support arm 15 by the swing pin 18, that is, the swing center position of the support arm 15 is located between a set of the drive wheel 13 and the driven wheel 14 supported by the support arm 15, toward the driven wheel 14 side. deviated. This can also be read from FIG. 5 described above.
  • L1:L2 is 3:1 in this example, the ratio is not limited to this, and may be any ratio as long as it satisfies the relationship of L1>L2.
  • the rotational speed of each drive wheel 13 is adjusted by the three motors 17 to the following equation (1) under the control of the control device (not shown).
  • omnidirectional travel control including on-the-spot turning, is achieved by controlling independently based on the FIG. 7 shows the variables in equation (1) for easy understanding.
  • v1, v2, and v3 on the left side of equation (1) are the rotational speeds of the drive wheels 13, and Vx and Vy on the right side are the speed in the X-axis direction and the speed in the Y-axis direction of the traveling device 10, respectively.
  • is the rotational speed of the travel device 10 around the central axis C
  • R is the distance from the central axis C to each drive wheel 13 .
  • the weight of the mounted objects acts on the drive wheels 13 and the driven wheels 14 as a load in the direction of gravity. If the weight of this mounted object is large, an excessive load is applied to each driving wheel 13, and wear deterioration of each driving wheel 13 progresses rapidly. Further, if the load capacity of each drive wheel 13 is increased in order to cope with the weight increase of the mounted object, there is a problem that the size of the omni wheel of each drive wheel 13 increases, resulting in an increase in parts cost.
  • each driving wheel 13 and each corresponding driven wheel 14 are supported as a set by the support arm 15, and furthermore, the intermediate portion of the support arm 15 in the longitudinal direction is supported. are supported so as to be capable of swinging up and down around a swing pin 18, and the axial position of the swing pin 18, which is the center position of swing of the support arm 15, is aligned with the pair of drive wheels 13 supported by the support arm 15 and the driven wheels 13 supported by the support arm 15. It is made to deviate to the driven wheel 14 side between the wheels 14. - ⁇
  • the weight of the load mounted on the travel device 10 is distributed to the drive wheels 13 and the driven wheels 14 via each support arm 15 . Therefore, the load in the gravitational direction acting on each wheel 13, 14 can be reduced, and by extension, the size of the omni wheel used for each wheel 13, 14 can be reduced, thereby reducing the parts cost. .
  • the swing center position of the support arm 15 (the position of the swing pin 18) is deviated toward the driven wheel 14 between the pair of drive wheels 13 and driven wheels 14 supported by the support arm 15. Therefore, the load acting on each drive wheel 13 in the direction of gravity can be reduced more than the load acting on each driven wheel 14 in the direction of gravity based on the principle of leverage (moment balance). Therefore, it is possible to reliably prevent deterioration of the driving wheels 13 which are more likely to wear than the driven wheels 14 .
  • FIG. 8 is a comparison diagram comparing the wheel configurations of the traveling device 10 according to the present embodiment and the conventional traveling device 101 having only the drive wheels 102 .
  • the conventional traveling device 101 having only the drive wheels 102 .
  • one of the three drive wheels 13 is enlarged for comparison with the conventional configuration, but the same applies to the other two.
  • the omni-wheels used for the drive wheels 13 and the driven wheels 14 are much smaller than the omni-wheels used for the drive wheels 102 of the conventional configuration. It can be seen that
  • the position P1 of the outer end surface of the driven wheel 14 cannot be freely changed because it is determined based on design requirements. Therefore, even if the wheel structure of the present embodiment is employed, the position P1 of the outer end surface of the driven wheel 14, which is the outer ring, is maintained at the position of the outer end surface of the drive wheel 102 of the conventional travel device 101. On the other hand, the thickness of the driven wheel 14, which is the outer ring, is thinner than that of the drive wheel 102 of the traveling device 101 of the conventional form, corresponding to the reduced wheel size.
  • the outer contact position P2 of the driven wheel 14 (the contact position of the outer wheel in the axial direction of the omni wheel) is the outer contact position of the drive wheel 102 in the conventional traveling device 101. As compared with the grounded position P3, it moves outward by a predetermined amount ⁇ . Therefore, when the traveling device 10 turns, etc., each driven wheel 14 can be grounded at a position as far as possible from the center axis C of the traveling device 10, so that each driven wheel 14 can be effectively applied. Therefore, the running stability of the running device 10 (especially running stability during turning) can be improved.
  • the support arm 15 swings up and down about its intermediate portion as a fulcrum, thereby moving the support base. 2 posture can be maintained horizontally. Therefore, it is possible to realize stable vehicle running without dropping a load such as a work loaded on the support base 2 .
  • the three driving wheels 13 and the motors 17 connected to the driving wheels 13 are arranged in the radial direction (inward and outward directions of the vehicle) about the center axis C. It is arranged inside each driven wheel 14 corresponding to each driving wheel 13 .
  • each motor 17 is connected to each drive wheel 13 via a speed reducer 16 with its output shaft being coaxial with the axle 19 of each drive wheel 13 .
  • the output shaft of the motor 17 and the axle 19 of each driving wheel 13 are coaxially connected, so that the weight balance of the traveling device 10 as a whole including the motor 17 is improved, and the traveling device 10 can improve the running stability of
  • the motors 17 that drive the respective driving wheels 13 are arranged outside the respective driving wheels 13 in the radial direction (inward and outward directions of the vehicle) about the central axis C. ing.
  • the motors 17 are arranged outside the drive wheels 13, it is possible to prevent the motors 17 from being concentrated in the central part of the traveling device 10 and deteriorating the maintainability thereof.
  • the automatic guided vehicle 1 of this embodiment includes the travel device 10 and the support base 2 .
  • the load in the gravitational direction acting on each drive wheel 13 can be reduced, and the omni wheel that constitutes each drive wheel 13 can be made smaller.
  • the vehicle height of the automatic guided vehicle 1 can be lowered, and the center of gravity of the entire vehicle can be lowered. Therefore, it is possible to sufficiently secure the turning performance of the automatic guided vehicle 1 that is required to turn abruptly in a narrow space in the factory.
  • FIG. 9 is a view corresponding to FIG. 7 showing Modification 1 of the embodiment.
  • the arrangement position of the motor 17 with respect to the driving wheels 13 is different from that in the above-described embodiment.
  • symbol is attached
  • the motor 17 and the speed reducer 16 that drive the drive wheels 13 are arranged inside the drive wheels 13 in the radial direction (inward and outward directions of the vehicle) about the center axis C. ing.
  • the driving wheel 13 and the driven wheel 14 are paired one-to-one and supported by the support arm 15, and the swing center position thereof is shifted toward the driven wheel 14 side. Therefore, it is possible to obtain the same effects as those of the above-described embodiment.
  • the traveling performance (particularly turning response, etc.) of the traveling device 10 can be improved as much as possible.
  • FIG. 10 is a view corresponding to FIG. 7 showing Modification 2 of the embodiment.
  • the positional relationship between the driving wheels 13 and the driven wheels 14 is different from that in the above embodiment.
  • the driven wheels 14 are arranged outside the driving wheels 13 in the radial direction (vehicle inner/outer direction) centering on the central axis C of the travel device 10.
  • the driven wheels 14 are arranged inside the driving wheels 13 in the radial direction. That is, in this modified example, the driving wheel 13 is an outer ring positioned on the outer side in the vehicle inward/outward direction, and the driven wheel 14 is an inner ring positioned on the inner side in the vehicle inward/outward direction.
  • the support position of the support arm 15 by the swing pin 18 is offset between the driving wheel 13 and the driven wheel 14 toward the driven wheel 14 side (inward in the vehicle inward/outward direction in this modification) as in the above-described embodiment. is doing.
  • the driving wheel 13 and the driven wheel 14 are paired one-to-one and supported by the support arm 15, and the swing center position thereof is shifted toward the driven wheel 14 side. Therefore, it is possible to obtain the same effects as those of the above-described embodiment.
  • each driving wheel 13 outside each driven wheel 14 the position where the gripping force between each driving wheel 13 and the floor surface is generated can be kept away from the central axis C of the travel device 10 as much as possible. . Therefore, when the traveling device 10 turns, the running stability of the traveling device 10 can be improved as much as possible by allowing the driving wheels 13 on the outside to step on.
  • the traveling device 10 is mounted on the automatic guided vehicle 1
  • the present invention is not limited to this, and may be mounted on a vehicle operated by a person, for example.
  • the driving wheels 13 and the driven wheels 14 are composed of omni wheels having the same size and shape, but this is not the only option. That is, when the swing center position of the support arm 15 is displaced toward the driven wheel 14 as in the above embodiment, the load acting on the driving wheel 13 in the direction of gravity acts on the driven wheel 14. less than the directional load. Therefore, for the driving wheels 13, omni wheels that are smaller than the driven wheels 14 may be used. As a result, a sufficient space for arranging the motor 17 and the speed reducer 16 can be secured around the drive wheel 13 . In addition, since the driving wheels 13 are replaced more frequently due to wear than the driven wheels 14, the maintenance cost of the traveling device 10 can be reduced by reducing the size of the driving wheels 13, which are frequently replaced, and reducing the cost thereof. can be reduced.
  • the travel device 10 includes the frame 11, and the support arm 15 is supported by the support base 2 (vehicle body) via the frame 11, but it is not limited to this.
  • the frame 11 may be eliminated and the support arm 15 may be directly supported on the lower surface of the support table 2.
  • the driving wheels 13 and the driven wheels 14 are arranged in two rows concentrically with an interval in the radial direction around the central axis C of the travel device 10.
  • the number of rows of the driven wheels 14 may be increased to form three or more rows.
  • the motor 17 is connected to the drive wheels 13 via the speed reducer 16, but this is not the only option. You may make it Also, the motor 17 is not limited to an electric motor, and may be configured by, for example, a hydraulic motor.
  • the predetermined axis is the central axis C
  • the support arm 15 has a rectangular plate shape extending in the vehicle interior and exterior directions, but is not limited to this. good. Regardless of the shape of the support arm 15, the swing center position may be set at an intermediate portion in the arm length direction (an intermediate portion between the drive wheel 13 and the driven wheel 14 in the support arm 15).

Abstract

A traveling device (10) has at least three drive wheels (13). The at least three drive wheels (13) are arranged such that the axis of the axle (19) of each passes through a prescribed axis (C) in planar view. The traveling device (10) comprises: driven wheels (14) composed of an omni wheel and provided on the radial-direction inner side or outer side centering around the prescribed axis (C) with respect to each of the at least three drive wheels (13); and support arms (15) that support each of the drive wheels (13) and the respective driven wheels (14) corresponding thereto as sets. The support arms (15) are connected to a vehicle body (2) so as to be able to swing up and down with the arm length-direction middle section as the fulcrum, and the swinging-center position of the support arms (15) is displaced toward the driven wheel (14) side.

Description

走行装置及び該走行装置を備えた無人搬送車Traveling device and automatic guided vehicle equipped with the traveling device
 本発明は、駆動車輪にオムニホイールを使用した全方位移動型の走行装置、及び該走行装置を備えた無人搬送車に関する。 The present invention relates to an omnidirectional traveling device that uses omni-wheels as drive wheels, and an unmanned guided vehicle equipped with the traveling device.
 従来、上述した全方位移動型の走行装置の一例として、実用新案登録第3168451号(下記特許文献1)に開示された走行装置が知られている。この全方位移動型の走行装置では、オムニホイールからなる四つの駆動車輪が、円板状の車両本体の下面に周方向に等間隔に配置されている。各オムニホイールは、車軸回りに回転する本体ホイールと、本体ホイールの周縁部に取付けられ、周方向に間隔を空けて配置されるとともに車軸方向に回転可能な樽型ローラとを有している。各オムニホイールは、それぞれの車軸の軸線が、円板状の車両本体の中心を通るように配置されている。各オムニホイールは、異なるモータによりそれぞれの車軸回りに独立に回転駆動される。そして、前記走行装置は、各オムニホイールの車軸回りの速度ベクトルを合成した任意の方向に走行可能になっている。 Conventionally, as an example of the above-described omnidirectional traveling device, the traveling device disclosed in Utility Model Registration No. 3168451 (Patent Document 1 below) is known. In this omnidirectional traveling device, four driving wheels, which are omni wheels, are arranged at equal intervals in the circumferential direction on the lower surface of a disk-shaped vehicle body. Each omniwheel has a body wheel that rotates about an axle and circumferentially spaced barrel rollers attached to the periphery of the body wheel and rotatable about the axle. Each omni wheel is arranged such that the axis of each axle passes through the center of the disk-shaped vehicle body. Each omniwheel is independently driven to rotate about its respective axle by a different motor. The traveling device can travel in an arbitrary direction obtained by synthesizing velocity vectors around the axle of each omni wheel.
実用新案登録第3168451号公報Utility Model Registration No. 3168451
 ところで、特許文献1に示す走行装置において、搭載物(車両本体やワーク等の積載物)の重量を増加させると、各駆動車輪に作用する重力方向の荷重が増加する。この荷重の増加に対応するためには、各駆動車輪を構成するオムニホイールのサイズを大型化して各駆動車輪の耐荷重を上げる必要がある。しかし、オムニホイールは、通常のキャスタ車輪等に比べて特殊な構造を有しているので、大型化すると特注品になるケースが多く、通常の車輪を大型化する場合に比べてコストデメリットが大きいという問題がある。 By the way, in the traveling device shown in Patent Document 1, if the weight of the mounted object (loaded object such as a vehicle body and a work) is increased, the load in the direction of gravity acting on each driving wheel increases. In order to cope with this increase in load, it is necessary to increase the size of the omni wheel that constitutes each drive wheel to increase the load capacity of each drive wheel. However, omni wheels have a special structure compared to ordinary caster wheels, etc., so if they are made larger, they are often made to order. There is a problem.
 また、各駆動車輪は、モータにより回転駆動されるため発進時や旋回時等に床面から比較的大きな摩擦力が作用する。この摩擦力は、通常、各駆動車輪に作用する重力方向の荷重に比例して増加する。したがって、走行装置の搭載物の重量が増加すると、各駆動車輪に作用する床面からの摩擦力が増加して、各駆動車輪の摩耗劣化が生じ易くなるという問題がある。 In addition, since each drive wheel is rotationally driven by a motor, a relatively large frictional force acts from the floor when starting or turning. This frictional force generally increases in proportion to the gravitational load acting on each drive wheel. Therefore, when the weight of the object mounted on the travel device increases, the frictional force from the floor surface acting on each driving wheel increases, and there is a problem that each driving wheel is likely to wear out and deteriorate.
 本発明は、以上の実情に鑑みてなされたものであって、各駆動車輪がオムニホイールにより構成された全方位移動型の走行装置において、各駆動車輪の小型化を図るとともに、各駆動車輪の床面との摩擦による摩耗劣化を抑制することを、その目的とする。 The present invention has been made in view of the above circumstances, and is an omnidirectional mobile traveling device in which each driving wheel is composed of an omni-wheel. The purpose is to suppress wear deterioration due to friction with the floor surface.
 前記課題を解決するための本発明の一局面は、
 車両本体に設けられ、鉛直に延びる所定軸線を中心として周方向に間隔を空けて配置されるとともにそれぞれが全方位に移動可能なオムニホイールからなる少なくとも三つの駆動車輪と、該少なくとも三つの駆動車輪をそれぞれ独立に駆動することで、前記車両本体を全方位へ移動可能にする車輪駆動部とを備えた走行装置であって、
 前記少なくとも三つの駆動車輪は、それぞれの車軸の軸線が平面視で前記所定軸線を通るように配置されており、
 前記少なくとも三つの駆動車輪のそれぞれに対して、前記所定軸線を中心とする径方向の内側又は外側に設けられ、前記車両本体の移動に従動して全方位に移動可能なオムニホイールからなる従動車輪と、
 前記少なくとも三つの駆動車輪のそれぞれに対して設けられ、該各駆動車輪と該各駆動車輪に対応する従動車輪とを一組として支持する支持アームとを備え、
 それぞれの前記駆動車輪に対して設けられる前記支持アームは、アーム長さ方向の中間部を支点に上下に揺動可能に前記車両本体に接続されていて、その揺動中心位置が、該支持アームに支持された一組の前記駆動車輪及び前記従動車輪の間において該従動車輪側に偏位するように構成されている走行装置に係る。
One aspect of the present invention for solving the above problems is
at least three driving wheels provided on the vehicle body, circumferentially spaced around a predetermined vertically extending axis and each comprising an omni-wheel movable in all directions; and the at least three driving wheels. A traveling device comprising a wheel drive unit that enables the vehicle body to move in all directions by independently driving the
The at least three drive wheels are arranged such that the axes of the respective axles pass through the predetermined axis in a plan view,
A driven wheel comprising an omni-wheel that is provided inside or outside in a radial direction about the predetermined axis relative to each of the at least three drive wheels and is movable in all directions following the movement of the vehicle body. When,
a support arm provided for each of the at least three driving wheels and supporting each driving wheel and a driven wheel corresponding to each driving wheel as a set;
The support arms provided for the respective drive wheels are connected to the vehicle body so as to be capable of swinging up and down about the middle portion in the arm length direction as a fulcrum. and a traveling device configured to be biased toward the driven wheels between a set of the driving wheels and the driven wheels supported by a pair of wheels.
 この構成によれば、車両本体には、所定軸線を中心として周方向に間隔を空けて並ぶ少なくとも三つの駆動車輪が設けられており、前記所定軸線を中心とする径方向(以下、車両内外方向という)において各駆動車輪の内側又は外側には、従動車輪が設けられている。各駆動車輪と各駆動車輪に対応する従動車輪とは支持アームに支持されており、各支持アームは、アーム長さ方向の中間部を支点に上下に揺動可能に車両本体に接続されている。 According to this configuration, the vehicle main body is provided with at least three driving wheels arranged in a circumferential direction at intervals about a predetermined axis, and the driving wheels are arranged in a radial direction about the predetermined axis (hereinafter referred to as a vehicle inward/outward direction). ), a driven wheel is provided inside or outside each driving wheel. Each drive wheel and a driven wheel corresponding to each drive wheel are supported by a support arm, and each support arm is connected to the vehicle body so as to be able to swing up and down about the middle part in the length direction of the arm as a fulcrum. .
 したがって、走行装置に搭載される搭載物(車両本体やワーク等の積載物)の重量は、各支持アームを介して駆動車輪及び従動車輪に分配して作用する。よって、各車輪に作用する重力方向の荷重を低減することができ、延いては、各車輪に使用されるオムニホイールの小型化を図って部品コストを低減することができる。 Therefore, the weight of the load (vehicle body, workpiece, etc.) mounted on the traveling device is distributed to the driving wheels and driven wheels via each support arm. Therefore, the load in the gravitational direction acting on each wheel can be reduced, and the size of the omni wheel used for each wheel can be reduced, thereby reducing the parts cost.
 また、前記走行装置では、搭載物の重量が各支持アームを介して駆動車輪及び従動車輪に分配して作用するばかりでなく、各支持アームの揺動中心位置が、該支持アームに支持された一組の駆動車輪及び従動車輪の間において該従動車輪側に偏位しているので、梃子の原理(モーメントの釣り合い)に基づいて、各駆動車輪に作用する重力方向の荷重を、従動車輪に作用する重力方向の荷重よりも低減することができる。よって、従動車輪に比べて摩耗し易い駆動車輪の劣化を可及的に抑制することができる。 In addition, in the traveling device, the weight of the mounted object is distributed to the driving wheels and the driven wheels through each support arm, and the swing center position of each support arm is supported by the support arm. Since a pair of driving wheels and driven wheels are biased toward the driven wheels, the load in the direction of gravity acting on each driving wheel is transferred to the driven wheels based on the principle of leverage (moment balance). It can be reduced more than the load in the gravitational direction that acts. Therefore, deterioration of the drive wheels, which are more likely to wear than the driven wheels, can be suppressed as much as possible.
 また、前記走行装置では、駆動車輪と従動車輪とのいずれか一方が、車両内外方向の内側に位置する内輪とされ、他方が車両内外方向の外側に位置する外輪とされる。いずれの場合であっても、外輪のサイズは、従動車輪を設ない従来の走行装置の外輪(駆動車輪)に比べて小型化される。外輪のサイズが小型化されると、通常、外輪の厚みは薄くなる。したがって、例えば走行装置の外形寸法を一定に維持したまま(外輪の車両外側端面の位置を維持したまま)外輪の厚みを薄くすると、外輪を構成するオムニホイールの接地位置が平面視で車両内外方向の外側に移動する。この結果、走行装置の所定軸線から外輪の接地位置までの距離が増加するので、走行装置の旋回時等に外輪の踏ん張りが効いて走行安定性を向上させることができる。 In addition, in the traveling device, one of the driving wheels and the driven wheels is an inner ring positioned inside in the vehicle inside-out direction, and the other is an outer ring positioned outside in the vehicle inside-out direction. In either case, the size of the outer wheel is made smaller than the outer wheel (driving wheel) of a conventional traveling device having no driven wheels. As the size of the outer ring is reduced, the thickness of the outer ring is generally reduced. Therefore, for example, if the thickness of the outer ring is reduced while maintaining the outer dimensions of the traveling device constant (while maintaining the position of the outer end surface of the outer ring on the vehicle outer side), the ground contact position of the omni wheel that constitutes the outer ring will move in the vehicle inner-outer direction in plan view. move outside the As a result, the distance from the predetermined axis of the traveling device to the ground contact position of the outer ring is increased, so that the outer ring is effective when the traveling device is turning and the running stability can be improved.
 また、前記走行装置では、駆動車輪及び従動車輪を支持する支持アームがその中間部を支点に揺動可能に構成されている。したがって、駆動車輪及び従動車輪が床面上の段差や凸部を乗り越える際には、前記支持アームがその中間部を支点に上下に揺動して、車両本体の姿勢は殆ど変化しない。したがって、車両本体に積載したワーク等の積載物を落下させることなく安定した走行を実現することができる。 In addition, in the travel device, the support arms that support the drive wheels and the driven wheels are configured to be able to swing about their intermediate portions as fulcrums. Therefore, when the driving wheels and the driven wheels get over a step or protrusion on the floor surface, the support arm swings up and down about its intermediate portion as a fulcrum, and the posture of the vehicle body hardly changes. Therefore, it is possible to realize stable running without dropping loads such as works loaded on the vehicle body.
 本発明に係る走行装置において、前記車輪駆動部は、前記少なくとも三つの駆動車輪のそれぞれに対して設けられ、該各駆動車輪に動力伝達可能に接続されたモータを有し、前記各駆動車輪と、該各駆動車輪に接続されたモータとは、前記所定軸線を中心とする径方向(車両内外方向)において、該各駆動車輪に対応する前記各従動車輪よりも内側に配置されている構成を採用することができる。 In the traveling device according to the present invention, the wheel driving unit is provided for each of the at least three driving wheels, and has a motor connected to each driving wheel so as to be capable of power transmission. , the motors connected to the respective driving wheels are arranged inside the respective driven wheels corresponding to the respective driving wheels in the radial direction (inward and outward directions of the vehicle) about the predetermined axis. can be adopted.
 この構成の走行装置によれば、各駆動車輪と各駆動車輪に接続されるモータとが、各駆動車輪に対応する従動車輪よりも車両内外方向の内側に配置されている。したがって、モータ等の重量物を出来る限り走行装置の内側(つまり前記所定軸線側)に集約して、走行装置の前記所定軸線回りの慣性モーメントを低減することができる。これにより、走行装置の走行性能(特に旋回応答性)を向上させることができる。 According to the traveling device with this configuration, each driving wheel and the motor connected to each driving wheel are arranged inside the driven wheel corresponding to each driving wheel in the vehicle inward/outward direction. Therefore, it is possible to reduce the moment of inertia of the traveling device about the predetermined axis by concentrating heavy objects such as motors inside the traveling device (that is, on the predetermined axis side) as much as possible. As a result, the traveling performance (particularly turning response) of the traveling device can be improved.
 本発明に係る走行装置において、前記各モータは、出力軸が前記各駆動車輪の車軸に対して同軸になる状態で該各駆動車輪に接続されている構成を採用することができる。 In the traveling device according to the present invention, it is possible to employ a configuration in which each of the motors is connected to each of the drive wheels with its output shaft being coaxial with the axle of each of the drive wheels.
 この構成の走行装置によれば、モータの出力軸と各駆動車輪とが同軸に接続されるので、モータを含む車両全体の重量バランスを向上させて、延いては、走行装置の走行安定性を向上させることができる。 According to the traveling device of this configuration, the output shaft of the motor and the driving wheels are coaxially connected, so that the weight balance of the entire vehicle including the motor is improved, and the traveling stability of the traveling device is improved. can be improved.
 本発明に係る走行装置において、前記各駆動車輪を駆動するモータは、前記所定軸線を中心とする径方向(車両内外方向)において、該各駆動車輪よりも内側に配置されている構成を採用することができる。 In the traveling apparatus according to the present invention, the motors for driving the respective driving wheels are arranged inside the respective driving wheels in a radial direction (vehicle inward/outward direction) about the predetermined axis. be able to.
 この構成の走行装置によれば、重量物であるモータを駆動車輪よりもさら車両内側に配置することで、走行装置の前記所定軸線回りの慣性モーメントをより一層低減することができる。延いては、走行装置の走行性能(特に旋回応答性)を可及的に向上させることができる。 According to the travel device with this configuration, the moment of inertia of the travel device about the predetermined axis can be further reduced by arranging the motor, which is a heavy object, further inside the vehicle than the drive wheels. As a result, the traveling performance (particularly turning response) of the traveling device can be improved as much as possible.
 本発明に係る走行装置において、前記各駆動車輪を駆動するモータは、前記所定軸線を中心とする径方向(車両内外方向)において、該各駆動車輪よりも外側に配置されている構成を採用することができる。 In the traveling apparatus according to the present invention, the motors for driving the respective driving wheels are arranged outside the respective driving wheels in a radial direction (vehicle inward/outward direction) about the predetermined axis. be able to.
 この構成の走行装置によれば、各駆動車輪に対してモータが車両外側に配置されている。したがって、モータが走行装置の中心部に密集してそのメンテナンス性が低下するのを防止することができる。 According to the travel device with this configuration, the motor is arranged outside the vehicle for each drive wheel. Therefore, it is possible to prevent the motors from congregating in the central portion of the traveling device and degrading the maintainability thereof.
 本発明の他の局面は、前記走行装置と、前記車両本体とを備えた無人搬送車に係る。 Another aspect of the present invention relates to an automatic guided vehicle that includes the traveling device and the vehicle body.
 本発明の無人搬送車によれば、各駆動車輪に作用する重力方向の荷重を低減して、各駆動車輪を構成するオムニホイールを小型化することができる。これにより、車両本体を床面から極力低い位置に配置して車両全体を低重心化することができる。よって、工場内の狭いスペースで急な旋回動作が頻繁に要求される無人搬送車において、その旋回性能を十分に確保することができる。 According to the automatic guided vehicle of the present invention, the load in the gravitational direction acting on each drive wheel can be reduced, and the omni wheel that constitutes each drive wheel can be made smaller. As a result, the vehicle body can be arranged at a position as low as possible from the floor, and the center of gravity of the vehicle as a whole can be lowered. Therefore, it is possible to sufficiently secure the turning performance of an automatic guided vehicle that is frequently required to turn sharply in a narrow space in a factory.
 本発明によれば、各駆動車輪がオムニホイールにより構成された全方位移動型の走行装置において、各駆動車輪と該各駆動車輪のそれぞれに対して設けられた従動車輪とを上下に揺動可能な支持アームに支持させるとともに、該支持アームの揺動中心位置を該駆動車輪と従動車輪との間において従動車輪側に偏位させるようにしたことで、各駆動車輪に作用する重力方向の荷重を低減することができる。これにより、各駆動車輪の小型化を図るとともに、各駆動車輪の床面との摩擦による摩耗劣化を抑制することが可能となる。 According to the present invention, in an omnidirectional traveling device in which each driving wheel is composed of an omni-wheel, each driving wheel and a driven wheel provided for each driving wheel can be vertically swung. The load in the gravitational direction acting on each drive wheel is reduced by displacing the swing center position of the support arm toward the driven wheel between the drive wheel and the driven wheel. can be reduced. As a result, it is possible to reduce the size of each drive wheel and suppress wear and deterioration due to friction between each drive wheel and the floor surface.
図1は、実施形態に係る走行装置を備えた無人搬送車を示す外観斜視図である。FIG. 1 is an external perspective view showing an automatic guided vehicle equipped with a traveling device according to an embodiment. 図2は、実施形態に係る走行装置を備えた無人搬送車を下側から見た平面図である。FIG. 2 is a plan view of the automatic guided vehicle provided with the traveling device according to the embodiment, viewed from below. 図3は、走行装置の駆動車輪及び従動車輪を構成するオムニホイールを示す軸方向から見た側面図である。FIG. 3 is an axial side view showing an omni-wheel constituting a drive wheel and a driven wheel of the travel device. 図4は、図3のIV方向矢視図である。4 is a view in the direction of arrow IV in FIG. 3. FIG. 図5は、図1のV-V線断面図であるFIG. 5 is a cross-sectional view taken along line VV of FIG. 図6は、図5のVI方向矢視図である。6 is a view in the direction of arrow VI in FIG. 5. FIG. 図7は、図2における車輪の支持構造を線図化した図である。FIG. 7 is a diagrammatic representation of the wheel support structure in FIG. 図8は、実施形態に係る走行装置と、従来形態に係る走行装置とを比較した比較図である。FIG. 8 is a comparison diagram comparing the traveling device according to the embodiment and the conventional traveling device. 図9は、変形例1を示す図7相当図である。FIG. 9 is a view corresponding to FIG. 7 showing Modification 1. FIG. 図10は、変形例2を示す図7相当図である。FIG. 10 is a view corresponding to FIG. 7 showing Modification 2. FIG.
 以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。 Specific embodiments of the present invention will be described below with reference to the drawings.
 《実施形態》
 図1に示すように、本例の無人搬送車1は、全方位移動型の走行装置10と、走行装置10上に載置される支持台2(車両本体の一例)と、走行装置10の走行制御を行う制御装置(図示省略)とを備えている。支持台2は、平面視で正三角形の三つの頂部を面取りした形状をしている。無人搬送車1は、支持台2の上面にワーク等の物品を積載した状態で走行装置10によって駆動走行される。尚、走行装置10による無人搬送車の走行経路は、制御装置のROM内に予め記憶された固定経路であってもよいし、制御装置によりAI探索等に基づいて算出した自動算出経路であってもよい。
<<Embodiment>>
As shown in FIG. 1, the automatic guided vehicle 1 of this example includes an omnidirectional traveling device 10, a support base 2 (an example of a vehicle main body) mounted on the traveling device 10, and the traveling device 10. and a control device (not shown) that controls running. The support base 2 has a shape of an equilateral triangle with three chamfered tops in a plan view. The unmanned guided vehicle 1 is driven and traveled by the travel device 10 with an article such as a work loaded on the upper surface of the support base 2 . The traveling route of the automatic guided vehicle by the traveling device 10 may be a fixed route stored in advance in the ROM of the control device, or an automatically calculated route calculated by the control device based on AI search or the like. good too.
 図2に示すように、走行装置10は、フレーム11と、フレーム11の下面に取付けられた三つの走行車輪部12とを備えている。三つの走行車輪部12は、無人搬送車1の中心軸線C回りに周方向に等間隔に(60°置きに)配置されている。中心軸線C(所定軸線の一例)は、無人搬送車1の中心位置を通り且つ鉛直に延びる仮想軸線である。本例において、無人搬送車1の中心位置は、平面視における支持台2の図心位置であって無人搬送車1全体の重心位置に一致している。尚、以下の説明において、中心軸線Cを中心とする径方向を「車両内外方向」と定義する。また、特に断らない限り、「内側」及び「外側」は、車両内外方向の内側及び外側を意味するものとする。 As shown in FIG. 2 , the travel device 10 includes a frame 11 and three travel wheel portions 12 attached to the bottom surface of the frame 11 . The three traveling wheel portions 12 are arranged around the center axis C of the automatic guided vehicle 1 at equal intervals (at intervals of 60°) in the circumferential direction. A central axis C (an example of a predetermined axis) is an imaginary axis that passes through the central position of the automatic guided vehicle 1 and extends vertically. In this example, the central position of the automatic guided vehicle 1 is the centroid position of the support base 2 in a plan view and coincides with the center of gravity of the automatic guided vehicle 1 as a whole. In the following description, the radial direction centered on the central axis C is defined as the "vehicle inner-outer direction". In addition, unless otherwise specified, the terms "inner side" and "outer side" mean the inner side and the outer side in the vehicle inward-outward direction.
 フレーム11は、支持台2の外縁に沿って形成された略正三角形状の枠状部11aと、平面視で無人搬送車1の中心位置から放射状に延びて枠状部11aの三つの角部に接続される三つの延設部11bと、各延設部11bの下面に形成され、走行車輪部12の支持アーム15(後述する)を揺動支持するための突出板部11cとを有している。 The frame 11 includes a substantially equilateral triangular frame-shaped portion 11a formed along the outer edge of the support base 2, and three corners of the frame-shaped portion 11a extending radially from the center position of the automatic guided vehicle 1 in plan view. and a projecting plate portion 11c formed on the lower surface of each extending portion 11b for swingingly supporting a support arm 15 (described later) of the traveling wheel portion 12. ing.
 前記三つの走行車輪部12はそれぞれ、前記フレーム11の各延設部11bの下側に配置されている。 The three running wheel portions 12 are arranged below the extension portions 11b of the frame 11, respectively.
 各走行車輪部12は、駆動車輪13と、該駆動車輪13よりも車両内外方向の外側に配置された従動車輪14と、該駆動車輪13及び従動車輪14を一対一組で支持する支持アーム15とを有している。 Each running wheel portion 12 includes a driving wheel 13, a driven wheel 14 arranged outside the driving wheel 13 in the vehicle inward/outward direction, and a support arm 15 supporting the driving wheel 13 and the driven wheel 14 in a one-to-one pair. and
 各走行車輪部12の駆動車輪13は、中心軸線Cを中心とする同一円周上に周方向に等間隔に配置されており、各駆動車輪12の軸線(車軸19の軸線)は、平面視で走行装置10の中心軸線Cを通っている。 The drive wheels 13 of each running wheel portion 12 are arranged on the same circumference around the central axis C at equal intervals in the circumferential direction, and the axis of each drive wheel 12 (the axis of the axle 19) is passes through the central axis C of the travel device 10 at .
 同様に、各走行車輪部12の従動車輪14は、各駆動車輪13よりも外側の同一円周上に周方向に等間隔に配置されており、各従動車輪14の軸線(車軸20の軸線)は、平面視で走行装置10の中心軸線Cを通っている。 Similarly, the driven wheels 14 of each running wheel portion 12 are arranged on the same circumference outside each driving wheel 13 at equal intervals in the circumferential direction, and the axis of each driven wheel 14 (axis of axle 20) passes through the central axis C of the travel device 10 in plan view.
 駆動車輪13及び従動車輪14は、全方位移動型の車輪であるオムニホイールにより構成されている。本例では、駆動車輪13及び従動車輪14は、同じ車輪径及び車輪幅を有する同型式のオムニホイールにより構成されている。 The driving wheels 13 and the driven wheels 14 are composed of omni wheels that are omnidirectional wheels. In this example, the driving wheels 13 and the driven wheels 14 are composed of omni wheels of the same type having the same wheel diameter and wheel width.
 図3及び図4を参照して、前記オムニホイールの構成を説明する。各図では、駆動車輪13のオムニホイールを示している。従動車輪14のオムニホイールについては、図中の符号13を符号14に置換して同じ添字a~hを使用すれば容易に理解できるので、その詳細な説明を省略する。 The configuration of the omniwheel will be described with reference to FIGS. 3 and 4. FIG. Each figure shows an omni wheel of the drive wheels 13 . The omni wheel of the driven wheel 14 can be easily understood by replacing the reference numeral 13 in the drawing with the reference numeral 14 and using the same suffixes a to h, so detailed description thereof will be omitted.
 駆動車輪13のオムニホイールは、中心部に車軸19が挿通される中心穴13bを有する本体13aと、図4において、この本体13aの右側に設けられた回転体13c,13d,13e、及び左側に設けられた回転体13f,13g,13hとから構成される。本体13aは円板状の基部を有し、この基部の左右両側には、それぞれ、回転体13c,13d,13e,13f,13g,13hを、垂直面で回転自在に支持するためのリブ部が形成されている。 The omni wheel of the drive wheel 13 comprises a main body 13a having a central hole 13b through which the axle 19 is inserted, rotating bodies 13c, 13d and 13e provided on the right side of the main body 13a in FIG. It is composed of rotating bodies 13f, 13g and 13h provided. The main body 13a has a disk-shaped base, and ribs are provided on the left and right sides of the base for supporting the rotating bodies 13c, 13d, 13e, 13f, 13g, and 13h so that they can rotate freely on a vertical plane. formed.
 前記回転体13c,13d,13e,13f,13g,13hは、それぞれ同じ曲率の樽型形状を有するとともに、それぞれ支持軸により回転自在に支持され、各支持軸は、垂直面内に位置した状態で前記リブ部によって支持されている。また、回転体13c,13d,13eは、本体13aの周方向において等間隔に配設され、回転体13f,13g,13hも同様に、本体13aの周方向において等間隔に配設され、更に回転体13c,13d,13e、及び回転体13f,13g,13hは、相互間で位相が周方向に60°ずれた位置関係となっている。 The rotating bodies 13c, 13d, 13e, 13f, 13g, and 13h each have a barrel shape with the same curvature, and are rotatably supported by respective support shafts, each of which is positioned in a vertical plane. It is supported by the rib portion. The rotating bodies 13c, 13d, and 13e are arranged at equal intervals in the circumferential direction of the main body 13a, and the rotating bodies 13f, 13g, and 13h are similarly arranged at equal intervals in the circumferential direction of the main body 13a. The bodies 13c, 13d, 13e and the rotating bodies 13f, 13g, 13h have a positional relationship in which the phases are shifted by 60° in the circumferential direction.
 また、回転体13c,13d,13eは、各支持軸を含む鉛直平面において、各外面が同一の円弧上に位置し、同様に、回転体13f,13g,13hは、各支持軸を含む鉛直平面において、各外面が同一の円弧上に位置する。 The outer surfaces of the rotating bodies 13c, 13d, and 13e are positioned on the same arc on the vertical plane including the supporting shafts. , the outer surfaces are located on the same arc.
 こうして、駆動車輪13のオムニホイールは、その車軸19を中心として回転することによりその回転方向に進むことができるとともに、各回転体13c,13d,13e,13f,13g,13hが回転することにより、車軸19の回転方向と交差する水平方向にスライドすることができるようになっている。 In this way, the omniwheel of the drive wheel 13 can move in its direction of rotation by rotating about its axle 19. It can be slid in the horizontal direction intersecting the rotation direction of the axle 19 .
 前記支持アーム15は、図2及び図5に示すように、フレーム11の延設部11bの下側に水平に配置された矩形板状の揺動板部15aと、揺動板部15aに接続された内側取付板部15b及び外側取付板部15cとを有している。 As shown in FIGS. 2 and 5, the support arm 15 is connected to a rectangular plate-like rocking plate portion 15a horizontally disposed under the extended portion 11b of the frame 11 and to the rocking plate portion 15a. It has an inner mounting plate portion 15b and an outer mounting plate portion 15c.
 揺動板部15aは、車両内外方向に沿って延設されていて、揺動ピン18を介してフレーム11の下面の突出板部11cに支持されている。 The rocking plate portion 15a extends along the vehicle inside-outside direction, and is supported by the projecting plate portion 11c on the lower surface of the frame 11 via the rocking pin 18. As shown in FIG.
 突出板部11cは、図6に示すように、その板幅方向が前記延設部11bの幅方向に一致する状態で、該延設部11bの下面から下側に突出している。 As shown in FIG. 6, the protruding plate portion 11c protrudes downward from the lower surface of the extending portion 11b with its plate width direction coinciding with the width direction of the extending portion 11b.
 突出板部11cの下端部には、延設部11bの延設方向(図6の紙面垂直方向)から見て、下側に開放するコ字状の凹部11dが形成されている。支持アーム15の揺動板部15aは、突出板部11cの凹部11dに下側から嵌め込まれて、一対の揺動ピン18を介して該突出板部11cに支持されている。 At the lower end of the protruding plate portion 11c, a U-shaped concave portion 11d that opens downward when viewed from the extending direction of the extending portion 11b (perpendicular to the paper surface of FIG. 6) is formed. The rocking plate portion 15a of the support arm 15 is fitted into the concave portion 11d of the projecting plate portion 11c from below and supported by the projecting plate portion 11c via a pair of rocking pins 18 .
 各揺動ピン18は、軸方向の中間部に雄ネジ部が形成された螺子固定式のピンボルトからなる。各揺動ピン18は、前記突出板部11cにおける凹部11dの両側の壁部を貫通して固定されている。揺動ピン18の先端部は、支持アーム15における揺動板部15aの板幅方向の両端面に形成された支持孔(図示省略)に嵌挿されている。そうして、支持アーム15のアーム長さ方向の中間部が、一対の揺動ピン18により支持されている。支持アーム15は、この一対の揺動ピン18を支点に、前記中心軸線Cを含む鉛直平面に沿って上下に揺動可能になっている。尚、アーム長さ方向とは、駆動車輪13と従動車輪14との離間方向であって、本例では前記中心軸線Cを中心とする径方向に一致している。 Each rocking pin 18 consists of a screw-fixed pin bolt with a male threaded portion formed in the axially intermediate portion. Each rocking pin 18 is fixed through the walls on both sides of the concave portion 11d of the projecting plate portion 11c. The tip of the swing pin 18 is inserted into a support hole (not shown) formed in both end surfaces of the swing plate portion 15a of the support arm 15 in the plate width direction. Thus, the intermediate portion of the support arm 15 in the arm length direction is supported by a pair of swing pins 18 . The support arm 15 can swing up and down along a vertical plane including the central axis C with the pair of swing pins 18 as fulcrums. The arm length direction is the separation direction between the driving wheel 13 and the driven wheel 14, and coincides with the radial direction about the center axis C in this example.
 内側取付板部15bは、揺動板部15aにおける車両内外方向の内側端縁から垂下する矩形板部である。内側取付板部15bの外側面(図5の右側面)には、減速機16を介してモータ17が固定されている。内側取付板部15bの内側(図5の左側)には駆動車輪13が配置されており、前記減速機16の出力軸(図示省略)は、該内側取付板部15bを貫通して該駆動車輪13の車軸19に回転一体に連結されている。前記モータ17(車輪駆動部の一例)は、その出力軸が駆動車輪13の車軸19と同軸になるように配置されている。減速機16は、その入力軸と出力軸とが同軸に配置された同軸減速機により構成されている。尚、モータ17は、駆動車輪13の車軸19に対して非同軸に配置されていてもよい。この場合、減速機16は非同軸型の減速機で構成すればよい。 The inner mounting plate portion 15b is a rectangular plate portion that hangs down from the inner edge of the rocking plate portion 15a in the vehicle inside-outside direction. A motor 17 is fixed via a speed reducer 16 to the outer side surface (the right side surface in FIG. 5) of the inner mounting plate portion 15b. The driving wheel 13 is arranged inside the inner mounting plate portion 15b (on the left side in FIG. 5), and the output shaft (not shown) of the speed reducer 16 passes through the inner mounting plate portion 15b to drive the driving wheel. 13 is connected to an axle 19 to rotate integrally. The motor 17 (an example of a wheel drive unit) is arranged so that its output shaft is coaxial with the axle 19 of the drive wheel 13 . The speed reducer 16 is configured by a coaxial speed reducer in which the input shaft and the output shaft are coaxially arranged. Incidentally, the motor 17 may be arranged non-coaxially with respect to the axle 19 of the drive wheel 13 . In this case, the speed reducer 16 may be composed of a non-coaxial speed reducer.
 外側取付板部15cは、揺動板部15aにおける車両内外方向の外側端縁から垂下する矩形板部である。外側取付板部15cの外側には従動車輪14が配置されており、従動車輪14の車軸20は、外側取付板部15cに対して不図示の軸受を介して回転自在に支持されている。 The outer mounting plate portion 15c is a rectangular plate portion that hangs down from the outer edge of the rocking plate portion 15a in the vehicle inward/outward direction. A driven wheel 14 is arranged outside the outer mounting plate portion 15c, and an axle 20 of the driven wheel 14 is rotatably supported by the outer mounting plate portion 15c via a bearing (not shown).
 図7は、図2における各車輪13,14の支持構造を線図化した図である。この図では、三つの延設部11bと支持アーム15とを太線で示し、揺動ピン18を白丸で示している。同図に示すように、揺動ピン18は、支持アーム15における揺動板部15aの長手方向の中間部を支持している。揺動ピン18による支持アーム15の支持位置、つまり支持アーム15の揺動中心位置は、該支持アーム15に支持された一組の駆動車輪13及び従動車輪14の間において該従動車輪14側に偏位している。このことは、上述の図5からも読取ることができる。すなわち、揺動ピン18の軸線から駆動車輪13の外側端面までの距離をL1とし、揺動ピン18の軸線から従動車輪14の内側端面までの距離をL2としたとき、L1>L2の関係を満たしている。本例では、L1:L2は3:1とされているが、これに限ったものではなく、L1>L2の関係を満たしていれば如何なる比率であってもよい。 FIG. 7 is a diagrammatic view of the support structure of each wheel 13, 14 in FIG. In this figure, the three extensions 11b and the support arm 15 are indicated by thick lines, and the swing pins 18 are indicated by white circles. As shown in the figure, the rocking pin 18 supports the middle portion of the rocking plate portion 15a of the support arm 15 in the longitudinal direction. The support position of the support arm 15 by the swing pin 18, that is, the swing center position of the support arm 15 is located between a set of the drive wheel 13 and the driven wheel 14 supported by the support arm 15, toward the driven wheel 14 side. deviated. This can also be read from FIG. 5 described above. That is, when the distance from the axis of the swing pin 18 to the outer end surface of the driving wheel 13 is L1, and the distance from the axis of the swing pin 18 to the inner end surface of the driven wheel 14 is L2, the relationship of L1>L2 is satisfied. meet. Although L1:L2 is 3:1 in this example, the ratio is not limited to this, and may be any ratio as long as it satisfies the relationship of L1>L2.
 以上の構成を備えた本例の走行装置10によれば、前記制御装置(図示せず)による制御の下で、各駆動車輪13の回転速度を、三つのモータ17によって次式(1)に基づいて独立に制御することで、その場旋回を含む全方位への走行制御が実現される。
Figure JPOXMLDOC01-appb-I000001
 図7には、式(1)中の変数を理解し易いように図示している。式(1)の左辺のv1,v2,v3は、各駆動車輪13の回転速度であり、右辺のVx,及びVyはそれぞれ、走行装置10のX軸方向の速度、及びY軸方向の速度であり、ωは、走行装置10の中心軸線C回りの回転速度であり、Rは中心軸線Cから各駆動車輪13までの距離である。
According to the traveling device 10 of the present embodiment having the above configuration, the rotational speed of each drive wheel 13 is adjusted by the three motors 17 to the following equation (1) under the control of the control device (not shown). omnidirectional travel control, including on-the-spot turning, is achieved by controlling independently based on the
Figure JPOXMLDOC01-appb-I000001
FIG. 7 shows the variables in equation (1) for easy understanding. v1, v2, and v3 on the left side of equation (1) are the rotational speeds of the drive wheels 13, and Vx and Vy on the right side are the speed in the X-axis direction and the speed in the Y-axis direction of the traveling device 10, respectively. ω is the rotational speed of the travel device 10 around the central axis C, and R is the distance from the central axis C to each drive wheel 13 .
 走行装置10が走行する際には、各駆動車輪13及び各従動車輪14に対して、搭載物(支持台2や支持台2上の物品等)の重量が重力方向の荷重として作用するが、この搭載物の重量が大きいと、各駆動車輪13に過度の荷重がかかって各駆動車輪13の摩耗劣化が急速に進行する。また、搭載物の重量増加に対応するために各駆動車輪13の耐荷重を増加させようとすると、各駆動車輪13のオムニホイールが大型化して部品コストが増加するという問題がある。 When the traveling device 10 travels, the weight of the mounted objects (the support base 2 and the articles on the support base 2, etc.) acts on the drive wheels 13 and the driven wheels 14 as a load in the direction of gravity. If the weight of this mounted object is large, an excessive load is applied to each driving wheel 13, and wear deterioration of each driving wheel 13 progresses rapidly. Further, if the load capacity of each drive wheel 13 is increased in order to cope with the weight increase of the mounted object, there is a problem that the size of the omni wheel of each drive wheel 13 increases, resulting in an increase in parts cost.
 これに対して、本実施形態の走行装置10では、各駆動車輪13とそれぞれに対応する各従動車輪14とを一組で支持アーム15に支持させ、更に支持アーム15の長さ方向の中間部を揺動ピン18回りに上下に揺動可能に支持するとともに、支持アーム15の揺動中心位置である揺動ピン18の軸線位置を、支持アーム15に支持された一対の駆動車輪13と従動車輪14との間において該従動車輪14側に偏位させるようにした。 On the other hand, in the traveling device 10 of the present embodiment, each driving wheel 13 and each corresponding driven wheel 14 are supported as a set by the support arm 15, and furthermore, the intermediate portion of the support arm 15 in the longitudinal direction is supported. are supported so as to be capable of swinging up and down around a swing pin 18, and the axial position of the swing pin 18, which is the center position of swing of the support arm 15, is aligned with the pair of drive wheels 13 supported by the support arm 15 and the driven wheels 13 supported by the support arm 15. It is made to deviate to the driven wheel 14 side between the wheels 14. - 特許庁
 これによれば、走行装置10に搭載される搭載物の重量は、各支持アーム15を介して駆動車輪13及び従動車輪14に分配して作用する。よって、各車輪13,14に作用する重力方向の荷重を低減することができ、延いては、各車輪13,14に使用されるオムニホイールの小型化を図って部品コストを低減することができる。 According to this, the weight of the load mounted on the travel device 10 is distributed to the drive wheels 13 and the driven wheels 14 via each support arm 15 . Therefore, the load in the gravitational direction acting on each wheel 13, 14 can be reduced, and by extension, the size of the omni wheel used for each wheel 13, 14 can be reduced, thereby reducing the parts cost. .
 また、支持アーム15の揺動中心位置(揺動ピン18の位置)が、支持アーム15に支持された一対の駆動車輪13と従動車輪14との間において該従動車輪14側に偏位しているので、梃子の原理(モーメントの釣り合い)に基づいて、各駆動車輪13に作用する重力方向の荷重を、各従動車輪14に作用する重力方向の荷重よりも低減することができる。したがって、従動車輪14に比べて摩耗し易い駆動車輪13の劣化を確実に防止することができる。 Further, the swing center position of the support arm 15 (the position of the swing pin 18) is deviated toward the driven wheel 14 between the pair of drive wheels 13 and driven wheels 14 supported by the support arm 15. Therefore, the load acting on each drive wheel 13 in the direction of gravity can be reduced more than the load acting on each driven wheel 14 in the direction of gravity based on the principle of leverage (moment balance). Therefore, it is possible to reliably prevent deterioration of the driving wheels 13 which are more likely to wear than the driven wheels 14 .
 図8は、本実施形態に係る走行装置10と、駆動車輪102のみを有する従来形態の走行装置101との車輪構成を比較した比較図である。尚、図8では、分かり易いように、三つの駆動車輪13のうちの一つを拡大して従来形態との比較を行っているが、他の二つについても同様である。 FIG. 8 is a comparison diagram comparing the wheel configurations of the traveling device 10 according to the present embodiment and the conventional traveling device 101 having only the drive wheels 102 . In FIG. 8, for the sake of clarity, one of the three drive wheels 13 is enlarged for comparison with the conventional configuration, but the same applies to the other two.
 この図に示すように、本実施形態の走行装置10では、駆動車輪13及び従動車輪14に使用されるオムニホイールが、従来形態の駆動車輪102に使用されるオム二ホイールよりも格段に小型化されていることが分かる。 As shown in this figure, in the traveling device 10 of the present embodiment, the omni-wheels used for the drive wheels 13 and the driven wheels 14 are much smaller than the omni-wheels used for the drive wheels 102 of the conventional configuration. It can be seen that
 ここで、従動車輪14の外側端面の位置P1は、設計要件に基づいて決まるため自由に変更することはできない。したがって、本実施形態の車輪構造を採用したとしても、外輪である従動車輪14の外側端面の位置P1は、従来形態の走行装置101の駆動車輪102の外側端面の位置に維持される。一方、外輪である従動車輪14の厚みは、従来形態の走行装置101の駆動車輪102に比べて車輪サイズが小型化される分だけ薄くなる。この結果、本実施形態の走行装置10では、従動車輪14の外側の接地位置P2(オムニホイールの軸方向の外側の車輪の接地位置)が、従来形態の走行装置101における駆動車輪102の外側の接地位置P3に比べて所定量δだけ外側に移動することとなる。したがって、走行装置10の旋回時等に、走行装置10の中心軸線Cから出来るだけ遠い位置で各従動車輪14を接地させて、各従動車輪14による踏ん張りを効かせることができる。よって、走行装置10の走行安定性(特に旋回時の走行安定性)を向上させることができる。 Here, the position P1 of the outer end surface of the driven wheel 14 cannot be freely changed because it is determined based on design requirements. Therefore, even if the wheel structure of the present embodiment is employed, the position P1 of the outer end surface of the driven wheel 14, which is the outer ring, is maintained at the position of the outer end surface of the drive wheel 102 of the conventional travel device 101. On the other hand, the thickness of the driven wheel 14, which is the outer ring, is thinner than that of the drive wheel 102 of the traveling device 101 of the conventional form, corresponding to the reduced wheel size. As a result, in the traveling device 10 of the present embodiment, the outer contact position P2 of the driven wheel 14 (the contact position of the outer wheel in the axial direction of the omni wheel) is the outer contact position of the drive wheel 102 in the conventional traveling device 101. As compared with the grounded position P3, it moves outward by a predetermined amount δ. Therefore, when the traveling device 10 turns, etc., each driven wheel 14 can be grounded at a position as far as possible from the center axis C of the traveling device 10, so that each driven wheel 14 can be effectively applied. Therefore, the running stability of the running device 10 (especially running stability during turning) can be improved.
 また、前記走行装置10によれば、駆動車輪13及び従動車輪14が床面上の段差や凸部を乗り越える際に、支持アーム15がその中間部を支点に上下に揺動することにより支持台2の姿勢を水平に維持することができる。したがって、支持台2に積載されたワーク等の搭載物を落下させることなく安定した車両走行を実現することができる。 Further, according to the traveling device 10, when the driving wheels 13 and the driven wheels 14 get over steps and protrusions on the floor surface, the support arm 15 swings up and down about its intermediate portion as a fulcrum, thereby moving the support base. 2 posture can be maintained horizontally. Therefore, it is possible to realize stable vehicle running without dropping a load such as a work loaded on the support base 2 .
 また、本実施形態の走行装置10では、三つの駆動車輪13と、該各駆動車輪13に接続されたモータ17とが、前記中心軸線Cを中心とする径方向(車両内外方向)において、該各駆動車輪13に対応する各従動車輪14よりも内側に配置されている。 Further, in the traveling device 10 of the present embodiment, the three driving wheels 13 and the motors 17 connected to the driving wheels 13 are arranged in the radial direction (inward and outward directions of the vehicle) about the center axis C. It is arranged inside each driven wheel 14 corresponding to each driving wheel 13 .
 これにより、モータ17等の重量物を出来る限り走行装置10の中心軸線C付近に集約して、走行装置10の前記中心軸線C回りの慣性モーメントを低減することができる。この結果、走行装置10の走行性能(特に旋回応答性等)を向上させることができる。 As a result, heavy objects such as the motor 17 can be concentrated near the central axis C of the traveling device 10 as much as possible, and the moment of inertia around the central axis C of the traveling device 10 can be reduced. As a result, it is possible to improve the traveling performance of the traveling device 10 (especially turning response).
 また、本実施形態の走行装置10では、各モータ17は、出力軸が各駆動車輪13の車軸19に対して同軸になる状態で減速機16を介して各駆動車輪13に接続されている。 In addition, in the traveling device 10 of the present embodiment, each motor 17 is connected to each drive wheel 13 via a speed reducer 16 with its output shaft being coaxial with the axle 19 of each drive wheel 13 .
 これによれば、モータ17の出力軸と各駆動車輪13の車軸19とが同軸に接続されるので、モータ17を含む走行装置10全体の重量バランスを向上させて、延いては、走行装置10の走行安定性を向上させることができる。 According to this, the output shaft of the motor 17 and the axle 19 of each driving wheel 13 are coaxially connected, so that the weight balance of the traveling device 10 as a whole including the motor 17 is improved, and the traveling device 10 can improve the running stability of
 また、本実施形態の走行装置10では、各駆動車輪13を駆動するモータ17は、前記中心軸線Cを中心とする径方向(車両内外方向)において、該各駆動車輪13よりも外側に配置されている。 Further, in the traveling device 10 of the present embodiment, the motors 17 that drive the respective driving wheels 13 are arranged outside the respective driving wheels 13 in the radial direction (inward and outward directions of the vehicle) about the central axis C. ing.
 これによれば、モータ17が駆動車輪13の外側に配置されているので、モータ17が走行装置10の中心部に密集してそのメンテナンス性が悪化するのを防止することができる。 Accordingly, since the motors 17 are arranged outside the drive wheels 13, it is possible to prevent the motors 17 from being concentrated in the central part of the traveling device 10 and deteriorating the maintainability thereof.
 また、本実施形態の無人搬送車1は、前記走行装置10と支持台2とを備えている。 In addition, the automatic guided vehicle 1 of this embodiment includes the travel device 10 and the support base 2 .
 この無人搬送車1によれば、各駆動車輪13に作用する重力方向の荷重を低減して、各駆動車輪13を構成するオムニホイールを小型化することができる。これにより、無人搬送車1の車高を低くして車両全体を低重心化することができる。よって、工場内の狭いスペースで急な旋回動作が要求される無人搬送車1においてその旋回性能を十分に確保することができる。 According to this automatic guided vehicle 1, the load in the gravitational direction acting on each drive wheel 13 can be reduced, and the omni wheel that constitutes each drive wheel 13 can be made smaller. As a result, the vehicle height of the automatic guided vehicle 1 can be lowered, and the center of gravity of the entire vehicle can be lowered. Therefore, it is possible to sufficiently secure the turning performance of the automatic guided vehicle 1 that is required to turn abruptly in a narrow space in the factory.
 《変形例1》
 図9は、実施形態の変形例1を示す図7相当図である。本変形例では、駆動車輪13に対するモータ17の配置位置が前記実施形態とは異なっている。尚、以下の変形例において、前記実施形態と同じ構成要素には同じ符号を付してその詳細な説明を省略する。
<<Modification 1>>
FIG. 9 is a view corresponding to FIG. 7 showing Modification 1 of the embodiment. In this modified example, the arrangement position of the motor 17 with respect to the driving wheels 13 is different from that in the above-described embodiment. In addition, in the following modification, the same code|symbol is attached|subjected to the same component as the said embodiment, and the detailed description is abbreviate|omitted.
 すなわち、本変形例では、各駆動車輪13を駆動するモータ17と減速機16とは、前記中心軸線Cを中心とする径方向(車両内外方向)において、各駆動車輪13よりも内側に配置されている。 That is, in this modification, the motor 17 and the speed reducer 16 that drive the drive wheels 13 are arranged inside the drive wheels 13 in the radial direction (inward and outward directions of the vehicle) about the center axis C. ing.
 本変形例によれば、前記実施形態と同様に、駆動車輪13と従動車輪14とを一対一組として支持アーム15に支持するとともにその揺動中心位置を従動車輪14側に偏位させるようにしているので、前記実施形態と同様の作用効果を得ることができる。 According to this modification, as in the above-described embodiment, the driving wheel 13 and the driven wheel 14 are paired one-to-one and supported by the support arm 15, and the swing center position thereof is shifted toward the driven wheel 14 side. Therefore, it is possible to obtain the same effects as those of the above-described embodiment.
 しかも、本変形例では、重量物であるモータ17を駆動車輪13よりもさら車両内側に配置することで、走行装置10の前記中心軸線C回りの慣性モーメントをより一層低減することができる。延いては、走行装置10の走行性能(特に旋回応答性等)を可及的に向上させることができる。 Moreover, in this modified example, by arranging the motor 17, which is a heavy object, further inside the vehicle than the driving wheels 13, the moment of inertia of the travel device 10 around the central axis C can be further reduced. As a result, the traveling performance (particularly turning response, etc.) of the traveling device 10 can be improved as much as possible.
 《変形例2》
 図10は、実施形態の変形例2を示す図7相当図である。本変形例では、駆動車輪13と従動車輪14との位置関係が前記実施形態とは異なっている。
<<Modification 2>>
FIG. 10 is a view corresponding to FIG. 7 showing Modification 2 of the embodiment. In this modified example, the positional relationship between the driving wheels 13 and the driven wheels 14 is different from that in the above embodiment.
 すなわち、前記実施形態では、従動車輪14が、走行装置10の中心軸線Cを中心とする径方向(車両内外方向)において、駆動車輪13よりも外側に配置されているのに対し、本変形例では、従動車輪14は、該径方向において前記駆動車輪13よりも内側に配置されている。すなわち、本変形例では、駆動車輪13が車両内外方向の外側に位置する外輪とされ、従動車輪14が車両内外方向の内側に位置する内輪とされている。揺動ピン18による支持アーム15の支持位置は、前記実施形態と同様に、駆動車輪13と従動車輪14との間で該従動車輪14側(本変形例では車両内外方向の内側)に偏位している。 That is, in the above-described embodiment, the driven wheels 14 are arranged outside the driving wheels 13 in the radial direction (vehicle inner/outer direction) centering on the central axis C of the travel device 10. , the driven wheels 14 are arranged inside the driving wheels 13 in the radial direction. That is, in this modified example, the driving wheel 13 is an outer ring positioned on the outer side in the vehicle inward/outward direction, and the driven wheel 14 is an inner ring positioned on the inner side in the vehicle inward/outward direction. The support position of the support arm 15 by the swing pin 18 is offset between the driving wheel 13 and the driven wheel 14 toward the driven wheel 14 side (inward in the vehicle inward/outward direction in this modification) as in the above-described embodiment. is doing.
 本変形例によれば、前記実施形態と同様に、駆動車輪13と従動車輪14とを一対一組として支持アーム15に支持するとともにその揺動中心位置を従動車輪14側に偏位させるようにしているので、前記実施形態と同様の作用効果を得ることができる。 According to this modification, as in the above-described embodiment, the driving wheel 13 and the driven wheel 14 are paired one-to-one and supported by the support arm 15, and the swing center position thereof is shifted toward the driven wheel 14 side. Therefore, it is possible to obtain the same effects as those of the above-described embodiment.
 また、各駆動車輪13を各従動車輪14よりも外側に配置することで、各駆動車輪13と床面との間のグリップ力の発生位置を走行装置10の中心軸線Cから極力遠ざけることができる。よって、走行装置10の旋回時等に、外側である駆動車輪13による踏ん張りを効かせて、走行装置10の走行安定性を可及的に向上させることができる。 Further, by arranging each driving wheel 13 outside each driven wheel 14, the position where the gripping force between each driving wheel 13 and the floor surface is generated can be kept away from the central axis C of the travel device 10 as much as possible. . Therefore, when the traveling device 10 turns, the running stability of the traveling device 10 can be improved as much as possible by allowing the driving wheels 13 on the outside to step on.
 《他の実施形態》
 前記実施形態では、走行装置10に設けられる駆動車輪13が三つである例を説明したが、これに限ったものではなく、四つ以上であってもよい。
<<Other embodiments>>
In the above embodiment, an example in which three drive wheels 13 are provided in the travel device 10 has been described, but the number is not limited to this, and may be four or more.
 前記実施形態では、走行装置10を無人搬送車1に搭載した例を説明したが、これに限ったものではなく、例えば、人が運転操作する車両に搭載するようにしてもよい。 In the above embodiment, an example in which the traveling device 10 is mounted on the automatic guided vehicle 1 has been described, but the present invention is not limited to this, and may be mounted on a vehicle operated by a person, for example.
 また、前記実施形態では、駆動車輪13と従動車輪14とが同じ大きさ及び形状のオムニホイールにより構成されているが、これに限ったものではない。すなわち、前記実施形態のように、支持アーム15の揺動中心位置を従動車輪14側に偏位させるようにした場合、駆動車輪13に作用する重力方向の荷重は、従動車輪14に作用する重力方向の荷重よりも小さくなる。したがって、駆動車輪13に関しては従動車輪14よりも小型化のオムニホイールを使用するようにしてもよい。これにより、駆動車輪13の周辺にモータ17や減速機16の配置スペースを十分に確保することができる。また、駆動車輪13は、従動車輪14に比べて摩耗による交換頻度が高いので、このような交換頻度の高い駆動車輪13を小型化してそのコストを低減することで、走行装置10のメンテナンスコストを低減することができる。 Also, in the above embodiment, the driving wheels 13 and the driven wheels 14 are composed of omni wheels having the same size and shape, but this is not the only option. That is, when the swing center position of the support arm 15 is displaced toward the driven wheel 14 as in the above embodiment, the load acting on the driving wheel 13 in the direction of gravity acts on the driven wheel 14. less than the directional load. Therefore, for the driving wheels 13, omni wheels that are smaller than the driven wheels 14 may be used. As a result, a sufficient space for arranging the motor 17 and the speed reducer 16 can be secured around the drive wheel 13 . In addition, since the driving wheels 13 are replaced more frequently due to wear than the driven wheels 14, the maintenance cost of the traveling device 10 can be reduced by reducing the size of the driving wheels 13, which are frequently replaced, and reducing the cost thereof. can be reduced.
 前記実施形態では、走行装置10はフレーム11を含んでおり、支持アーム15はフレーム11を介して支持台2(車両本体)に支持されているが、これに限ったものではない。例えば、フレーム11を廃止して支持アーム15を支持台2の下面に直接支持させるようにしてもよい。 In the above-described embodiment, the travel device 10 includes the frame 11, and the support arm 15 is supported by the support base 2 (vehicle body) via the frame 11, but it is not limited to this. For example, the frame 11 may be eliminated and the support arm 15 may be directly supported on the lower surface of the support table 2. FIG.
 前記実施形態では、駆動車輪13と従動車輪14とを走行装置10の中心軸線Cを中心とする径方向に間隔を空けて同心状に二列に配置するようにしているが、これに限ったものではなく、例えば従動車輪14の列を増やして三列以上に構成してもよい。 In the above-described embodiment, the driving wheels 13 and the driven wheels 14 are arranged in two rows concentrically with an interval in the radial direction around the central axis C of the travel device 10. Instead, for example, the number of rows of the driven wheels 14 may be increased to form three or more rows.
 前記実施形態では、モータ17は減速機16を介して駆動車輪13に連結されているが、これに限ったものではなく、例えば減速機16を廃止してモータ17を直接、駆動車輪13に連結するようにしてもよい。また、モータ17は、電気モータに限ったものではなく、例えば油圧モータ等により構成されていてもよい。 In the above embodiment, the motor 17 is connected to the drive wheels 13 via the speed reducer 16, but this is not the only option. You may make it Also, the motor 17 is not limited to an electric motor, and may be configured by, for example, a hydraulic motor.
 また、前記実施形態では、所定軸線が中心軸線Cである例を示したが、これに限ったものではなく、所定軸線が無人搬送車1の重心位置や図示位置から離れていてもよい。 Also, in the above embodiment, an example in which the predetermined axis is the central axis C was shown, but this is not the only option, and the predetermined axis may be away from the center of gravity of the automatic guided vehicle 1 or the illustrated position.
 また、前記実施形態では、支持アーム15は、車両内外方向に延びる矩形板状をなしているが、これに限ったものではなく、例えば平面視でL字状やZ字状に形成してもよい。支持アーム15の形状に拘わらず、アーム長さ方向の中間部(支持アーム15における駆動車輪13と従動車輪14との間の中間部)に揺動中心位置を設定すればよい。 In the above-described embodiment, the support arm 15 has a rectangular plate shape extending in the vehicle interior and exterior directions, but is not limited to this. good. Regardless of the shape of the support arm 15, the swing center position may be set at an intermediate portion in the arm length direction (an intermediate portion between the drive wheel 13 and the driven wheel 14 in the support arm 15).
 尚、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と
均等の範囲内での実施形態からの変更が含まれる。
It should be noted that the above description of the embodiment is illustrative in all respects and is not restrictive. Modifications and modifications are possible for those skilled in the art. The scope of the invention is indicated by the claims rather than the above-described embodiments. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope of claims and equivalents.
C   中心軸線(所定軸線)
1   無人搬送車
2   支持台(車両本体)
10  走行装置
13  駆動車輪
14  従動車輪
15  支持アーム
17  モータ
19  車軸
20  車軸
C central axis (predetermined axis)
1 Automated guided vehicle 2 Support base (vehicle body)
10 travel device 13 drive wheel 14 driven wheel 15 support arm 17 motor 19 axle 20 axle

Claims (6)

  1.  車両本体に設けられ、鉛直に延びる所定軸線を中心として周方向に間隔を空けて配置されるとともにそれぞれが全方位に移動可能なオムニホイールからなる少なくとも三つの駆動車輪と、該少なくとも三つの駆動車輪をそれぞれ独立に駆動することで、前記車両本体を全方位へ移動可能にする車輪駆動部とを備えた走行装置であって、
     前記少なくとも三つの駆動車輪は、それぞれの車軸の軸線が平面視で前記所定軸線を通るように配置されており、
     前記少なくとも三つの駆動車輪のそれぞれに対して、前記所定軸線を中心とする径方向の内側又は外側に設けられ、前記車両本体の移動に従動して全方位に移動可能なオムニホイールからなる従動車輪と、
     前記少なくとも三つの駆動車輪のそれぞれに対して設けられ、該各駆動車輪と該各駆動車輪に対応する従動車輪とを一組として支持する支持アームとを備え、
     それぞれの前記駆動車輪に対して設けられる前記支持アームは、アーム長さ方向の中間部を支点に上下に揺動可能に前記車両本体に接続されていて、その揺動中心位置が、該支持アームに支持された一組の前記駆動車輪及び前記従動車輪の間において該従動車輪側に偏位するように構成されていることを特徴とする走行装置。
    at least three driving wheels provided on the vehicle body, circumferentially spaced around a predetermined vertically extending axis and each comprising an omni-wheel movable in all directions; and the at least three driving wheels. A traveling device comprising a wheel drive unit that enables the vehicle body to move in all directions by independently driving the
    The at least three drive wheels are arranged such that the axes of the respective axles pass through the predetermined axis in a plan view,
    A driven wheel comprising an omni-wheel that is provided inside or outside in a radial direction about the predetermined axis relative to each of the at least three drive wheels and is movable in all directions following the movement of the vehicle body. When,
    a support arm provided for each of the at least three driving wheels and supporting each driving wheel and a driven wheel corresponding to each driving wheel as a set;
    The support arms provided for the respective drive wheels are connected to the vehicle body so as to be capable of swinging up and down about the middle portion in the arm length direction as a fulcrum. A traveling device characterized in that it is configured to be biased toward the driven wheels between a set of the driving wheels and the driven wheels supported by a pair of the driving wheels and the driven wheels.
  2.  前記車輪駆動部は、前記少なくとも三つの駆動車輪のそれぞれに対して設けられ、該各駆動車輪に動力伝達可能に接続されたモータを有し、
     前記各駆動車輪と、該各駆動車輪に接続されたモータとは、前記所定軸線を中心とする径方向において、該各駆動車輪に対応する前記各従動車輪よりも内側に配置されていることを特徴とする請求項1記載の走行装置。
    The wheel drive unit has a motor provided for each of the at least three drive wheels and connected to each drive wheel so as to be capable of power transmission,
    The drive wheels and the motors connected to the drive wheels are arranged inside the driven wheels corresponding to the drive wheels in a radial direction about the predetermined axis. 2. A traveling device according to claim 1.
  3.  前記各モータは、出力軸が前記各駆動車輪の車軸に対して同軸になる状態で該各駆動車輪に接続されていることを特徴とする請求項2記載の走行装置。 3. The traveling device according to claim 2, wherein each motor is connected to each driving wheel in such a manner that an output shaft thereof is coaxial with the axle of each driving wheel.
  4.  前記各駆動車輪を駆動するモータは、前記所定軸線を中心とする径方向において、該各駆動車輪よりも内側に配置されていることを特徴とする請求項2又は3記載の走行装置。 4. The traveling device according to claim 2 or 3, wherein the motors for driving the respective driving wheels are arranged inside the respective driving wheels in a radial direction about the predetermined axis.
  5.  前記各駆動車輪を駆動するモータは、前記所定軸線を中心とする径方向において、該各駆動車輪よりも外側に配置されていることを特徴とする請求項2又は3記載の走行装置。 The traveling device according to claim 2 or 3, wherein the motors for driving the respective driving wheels are arranged outside the respective driving wheels in a radial direction about the predetermined axis.
  6.  請求項1から5のいずれか一項に記載の走行装置と、前記車両本体とを備えていることを特徴とする無人搬送車。
     
     
    An automatic guided vehicle comprising the traveling device according to any one of claims 1 to 5 and the vehicle body.

PCT/JP2021/035767 2021-03-12 2021-09-29 Traveling device and unmanned transport vehicle including traveling device WO2022190440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-040308 2021-03-12
JP2021040308A JP6906120B1 (en) 2021-03-12 2021-03-12 Traveling device and automatic guided vehicle equipped with the traveling device

Publications (1)

Publication Number Publication Date
WO2022190440A1 true WO2022190440A1 (en) 2022-09-15

Family

ID=76918271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035767 WO2022190440A1 (en) 2021-03-12 2021-09-29 Traveling device and unmanned transport vehicle including traveling device

Country Status (2)

Country Link
JP (1) JP6906120B1 (en)
WO (1) WO2022190440A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867268A (en) * 1994-08-30 1996-03-12 Rikagaku Kenkyusho Drive transmitting mechanism for omnidirectional moving vehicle
JP2008155652A (en) * 2006-12-20 2008-07-10 Murata Mach Ltd Self-traveling conveying truck
JP2014046890A (en) * 2012-09-03 2014-03-17 Araki Seisakusho:Kk Omnidirectional moving truck having power assist function
JP2020019286A (en) * 2018-07-30 2020-02-06 フラワー・ロボティクス株式会社 Omni-directional movement truck
JP2020164138A (en) * 2019-03-30 2020-10-08 国立大学法人京都大学 Mobile device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168451U (en) * 2010-11-10 2011-06-16 有限会社サット・システムズ Omni-directional cart

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867268A (en) * 1994-08-30 1996-03-12 Rikagaku Kenkyusho Drive transmitting mechanism for omnidirectional moving vehicle
JP2008155652A (en) * 2006-12-20 2008-07-10 Murata Mach Ltd Self-traveling conveying truck
JP2014046890A (en) * 2012-09-03 2014-03-17 Araki Seisakusho:Kk Omnidirectional moving truck having power assist function
JP2020019286A (en) * 2018-07-30 2020-02-06 フラワー・ロボティクス株式会社 Omni-directional movement truck
JP2020164138A (en) * 2019-03-30 2020-10-08 国立大学法人京都大学 Mobile device

Also Published As

Publication number Publication date
JP2022139779A (en) 2022-09-26
JP6906120B1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US7789175B2 (en) Modular dual wheel drive assembly, wheeled devices that include modular dual wheel drive assemblies and methods for moving and/or maneuvering wheeled devices using modular dual wheel drive assemblies
CN105882784B (en) Omnidirectional mobile platform and power universal wheel thereof
EP3536466A1 (en) Flexible base and self-driven robot
US6802381B1 (en) Propulsion mechanism having spherical ball
US11059707B2 (en) Load supporting apparatus for an automated guide vehicle
WO2021157144A1 (en) Running device
CN105946451A (en) Omni-directional mobile platform and steering wheels and drive wheels of omni-directional mobile platform
JP3168451U (en) Omni-directional cart
CN117222531B (en) Caster capable of rotating smoothly at 180 degrees
US20200331546A1 (en) Soft ground crawling robot
CN109896468B (en) All direction movement container transport commodity circulation car
WO2022190440A1 (en) Traveling device and unmanned transport vehicle including traveling device
CN106043427A (en) Multi-caterpillar-band type all-directional mobile platform
US20160194042A1 (en) Three-wheeled mobile robot
TWI753242B (en) Universal wheels, walking mechanisms and autonomous mobile handling robots
KR101685339B1 (en) Ball-driven robot
JP2022526118A (en) Differential drive and AGV
WO2018159532A1 (en) Drive wheel unit and automated guided vehicle
CN116040527A (en) Laser navigation vehicle
JP2019098803A (en) Wheel device for carriage
JPS6335900Y2 (en)
CN114026013B (en) Automatic guided vehicle and method of controlling the same
JP2023007187A (en) Conveyance vehicle
CN219115607U (en) Omnidirectional mobile chassis and mobile robot manufactured by same
CN219009838U (en) Omnidirectional forklift

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930287

Country of ref document: EP

Kind code of ref document: A1