WO2022190369A1 - Light emission unit - Google Patents

Light emission unit Download PDF

Info

Publication number
WO2022190369A1
WO2022190369A1 PCT/JP2021/010131 JP2021010131W WO2022190369A1 WO 2022190369 A1 WO2022190369 A1 WO 2022190369A1 JP 2021010131 W JP2021010131 W JP 2021010131W WO 2022190369 A1 WO2022190369 A1 WO 2022190369A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
reflecting mirror
emitting elements
concave reflecting
Prior art date
Application number
PCT/JP2021/010131
Other languages
French (fr)
Japanese (ja)
Inventor
優 板崎
悦司 大村
Original Assignee
株式会社京都セミコンダクター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京都セミコンダクター filed Critical 株式会社京都セミコンダクター
Priority to PCT/JP2021/010131 priority Critical patent/WO2022190369A1/en
Priority to JP2021569484A priority patent/JP7031926B1/en
Publication of WO2022190369A1 publication Critical patent/WO2022190369A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Definitions

  • the present invention relates to a light irradiation unit for irradiating a sample for spectroscopic analysis with light, and more particularly to a light irradiation unit capable of superimposing and irradiating light from a plurality of light sources.
  • spectroscopic analysis has been performed by irradiating a specimen with light and measuring the spectrum of its transmitted light and scattered light.
  • a spectroscopic analysis apparatus is used that includes light sources for irradiating light of different wavelength ranges and light receiving elements that are sensitive to these wavelength ranges.
  • a spectroscopic analyzer irradiates a specimen in a gaseous or liquid state with light and measures the absorption spectrum peculiar to the specimen to identify the specimen and measure its characteristics.
  • a light source capable of irradiating light in a wide wavelength range is required.
  • a light source using incandescent light or discharge is known as such a light source, but it is not easy to reduce the size of the light source, and there are problems regarding heat generation and life.
  • Patent Document 1 discloses a concave reflecting mirror having a concave surface of a paraboloid of revolution as a reflecting surface, and a plurality of mirrors emitting light in the same wavelength range disposed on the side surface of a post coaxial with the rotation axis of the concave reflecting mirror. LEDs and a light irradiation unit with an optical lens between these LEDs and a concave reflector is described.
  • This light irradiation unit can be regarded as emitting light from an LED arranged at the focal point of a concave reflecting mirror through an optical lens, and this light is reflected by the concave reflecting mirror and emitted as parallel light.
  • Patent Document 2 discloses a plurality of reflecting mirrors having a reflecting surface that is a partially concave surface of an ellipsoid of revolution, and a plurality of reflecting mirrors arranged so as to share one of the two focal points of the ellipsoid of revolution with each other.
  • a light irradiation unit comprising a reflecting mirror of one, a plurality of LEDs respectively arranged at the focal point of the other, and a concave mirror formed in the vicinity of the shared focal point.
  • This light irradiation unit reflects the light emitted from the plurality of LEDs toward the focal point shared by the corresponding reflecting mirrors, and emits parallel light by reflecting the light on the concave mirror.
  • the light emitted from the plurality of LEDs is emitted as parallel light, so most of the light emitted from the plurality of LEDs can be applied to the specimen.
  • the light is parallel light, it is difficult to irradiate the light from a plurality of LEDs so as to overlap the same area.
  • each LED is composed of a plurality of light emitting elements with different emission wavelength ranges arranged in an array, so light emitted from one LED includes light of different wavelengths.
  • the manufacturing cost of the LEDs increases, and since an optical lens corresponding to each LED is provided, the structure of the light irradiation unit becomes complicated and the manufacturing cost increases.
  • Patent Literature 2 describes that a plurality of LEDs emit light in different wavelength ranges. It is not possible to irradiate the same area with overlapping light.
  • An object of the present invention is to provide a light irradiation unit that can irradiate light from a plurality of light emitting elements so as to overlap the same area with a simple structure.
  • the reflecting surface is a partially concave surface of an ellipsoid of revolution formed by rotating the ellipse with the major axis passing through the first and second focal points of the ellipse as the axis of rotation.
  • a mirror a plurality of light-emitting elements for causing the light-emitting surface to emit light toward the reflecting surface of the concave reflecting mirror, and a base for fixing the concave reflecting mirror and the plurality of light-emitting elements, wherein the concave reflecting mirror is , both end portions in the rotation axis direction are formed in an open shape, and the first focal point side end portion of the peripheral wall portion of the concave reflecting mirror is fixed to the base;
  • the plurality of light emitting elements are fixed to a plurality of inclined surfaces formed in the central portion of the base at the same angle of inclination with respect to the base in the vicinity of one focal point and directed in different directions, respectively, and the plurality of light emitting elements emit light. are reflected by the concave reflecting mirror and overlapped at a position farther from the second focal point in the rotation axis direction.
  • the light beams are emitted in different directions toward the reflecting surface of the concave reflecting mirror. Light is emitted. Due to the nature of the spheroid, the light emitted from the plurality of light emitting elements near the first focus is reflected by the concave reflecting mirror toward the vicinity of the second focus, and is reflected from the open end of the concave reflecting mirror on the second focus side. exposed to the outside.
  • a light irradiation unit according to the first aspect of the invention, wherein the eccentricity of the concave reflecting mirror is 0.85 to 0.95.
  • the light reflected by the concave reflecting mirror can be made parallel to the rotation axis of the concave reflecting mirror, and the range in which the light from the plurality of light emitting elements is superimposed on the same area and irradiated can be extended in the direction of the rotation axis. can be as large as
  • a light irradiation unit according to the first aspect of the invention, wherein the plurality of light emitting elements emit light of different wavelengths. According to the above configuration, it is possible to irradiate the same area with light beams having different wavelengths emitted from the plurality of light emitting elements.
  • each of the plurality of light emitting elements is a light emitting diode. According to the above configuration, it is possible to reduce the size of the light irradiation unit by using a small light-emitting element with low heat generation and long life.
  • the center of the light emitting surface is located in the focal plane perpendicular to the rotation axis at the first focus, and It is characterized in that each of the plurality of light emitting elements is fixed so that the line has a predetermined inclination angle with respect to the focal plane toward the second focal point.
  • a light irradiation unit according to the fifth aspect of the invention, wherein the predetermined inclination angle is 20° to 45°. According to the above configuration, it is possible to reduce the irradiation area and irradiate strong light.
  • light from a plurality of light emitting elements can be irradiated so as to overlap the same area with a simple structure.
  • FIG. 1 is a plan view of a light irradiation unit according to Example 1 of the present invention
  • FIG. FIG. 2 is a sectional view taken along line II-II of FIG. 1
  • FIG. 4 is an explanatory diagram of dimensions that determine the shape of a concave reflecting mirror
  • FIG. 4 is an explanatory diagram of light rays emitted by a light emitting element
  • FIG. 5 is an explanatory diagram of light rays when the separation distance in FIG. 4 is reduced
  • FIG. 10 is a diagram showing the distance from the second focal point and the ratio of the light arrival area in a predetermined irradiation area according to the eccentricity of the concave reflecting mirror
  • FIG. 5 is a diagram showing the relationship between the eccentricity of the concave reflecting mirror and the beam diameter at a position separated by a predetermined distance from the minor axis position of the concave reflecting mirror for each tilt angle;
  • FIG. 4 is a contour plot of the luminous flux diameter at a position separated by a predetermined distance from the short axis position of the concave reflecting mirror using the eccentricity and tilt angle of the concave reflecting mirror as parameters.
  • FIG. 11 is a perspective view of a supporting portion showing an example in which the number of light emitting elements is increased;
  • the light irradiation unit 1 includes a concave reflecting mirror 10, a plurality of light emitting elements 20 for emitting light from the light emitting surface 21 side toward the reflecting surface 11 of the concave reflecting mirror 10, and a concave reflecting surface. It has a disk-shaped base 30 for fixing the mirror 10 and the plurality of light emitting elements 20 .
  • the base 30 is arranged on the main surface 31 side of the base 30 concentrically with a center line CL extending perpendicularly to the main surface 31 of the base 30 from the center of the base 30 in order to fix the plurality of light emitting elements 20 . It has a columnar support portion 32 formed in the central portion. A pair of wirings 33 and 34 are formed so as to extend from the support portion 32 to the main surface 31 of the base 30 .
  • the base 30 also has a pair of lead pins 35 and 36 connected to the corresponding wirings 33 and 34 . A pair of lead pins 35 and 36 extend outside through the base 30 from the main surface 31 side of the base 30 .
  • a plurality of light emitting elements 20 fixed to the support portion 32 are electrically connected to a pair of wirings 33 and 34 by, for example, metal wires, respectively, and emit light when supplied with power via a pair of lead pins 35 and 36, respectively. do.
  • the plurality of light emitting elements 20 share a pair of lead pins 35 and 36, each light emitting element 20 may have a pair of lead pins. may be provided.
  • the support portion 32 has a plurality of inclined surfaces 37 and 38 corresponding to the plurality of light emitting elements 20 to be fixed at its tip. These inclined surfaces 37 and 38 are inclined at a constant angle with respect to the main surface 31 of the base 30 and directed in different directions so as to approach the center line CL of the support portion 32 toward the tip side. there is The plurality of light emitting elements 20 are fixed to the corresponding inclined surfaces 37 and 38 in such a posture that the light emitting surfaces 21 are parallel to the inclined surfaces 37 and 38 . Therefore, the plurality of light emitting elements 20 fixed to the supporting portion 32 emit light in different directions.
  • the plurality of light emitting elements 20 light emitting diodes (LEDs) that are small, have low heat generation, and have a long life are preferable. Moreover, it is preferable that the plurality of light emitting elements 20 emit light in mutually different wavelength ranges (for example, an infrared light range and a visible light range).
  • LEDs light emitting diodes
  • the plurality of light emitting elements 20 emit light in mutually different wavelength ranges (for example, an infrared light range and a visible light range).
  • the concave reflecting mirror 10 has a partially concave surface of an ellipsoid of revolution formed by rotating the ellipse E shown in FIG. It has a peripheral wall portion 12 formed coaxially with the rotation axis AR on the outside.
  • the concave reflecting mirror 10 has a reflecting surface 11 formed by forming a metal film (not shown) by, for example, vapor deposition on the partially concave surface of the inner spheroid of the peripheral wall portion 12 formed by, for example, resin molding.
  • the shape of the ellipse E is set by setting the length 2a of the major axis (major axis) and the length 2b of the minor axis B (minor axis).
  • the concave reflecting mirror 10 has both ends in the direction of the rotation axis that are open, and the end of the peripheral wall 12 on the first focus F1 side is fixed to the base 30 .
  • the center line CL of the support portion 32 of the base 30 and the rotation axis AR of the concave reflecting mirror 10 are aligned so that the first focal point F1 of the concave reflecting mirror 10 is located at the tip of the support portion 32 or inside the support portion 32. , it is fixed to the base 30 .
  • the second focal point F2 side end of the concave reflecting mirror 10 is positioned at the position of the minor axis B of the concave reflecting mirror 10 or between the position of the minor axis B and the second focal point F2.
  • the reflecting surface 11 extends to the base 30 side from the focal plane FF orthogonal to the rotation axis AR at the first focal point F1.
  • the light emitting element 20 is arranged such that the center of the light emitting surface 21 is positioned within the focal plane FF, and the normal line N of the light emitting surface 21 is oriented with respect to the focal plane FF. It is fixed so as to have a predetermined tilt angle ⁇ on the two focal points F2 side. Further, these light emitting elements 20 are fixed so that the center of the light emitting surface 21 is separated from the first focal point F1 by a predetermined separation distance d in a direction perpendicular to the rotation axis AR.
  • the focal plane FF is parallel to the main surface 31 of the base 30, and the fixed angle of the inclined surfaces 37 and 38 with respect to the main surface 31 is (90°- ⁇ ).
  • the separation distance d is set based on the major axis and minor axis of the ellipse E that forms the basis of the reflecting surface 11 so that the plurality of light emitting elements 20 do not interfere with each other and do not interfere with the concave reflecting mirror 10 .
  • the distance between the first focal point F1 and the reflecting surface 11 on the focal plane FF is about 1.1 mm.
  • the separation distance d corresponds to the distance (ac) between the first focus F1 and the ellipse E on the rotation axis AR on the first focus F1 side in the direction of the rotation axis.
  • the light emitting element 20 emits light in the normal direction of the light emitting surface 21 .
  • This light has a divergence angle (half angle) of, for example, 20°, and travels toward the reflecting surface 11 of the concave reflecting mirror 10 while expanding in a conical shape.
  • FIG. 4 shows a normal ray emitted from one light emitting element 20 and two rays corresponding to the side surface of the cone. Let distance H be the distance from the position of the short axis B to the position of the irradiation target (specimen), and let distance h be the distance from the second focal point F2 to the position of the irradiation target.
  • the light emitted from the first focal point F1 is reflected by the reflecting surface 11 of the concave reflecting mirror 10 and reaches the second focal point F2.
  • the light emitted from the plurality of light emitting elements 20 in the vicinity of the first focal point F1 is reflected by the concave reflecting mirror 10 toward the second focal point F2, and part of it is reflected from the second focal point F2 in the rotation axis direction. Overlapping at distant positions.
  • the separation distance d can be appropriately set according to the required light irradiation mode, and the support portion 32 is formed according to the separation distance d.
  • the separation distance d is 0.32 mm with respect to the concave reflecting mirror 10 of FIG.
  • the second focal point F2 is closer than in the case of . This is because the smaller the separation distance d is, the closer the light emitting element 20 is to the first focal point F1, and the light reaches a position closer to the second focal point F2. Therefore, when the position of the object to be irradiated is set closer to the light irradiation unit 1, the separation distance d is reduced. Further, by reducing the separation distance d, the position of the object to be irradiated becomes closer to the light irradiation unit 1, and strong light can be irradiated before the light spreads widely.
  • FIG. 6 shows that when the shape of the ellipse E is different because the major axis is constant at 8 mm and the minor axis is different, that is, when the eccentricity ⁇ is different, the distance h and the light in a predetermined area (area with a diameter of 2 mm) around the rotation axis AR
  • the relationship between the proportion of the area reached by (reaching efficiency) is shown for each eccentricity.
  • the separation distance d of the light emitting elements 20 is 0.32 mm, and the inclination angle ⁇ is 45°.
  • the higher the arrival efficiency the larger the area where the light from the plurality of light emitting elements 20 overlaps in the predetermined area. When the arrival efficiency is 100%, the light from the plurality of light emitting elements 20 overlaps in the entire predetermined area.
  • the smaller the eccentricity ⁇ the smaller the range of the distance h in which high arrival efficiency is obtained, and the decrease in the arrival efficiency with respect to the increase in the distance h becomes more rapid. This is because the smaller the eccentricity ⁇ , the larger the incident angle of light that reaches the predetermined area.
  • the larger the eccentricity ⁇ the larger the range in which the light from the plurality of light emitting elements 20 can be overlapped and irradiated in the direction of the rotation axis. This is because, as the eccentricity ⁇ increases, the light reflected by the reflecting surface 11 and the rotation axis AR become parallel to each other, and the light reaches the predetermined area at a small incident angle.
  • the range of the distance h for which a high arrival efficiency is obtained is large.
  • a concave reflector 10 is preferred. With the concave reflecting mirror 10 having a major axis of 8 mm and an eccentricity ⁇ of 0.95, the distance between the first focal point F1 and the reflecting surface 11 on the focal plane FF is about 0.4 mm. In the reflecting mirror 10, it is difficult to dispose the plurality of light emitting elements 20 without interfering with each other.
  • the light is equipped with a concave reflecting mirror larger than the above so that a plurality of light emitting elements can be arranged for the concave reflecting mirror having an eccentricity ⁇ of greater than 0.95. It is also possible to form an illumination unit.
  • FIG. 7 shows the eccentricity .epsilon.
  • the relationship between the width of the irradiation area of the light reflected by the mirror 10 (corresponding to w in FIGS. 4 and 5) and the tilt angle of the light emitting surface 21 is shown.
  • the width of the irradiation area decreases as the eccentricity ⁇ increases from 0.8, and becomes minimum at the eccentricity ⁇ of about 0.89.
  • the eccentricity ⁇ is greater than 0.89
  • the width of the irradiation area increases.
  • the smaller the tilt angle ⁇ the smaller the width of the irradiation area.
  • the relationship shown in FIG. 7 can be utilized when forming the light irradiation unit 1 that achieves the required irradiation mode.
  • the relationship shown in FIG. 8 can be used when setting the eccentricity ⁇ of the concave reflecting mirror 10 and the inclination angle ⁇ of the light emitting surface 21 of the light irradiation unit 1 that realizes the required irradiation mode.
  • FIG. 9 shows an example in which the light emitting elements 20 are arranged on the four inclined surfaces formed on the support portion 32, respectively.
  • the number of light-emitting elements 20 can be appropriately set according to, for example, the required wavelength range and light intensity. Even in such a case, since the reflecting surface 11 of the concave reflecting mirror 10 is the partially concave surface of the ellipsoid of revolution, the light from the plurality of light emitting elements 20 can be overlapped and irradiated.
  • a light emitting element that emits light toward the second focal point F2 may be arranged at the tip of the supporting portion 32.
  • the light irradiation unit 1 From a plurality of light emitting elements 20 disposed near the first focal point F1 of the concave reflecting mirror 10 whose reflecting surface 11 is the partially concave surface of the spheroid, the light beams are directed toward the reflecting surface 11 of the concave reflecting mirror 10 in mutually different directions. Light is emitted. Due to the nature of the spheroid, the light emitted from the plurality of light emitting elements 20 near the first focal point F1 is reflected by the concave reflecting mirror 10 toward the near second focal point F2, and is reflected by the concave reflecting mirror 10 toward the second focal point F2. The light is emitted to the outside from the open end on the focal point F2 side.
  • the light of different wavelengths emitted from the plurality of light emitting elements 20 can be superimposed on the same area. Since these plurality of light emitting elements 20 are small light emitting diodes with low heat generation and long life, the light irradiation unit 1 can be miniaturized.
  • the center of the light emitting surface 21 is positioned within the focal plane FF orthogonal to the rotation axis AR at the first focal point F1, and the normal line N of the light emitting surface 21 is positioned on the second focal point F2 side of the focal plane FF.
  • a plurality of light emitting elements 20 are fixed to the corresponding inclined surfaces 37 and 38 of the supporting portion 32 so as to have an inclination angle ⁇ . Therefore, even if the first focal point side end of the concave reflecting mirror 10 in the rotation axis direction is formed in an open shape, most of the light emitted from the light emitting element 20 is reflected by the concave reflecting mirror 10 and A position farther than the second focal point F2 can be reached.
  • the light from the light emitting elements 20 is not wasted, and the light from the plurality of light emitting elements 20 can be overlapped and radiated to a position farther than the second focal point F2.
  • the predetermined tilt angle ⁇ is 20° to 45°, it is possible to reduce the width of the irradiation area and irradiate strong light.
  • the plurality of light emitting elements 20 are arranged such that the center of the light emitting surface 21 is separated from the first focal point F1 in a direction orthogonal to the rotation axis AR by a separation distance d set based on the major axis and minor axis of the concave reflecting mirror 10. , are fixed to the corresponding inclined surfaces 37 and 38 of the support portion 32, respectively.
  • the plurality of light emitting elements 20 can be arranged in the vicinity of the first focal point F1 so as not to interfere with each other and the concave reflecting mirror 10, and light emitted from a point in the vicinity of the first focal point F1
  • the light from the light emitting element 20 can reach the vicinity of the second focal point F2.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lenses (AREA)

Abstract

[Problem] To provide a light emission unit that is capable of using a simple structure to emit light from a plurality of light emission elements so as to overlap in the same region. [Solution] This light emission unit (1) comprises a concave surface reflection mirror (10) having a reflection surface (11) that is a partial concave surface of a rotational ellipsoid obtained by rotating an ellipse around a rotation axis consisting of the major axis passing through the first and second foci (F1, F2) of the ellipse, a plurality of light emission elements (20) that emit light toward the reflection surface (11) of the concave surface reflection mirror (10), and a base (30) for fixing the concave surface reflection mirror (10) and the plurality of light emission elements (20). Both rotation-axis-direction end parts of the concave surface reflection mirror (10) are formed so as to be open. A first-focus-side end part of a peripheral wall part (12) of the concave surface reflection mirror (10) is fixed to the base (30). In the vicinity of the first focus (F1), the plurality of light emission elements (20) are respectively fixed to a plurality of inclined surfaces (37, 38) that are formed on a central portion of the base (30) at the same inclination angle in relation to the base (30) and so as to be oriented toward different directions. As a result, the light emitted by the plurality of light emission elements (20) is reflected by the concave surface reflection mirror (10) and made to overlap at a position further in the rotation axis direction than the second focus (F2).

Description

光照射ユニットlight irradiation unit
 本発明は、分光分析の検体に光を照射するための光照射ユニットに関し、特に複数の光源の光を重ねて照射可能な光照射ユニットに関する。 The present invention relates to a light irradiation unit for irradiating a sample for spectroscopic analysis with light, and more particularly to a light irradiation unit capable of superimposing and irradiating light from a plurality of light sources.
 従来から、検体に光を照射して、その透過光、散乱光のスペクトルを測定する分光分析が行われている。分光分析では、異なる波長域の光を照射するための光源と、これらの波長域に感度を有する受光素子を備えた分光分析装置が利用されている。 Conventionally, spectroscopic analysis has been performed by irradiating a specimen with light and measuring the spectrum of its transmitted light and scattered light. In spectroscopic analysis, a spectroscopic analysis apparatus is used that includes light sources for irradiating light of different wavelength ranges and light receiving elements that are sensitive to these wavelength ranges.
 分光分析装置では、気体又は液体の状態の検体に光が照射され、検体特有の吸収スペクトルを測定して検体の同定、特性の測定等を行う。この測定の精度向上のためには、広い波長域の光を照射可能な光源が必要とされる。このような光源として白熱光又は放電を利用するものが知られているが、小型化することが容易ではなく、発熱、寿命に関する課題がある。 A spectroscopic analyzer irradiates a specimen in a gaseous or liquid state with light and measures the absorption spectrum peculiar to the specimen to identify the specimen and measure its characteristics. In order to improve the accuracy of this measurement, a light source capable of irradiating light in a wide wavelength range is required. A light source using incandescent light or discharge is known as such a light source, but it is not easy to reduce the size of the light source, and there are problems regarding heat generation and life.
 一方、発する光の波長域は広くないが、小型化が可能で低発熱、長寿命の発光ダイオード(LED)を光源とする光照射ユニットが知られている。例えば特許文献1には、回転放物面の凹面を反射面とする凹面反射鏡と、この凹面反射鏡の回転軸と同軸の支柱の側面に配設された同一の波長域の光を発する複数のLEDと、これらのLEDと凹面反射鏡の間に光学レンズを備えた光照射ユニットが記載されている。この光照射ユニットは、光学レンズによって、凹面反射鏡の焦点に配設されたLEDから光を出射したものとみなすことができ、この光を凹面反射鏡で反射させて平行光として出射する。 On the other hand, although the wavelength range of the emitted light is not wide, there is known a light irradiation unit that uses a light emitting diode (LED) as a light source that can be miniaturized, has low heat generation, and has a long life. For example, Patent Document 1 discloses a concave reflecting mirror having a concave surface of a paraboloid of revolution as a reflecting surface, and a plurality of mirrors emitting light in the same wavelength range disposed on the side surface of a post coaxial with the rotation axis of the concave reflecting mirror. LEDs and a light irradiation unit with an optical lens between these LEDs and a concave reflector is described. This light irradiation unit can be regarded as emitting light from an LED arranged at the focal point of a concave reflecting mirror through an optical lens, and this light is reflected by the concave reflecting mirror and emitted as parallel light.
 また、例えば特許文献2には、回転楕円面の部分凹面を反射面とする複数の反射鏡であって、回転楕円面の2つの焦点のうちの一方を互いに共有するように配設された複数の反射鏡と、他方の焦点に夫々配設された複数のLEDと、共有する焦点の近傍に形成された凹面鏡を備えた光照射ユニットが記載されている。この光照射ユニットは、複数のLEDから出射した光を対応する反射鏡が共有する焦点に向けて夫々反射し、これらの光を凹面鏡が反射することによって平行光を出射する。 Further, for example, Patent Document 2 discloses a plurality of reflecting mirrors having a reflecting surface that is a partially concave surface of an ellipsoid of revolution, and a plurality of reflecting mirrors arranged so as to share one of the two focal points of the ellipsoid of revolution with each other. describes a light irradiation unit comprising a reflecting mirror of one, a plurality of LEDs respectively arranged at the focal point of the other, and a concave mirror formed in the vicinity of the shared focal point. This light irradiation unit reflects the light emitted from the plurality of LEDs toward the focal point shared by the corresponding reflecting mirrors, and emits parallel light by reflecting the light on the concave mirror.
特開2018-137128JP 2018-137128 特表2010-503954Special table 2010-503954
 特許文献1、2の光照射ユニットは、複数のLEDの光が夫々平行光として出射されるので、複数のLEDが発した光の大部分を検体に照射可能である。しかし、平行光なので、複数のLEDの光を同一領域に重なるように照射することが困難である。 In the light irradiation units of Patent Literatures 1 and 2, the light emitted from the plurality of LEDs is emitted as parallel light, so most of the light emitted from the plurality of LEDs can be applied to the specimen. However, since the light is parallel light, it is difficult to irradiate the light from a plurality of LEDs so as to overlap the same area.
 また、特許文献1では、アレイ状に並べられた発光波長域が異なる複数の発光素子によって各LEDが構成されているので、1つのLEDから照射される光には異なる波長の光が含まれているが、LEDの製造コストが上昇すると共に各LEDに対応する光学レンズを備えているので、光照射ユニットの構造が複雑になり、製造コストが増加する。 In addition, in Patent Document 1, each LED is composed of a plurality of light emitting elements with different emission wavelength ranges arranged in an array, so light emitted from one LED includes light of different wavelengths. However, the manufacturing cost of the LEDs increases, and since an optical lens corresponding to each LED is provided, the structure of the light irradiation unit becomes complicated and the manufacturing cost increases.
 一方、特許文献2には、複数のLEDを互いに発光波長域が異なるものにすることが記載されているが、各LEDの光を平行光として出射するので、複数のLEDが発する異なる波長域の光を同一領域に重ねて照射することができない。 On the other hand, Patent Literature 2 describes that a plurality of LEDs emit light in different wavelength ranges. It is not possible to irradiate the same area with overlapping light.
 本発明の目的は、簡単な構造で複数の発光素子の光を同一領域に重なるように照射することができる光照射ユニットを提供することである。 An object of the present invention is to provide a light irradiation unit that can irradiate light from a plurality of light emitting elements so as to overlap the same area with a simple structure.
 請求項1の発明の光照射ユニットは、楕円の第1焦点と第2焦点を通る長軸を回転軸として前記楕円を回転させて形成される回転楕円面の部分凹面を反射面とする凹面反射鏡と、前記凹面反射鏡の反射面に向けて発光面を発光させる複数の発光素子と、前記凹面反射鏡と前記複数の発光素子を固定するための基台を有し、前記凹面反射鏡は、前記回転軸方向両端側部分が夫々開放状に形成されると共に、前記凹面反射鏡の周壁部の前記第1焦点側端部が前記基台に固定され、前記複数の発光素子は、前記第1焦点の近傍において前記基台に対して同じ傾斜角で互いに異なる方向に向けて前記基台の中央部分に形成された複数の傾斜面に夫々固定され、前記複数の発光素子を発光させたときの光が、前記凹面反射鏡によって反射されて、前記回転軸方向の前記第2焦点よりも遠い位置で重なり合うように構成されたことを特徴としている。 In the light irradiation unit of the first aspect of the invention, the reflecting surface is a partially concave surface of an ellipsoid of revolution formed by rotating the ellipse with the major axis passing through the first and second focal points of the ellipse as the axis of rotation. a mirror, a plurality of light-emitting elements for causing the light-emitting surface to emit light toward the reflecting surface of the concave reflecting mirror, and a base for fixing the concave reflecting mirror and the plurality of light-emitting elements, wherein the concave reflecting mirror is , both end portions in the rotation axis direction are formed in an open shape, and the first focal point side end portion of the peripheral wall portion of the concave reflecting mirror is fixed to the base; When the plurality of light emitting elements are fixed to a plurality of inclined surfaces formed in the central portion of the base at the same angle of inclination with respect to the base in the vicinity of one focal point and directed in different directions, respectively, and the plurality of light emitting elements emit light. are reflected by the concave reflecting mirror and overlapped at a position farther from the second focal point in the rotation axis direction.
 上記構成によれば、回転楕円面の部分凹面を反射面とする凹面反射鏡の第1焦点の近傍に配設された複数の発光素子から、凹面反射鏡の反射面に向けて互いに異なる方向に光が出射される。回転楕円面の性質により、第1焦点近傍の複数の発光素子から出射された光は、凹面反射鏡によって第2焦点の近傍に向けて反射され、凹面反射鏡の第2焦点側の開放端から外部に照射される。このとき、凹面反射鏡によって反射された複数の発光素子の光の大部分は、互いに平行にはならず、凹面反射鏡の回転軸方向の第2焦点よりも遠い位置で重なり合う。従って、光学レンズを使用しない簡単な構造で複数の発光素子の光を同一領域に重ねて照射することができる。 According to the above configuration, from the plurality of light emitting elements arranged near the first focal point of the concave reflecting mirror whose reflecting surface is the partially concave surface of the spheroid, the light beams are emitted in different directions toward the reflecting surface of the concave reflecting mirror. Light is emitted. Due to the nature of the spheroid, the light emitted from the plurality of light emitting elements near the first focus is reflected by the concave reflecting mirror toward the vicinity of the second focus, and is reflected from the open end of the concave reflecting mirror on the second focus side. exposed to the outside. At this time, most of the light from the plurality of light emitting elements reflected by the concave reflecting mirror is not parallel to each other, and overlaps at a position farther than the second focal point in the rotation axis direction of the concave reflecting mirror. Therefore, light from a plurality of light-emitting elements can be overlapped and irradiated to the same region with a simple structure that does not use an optical lens.
 請求項2の発明の光照射ユニットは、請求項1の発明において、前記凹面反射鏡の離心率が0.85~0.95であることを特徴としている。
 上記構成によれば、凹面反射鏡によって反射された光を凹面反射鏡の回転軸に対して平行に近づけることができ、複数の発光素子の光を同一領域に重ねて照射する範囲を回転軸方向に大きくすることができる。
According to a second aspect of the invention, there is provided a light irradiation unit according to the first aspect of the invention, wherein the eccentricity of the concave reflecting mirror is 0.85 to 0.95.
According to the above configuration, the light reflected by the concave reflecting mirror can be made parallel to the rotation axis of the concave reflecting mirror, and the range in which the light from the plurality of light emitting elements is superimposed on the same area and irradiated can be extended in the direction of the rotation axis. can be as large as
 請求項3の発明の光照射ユニットは、請求項1の発明において、前記複数の発光素子が互いに異なる波長の光を発することを特徴としている。
 上記構成によれば、複数の発光素子から出射される異なる波長の光を同一領域に重ねて照射することができる。
According to a third aspect of the invention, there is provided a light irradiation unit according to the first aspect of the invention, wherein the plurality of light emitting elements emit light of different wavelengths.
According to the above configuration, it is possible to irradiate the same area with light beams having different wavelengths emitted from the plurality of light emitting elements.
 請求項4の発明の光照射ユニットは、請求項3の発明において、前記複数の発光素子が夫々発光ダイオードであることを特徴としている。
 上記構成によれば、低発熱且つ長寿命の小型の発光素子を用いて、光照射ユニットを小型化することができる。
According to a fourth aspect of the invention, there is provided a light irradiation unit according to the third aspect of the invention, wherein each of the plurality of light emitting elements is a light emitting diode.
According to the above configuration, it is possible to reduce the size of the light irradiation unit by using a small light-emitting element with low heat generation and long life.
 請求項5の発明の光照射ユニットは、請求項1の発明において、前記発光面の中心が前記第1焦点で前記回転軸と直交する焦点面内に位置するように、且つ前記発光面の法線が前記焦点面に対して前記第2焦点側に所定の傾斜角を有するように、前記複数の発光素子が夫々固定されたことを特徴としている。
 上記構成によれば、凹面反射鏡の回転軸方向第1焦点側端部が開放状に形成されていても、発光素子から発する光の大部分を凹面反射鏡で反射させて、回転軸における第2焦点よりも遠い位置に到達させることができる。従って、発光素子の光を無駄にすることが無く、複数の発光素子の光を第2焦点よりも遠い位置に重ねて照射することができる。
In the light irradiation unit of the invention of claim 5, in the invention of claim 1, the center of the light emitting surface is located in the focal plane perpendicular to the rotation axis at the first focus, and It is characterized in that each of the plurality of light emitting elements is fixed so that the line has a predetermined inclination angle with respect to the focal plane toward the second focal point.
According to the above configuration, even if the first focal point side end in the rotation axis direction of the concave reflecting mirror is formed in an open shape, most of the light emitted from the light emitting element is reflected by the concave reflecting mirror and It is possible to reach positions farther than two focal points. Therefore, the light from a plurality of light emitting elements can be overlapped and irradiated to a position farther than the second focal point without wasting the light from the light emitting elements.
 請求項6の発明の光照射ユニットは、請求項5の発明において、前記所定の傾斜角が20°~45°であることを特徴としている。
 上記構成によれば、照射領域を小さくして、強い光を照射することができる。
According to a sixth aspect of the invention, there is provided a light irradiation unit according to the fifth aspect of the invention, wherein the predetermined inclination angle is 20° to 45°.
According to the above configuration, it is possible to reduce the irradiation area and irradiate strong light.
 本発明の光照射ユニットによれば、簡単な構造で複数の発光素子の光を同一領域に重なるように照射することができる。 According to the light irradiation unit of the present invention, light from a plurality of light emitting elements can be irradiated so as to overlap the same area with a simple structure.
本発明の実施例1に係る光照射ユニットの平面図である。1 is a plan view of a light irradiation unit according to Example 1 of the present invention; FIG. 図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG. 1; 凹面反射鏡の形状を決める寸法の説明図である。FIG. 4 is an explanatory diagram of dimensions that determine the shape of a concave reflecting mirror; 発光素子が発した光線の説明図である。FIG. 4 is an explanatory diagram of light rays emitted by a light emitting element; 図4の離隔距離を小さくした場合の光線の説明図である。FIG. 5 is an explanatory diagram of light rays when the separation distance in FIG. 4 is reduced; 第2焦点からの距離と所定の照射領域における光の到達面積の割合を凹面反射鏡の離心率別に示す図である。FIG. 10 is a diagram showing the distance from the second focal point and the ratio of the light arrival area in a predetermined irradiation area according to the eccentricity of the concave reflecting mirror; 凹面反射鏡の離心率と凹面反射鏡の短軸位置から所定距離だけ離隔した位置における光束径の関係を傾斜角別に示す図である。FIG. 5 is a diagram showing the relationship between the eccentricity of the concave reflecting mirror and the beam diameter at a position separated by a predetermined distance from the minor axis position of the concave reflecting mirror for each tilt angle; 凹面反射鏡の離心率と傾斜角をパラメータとして凹面反射鏡の短軸位置から所定距離だけ離隔した位置における光束径を等高線プロットした図である。FIG. 4 is a contour plot of the luminous flux diameter at a position separated by a predetermined distance from the short axis position of the concave reflecting mirror using the eccentricity and tilt angle of the concave reflecting mirror as parameters. 発光素子数を増加させた例を示す支持部の斜視図である。FIG. 11 is a perspective view of a supporting portion showing an example in which the number of light emitting elements is increased;
 以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, the mode for carrying out the present invention will be described based on examples.
 図1、図2に示すように、光照射ユニット1は、凹面反射鏡10と、この凹面反射鏡10の反射面11に向けて発光面21側を発光させる複数の発光素子20と、凹面反射鏡10及び複数の発光素子20を固定するための円盤状の基台30を有する。 As shown in FIGS. 1 and 2, the light irradiation unit 1 includes a concave reflecting mirror 10, a plurality of light emitting elements 20 for emitting light from the light emitting surface 21 side toward the reflecting surface 11 of the concave reflecting mirror 10, and a concave reflecting surface. It has a disk-shaped base 30 for fixing the mirror 10 and the plurality of light emitting elements 20 .
 基台30は、複数の発光素子20を固定するために基台30の中心から基台30の主面31に対して垂直に延びる中心線CLと同心状に基台30の主面31側の中央部分に形成された柱状の支持部32を有する。また、この支持部32から基台30の主面31に延びるように、1対の配線33,34が形成されている。そして、基台30は、対応する配線33,34に接続された1対のリードピン35,36を有する。1対のリードピン35,36は、基台30の主面31側から基台30を貫通して外部に延びている。 The base 30 is arranged on the main surface 31 side of the base 30 concentrically with a center line CL extending perpendicularly to the main surface 31 of the base 30 from the center of the base 30 in order to fix the plurality of light emitting elements 20 . It has a columnar support portion 32 formed in the central portion. A pair of wirings 33 and 34 are formed so as to extend from the support portion 32 to the main surface 31 of the base 30 . The base 30 also has a pair of lead pins 35 and 36 connected to the corresponding wirings 33 and 34 . A pair of lead pins 35 and 36 extend outside through the base 30 from the main surface 31 side of the base 30 .
 支持部32に固定された複数の発光素子20は、1対の配線33,34に例えば金属ワイヤによって夫々電気的に接続され、1対のリードピン35,36を介して夫々給電されたときに発光する。尚、複数の発光素子20は1対のリードピン35,36を共用しているが、発光素子20毎に1対のリードピンを備えていてもよく、例えば負極のリードピンを共用するように複数のリードピンを備えていてもよい。 A plurality of light emitting elements 20 fixed to the support portion 32 are electrically connected to a pair of wirings 33 and 34 by, for example, metal wires, respectively, and emit light when supplied with power via a pair of lead pins 35 and 36, respectively. do. Although the plurality of light emitting elements 20 share a pair of lead pins 35 and 36, each light emitting element 20 may have a pair of lead pins. may be provided.
 支持部32は、その先端部に、固定される複数の発光素子20に対応する複数の傾斜面37,38を備えている。これらの傾斜面37,38は、先端側ほど支持部32の中心線CLに近づくように、基台30の主面31に対して一定の角度で傾斜し且つ互いに異なる方向に向けて形成されている。複数の発光素子20は、発光面21が傾斜面37,38と平行になる姿勢で対応する傾斜面37,38に固定されている。それ故、支持部32に固定された複数の発光素子20は、互いに異なる方向に光を出射する。 The support portion 32 has a plurality of inclined surfaces 37 and 38 corresponding to the plurality of light emitting elements 20 to be fixed at its tip. These inclined surfaces 37 and 38 are inclined at a constant angle with respect to the main surface 31 of the base 30 and directed in different directions so as to approach the center line CL of the support portion 32 toward the tip side. there is The plurality of light emitting elements 20 are fixed to the corresponding inclined surfaces 37 and 38 in such a posture that the light emitting surfaces 21 are parallel to the inclined surfaces 37 and 38 . Therefore, the plurality of light emitting elements 20 fixed to the supporting portion 32 emit light in different directions.
 複数の発光素子20としては、小型で低発熱且つ長寿命の発光ダイオード(LED)が好ましい。また、複数の発光素子20が、互いに異なる波長域(例えば赤外光領域と可視光領域)の光を発することが好ましい。 As the plurality of light emitting elements 20, light emitting diodes (LEDs) that are small, have low heat generation, and have a long life are preferable. Moreover, it is preferable that the plurality of light emitting elements 20 emit light in mutually different wavelength ranges (for example, an infrared light range and a visible light range).
 凹面反射鏡10は、図3に示す楕円Eの第1焦点F1と第2焦点F2を通る長軸を回転軸ARとしてこの楕円Eを回転させて形成される回転楕円面の部分凹面と、その外側に回転軸ARと同軸状に形成された周壁部12を有する。この凹面反射鏡10は、例えば樹脂成形によって形成された周壁部12の内側の回転楕円面の部分凹面に、例えば蒸着によって不図示の金属膜を形成して反射面11としている。 The concave reflecting mirror 10 has a partially concave surface of an ellipsoid of revolution formed by rotating the ellipse E shown in FIG. It has a peripheral wall portion 12 formed coaxially with the rotation axis AR on the outside. The concave reflecting mirror 10 has a reflecting surface 11 formed by forming a metal film (not shown) by, for example, vapor deposition on the partially concave surface of the inner spheroid of the peripheral wall portion 12 formed by, for example, resin molding.
 楕円Eは、長軸の長さ2a(長径)と短軸Bの長さ2b(短径)を設定することによって形状が設定される。長径と短径によって、長軸(回転軸AR)と短軸Bの交点Xから第1、第2焦点F1,F2までの距離cがc=(a2-b21/2のように算出され、楕円Eの離心率εがε=((a2-b21/2)/aのように算出される。 The shape of the ellipse E is set by setting the length 2a of the major axis (major axis) and the length 2b of the minor axis B (minor axis). The distance c from the intersection X of the major axis (rotational axis AR) and the minor axis B to the first and second focal points F1 and F2 is c=(a 2 -b 2 ) 1/2 depending on the major axis and the minor axis. The eccentricity ε of the ellipse E is calculated as ε=((a 2 -b 2 ) 1/2 )/a.
 図2、図3に示すように、凹面反射鏡10は、回転軸方向両端部分が夫々開放状に形成され、周壁部12の第1焦点F1側端部が基台30に固定される。このとき、基台30の支持部32の中心線CLと凹面反射鏡10の回転軸ARとが一致して、凹面反射鏡10の第1焦点F1が支持部32の先端又は内部に位置するように、基台30に固定される。凹面反射鏡10の第2焦点F2側端部は、凹面反射鏡10の短軸Bの位置に、又は短軸Bの位置と第2焦点F2の間に位置するように形成されている。反射面11は、第1焦点F1で回転軸ARと直交する焦点面FFよりも基台30側まで延びている。 As shown in FIGS. 2 and 3, the concave reflecting mirror 10 has both ends in the direction of the rotation axis that are open, and the end of the peripheral wall 12 on the first focus F1 side is fixed to the base 30 . At this time, the center line CL of the support portion 32 of the base 30 and the rotation axis AR of the concave reflecting mirror 10 are aligned so that the first focal point F1 of the concave reflecting mirror 10 is located at the tip of the support portion 32 or inside the support portion 32. , it is fixed to the base 30 . The second focal point F2 side end of the concave reflecting mirror 10 is positioned at the position of the minor axis B of the concave reflecting mirror 10 or between the position of the minor axis B and the second focal point F2. The reflecting surface 11 extends to the base 30 side from the focal plane FF orthogonal to the rotation axis AR at the first focal point F1.
 支持部32の各傾斜面37,38において、発光素子20は、その発光面21の中心が焦点面FF内に位置するように、且つ発光面21の法線Nが焦点面FFに対して第2焦点F2側に所定の傾斜角αを有するように固定されている。また、これら発光素子20は、発光面21の中心が第1焦点F1から回転軸ARと直交する方向に所定の離隔距離dだけ夫々離隔するように固定されている。傾斜角αは20°~45°の範囲内で選択された角度(例えばα=45°)に設定されている。尚、焦点面FFは基台30の主面31と平行であり、傾斜面37,38の主面31に対する一定の角度は(90°-α)である。 On each of the inclined surfaces 37 and 38 of the supporting portion 32, the light emitting element 20 is arranged such that the center of the light emitting surface 21 is positioned within the focal plane FF, and the normal line N of the light emitting surface 21 is oriented with respect to the focal plane FF. It is fixed so as to have a predetermined tilt angle α on the two focal points F2 side. Further, these light emitting elements 20 are fixed so that the center of the light emitting surface 21 is separated from the first focal point F1 by a predetermined separation distance d in a direction perpendicular to the rotation axis AR. The tilt angle α is set to an angle selected within the range of 20° to 45° (eg α=45°). The focal plane FF is parallel to the main surface 31 of the base 30, and the fixed angle of the inclined surfaces 37 and 38 with respect to the main surface 31 is (90°-α).
 図4において、凹面反射鏡10の反射面11は、長径が8mm(a=4mm)、短径が4.22mm(b=2.11mm)、離心率ε=0.85の楕円Eの長軸を回転軸ARとして、この楕円Eを回転させて形成される回転楕円面の部分凹面に形成されている。また、複数の発光素子20は、発光面21の中心が第1焦点F1から所定の離隔距離dとしてd=0.6mmだけ回転軸ARと直交する方向に夫々離隔し、且つ所定の傾斜角α=45°となるように配設されている。 In FIG. 4, the reflecting surface 11 of the concave reflecting mirror 10 has a major axis of 8 mm (a=4 mm), a minor axis of 4.22 mm (b=2.11 mm), and an ellipse E with an eccentricity ε of 0.85. is formed on the partially concave surface of the ellipsoid of revolution formed by rotating this ellipse E with the rotation axis AR. In addition, the plurality of light emitting elements 20 are arranged such that the center of the light emitting surface 21 is separated from the first focal point F1 by a predetermined separation distance d of d=0.6 mm in a direction perpendicular to the rotation axis AR, and is also separated by a predetermined inclination angle α. = 45°.
 離隔距離dは、複数の発光素子20が互いに干渉せず、且つ凹面反射鏡10とも干渉しないように、反射面11の基礎となる楕円Eの長径と短径に基づいて設定される。図4の場合、焦点面FFにおける第1焦点F1と反射面11の距離は1.1mm程度であり、発光素子20のサイズと傾斜角αを考慮して離隔距離dをd=0.6mmとしている。尚、この離隔距離dは、回転軸方向の第1焦点F1側において、回転軸AR上における第1焦点F1と楕円Eの距離(a-c)に相当する。 The separation distance d is set based on the major axis and minor axis of the ellipse E that forms the basis of the reflecting surface 11 so that the plurality of light emitting elements 20 do not interfere with each other and do not interfere with the concave reflecting mirror 10 . In the case of FIG. 4, the distance between the first focal point F1 and the reflecting surface 11 on the focal plane FF is about 1.1 mm. there is The separation distance d corresponds to the distance (ac) between the first focus F1 and the ellipse E on the rotation axis AR on the first focus F1 side in the direction of the rotation axis.
 このように構成された光照射ユニット1を発光させたときに、発光素子20は発光面21の法線方向に光を出射する。この光は、例えば20°の発散角(半角)を有し、凹面反射鏡10の反射面11に向かって円錐状に広がりながら進行する。図4では、1つの発光素子20から出射される法線方向の光線と、円錐側面に相当する2本の光線を示している。短軸Bの位置から照射対象(検体)の位置までの距離を距離Hとし、第2焦点F2から照射対象の位置までの距離を距離hとする。 When the light irradiation unit 1 configured in this way emits light, the light emitting element 20 emits light in the normal direction of the light emitting surface 21 . This light has a divergence angle (half angle) of, for example, 20°, and travels toward the reflecting surface 11 of the concave reflecting mirror 10 while expanding in a conical shape. FIG. 4 shows a normal ray emitted from one light emitting element 20 and two rays corresponding to the side surface of the cone. Let distance H be the distance from the position of the short axis B to the position of the irradiation target (specimen), and let distance h be the distance from the second focal point F2 to the position of the irradiation target.
 楕円の性質により、例えば第1焦点F1から出射した光は、凹面反射鏡10の反射面11で反射されて第2焦点F2に到達する。一方、第1焦点F1の近傍の複数の発光素子20から出射した光は凹面反射鏡10によって第2焦点F2側に向けて反射され、そのうちの一部が回転軸方向の第2焦点F2よりも遠い位置で重なり合う。 Due to the nature of the ellipse, for example, the light emitted from the first focal point F1 is reflected by the reflecting surface 11 of the concave reflecting mirror 10 and reaches the second focal point F2. On the other hand, the light emitted from the plurality of light emitting elements 20 in the vicinity of the first focal point F1 is reflected by the concave reflecting mirror 10 toward the second focal point F2, and part of it is reflected from the second focal point F2 in the rotation axis direction. Overlapping at distant positions.
 離隔距離dは、要求される光の照射態様に応じて適宜設定可能であり、離隔距離dに応じた支持部32を形成する。図5に示すように、図4の凹面反射鏡10に対して離隔距離dを例えば0.32mmとした場合には、光を重ねて照射する位置が、図4の離隔距離dが0.6mmの場合と比べて第2焦点F2に近づく。離隔距離dが小さいほど発光素子20が第1焦点F1に近づいて、光が第2焦点F2に近い位置に到達するためである。それ故、照射対象の位置を光照射ユニット1に近づけて設定する場合には、離隔距離dを小さくする。また、離隔距離dを小さくすることにより照射対象の位置が光照射ユニット1に近くなり、光が大きく広がる前の強い光を照射することができる。 The separation distance d can be appropriately set according to the required light irradiation mode, and the support portion 32 is formed according to the separation distance d. As shown in FIG. 5, when the separation distance d is 0.32 mm with respect to the concave reflecting mirror 10 of FIG. The second focal point F2 is closer than in the case of . This is because the smaller the separation distance d is, the closer the light emitting element 20 is to the first focal point F1, and the light reaches a position closer to the second focal point F2. Therefore, when the position of the object to be irradiated is set closer to the light irradiation unit 1, the separation distance d is reduced. Further, by reducing the separation distance d, the position of the object to be irradiated becomes closer to the light irradiation unit 1, and strong light can be irradiated before the light spreads widely.
 図6は、長径が8mmで一定且つ短径が異なるため楕円Eの形状が異なる場合、即ち離心率εが異なる場合に、距離hと回転軸AR周りの所定領域(直径2mmの領域)における光が到達する領域の割合(到達効率)の関係を、離心率別に示している。尚、発光素子20の離隔距離dは0.32mm、傾斜角αは45°としている。到達効率が高いほど、所定領域において複数の発光素子20の光が重なる領域が大きくなり、到達効率が100%の場合に所定領域の全体で複数の発光素子20の光が重なることになる FIG. 6 shows that when the shape of the ellipse E is different because the major axis is constant at 8 mm and the minor axis is different, that is, when the eccentricity ε is different, the distance h and the light in a predetermined area (area with a diameter of 2 mm) around the rotation axis AR The relationship between the proportion of the area reached by (reaching efficiency) is shown for each eccentricity. The separation distance d of the light emitting elements 20 is 0.32 mm, and the inclination angle α is 45°. The higher the arrival efficiency, the larger the area where the light from the plurality of light emitting elements 20 overlaps in the predetermined area. When the arrival efficiency is 100%, the light from the plurality of light emitting elements 20 overlaps in the entire predetermined area.
 また、離心率εが小さいほど高い到達効率が得られる距離hの範囲が小さくなり、距離hの増加に対する到達効率の減少も急激になる。離心率εが小さいほど、光が大きい入射角で所定領域に到達するようになるためである。一方、離心率εが大きいほど複数の発光素子20の光を重ね合わせて照射できる範囲が回転軸方向に拡大される。離心率εが大きいほど、反射面11で反射された光と回転軸ARとが平行に近づいて、光が小さい入射角で所定領域に到達するためである。 Also, the smaller the eccentricity ε, the smaller the range of the distance h in which high arrival efficiency is obtained, and the decrease in the arrival efficiency with respect to the increase in the distance h becomes more rapid. This is because the smaller the eccentricity ε, the larger the incident angle of light that reaches the predetermined area. On the other hand, the larger the eccentricity ε, the larger the range in which the light from the plurality of light emitting elements 20 can be overlapped and irradiated in the direction of the rotation axis. This is because, as the eccentricity ε increases, the light reflected by the reflecting surface 11 and the rotation axis AR become parallel to each other, and the light reaches the predetermined area at a small incident angle.
 照射対象が、回転軸方向にある程度の大きさを有する場合には、高い到達効率が得られる距離hの範囲が大きいことが好ましく、大きい離心率(例えばε=0.85~0.95)の凹面反射鏡10が好ましい。長径が8mm、離心率εが0.95の凹面反射鏡10では、焦点面FFにおける第1焦点F1と反射面11の距離が0.4mm程度に小さくなるので、これよりも大きい離心率の凹面反射鏡10では複数の発光素子20を干渉しないように配設することが困難である。尚、小型化については制限されるが、離心率εが0.95よりも大きい凹面反射鏡に対して複数の発光素子を配設可能なように、上記よりも大きい凹面反射鏡を装備した光照射ユニットを形成することも可能である。 When the irradiation target has a certain size in the rotation axis direction, it is preferable that the range of the distance h for which a high arrival efficiency is obtained is large. A concave reflector 10 is preferred. With the concave reflecting mirror 10 having a major axis of 8 mm and an eccentricity ε of 0.95, the distance between the first focal point F1 and the reflecting surface 11 on the focal plane FF is about 0.4 mm. In the reflecting mirror 10, it is difficult to dispose the plurality of light emitting elements 20 without interfering with each other. In addition, although miniaturization is limited, the light is equipped with a concave reflecting mirror larger than the above so that a plurality of light emitting elements can be arranged for the concave reflecting mirror having an eccentricity ε of greater than 0.95. It is also possible to form an illumination unit.
 図7は、凹面反射鏡10の短軸Bの位置から照射対象の位置までの距離Hを一定(H=8mm)にした場合に、凹面反射鏡10の離心率εと、距離Hにおける凹面反射鏡10によって反射された光の照射領域の幅(図4,5のwに相当する)との関係を発光面21の傾斜角別に示している。例えば傾斜角αが45°の場合に、離心率εが0.8から大きくなるほど照射領域の幅が小さくなり、離心率ε0.89程度で最小になる。そして、離心率εが0.89よりも大きくなると、照射領域の幅が大きくなる。また、傾斜角αが小さくなるほど、照射領域の幅が小さくなる傾向がある。要求される照射態様を実現する光照射ユニット1を形成する際に、この図7に示す関係を利用することができる。 7 shows the eccentricity .epsilon. The relationship between the width of the irradiation area of the light reflected by the mirror 10 (corresponding to w in FIGS. 4 and 5) and the tilt angle of the light emitting surface 21 is shown. For example, when the tilt angle α is 45°, the width of the irradiation area decreases as the eccentricity ε increases from 0.8, and becomes minimum at the eccentricity ε of about 0.89. Then, when the eccentricity ε is greater than 0.89, the width of the irradiation area increases. Also, the smaller the tilt angle α, the smaller the width of the irradiation area. The relationship shown in FIG. 7 can be utilized when forming the light irradiation unit 1 that achieves the required irradiation mode.
 図8は、凹面反射鏡10の離心率εと発光面21の傾斜角αをパラメータとして、距離H=8mmの位置における照射領域の幅について等高線プロットしたものであり、図7の内容を含んでいる。この図8から、離心率εが0.85~0.95、傾斜角αが20°~45°の範囲内では、光の照射領域に光を集中させて照射可能であることが分かる。要求される照射態様を実現する光照射ユニット1の凹面反射鏡10の離心率εと発光面21の傾斜角αを設定する際に、この図8に示す関係を利用することができる。 FIG. 8 is a contour plot of the width of the irradiation area at a distance H=8 mm using the eccentricity ε of the concave reflecting mirror 10 and the inclination angle α of the light emitting surface 21 as parameters, including the contents of FIG. there is From FIG. 8, it can be seen that the light can be concentrated and irradiated in the light irradiation region within the range of 0.85 to 0.95 for the eccentricity ε and 20° to 45° for the angle of inclination α. The relationship shown in FIG. 8 can be used when setting the eccentricity ε of the concave reflecting mirror 10 and the inclination angle α of the light emitting surface 21 of the light irradiation unit 1 that realizes the required irradiation mode.
 図9は、支持部32に形成された4つの傾斜面に発光素子20が夫々配設された例を示している。この例のように、発光素子20の数は、例えば要求される波長域、光の強さに応じて、適宜設定することができる。そして、このような場合でも、凹面反射鏡10は回転楕円面の部分凹面を反射面11としているので、複数の発光素子20の光を重ねて照射することができる。尚、支持部32の傾斜面の発光素子20に加えて、この支持部32の先端に第2焦点F2に向けて光を発する発光素子を配設してもよい。 FIG. 9 shows an example in which the light emitting elements 20 are arranged on the four inclined surfaces formed on the support portion 32, respectively. As in this example, the number of light-emitting elements 20 can be appropriately set according to, for example, the required wavelength range and light intensity. Even in such a case, since the reflecting surface 11 of the concave reflecting mirror 10 is the partially concave surface of the ellipsoid of revolution, the light from the plurality of light emitting elements 20 can be overlapped and irradiated. In addition to the light emitting element 20 on the inclined surface of the supporting portion 32, a light emitting element that emits light toward the second focal point F2 may be arranged at the tip of the supporting portion 32. FIG.
 上記光照射ユニット1の作用、効果について説明する。
 回転楕円面の部分凹面を反射面11とする凹面反射鏡10の第1焦点F1の近傍に配設された複数の発光素子20から、凹面反射鏡10の反射面11に向けて互いに異なる方向に光が出射される。回転楕円面の性質により、第1焦点F1の近傍の複数の発光素子20から出射された光は、凹面反射鏡10によって第2焦点F2の近傍に向けて反射され、凹面反射鏡10の第2焦点F2側の開放端から外部に照射される。このとき、凹面反射鏡10によって反射された複数の発光素子20の光の大部分は互いに平行にならず、凹面反射鏡10の回転軸方向の第2焦点F2よりも遠い位置で重なり合う。従って、光学レンズを使用しない簡単な構造で複数の発光素子20の光を同一領域に重ねて照射することができる。
The operation and effects of the light irradiation unit 1 will be described.
From a plurality of light emitting elements 20 disposed near the first focal point F1 of the concave reflecting mirror 10 whose reflecting surface 11 is the partially concave surface of the spheroid, the light beams are directed toward the reflecting surface 11 of the concave reflecting mirror 10 in mutually different directions. Light is emitted. Due to the nature of the spheroid, the light emitted from the plurality of light emitting elements 20 near the first focal point F1 is reflected by the concave reflecting mirror 10 toward the near second focal point F2, and is reflected by the concave reflecting mirror 10 toward the second focal point F2. The light is emitted to the outside from the open end on the focal point F2 side. At this time, most of the light from the plurality of light emitting elements 20 reflected by the concave reflecting mirror 10 is not parallel to each other, and overlaps at a position farther than the second focal point F2 in the rotation axis direction of the concave reflecting mirror 10. Therefore, the light from a plurality of light emitting elements 20 can be overlapped and irradiated to the same area with a simple structure that does not use an optical lens.
 凹面反射鏡10の離心率εがε=0.85~0.95なので、凹面反射鏡10によって反射された光を凹面反射鏡10の回転軸ARに対して平行に近づけることができる。それ故、複数の発光素子20の光を同一領域に重ねて照射する範囲を回転軸方向に大きくすることができる。 Since the eccentricity ε of the concave reflecting mirror 10 is ε=0.85 to 0.95, the light reflected by the concave reflecting mirror 10 can be made parallel to the rotation axis AR of the concave reflecting mirror 10 . Therefore, the range in which the light from the plurality of light emitting elements 20 is superimposed on the same area and irradiated can be increased in the rotation axis direction.
 複数の発光素子20が互いに異なる波長の光を発する場合には、複数の発光素子20から出射される異なる波長の光を同一領域に重ねて照射することができる。これら複数の発光素子20は、低発熱且つ長寿命の小型の発光ダイオードなので、光照射ユニット1を小型化することができる。 When a plurality of light emitting elements 20 emit light of different wavelengths, the light of different wavelengths emitted from the plurality of light emitting elements 20 can be superimposed on the same area. Since these plurality of light emitting elements 20 are small light emitting diodes with low heat generation and long life, the light irradiation unit 1 can be miniaturized.
 発光面21の中心が第1焦点F1で回転軸ARと直交する焦点面FF内に位置するように、且つ発光面21の法線Nが焦点面FFに対して第2焦点F2側に所定の傾斜角αを有するように、複数の発光素子20が支持部32の対応する傾斜面37,38に夫々固定されている。従って、凹面反射鏡10の回転軸方向の第1焦点側端部が開放状に形成されていても、発光素子20から発する光の大部分を凹面反射鏡10で反射させて、回転軸方向の第2焦点F2よりも遠い位置に到達させることができる。それ故、発光素子20の光を無駄にすることが無く、複数の発光素子20の光を第2焦点F2よりも遠い位置に重ねて照射することができる。また、所定の傾斜角αがα=20°~45°なので、照射領域の幅を小さくして、強い光を照射することができる。 The center of the light emitting surface 21 is positioned within the focal plane FF orthogonal to the rotation axis AR at the first focal point F1, and the normal line N of the light emitting surface 21 is positioned on the second focal point F2 side of the focal plane FF. A plurality of light emitting elements 20 are fixed to the corresponding inclined surfaces 37 and 38 of the supporting portion 32 so as to have an inclination angle α. Therefore, even if the first focal point side end of the concave reflecting mirror 10 in the rotation axis direction is formed in an open shape, most of the light emitted from the light emitting element 20 is reflected by the concave reflecting mirror 10 and A position farther than the second focal point F2 can be reached. Therefore, the light from the light emitting elements 20 is not wasted, and the light from the plurality of light emitting elements 20 can be overlapped and radiated to a position farther than the second focal point F2. In addition, since the predetermined tilt angle α is 20° to 45°, it is possible to reduce the width of the irradiation area and irradiate strong light.
 複数の発光素子20は、発光面21の中心が第1焦点F1から回転軸ARと直交する方向に、凹面反射鏡10の長径と短径に基づいて設定された離隔距離dだけ離隔するように、支持部32の対応する傾斜面37,38に夫々固定されている。これにより、複数の発光素子20を互いに干渉しないように且つ凹面反射鏡10と干渉しないように第1焦点F1の近傍に配設することができ、第1焦点F1の近傍の点から出射された発光素子20の光を第2焦点F2の近傍に到達させることができる。 The plurality of light emitting elements 20 are arranged such that the center of the light emitting surface 21 is separated from the first focal point F1 in a direction orthogonal to the rotation axis AR by a separation distance d set based on the major axis and minor axis of the concave reflecting mirror 10. , are fixed to the corresponding inclined surfaces 37 and 38 of the support portion 32, respectively. As a result, the plurality of light emitting elements 20 can be arranged in the vicinity of the first focal point F1 so as not to interfere with each other and the concave reflecting mirror 10, and light emitted from a point in the vicinity of the first focal point F1 The light from the light emitting element 20 can reach the vicinity of the second focal point F2.
 その他、当業者であれば、本発明の趣旨を逸脱することなく、上記実施形態に種々の変更を付加した形態で実施可能であり、本発明はその種の変更形態も包含するものである。 In addition, those skilled in the art can implement various modifications to the above embodiment without departing from the spirit of the present invention, and the present invention includes such modifications.
1  :光照射ユニット
10 :凹面反射鏡
11 :反射面
12 :周壁部
20 :発光素子
21 :発光面
30 :基台
31 :主面
32 :支持部
33,34 :配線
35,36 :リードピン
37,38 :傾斜面
Reference Signs List 1: light irradiation unit 10: concave reflecting mirror 11: reflecting surface 12: peripheral wall portion 20: light emitting element 21: light emitting surface 30: base 31: main surface 32: support portions 33, 34: wires 35, 36: lead pins 37, 38: Inclined surface

Claims (6)

  1.  楕円の第1焦点と第2焦点を通る長軸を回転軸として前記楕円を回転させて形成される回転楕円面の部分凹面を反射面とする凹面反射鏡と、
     前記凹面反射鏡の反射面に向けて発光面を発光させる複数の発光素子と、
     前記凹面反射鏡と前記複数の発光素子を固定するための基台を有し、
     前記凹面反射鏡は、前記回転軸方向両端側部分が夫々開放状に形成されると共に、前記凹面反射鏡の周壁部の前記第1焦点側端部が前記基台に固定され、
     前記複数の発光素子は、前記第1焦点の近傍において前記基台に対して同じ傾斜角で互いに異なる方向に向けて前記基台の中央部分に形成された複数の傾斜面に夫々固定され、
     前記複数の発光素子を発光させたときの光が、前記凹面反射鏡によって反射されて、前記回転軸方向の前記第2焦点よりも遠い位置で重なり合うように構成されたことを特徴とする光照射ユニット。
    a concave reflecting mirror whose reflecting surface is a partially concave surface of an ellipsoid of revolution formed by rotating the ellipse with the long axis passing through the first and second focal points of the ellipse as the axis of rotation;
    a plurality of light-emitting elements that emit light from their light-emitting surfaces toward the reflecting surface of the concave reflector;
    a base for fixing the concave reflecting mirror and the plurality of light emitting elements;
    The concave reflecting mirror is formed so that both end portions in the direction of the rotation axis are open, and the first focal point side end of the peripheral wall portion of the concave reflecting mirror is fixed to the base,
    The plurality of light emitting elements are fixed to a plurality of inclined surfaces formed in the central portion of the base in the vicinity of the first focal point and facing in different directions at the same angle of inclination with respect to the base,
    Light irradiation, wherein light emitted from the plurality of light emitting elements is reflected by the concave reflecting mirror and overlaps at a position farther from the second focal point in the direction of the rotation axis. unit.
  2.  前記凹面反射鏡の離心率が0.85~0.95であることを特徴とする請求項1に記載の光照射ユニット。 The light irradiation unit according to claim 1, characterized in that the concave reflecting mirror has an eccentricity of 0.85 to 0.95.
  3.  前記複数の発光素子が互いに異なる波長の光を発することを特徴とする請求項1に記載の光照射ユニット。 The light irradiation unit according to claim 1, characterized in that the plurality of light emitting elements emit light of different wavelengths.
  4.  前記複数の発光素子が夫々発光ダイオードであることを特徴とする請求項3に記載の光照射ユニット。 The light irradiation unit according to claim 3, wherein each of the plurality of light emitting elements is a light emitting diode.
  5.  前記発光面の中心が前記第1焦点で前記回転軸と直交する焦点面内に位置するように、且つ前記発光面の法線が前記焦点面に対して前記第2焦点側に所定の傾斜角を有するように、前記複数の発光素子が夫々固定されたことを特徴とする請求項1に記載の光照射ユニット。 A normal line of the light emitting surface is at a predetermined inclination angle with respect to the focal plane toward the second focal point so that the center of the light emitting surface is located in the focal plane orthogonal to the rotation axis at the first focal point. 2. The light irradiation unit according to claim 1, wherein each of said plurality of light emitting elements is fixed so as to have a .
  6.  前記所定の傾斜角が20°~45°であることを特徴とする請求項5に記載の光照射ユニット。 The light irradiation unit according to claim 5, wherein the predetermined tilt angle is 20° to 45°.
PCT/JP2021/010131 2021-03-12 2021-03-12 Light emission unit WO2022190369A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/010131 WO2022190369A1 (en) 2021-03-12 2021-03-12 Light emission unit
JP2021569484A JP7031926B1 (en) 2021-03-12 2021-03-12 Light irradiation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010131 WO2022190369A1 (en) 2021-03-12 2021-03-12 Light emission unit

Publications (1)

Publication Number Publication Date
WO2022190369A1 true WO2022190369A1 (en) 2022-09-15

Family

ID=81212851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010131 WO2022190369A1 (en) 2021-03-12 2021-03-12 Light emission unit

Country Status (2)

Country Link
JP (1) JP7031926B1 (en)
WO (1) WO2022190369A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109443A (en) * 1992-09-30 1994-04-19 Canon Inc Illumination apparatus
JPH09281413A (en) * 1996-04-17 1997-10-31 Olympus Optical Co Ltd Illumination optical device
JP2002093227A (en) * 2000-07-14 2002-03-29 Kyoto Denkiki Kk Linear lighting system
US20020080354A1 (en) * 1999-04-29 2002-06-27 Bruner Russell S. System and method for sensing white paper
JP2003004641A (en) * 2001-06-25 2003-01-08 Kyoto Denkiki Kk Illumination device
JP2005156357A (en) * 2003-11-26 2005-06-16 Kyoto Denkiki Kk Linear lighting device using twin fluorescent lamp
JP2015179596A (en) * 2014-03-19 2015-10-08 株式会社アイテックシステム Luminaire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153719A (en) * 2014-02-19 2015-08-24 株式会社東芝 Power supply system, and vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109443A (en) * 1992-09-30 1994-04-19 Canon Inc Illumination apparatus
JPH09281413A (en) * 1996-04-17 1997-10-31 Olympus Optical Co Ltd Illumination optical device
US20020080354A1 (en) * 1999-04-29 2002-06-27 Bruner Russell S. System and method for sensing white paper
JP2002093227A (en) * 2000-07-14 2002-03-29 Kyoto Denkiki Kk Linear lighting system
JP2003004641A (en) * 2001-06-25 2003-01-08 Kyoto Denkiki Kk Illumination device
JP2005156357A (en) * 2003-11-26 2005-06-16 Kyoto Denkiki Kk Linear lighting device using twin fluorescent lamp
JP2015179596A (en) * 2014-03-19 2015-10-08 株式会社アイテックシステム Luminaire

Also Published As

Publication number Publication date
JPWO2022190369A1 (en) 2022-09-15
JP7031926B1 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP5010010B2 (en) Light emitting device
TWI443312B (en) Integrating photometer for measuring total flux of light generated from light source to be measured, and method for measuring total flux of light through use of the same
KR101091791B1 (en) Integrating sphere photometer and measureing method of the same
US10749311B2 (en) Light source device and projection device
JP2007515645A (en) Fluorescence measuring instrument
WO2011162323A1 (en) Led illumination device
JP2012054272A (en) Laser light source device and illumination device
US10309601B2 (en) Light source device, lighting apparatus, and vehicle lamp device
JP2000076904A (en) Surface illuminator for video inspection and the like having programmable high projection angle
JP6054182B2 (en) Lighting device
JP6621631B2 (en) Light source module
KR20180097131A (en) Light emitting diode lamp
JP2010217109A (en) Light emitting element measurement device
WO2022190369A1 (en) Light emission unit
US9831626B2 (en) Broadband light source and optical inspector having the same
US20220290980A1 (en) Lighting system with pattern element
JP7085758B2 (en) Optical measuring device, light source device
JP4856266B1 (en) Light source device and pseudo-sunlight irradiation device including the same
WO2022201434A1 (en) Light radiation unit
EP2345888B1 (en) Detection apparatus for optical reflectance measurement
JP6781029B2 (en) Light projection device
JP2010153402A (en) Lighting fixture
KR20200072398A (en) Light source for exposure apparatus, exposure apparatus using the same, and method for controlling light source for exposure apparatus
WO2011158540A1 (en) Color sensor
KR20190135760A (en) Apparatus for measuring total luminous flux

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021569484

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930221

Country of ref document: EP

Kind code of ref document: A1