WO2022190307A1 - Antenna assessment device - Google Patents

Antenna assessment device Download PDF

Info

Publication number
WO2022190307A1
WO2022190307A1 PCT/JP2021/009715 JP2021009715W WO2022190307A1 WO 2022190307 A1 WO2022190307 A1 WO 2022190307A1 JP 2021009715 W JP2021009715 W JP 2021009715W WO 2022190307 A1 WO2022190307 A1 WO 2022190307A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radio wave
scatterer
position calculation
wave scatterer
Prior art date
Application number
PCT/JP2021/009715
Other languages
French (fr)
Japanese (ja)
Inventor
拓朗 間宮
孝行 中西
道生 瀧川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/009715 priority Critical patent/WO2022190307A1/en
Priority to JP2023505004A priority patent/JP7258268B2/en
Publication of WO2022190307A1 publication Critical patent/WO2022190307A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Definitions

  • the present disclosure relates to an antenna evaluation device.
  • the radio waves received by the receiving antenna are generated not only by the radio waves that propagate directly from the transmitting antenna to the receiving antenna, but also by the radio waves transmitted by the transmitting antenna being scattered by obstacles such as buildings. It also includes scattered waves that have reached
  • the antenna evaluation apparatus reproduces such a multipath environment and evaluates the reception performance of the antenna.
  • Patent Document 1 describes an antenna evaluation device that evaluates the reception performance of a mobile terminal antenna.
  • the antenna evaluation apparatus a plurality of transmitting antennas are installed around an antenna to be evaluated (hereinafter referred to as an antenna to be evaluated).
  • the antenna evaluation apparatus reproduces a multipath environment by transmitting radio waves from each of the plurality of transmitting antennas to the antenna to be evaluated.
  • multiple transmitting antennas are used to reproduce the multipath environment.
  • a circuit such as an attenuator or a phase shifter is required for each transmission antenna, and there is a problem that the transmission circuit becomes large-scaled and complicated.
  • the present disclosure has been made to solve the above problems, and aims at a technology that can reproduce a multipath environment without using multiple transmitting antennas.
  • An antenna evaluation apparatus for evaluating the reception performance of an antenna to be evaluated, which includes a single transmitting antenna that transmits radio waves and each of which scatters the radio waves transmitted by the transmitting antennas. a plurality of radio wave scatterers that generate scattered waves by means of a vibration, and a single antenna to be evaluated that receives the scattered waves generated by the plurality of radio wave scatterers, and the transmitting antenna and the antenna to be evaluated are arranged side by side
  • the first condition is that the current direction of the transmitting antenna is the same as the current direction of the transmitting antenna, or a radio wave absorber that absorbs the radio waves transmitted by the transmitting antenna is installed between the transmitting antenna and the antenna to be evaluated. At least one of the second conditions is satisfied.
  • a multipath environment can be reproduced without using multiple transmitting antennas.
  • FIG. 1 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 1;
  • FIG. 4 is a diagram showing the relationship between the direction in which the transmitting antenna and the antenna to be evaluated are arranged and the direction of current flowing through the transmitting antenna according to Embodiment 1.
  • FIG. 2 is an enlarged view of a transmitting antenna and an antenna to be evaluated according to Embodiment 1;
  • FIG. FIG. 2 is a cross-sectional view taken along a plane indicated by a dotted line AA in FIG. 1;
  • FIG. 5 is an enlarged view enlarging the range indicated by the dotted line BB in FIG. 4;
  • 1 is a top view of the antenna evaluation device according to Embodiment 1;
  • FIG. 2 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 2;
  • FIG. FIG. 11 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 3;
  • 10 is a flow chart showing a radio wave scatterer position calculation method by the radio wave scatterer position calculation device according to Embodiment 3.
  • FIG. FIG. 10 is a flowchart showing details of step ST6 shown in FIG. 9;
  • FIG. FIG. 10 shows an image diagram of a trajectory for arranging radio wave scatterers in step ST10 shown in FIG. 12A is a block diagram showing a hardware configuration that implements the function of the position calculation unit of the radio wave scatterer position calculation device in the antenna evaluation device according to Embodiment 3.
  • FIG. 12B is a block diagram showing a hardware configuration for executing software that implements the function of the position calculation unit of the radio wave scatterer position calculation device in the antenna evaluation device according to Embodiment 3.
  • FIG. FIG. 11 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 4;
  • FIG. 11 is an enlarged view of the periphery of a first driving unit included in the antenna evaluation device according to Embodiment 4;
  • FIG. 11 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 5;
  • FIG. 1 is a schematic diagram showing the configuration of an antenna evaluation apparatus 100 according to Embodiment 1.
  • the antenna evaluation apparatus 100 includes a single transmitting antenna 1a, a single antenna to be evaluated 1b, a plurality of radio wave scatterers 2, a plurality of supports 3, a plurality of supports 4, and a first cable. 5 a , a second cable 5 b , an oscillator 6 and a signal measuring device 7 .
  • the transmitting antenna 1a and the antenna to be evaluated 1b are installed side by side in a direction perpendicular to the ground. More specifically, in Embodiment 1, the transmitting antenna 1a is installed at a position farther from the ground than the position where the antenna to be evaluated 1b is installed. The transmitting antenna 1a may be installed at a position closer to the ground than the position where the antenna to be evaluated 1b is installed. Examples of the transmitting antenna 1a and the antenna to be evaluated 1b include a dipole antenna, a linear antenna such as a sleeve antenna, and the like.
  • the support 4 is rod-shaped and installed so that its longitudinal direction is perpendicular to the ground. More specifically, in Embodiment 1, the plurality of columns 4 are installed around the transmitting antenna 1a and the antenna to be evaluated 1b so as to surround the transmitting antenna 1a and the antenna to be evaluated 1b. In order not to affect the evaluation of the antenna 1b to be evaluated, the support 4 should be made of a resin such as vinyl chloride or polypropylene because it is necessary to minimize radio wave scattering.
  • the number of struts 4 is the minimum number required to satisfy the arrangement condition of the radio wave scatterers 2 for reproducing the multipath environment. That is, the number of supports 4 is set according to the number of radio wave scatterers 2 and the arrangement of the radio wave scatterers 2 .
  • the support part 3 is rod-shaped, one end of which is supported by the column 4 and the other end of which supports the radio wave scattering body 2 . That is, the number of supporting portions 3 is one for one radio wave scattering body 2 . Moreover, the support part 3 is installed so that a longitudinal direction may become a direction parallel to the ground. In order not to affect the evaluation of the antenna to be evaluated 1b, the supporting part 3 should be made of a resin such as vinyl chloride or polypropylene because it is necessary to minimize radio wave scattering.
  • Embodiment 1 three support parts 3 are installed on the support columns 4 per 41 support columns.
  • the three radio wave scatterers 2 supported by the three support portions 3 face the transmitting antenna 1a and the evaluated antenna 1b, respectively.
  • a plurality of radio wave scatterers 2 each supported by a corresponding support portion 3 surround the transmitting antenna 1a and the antenna to be evaluated 1b.
  • the number of radio wave scatterers 2 provided in the antenna evaluation device 100 is the same as the number of scattered waves in the reproduced multipath environment. Further, in the method of reproducing a multipath environment by the antenna evaluation apparatus 100 according to Embodiment 1, by using the horizontal plane angle and the vertical plane angle based on the position of the transmitting antenna 1a or the position of the antenna to be evaluated 1b, radio waves The position coordinates of the scatterer 2 are shown. The position of the radio wave scatterer 2 indicated by the horizontal plane angle and the vertical plane angle is set according to the arrival angle of the scattered waves to be received by the evaluated antenna 1b in the reproduced multipath environment.
  • the radio wave scatterer 2 is not particularly limited in shape and material as long as it has the property of scattering radio waves radiated from the transmitting antenna 1a.
  • the radio wave scatterer 2 is a metal conductor plate or the like.
  • a first cable 5 a connects the transmitting antenna 1 a and the oscillator 6 .
  • a second cable 5 b connects the antenna under evaluation 1 b and the signal measuring device 7 .
  • the oscillator 6 generates a signal of a predetermined frequency in order to reproduce radio waves of a predetermined frequency in a multipath environment.
  • a first cable 5a transmits the signal generated by the oscillator 6 to the transmitting antenna 1a.
  • the transmitting antenna 1a transmits radio waves. More specifically, in Embodiment 1, the transmitting antenna 1a transmits radio waves of a predetermined frequency. Note that the predetermined frequency is set according to the multipath environment to be reproduced. More specifically, in Embodiment 1, the transmitting antenna 1a transmits the signal generated by the oscillator 6 as radio waves.
  • Each of the plurality of radio wave scattering bodies 2 generates a scattered wave by scattering the radio wave transmitted by the transmitting antenna 1a.
  • the antenna to be evaluated 1 b receives each scattered wave generated by the plurality of radio wave scattering bodies 2 .
  • the second cable 5b transmits to the signal measuring device 7 a signal obtained by the antenna under evaluation 1b receiving scattered waves.
  • the signal measuring instrument 7 measures the signal obtained by the antenna under evaluation 1b receiving the scattered wave. Also, the signal measuring device 7 evaluates the reception performance of the evaluated antenna 1b based on the measured signal.
  • the type of signal measuring device 7 used differs depending on the necessity of evaluating the reception performance of the antenna 1b to be evaluated.
  • the signal measuring device 7 is a spectrum analyzer, network analyzer, or the like.
  • the antenna evaluation apparatus 100 employs the configuration shown in FIG. FIG. 2 is a diagram showing the relationship between the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are arranged and the direction of current flowing through the transmitting antenna 1a.
  • the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are arranged is the same as the current direction of the transmitting antenna 1a.
  • the transmitting antenna 1a when viewed from the antenna 1b to be evaluated becomes electrically minute, and thus there is an effect of suppressing coupling between the antennas.
  • the antenna evaluation apparatus 100 can be made compact.
  • the term "same" means completely the same, approximately the same, or substantially the same.
  • the transmitting antenna 1a and the antenna to be evaluated 1b are arranged so that the longitudinal direction of the transmitting antenna 1a and the longitudinal direction of the antenna to be evaluated 1b are on the same straight line. That is, the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are arranged here means the direction of the straight line.
  • the current direction of the transmitting antenna 1a described above means the direction of current flowing in the transmitting antenna 1a for transmitting radio waves.
  • the current direction of the transmitting antenna 1a is perpendicular to the ground.
  • the antenna evaluation apparatus 100 employs the configuration shown in FIG. FIG. 3 is an enlarged view of the transmitting antenna 1a and the antenna to be evaluated 1b.
  • a radio wave absorber 10 that absorbs radio waves transmitted by the transmitting antenna 1a is installed between the transmitting antenna 1a and the antenna to be evaluated 1b.
  • the radio wave absorber 10 attenuates the radio wave on the straight path from the transmitting antenna 1a to the antenna to be evaluated 1b, thereby suppressing the coupling between the antennas.
  • the antenna evaluation apparatus 100 can be made compact.
  • the first condition that the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are arranged is the same as the current direction of the transmitting antenna 1a, and the transmission antenna 1a and the antenna to be evaluated 1b
  • An antenna evaluation apparatus 100 that satisfies both the second condition in which a radio wave absorber 10 for absorbing radio waves transmitted by the transmitting antenna 1a is installed between the two conditions will be described.
  • the antenna evaluation apparatus 100 may satisfy only the first condition, or may satisfy only the second condition. In other words, the antenna evaluation apparatus 100 should be able to suppress the coupling between the antennas by satisfying either the first condition or the second condition.
  • the radio wave absorber 10 is disk-shaped, and the two disk surfaces are perpendicular to the straight line connecting the transmitting antenna 1a and the antenna to be evaluated 1b. is installed as Each radius of the two disk surfaces of the radio wave absorber 10 is equal to or greater than the radius of the first Fresnel zone defined by the straight line distance connecting the transmitting antenna 1a and the antenna to be evaluated 1b.
  • the first Fresnel zone is represented by Equation (1) below.
  • ra indicates the radius of the first Fresnel zone
  • indicates the wavelength of the radio wave transmitted by the transmitting antenna 1a
  • d1 indicates the distance from the transmitting antenna 1a to the radio wave absorber 10
  • d2 indicates the distance from the radio wave absorber 10 to the antenna to be evaluated 1b.
  • FIG. 4 is a cross-sectional view taken along the plane indicated by the dotted line AA in FIG.
  • FIG. 5 is an enlarged view enlarging the range indicated by the dotted line BB in FIG.
  • FIG. 6 is a top view of the antenna evaluation apparatus 100 viewed from above.
  • the position of the n-th radio wave scatterer among the plurality of radio wave scatterers 2 is the vertical plane angle ⁇ tn , the horizontal plane angle ⁇ tn and the distance from the position of the transmitting antenna 1a. It is defined by R tn and two kinds of coordinates of vertical plane angle ⁇ rn , horizontal plane angle ⁇ rn and distance R rn with respect to the antenna to be evaluated 1b.
  • a signal of a predetermined frequency generated by the oscillator 6 is radiated as radio waves from the transmitting antenna 1a.
  • a radio wave radiated from the transmitting antenna 1a is scattered by the radio wave scatterer 2 and reaches the evaluated antenna 1b. Since a plurality of radio wave scatterers 2 are arranged, a plurality of scattered waves are received by the antenna 1b to be evaluated. That is, the antenna under evaluation 1b receives multipath waves.
  • the signal received by the antenna under evaluation 1b is measured by the signal measuring device 7.
  • the power Pn of the scattered wave generated by the n -th radio wave scatterer 2 and received by the antenna under evaluation 1b is expressed by the following equation (2).
  • P t indicates the transmission power of the transmission antenna 1a
  • G t ( ⁇ tn , ⁇ tn ) indicates the radiation gain of the transmission antenna 1a in the directions of ⁇ tn , ⁇ tn
  • ⁇ ( ⁇ tn , ⁇ tn , ⁇ rn , ⁇ rn ) represent scattering cross sections when radio waves incident from the directions of ⁇ tn and ⁇ tn scatter in the directions of ⁇ rn and ⁇ rn in the radio wave scatterer 2 .
  • the antenna evaluation apparatus 100 is an antenna evaluation apparatus 100 for evaluating the receiving performance of the antenna under evaluation 1b, and includes a single transmitting antenna 1a for transmitting radio waves, and However, there are a plurality of radio wave scatterers 2 that generate scattered waves by scattering the radio waves transmitted by the transmitting antenna, and a single evaluated antenna 1b that receives the scattered waves generated by the plurality of radio wave scatterers 2.
  • the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are aligned is the same as the direction of current in the transmitting antenna 1a, or between the transmitting antenna 1a and the antenna to be evaluated 1b
  • at least one condition of the second condition that the radio wave absorber 10 for absorbing the radio waves transmitted by the transmitting antenna 1a is installed is satisfied. According to the above configuration, a multipath environment can be reproduced without using a plurality of transmitting antennas by generating scattered waves from each of the plurality of radio wave scattering bodies 2 .
  • an Over-the-Air device (for example, the antenna evaluation device described in Patent Document 1) is used that reproduces an actual communication environment in an anechoic chamber and evaluates antenna performance.
  • An OTA device is a device that reproduces a multipath environment in an anechoic chamber.
  • the amplitude of the elementary wave one radio wave forming the multipath
  • power loss also occurs in the phase shifter.
  • the magnitude of the power loss is calculated based on the performance of the parts used, but in reality errors occur due to individual differences, temperature changes, and the like. In a large and complicated transmission circuit using multiple transmit antennas, it is difficult to know and calibrate the exact power loss due to all attenuators and phase shifters.
  • Embodiment 2 In Embodiment 1, the configuration for generating scattered waves by using the radio wave scatterer 2 has been described. Embodiment 2 will describe a configuration in which the amplitude of each scattered wave is controlled by a radio wave scatterer in order to reproduce a more detailed multipath environment and perform antenna evaluation in the reproduced multipath environment.
  • FIG. 7 is a schematic diagram showing the configuration of antenna evaluation apparatus 101 according to Embodiment 2. As shown in FIG. As shown in FIG. 7, the antenna evaluation apparatus 101 includes a plurality of radio wave scattering bodies 2a, 2b, 2c, 2d, 2e, and 2f instead of the plurality of radio wave scattering bodies 2 described in the first embodiment. .
  • Each of the plurality of radio wave scatterers 2a, 2b, 2c, 2d, 2e, and 2f has a scattering characteristic corresponding to a predetermined amplitude so as to generate scattered waves with a predetermined amplitude.
  • a scattered wave with a predetermined amplitude here is set according to the multipath environment to be reproduced.
  • a plurality of radio wave scatterers are changed to those having known scattering characteristics, and each scattered wave is to control the amplitude of
  • the power Pn is represented by the following formula (3).
  • equation (3) symbols other than ⁇ n ( ⁇ tn , ⁇ tn , ⁇ rn , ⁇ rn ) are the same as those explained in the first embodiment.
  • ⁇ n ( ⁇ tn , ⁇ tn , ⁇ rn , ⁇ rn ) is the scattering when radio waves incident from the directions of ⁇ tn and ⁇ tn are scattered in the directions of ⁇ rn and ⁇ rn in the n-th radio wave scatterer. indicates the cross-sectional area.
  • each of the plurality of radio wave scatterers 2a, 2b, 2c, 2d, 2e, and 2f in the antenna evaluation apparatus 101 according to the second embodiment generates scattered waves of a predetermined amplitude.
  • the antenna to be evaluated 1b it is possible to cause the antenna to be evaluated 1b to receive scattered waves of a predetermined amplitude. That is, it is possible to reproduce a multipath environment composed of scattered waves of a predetermined amplitude. Thereby, antenna evaluation can be preferably performed.
  • Embodiment 3 As a method for controlling the amplitude of scattered waves, the configuration of changing the radio wave scatterer to one having different scattering characteristics according to the desired amplitude of the scattered waves has been described. In Embodiment 3, a configuration will be described in which the arrangement position of the radio wave scatterer is determined in order to adjust the position of the radio wave scatterer and control the amplitude of the scattered wave.
  • FIG. 8 is a schematic diagram showing the configuration of antenna evaluation apparatus 102 according to the third embodiment.
  • the antenna evaluation device 102 further includes a radio wave scatterer position calculation device 20 in addition to the configuration of the antenna evaluation device 101 according to the second embodiment.
  • the radio wave scatterer position calculation device 20 includes a position calculation section 21 and a storage section 22 .
  • the configuration in which the antenna evaluation device 102 includes the radio wave scatterer position calculation device 20 will be described, but the radio wave scatterer position calculation device 20 may be used independently.
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 causes the radio wave scatterer 2 to generate scattered waves with a predetermined amplitude, and the scattered waves arrive at the evaluated antenna 1b at a predetermined arrival angle.
  • An arrangement position where the radio wave scatterer 2 is arranged is calculated for each radio wave scatterer 2 .
  • the scattered wave with a predetermined amplitude here is set according to the multipath environment to be reproduced.
  • the predetermined arrival angle here is set according to the multipath environment to be reproduced.
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the predetermined amplitude, the predetermined arrival angle, the position of the transmission antenna 1a, the radiation directivity pattern of the transmission antenna 1a, the scattering characteristics of the radio wave scatterer 2, and the Based on the position of the evaluation antenna 1b, the placement position of the radio wave scatterer 2 is calculated.
  • the position of the transmitting antenna 1a, the radiation directivity pattern of the transmitting antenna 1a, the scattering characteristics of the radio wave scatterer 2, and the position of the antenna to be evaluated 1b are information related to the specifications of the antenna evaluation device 102. In form 3, it is assumed to be predetermined.
  • the storage unit 22 of the radio wave scatterer position calculation device 20 stores the predetermined amplitude used by the position calculation unit 21, the predetermined arrival angle, the position of the transmission antenna 1a, the radiation directivity pattern of the transmission antenna 1a, the scattering characteristics of the radio wave scatterer 2. and the position of the antenna to be evaluated 1b.
  • FIG. 9 is a flowchart showing a method for calculating the position of radio wave scatterers by the radio wave scatterer position calculation device 20 according to the third embodiment.
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 reads the position information regarding the position of the transmitting antenna 1a and the position of the evaluated antenna 1b from the storage unit 22 (step ST1). Next, the position calculation unit 21 of the radio wave scatterer position calculation device 20 reads information on the radiation directivity pattern of the transmission antenna 1a from the storage unit 22 (step ST2).
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 reads information on the scattering characteristics of the radio wave scatterer 2 from the storage unit 22 (step ST3).
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 reads the amplitude and arrival angles ( ⁇ rn , ⁇ rn ) of the scattered waves, which are the conditions of the desired multipath environment, from the storage unit 22 (step ST4). ).
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the arrangement position (angle) of the radio wave scatterer 2 in the horizontal plane based on the horizontal plane angle ⁇ rn among the arrival angle conditions of the read scattered waves. Determine (step ST5).
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the amplitude of the scattered wave read and the angle of the vertical plane out of the arrival angle of the read scattered wave.
  • a three-dimensional arrangement position of the scatterer 2 is determined (step ST6).
  • FIG. 10 is a flow chart showing details of step ST6 shown in FIG.
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the trajectory of the radio wave scatterer 2 based on the arrival angle ⁇ rn of the vertical plane read from the storage unit 22 (step ST10).
  • FIG. 11 shows an image diagram of the trajectory for arranging the radio wave scattering bodies 2 in step ST10 shown in FIG.
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the three-dimensional position of the radio wave scatterer 2 based on the amplitude conditions of the scattered waves read from the storage unit 22 by the following steps ST11 to ST18. decide.
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 sets the placement position of the n-th radio wave scatterer 2 to an arbitrary position on the orbit (step ST11). In other words, it is assumed that the position calculation unit 21 of the radio wave scatterer position calculation device 20 arranges the n-th radio wave scatterer 2 at an arbitrary position on the orbit. Then, the position calculator 21 of the radio wave scatterer position calculator 20 obtains the following five values (i), (ii), (iii), (iv), and (v).
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates (i) the n-th radio wave scattering as viewed from the transmitting antenna 1a based on the set position of the n-th radio wave scatterer 2. Obtain the arrangement angles ( ⁇ tn , ⁇ tn ) of the body 2 (step ST12)
  • step ST12 the position calculation unit 21 of the radio wave scatterer position calculation device 20 performs (ii ) Obtain the radiation gain G t ( ⁇ tn , ⁇ tn ) of the transmitting antenna (step ST13).
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 obtains (i), the scattering characteristics of the radio wave scatterer 2 read from the storage unit 22, and the arrival angle conditions of the scattered waves ( (iii)
  • the scattering cross-section ⁇ n ( ⁇ tn , ⁇ tn , ⁇ rn , ⁇ rn ) of the n-th radio wave scatterer 2 is obtained based on ⁇ rn , ⁇ rn ) (step ST14).
  • step ST11 the position calculation unit 21 of the radio wave scatterer position calculation device 20, based on the set position of the n-th radio wave scatterer 2 and the position of the transmitting antenna 1a read from the storage unit 22, (iv) find the distance Rtn from the transmitting antenna 1a to the n-th radio wave scatterer 2 (step ST15).
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 determines the set position of the n-th radio wave scatterer 2 and the position of the evaluated antenna 1b read from the storage unit 22. Based on this, (v) the distance R rn from the antenna under evaluation 1b to the n-th radio wave scattering object 2 is obtained (step ST16).
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the transmission power P t and each of the above values (ii to v) as described above. (3), the power Pn of the scattered wave generated by the n-th radio wave scatterer 2 is calculated, and the amplitude ⁇ Pn is obtained based on the calculated power (step ST17).
  • the transmission power Pt here is the transmission power of the transmission antenna 1a, and is set in advance.
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 determines whether the obtained amplitude ⁇ Pn matches the amplitude of the scattered wave read from the storage unit 22 (the amplitude of the desired scattered wave condition). is determined (step ST18).
  • the arrangement position on the orbit set in step ST11 is determined as the three-dimensional arrangement position of the n-th radio wave scatterer 2 .
  • step ST18 NO the position calculation unit 21 of the radio wave scatterer position calculation device 20 (step ST11), the n-th radio wave scatterer 2 is rearranged at another position on the orbit, and each process from step ST12 to step ST18 is performed again.
  • the position calculation unit 21 of the radio wave scatterer position calculation device 20 determines the arrangement position of each of the plurality of radio wave scatterers 2 by performing the above processing for each radio wave scatterer 2 .
  • the arrangement position of the radio wave scatterer 2 determined by the position calculation unit 21 of the radio wave scatterer position calculation device 20 may be displayed by a display device (not shown). Thereby, the user can place the radio wave scatterer 2 at the placement position determined by the position calculation unit 21 of the radio wave scatterer position calculation device 20 .
  • Each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 is realized by a processing circuit. That is, the antenna evaluation device 102 includes a processing circuit for executing the processing of each step shown in FIGS. 9 and 10.
  • FIG. This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in memory.
  • CPU Central Processing Unit
  • FIG. 12A is a block diagram showing a hardware configuration that realizes the function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102.
  • FIG. 12B is a block diagram showing a hardware configuration for executing software that implements the function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102. As shown in FIG.
  • the processing circuit 23 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • Each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
  • each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 is realized by software, firmware, or a combination of software and firmware. .
  • Software or firmware is written as a program and stored in the memory 25 .
  • the processor 24 implements each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 by reading and executing the program stored in the memory 25 . That is, when the processor 24 executes these functions, the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 performs the processing of each step shown in FIGS. a memory 25 for storing programs to be executed in the
  • the memory 25 may be a computer-readable storage medium storing a program for causing a computer to function as the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 .
  • the processor 24 corresponds to, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a processor, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • a processing device for example, a central processing unit (CPU)
  • arithmetic device for example, a central processing unit (CPU)
  • a processor for example, a central processing Unit
  • a microprocessor a microcomputer
  • DSP Digital Signal Processor
  • the memory 25 includes, for example, non-volatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically-EPROM), Magnetic disks such as hard disks and flexible disks, flexible disks, optical disks, compact disks, mini-disks, CDs (Compact Discs), DVDs (Digital Versatile Discs), and the like are applicable.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically-EPROM), Magnetic disks such as hard disks and flexible disks, flexible disks, optical disks, compact disks, mini-disks, CDs (Compact Discs), DVDs (Digital Versatile Discs), and the like are applicable.
  • EPROM Erasable Programmable Read Only Memory
  • EEPROM Electrically-EPROM
  • Magnetic disks such as hard disks and flexible disk
  • a part of each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the function of the signal measuring device 7 is realized by a processing circuit as dedicated hardware.
  • the function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 may be realized by the processor 24 reading and executing a program stored in the memory 25 .
  • the processing circuitry may implement each of the above functions in hardware, software, firmware, or a combination thereof.
  • the radio wave scatterer 2 generates scattered waves with a predetermined amplitude, and the scattered waves arrive at the evaluated antenna 1b at a predetermined arrival angle.
  • the radio wave scatterer position calculation device 20 for calculating the arrangement position of the radio wave scatterer 2 for each radio wave scatterer, wherein the predetermined amplitude, the predetermined arrival angle, the position of the transmission antenna 1a, the transmission A radio wave scatterer position calculation device 20 is further provided for calculating the arrangement position of the radio wave scatterer 2 based on the radiation directivity pattern of the antenna 1a, the scattering characteristics of the radio wave scatterer 2, and the position of the antenna to be evaluated 1b.
  • the arrangement position of the radio wave scatterer 2 is determined for reproducing a multipath environment composed of scattered waves having a predetermined amplitude and arriving at the antenna 1b to be evaluated at a predetermined arrival angle. be able to.
  • the multipath environment can be reproduced by arranging the radio wave scattering bodies 2 based on the arrangement positions.
  • determination of the arrangement position of the radio wave scatterer 2 can be automated.
  • Embodiment 4 determination of the arrangement position of the radio wave scatterer 2 is automated by the radio wave scatterer position calculation device 20 .
  • Embodiment 4 describes a configuration in which the radio wave scattering body 2 is moved by a drive unit.
  • FIG. 13 is a schematic diagram showing the configuration of antenna evaluation apparatus 103 according to the fourth embodiment.
  • the antenna evaluation device 103 includes a plurality of first driving units 30 in addition to the configuration of the antenna evaluation device 102 described in the third embodiment.
  • the first drive section 30 is installed at the joint between the support section 3 and the column 4. As shown in FIG. Also, the first drive unit 30 is connected to the radio wave scatterer position calculation device 20 via a third cable 5c.
  • FIG. 14 is an enlarged view of the periphery of the first drive unit 30 provided in the antenna evaluation device 103 according to the fourth embodiment.
  • the drawing on the left side of FIG. 14 shows a side view around the first driving section 30 .
  • the diagram on the right side of FIG. 14 is a perspective view around the first drive unit 30 .
  • the first drive section 30 moves the support section 3 along the longitudinal direction of the support 4 based on the arrangement position calculated by the radio wave scatterer position calculation device 20, or moves the support section 3 along the longitudinal direction of the support section 3.
  • the radio wave scatterer 2 is moved by moving the supporting portion 3 with the
  • the first drive unit 30 moves the support part 3 along the longitudinal direction of the support part 3 based on the arrangement position of the radio wave scatterer 2 calculated by the radio wave scatterer position calculation device 20, thereby Adjust the distance between the scatterer 2 and the support 4 .
  • the first drive section 30 adjusts the height from the ground to the radio wave scattering body 2 by moving the support section 3 along the longitudinal direction of the column 4 .
  • the support part 3 is moved along the longitudinal direction of the support 4, or the support part 3 is moved along the longitudinal direction.
  • the first drive section 30 that moves the radio wave scattering body 2 by moving the support section 3 using the first driving section 30 has been described.
  • the antenna evaluation device 103 only needs to include a drive unit that moves the radio wave scatterer 2 based on the arrangement position calculated by the radio wave scatterer position calculation device 20, and the drive unit is the first It is not limited to the drive unit 30.
  • the antenna evaluation apparatus 103 moves the support section 3 along the longitudinal direction of the support 4 based on the arrangement position calculated by the radio wave scatterer position calculation apparatus 20, or , and a first driving unit 30 for moving the radio wave scatterer 2 by moving the support 3 along the longitudinal direction of the support 3 .
  • the arrangement position of the radio wave scatterer 2 can be automatically changed. Therefore, the multipath environment can be automatically reproduced.
  • Embodiment 5 In the fourth embodiment, the configuration in which the radio wave scattering body 2 is moved by moving the supporting portion 3 by the first driving portion 30 has been described. In Embodiment 5, a configuration in which the radio wave scattering body 2 is moved by moving the support 4 will be described.
  • FIG. 15 is a schematic diagram showing the configuration of antenna evaluation apparatus 104 according to the fifth embodiment.
  • the antenna evaluation device 104 further includes a plurality of second driving units 40 in addition to the configuration of the antenna evaluation device 103 described in the fourth embodiment.
  • the second driving section 40 is installed between the support 4 and the ground. Also, the first drive section 30 and the second drive section 40 are connected to the radio wave scatterer position calculation device 20 via a fourth cable 5d.
  • the second drive unit 40 moves the radio wave scatterer 2 by moving the support 4 along the ground based on the arrangement position calculated by the radio wave scatterer position calculation device 20 .
  • the second driving unit 40 can be used alone, but by using it in combination with the first driving unit 30 as in the antenna evaluation device 104 according to the fifth embodiment, the radio wave scatterer 2 position can be increased.
  • the second drive unit 40 moves the radio wave scatterer 2 by moving the support 4 along the ground based on the arrangement position calculated by the radio wave scatterer position calculation device 20.
  • the antenna evaluation device 104 only needs to include a drive unit that moves the radio wave scatterer 2 based on the arrangement position calculated by the radio wave scatterer position calculation device 20, and the drive unit is the second It is not limited to the drive unit 40.
  • the antenna evaluation device 104 moves the radio wave scatterer 2 by moving the support 4 along the ground based on the arrangement position calculated by the radio wave scatterer position calculation device 20. It further comprises a second drive 40 for movement. According to the above configuration, the arrangement position of the radio wave scatterer 2 can be automatically changed. Therefore, the multipath environment can be automatically reproduced. It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
  • the antenna evaluation apparatus can reproduce a multipath environment without using multiple transmitting antennas, it can be used for techniques for evaluating antennas.

Abstract

This antenna assessment device (100) satisfies at least one of: a first condition that the direction in which a transmission antenna (1a) and an assessment-target antenna (1b) are arranged is identical with the direction of electric current of the transmission antenna (1a); and a second condition that a radio wave absorber (10) for absorbing radio waves transmitted through the transmission antenna (1a) is installed between the transmission antenna (1a) and the assessment-target antenna (1b).

Description

アンテナ評価装置Antenna evaluation device
 本開示は、アンテナ評価装置に関する。 The present disclosure relates to an antenna evaluation device.
 マルチパス環境では、受信アンテナが受信する電波は、送信アンテナから受信アンテナまで直接伝搬した電波のみならず、当該送信アンテナが送信した電波が建物等の障害物で散乱することによって発生し、受信アンテナまで到達した散乱波も含む。アンテナ評価装置では、このようなマルチパス環境を再現した上で、アンテナの受信性能を評価する。 In a multipath environment, the radio waves received by the receiving antenna are generated not only by the radio waves that propagate directly from the transmitting antenna to the receiving antenna, but also by the radio waves transmitted by the transmitting antenna being scattered by obstacles such as buildings. It also includes scattered waves that have reached The antenna evaluation apparatus reproduces such a multipath environment and evaluates the reception performance of the antenna.
 例えば、特許文献1には、移動体端末用アンテナの受信性能を評価するアンテナ評価装置が記載されている。当該アンテナ評価装置では、評価対象のアンテナ(以下では、被評価アンテナと呼称する)の周囲に複数の送信アンテナが設置されている。当該アンテナ評価装置では、当該複数の送信アンテナがそれぞれ電波を被評価アンテナに送信することによりマルチパス環境を再現している。 For example, Patent Document 1 describes an antenna evaluation device that evaluates the reception performance of a mobile terminal antenna. In the antenna evaluation apparatus, a plurality of transmitting antennas are installed around an antenna to be evaluated (hereinafter referred to as an antenna to be evaluated). The antenna evaluation apparatus reproduces a multipath environment by transmitting radio waves from each of the plurality of transmitting antennas to the antenna to be evaluated.
特開2005-227213号公報JP-A-2005-227213
 上記のような技術では、マルチパス環境を再現するために複数の送信アンテナを使用する。しかし、複数の送信アンテナを用いた場合、例えば、送信アンテナ毎に減衰器又は移相器等の回路がさらに必要となり、送信回路が大規模化及び複雑化するという問題がある。  In the above technology, multiple transmitting antennas are used to reproduce the multipath environment. However, when a plurality of transmission antennas are used, for example, a circuit such as an attenuator or a phase shifter is required for each transmission antenna, and there is a problem that the transmission circuit becomes large-scaled and complicated.
 本開示は、上記のような問題点を解決するためになされたものであり、複数の送信アンテナを用いずにマルチパス環境を再現することができる技術を目的とする。 The present disclosure has been made to solve the above problems, and aims at a technology that can reproduce a multipath environment without using multiple transmitting antennas.
 本開示に係るアンテナ評価装置は、被評価アンテナの受信性能を評価するためのアンテナ評価装置であって、電波を送信する単一の送信アンテナと、それぞれが、送信アンテナが送信した電波を散乱させることにより散乱波を発生させる複数の電波散乱体と、複数の電波散乱体が発生させた各散乱波を受信する単一の被評価アンテナと、を備え、送信アンテナと被評価アンテナとが並んでいる方向と、送信アンテナの電流方向とが、同一である第1の条件、又は、送信アンテナと被評価アンテナとの間に、送信アンテナが送信した電波を吸収する電波吸収体が設置されている第2の条件のうちの少なくとも1つの条件を満たしている。 An antenna evaluation apparatus according to the present disclosure is an antenna evaluation apparatus for evaluating the reception performance of an antenna to be evaluated, which includes a single transmitting antenna that transmits radio waves and each of which scatters the radio waves transmitted by the transmitting antennas. a plurality of radio wave scatterers that generate scattered waves by means of a vibration, and a single antenna to be evaluated that receives the scattered waves generated by the plurality of radio wave scatterers, and the transmitting antenna and the antenna to be evaluated are arranged side by side The first condition is that the current direction of the transmitting antenna is the same as the current direction of the transmitting antenna, or a radio wave absorber that absorbs the radio waves transmitted by the transmitting antenna is installed between the transmitting antenna and the antenna to be evaluated. At least one of the second conditions is satisfied.
 本開示によれば、複数の送信アンテナを用いずにマルチパス環境を再現することができる。 According to the present disclosure, a multipath environment can be reproduced without using multiple transmitting antennas.
実施の形態1に係るアンテナ評価装置の構成を示す概略図である。1 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 1; FIG. 実施の形態1に係る送信アンテナと被評価アンテナとが並んでいる方向と送信アンテナの電流方向との関係を示す図である。4 is a diagram showing the relationship between the direction in which the transmitting antenna and the antenna to be evaluated are arranged and the direction of current flowing through the transmitting antenna according to Embodiment 1. FIG. 実施の形態1に係る送信アンテナと被評価アンテナとを拡大した図である。2 is an enlarged view of a transmitting antenna and an antenna to be evaluated according to Embodiment 1; FIG. 図1の点線AAが示す面を断面とした断面図である。FIG. 2 is a cross-sectional view taken along a plane indicated by a dotted line AA in FIG. 1; 図4の点線BBが示す範囲を拡大した拡大図である。FIG. 5 is an enlarged view enlarging the range indicated by the dotted line BB in FIG. 4; 実施の形態1に係るアンテナ評価装置を上から見た上面図である。1 is a top view of the antenna evaluation device according to Embodiment 1; FIG. 実施の形態2に係るアンテナ評価装置の構成を示す概略図である。2 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 2; FIG. 実施の形態3に係るアンテナ評価装置の構成を示す概略図である。FIG. 11 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 3; 実施の形態3に係る電波散乱体位置算出装置による電波散乱体位置算出方法を示すフローチャートである。10 is a flow chart showing a radio wave scatterer position calculation method by the radio wave scatterer position calculation device according to Embodiment 3. FIG. 図9が示すステップST6の詳細を示すフローチャートである。FIG. 10 is a flowchart showing details of step ST6 shown in FIG. 9; FIG. 図10が示すステップST10において電波散乱体を配置する軌道のイメージ図を示す。FIG. 10 shows an image diagram of a trajectory for arranging radio wave scatterers in step ST10 shown in FIG. 図12Aは、実施の形態3に係るアンテナ評価装置における電波散乱体位置算出装置の位置算出部の機能を実現するハードウェア構成を示すブロック図である。図12Bは、実施の形態3に係るアンテナ評価装置における電波散乱体位置算出装置の位置算出部の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。12A is a block diagram showing a hardware configuration that implements the function of the position calculation unit of the radio wave scatterer position calculation device in the antenna evaluation device according to Embodiment 3. FIG. 12B is a block diagram showing a hardware configuration for executing software that implements the function of the position calculation unit of the radio wave scatterer position calculation device in the antenna evaluation device according to Embodiment 3. FIG. 実施の形態4に係るアンテナ評価装置の構成を示す概略図である。FIG. 11 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 4; 実施の形態4に係るアンテナ評価装置が備えている第1の駆動部周辺を拡大した拡大図である。FIG. 11 is an enlarged view of the periphery of a first driving unit included in the antenna evaluation device according to Embodiment 4; 実施の形態5に係るアンテナ評価装置の構成を示す概略図である。FIG. 11 is a schematic diagram showing the configuration of an antenna evaluation device according to Embodiment 5;
 以下、本開示をより詳細に説明するため、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係るアンテナ評価装置100の構成を示す概略図である。図1が示すように、アンテナ評価装置100は、単一の送信アンテナ1a、単一の被評価アンテナ1b、複数の電波散乱体2、複数の支持部3、複数の支柱4、第1のケーブル5a、第2のケーブル5b、発振器6、及び信号測定器7を備えている。
Hereinafter, in order to describe the present disclosure in more detail, embodiments for carrying out the present disclosure will be described with reference to the accompanying drawings.
Embodiment 1.
FIG. 1 is a schematic diagram showing the configuration of an antenna evaluation apparatus 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 1, the antenna evaluation apparatus 100 includes a single transmitting antenna 1a, a single antenna to be evaluated 1b, a plurality of radio wave scatterers 2, a plurality of supports 3, a plurality of supports 4, and a first cable. 5 a , a second cable 5 b , an oscillator 6 and a signal measuring device 7 .
 実施の形態1では、送信アンテナ1aと被評価アンテナ1bとは、地面に対して垂直な方向に並んで設置されている。より詳細には、実施の形態1では、送信アンテナ1aは、被評価アンテナ1bが設置されている位置よりも地面から離れた位置に設置されている。なお、送信アンテナ1aは、被評価アンテナ1bが設置されている位置よりも地面から近い位置に設置されてもよい。
 送信アンテナ1a及び被評価アンテナ1bの例として、ダイポールアンテナ、又はスリーブアンテナなどの線状アンテナ等が挙げられる。
In Embodiment 1, the transmitting antenna 1a and the antenna to be evaluated 1b are installed side by side in a direction perpendicular to the ground. More specifically, in Embodiment 1, the transmitting antenna 1a is installed at a position farther from the ground than the position where the antenna to be evaluated 1b is installed. The transmitting antenna 1a may be installed at a position closer to the ground than the position where the antenna to be evaluated 1b is installed.
Examples of the transmitting antenna 1a and the antenna to be evaluated 1b include a dipole antenna, a linear antenna such as a sleeve antenna, and the like.
 支柱4は、棒状であり、長手方向が地面に対して垂直な方向となるように設置されている。より詳細には、実施の形態1では、複数の支柱4は、送信アンテナ1a及び被評価アンテナ1bを囲むように、それぞれ、送信アンテナ1a及び被評価アンテナ1bの周囲に設置されている。支柱4は、被評価アンテナ1bの評価に影響を与えないために、電波散乱を極力発生させない必要があるため、塩化ビニル又はポリプロピレン等の樹脂製であることが好ましい。支柱4の本数は、マルチパス環境を再現するための電波散乱体2の配置条件を満たすために必要な最小の数である。つまり、支柱4の本数は、電波散乱体2の数、及び電波散乱体2の配置に応じて設定される。 The support 4 is rod-shaped and installed so that its longitudinal direction is perpendicular to the ground. More specifically, in Embodiment 1, the plurality of columns 4 are installed around the transmitting antenna 1a and the antenna to be evaluated 1b so as to surround the transmitting antenna 1a and the antenna to be evaluated 1b. In order not to affect the evaluation of the antenna 1b to be evaluated, the support 4 should be made of a resin such as vinyl chloride or polypropylene because it is necessary to minimize radio wave scattering. The number of struts 4 is the minimum number required to satisfy the arrangement condition of the radio wave scatterers 2 for reproducing the multipath environment. That is, the number of supports 4 is set according to the number of radio wave scatterers 2 and the arrangement of the radio wave scatterers 2 .
 支持部3は、棒状であり、一方の端部が支柱4に支持され、他方の端部が電波散乱体2を支持している。つまり、支持部3の数は、1つの電波散乱体2に対して1本である。また、支持部3は、長手方向が地面と平行な方向となるように設置されている。支持部3は、被評価アンテナ1bの評価に影響を与えないために、電波散乱を極力発生させない必要があるため、塩化ビニル又はポリプロピレン等の樹脂製であることが好ましい。 The support part 3 is rod-shaped, one end of which is supported by the column 4 and the other end of which supports the radio wave scattering body 2 . That is, the number of supporting portions 3 is one for one radio wave scattering body 2 . Moreover, the support part 3 is installed so that a longitudinal direction may become a direction parallel to the ground. In order not to affect the evaluation of the antenna to be evaluated 1b, the supporting part 3 should be made of a resin such as vinyl chloride or polypropylene because it is necessary to minimize radio wave scattering.
 より詳細には、実施の形態1では、支柱41本当たり、3つの支持部3が支柱4に設置されている。当該3つの支持部3に支持された3つの電波散乱体2は、それぞれ、送信アンテナ1a及び被評価アンテナ1bの方向を向いている。これにより、それぞれが、対応する支持部3に支持された複数の電波散乱体2は、送信アンテナ1a及び被評価アンテナ1bを囲んでいる。 More specifically, in Embodiment 1, three support parts 3 are installed on the support columns 4 per 41 support columns. The three radio wave scatterers 2 supported by the three support portions 3 face the transmitting antenna 1a and the evaluated antenna 1b, respectively. As a result, a plurality of radio wave scatterers 2 each supported by a corresponding support portion 3 surround the transmitting antenna 1a and the antenna to be evaluated 1b.
 アンテナ評価装置100が備えている電波散乱体2の数は、再現するマルチパス環境での散乱波数と同じである。また、実施の形態1に係るアンテナ評価装置100によるマルチパス環境の再現方法では、送信アンテナ1aの位置、又は被評価アンテナ1bの位置を基準とした水平面角度及び垂直面角度を用いることにより、電波散乱体2の位置座標を示す。そのように水平面角度及び垂直面角度によって示される電波散乱体2の位置は、再現するマルチパス環境において被評価アンテナ1bに受信させる散乱波の到来角度に従って設定される。 The number of radio wave scatterers 2 provided in the antenna evaluation device 100 is the same as the number of scattered waves in the reproduced multipath environment. Further, in the method of reproducing a multipath environment by the antenna evaluation apparatus 100 according to Embodiment 1, by using the horizontal plane angle and the vertical plane angle based on the position of the transmitting antenna 1a or the position of the antenna to be evaluated 1b, radio waves The position coordinates of the scatterer 2 are shown. The position of the radio wave scatterer 2 indicated by the horizontal plane angle and the vertical plane angle is set according to the arrival angle of the scattered waves to be received by the evaluated antenna 1b in the reproduced multipath environment.
 電波散乱体2は、送信アンテナ1aから放射されている電波を散乱する特性を有していればよく、形状及び材質は特に限定されない。例えば、電波散乱体2は、金属導体の板等である。
 第1のケーブル5aは、送信アンテナ1aと発振器6とを接続している。第2のケーブル5bは、被評価アンテナ1bと信号測定器7とを接続している。
The radio wave scatterer 2 is not particularly limited in shape and material as long as it has the property of scattering radio waves radiated from the transmitting antenna 1a. For example, the radio wave scatterer 2 is a metal conductor plate or the like.
A first cable 5 a connects the transmitting antenna 1 a and the oscillator 6 . A second cable 5 b connects the antenna under evaluation 1 b and the signal measuring device 7 .
 以下で、アンテナ評価装置100が備えている上記の各構成の機能について説明する。
 発振器6は、マルチパス環境における所定の周波数の電波を再現するために、所定の周波数の信号を発生させる。第1のケーブル5aは、発振器6が発生させた信号を送信アンテナ1aに伝送する。
The function of each of the above components included in the antenna evaluation apparatus 100 will be described below.
The oscillator 6 generates a signal of a predetermined frequency in order to reproduce radio waves of a predetermined frequency in a multipath environment. A first cable 5a transmits the signal generated by the oscillator 6 to the transmitting antenna 1a.
 送信アンテナ1aは、電波を送信する。より詳細には、実施の形態1では、送信アンテナ1aは、所定の周波数の電波を送信する。なお、当該所定の周波数は、再現するマルチパス環境に応じて設定される。さらに詳細には、実施の形態1では、送信アンテナ1aは、発振器6が発生させた信号を電波として送信する。 The transmitting antenna 1a transmits radio waves. More specifically, in Embodiment 1, the transmitting antenna 1a transmits radio waves of a predetermined frequency. Note that the predetermined frequency is set according to the multipath environment to be reproduced. More specifically, in Embodiment 1, the transmitting antenna 1a transmits the signal generated by the oscillator 6 as radio waves.
 複数の電波散乱体2は、それぞれ、送信アンテナ1aが送信した電波を散乱させることにより散乱波を発生させる。
 被評価アンテナ1bは、複数の電波散乱体2が発生させた各散乱波を受信する。第2のケーブル5bは、被評価アンテナ1bが散乱波を受信することにより得られた信号を信号測定器7に伝送する。
Each of the plurality of radio wave scattering bodies 2 generates a scattered wave by scattering the radio wave transmitted by the transmitting antenna 1a.
The antenna to be evaluated 1 b receives each scattered wave generated by the plurality of radio wave scattering bodies 2 . The second cable 5b transmits to the signal measuring device 7 a signal obtained by the antenna under evaluation 1b receiving scattered waves.
 信号測定器7は、被評価アンテナ1bが散乱波を受信することにより得られた信号を測定する。また、信号測定器7は、測定した信号に基づいて、被評価アンテナ1bの受信性能を評価する。用いられる信号測定器7の種類は、被評価アンテナ1bの受信性能に対する評価の必要性に応じて異なる。例えば、信号測定器7は、スペクトラムアナライザ又はネットワークアナライザ等である。 The signal measuring instrument 7 measures the signal obtained by the antenna under evaluation 1b receiving the scattered wave. Also, the signal measuring device 7 evaluates the reception performance of the evaluated antenna 1b based on the measured signal. The type of signal measuring device 7 used differs depending on the necessity of evaluating the reception performance of the antenna 1b to be evaluated. For example, the signal measuring device 7 is a spectrum analyzer, network analyzer, or the like.
 アンテナ評価装置100では、送信アンテナ1aから放射された電波が直接、被評価アンテナ1bに到達した場合、被評価アンテナ1bの受信性能を評価することが困難になる。そのため、送信アンテナ1aから放射された電波が直接、被評価アンテナ1bに到達すること(アンテナ間の結合)を防ぐ必要がある。そこで、実施の形態1に係るアンテナ評価装置100では、図2に示す構成を採用している。図2は、送信アンテナ1aと被評価アンテナ1bとが並んでいる方向と送信アンテナ1aの電流方向との関係を示す図である。 In the antenna evaluation device 100, when the radio waves radiated from the transmitting antenna 1a directly reach the antenna to be evaluated 1b, it becomes difficult to evaluate the reception performance of the antenna to be evaluated 1b. Therefore, it is necessary to prevent radio waves radiated from the transmitting antenna 1a from directly reaching the antenna to be evaluated 1b (coupling between antennas). Therefore, the antenna evaluation apparatus 100 according to Embodiment 1 employs the configuration shown in FIG. FIG. 2 is a diagram showing the relationship between the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are arranged and the direction of current flowing through the transmitting antenna 1a.
 図2が示すように、実施の形態1では、送信アンテナ1aと被評価アンテナ1bとが並んでいる方向と、送信アンテナ1aの電流方向とは、同一である。これにより、被評価アンテナ1bから見た場合の送信アンテナ1aが電気的に微小となるため、アンテナ間の結合を抑制する効果を奏する。また、送信アンテナ1aと被評価アンテナ1bとを近傍に配置できるため、アンテナ評価装置100をコンパクトにできる。なお、本明細書において、「同一」という用語は、完全に同一、略同一、又は実質的に同一を意味する。 As shown in FIG. 2, in Embodiment 1, the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are arranged is the same as the current direction of the transmitting antenna 1a. As a result, the transmitting antenna 1a when viewed from the antenna 1b to be evaluated becomes electrically minute, and thus there is an effect of suppressing coupling between the antennas. In addition, since the transmitting antenna 1a and the antenna to be evaluated 1b can be arranged close to each other, the antenna evaluation apparatus 100 can be made compact. In this specification, the term "same" means completely the same, approximately the same, or substantially the same.
 より詳細には、送信アンテナ1a及び被評価アンテナ1bは、送信アンテナ1aの長手方向と被評価アンテナ1bの長手方向とが同一直線上にあるように配置されている。つまり、ここにおける送信アンテナ1aと被評価アンテナ1bとが並んでいる方向とは、当該直線の方向を意味する。 More specifically, the transmitting antenna 1a and the antenna to be evaluated 1b are arranged so that the longitudinal direction of the transmitting antenna 1a and the longitudinal direction of the antenna to be evaluated 1b are on the same straight line. That is, the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are arranged here means the direction of the straight line.
 また、上記の送信アンテナ1aの電流方向とは、送信アンテナ1aが電波を送信するために送信アンテナ1aにおいて流れる電流の方向を意味する。実施の形態1では、送信アンテナ1aの電流方向は、地面に対して垂直な方向である。 Also, the current direction of the transmitting antenna 1a described above means the direction of current flowing in the transmitting antenna 1a for transmitting radio waves. In Embodiment 1, the current direction of the transmitting antenna 1a is perpendicular to the ground.
 また、送信アンテナ1aから放射された電波が直接、被評価アンテナ1bに到達することを防ぐために、実施の形態1に係るアンテナ評価装置100では、図3に示す構成を採用している。図3は、送信アンテナ1aと被評価アンテナ1bとを拡大した図である。 Also, in order to prevent radio waves radiated from the transmitting antenna 1a from directly reaching the antenna to be evaluated 1b, the antenna evaluation apparatus 100 according to Embodiment 1 employs the configuration shown in FIG. FIG. 3 is an enlarged view of the transmitting antenna 1a and the antenna to be evaluated 1b.
 図3が示すように、実施の形態1では、送信アンテナ1aと被評価アンテナ1bとの間には、送信アンテナ1aが送信した電波を吸収する電波吸収体10が設置されている。これにより、送信アンテナ1aから被評価アンテナ1bへの直線経路上の電波を、電波吸収体10によって減衰させることになるため、アンテナ間の結合を抑制する効果を奏する。また、送信アンテナ1aと被評価アンテナ1bとを近傍に配置できるため、アンテナ評価装置100をコンパクトにできる。 As shown in FIG. 3, in Embodiment 1, a radio wave absorber 10 that absorbs radio waves transmitted by the transmitting antenna 1a is installed between the transmitting antenna 1a and the antenna to be evaluated 1b. As a result, the radio wave absorber 10 attenuates the radio wave on the straight path from the transmitting antenna 1a to the antenna to be evaluated 1b, thereby suppressing the coupling between the antennas. In addition, since the transmitting antenna 1a and the antenna to be evaluated 1b can be arranged close to each other, the antenna evaluation apparatus 100 can be made compact.
 なお、実施の形態1では、送信アンテナ1aと被評価アンテナ1bとが並んでいる方向と、送信アンテナ1aの電流方向とが同一である第1の条件と、送信アンテナ1aと被評価アンテナ1bとの間に、送信アンテナ1aが送信した電波を吸収する電波吸収体10が設置されている第2の条件との両方の条件を満たしているアンテナ評価装置100について説明する。しかし、アンテナ評価装置100は、当該第1の条件のみを満たしていてもよいし、当該第2の条件のみを満たしていてもよい。つまり、アンテナ評価装置100が第1の条件又は第2の条件の何れかを満たすことにより、アンテナ間の結合を抑制できればよい。 In Embodiment 1, the first condition that the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are arranged is the same as the current direction of the transmitting antenna 1a, and the transmission antenna 1a and the antenna to be evaluated 1b An antenna evaluation apparatus 100 that satisfies both the second condition in which a radio wave absorber 10 for absorbing radio waves transmitted by the transmitting antenna 1a is installed between the two conditions will be described. However, the antenna evaluation apparatus 100 may satisfy only the first condition, or may satisfy only the second condition. In other words, the antenna evaluation apparatus 100 should be able to suppress the coupling between the antennas by satisfying either the first condition or the second condition.
 電波吸収体10の構成についてより詳細には、実施の形態1では、電波吸収体10は、円盤状であり、2つの円盤面が送信アンテナ1aと被評価アンテナ1bとを結ぶ直線と垂直になるように設置されている。そして、電波吸収体10の2つの円盤面の各半径は、送信アンテナ1aと被評価アンテナ1bとを結ぶ直線距離で定義される第1フレネルゾーンの半径以上である。第1フレネルゾーンは、以下の式(1)によって示される。

Figure JPOXMLDOC01-appb-I000001
 式(1)において、rは、第1フレネルゾーンの半径を示し、λは、送信アンテナ1aが送信した電波の波長を示し、dは、送信アンテナ1aから電波吸収体10までの距離を示し、dは、電波吸収体10から被評価アンテナ1bまでの距離を示す。
In more detail about the configuration of the radio wave absorber 10, in the first embodiment, the radio wave absorber 10 is disk-shaped, and the two disk surfaces are perpendicular to the straight line connecting the transmitting antenna 1a and the antenna to be evaluated 1b. is installed as Each radius of the two disk surfaces of the radio wave absorber 10 is equal to or greater than the radius of the first Fresnel zone defined by the straight line distance connecting the transmitting antenna 1a and the antenna to be evaluated 1b. The first Fresnel zone is represented by Equation (1) below.

Figure JPOXMLDOC01-appb-I000001
In equation (1), ra indicates the radius of the first Fresnel zone, λ indicates the wavelength of the radio wave transmitted by the transmitting antenna 1a, and d1 indicates the distance from the transmitting antenna 1a to the radio wave absorber 10 . and d2 indicates the distance from the radio wave absorber 10 to the antenna to be evaluated 1b.
 以下で、実施の形態1に係るアンテナ評価装置100の動作の具体例について説明する。図4は、図1の点線AAが示す面を断面とした断面図である。図5は、図4の点線BBが示す範囲を拡大した拡大図である。図6は、アンテナ評価装置100を上から見た上面図である。 A specific example of the operation of the antenna evaluation apparatus 100 according to Embodiment 1 will be described below. FIG. 4 is a cross-sectional view taken along the plane indicated by the dotted line AA in FIG. FIG. 5 is an enlarged view enlarging the range indicated by the dotted line BB in FIG. FIG. 6 is a top view of the antenna evaluation apparatus 100 viewed from above.
 図5又は図6が示すように、複数の電波散乱体2のうちのn番目の電波散乱体の位置は、送信アンテナ1aの位置を基準とした垂直面角度θtn、水平面角度φtn及び距離Rtnと、被評価アンテナ1bを基準とした垂直面角度θrn、水平面角度φrn及び距離Rrnの2種類の座標で定義される。 As shown in FIG. 5 or 6, the position of the n-th radio wave scatterer among the plurality of radio wave scatterers 2 is the vertical plane angle θ tn , the horizontal plane angle φ tn and the distance from the position of the transmitting antenna 1a. It is defined by R tn and two kinds of coordinates of vertical plane angle θ rn , horizontal plane angle φ rn and distance R rn with respect to the antenna to be evaluated 1b.
 まず、発振器6が発生させた所定の周波数の信号は、送信アンテナ1aから電波として放射される。送信アンテナ1aから放射された電波は、電波散乱体2によって散乱され、被評価アンテナ1bに到達する。複数の電波散乱体2が配置されていることによって、被評価アンテナ1bでは、複数の散乱波が受信される。つまり、被評価アンテナ1bは、マルチパス波を受信する。被評価アンテナ1bが受信した信号は、信号測定器7によって測定される。 First, a signal of a predetermined frequency generated by the oscillator 6 is radiated as radio waves from the transmitting antenna 1a. A radio wave radiated from the transmitting antenna 1a is scattered by the radio wave scatterer 2 and reaches the evaluated antenna 1b. Since a plurality of radio wave scatterers 2 are arranged, a plurality of scattered waves are received by the antenna 1b to be evaluated. That is, the antenna under evaluation 1b receives multipath waves. The signal received by the antenna under evaluation 1b is measured by the signal measuring device 7. FIG.
 上記のように、n番目の電波散乱体2によって生成され、被評価アンテナ1bによって受信される散乱波の電力Pは、以下の式(2)で表される。

Figure JPOXMLDOC01-appb-I000002
 式(2)において、Pは、送信アンテナ1aの送信電力を示し、G(θtn,φtn)は、θtn,φtnの方向への送信アンテナ1aの放射利得を示し、σ(θtn,φtn,θrn,φrn)は、電波散乱体2においてθtn,φtnの方向から入射した電波がθrn,φrnの方向へ散乱する際の散乱断面積を示す。
As described above, the power Pn of the scattered wave generated by the n -th radio wave scatterer 2 and received by the antenna under evaluation 1b is expressed by the following equation (2).

Figure JPOXMLDOC01-appb-I000002
In equation (2), P t indicates the transmission power of the transmission antenna 1a, G ttn , φ tn ) indicates the radiation gain of the transmission antenna 1a in the directions of θ tn , φ tn , and σ( θ tn , φ tn , θ rn , φ rn ) represent scattering cross sections when radio waves incident from the directions of θ tn and φ tn scatter in the directions of θ rn and φ rn in the radio wave scatterer 2 .
 以上のように、実施の形態1に係るアンテナ評価装置100は、被評価アンテナ1bの受信性能を評価するためのアンテナ評価装置100であって、電波を送信する単一の送信アンテナ1aと、それぞれが、送信アンテナが送信した電波を散乱させることにより散乱波を発生させる複数の電波散乱体2と、複数の電波散乱体2が発生させた各散乱波を受信する単一の被評価アンテナ1bと、を備え、送信アンテナ1aと被評価アンテナ1bとが並んでいる方向と、送信アンテナ1aの電流方向とが、同一である第1の条件、又は、送信アンテナ1aと被評価アンテナ1bとの間に、送信アンテナ1aが送信した電波を吸収する電波吸収体10が設置されている第2の条件のうちの少なくとも1つの条件を満たしている。
 上記の構成によれば、複数の電波散乱体2がそれぞれ散乱波を発生させることにより、複数の送信アンテナを用いずにマルチパス環境を再現することができる。
As described above, the antenna evaluation apparatus 100 according to Embodiment 1 is an antenna evaluation apparatus 100 for evaluating the receiving performance of the antenna under evaluation 1b, and includes a single transmitting antenna 1a for transmitting radio waves, and However, there are a plurality of radio wave scatterers 2 that generate scattered waves by scattering the radio waves transmitted by the transmitting antenna, and a single evaluated antenna 1b that receives the scattered waves generated by the plurality of radio wave scatterers 2. , and the direction in which the transmitting antenna 1a and the antenna to be evaluated 1b are aligned is the same as the direction of current in the transmitting antenna 1a, or between the transmitting antenna 1a and the antenna to be evaluated 1b In addition, at least one condition of the second condition that the radio wave absorber 10 for absorbing the radio waves transmitted by the transmitting antenna 1a is installed is satisfied.
According to the above configuration, a multipath environment can be reproduced without using a plurality of transmitting antennas by generating scattered waves from each of the plurality of radio wave scattering bodies 2 .
 例えば、無線端末(アンテナ)の評価では、性能検証のために実際に使用される通信環境での試験が重要である。しかし、電波暗室外での試験は法律的制約などもあり簡単に実施することはできない。そこで、従来技術では、電波暗室内に実際の通信環境を再現してアンテナ性能を評価するOver-the-Air装置(OTA装置)(例えば、特許文献1に記載のアンテナ評価装置)が用いられる。OTA装置は、電波暗室内にマルチパス環境を再現する装置である。しかし、そのようなOTA装置では、素波(マルチパスを構成する1つの電波)の振幅の調整は減衰器によってなされるが、移相器についても電力損失が発生する。その電力損失の大きさは、使用する部品の性能をもとに計算されるが、実際には個体差又は温度変化などによって誤差が生じる。複数の送信アンテナを使用した大規模且つ複雑な送信回路では、全ての減衰器及び移相器による正確な電力損失を全て把握し校正することは困難である。 For example, in the evaluation of wireless terminals (antennas), it is important to test in the communication environment that is actually used for performance verification. However, testing outside the anechoic chamber cannot be performed easily due to legal restrictions. Therefore, in the prior art, an Over-the-Air device (OTA device) (for example, the antenna evaluation device described in Patent Document 1) is used that reproduces an actual communication environment in an anechoic chamber and evaluates antenna performance. An OTA device is a device that reproduces a multipath environment in an anechoic chamber. However, in such an OTA device, the amplitude of the elementary wave (one radio wave forming the multipath) is adjusted by an attenuator, but power loss also occurs in the phase shifter. The magnitude of the power loss is calculated based on the performance of the parts used, but in reality errors occur due to individual differences, temperature changes, and the like. In a large and complicated transmission circuit using multiple transmit antennas, it is difficult to know and calibrate the exact power loss due to all attenuators and phase shifters.
 しかし、実施の形態1に係るアンテナ評価装置100の上記の構成によれば、単一の送信アンテナ1aでマルチパス環境を再現することができるので、そのような電力損失を把握し、構成することが容易になる。 However, according to the configuration of the antenna evaluation apparatus 100 according to Embodiment 1, it is possible to reproduce the multipath environment with a single transmitting antenna 1a. becomes easier.
実施の形態2.
 実施の形態1では、電波散乱体2を使用することにより散乱波を発生させる構成について説明した。実施の形態2では、より詳細なマルチパス環境を再現し、再現したマルチパス環境においてアンテナ評価を実施するために、電波散乱体によって各散乱波の振幅を制御する構成について説明する。
Embodiment 2.
In Embodiment 1, the configuration for generating scattered waves by using the radio wave scatterer 2 has been described. Embodiment 2 will describe a configuration in which the amplitude of each scattered wave is controlled by a radio wave scatterer in order to reproduce a more detailed multipath environment and perform antenna evaluation in the reproduced multipath environment.
 以下で、実施の形態2について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。図7は、実施の形態2に係るアンテナ評価装置101の構成を示す概略図である。図7が示すように、アンテナ評価装置101は、実施の形態1で説明した複数の電波散乱体2の代わりに、複数の電波散乱体2a,2b,2c,2d,2e,2fを備えている。 The second embodiment will be described below with reference to the drawings. In addition, the same reference numerals are given to the configurations having the same functions as the configurations described in the first embodiment, and the description thereof will be omitted. FIG. 7 is a schematic diagram showing the configuration of antenna evaluation apparatus 101 according to Embodiment 2. As shown in FIG. As shown in FIG. 7, the antenna evaluation apparatus 101 includes a plurality of radio wave scattering bodies 2a, 2b, 2c, 2d, 2e, and 2f instead of the plurality of radio wave scattering bodies 2 described in the first embodiment. .
 複数の電波散乱体2a,2b,2c,2d,2e,2fは、それぞれ、所定の振幅の散乱波を発生させるように、当該所定の振幅に応じた散乱特性を有する。ここにおける所定の振幅の散乱波は、再現するマルチパス環境に応じて設定される。つまり、実施の形態2では、複数の電波散乱体を散乱特性が既知のものに変更し、再現するマルチパス環境における所望の散乱波の振幅に応じて、電波散乱体を付け替えることにより各散乱波の振幅を制御する。 Each of the plurality of radio wave scatterers 2a, 2b, 2c, 2d, 2e, and 2f has a scattering characteristic corresponding to a predetermined amplitude so as to generate scattered waves with a predetermined amplitude. A scattered wave with a predetermined amplitude here is set according to the multipath environment to be reproduced. In other words, in Embodiment 2, a plurality of radio wave scatterers are changed to those having known scattering characteristics, and each scattered wave is to control the amplitude of
 上記のようなアンテナ評価装置101において、複数の電波散乱体2a,2b,2c,2d,2e,2fのうちのn番目の電波散乱体によって生成され、被評価アンテナ1bによって受信される散乱波の電力Pは、以下の式(3)で表される。

Figure JPOXMLDOC01-appb-I000003
 式(3)において、σ(θtn,φtn,θrn,φrn)以外の記号は、実施の形態1で説明した記号と同様である。σ(θtn,φtn,θrn,φrn)は、n番目の電波散乱体において、θtn,φtnの方向から入射した電波がθrn,φrnの方向へ散乱する際の散乱断面積を示す。
In the antenna evaluation apparatus 101 as described above, the scattered wave generated by the n-th radio wave scatterer among the plurality of radio wave scatterers 2a, 2b, 2c, 2d, 2e, and 2f and received by the antenna to be evaluated 1b The power Pn is represented by the following formula (3).

Figure JPOXMLDOC01-appb-I000003
In equation (3), symbols other than σ ntn , φ tn , θ rn , φ rn ) are the same as those explained in the first embodiment. σ ntn , φ tn , θ rn , φ rn ) is the scattering when radio waves incident from the directions of θ tn and φ tn are scattered in the directions of θ rn and φ rn in the n-th radio wave scatterer. indicates the cross-sectional area.
 以上のように、実施の形態2に係るアンテナ評価装置101における複数の電波散乱体2a,2b,2c,2d,2e,2fは、それぞれ、所定の振幅の散乱波を発生させるように、当該所定の振幅に応じた散乱特性を有する。 As described above, each of the plurality of radio wave scatterers 2a, 2b, 2c, 2d, 2e, and 2f in the antenna evaluation apparatus 101 according to the second embodiment generates scattered waves of a predetermined amplitude. has a scattering characteristic that depends on the amplitude of
 上記の構成によれば、所定の振幅の散乱波を被評価アンテナ1bに受信させることができる。つまり、所定の振幅の散乱波から構成されるマルチパス環境を再現することができる。これにより、アンテナ評価を好適に行うことができる。 According to the above configuration, it is possible to cause the antenna to be evaluated 1b to receive scattered waves of a predetermined amplitude. That is, it is possible to reproduce a multipath environment composed of scattered waves of a predetermined amplitude. Thereby, antenna evaluation can be preferably performed.
実施の形態3.
 実施の形態2では、散乱波の振幅を制御する方法として、所望の散乱波の振幅に応じて、電波散乱体を散乱特性の異なるものに変更する構成について説明した。実施の形態3では、電波散乱体の位置を調整し、散乱波の振幅を制御するために、電波散乱体を配置する配置位置を決定する構成について説明する。
Embodiment 3.
In the second embodiment, as a method for controlling the amplitude of scattered waves, the configuration of changing the radio wave scatterer to one having different scattering characteristics according to the desired amplitude of the scattered waves has been described. In Embodiment 3, a configuration will be described in which the arrangement position of the radio wave scatterer is determined in order to adjust the position of the radio wave scatterer and control the amplitude of the scattered wave.
 以下で、実施の形態3について図面を参照して説明する。なお、実施の形態1又は実施の形態2で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。図8は、実施の形態3に係るアンテナ評価装置102の構成を示す概略図である。図8が示すように、アンテナ評価装置102は、実施の形態2に係るアンテナ評価装置101の構成に加えて、電波散乱体位置算出装置20をさらに備えている。電波散乱体位置算出装置20は、位置算出部21、及び記憶部22を備えている。なお、実施の形態3では、アンテナ評価装置102が電波散乱体位置算出装置20を備えている構成について説明するが、電波散乱体位置算出装置20は、単独で用いられてもよい。 The third embodiment will be described below with reference to the drawings. It should be noted that configurations having functions similar to those of the configuration described in Embodiment 1 or Embodiment 2 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 8 is a schematic diagram showing the configuration of antenna evaluation apparatus 102 according to the third embodiment. As shown in FIG. 8, the antenna evaluation device 102 further includes a radio wave scatterer position calculation device 20 in addition to the configuration of the antenna evaluation device 101 according to the second embodiment. The radio wave scatterer position calculation device 20 includes a position calculation section 21 and a storage section 22 . In the third embodiment, the configuration in which the antenna evaluation device 102 includes the radio wave scatterer position calculation device 20 will be described, but the radio wave scatterer position calculation device 20 may be used independently.
 電波散乱体位置算出装置20の位置算出部21は、電波散乱体2が、所定の振幅の散乱波を発生させ、当該散乱波が、所定の到来角度で被評価アンテナ1bに到来するように、電波散乱体2が配置される配置位置を電波散乱体2毎に算出する。なお、ここにおける所定の振幅の散乱波は、再現するマルチパス環境に応じて設定される。また、ここにおける所定の到来角度は、再現するマルチパス環境に応じて設定される。 The position calculation unit 21 of the radio wave scatterer position calculation device 20 causes the radio wave scatterer 2 to generate scattered waves with a predetermined amplitude, and the scattered waves arrive at the evaluated antenna 1b at a predetermined arrival angle. An arrangement position where the radio wave scatterer 2 is arranged is calculated for each radio wave scatterer 2 . It should be noted that the scattered wave with a predetermined amplitude here is set according to the multipath environment to be reproduced. Also, the predetermined arrival angle here is set according to the multipath environment to be reproduced.
 電波散乱体位置算出装置20の位置算出部21は、当該所定の振幅、当該所定の到来角度、送信アンテナ1aの位置、送信アンテナ1aの放射指向性パターン、電波散乱体2の散乱特性、及び被評価アンテナ1bの位置に基づいて、電波散乱体2が配置される配置位置を算出する。なお、送信アンテナ1aの位置、送信アンテナ1aの放射指向性パターン、電波散乱体2の散乱特性、及び被評価アンテナ1bの位置は、それぞれ、アンテナ評価装置102の諸元に関する情報であり、実施の形態3では予め定められているものとする。 The position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the predetermined amplitude, the predetermined arrival angle, the position of the transmission antenna 1a, the radiation directivity pattern of the transmission antenna 1a, the scattering characteristics of the radio wave scatterer 2, and the Based on the position of the evaluation antenna 1b, the placement position of the radio wave scatterer 2 is calculated. The position of the transmitting antenna 1a, the radiation directivity pattern of the transmitting antenna 1a, the scattering characteristics of the radio wave scatterer 2, and the position of the antenna to be evaluated 1b are information related to the specifications of the antenna evaluation device 102. In form 3, it is assumed to be predetermined.
 電波散乱体位置算出装置20の記憶部22は、位置算出部21が用いる所定の振幅、所定の到来角度、送信アンテナ1aの位置、送信アンテナ1aの放射指向性パターン、電波散乱体2の散乱特性及び被評価アンテナ1bの位置を記憶している。 The storage unit 22 of the radio wave scatterer position calculation device 20 stores the predetermined amplitude used by the position calculation unit 21, the predetermined arrival angle, the position of the transmission antenna 1a, the radiation directivity pattern of the transmission antenna 1a, the scattering characteristics of the radio wave scatterer 2. and the position of the antenna to be evaluated 1b.
 以下で、実施の形態3に係る電波散乱体位置算出装置20の動作について図面を参照して説明する。図9は、実施の形態3に係る電波散乱体位置算出装置20による電波散乱体位置算出方法を示すフローチャートである。 The operation of the radio wave scatterer position calculation device 20 according to Embodiment 3 will be described below with reference to the drawings. FIG. 9 is a flowchart showing a method for calculating the position of radio wave scatterers by the radio wave scatterer position calculation device 20 according to the third embodiment.
 電波散乱体位置算出装置20の位置算出部21は、記憶部22から、送信アンテナ1aの位置及び被評価アンテナ1bの位置に関する位置情報を読み込む(ステップST1)。
 次に、電波散乱体位置算出装置20の位置算出部21は、記憶部22から、送信アンテナ1aの放射指向性パターンに関する情報を読み込む(ステップST2)。
The position calculation unit 21 of the radio wave scatterer position calculation device 20 reads the position information regarding the position of the transmitting antenna 1a and the position of the evaluated antenna 1b from the storage unit 22 (step ST1).
Next, the position calculation unit 21 of the radio wave scatterer position calculation device 20 reads information on the radiation directivity pattern of the transmission antenna 1a from the storage unit 22 (step ST2).
 次に、電波散乱体位置算出装置20の位置算出部21は、記憶部22から、電波散乱体2の散乱特性に関する情報を読み込む(ステップST3)。
 次に、電波散乱体位置算出装置20の位置算出部21は、記憶部22から、所望のマルチパス環境の条件である散乱波の振幅及び到来角度(θrn,φrn)を読み込む(ステップST4)。
Next, the position calculation unit 21 of the radio wave scatterer position calculation device 20 reads information on the scattering characteristics of the radio wave scatterer 2 from the storage unit 22 (step ST3).
Next, the position calculation unit 21 of the radio wave scatterer position calculation device 20 reads the amplitude and arrival angles (θ rn , φ rn ) of the scattered waves, which are the conditions of the desired multipath environment, from the storage unit 22 (step ST4). ).
 次に、電波散乱体位置算出装置20の位置算出部21は、読み込んだ散乱波の到来角度条件のうちの水平面角度φrnに基づいて、電波散乱体2の水平面内における配置位置(角度)を決定する(ステップST5)。 Next, the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the arrangement position (angle) of the radio wave scatterer 2 in the horizontal plane based on the horizontal plane angle φ rn among the arrival angle conditions of the read scattered waves. Determine (step ST5).
 次に、電波散乱体位置算出装置20の位置算出部21は、読み込んだ散乱波の振幅、及び読み込んだ散乱波の到来角度のうちの垂直面角度に基づいて、所望の散乱波が得られる電波散乱体2の3次元配置位置を決定する(ステップST6)。 Next, the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the amplitude of the scattered wave read and the angle of the vertical plane out of the arrival angle of the read scattered wave. A three-dimensional arrangement position of the scatterer 2 is determined (step ST6).
 図10は、図9が示すステップST6の詳細を示すフローチャートである。
 まず、電波散乱体位置算出装置20の位置算出部21は、記憶部22から読み込んだ垂直面の到来角度θrnに基づいて、電波散乱体2を配置する軌道を計算する(ステップST10)。
FIG. 10 is a flow chart showing details of step ST6 shown in FIG.
First, the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the trajectory of the radio wave scatterer 2 based on the arrival angle θ rn of the vertical plane read from the storage unit 22 (step ST10).
 図11は、図10が示すステップST10において電波散乱体2を配置する軌道のイメージ図を示す。この軌道上に電波散乱体2を配置することで、再現するマルチパス環境における散乱波の到来角度条件を満たすことが保証される。 FIG. 11 shows an image diagram of the trajectory for arranging the radio wave scattering bodies 2 in step ST10 shown in FIG. By arranging the radio wave scatterer 2 on this orbit, it is ensured that the arrival angle condition of the scattered waves in the reproduced multipath environment is satisfied.
 電波散乱体位置算出装置20の位置算出部21は、以下のステップST11からステップST18の各処理により、記憶部22から読み込んだ散乱波の振幅条件に基づいて、電波散乱体2の3次元位置を決定する。 The position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the three-dimensional position of the radio wave scatterer 2 based on the amplitude conditions of the scattered waves read from the storage unit 22 by the following steps ST11 to ST18. decide.
 まず、電波散乱体位置算出装置20の位置算出部21は、n番目の電波散乱体2を配置する配置位置を軌道上の任意の位置に設定する(ステップST11)。つまり、電波散乱体位置算出装置20の位置算出部21は、軌道上の任意の位置にn番目の電波散乱体2を配置したと仮定する。そして、電波散乱体位置算出装置20の位置算出部21は、以下の(i)(ii)(iii)(iv)及び(v)の5つの値を求める。 First, the position calculation unit 21 of the radio wave scatterer position calculation device 20 sets the placement position of the n-th radio wave scatterer 2 to an arbitrary position on the orbit (step ST11). In other words, it is assumed that the position calculation unit 21 of the radio wave scatterer position calculation device 20 arranges the n-th radio wave scatterer 2 at an arbitrary position on the orbit. Then, the position calculator 21 of the radio wave scatterer position calculator 20 obtains the following five values (i), (ii), (iii), (iv), and (v).
 ST11の次のステップとして、電波散乱体位置算出装置20の位置算出部21は、設定したn番目の電波散乱体2の配置位置に基づいて、(i)送信アンテナ1aからみたn番目の電波散乱体2の配置角度(θtn,φtn)を求める(ステップST12) As the next step after ST11, the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates (i) the n-th radio wave scattering as viewed from the transmitting antenna 1a based on the set position of the n-th radio wave scatterer 2. Obtain the arrangement angles (θ tn , φ tn ) of the body 2 (step ST12)
 ステップST12の次のステップとして、電波散乱体位置算出装置20の位置算出部21は、求めた(i)と、記憶部22から読み込んだ送信アンテナ1aの放射指向性パターンとに基づいて、(ii)送信アンテナの放射利得G(θtn,φtn)を求める(ステップST13)。 As the next step after step ST12, the position calculation unit 21 of the radio wave scatterer position calculation device 20 performs (ii ) Obtain the radiation gain G ttn , φ tn ) of the transmitting antenna (step ST13).
 ステップST12の次のステップとして、電波散乱体位置算出装置20の位置算出部21は、求めた(i)と、記憶部22から読み込んだ電波散乱体2の散乱特性及び散乱波の到来角度条件(θrn,φrn)とに基づいて、(iii)n番目の電波散乱体2の散乱断面積σ(θtn,φtn,θrn,φrn)を求める(ステップST14)。 As a step subsequent to step ST12, the position calculation unit 21 of the radio wave scatterer position calculation device 20 obtains (i), the scattering characteristics of the radio wave scatterer 2 read from the storage unit 22, and the arrival angle conditions of the scattered waves ( (iii) The scattering cross-section σ ntn , φ tn , θ rn , φ rn ) of the n-th radio wave scatterer 2 is obtained based on θ rn , φ rn ) (step ST14).
 ステップST11の次のステップとして、電波散乱体位置算出装置20の位置算出部21は、設定したn番目の電波散乱体2の配置位置と、記憶部22から読み込んだ送信アンテナ1aの位置とに基づいて、(iv)送信アンテナ1aからn番目の電波散乱体2までの距離Rtnを求める(ステップST15)。 As the next step after step ST11, the position calculation unit 21 of the radio wave scatterer position calculation device 20, based on the set position of the n-th radio wave scatterer 2 and the position of the transmitting antenna 1a read from the storage unit 22, (iv) find the distance Rtn from the transmitting antenna 1a to the n-th radio wave scatterer 2 (step ST15).
 ステップST11の次のステップとして、電波散乱体位置算出装置20の位置算出部21は、設定したn番目の電波散乱体2の配置位置と、記憶部22から読み込んだ被評価アンテナ1bの位置とに基づいて、(v)被評価アンテナ1bからn番目の電波散乱体2までの距離Rrnを求める(ステップST16) As the next step after step ST11, the position calculation unit 21 of the radio wave scatterer position calculation device 20 determines the set position of the n-th radio wave scatterer 2 and the position of the evaluated antenna 1b read from the storage unit 22. Based on this, (v) the distance R rn from the antenna under evaluation 1b to the n-th radio wave scattering object 2 is obtained (step ST16).
 ステップST13、ステップST14、ステップST15及びステップST16の次のステップとして、電波散乱体位置算出装置20の位置算出部21は、送信電力Pと上記の(ii~v)までの各値とを上述の式(3)に代入することにより、n番目の電波散乱体2で生成される散乱波の電力Pを算出し、算出した電力に基づいて、振幅√Pを求める(ステップST17)。なお、ここにおける送信電力Pは、送信アンテナ1aの送信電力であり、予め設定されているものとする。 As a step subsequent to steps ST13, ST14, ST15, and ST16, the position calculation unit 21 of the radio wave scatterer position calculation device 20 calculates the transmission power P t and each of the above values (ii to v) as described above. (3), the power Pn of the scattered wave generated by the n-th radio wave scatterer 2 is calculated, and the amplitude √Pn is obtained based on the calculated power (step ST17). The transmission power Pt here is the transmission power of the transmission antenna 1a, and is set in advance.
 次に、電波散乱体位置算出装置20の位置算出部21は、求めた振幅√Pが、記憶部22から読み込んだ散乱波の振幅(所望の散乱波条件の振幅)と一致するか否かを判定する(ステップST18)。 Next, the position calculation unit 21 of the radio wave scatterer position calculation device 20 determines whether the obtained amplitude √Pn matches the amplitude of the scattered wave read from the storage unit 22 (the amplitude of the desired scattered wave condition). is determined (step ST18).
 電波散乱体位置算出装置20の位置算出部21は、求めた振幅√Pが、記憶部22から読み込んだ散乱波の振幅(所望の散乱波条件の振幅)と一致する場合には(ステップST18のYES)、ステップST11で設定した軌道上の配置位置を、n番目の電波散乱体2の3次元配置位置に決定する。 If the calculated amplitude √P n matches the amplitude of the scattered wave read from the storage unit 22 (the amplitude of the desired scattered wave condition), the position calculation unit 21 of the radio wave scatterer position calculation device 20 (step ST18 YES), the arrangement position on the orbit set in step ST11 is determined as the three-dimensional arrangement position of the n-th radio wave scatterer 2 .
 電波散乱体位置算出装置20の位置算出部21は、求めた振幅√Pが、記憶部22から読み込んだ散乱波の振幅(所望の散乱波条件の振幅)と一致しない場合には(ステップST18のNO)、ステップST11において軌道上の別の位置にn番目の電波散乱体2を再配置し、再度、ステップST12からステップST18までの各処理を行う。
 なお、電波散乱体位置算出装置20の位置算出部21は、電波散乱体2毎に、上記の各処理を行うことで、複数の電波散乱体2の各配置位置を決定する。
If the calculated amplitude √Pn does not match the amplitude of the scattered wave read from the storage unit 22 (the amplitude of the desired scattered wave condition), the position calculation unit 21 of the radio wave scatterer position calculation device 20 (step ST18 NO), in step ST11, the n-th radio wave scatterer 2 is rearranged at another position on the orbit, and each process from step ST12 to step ST18 is performed again.
Note that the position calculation unit 21 of the radio wave scatterer position calculation device 20 determines the arrangement position of each of the plurality of radio wave scatterers 2 by performing the above processing for each radio wave scatterer 2 .
 電波散乱体位置算出装置20の位置算出部21が決定した電波散乱体2の配置位置は、図示しない表示装置によって表示させてもよい。これにより、ユーザは、電波散乱体位置算出装置20の位置算出部21が決定した配置位置に、電波散乱体2を配置することができる。 The arrangement position of the radio wave scatterer 2 determined by the position calculation unit 21 of the radio wave scatterer position calculation device 20 may be displayed by a display device (not shown). Thereby, the user can place the radio wave scatterer 2 at the placement position determined by the position calculation unit 21 of the radio wave scatterer position calculation device 20 .
 アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21の各機能は、処理回路により実現される。すなわち、アンテナ評価装置102は、図9及び図10に示した各ステップの処理を実行するための処理回路を備える。この処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。 Each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 is realized by a processing circuit. That is, the antenna evaluation device 102 includes a processing circuit for executing the processing of each step shown in FIGS. 9 and 10. FIG. This processing circuit may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in memory.
 図12Aは、アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21の機能を実現するハードウェア構成を示すブロック図である。図12Bは、アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。 FIG. 12A is a block diagram showing a hardware configuration that realizes the function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102. FIG. FIG. 12B is a block diagram showing a hardware configuration for executing software that implements the function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102. As shown in FIG.
 上記処理回路が図12Aに示す専用のハードウェアの処理回路23である場合、処理回路23は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)又はこれらを組み合わせたものが該当する。 If the processing circuit is the dedicated hardware processing circuit 23 shown in FIG. 12A, the processing circuit 23 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
 アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21の各機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。 Each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 may be realized by separate processing circuits, or these functions may be collectively realized by one processing circuit.
 上記処理回路が図12Bに示すプロセッサ24である場合、アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21の各機能は、ソフトウェア、ファームウェア又はソフトウェアとファームウェアとの組み合わせによって実現される。
 なお、ソフトウェア又はファームウェアは、プログラムとして記述されてメモリ25に記憶される。
When the processing circuit is the processor 24 shown in FIG. 12B, each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 is realized by software, firmware, or a combination of software and firmware. .
Software or firmware is written as a program and stored in the memory 25 .
 プロセッサ24は、メモリ25に記憶されたプログラムを読み出して実行することにより、アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21の各機能を実現する。すなわち、アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21は、これらの各機能がプロセッサ24によって実行されるときに、図9及び図10に示した各ステップの処理が結果的に実行されるプログラムを記憶するためのメモリ25を備える。 The processor 24 implements each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 by reading and executing the program stored in the memory 25 . That is, when the processor 24 executes these functions, the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 performs the processing of each step shown in FIGS. a memory 25 for storing programs to be executed in the
 これらのプログラムは、アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21の各手順又は方法をコンピュータに実行させる。メモリ25は、コンピュータを、アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。 These programs cause the computer to execute each procedure or method of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 . The memory 25 may be a computer-readable storage medium storing a program for causing a computer to function as the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 .
 プロセッサ24には、例えば、CPU(Central Processing Unit)、処理装置、演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などが該当する。 The processor 24 corresponds to, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a processor, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
 メモリ25には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性又は揮発性の半導体メモリ、ハードディスク、フレキシブルディスク等の磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、CD(Compact Disc)、DVD(Digital Versatile Disc)などが該当する。 The memory 25 includes, for example, non-volatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically-EPROM), Magnetic disks such as hard disks and flexible disks, flexible disks, optical disks, compact disks, mini-disks, CDs (Compact Discs), DVDs (Digital Versatile Discs), and the like are applicable.
 アンテナ評価装置102における電波散乱体位置算出装置20の位置算出部21の各機能について一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現してもよい。 A part of each function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 in the antenna evaluation device 102 may be realized by dedicated hardware, and a part may be realized by software or firmware.
 例えば、信号測定器7の機能は、専用のハードウェアとしての処理回路で機能を実現する。電波散乱体位置算出装置20の位置算出部21については、プロセッサ24がメモリ25に記憶されたプログラムを読み出して実行することにより機能を実現してもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア又はこれらの組み合わせにより上記機能のそれぞれを実現することができる。
For example, the function of the signal measuring device 7 is realized by a processing circuit as dedicated hardware. The function of the position calculation unit 21 of the radio wave scatterer position calculation device 20 may be realized by the processor 24 reading and executing a program stored in the memory 25 .
As such, the processing circuitry may implement each of the above functions in hardware, software, firmware, or a combination thereof.
 以上のように、実施の形態3に係るアンテナ評価装置102は、電波散乱体2が、所定の振幅の散乱波を発生させ、当該散乱波が、所定の到来角度で被評価アンテナ1bに到来するように、電波散乱体2が配置される配置位置を電波散乱体毎に算出する電波散乱体位置算出装置20であって、当該所定の振幅、当該所定の到来角度、送信アンテナ1aの位置、送信アンテナ1aの放射指向性パターン、電波散乱体2の散乱特性、及び被評価アンテナ1bの位置に基づいて、電波散乱体2の配置位置を算出する電波散乱体位置算出装置20をさらに備えている。 As described above, in the antenna evaluation apparatus 102 according to Embodiment 3, the radio wave scatterer 2 generates scattered waves with a predetermined amplitude, and the scattered waves arrive at the evaluated antenna 1b at a predetermined arrival angle. , the radio wave scatterer position calculation device 20 for calculating the arrangement position of the radio wave scatterer 2 for each radio wave scatterer, wherein the predetermined amplitude, the predetermined arrival angle, the position of the transmission antenna 1a, the transmission A radio wave scatterer position calculation device 20 is further provided for calculating the arrangement position of the radio wave scatterer 2 based on the radiation directivity pattern of the antenna 1a, the scattering characteristics of the radio wave scatterer 2, and the position of the antenna to be evaluated 1b.
 上記の構成によれば、所定の振幅を有し且つ所定の到来角度で被評価アンテナ1bに到来する散乱波から構成されるマルチパス環境を再現するための電波散乱体2の配置位置を決定することができる。つまり、当該配置位置に基づいて、電波散乱体2を配置することにより、当該マルチパス環境を再現することができる。また、電波散乱体2の配置位置の決定を自動化することができる。 According to the above configuration, the arrangement position of the radio wave scatterer 2 is determined for reproducing a multipath environment composed of scattered waves having a predetermined amplitude and arriving at the antenna 1b to be evaluated at a predetermined arrival angle. be able to. In other words, the multipath environment can be reproduced by arranging the radio wave scattering bodies 2 based on the arrangement positions. In addition, determination of the arrangement position of the radio wave scatterer 2 can be automated.
実施の形態4.
 実施の形態3では、電波散乱体位置算出装置20によって電波散乱体2の配置位置の決定を自動化した。実施の形態4では、電波散乱体2を駆動部によって移動させる構成について説明する。
Embodiment 4.
In Embodiment 3, determination of the arrangement position of the radio wave scatterer 2 is automated by the radio wave scatterer position calculation device 20 . Embodiment 4 describes a configuration in which the radio wave scattering body 2 is moved by a drive unit.
 以下で、実施の形態4について図面を参照して説明する。なお、実施の形態1、実施の形態2又は実施の形態3で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。図13は、実施の形態4に係るアンテナ評価装置103の構成を示す概略図である。図13が示すように、アンテナ評価装置103は、実施の形態3で説明したアンテナ評価装置102の構成に加えて、複数の第1の駆動部30を備えている。 The fourth embodiment will be described below with reference to the drawings. It should be noted that configurations having functions similar to those described in Embodiments 1, 2, and 3 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 13 is a schematic diagram showing the configuration of antenna evaluation apparatus 103 according to the fourth embodiment. As shown in FIG. 13, the antenna evaluation device 103 includes a plurality of first driving units 30 in addition to the configuration of the antenna evaluation device 102 described in the third embodiment.
 図13が示すように、第1の駆動部30は、支持部3と支柱4との結合部分に設置されている。また、第1の駆動部30は、第3のケーブル5cによって電波散乱体位置算出装置20と接続している。 As shown in FIG. 13, the first drive section 30 is installed at the joint between the support section 3 and the column 4. As shown in FIG. Also, the first drive unit 30 is connected to the radio wave scatterer position calculation device 20 via a third cable 5c.
 図14は、実施の形態4に係るアンテナ評価装置103が備えている第1の駆動部30周辺を拡大した拡大図である。図14の左側の図は、第1の駆動部30周囲の側面図を示す。図14の右側の図は、第1の駆動部30周囲の斜視図である。 FIG. 14 is an enlarged view of the periphery of the first drive unit 30 provided in the antenna evaluation device 103 according to the fourth embodiment. The drawing on the left side of FIG. 14 shows a side view around the first driving section 30 . The diagram on the right side of FIG. 14 is a perspective view around the first drive unit 30 .
 第1の駆動部30は、電波散乱体位置算出装置20が算出した配置位置に基づいて、支柱4の長手方向に沿って支持部3を移動させるか、又は、支持部3の長手方向に沿って支持部3を移動させることにより、電波散乱体2を移動させる。 The first drive section 30 moves the support section 3 along the longitudinal direction of the support 4 based on the arrangement position calculated by the radio wave scatterer position calculation device 20, or moves the support section 3 along the longitudinal direction of the support section 3. The radio wave scatterer 2 is moved by moving the supporting portion 3 with the
 つまり、第1の駆動部30は、電波散乱体位置算出装置20が算出した電波散乱体2の配置位置を基に、支持部3の長手方向に沿って支持部3を移動させることによって、電波散乱体2と支柱4との間の距離を調整する。一方で、第1の駆動部30は、支柱4の長手方向に沿って支持部3を移動させることにより、地面から電波散乱体2までの高さを調整する。 In other words, the first drive unit 30 moves the support part 3 along the longitudinal direction of the support part 3 based on the arrangement position of the radio wave scatterer 2 calculated by the radio wave scatterer position calculation device 20, thereby Adjust the distance between the scatterer 2 and the support 4 . On the other hand, the first drive section 30 adjusts the height from the ground to the radio wave scattering body 2 by moving the support section 3 along the longitudinal direction of the column 4 .
 なお、実施の形態4では、電波散乱体位置算出装置20が算出した配置位置に基づいて、支柱4の長手方向に沿って支持部3を移動させるか、又は、支持部3の長手方向に沿って支持部3を移動させることにより、電波散乱体2を移動させる第1の駆動部30について説明した。しかし、アンテナ評価装置103は、少なくとも、電波散乱体位置算出装置20が算出した配置位置に基づいて、電波散乱体2を移動させる駆動部を備えていればよく、当該駆動部は、第1の駆動部30に限定されない。 In the fourth embodiment, based on the arrangement position calculated by the radio wave scatterer position calculation device 20, the support part 3 is moved along the longitudinal direction of the support 4, or the support part 3 is moved along the longitudinal direction. The first drive section 30 that moves the radio wave scattering body 2 by moving the support section 3 using the first driving section 30 has been described. However, the antenna evaluation device 103 only needs to include a drive unit that moves the radio wave scatterer 2 based on the arrangement position calculated by the radio wave scatterer position calculation device 20, and the drive unit is the first It is not limited to the drive unit 30.
 以上のように、実施の形態4に係るアンテナ評価装置103は、電波散乱体位置算出装置20が算出した配置位置に基づいて、支柱4の長手方向に沿って支持部3を移動させるか、又は、支持部3の長手方向に沿って支持部3を移動させることにより、電波散乱体2を移動させる第1の駆動部30をさらに備えている。
 上記の構成によれば、電波散乱体2の配置位置を自動で変更することができる。よって、マルチパス環境を自動で再現することができる。
As described above, the antenna evaluation apparatus 103 according to Embodiment 4 moves the support section 3 along the longitudinal direction of the support 4 based on the arrangement position calculated by the radio wave scatterer position calculation apparatus 20, or , and a first driving unit 30 for moving the radio wave scatterer 2 by moving the support 3 along the longitudinal direction of the support 3 .
According to the above configuration, the arrangement position of the radio wave scatterer 2 can be automatically changed. Therefore, the multipath environment can be automatically reproduced.
実施の形態5.
 実施の形態4では、第1の駆動部30によって支持部3を移動させることによって電波散乱体2を移動させる構成について説明した。実施の形態5では、支柱4を移動させることによって電波散乱体2を移動させる構成について説明する。
Embodiment 5.
In the fourth embodiment, the configuration in which the radio wave scattering body 2 is moved by moving the supporting portion 3 by the first driving portion 30 has been described. In Embodiment 5, a configuration in which the radio wave scattering body 2 is moved by moving the support 4 will be described.
 以下で、実施の形態5について図面を参照して説明する。なお、実施の形態1、実施の形態3又は実施の形態4で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。図15は、実施の形態5に係るアンテナ評価装置104の構成を示す概略図である。図15が示すように、アンテナ評価装置104は、実施の形態4で説明したアンテナ評価装置103の構成に加えて、複数の第2の駆動部40をさらに備えている。 The fifth embodiment will be described below with reference to the drawings. It should be noted that configurations having functions similar to those of the configurations described in Embodiments 1, 3, and 4 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 15 is a schematic diagram showing the configuration of antenna evaluation apparatus 104 according to the fifth embodiment. As shown in FIG. 15, the antenna evaluation device 104 further includes a plurality of second driving units 40 in addition to the configuration of the antenna evaluation device 103 described in the fourth embodiment.
 図15が示すように、第2の駆動部40は、支柱4と地面との間に設置されている。また、第1の駆動部30及び第2の駆動部40は、それぞれ、第4のケーブル5dによって電波散乱体位置算出装置20と接続している。 As shown in FIG. 15, the second driving section 40 is installed between the support 4 and the ground. Also, the first drive section 30 and the second drive section 40 are connected to the radio wave scatterer position calculation device 20 via a fourth cable 5d.
 第2の駆動部40は、電波散乱体位置算出装置20が算出した配置位置に基づいて、地面に沿って支柱4を移動させることにより、電波散乱体2を移動させる。
 第2の駆動部40は、単体での使用も可能であるが、実施の形態5に係るアンテナ評価装置104のように、第1の駆動部30と組み合わせて使用することにより、電波散乱体2の位置の自由度を高めることができる。
The second drive unit 40 moves the radio wave scatterer 2 by moving the support 4 along the ground based on the arrangement position calculated by the radio wave scatterer position calculation device 20 .
The second driving unit 40 can be used alone, but by using it in combination with the first driving unit 30 as in the antenna evaluation device 104 according to the fifth embodiment, the radio wave scatterer 2 position can be increased.
 なお、実施の形態5では、電波散乱体位置算出装置20が算出した配置位置に基づいて、地面に沿って支柱4を移動させることにより、電波散乱体2を移動させる第2の駆動部40について説明した。しかし、アンテナ評価装置104は、少なくとも、電波散乱体位置算出装置20が算出した配置位置に基づいて、電波散乱体2を移動させる駆動部を備えていればよく、当該駆動部は、第2の駆動部40に限定されない。 In the fifth embodiment, the second drive unit 40 moves the radio wave scatterer 2 by moving the support 4 along the ground based on the arrangement position calculated by the radio wave scatterer position calculation device 20. explained. However, the antenna evaluation device 104 only needs to include a drive unit that moves the radio wave scatterer 2 based on the arrangement position calculated by the radio wave scatterer position calculation device 20, and the drive unit is the second It is not limited to the drive unit 40.
 以上のように、実施の形態5に係るアンテナ評価装置104は、電波散乱体位置算出装置20が算出した配置位置に基づいて、地面に沿って支柱4を移動させることにより、電波散乱体2を移動させる第2の駆動部40をさらに備えている。
 上記の構成によれば、電波散乱体2の配置位置を自動で変更することができる。よって、マルチパス環境を自動で再現できる。
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
As described above, the antenna evaluation device 104 according to Embodiment 5 moves the radio wave scatterer 2 by moving the support 4 along the ground based on the arrangement position calculated by the radio wave scatterer position calculation device 20. It further comprises a second drive 40 for movement.
According to the above configuration, the arrangement position of the radio wave scatterer 2 can be automatically changed. Therefore, the multipath environment can be automatically reproduced.
It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
 本開示に係るアンテナ評価装置は、複数の送信アンテナを用いずにマルチパス環境を再現することができるため、アンテナを評価する技術に利用可能である。 Since the antenna evaluation apparatus according to the present disclosure can reproduce a multipath environment without using multiple transmitting antennas, it can be used for techniques for evaluating antennas.
 1a 送信アンテナ、1b 被評価アンテナ、2,2a,2b,2c,2d,2e,2f 電波散乱体、3 支持部、4 支柱、5a 第1のケーブル、5b 第2のケーブル、5c 第3のケーブル、5d 第4のケーブル、6 発振器、7 信号測定器、10 電波吸収体、20 電波散乱体位置算出装置、21 位置算出部、22 記憶部、23 処理回路、24 プロセッサ、25 メモリ、30 第1の駆動部、40 第2の駆動部、100,101,102,103,104 アンテナ評価装置。 1a Transmitting antenna, 1b Evaluated antenna, 2, 2a, 2b, 2c, 2d, 2e, 2f Radio wave scatterer, 3 Supporting part, 4 Post, 5a First cable, 5b Second cable, 5c Third cable , 5d fourth cable, 6 oscillator, 7 signal measuring device, 10 radio wave absorber, 20 radio wave scatterer position calculation device, 21 position calculation unit, 22 storage unit, 23 processing circuit, 24 processor, 25 memory, 30 first drive unit, 40 second drive unit, 100, 101, 102, 103, 104 antenna evaluation device.

Claims (6)

  1.  被評価アンテナの受信性能を評価するためのアンテナ評価装置であって、
     電波を送信する単一の送信アンテナと、
     それぞれが、前記送信アンテナが送信した電波を散乱させることにより散乱波を発生させる複数の電波散乱体と、
     前記複数の電波散乱体が発生させた各散乱波を受信する単一の被評価アンテナと、を備え、
     前記送信アンテナと前記被評価アンテナとが並んでいる方向と、前記送信アンテナの電流方向とが、同一である第1の条件、又は、前記送信アンテナと前記被評価アンテナとの間に、前記送信アンテナが送信した電波を吸収する電波吸収体が設置されている第2の条件のうちの少なくとも1つの条件を満たしていることを特徴とする、アンテナ評価装置。
    An antenna evaluation device for evaluating reception performance of an antenna under evaluation,
    a single transmitting antenna for transmitting radio waves;
    a plurality of radio wave scatterers each generating a scattered wave by scattering the radio wave transmitted by the transmitting antenna;
    a single antenna under evaluation that receives each scattered wave generated by the plurality of radio wave scatterers;
    A first condition in which the direction in which the transmitting antenna and the antenna under evaluation are aligned is the same as the current direction of the transmitting antenna; An antenna evaluation apparatus characterized by satisfying at least one condition of the second condition that a radio wave absorber for absorbing radio waves transmitted by the antenna is installed.
  2.  前記複数の電波散乱体は、それぞれ、所定の振幅の散乱波を発生させるように、当該所定の振幅に応じた散乱特性を有することを特徴とする、請求項1に記載のアンテナ評価装置。  The antenna evaluation apparatus according to claim 1, wherein each of the plurality of radio wave scatterers has a scattering characteristic corresponding to a predetermined amplitude so as to generate a scattered wave with a predetermined amplitude.
  3.  前記電波散乱体が、所定の振幅の散乱波を発生させ、当該散乱波が、所定の到来角度で前記被評価アンテナに到来するように、前記電波散乱体が配置される配置位置を電波散乱体毎に算出する電波散乱体位置算出装置であって、当該所定の振幅、当該所定の到来角度、前記送信アンテナの位置、前記送信アンテナの放射指向性パターン、前記電波散乱体の散乱特性、及び前記被評価アンテナの位置に基づいて、前記配置位置を算出する電波散乱体位置算出装置をさらに備えていることを特徴とする、請求項1に記載のアンテナ評価装置。 The position of the radio wave scatterer is determined so that the radio wave scatterer generates a scattered wave of a predetermined amplitude and the scattered wave arrives at the antenna under evaluation at a predetermined arrival angle. A radio wave scatterer position calculation device that calculates each time the predetermined amplitude, the predetermined arrival angle, the position of the transmitting antenna, the radiation directivity pattern of the transmitting antenna, the scattering characteristics of the radio wave scatterer, and the 2. The antenna evaluation apparatus according to claim 1, further comprising a radio wave scatterer position calculation apparatus for calculating said placement position based on the position of the antenna to be evaluated.
  4.   前記電波散乱体位置算出装置が算出した配置位置に基づいて、前記電波散乱体を移動させる駆動部をさらに備えていることを特徴とする、請求項3に記載のアンテナ評価装置。 The antenna evaluation device according to claim 3, further comprising a driving unit that moves the radio wave scatterer based on the arrangement position calculated by the radio wave scatterer position calculation device.
  5.  前記送信アンテナと前記被評価アンテナとは、地面に対して垂直な方向に並んで設置されており、
     棒状であり、長手方向が前記地面に対して垂直な方向となるように設置された支柱と、
     棒状であり、一方の端部が前記支柱に支持され、他方の端部が前記電波散乱体を支持し、長手方向が前記地面と平行な方向となるように設置された支持部と、をさらに備え、
     前記電波散乱体位置算出装置が算出した配置位置に基づいて、前記支柱の長手方向に沿って前記支持部を移動させるか、又は、前記支持部の長手方向に沿って前記支持部を移動させることにより、前記電波散乱体を移動させる第1の駆動部を、前記駆動部としてさらに備えていることを特徴とする、請求項4に記載のアンテナ評価装置。
    The transmitting antenna and the antenna to be evaluated are installed side by side in a direction perpendicular to the ground,
    A post that is rod-shaped and installed so that its longitudinal direction is perpendicular to the ground;
    a rod-shaped support part, one end of which is supported by the strut, the other end of which supports the radio wave scatterer, and which is installed such that its longitudinal direction is parallel to the ground; prepared,
    moving the supporting part along the longitudinal direction of the support, or moving the supporting part along the longitudinal direction of the supporting part, based on the arrangement position calculated by the radio wave scatterer position calculating device; 5. The antenna evaluation apparatus according to claim 4, further comprising, as said driving section, a first driving section for moving said radio wave scatterer.
  6.  前記送信アンテナと前記被評価アンテナとは、地面に対して垂直な方向に並んで設置されており、
     棒状であり、長手方向が前記地面に対して垂直な方向となるように設置された支柱と、
     棒状であり、一方の端部が前記支柱に支持され、他方の端部が前記電波散乱体を支持し、長手方向が前記地面と平行な方向となるように設置された支持部と、をさらに備え、
     前記電波散乱体位置算出装置が算出した配置位置に基づいて、前記地面に沿って前記支柱を移動させることにより、前記電波散乱体を移動させる第2の駆動部を、前記駆動部としてさらに備えていることを特徴とする、請求項4又は請求項5に記載のアンテナ評価装置。
    The transmitting antenna and the antenna to be evaluated are installed side by side in a direction perpendicular to the ground,
    A post that is rod-shaped and installed so that its longitudinal direction is perpendicular to the ground;
    a rod-shaped support part, one end of which is supported by the strut, the other end of which supports the radio wave scatterer, and which is installed such that its longitudinal direction is parallel to the ground; prepared,
    The apparatus further comprises a second drive unit as the drive unit for moving the radio wave scatterer by moving the support along the ground based on the arrangement position calculated by the radio wave scatterer position calculation device. 6. The antenna evaluation device according to claim 4, wherein:
PCT/JP2021/009715 2021-03-11 2021-03-11 Antenna assessment device WO2022190307A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/009715 WO2022190307A1 (en) 2021-03-11 2021-03-11 Antenna assessment device
JP2023505004A JP7258268B2 (en) 2021-03-11 2021-03-11 Antenna evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009715 WO2022190307A1 (en) 2021-03-11 2021-03-11 Antenna assessment device

Publications (1)

Publication Number Publication Date
WO2022190307A1 true WO2022190307A1 (en) 2022-09-15

Family

ID=83226497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009715 WO2022190307A1 (en) 2021-03-11 2021-03-11 Antenna assessment device

Country Status (2)

Country Link
JP (1) JP7258268B2 (en)
WO (1) WO2022190307A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120678A (en) * 1988-10-31 1990-05-08 Toshiba Corp Method for measuring antenna efficiency
JPH04285868A (en) * 1991-03-14 1992-10-09 Toshiba Corp Apparatus for measuring radiation efficiency of antenna
JP2000180489A (en) * 1998-12-15 2000-06-30 Ten Kk Simple electromagnetic wave-measuring box
JP2003084023A (en) * 2001-09-13 2003-03-19 Nec Tokin Corp Random field generating method and device
JP2010217062A (en) * 2009-03-18 2010-09-30 Fujitsu Ltd System for evaluating antenna characteristics
JP2011061434A (en) * 2009-09-09 2011-03-24 Ntt Docomo Inc Wireless quality evaluation method and system
JP2014522497A (en) * 2011-06-15 2014-09-04 ブリュテスト アクチエボラグ Improved method and apparatus for measuring the performance of antennas, cell phones and other wireless terminals
JP2014228338A (en) * 2013-05-21 2014-12-08 株式会社村田製作所 Method for evaluating isotropy of radio wave reflection box
WO2021049161A1 (en) * 2019-09-09 2021-03-18 Tdk株式会社 Electromagnetic stirrer and reflection chamber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285868B2 (en) 2000-01-12 2009-06-24 富士フイルム株式会社 Main subject extraction method, image processing apparatus, and imaging apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120678A (en) * 1988-10-31 1990-05-08 Toshiba Corp Method for measuring antenna efficiency
JPH04285868A (en) * 1991-03-14 1992-10-09 Toshiba Corp Apparatus for measuring radiation efficiency of antenna
JP2000180489A (en) * 1998-12-15 2000-06-30 Ten Kk Simple electromagnetic wave-measuring box
JP2003084023A (en) * 2001-09-13 2003-03-19 Nec Tokin Corp Random field generating method and device
JP2010217062A (en) * 2009-03-18 2010-09-30 Fujitsu Ltd System for evaluating antenna characteristics
JP2011061434A (en) * 2009-09-09 2011-03-24 Ntt Docomo Inc Wireless quality evaluation method and system
JP2014522497A (en) * 2011-06-15 2014-09-04 ブリュテスト アクチエボラグ Improved method and apparatus for measuring the performance of antennas, cell phones and other wireless terminals
JP2014228338A (en) * 2013-05-21 2014-12-08 株式会社村田製作所 Method for evaluating isotropy of radio wave reflection box
WO2021049161A1 (en) * 2019-09-09 2021-03-18 Tdk株式会社 Electromagnetic stirrer and reflection chamber

Also Published As

Publication number Publication date
JPWO2022190307A1 (en) 2022-09-15
JP7258268B2 (en) 2023-04-14

Similar Documents

Publication Publication Date Title
US20210250107A1 (en) Methods and apparatuses for testing wireless communication to vehicles
EP3178178B1 (en) Method and system for calibrating an array antenna using near-field measurements
KR101308212B1 (en) Over-the-air test
US11057119B2 (en) Method and system for testing antenna array using middle field antenna pattern
US8730111B2 (en) Antenna evaluation apparatus for evaluating multiple wave of radio waves transmitted from scatterer antennas with function of calibration for the same apparatus
EP3352299A1 (en) Wideband beam broadening for phased array antenna systems
US20050059355A1 (en) System and method for multi-path simulation
CN109104221A (en) Base station testing system, method and storage medium based on 3D Massive MIMO
KR101009630B1 (en) Apparatus for measurement of antenna radiation performance and method of designing thereof
US11374435B2 (en) Wireless power-transmission apparatus and wireless power-transmission method
JP2014518385A (en) Over the air test
JP6447772B1 (en) Phased array antenna phase adjustment controller
JP2014507834A (en) Over the air test
JP7162728B2 (en) Improved measuring device for antenna systems
WO2022190307A1 (en) Antenna assessment device
US20070188378A1 (en) Method and apparatus for constructing general wireless antenna systems
JP5685069B2 (en) Antenna measuring apparatus and delay spread control method
JP2011102709A (en) Radiation power measuring instrument and method of measuring radiation power
JP2012090113A (en) Multiwave environment reproduction monitoring system and multiwave environment reproduction monitoring method
JP3278113B2 (en) Array antenna device
JP7457073B2 (en) BEAM FORMING APPARATUS AND BEAM CONTROL METHOD
CN114567904B (en) Air interface mode-based equipment communication performance test system and method
RU2807957C1 (en) Method for determining directional pattern parameters of active phased antenna array
RU2793571C1 (en) Method for determining directional pattern parameters of active phased antenna array
CN114339540A (en) Loudspeaker and array thereof, driving method and related equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930160

Country of ref document: EP

Kind code of ref document: A1