WO2022190228A1 - Transmission device, reception device, transmission device calibration method, and reception device calibration method - Google Patents

Transmission device, reception device, transmission device calibration method, and reception device calibration method Download PDF

Info

Publication number
WO2022190228A1
WO2022190228A1 PCT/JP2021/009399 JP2021009399W WO2022190228A1 WO 2022190228 A1 WO2022190228 A1 WO 2022190228A1 JP 2021009399 W JP2021009399 W JP 2021009399W WO 2022190228 A1 WO2022190228 A1 WO 2022190228A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
calibration
transmission
unit
processing
Prior art date
Application number
PCT/JP2021/009399
Other languages
French (fr)
Japanese (ja)
Inventor
誠 松木
一成 紀平
徹 深沢
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/009399 priority Critical patent/WO2022190228A1/en
Priority to JP2021541431A priority patent/JPWO2022190228A1/ja
Publication of WO2022190228A1 publication Critical patent/WO2022190228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present disclosure relates to a transmitting device, a receiving device, a transmitting device calibration method, and a receiving device calibration method that include an array antenna.
  • a device equipped with an array antenna having multiple antenna elements requires a calibration technique that corrects the phase and amplitude of the signal passing through the device according to the transmission characteristics of the device connected to the antenna element.
  • Patent Literature 1 discloses a calibration technique for an array antenna receiving apparatus having an array antenna having a plurality of antenna elements.
  • this array antenna receiving apparatus first, a calibration signal is injected into each of the antenna radio receiving sections connected to the antenna elements by the calibration radio transmitting section. Then, the array antenna receiving apparatus extracts the calibration signal that has passed through each antenna radio reception section, and obtains correction information of the phase and amplitude of the signal that has passed through the antenna radio reception section from each of the calibration signals. Based on the correction information, the array antenna reception apparatus corrects the phase and amplitude of the signal that has passed through the antenna radio reception section.
  • the array antenna receiver disclosed in Patent Document 1 has one calibration radio transmitter.
  • the array antenna receiving apparatus when a plurality of systems of array antennas are provided, a plurality of systems of radio transmission units for calibration are also provided. In this case, in the array antenna receiving apparatus, it is necessary to take into account the influence of the pass characteristics of each radio transmission section for calibration.
  • a receiving apparatus equipped with an array antenna has been described as an example, but a transmitting apparatus equipped with an array antenna also has the same problem as described above.
  • the present disclosure has been made in order to solve the above-described problems, and in a transmission device equipped with multiple systems of calibration equipment, a transmission device capable of calibration in consideration of the pass characteristics of each calibration equipment. is intended to provide
  • a transmission device includes a plurality of array antennas having antenna elements provided for each of a plurality of transmission systems, a transmitter provided for each transmission system and performing transmission processing on an input signal, A signal generation unit that generates a signal for calibration, and the signal generated by the signal generation unit is transmitted to a transmission system transmitter used for transmission and a transmission system transmitter that is not used for transmission.
  • One of the transmitters includes an injection unit for injection, a receiver provided for each system and performing reception processing on the input signal, and a transmitter of the transmission system used for transmission among the transmitters.
  • the signal that has undergone transmission processing by is sent to the receiver of the corresponding system among the receivers, and the signal that has undergone transmission processing by the transmitter of the transmission system that is not used for transmission among the transmitters,
  • a switching unit for transmitting to each receiver, a signal processing unit for calculating an amplitude correction value and a phase correction value based on a signal that has undergone reception processing by the receiver, and a transmission based on the calculation result by the signal processing unit and a DBF section for adjusting the amplitude and phase of the signal sent to the machine.
  • FIG. 2 is a diagram showing a configuration example of a transmission device according to Embodiment 1;
  • FIG. 4 is a flow chart showing an operation example of the transmission device according to Embodiment 1;
  • FIG. 9 is a diagram showing a configuration example of a transmission device according to Embodiment 2; 9 is a flow chart showing an operation example of a transmission device according to Embodiment 2;
  • FIG. 12 is a diagram showing a configuration example of a transmission device according to Embodiment 3;
  • 11 is a flow chart showing an operation example of a transmission device according to Embodiment 3;
  • FIG. 14 is a diagram showing an operation example of a calibration path switching unit according to Embodiment 3;
  • FIG. 12 is a diagram showing an example of a calibration signal obtained by a calibration path switching section according to Embodiment 3;
  • FIG. 13 is a diagram showing a configuration example of a receiving device according to Embodiment 4;
  • 14 is a flow chart showing an operation example of a receiving device according to Embodiment 4;
  • FIG. 13 is a diagram showing a configuration example of a receiving device according to Embodiment 5;
  • 14 is a flow chart showing an operation example of a receiving device according to Embodiment 5;
  • FIG. 13 is a diagram showing a configuration example of a receiving device according to Embodiment 6;
  • FIG. 12 is a flowchart showing an operation example of a receiving device according to Embodiment 6;
  • FIG. 15A and 15B are diagrams illustrating hardware configuration examples of signal processing units according to Embodiment 1.
  • FIG. 15A and 15B are diagrams illustrating hardware configuration examples of signal processing units according to Embodiment 1.
  • FIG. 1 is a diagram showing a configuration example of a transmitting apparatus according to Embodiment 1.
  • the transmitting device is a transmitting device having K array antennas that perform digital beamforming.
  • the transmitting apparatus is a transmitting apparatus having a redundant system (standby system).
  • a transmission system that executes transmission processing for each system is called an active system
  • a transmission system that is on standby without executing transmission processing is called a standby system.
  • a transmission system that is activated first as an active system is called an active system
  • a transmission system that is activated first as a standby system is called a redundant system. That is, the active system and the redundant system are not changed, but the active system and the standby system may be changed by system switching.
  • DBF Digital Beam Forming
  • the transmitters 103a-n k , the injection units 107a-n k and the extraction units 108a-n k have redundant systems as transmission systems in addition to active systems.
  • the signal processor 114a also has a signal extractor 115a and a calibration value calculator 116a.
  • the signal processing unit 101a generates a signal for transmission (transmission signal).
  • the transmission signal is a baseband signal (digital modulated signal). Then, the signal processing unit 101a sends the generated transmission signal to the DBF unit 102a.
  • the signal processing unit 101a is, for example, a semiconductor integrated circuit or It is composed of a one-chip microcomputer or the like.
  • the DBF section 102a when a transmission signal is input, divides the transmission signal into the number of elements (N ⁇ K ) of antenna elements 105a-nk. Then, the DBF section 102a adjusts the amplitude and phase of the divided transmission signal based on the calculation result of the calibration value calculation section 116a. Then, the DBF section 102a sends the adjusted transmission signal to the transmitter 103a- nk of the corresponding transmission system. At this time, the DBF unit 102a sends a transmission signal to the active transmitters 103a- nk . On the other hand, the DBF section 102a does not send a transmission signal to the standby transmitters 103a- nk .
  • the transmitters 103a-n k When a signal is input, the transmitters 103a-n k perform transmission processing on the signal. That is, the transmitters 103a- nk perform D/A (Digital to Analog) conversion of the signals from digital values to analog values, and frequency-convert the signals to RF (Radio Frequency) band signals (data signals). Transmitters 103a-n k then power amplify the frequency-converted signals. Then, the transmitters 103a-nk send the power-amplified signals to the redundant system switching units 104a- k of the corresponding systems.
  • D/A Digital to Analog
  • RF Radio Frequency band signals
  • Redundant system switching units 104a- k switch signals transmitted by active transmitters 103a-nk among signals transmitted by transmitters 103a- nk to corresponding antenna elements 105a- nk of the transmitter system. send to
  • the antenna elements 105a-n k radiate the signal into space.
  • the signal generator 106a generates a calibration signal (calibration signal).
  • a calibration signal is a signal of an arbitrary symbol pattern.
  • the signal generator 106a transmits (injects) the generated calibration signal to the transmitter 103a- nk of the corresponding transmission system via the injection section 107a- nk of the corresponding transmission system.
  • the signal generator 106a sends a calibration signal to the active transmitter 103a-n k and one of the standby transmitters 103a-n k among the redundant transmitters 103a-n k . do.
  • the signal generation unit 106a sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculation unit 116a.
  • the injection unit 107a-n k When the injection unit 107a-n k receives the calibration signal, it injects the calibration signal into the transmitter 103a-n k of the corresponding transmission system.
  • the signal generation unit 106a and the injection units 107a- nk "transmit the signal generated by the signal generation unit An injection unit that injects a signal generated by a signal generation unit into one of the transmitters of the system, the transmitter of the active system, and the transmitter of the redundant system It functions as an injection unit that injects into one standby transmitter.
  • the extraction units 108a-n k extract the signals sent by the transmitters 103a-n k of the corresponding transmission system. Then, the active system extractor 108a-nk sends the extracted signal to the corresponding system calibration path switcher 110a- k . Further, the redundant system extraction units 108a- nk send the extracted signals to the calibration path switching unit 109a.
  • the calibration path switching unit 109a transmits to the distributor 111a a signal corresponding to the calibration signal that has passed through the standby system among the signals transmitted by the redundant system extraction units 108a- nk . Further, the calibration path switching section 109a transmits the signal transmitted by the redundant system extraction section 108a-nk to the calibration path switching section 110a- k of the corresponding system.
  • the calibration path switching unit 110a- k selects the signal sent by the working system extraction unit 108a-nk and the signal sent by the calibration path switching unit 109a from the active system extraction unit 108a- nk .
  • the combined signals are sent to combiners 112a-k.
  • the distributor 111a divides the signal into the number of systems (K).
  • the splitter 111a then sends the split signals to the combiners 112a-k, respectively.
  • the synthesizer 112a-k synthesizes the signal sent by the calibration path switching section 110a-k and the signal sent by the distributor 111a. Then, the combiners 112a-k send the combined signals to the corresponding system receivers 113a-k.
  • the extracting units 108a-n k , the calibration path switching units 109a, the calibration path switching units 110a-k, the distributors 111a, and the combiners 112a-k are configured as follows: Transmit the signal that has undergone transmission processing to the receiver of the corresponding system among the receivers, and receive the signal that has undergone transmission processing by the transmitter of the transmission system that is not used for transmission among the transmitters.
  • a switching unit (a signal that has undergone transmission processing by the transmitter of the active system of the transmitters, is sent to the receiver of the corresponding system of the receivers, and the redundant system of the transmitters It also functions as a "switching unit" that transmits signals that have been subjected to transmission processing by the standby transmitter to the receivers.
  • the receivers 113a-k When a signal is input, the receivers 113a-k perform reception processing on the signal. That is, receivers 113a-k detect the signals emitted by combiners 112a-k. The signal detected by receivers 113a-k is a mixture of the transmitted signal and the calibration signal. The receivers 113a-k then send the detected signals to the signal extractor 115a of the signal processor 114a.
  • the signal processing unit 114a calculates the relative amplitude phase error calculated from the signal that has passed through the active system and the relative amplitude phase error that has been calculated from the signal that has passed through the redundant and standby systems, among the signals transmitted by the receivers 113a-k.
  • the error is used to calculate the calibration value.
  • the calibration values include an amplitude correction value for correcting the amplitude of the signal and a phase correction value for correcting the phase of the signal.
  • the signal extraction unit 115a extracts the calibration signal from the signals sent by the receivers 113a-k. Then, the signal extractor 115a sends the extracted calibration signal to the calibration value calculator 116a.
  • the calibration value calculation unit 116a calculates a calibration value based on the calibration signal sent by the signal extraction unit 115a.
  • the calibration value calculation unit 116a selects the redundant and standby transmitters 103a- nk among the calibration signals sent by the signal extraction unit 115a.
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through.
  • the above processing by the calibration value calculator 116a corresponds to the calculation of the relative amplitude phase error between the receivers 113a-k.
  • the calibration value calculation unit 116a calculates the calibration signal that has passed through the active transmitters 103a- nk among the calibration signals sent by the signal extraction unit 115a.
  • a relative amplitude phase error (second relative amplitude phase error) is calculated from the signal.
  • the calibration value calculator 116a calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error. Then, calibration value calculation section 116a sends data indicating the calculated calibration value to DBF section 102a. After that, the DBF section 102a adjusts the amplitude and phase of the transmission signal based on the data indicating the calibration values.
  • the conditions related to the calibration process are set in advance.
  • the transmitter determines the configuration of the calibration signal.
  • the configuration of the calibration signal may be an arbitrary modulated signal such as a phase-modulated wave or a frequency-modulated wave, or may be a continuous wave (CW wave).
  • the calibration signal is desirably a modulated wave with low correlation (high orthogonality) in the time direction with respect to the transmission signal.
  • one standby transmitter 103a- nk into which the calibration signal is to be injected is selected in advance from among the redundant transmitters 103a- nk .
  • signal generation section 106a first generates a calibration signal (step ST201). At this time, the signal generator 106a generates the calibration signal according to the condition setting. Then, signal generating section 106a transmits (injects) the generated calibration signal to transmitter 103a- nk of the corresponding transmission system via injection section 107a- nk of the corresponding transmission system (step ST202). At this time, the signal generator 106a sends a calibration signal to the active transmitter 103a-n k and one of the standby transmitters 103a-n k among the redundant transmitters 103a-n k . do. Further, the signal generation unit 106a sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculation unit 116a.
  • injection sections 107a- nk are used as physical structures, and the transmission signal and the calibration signal are shown separately. However, this part can be done by adding digital data. Therefore, in practice, instead of switching the physical path, it is only necessary to replace the signal sent to the transmitters 103a-n k with the sum of the transmission signal and the calibration signal. Therefore, there is no possibility that the frequency characteristics or the like inherent in hardware such as switches or directional couplers will affect the calibration accuracy.
  • the calibration signal is D/A converted from a digital value to an analog value by the transmitters 103a- nk , frequency-converted to an RF band signal, and then power-amplified.
  • extraction sections 108a-n k extract calibration signals sent by transmitters 103a-n k of the corresponding transmission system (step ST203). Then, the active system extractor 108a-nk sends the extracted calibration signal to the corresponding system calibration path switcher 110a- k . Further, the redundant system extraction units 108a- nk send the extracted calibration signals to the calibration path switching unit 109a.
  • the calibration signals sent by the transmitters 103a- nk are analog signals in the RF band, they can be extracted by the extraction units 108a- nk comprising hardware such as directional couplers (couplers) or switches. be.
  • the calibration path switching unit 109a sends the calibration signal sent by the standby extraction units 108a- nk to the distributor 111a. Further, the calibration path switching section 109a transmits the calibration signal transmitted by the redundant system extraction section 108a-nk to the calibration path switching section 110a- k of the corresponding system.
  • the calibration path switching unit 110a-k selects between the calibration signal sent by the active system extraction unit 108a-nk and the calibration signal sent by the calibration path switching unit 109a, the active system extraction unit 108a- k
  • the calibration signals emitted by nk are sent to combiners 112a- k .
  • the distributor 111a divides the calibration signal into the number of systems (K). The distributor 111a then sends the divided calibration signals to the combiners 112a-k, respectively.
  • the synthesizer 112a-k synthesizes the calibration signal sent by the calibration path switching section 110a-k and the calibration signal sent by the distributor 111a (step ST204). Then, the combiners 112a-k send the combined calibration signals to the corresponding system receivers 113a-k.
  • the transmitter detects the calibration signal sent by combiner 112a-k (step ST205). Specifically, the transmission device converts the calibration signals extracted by the active system extraction units 108a- nk and the calibration signals extracted by the redundant and standby system extraction units 108a- nk into an A/D converter. (Analog to Digital) conversion to obtain a baseband digital signal. Then, the transmission device sends the detected calibration signal to the calibration value calculator 116a.
  • A/D converter Analog to Digital
  • the calibration value calculation unit 116a selects the redundant and standby transmitters 103a- nk among the calibration signals sent by the signal extraction unit 115a.
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the passed calibration signal (step ST206).
  • the above processing by the calibration value calculator 116a corresponds to the calculation of the relative amplitude phase error between the receivers 113a-k.
  • the calibration value calculation unit 116a calculates the calibration signal that has passed through the active transmitters 103a- nk among the calibration signals sent by the signal extraction unit 115a.
  • a relative amplitude phase error (second relative amplitude phase error) is calculated from the signal (step ST207).
  • calibration value calculation section 116a calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST208). That is, the calibration value calculator 116a calculates the amplitude correction value and the phase correction value from the following equations (1) and (2).
  • a k denotes the first relative amplitude phase error
  • B nk denotes the second relative amplitude phase error
  • C nk_amp denotes the amplitude correction value
  • C nk_phs denotes the phase correction. indicate a value.
  • calibration value calculation section 116a sends data indicating the calculated calibration value to DBF section 102a.
  • Cnk_amp 1/
  • C nk_phs ⁇ arg(B nk /A k ) (2)
  • DBF section 102a adjusts the amplitude and phase of the transmission signal based on the calibration values calculated by calibration value calculation section 116a (step ST209).
  • the transmitting apparatus according to Embodiment 1 can ensure the soundness of the transmitters 103a- nk .
  • the transmitting apparatus includes a plurality of array antennas having antenna elements 105a- nk provided for each of a plurality of transmission systems, and a plurality of systems of array antennas provided for each transmission system.
  • Transmitters 103a-n k that perform transmission processing on the generated signals, signal generators 106a that generate signals for calibration, and signals generated by the signal generators 106a are sent to the transmitters 103a-n k . and one transmitter 103a-n k among the transmitters 103a-n k of the transmission system used for transmission and the transmitters 103a-n k of the transmission system not used for transmission.
  • receivers 113a-k provided for each system to perform reception processing on an input signal, and transmission processing by transmitters 103a-n k of the transmission system used for transmission among the transmitters 103a-n k . is sent to the receivers 113a-k of the corresponding system among the receivers 113a-k, and the transmitters 103a-n of the transmission system not used for transmission among the transmitters 103a-n k
  • a switching unit that outputs signals subjected to transmission processing by k to the receivers 113a-k, respectively, and an amplitude correction value and a phase correction value are calculated based on the signals subjected to reception processing by the receivers 113a-k.
  • the transmitting apparatus acquires the error between the receivers 113a- k using the redundant system and calculates the pass amplitude phase error, which is the characteristic variation between the antenna elements 105a-nk, by adding the error. can be calibrated, and all calibration values can be obtained simultaneously.
  • the transmission apparatus according to Embodiment 1 can perform calibration in consideration of the pass characteristics of each calibration device (receivers 113a-k).
  • the transmitting apparatus according to the first embodiment can be calibrated not only before shipment but also after installation, flexibly during operation or rest, so that more reliable calibration is possible.
  • Embodiment 2 In the transmitting apparatus according to Embodiment 1, a configuration in which a redundant system is provided is shown. On the other hand, in the transmitting apparatus according to Embodiment 2, a configuration in which no redundant system is provided will be shown.
  • FIG. 3 is a diagram showing a configuration example of a transmitting apparatus according to Embodiment 2.
  • the transmitting device is a transmitting device having K array antennas that perform digital beamforming.
  • the transmitting apparatus according to Embodiment 2 is a transmitting apparatus that does not have a redundant system (standby system).
  • the signal processing section 114b has a signal extraction section 115b and a calibration value calculation section 116b.
  • the signal processing unit 101b generates a signal for transmission (transmission signal).
  • the transmission signal is a baseband signal (digital modulated signal).
  • the signal processing unit 101b sends the generated transmission signal to the DBF unit 102b.
  • the signal processing unit 101b also generates transmission signal generation information.
  • the transmission signal generation information includes, for each system, information about effective channels that are transmission systems used for transmission and free channels that are transmission systems that are not used for transmission.
  • the signal processing section 101b sends the generated transmission signal generation information to the channel detection section 117b.
  • the signal processing unit 101b is configured by, for example, a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, or the like.
  • the DBF section 102b when a transmission signal is input, divides the transmission signal into the number of antenna elements 105b- nk (N ⁇ K). Then, the DBF section 102b adjusts the amplitude and phase of the divided transmission signal based on the calculation result of the calibration value calculation section 116b. Then, the DBF section 102b sends the adjusted transmission signal to the corresponding transmitter 103b- nk of the transmission system. At this time, the DBF section 102b sends a transmission signal to the transmitter 103b- nk of the effective channel. On the other hand, the DBF section 102b does not send a transmission signal to the transmitters 103b- nk of the empty channels.
  • the transmitter 103b- nk When a signal is input, the transmitter 103b- nk performs transmission processing on the signal. That is, the transmitters 103b- nk convert the above signal from a digital value to an analog value by D/A conversion and frequency-convert it into an RF band signal (data signal). Also, the transmitters 103b- nk power-amplify the frequency-converted signals. Transmitters 103b- nk then transmit the power-amplified signals to corresponding antenna elements 105b- nk .
  • the antenna elements 105b- nk radiate the signal into space.
  • the channel detection unit 117b detects effective channels and empty channels based on the transmission signal generation information sent by the signal processing unit 101b.
  • the signal generator 106b generates a calibration signal (calibration signal).
  • a calibration signal is a signal of an arbitrary symbol pattern. Then, based on the detection result of the channel detection unit 117b, the signal generation unit 106b applies the generated calibration signal to the corresponding transmission system transmitter 103b- nk via the corresponding transmission system injection unit 107b- nk . send out (inject) to At this time, the signal generator 106b sends the calibration signal to one of the transmitters 103b- n k of the active channel and the transmitters 103b-n k of the idle channel. Further, the signal generating section 106b sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculating section 116b.
  • the injection unit 107b- nk injects the calibration signal into the corresponding transmitter 103b- nk .
  • the signal generation unit 106b and the injection unit 107b- nk "transmit the signal generated by the signal generation unit An injection part (a signal generated by a signal generation part based on a detection result by a channel detection part) to be injected into one transmitter of the transmitters of the system, a transmitter of an effective channel, and an injector that injects into one of the transmitters of the idle channel).
  • the extractor 108b-nk extracts the signal sent by the transmitter 103b-nk of the corresponding transmission system. Then, the extractor 108b-nk sends the extracted signal to the calibration path switcher 110b- k of the corresponding system.
  • the calibration path switching unit 110b- k selects the signal output by the empty channel extraction unit 108b- nk among the signals output by the extraction unit 108b-nk as It is sent to the calibration path switching unit 109b. Further, the calibration path switching unit 110b-k sends the signal sent by the extraction unit 108b- nk to the combiner 112b-k of the corresponding system.
  • the calibration path switching section 109b transmits a signal corresponding to the calibration signal among the signals transmitted by the calibration path switching section 110b-k to the distributor 111b.
  • the distributor 111b divides the signal into the number of systems (K). Then, the splitter 111b sends the split signals to the combiners 112b-k, respectively.
  • the synthesizer 112b-k synthesizes the signal sent by the calibration path switching section 110b-k and the signal sent by the distributor 111b. Then, combiner 112b-k sends the combined signal to receiver 113b-k of the corresponding system.
  • the extraction unit 108b-n k , the calibration path switching unit 109b, the calibration path switching unit 110b-k, the distributor 111b, and the combiner 112b-k are configured as follows: Transmit the signal that has undergone transmission processing to the receiver of the corresponding system among the receivers, and receive the signal that has undergone transmission processing by the transmitter of the transmission system that is not used for transmission among the transmitters. Based on the detection result by the switching unit (channel detection unit), the signal that has undergone transmission processing by the transmitter of the effective channel among the transmitters is sent to the receiver of the corresponding system among the receivers function as a switching unit that transmits signals that have been subjected to transmission processing by the transmitters of the empty channels among the transmitters to the receivers, respectively.
  • the receiver 113b-k When a signal is input, the receiver 113b-k performs reception processing on the signal. That is, receiver 113b-k detects the signal sent by combiner 112b-k. The signal detected by receiver 113b-k is a mixture of the transmitted signal and the calibration signal. Then, receiver 113b-k sends the detected signal to signal extraction section 115b of signal processing section 114b.
  • the signal processing unit 114b uses the relative amplitude phase error calculated from the signal that has passed through the effective channel and the relative amplitude phase error that has been calculated from the signal that has passed through the empty channel, among the signals transmitted by the receiver 113b-k. to calculate the calibration value.
  • the calibration values include an amplitude correction value for correcting the amplitude of the signal and a phase correction value for correcting the phase of the signal.
  • the signal extractor 115b extracts the calibration signal from the signal sent by the receiver 113b-k. Then, the signal extractor 115b sends the extracted calibration signal to the calibration value calculator 116b.
  • the calibration value calculation unit 116b calculates a calibration value based on the calibration signal sent by the signal extraction unit 115b.
  • the calibration value calculation unit 116b determines whether the calibration signal transmitted by the signal extraction unit 115b has passed through the transmitter 103b- nk of the empty channel.
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal.
  • the above processing by the calibration value calculator 116b corresponds to the calculation of the relative amplitude phase error between the receivers 113b-k.
  • the calibration value calculation unit 116b selects, among the calibration signals sent by the signal extraction unit 115b, the calibration values that have passed through the transmitters 103b- nk of the effective channels.
  • a relative amplitude phase error (second relative amplitude phase error) is calculated from the signal.
  • the calibration value calculator 116b calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error. Then, calibration value calculation section 116b sends data indicating the calculated calibration value to DBF section 102b. After that, the DBF section 102b adjusts the amplitude and phase of the transmission signal based on the data indicating the calibration values.
  • a transmitting apparatus is a transmitting apparatus that does not have a redundant system, as shown in FIG. 3, for example.
  • a transmission device not all antenna elements 105b-nk radiate signals into space, but some antenna elements 105b-n k may be used to radiate signals into space, which may not be used for transmission.
  • a transmission system empty channel
  • channel detection section 117b uses transmission signal generation information from signal processing section 101b to grasp valid channels and empty channels. Then, the signal generation section 106b injects the calibration signal into an arbitrary empty channel using the information grasped by the channel detection section 117b.
  • the conditions related to the calibration process are set in advance.
  • the transmitter determines the configuration of the calibration signal.
  • the configuration of the calibration signal may be an arbitrary modulated signal such as a phase-modulated wave or a frequency-modulated wave, or may be a continuous wave (CW wave).
  • the calibration signal is desirably a modulated wave with low correlation (high orthogonality) in the time direction with respect to the transmission signal.
  • signal generation section 106b generates a calibration signal (step ST402). At this time, the signal generator 106b generates the calibration signal according to the condition setting. Then, based on the detection result of the channel detection unit 117b, the signal generation unit 106b applies the generated calibration signal to the corresponding transmission system transmitter 103b- nk via the corresponding transmission system injection unit 107b- nk . (step ST403). At this time, the signal generator 106b sends the calibration signal to one of the transmitters 103b- n k of the active channel and the transmitters 103b-n k of the idle channel. Further, the signal generating section 106b sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculating section 116b.
  • injection units 107b- nk are used as a physical structure, and the transmission signal and the calibration signal are shown separately. However, this part can be done by adding digital data. Therefore, in practice, instead of switching the physical path, it is only necessary to replace the signal sent to the transmitter 103b- nk with a signal obtained by adding the transmission signal and the calibration signal. Therefore, there is no possibility that the frequency characteristics or the like inherent in hardware such as switches or directional couplers will affect the calibration accuracy.
  • the calibration signal is D/A-converted from a digital value to an analog value by the transmitter 103b- nk , frequency-converted to an RF band signal, and then power-amplified.
  • extraction section 108b-nk extracts the calibration signal sent by transmitter 103b- nk of the corresponding transmission system (step ST404 ). Then, the extractor 108b-nk sends the extracted calibration signal to the calibration path switcher 110b- k of the corresponding system.
  • the calibration signal sent by the transmitter 103b- nk is an RF band analog signal, it can be extracted by the extractor 108b- nk comprising hardware such as a directional coupler (coupler) or a switch. be.
  • the calibration path switching unit 110b- k selects the calibration signal sent by the empty channel extraction unit 108b-nk among the calibration signals sent by the extraction unit 108b- nk .
  • a calibration signal is sent to the calibration path switching unit 109b.
  • the calibration path switching unit 110b-k sends the calibration signal sent by the extraction unit 108b- nk to the combiner 112b-k of the corresponding system.
  • the calibration path switching section 109b sends the calibration signal sent by the calibration path switching section 110b-k to the distributor 111b.
  • the distributor 111b divides the calibration signal into the number of systems (K). Then, the distributor 111b sends the divided calibration signals to the combiners 112b-k, respectively.
  • the synthesizer 112b-k synthesizes the calibration signal sent by the calibration path switching section 110b-k and the calibration signal sent by the distributor 111b (step ST405).
  • the synthesizer 112b-k then sends the synthesized calibration signal to the receiver 113b-k of the corresponding system.
  • the transmitting device detects the calibration signal sent from combiner 112b-k (step ST406). Specifically, the transmitting device A/D-converts the calibration signal extracted by the effective channel extraction unit 108b- nk and the calibration signal extracted by the empty channel extraction unit 108b- nk , It is a baseband digital signal. Then, the transmitting device sends the detected calibration signal to the calibration value calculating section 116b.
  • the calibration value calculation unit 116b selects the calibration signal that has passed through the transmitter 103b- nk of the idle channel among the calibration signals sent by the signal extraction unit 115b.
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the signal (step ST407).
  • the above processing by the calibration value calculator 116b corresponds to the calculation of the relative amplitude phase error between the receivers 113b-k.
  • the calibration value calculation unit 116b selects, among the calibration signals sent by the signal extraction unit 115b, the calibration values that have passed through the transmitters 103b- nk of the effective channels.
  • a relative amplitude phase error (second relative amplitude phase error) is calculated from the signal (step ST408).
  • calibration value calculation section 116b calculates a calibration value for the transmission signal based on the first relative amplitude-phase error and the second relative amplitude-phase error (step ST409). That is, the calibration value calculator 116b calculates the amplitude correction value and the phase correction value from equations (1) and (2). Then, calibration value calculation section 116b sends data indicating the calculated calibration value to DBF section 102b.
  • DBF section 102b adjusts the amplitude and phase of the transmission signal based on the calibration values calculated by calibration value calculation section 116b (step ST410).
  • the transmitting apparatus according to Embodiment 2 can ensure the soundness of the transmitters 103b- nk .
  • the transmitting apparatus according to Embodiment 2 can perform calibration in consideration of the pass characteristics of each calibration device (receiver 113b-k).
  • the transmitter according to the second embodiment can be calibrated not only before shipment but also after installation flexibly during operation or rest, so that more reliable calibration is possible.
  • Embodiment 3 In the transmission device according to Embodiment 1, the configuration in which the distributor 111a is used is shown. On the other hand, in the transmission apparatus according to Embodiment 3, a configuration in which the distributor 111a is not used is shown.
  • FIG. 5 is a diagram showing a configuration example of a transmission device according to Embodiment 3.
  • the distributor 111a is removed from the transmitting apparatus according to the first embodiment shown in FIG. 109a, calibration path switching units 110a-k, combiners 112a-k, signal extraction unit 115a, and calibration value calculation unit 116a.
  • Other configurations of the transmitting apparatus according to Embodiment 3 shown in FIG. 5 are the same as those of the transmitting apparatus according to Embodiment 1 shown in FIG.
  • the calibration path switching unit 109a sends signals corresponding to the calibration signals out of the signals sent by the redundant extraction units 108a-nk to the calibration path switching units 110a- k , respectively.
  • the calibration path switching units 110a- k time-divisionally switch some of the signals transmitted by the working system extraction units 108a-nk and the signals transmitted by the calibration path switching unit 109a, It is sent to the combiner 112a-k of the corresponding system.
  • the synthesizers 112a-k synthesize the signals sent by the calibration path switching units 110a-k. Then, the combiners 112a-k send the combined signals to the corresponding system receivers 113a-k.
  • the signal extraction unit 115a extracts the calibration signal from the signals sent by the receivers 113a-k. The signal extraction unit 115a then sends the extracted calibration signal to the signal recording unit 118a.
  • the signal recording unit 118a records the calibration signal sent by the signal extraction unit 115a.
  • the signal recording unit 118a for example, non-volatile or volatile semiconductors such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), etc.
  • a memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like corresponds to this.
  • the calibration value calculation unit 116a calculates a calibration value based on the calibration signal recorded in the signal recording unit 118a.
  • the calibration value calculation unit 116a selects one of the calibration signals recorded in the signal recording unit 118a from the redundant and standby transmitters 103a- nk .
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through.
  • the above processing by the calibration value calculator 116a corresponds to the calculation of the relative amplitude phase error between the receivers 113a-k.
  • the calibration value calculation unit 116a selects the calibration signal that has passed through the active transmitters 103a- nk among the calibration signals recorded in the signal recording unit 118a.
  • a relative amplitude phase error (second relative amplitude phase error) is calculated from the signal.
  • the calibration value calculator 116a calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error. Then, calibration value calculation section 116a sends data indicating the calculated calibration value to DBF section 102a. After that, the DBF section 102a adjusts the amplitude and phase of the transmission signal based on the data indicating the calibration values.
  • each calibration path can be passed. It is also possible to obtain all calibration signals that
  • steps ST601 to ST603 in FIG. 6 is the same as the processing from steps ST201 to ST203 in FIG. 2, and the description thereof will be omitted.
  • the calibration path switching units 110a- k select some of the calibration signals sent by the active system extraction units 108a-nk and the calibration signals sent by the calibration path switching unit 109a. While switching by division, it is sent to the combiner 112a-k of the corresponding system (step ST604).
  • the synthesizer 112a-k synthesizes the calibration signals sent by the calibration path switching units 110a-k (step ST605). Then, the combiners 112a-k send the combined calibration signals to the corresponding system receivers 113a-k.
  • the transmitting device detects the calibration signal sent by combiner 112a-k (step ST606). Then, the transmitting device sends the detected calibration signal to the signal recording section 118a.
  • the signal recording section 118a records the calibration signal sent by the signal extracting section 115a (step ST607).
  • step ST608 determines whether calibration path switching sections 110a-k have been switched a desired number of times.
  • the number of times of switching is the total number of transmission systems in all systems+the number of initial states, which is N ⁇ K+1.
  • step ST608 if the transmitter determines that the number of times of switching has not been reached, the sequence returns to step ST604. After that, the transmission device combines, detects, and records the calibration signal while switching to a different combination of calibration paths by the calibration path switching units 110a-k.
  • FIG. 7 shows an example of switching of calibration signals to be sent by time and calibration path switching units 110a-k (an example of switching of calibration paths).
  • t0 is the time in the initial state
  • the calibration signal ( Scal ) extracted by the extraction units 108a-nk in the redundant system is not to be sent.
  • the transmitting apparatus first, based on the switching state at t0, the calibration signals extracted by the extracting units 108a- nk of the working system are synthesized and detected. Then, the signal recording unit 118a records the calibration signal.
  • the calibration path switching section 110a-k repeats the switching of the calibration signal at each time (setting of the calibration path from t1 1 to tN K ) until a desired number of switching times is satisfied.
  • FIG. 8 shows the calibration signal obtained at each time.
  • S ⁇ n k (tn k ) denotes the calibration signal sent by the calibration path switching section 110a-k at time (tn k ).
  • step ST608 when it is determined that the transmission device has reached the number of times of switching, calibration value calculation section 116a performs calibration signal information recorded in signal recording section 118a based on the calibration signal information sent by signal generation section 106a.
  • the relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signals that have passed through the redundant and standby transmitters 103a- nk (step ST609).
  • the above processing by the calibration value calculator 116a corresponds to the calculation of the relative amplitude phase error between the receivers 113a-k.
  • the calibration value calculation unit 116a selects the calibration signal that has passed through the active transmitters 103a- nk among the calibration signals recorded in the signal recording unit 118a.
  • a relative amplitude phase error (second relative amplitude phase error) is calculated from the signal (step ST610).
  • a plurality of Sn k exist in the same calibration path.
  • the calibration value calculation section 116a may calculate the relative amplitude phase error using the average value of the overlapping calibration signals for the overlapping calibration signals.
  • calibration value calculation section 116a calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST611). That is, the calibration value calculator 116a calculates the amplitude correction value and the phase correction value from equations (1) and (2). Then, calibration value calculation section 116a sends data indicating the calculated calibration value to DBF section 102a.
  • DBF section 102a adjusts the amplitude and phase of the transmission signal based on the calibration values calculated by calibration value calculation section 116a (step ST612).
  • the transmitting apparatus according to Embodiment 3 can ensure the soundness of the transmitters 103a- nk .
  • the transmission apparatus switches the calibration path in a time-division manner without using the distributor 111a for the pass amplitude phase error, which is the characteristic variation among the antenna elements 105a- nk .
  • the error between the receivers 113a-k can be obtained using the redundant system, and the error can be taken into account for calculation and calibration, and all calibration values can be obtained at the same time.
  • the transmitting apparatus according to Embodiment 3 can perform calibration in consideration of the pass characteristics of each calibration device (receivers 113a-k).
  • the transmitting device according to the third embodiment can be calibrated not only before shipment but also after installation, flexibly calibrating during operation or rest, so that more reliable calibration is possible.
  • FIG. 9 is a diagram showing a configuration example of a receiving apparatus according to Embodiment 4.
  • the receiving device is a receiving device having K-system array antennas that perform digital beamforming.
  • the receiving apparatus is a receiving apparatus having a redundant system (backup system).
  • a receiving system that executes the receiving process will be referred to as an active system
  • a receiving system that is on standby without executing the receiving process will be referred to as a standby system.
  • a receiving system that is activated first as an active system is called an active system
  • a receiving system that is activated first as a standby system is called a redundant system. That is, the active system and the redundant system are not changed, but the active system and the standby system may be changed by system switching.
  • the receivers 203a-n k , the injection units 212a-n k and the extraction units 213a-n k have a redundant system as a receiving system in addition to the active system.
  • the signal processor 214a also has a signal extractor 215a and a calibration value calculator 216a.
  • Antenna elements 201a-n k receive signals propagating in space (data signals). Then, the antenna elements 201a-n k transmit the received signals to the redundant system switching units 202a-k of the corresponding system.
  • Redundant system switching units 202a- k transmit signals transmitted by antenna elements 201a-nk to receivers 203a- nk of the corresponding receiving system. At this time, the redundant system switching unit 202a- k sends a signal to the active system receiver 203a-nk. On the other hand, the redundant switching units 202a- k do not send signals to the standby receivers 203a-nk.
  • Receivers 203a-n k when receiving a signal, perform reception processing on the signal. That is, receivers 203a-n k detect the signals. Receivers 203a- nk then send the detected signals to DBF section 204a.
  • the DBF section 204a adjusts the amplitude and phase of the signal based on the calculation result of the calibration value calculation section 216a. Then, the DBF section 204a sends the adjusted signal to the signal processing section 205a.
  • the signal processing unit 205a performs desired processing on the signal sent from the DBF unit 204a.
  • the signal processing unit 205a is configured by, for example, a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, or the like.
  • the signal generator 206a generates a calibration signal (calibration signal).
  • a calibration signal is a signal of an arbitrary symbol pattern.
  • Signal generator 206a then sends the generated calibration signals to transmitters 207a-k, respectively. Further, the signal generator 206a sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculator 216a.
  • the transmitters 207a-k When the calibration signal is input, the transmitters 207a-k perform transmission processing on the calibration signal. That is, the transmitters 207a-k D/A-convert the calibration signal from a digital value to an analog value and frequency-convert it to an RF band signal (data signal). Transmitters 207a-k then power-amplify the frequency-converted signals. Then, the transmitters 207a-k send the power-amplified signals to the distributors 208a-k of the corresponding system.
  • the distributors 208a-k divide the signal into the number of active systems and redundant systems (N+1). Then, the distributors 208a-k send the divided signals to the combiner 209a and the calibration path switching units 210a-k of the corresponding system.
  • the combiner 209a combines the signals sent out by the distributors 208a-k. Then, the combiner 209a sends the combined signal to the calibration path switching section 211a.
  • the calibration path switching units 210a-k deliver the signals sent by the distributors 208a-k to the active and active injection units 212a- nk and the calibration path switching units 211a.
  • the calibration path switcher 211a sends the signal sent by the combiner 209a and the signal sent by the calibration path switchers 210a- k to the injection parts 212a-nk of the redundant system. At this time, the calibration path switching unit 211a causes the redundant and active injection units 212a-n k and one standby injection unit 212a-n k of the redundant injection units 212a-n k to Send a signal.
  • the distributors 208a-k, the combiner 209a, the calibration path switching units 210a-k, and the calibration path switching unit 211a "transmit a signal that has been subjected to transmission processing by the transmitter to the corresponding system of the injection units and the reception
  • a switching unit transmission by a transmitter
  • the processed signal is sent to the injection part of the corresponding system and active system among the injection parts, and the signal subjected to transmission processing by the transmitter is sent to the injection part of the redundant system of the injection parts. It functions as a switching unit that sends out to the injection unit of one standby system.
  • injection section 212a-n k injects the signal into receiver 203a-n k of the corresponding receiving system.
  • the extraction units 213a-n k extract signals sent by the corresponding receivers 203a-n k .
  • the signals extracted by the extraction units 213a-n k are signals obtained by mixing signals for reception (received signals) and calibration signals. Then, the extraction units 213a- nk send the extracted signals to the signal extraction unit 215a of the signal processing unit 214a.
  • the signal processing unit 214a calculates the relative amplitude phase error calculated from the signal that has passed through the active system and the relative amplitude phase error that has been calculated from the signal that has passed through the standby system, among the signals sent by the extracting units 213a- nk . to calculate the calibration value.
  • the calibration values include an amplitude correction value for correcting the amplitude of the signal and a phase correction value for correcting the phase of the signal.
  • the signal extractor 215a extracts the calibration signal from the signals sent by the extractors 213a- nk . Then, the signal extractor 215a sends the extracted calibration signal to the calibration value calculator 216a.
  • the calibration value calculation unit 216a calculates a calibration value based on the calibration signal sent by the signal extraction unit 215a.
  • the calibration value calculation unit 216a selects the redundant and standby receivers 203a- nk among the calibration signals sent by the signal extraction unit 215a.
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through.
  • the above processing by the calibration value calculator 216a corresponds to the calculation of the relative amplitude phase error between the transmitters 207a-k.
  • the calibration value calculation unit 216a calculates, among the calibration signals sent by the signal extraction unit 215a, the calibration values that have passed through the active receivers 203a- nk . From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system.
  • the calibration value calculator 216a calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error. Then, the calibration value calculation unit 216a sends data indicating the calculated calibration value to the DBF unit 204a. After that, the DBF unit 204a adjusts the amplitude and phase of the signal based on the data indicating the calibration values.
  • the conditions related to the calibration process are set in advance.
  • the configuration of the calibration signal is determined.
  • the configuration of the calibration signal may be an arbitrary modulated signal such as a phase-modulated wave or a frequency-modulated wave, or may be a continuous wave (CW wave).
  • the calibration signal is desirably a modulated wave with low correlation (high orthogonality) in the time direction with respect to the received signal.
  • one standby receiver 203a- nk into which the calibration signal is injected is selected in advance from among the redundant receivers 203a- nk .
  • signal generation section 206a first generates a calibration signal (step ST1001). At this time, the signal generator 206a generates the calibration signal according to the condition setting. Signal generator 206a then sends the generated calibration signals to transmitters 207a-k, respectively. Further, the signal generator 206a sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculator 216a.
  • the transmitters 207a-k D/A-converts the calibration signal from a digital value to an analog value and frequency-converts it into an RF band signal. Transmitters 207a-k then power-amplify the frequency-converted calibration signals. Transmitter 207a-k then sends the power-amplified calibration signal to distributor 208a-k of the corresponding system (step ST1002).
  • the distributors 208a-k divide the calibration signal into the number of active systems and redundant systems (N+1). Then, distributors 208a-k send the divided calibration signal to combiner 209a and calibration path switching section 210a-k of the corresponding system (step ST1003).
  • the combiner 209a then combines the calibration signals sent by the splitters 208a-k. Then, the combiner 209a sends the combined calibration signal to the calibration path switching section 211a.
  • the calibration path switching units 210a-k transmit the calibration signals transmitted by the distributors 208a-k to the active and active injection units 212a- nk and the calibration path switching unit 211a.
  • the calibration path switching section 211a transmits the calibration signal transmitted by the synthesizer 209a and the calibration signal transmitted by the calibration path switching sections 210a- k to the injection sections 212a-nk of the redundant system. At this time, the calibration path switching unit 211a causes the redundant and active injection units 212a-n k and one standby injection unit 212a-n k of the redundant injection units 212a-n k to Send a calibration signal.
  • injection section 212a- nk injects the calibration signal into corresponding receiver 203a- nk (step ST1004).
  • the calibration signals input to the injection units 212a- nk are analog signals in the RF band, and therefore can be injected by the injection units 212a- nk comprising hardware such as directional couplers (couplers) or switches. be.
  • receivers 203a-n k detect the calibration signal when the calibration signal is input (step ST1005). Specifically, the receivers 203a- nk A/D convert the calibration signal into a baseband digital signal. Receivers 203a- nk then send the detected calibration signal to DBF section 204a.
  • the receiving device extracts the calibration signal sent by the receiver 203a-nk (step ST1006 ). Then, the receiving device sends the extracted calibration signal to calibration value calculation section 216a.
  • the extraction units 213a- nk are used as a physical structure, and the received signal and the calibration signal are shown separately. However, this part can be done by separating the digital data. Therefore, in practice, processing can be performed without physical route switching. Therefore, there is no possibility that the frequency characteristics or the like inherent in hardware such as switches or directional couplers will affect the calibration accuracy.
  • the calibration value calculation unit 216a selects the redundant and standby receiver 203a- A relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through nk (step ST1007 ).
  • the above processing by the calibration value calculator 216a corresponds to the calculation of the relative amplitude phase error between the transmitters 207a-k.
  • the calibration value calculation unit 216a calculates, among the calibration signals sent by the signal extraction unit 215a, the calibration values that have passed through the active receivers 203a- nk . From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system (step ST1008).
  • calibration value calculation section 216a calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST1009). That is, the calibration value calculator 216a calculates the amplitude correction value and the phase correction value from the following equations (3) and (4).
  • Dk denotes the first relative amplitude phase error
  • Enk denotes the second relative amplitude phase error
  • Fnk_amp denotes the amplitude correction value
  • Fnk_phs denotes the phase correction. indicate a value.
  • the calibration value calculation unit 216a sends data indicating the calculated calibration value to the DBF unit 204a.
  • Fnk_amp 1/
  • F nk_phs ⁇ arg(E nk /D k ) (4)
  • DBF section 204a adjusts the amplitude and phase of the received signal based on the calibration values calculated by calibration value calculation section 216a (step ST1010).
  • the receiver according to Embodiment 4 can ensure the soundness of the receivers 203a- nk by periodically performing this series of processes.
  • the receiving apparatus includes a plurality of system array antennas having antenna elements 201a- nk provided for each of a plurality of receiving systems, and a signal for generating a signal for calibration.
  • transmission processing is performed by receivers 203a- nk that perform transmission processing, injection units 212a-nk that are provided for each receiving system and inject an input signal into the receivers 203a- nk , and transmitters 207a- k .
  • 207a- k are sent to the injection units 212a-nk of the receiving system used for reception, and the signals subjected to transmission processing by the transmitters 207a- k are sent to the injection units 212a-nk.
  • 212a - nk which is not used for reception, and a switching unit provided for each receiving system, and receiving processing is performed by the receiver 203a- nk .
  • Extraction units 213a-n k for extracting signals, signal processing units 214a for calculating amplitude correction values and phase correction values based on the signals extracted by the extraction units 213a-n k , and calculation results by the signal processing units 214a and a DBF unit 204a for adjusting the amplitude and phase of the signals that have been received and processed by the receivers 203a-n k , based on: That is, the receiving apparatus acquires the error between the transmitters 207a- k using the redundant system and calculates the pass amplitude phase error, which is the characteristic variation between the antenna elements 201a-nk, by adding the error. can be calibrated and all calibration values can be obtained simultaneously.
  • the receiving apparatus according to Embodiment 4 can perform calibration in consideration of the pass characteristics of each calibration device (transmitters 207a-k). Moreover, the receiver according to the fourth embodiment can be calibrated not only before shipment but also flexibly during operation or rest after installation, so that more reliable calibration is possible.
  • Embodiment 5 In the receiving apparatus according to Embodiment 4, a configuration in which a redundant system is provided is shown. On the other hand, in the receiving apparatus according to Embodiment 5, a configuration in which no redundant system is provided will be shown.
  • FIG. 11 is a diagram showing a configuration example of a receiving apparatus according to Embodiment 5.
  • the receiving device is a receiving device having K-system array antennas that perform digital beamforming.
  • the receiver according to Embodiment 5 is a receiver that does not have a redundant system (standby system).
  • the signal processing section 214b has a signal extraction section 215b and a calibration value calculation section 216b.
  • Antenna elements 201b-n k receive signals (data signals) propagating in space. Then, the antenna element 201b- nk transmits the received signal to the corresponding receiver 203b- nk of the receiving system.
  • the receiver 203b- nk When receiving a signal, the receiver 203b- nk performs reception processing on the signal. That is, the receivers 203b- nk detect the above signals. Then, receiver 203b- nk sends the detected signal to DBF section 204b.
  • the DBF section 204b adjusts the amplitude and phase of the signal based on the calculation result of the calibration value calculation section 216b. Then, the DBF section 204b sends the adjusted signal to the signal processing section 205b.
  • the signal processing unit 205b performs desired processing on the signal sent from the DBF unit 204b.
  • the signal processing unit 205b also generates received signal generation information.
  • the received signal generation information includes, for each system, information on effective channels that are reception systems used for reception and information on free channels that are reception systems that are not used for reception. Then, the signal processing section 205b sends the generated reception signal generation information to the channel detection section 217b.
  • the signal processing unit 205b is configured by, for example, a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, or the like.
  • the channel detection unit 217b detects effective channels and empty channels based on the received signal generation information sent by the signal processing unit 205b.
  • the signal generator 206b generates a calibration signal (calibration signal).
  • a calibration signal is a signal of an arbitrary symbol pattern.
  • Signal generator 206b then sends the generated calibration signals to transmitters 207b-k, respectively. Further, the signal generator 206b sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculator 216b.
  • the transmitter 207b-k When the calibration signal is input, the transmitter 207b-k performs transmission processing on the calibration signal. That is, the transmitter 207b-k performs D/A conversion of the calibration signal from a digital value to an analog value, and frequency-converts it into an RF band signal (data signal). Transmitters 207b-k then power-amplify the frequency-converted signals. Transmitter 207b-k then sends the signal after power amplification to distributor 208b-k of the corresponding system.
  • the distributor 208b-k divides the signal into the number of active systems and redundant systems (N+1). Then, the distributor 208b-k sends the divided signal to the combiner 209b and the calibration path switching section 210b-k of the corresponding system.
  • the combiner 209b combines the signals sent by the distributors 208b-k. Then, the combiner 209b sends the combined signal to the calibration path switching section 211b.
  • the calibration path switching section 211b sends the signal sent by the synthesizer 209b to the calibration path switching sections 210b-k, respectively.
  • the calibration path switching section 210b-k transmits the signal transmitted by the distributor 208b-k to the injection section 212b- nk of the effective channel based on the detection result of the channel detection section 217b. Further, based on the detection result of the channel detection unit 217b, the calibration path switching unit 210b- k switches the signal sent by the calibration path switching unit 211b to one of the injection units 212b-nk of the empty channel. 212b- nk .
  • the distributor 208b-k, the combiner 209b, the calibration path switching unit 210b-k, and the calibration path switching unit 211b "transmit a signal that has been subjected to transmission processing by the transmitter to the corresponding system of the injection unit and the reception unit.
  • a switching unit (by a channel detection unit) that outputs a signal that has undergone transmission processing by the transmitter to one of the injection units in the reception system that is not used for reception. Based on the detection result, the signal that has undergone transmission processing by the transmitter is sent to the injection section of the corresponding system and effective channel among the injection sections, and the signal that has undergone transmission processing by the transmitter is sent to the injection section. It functions as a switching unit that sends out to one injection unit of one of the empty channels.
  • the injection unit 212b- nk injects the signal into the corresponding receiver 203b- nk of the reception system.
  • the extractor 213b- nk extracts the signal sent by the corresponding receiver 203b- nk .
  • the signal extracted by the extractor 213b-n k is a signal obtained by mixing the signal for reception (received signal) and the calibration signal. Then, the extractor 213b- nk sends the extracted signal to the signal extractor 215b of the signal processor 214b.
  • the signal processing unit 214b calculates the relative amplitude phase error calculated from the signal that passed through the effective channel and the relative amplitude phase error calculated from the signal that passed through the empty channel among the signals sent by the extraction unit 213b- nk . to calculate the calibration value.
  • the calibration values include an amplitude correction value for correcting the amplitude of the signal and a phase correction value for correcting the phase of the signal.
  • the signal extractor 215b extracts the calibration signal from the signal sent by the extractor 213b- nk . Then, the signal extractor 215b sends the extracted calibration signal to the calibration value calculator 216b.
  • the calibration value calculation unit 216b calculates a calibration value based on the calibration signal sent by the signal extraction unit 215b.
  • the calibration value calculation unit 216b determines whether the calibration signal transmitted by the signal extraction unit 215b has passed through the empty channel receiver 203b- nk .
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal.
  • the above processing by the calibration value calculator 216b corresponds to calculation of the relative amplitude phase error between the transmitters 207b-k.
  • the calibration value calculation unit 216b calculates the calibration signal that has passed through the receiver 203b- nk of the effective channel among the calibration signals sent by the signal extraction unit 215b. From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system.
  • the calibration value calculator 216b calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error. Then, the calibration value calculation unit 216b sends data indicating the calculated calibration value to the DBF unit 204b. After that, the DBF section 204b adjusts the amplitude and phase of the signal based on the data indicating the calibration values.
  • a receiver according to Embodiment 5 is a receiver without a redundant system, as shown in FIG. 11, for example.
  • a receiving apparatus there are cases where signals are received from the space using some of the antenna elements 201b-n k instead of all the antenna elements 201b-n k , and reception is not used for reception.
  • a system empty channel
  • channel detection section 217b uses received signal generation information from signal processing section 205b to grasp effective channels and empty channels. Then, the calibration path switching section 210b-k injects the calibration signal into an arbitrary empty channel using the information grasped by the channel detection section 217b.
  • the conditions related to the calibration process are set in advance.
  • the transmitter determines the configuration of the calibration signal.
  • the configuration of the calibration signal may be an arbitrary modulated signal such as a phase-modulated wave or a frequency-modulated wave, or may be a continuous wave (CW wave).
  • the calibration signal is desirably a modulated wave with low correlation (high orthogonality) in the time direction with respect to the received signal.
  • the signal generator 206b then generates a calibration signal.
  • a calibration signal is a signal of an arbitrary symbol pattern (step ST1202).
  • Signal generator 206b then sends the generated calibration signals to transmitters 207b-k, respectively. Further, the signal generator 206b sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculator 216b.
  • the transmitter 207b-k D/A-converts the calibration signal from a digital value to an analog value and frequency-converts it into an RF band signal. Transmitters 207b-k then power-amplify the frequency-converted calibration signal. Transmitter 207b-k then transmits the power-amplified calibration signal to distributor 208b-k of the corresponding system (step ST1203).
  • the distributor 208b-k divides the calibration signal into the number of active systems and redundant systems (N+1). Then, distributor 208b-k sends the divided calibration signal to combiner 209b and calibration path switching section 210b-k of the corresponding system (step ST1204).
  • the synthesizer 209b then synthesizes the calibration signals sent by the distributors 208b-k. Then, the combiner 209b sends the combined calibration signal to the calibration path switching section 211b.
  • the calibration path switching section 211b sends the calibration signal sent by the synthesizer 209b to the calibration path switching sections 210b-k, respectively.
  • the calibration path switching section 210b-k transmits the calibration signal transmitted by the distributor 208b-k to the injection section 212b- nk of the effective channel based on the detection result by the channel detection section 217b. Further, based on the detection result of the channel detection unit 217b, the calibration path switching unit 210b- k transfers the calibration signal sent by the calibration path switching unit 211b to one of the injection units 212b-nk of the idle channel. 212b- nk .
  • injection section 212b-nk injects the calibration signal into corresponding receiver 203b- nk of the receiving system (step ST1205 ).
  • the signal input to the injection unit 212b- nk is an RF band analog signal, it can be injected by the injection unit 212b- nk comprising hardware such as a directional coupler (coupler) or a switch. .
  • receivers 203b-nk upon receiving the calibration signal, detect the calibration signal (step ST1206 ). Specifically, the receiver 203b- nk performs A/D conversion on the calibration signal to obtain a baseband digital signal. Then, the receivers 203b- nk send the detected calibration signal to the DBF section 204b.
  • the receiving device extracts the calibration signal sent from receiver 203b-nk (step ST1207 ). Then, the receiving device sends the extracted calibration signal to calibration value calculation section 216b.
  • the extraction units 213b- nk are used as physical structures, and the received signal and the calibration signal are shown separately. However, this part can be done by separating the digital data. Therefore, in practice, processing can be performed without physical route switching. Therefore, there is no possibility that the frequency characteristics or the like inherent in hardware such as switches or directional couplers will affect the calibration accuracy.
  • the calibration value calculation unit 216b calculates the calibration signal that has passed through the receiver 203b- nk of the idle channel among the calibration signals sent by the signal extraction unit 215b.
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the signal (step ST1208).
  • the above processing by the calibration value calculator 216b corresponds to calculation of the relative amplitude phase error between the transmitters 207b-k.
  • the calibration value calculation unit 216b calculates the calibration signal that has passed through the receiver 203b- nk of the effective channel among the calibration signals sent by the signal extraction unit 215b. From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system (step ST1209).
  • calibration value calculation section 216b calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST1210). That is, the calibration value calculator 216b calculates the amplitude correction value and the phase correction value from equations (3) and (4). Then, the calibration value calculation unit 216b sends data indicating the calculated calibration value to the DBF unit 204b.
  • DBF section 204b adjusts the amplitude and phase of the received signal based on the calibration value calculated by calibration value calculation section 216b (step ST1211).
  • the receiver according to Embodiment 5 can ensure the soundness of the receivers 203b- nk by periodically performing this series of processes.
  • the transmission amplitude phase error which is the characteristic variation among the antenna elements 201b to 201b
  • the receiving apparatus according to Embodiment 5 can perform calibration in consideration of the pass characteristics of each calibration device (transmitters 207b-k).
  • the receiving apparatus according to Embodiment 5 can be calibrated not only before shipment but also after installation, flexibly during operation or rest, so that more reliable calibration is possible.
  • Embodiment 6 In the receiving apparatus according to Embodiment 4, the configuration in which combiner 209a is used is shown. On the other hand, in the transmission apparatus according to Embodiment 6, a configuration in which combiner 209a is not used is shown.
  • FIG. 13 is a diagram showing a configuration example of a receiving device according to Embodiment 6.
  • FIG. 13 In the receiver according to the sixth embodiment shown in FIG. 13, the combiner 209a is removed from the receiver according to the fourth embodiment shown in FIG. k, calibration path switching units 210a-k, calibration path switching unit 211a, signal extraction unit 215a, and calibration value calculation unit 216a.
  • Other configurations of the receiving apparatus according to Embodiment 6 shown in FIG. 13 are the same as those of the receiving apparatus according to Embodiment 4 shown in FIG.
  • the distributors 208a-k divide the signal into the number of active systems and redundant systems (N+1). Then, the distributors 208a-k send the divided signals to the calibration path switching units 210a-k of the corresponding system.
  • the calibration path switching units 210a-k switch part of the signals output from the distributors 208a-k in a time-sharing manner, while switching between the active and active injection units 212a-n k and the calibration path switching units. 211a.
  • the calibration path switching unit 211a transmits the signal sent by the calibration path switching unit 210a- k to the redundant injection unit 212a-nk. At this time, the calibration path switching unit 211a causes the redundant and active injection units 212a-n k and one standby injection unit 212a-n k of the redundant injection units 212a-n k to Send a signal.
  • the signal extractor 215a extracts the calibration signal from the signals sent by the extractors 213a- nk .
  • the signal extraction unit 215a then sends the extracted calibration signal to the signal recording unit 218a.
  • the signal recording section 218a records the calibration signal sent by the signal extracting section 215a.
  • the signal recording unit 218a for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, etc. is applicable.
  • the calibration value calculation unit 216a calculates a calibration value based on the calibration signal recorded in the signal recording unit 218a.
  • the calibration value calculation unit 216a selects the redundant and standby receivers 203a-nk among the calibration signals recorded in the signal recording unit 218a .
  • a relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through.
  • the above processing by the calibration value calculator 216a corresponds to the calculation of the relative amplitude phase error between the transmitters 207a-k.
  • the calibration value calculation unit 216a selects the calibration signal that has passed through the active receivers 203a- nk among the calibration signals recorded in the signal recording unit 218a. From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system.
  • the calibration value calculator 216a calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error. Then, the calibration value calculation unit 216a sends data indicating the calculated calibration value to the DBF unit 204a. After that, the DBF unit 204a adjusts the amplitude and phase of the signal based on the data indicating the calibration values.
  • the receiver according to Embodiment 4 the case where the relative amplitude phase error between the transmitters 207a-k is calculated by using the calibration signal synthesized by the synthesizer 209a is shown.
  • the synthesizer 209a without using the synthesizer 209a, for example, by switching the connection of the calibration path (the calibration signal to be sent) by the calibration path switching units 210a-k in a time division manner, each calibration path can be passed. It is also possible to obtain all calibration signals that
  • steps ST1401 to ST1403 in FIG. 14 is the same as the processing from steps ST1001 to ST1003 in FIG. 10, and the description thereof will be omitted.
  • the distributors 208a-k send the divided calibration signals to the calibration path switching units 210a-k of the corresponding systems.
  • step ST1404 In the calibration operation example of the receiver according to Embodiment 6 shown in FIG. 13, as shown in FIG. are sent to the injection units 212a- nk and the calibration path switching unit 211a of the working and active systems while switching the calibration signals in a time division manner (step ST1404).
  • the calibration path switching unit 211a transmits the calibration signal transmitted by the calibration path switching unit 210a- k to the injection unit 212a-nk of the redundant system. At this time, the calibration path switching unit 211a causes the redundant and active injection units 212a-n k and one standby injection unit 212a-n k of the redundant injection units 212a-n k to Send a calibration signal.
  • injection section 212a- nk injects the calibration signal into corresponding receiver 203a- nk (step ST1405).
  • receivers 203a-n k detect the calibration signal when the calibration signal is input (step ST1406). Receivers 203a- nk then send the detected calibration signal to DBF section 204a.
  • the receiving device extracts the calibration signal sent by receiver 203a-nk (step ST1407 ). Then, the receiving device sends the extracted calibration signal to the signal recording section 218a.
  • the signal recording section 218a records the calibration signal sent by the signal extracting section 215a (step ST1408).
  • step ST1409 determines whether calibration path switching sections 210a-k have been switched a desired number of times.
  • the number of times of switching is the total number of receiving systems in all systems+the number of initial states, which is N ⁇ K+1.
  • step ST1409 if the receiver determines that the number of times of switching has not been reached, the sequence returns to step ST1404. After that, the receiver injects, detects, extracts, and records the calibration signal while switching to a different combination of calibration paths by the calibration path switching units 210a-k.
  • step ST1409 when the receiving apparatus determines that the number of times of switching has been reached, calibration value calculation section 216a performs calibration signal information recorded in signal recording section 218a based on the calibration signal information sent by signal generation section 206a.
  • the relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signals that have passed through the redundant and standby receivers 203a-nk (step ST1410 ).
  • the above processing by the calibration value calculator 216a corresponds to the calculation of the relative amplitude phase error between the transmitters 207a-k.
  • the calibration value calculation unit 216a selects the calibration signal that has passed through the active receivers 203a- nk among the calibration signals recorded in the signal recording unit 218a. From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system (step ST1411).
  • a relative amplitude phase error (second relative amplitude phase error) is calculated for each system (step ST1411).
  • the calibration value calculation unit 216a uses one of the overlapping calibration signals for the overlapping calibration signals to calculate the relative amplitude phase error
  • the calibration value calculation section 216a may calculate the relative amplitude phase error using the average value of the overlapping calibration signals for the overlapping calibration signals.
  • calibration value calculation section 216a calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST1412). That is, the calibration value calculator 216a calculates the amplitude correction value and the phase correction value from equations (3) and (4). Then, the calibration value calculation unit 216a sends data indicating the calculated calibration value to the DBF unit 204a.
  • DBF section 204a adjusts the amplitude and phase of the received signal based on the calibration values calculated by calibration value calculation section 216a (step ST1413).
  • the receiver according to Embodiment 6 can ensure the soundness of the receivers 203a- nk by periodically performing this series of processes.
  • the receiving apparatus switches the calibration path in a time division manner without using the combiner 209a for the pass amplitude phase error, which is the characteristic variation among the antenna elements 201a- nk .
  • the error between the transmitters 207a-k can be obtained using the redundant system, and the error can be taken into account for calculation and calibration, and all calibration values can be obtained at the same time.
  • the receiving apparatus according to Embodiment 6 can perform calibration in consideration of the pass characteristics of each calibration device (transmitters 207a-k).
  • the receiving apparatus according to Embodiment 6 can be calibrated flexibly not only before shipment but also during operation or rest after installation, so that more reliable calibration is possible.
  • FIG. 15A The processing circuit 501 may be dedicated hardware as shown in FIG. 15A, or may be a CPU 502 that executes a program stored in a memory 503 as shown in FIG. 15B.
  • the processing circuit 501 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array), or a combination thereof.
  • the functions of the signal extraction unit 115a and the calibration value calculation unit 116a may be implemented individually by the processing circuit 501, or the functions of the respective units may be collectively implemented by the processing circuit 501.
  • the processing circuit 501 When the processing circuit 501 is the CPU 502, the functions of the signal extraction unit 115a and the calibration value calculation unit 116a are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the memory 503 .
  • the processing circuit 501 reads out and executes a program stored in the memory 503 to realize the function of each unit. That is, the signal processing unit 114a includes a memory 503 for storing a program that, when executed by the processing circuit 501, results in execution of the steps shown in FIG. 2, for example. It can also be said that these programs cause a computer to execute the procedures and methods of the signal extraction unit 115a and the calibration value calculation unit 116a.
  • Examples of the memory 503 include nonvolatile or volatile semiconductor memories such as RAM, ROM, flash memory, EPROM, and EEPROM, magnetic disks, flexible disks, optical disks, compact disks, minidisks, DVDs, and the like. do.
  • the functions of the signal extraction unit 115a and the calibration value calculation unit 116a may be partially realized by dedicated hardware and partially realized by software or firmware.
  • the function of the signal extraction unit 115a is realized by a processing circuit 501 as dedicated hardware, and the calibration value calculation unit 116a is implemented by the processing circuit 501 reading out and executing a program stored in the memory 503. It is possible to realize the function.
  • the processing circuit 501 can implement each function described above by hardware, software, firmware, or a combination thereof.
  • the transmission device enables calibration in consideration of the pass characteristics of each calibration device, and is suitable for use in transmission devices equipped with array antennas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

This transmission device comprises: an array antenna; transmitters (103a-nk) that perform transmission processings of signals inputted thereto; a signal generation unit (106a) that generates calibration signals; an injection unit that injects the signals generated by the signal generation unit (106a) into the transmitters (103a-nk) of transmission systems used for transmission and into one transmitter (103a-nk) of the transmission systems not used for transmission; receivers (113a-k) that perform reception processings of signals inputted thereto; a switching unit that sends the signals the transmission processings of which have been performed by the transmitters (103a-nk) of the transmission systems used for transmission to the receivers (113a-k) of the corresponding systems and that sends the signals the transmission processings of which have been performed by the transmitters (103a-nk) of the transmission systems not used for transmission to the respective receivers (113a-k); a signal processing unit (114a) that calculates amplitude correction values and phase correction values on the basis of the signals the reception processings of which have been performed by the receivers (113a-k); and a DBF unit (102a) that adjusts, on the basis of the results of the calculations by the signal processing unit (114a), the amplitudes and phases of the signals to be sent to the transmitters (103a-nk).

Description

送信装置、受信装置、送信装置の校正方法及び受信装置の校正方法Transmitter, receiver, transmitter calibration method, and receiver calibration method
 本開示は、アレーアンテナを備えた送信装置、受信装置、送信装置の校正方法及び受信装置の校正方法に関する。 The present disclosure relates to a transmitting device, a receiving device, a transmitting device calibration method, and a receiving device calibration method that include an array antenna.
 複数のアンテナ素子を有するアレーアンテナを備えた装置では、アンテナ素子に接続される機器の通過特性に応じ、当該機器を通過する信号の位相及び振幅を補正する校正技術が必須となる。 A device equipped with an array antenna having multiple antenna elements requires a calibration technique that corrects the phase and amplitude of the signal passing through the device according to the transmission characteristics of the device connected to the antenna element.
 例えば特許文献1には、複数のアンテナ素子を有するアレーアンテナを備えたアレーアンテナ受信装置における校正技術が示されている。このアレーアンテナ受信装置は、まず、校正用無線送信部により、アンテナ素子に接続されたアンテナ無線受信部に対して校正信号をそれぞれ注入する。そして、アレーアンテナ受信装置は、各アンテナ無線受信部を通過した校正信号を抽出し、当該各校正信号から、当該アンテナ無線受信部を通過した信号に対する位相及び振幅の補正情報を得る。そして、アレーアンテナ受信装置は、補正情報に基づいて、アンテナ無線受信部を通過した信号に対して位相及び振幅の補正を行う。 For example, Patent Literature 1 discloses a calibration technique for an array antenna receiving apparatus having an array antenna having a plurality of antenna elements. In this array antenna receiving apparatus, first, a calibration signal is injected into each of the antenna radio receiving sections connected to the antenna elements by the calibration radio transmitting section. Then, the array antenna receiving apparatus extracts the calibration signal that has passed through each antenna radio reception section, and obtains correction information of the phase and amplitude of the signal that has passed through the antenna radio reception section from each of the calibration signals. Based on the correction information, the array antenna reception apparatus corrects the phase and amplitude of the signal that has passed through the antenna radio reception section.
特開2004-023742号公報Japanese Patent Application Laid-Open No. 2004-023742
 特許文献1に開示されたアレーアンテナ受信装置では、校正用無線送信部が1つである。一方、アレーアンテナ受信装置において、アレーアンテナが複数系統設けられた場合、校正用無線送信部も複数系統設けられることとなる。この場合、アレーアンテナ受信装置では、各校正用無線送信部の通過特性の影響も考慮する必要がある。
 なお上記では、アレーアンテナを備えた受信装置を例に説明を行ったが、アレーアンテナを備えた送信装置においても、上記と同様の課題がある。
The array antenna receiver disclosed in Patent Document 1 has one calibration radio transmitter. On the other hand, in the array antenna receiving apparatus, when a plurality of systems of array antennas are provided, a plurality of systems of radio transmission units for calibration are also provided. In this case, in the array antenna receiving apparatus, it is necessary to take into account the influence of the pass characteristics of each radio transmission section for calibration.
In the above description, a receiving apparatus equipped with an array antenna has been described as an example, but a transmitting apparatus equipped with an array antenna also has the same problem as described above.
 本開示は、上記のような課題を解決するためになされたもので、複数系統の校正用の機器を備えた送信装置において、各校正用の機器の通過特性を考慮した校正が可能な送信装置を提供することを目的としている。 The present disclosure has been made in order to solve the above-described problems, and in a transmission device equipped with multiple systems of calibration equipment, a transmission device capable of calibration in consideration of the pass characteristics of each calibration equipment. is intended to provide
 本開示に係る送信装置は、複数の送信系毎に設けられたアンテナ素子を有する複数系統のアレーアンテナと、送信系毎に設けられ、入力された信号に対して送信処理を行う送信機と、校正用の信号を生成する信号生成部と、信号生成部により生成された信号を、送信機のうちの、送信に用いられる送信系の送信機、及び、送信に用いられない送信系の送信機のうちの1つの送信機に、注入する注入部と、系統毎に設けられ、入力された信号に対して受信処理を行う受信機と、送信機のうちの送信に用いられる送信系の送信機により送信処理が行われた信号を、受信機のうちの対応する系統の受信機に送出し、送信機のうちの送信に用いられない送信系の送信機により送信処理が行われた信号を、受信機にそれぞれ送出する切替部と、受信機により受信処理が行われた信号に基づいて、振幅補正値及び位相補正値を算出する信号処理部と、信号処理部による算出結果に基づいて、送信機に送出する信号の振幅及び位相の調整を行うDBF部とを備えたことを特徴とする。 A transmission device according to the present disclosure includes a plurality of array antennas having antenna elements provided for each of a plurality of transmission systems, a transmitter provided for each transmission system and performing transmission processing on an input signal, A signal generation unit that generates a signal for calibration, and the signal generated by the signal generation unit is transmitted to a transmission system transmitter used for transmission and a transmission system transmitter that is not used for transmission. One of the transmitters includes an injection unit for injection, a receiver provided for each system and performing reception processing on the input signal, and a transmitter of the transmission system used for transmission among the transmitters. The signal that has undergone transmission processing by is sent to the receiver of the corresponding system among the receivers, and the signal that has undergone transmission processing by the transmitter of the transmission system that is not used for transmission among the transmitters, A switching unit for transmitting to each receiver, a signal processing unit for calculating an amplitude correction value and a phase correction value based on a signal that has undergone reception processing by the receiver, and a transmission based on the calculation result by the signal processing unit and a DBF section for adjusting the amplitude and phase of the signal sent to the machine.
 本開示によれば、上記のように構成したので、複数系統の校正用の機器を備えた送信装置において、各校正用の機器の通過特性を考慮した校正が可能となる。 According to the present disclosure, since it is configured as described above, it is possible to calibrate in consideration of the pass characteristics of each calibration device in a transmission device equipped with multiple systems of calibration devices.
実施の形態1に係る送信装置の構成例を示す図である。2 is a diagram showing a configuration example of a transmission device according to Embodiment 1; FIG. 実施の形態1に係る送信装置の動作例を示すフローチャートである。4 is a flow chart showing an operation example of the transmission device according to Embodiment 1; 実施の形態2に係る送信装置の構成例を示す図である。FIG. 9 is a diagram showing a configuration example of a transmission device according to Embodiment 2; 実施の形態2に係る送信装置の動作例を示すフローチャートである。9 is a flow chart showing an operation example of a transmission device according to Embodiment 2; 実施の形態3に係る送信装置の構成例を示す図である。FIG. 12 is a diagram showing a configuration example of a transmission device according to Embodiment 3; 実施の形態3に係る送信装置の動作例を示すフローチャートである。11 is a flow chart showing an operation example of a transmission device according to Embodiment 3; 実施の形態3における校正経路切替部の動作例を示す図である。FIG. 14 is a diagram showing an operation example of a calibration path switching unit according to Embodiment 3; 実施の形態3における校正経路切替部により得られる校正信号の一例を示す図である。FIG. 12 is a diagram showing an example of a calibration signal obtained by a calibration path switching section according to Embodiment 3; 実施の形態4に係る受信装置の構成例を示す図である。FIG. 13 is a diagram showing a configuration example of a receiving device according to Embodiment 4; 実施の形態4に係る受信装置の動作例を示すフローチャートである。14 is a flow chart showing an operation example of a receiving device according to Embodiment 4; 実施の形態5に係る受信装置の構成例を示す図である。FIG. 13 is a diagram showing a configuration example of a receiving device according to Embodiment 5; 実施の形態5に係る受信装置の動作例を示すフローチャートである。14 is a flow chart showing an operation example of a receiving device according to Embodiment 5; 実施の形態6に係る受信装置の構成例を示す図である。FIG. 13 is a diagram showing a configuration example of a receiving device according to Embodiment 6; 実施の形態6に係る受信装置の動作例を示すフローチャートである。FIG. 12 is a flowchart showing an operation example of a receiving device according to Embodiment 6; FIG. 図15A、図15Bは、実施の形態1における信号処理部のハードウェア構成例を示す図である。15A and 15B are diagrams illustrating hardware configuration examples of signal processing units according to Embodiment 1. FIG.
 以下、実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1は実施の形態1に係る送信装置の構成例を示す図である。送信装置は、ディジタルビームフォーミングを行うK個の系統のアレーアンテナを備えた送信装置である。アレーアンテナは、系統毎に、N個の送信系毎に設けられたアンテナ素子105a-n(n=1,2,・・・,N;k=1,2,・・・,K)を有する。
Hereinafter, embodiments will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a transmitting apparatus according to Embodiment 1. FIG. The transmitting device is a transmitting device having K array antennas that perform digital beamforming. The array antenna includes antenna elements 105a-n k (n=1, 2, . . . , N; k=1, 2, . . . , K) provided for each of N transmission systems. have.
 また、実施の形態1に係る送信装置は、冗長系(予備系)を有する送信装置である。以下では、送信装置のうち、系統毎に、送信処理を実行する送信系を実行系と称し、送信処理を実行しない待機中の送信系を待機系と称する。また、送信装置のうち、系統毎に、最初に実行系として起動する送信系を現用系と称し、最初に待機系として起動する送信系を冗長系と称す。すなわち、現用系及び冗長系は変更されないが、実行系及び待機系は系の切替えにより変更される場合がある。 Also, the transmitting apparatus according to Embodiment 1 is a transmitting apparatus having a redundant system (standby system). Hereinafter, among the transmission apparatuses, a transmission system that executes transmission processing for each system is called an active system, and a transmission system that is on standby without executing transmission processing is called a standby system. Among the transmitting apparatuses, a transmission system that is activated first as an active system is called an active system, and a transmission system that is activated first as a standby system is called a redundant system. That is, the active system and the redundant system are not changed, but the active system and the standby system may be changed by system switching.
 送信装置は、図1に示すように、信号処理部101a、DBF(Digital Beam Forming)部102a、送信機103a-n(n=1,2,・・・,N+1;k=1,2,・・・,K)、冗長系切替部104a-k(k=1,2,・・・,K)、アンテナ素子105a-n(n=1,2,・・・,N;k=1,2,・・・,K)、信号生成部106a、注入部107a-n(n=1,2,・・・,N+1;k=1,2,・・・,K)、抽出部108a-n(n=1,2,・・・,N+1;k=1,2,・・・,K)、校正経路切替部109a、校正経路切替部110a-k(k=1,2,・・・,K)、分配器111a、合成器112a-k(k=1,2,・・・,K)、受信機113a-k(k=1,2,・・・,K)、及び信号処理部114aを備えている。すなわち、送信機103a-n、注入部107a-n及び抽出部108a-nは、送信系として、現用系に加えて冗長系を有する。
 また、信号処理部114aは、信号抽出部115a及び校正値算出部116aを有している。
As shown in FIG. 1, the transmitting apparatus includes a signal processing unit 101a, a DBF (Digital Beam Forming) unit 102a, transmitters 103a-n k (n=1, 2, . . . , N+1; k=1, 2, . . , K), redundant system switching units 104a-k (k=1, 2, . . . , K), antenna elements 105a-n k (n=1, 2, . , 2, . . . , K), signal generator 106a, injection units 107a-n k (n=1, 2, . . . , N+1; k=1, 2, . −n k (n=1, 2, . . . , N+1; k=1, 2, . , K), dividers 111a, combiners 112a-k (k=1, 2, . . . , K), receivers 113a-k (k=1, 2, . . . , K), and signal A processing unit 114a is provided. That is, the transmitters 103a-n k , the injection units 107a-n k and the extraction units 108a-n k have redundant systems as transmission systems in addition to active systems.
The signal processor 114a also has a signal extractor 115a and a calibration value calculator 116a.
 信号処理部101aは、送信用の信号(送信信号)を生成する。送信信号は、ベースバンド信号(ディジタル変調信号)である。そして、信号処理部101aは、生成した送信信号を、DBF部102aに送出する。
 信号処理部101aは、例えばCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、又はDSP(Digital Signal Processor)ともいう)を実装している半導体集積回路又はワンチップマイコン等によって構成される。
The signal processing unit 101a generates a signal for transmission (transmission signal). The transmission signal is a baseband signal (digital modulated signal). Then, the signal processing unit 101a sends the generated transmission signal to the DBF unit 102a.
The signal processing unit 101a is, for example, a semiconductor integrated circuit or It is composed of a one-chip microcomputer or the like.
 DBF部102aは、送信信号が入力されると、当該送信信号をアンテナ素子105a-nの素子数(N×K個)に分割する。そして、DBF部102aは、校正値算出部116aによる算出結果に基づいて、分割後の送信信号に対して振幅及び位相を調整する。そして、DBF部102aは、調整後の送信信号を、対応する送信系の送信機103a-nに送出する。この際、DBF部102aは、実行系の送信機103a-nに、送信信号を送出する。一方、DBF部102aは、待機系の送信機103a-nには、送信信号を送出しない。 DBF section 102a, when a transmission signal is input, divides the transmission signal into the number of elements (N× K ) of antenna elements 105a-nk. Then, the DBF section 102a adjusts the amplitude and phase of the divided transmission signal based on the calculation result of the calibration value calculation section 116a. Then, the DBF section 102a sends the adjusted transmission signal to the transmitter 103a- nk of the corresponding transmission system. At this time, the DBF unit 102a sends a transmission signal to the active transmitters 103a- nk . On the other hand, the DBF section 102a does not send a transmission signal to the standby transmitters 103a- nk .
 送信機103a-nは、信号が入力されると、当該信号に対して送信処理を行う。すなわち、送信機103a-nは、上記信号をディジタル値からアナログ値へD/A(Digital to Analog)変換してRF(Radio Frequency)帯の信号(データ信号)に周波数変換する。そして、送信機103a-nは、周波数変換後の信号を電力増幅する。そして、送信機103a-nは、電力増幅後の信号を、対応する系統の冗長系切替部104a-kに送出する。 When a signal is input, the transmitters 103a-n k perform transmission processing on the signal. That is, the transmitters 103a- nk perform D/A (Digital to Analog) conversion of the signals from digital values to analog values, and frequency-convert the signals to RF (Radio Frequency) band signals (data signals). Transmitters 103a-n k then power amplify the frequency-converted signals. Then, the transmitters 103a-nk send the power-amplified signals to the redundant system switching units 104a- k of the corresponding systems.
 冗長系切替部104a-kは、送信機103a-nにより送出された信号のうち、実行系の送信機103a-nにより送出された信号を、対応する送信系のアンテナ素子105a-nに送出する。 Redundant system switching units 104a- k switch signals transmitted by active transmitters 103a-nk among signals transmitted by transmitters 103a- nk to corresponding antenna elements 105a- nk of the transmitter system. send to
 アンテナ素子105a-nは、信号が入力されると、当該信号を空間に放射する。 When a signal is input, the antenna elements 105a-n k radiate the signal into space.
 信号生成部106aは、校正用の信号(校正信号)を生成する。校正信号は、任意のシンボルパターンの信号である。そして、信号生成部106aは、生成した校正信号を、対応する送信系の注入部107a-nを介して対応する送信系の送信機103a-nに送出(注入)する。この際、信号生成部106aは、実行系の送信機103a-n、及び、冗長系の送信機103a-nのうちの1つの待機系の送信機103a-nに、校正信号を送出する。
 また、信号生成部106aは、どのような校正信号を生成したかという情報(校正信号情報)を校正値算出部116aに送出する。
The signal generator 106a generates a calibration signal (calibration signal). A calibration signal is a signal of an arbitrary symbol pattern. Then, the signal generator 106a transmits (injects) the generated calibration signal to the transmitter 103a- nk of the corresponding transmission system via the injection section 107a- nk of the corresponding transmission system. At this time, the signal generator 106a sends a calibration signal to the active transmitter 103a-n k and one of the standby transmitters 103a-n k among the redundant transmitters 103a-n k . do.
Further, the signal generation unit 106a sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculation unit 116a.
 注入部107a-nは、校正信号が入力されると、当該校正信号を対応する送信系の送信機103a-nに注入する。 When the injection unit 107a-n k receives the calibration signal, it injects the calibration signal into the transmitter 103a-n k of the corresponding transmission system.
 なお、信号生成部106a及び注入部107a-nは、「信号生成部により生成された信号を、送信機のうちの、送信に用いられる送信系の送信機、及び、送信に用いられない送信系の送信機のうちの1つの送信機に、注入する注入部(信号生成部により生成された信号を、送信機のうちの、実行系の送信機、及び、冗長系の送信機のうちの1つの待機系の送信機に、注入する注入部)」として機能する。 Note that the signal generation unit 106a and the injection units 107a- nk "transmit the signal generated by the signal generation unit An injection unit that injects a signal generated by a signal generation unit into one of the transmitters of the system, the transmitter of the active system, and the transmitter of the redundant system It functions as an injection unit that injects into one standby transmitter.
 抽出部108a-nは、対応する送信系の送信機103a-nにより送出された信号を抽出する。そして、現用系の抽出部108a-nは、抽出した信号を、対応する系統の校正経路切替部110a-kに送出する。また、冗長系の抽出部108a-nは、抽出した信号を、校正経路切替部109aに送出する。 The extraction units 108a-n k extract the signals sent by the transmitters 103a-n k of the corresponding transmission system. Then, the active system extractor 108a-nk sends the extracted signal to the corresponding system calibration path switcher 110a- k . Further, the redundant system extraction units 108a- nk send the extracted signals to the calibration path switching unit 109a.
 校正経路切替部109aは、冗長系の抽出部108a-nにより送出された信号のうち、待機系を通過した校正信号に相当する信号を、分配器111aに送出する。
 また、校正経路切替部109aは、冗長系の抽出部108a-nにより送出された信号を、対応する系統の校正経路切替部110a-kに送出する。
The calibration path switching unit 109a transmits to the distributor 111a a signal corresponding to the calibration signal that has passed through the standby system among the signals transmitted by the redundant system extraction units 108a- nk .
Further, the calibration path switching section 109a transmits the signal transmitted by the redundant system extraction section 108a-nk to the calibration path switching section 110a- k of the corresponding system.
 校正経路切替部110a-kは、現用系の抽出部108a-nにより送出された信号、及び、校正経路切替部109aにより送出された信号のうち、実行系の抽出部108a-nにより送出された信号を、合成器112a-kに送出する。 The calibration path switching unit 110a- k selects the signal sent by the working system extraction unit 108a-nk and the signal sent by the calibration path switching unit 109a from the active system extraction unit 108a- nk . The combined signals are sent to combiners 112a-k.
 分配器111aは、信号が入力されると、当該信号を系統数(K個)に分割する。そして、分配器111aは、分割後の信号を、合成器112a-kにそれぞれ送出する。 When a signal is input, the distributor 111a divides the signal into the number of systems (K). The splitter 111a then sends the split signals to the combiners 112a-k, respectively.
 合成器112a-kは、校正経路切替部110a-kにより送出された信号及び分配器111aにより送出された信号を合成する。そして、合成器112a-kは、合成後の信号を、対応する系統の受信機113a-kに送出する。 The synthesizer 112a-k synthesizes the signal sent by the calibration path switching section 110a-k and the signal sent by the distributor 111a. Then, the combiners 112a-k send the combined signals to the corresponding system receivers 113a-k.
 なお、抽出部108a-n、校正経路切替部109a、校正経路切替部110a-k、分配器111a及び合成器112a-kは、「送信機のうちの送信に用いられる送信系の送信機により送信処理が行われた信号を、受信機のうちの対応する系統の受信機に送出し、送信機のうちの送信に用いられない送信系の送信機により送信処理が行われた信号を、受信機にそれぞれ送出する切替部(送信機のうちの実行系の送信機により送信処理が行われた信号を、受信機のうちの対応する系統の受信機に送出し、送信機のうちの冗長系且つ待機系の送信機により送信処理が行われた信号を、受信機にそれぞれ送出する切替部)」として機能する。 Note that the extracting units 108a-n k , the calibration path switching units 109a, the calibration path switching units 110a-k, the distributors 111a, and the combiners 112a-k are configured as follows: Transmit the signal that has undergone transmission processing to the receiver of the corresponding system among the receivers, and receive the signal that has undergone transmission processing by the transmitter of the transmission system that is not used for transmission among the transmitters. A switching unit (a signal that has undergone transmission processing by the transmitter of the active system of the transmitters, is sent to the receiver of the corresponding system of the receivers, and the redundant system of the transmitters It also functions as a "switching unit" that transmits signals that have been subjected to transmission processing by the standby transmitter to the receivers.
 受信機113a-kは、信号が入力されると、当該信号に対して受信処理を行う。すなわち、受信機113a-kは、合成器112a-kにより送出された信号を検波する。受信機113a-kにより検波された信号は、送信信号と校正信号とが混合した信号である。そして、受信機113a-kは、検波後の信号を、信号処理部114aの信号抽出部115aに送出する。 When a signal is input, the receivers 113a-k perform reception processing on the signal. That is, receivers 113a-k detect the signals emitted by combiners 112a-k. The signal detected by receivers 113a-k is a mixture of the transmitted signal and the calibration signal. The receivers 113a-k then send the detected signals to the signal extractor 115a of the signal processor 114a.
 信号処理部114aは、受信機113a-kにより送出された信号のうち、実行系を通過した信号から算出した相対振幅位相誤差、及び、冗長系且つ待機系を通過した信号から算出した相対振幅位相誤差を用いて、校正値を算出する。校正値は、信号の振幅を補正するための振幅補正値、及び、信号の位相を補正するための位相補正値を含む。 The signal processing unit 114a calculates the relative amplitude phase error calculated from the signal that has passed through the active system and the relative amplitude phase error that has been calculated from the signal that has passed through the redundant and standby systems, among the signals transmitted by the receivers 113a-k. The error is used to calculate the calibration value. The calibration values include an amplitude correction value for correcting the amplitude of the signal and a phase correction value for correcting the phase of the signal.
 信号抽出部115aは、受信機113a-kにより送出された信号から、校正信号を抽出する。そして、信号抽出部115aは、抽出した校正信号を、校正値算出部116aに送出する。 The signal extraction unit 115a extracts the calibration signal from the signals sent by the receivers 113a-k. Then, the signal extractor 115a sends the extracted calibration signal to the calibration value calculator 116a.
 校正値算出部116aは、信号抽出部115aにより送出された校正信号に基づいて、校正値を算出する。 The calibration value calculation unit 116a calculates a calibration value based on the calibration signal sent by the signal extraction unit 115a.
 この際、校正値算出部116aは、信号生成部106aにより送出された校正信号情報に基づいて、信号抽出部115aにより送出された校正信号のうち、冗長系且つ待機系の送信機103a-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する。校正値算出部116aによる上記処理は、受信機113a-k間の相対振幅位相誤差の算出に相当する。 At this time, based on the calibration signal information sent by the signal generation unit 106a, the calibration value calculation unit 116a selects the redundant and standby transmitters 103a- nk among the calibration signals sent by the signal extraction unit 115a. A relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through. The above processing by the calibration value calculator 116a corresponds to the calculation of the relative amplitude phase error between the receivers 113a-k.
 また、校正値算出部116aは、信号生成部106aにより送出された校正信号情報に基づいて、信号抽出部115aにより送出された校正信号のうち、実行系の送信機103a-nを通過した校正信号から、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する。 Further, based on the calibration signal information sent by the signal generation unit 106a, the calibration value calculation unit 116a calculates the calibration signal that has passed through the active transmitters 103a- nk among the calibration signals sent by the signal extraction unit 115a. A relative amplitude phase error (second relative amplitude phase error) is calculated from the signal.
 そして、校正値算出部116aは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する。
 そして、校正値算出部116aは、算出した校正値を示すデータを、DBF部102aに送出する。その後、DBF部102aは、上記校正値を示すデータに基づいて、送信信号に対する振幅及び位相の調整を実施する。
Then, the calibration value calculator 116a calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error.
Then, calibration value calculation section 116a sends data indicating the calculated calibration value to DBF section 102a. After that, the DBF section 102a adjusts the amplitude and phase of the transmission signal based on the data indicating the calibration values.
 次に、図1に示す実施の形態1に係る送信装置の校正動作例について、図2を参照しながら説明する。ここでは、主に校正信号の流れについて説明を行う。 Next, an example of calibration operation of the transmission device according to Embodiment 1 shown in FIG. 1 will be described with reference to FIG. Here, the flow of calibration signals will be mainly described.
 なお、送信装置では、事前に、校正処理に関する条件設定が行われる。具体的には、送信装置では、校正信号の構成が決められる。校正信号の構成としては、位相変調波又は周波数変調波等のような任意の変調信号でもよいし、連続波(CW波)でもよい。校正信号は、送信信号に対して、時間方向で相関が低い(直交性の高い)変調波であることが望ましい。
 また、送信装置では、事前に、冗長系の送信機103a-nのうち、校正信号が注入される1つの待機系の送信機103a-nが選択される。
In addition, in the transmitting device, the conditions related to the calibration process are set in advance. Specifically, the transmitter determines the configuration of the calibration signal. The configuration of the calibration signal may be an arbitrary modulated signal such as a phase-modulated wave or a frequency-modulated wave, or may be a continuous wave (CW wave). The calibration signal is desirably a modulated wave with low correlation (high orthogonality) in the time direction with respect to the transmission signal.
Further, in the transmitting apparatus, one standby transmitter 103a- nk into which the calibration signal is to be injected is selected in advance from among the redundant transmitters 103a- nk .
 図1に示す実施の形態1に係る送信装置の校正動作例では、図2に示すように、まず、信号生成部106aは、校正信号を生成する(ステップST201)。この際、信号生成部106aは、条件設定に従って校正信号を生成する。そして、信号生成部106aは、生成した校正信号を、対応する送信系の注入部107a-nを介して対応する送信系の送信機103a-nに送出(注入)する(ステップST202)。この際、信号生成部106aは、実行系の送信機103a-n、及び、冗長系の送信機103a-nのうちの1つの待機系の送信機103a-nに、校正信号を送出する。
 また、信号生成部106aは、どのような校正信号を生成したかという情報(校正信号情報)を校正値算出部116aに送出する。
In the calibration operation example of the transmitting apparatus according to Embodiment 1 shown in FIG. 1, as shown in FIG. 2, signal generation section 106a first generates a calibration signal (step ST201). At this time, the signal generator 106a generates the calibration signal according to the condition setting. Then, signal generating section 106a transmits (injects) the generated calibration signal to transmitter 103a- nk of the corresponding transmission system via injection section 107a- nk of the corresponding transmission system (step ST202). At this time, the signal generator 106a sends a calibration signal to the active transmitter 103a-n k and one of the standby transmitters 103a-n k among the redundant transmitters 103a-n k . do.
Further, the signal generation unit 106a sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculation unit 116a.
 なお図1では、理解し易くするため、物理的な構造として注入部107a-nを用い、送信信号と校正信号とに独立させて示している。しかしながら、この部分はディジタルデータの加算により実行可能である。そのため、実際には、物理的な経路の切替えではなく、送信機103a-nに送出される信号を、送信信号と校正信号とを加算した信号に置き換えるだけでよい。したがって、スイッチ又は方向性結合器等、ハードウェア固有の周波数特性等が校正精度に影響を与える恐れもない。 In FIG. 1, for ease of understanding, injection sections 107a- nk are used as physical structures, and the transmission signal and the calibration signal are shown separately. However, this part can be done by adding digital data. Therefore, in practice, instead of switching the physical path, it is only necessary to replace the signal sent to the transmitters 103a-n k with the sum of the transmission signal and the calibration signal. Therefore, there is no possibility that the frequency characteristics or the like inherent in hardware such as switches or directional couplers will affect the calibration accuracy.
 その後、上記校正信号は、送信機103a-nにより、ディジタル値からアナログ値へD/A変換されRF帯の信号に周波数変換された後、電力増幅される。 After that, the calibration signal is D/A converted from a digital value to an analog value by the transmitters 103a- nk , frequency-converted to an RF band signal, and then power-amplified.
 次いで、抽出部108a-nは、対応する送信系の送信機103a-nにより送出された校正信号を抽出する(ステップST203)。そして、現用系の抽出部108a-nは、抽出した校正信号を、対応する系統の校正経路切替部110a-kに送出する。また、冗長系の抽出部108a-nは、抽出した校正信号を、校正経路切替部109aに送出する。 Next, extraction sections 108a-n k extract calibration signals sent by transmitters 103a-n k of the corresponding transmission system (step ST203). Then, the active system extractor 108a-nk sends the extracted calibration signal to the corresponding system calibration path switcher 110a- k . Further, the redundant system extraction units 108a- nk send the extracted calibration signals to the calibration path switching unit 109a.
 なお、送信機103a-nにより送出された校正信号は、RF帯のアナログ信号であるため、方向性結合器(カップラ)又はスイッチ等のハードウェアから成る抽出部108a-nにより抽出可能である。 Since the calibration signals sent by the transmitters 103a- nk are analog signals in the RF band, they can be extracted by the extraction units 108a- nk comprising hardware such as directional couplers (couplers) or switches. be.
 その後、校正経路切替部109aは、待機系の抽出部108a-nにより送出された校正信号を、分配器111aに送出する。
 また、校正経路切替部109aは、冗長系の抽出部108a-nにより送出された校正信号を、対応する系統の校正経路切替部110a-kに送出する。
After that, the calibration path switching unit 109a sends the calibration signal sent by the standby extraction units 108a- nk to the distributor 111a.
Further, the calibration path switching section 109a transmits the calibration signal transmitted by the redundant system extraction section 108a-nk to the calibration path switching section 110a- k of the corresponding system.
 また、校正経路切替部110a-kは、現用系の抽出部108a-nにより送出された校正信号、及び、校正経路切替部109aにより送出された校正信号のうち、実行系の抽出部108a-nにより送出された校正信号を、合成器112a-kに送出する。 Further, the calibration path switching unit 110a-k selects between the calibration signal sent by the active system extraction unit 108a-nk and the calibration signal sent by the calibration path switching unit 109a, the active system extraction unit 108a- k The calibration signals emitted by nk are sent to combiners 112a- k .
 また、分配器111aは、校正信号が入力されると、当該校正信号を系統数(K個)に分割する。そして、分配器111aは、分割後の校正信号を、合成器112a-kにそれぞれ送出する。 Also, when the calibration signal is input, the distributor 111a divides the calibration signal into the number of systems (K). The distributor 111a then sends the divided calibration signals to the combiners 112a-k, respectively.
 次いで、合成器112a-kは、校正経路切替部110a-kにより送出された校正信号及び分配器111aにより送出された校正信号を合成する(ステップST204)。そして、合成器112a-kは、合成後の校正信号を、対応する系統の受信機113a-kに送出する。 Next, the synthesizer 112a-k synthesizes the calibration signal sent by the calibration path switching section 110a-k and the calibration signal sent by the distributor 111a (step ST204). Then, the combiners 112a-k send the combined calibration signals to the corresponding system receivers 113a-k.
 次いで、送信装置(受信機113a-k及び信号抽出部115a)は、合成器112a-kにより送出された校正信号を検波する(ステップST205)。具体的には、送信装置は、実行系の抽出部108a-nにより抽出された校正信号、及び、冗長系且つ待機系の抽出部108a-nにより抽出された校正信号を、A/D(Analog to Digital)変換し、ベースバンドのディジタル信号とする。そして、送信装置は、検波後の校正信号を、校正値算出部116aに送出する。 Next, the transmitter (receiver 113a-k and signal extractor 115a) detects the calibration signal sent by combiner 112a-k (step ST205). Specifically, the transmission device converts the calibration signals extracted by the active system extraction units 108a- nk and the calibration signals extracted by the redundant and standby system extraction units 108a- nk into an A/D converter. (Analog to Digital) conversion to obtain a baseband digital signal. Then, the transmission device sends the detected calibration signal to the calibration value calculator 116a.
 次いで、校正値算出部116aは、信号生成部106aにより送出された校正信号情報に基づいて、信号抽出部115aにより送出された校正信号のうち、冗長系且つ待機系の送信機103a-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する(ステップST206)。校正値算出部116aによる上記処理は、受信機113a-k間の相対振幅位相誤差の算出に相当する。 Next, based on the calibration signal information sent by the signal generation unit 106a, the calibration value calculation unit 116a selects the redundant and standby transmitters 103a- nk among the calibration signals sent by the signal extraction unit 115a. A relative amplitude phase error (first relative amplitude phase error) is calculated from the passed calibration signal (step ST206). The above processing by the calibration value calculator 116a corresponds to the calculation of the relative amplitude phase error between the receivers 113a-k.
 また、校正値算出部116aは、信号生成部106aにより送出された校正信号情報に基づいて、信号抽出部115aにより送出された校正信号のうち、実行系の送信機103a-nを通過した校正信号から、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する(ステップST207)。 Further, based on the calibration signal information sent by the signal generation unit 106a, the calibration value calculation unit 116a calculates the calibration signal that has passed through the active transmitters 103a- nk among the calibration signals sent by the signal extraction unit 115a. A relative amplitude phase error (second relative amplitude phase error) is calculated from the signal (step ST207).
 次いで、校正値算出部116aは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する(ステップST208)。すなわち、校正値算出部116aは、下式(1),(2)から、振幅補正値及び位相補正値を算出する。式(1),(2)において、Aは第1の相対振幅位相誤差を示し、Bnkは第2の相対振幅位相誤差を示し、Cnk_ampは振幅補正値を示し、Cnk_phsは位相補正値を示す。
 そして、校正値算出部116aは、算出した校正値を示すデータを、DBF部102aに送出する。
nk_amp=1/|Bnk/A|     (1)
nk_phs=-arg(Bnk/A)    (2)
Next, calibration value calculation section 116a calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST208). That is, the calibration value calculator 116a calculates the amplitude correction value and the phase correction value from the following equations (1) and (2). In equations (1) and (2), A k denotes the first relative amplitude phase error, B nk denotes the second relative amplitude phase error, C nk_amp denotes the amplitude correction value, and C nk_phs denotes the phase correction. indicate a value.
Then, calibration value calculation section 116a sends data indicating the calculated calibration value to DBF section 102a.
Cnk_amp =1/| Bnk / Ak | (1)
C nk_phs =−arg(B nk /A k ) (2)
 その後、DBF部102aは、校正値算出部116aにより算出された校正値に基づいて、送信信号に対する振幅及び位相の調整を実施する(ステップST209)。実施の形態1に係る送信装置は、この一連の処理を定期的に実施することで、送信機103a-nの健全性を担保することが可能となる。 After that, DBF section 102a adjusts the amplitude and phase of the transmission signal based on the calibration values calculated by calibration value calculation section 116a (step ST209). By periodically performing this series of processes, the transmitting apparatus according to Embodiment 1 can ensure the soundness of the transmitters 103a- nk .
 以上のように、この実施の形態1によれば、送信装置は、複数の送信系毎に設けられたアンテナ素子105a-nを有する複数系統のアレーアンテナと、送信系毎に設けられ、入力された信号に対して送信処理を行う送信機103a-nと、校正用の信号を生成する信号生成部106aと、信号生成部106aにより生成された信号を、送信機103a-nのうちの、送信に用いられる送信系の送信機103a-n、及び、送信に用いられない送信系の送信機103a-nのうちの1つの送信機103a-nに、注入する注入部と、系統毎に設けられ、入力された信号に対して受信処理を行う受信機113a-kと、送信機103a-nのうちの送信に用いられる送信系の送信機103a-nにより送信処理が行われた信号を、受信機113a-kのうちの対応する系統の受信機113a-kに送出し、送信機103a-nのうちの送信に用いられない送信系の送信機103a-nにより送信処理が行われた信号を、受信機113a-kにそれぞれ送出する切替部と、受信機113a-kにより受信処理が行われた信号に基づいて、振幅補正値及び位相補正値を算出する信号処理部114aと、信号処理部114aによる算出結果に基づいて、送信機103a-nに送出する信号の振幅及び位相の調整を行うDBF部102aとを備えた。すなわち、送信装置は、アンテナ素子105a-n間の特性ばらつきである通過振幅位相誤差について、冗長系を利用して受信機113a-k間の誤差を取得してその誤差を加味した上で算出し校正でき、全ての校正値を同時に取得できる。これにより、実施の形態1に係る送信装置は、各校正用の機器(受信機113a-k)の通過特性を考慮した校正が可能となる。また、実施の形態1に係る送信装置は、出荷前の校正だけでなく、設置後においても運用中又は休止中等に柔軟に校正可能であり、より信頼性の高い校正が可能となる。 As described above, according to the first embodiment, the transmitting apparatus includes a plurality of array antennas having antenna elements 105a- nk provided for each of a plurality of transmission systems, and a plurality of systems of array antennas provided for each transmission system. Transmitters 103a-n k that perform transmission processing on the generated signals, signal generators 106a that generate signals for calibration, and signals generated by the signal generators 106a are sent to the transmitters 103a-n k . and one transmitter 103a-n k among the transmitters 103a-n k of the transmission system used for transmission and the transmitters 103a-n k of the transmission system not used for transmission. , receivers 113a-k provided for each system to perform reception processing on an input signal, and transmission processing by transmitters 103a-n k of the transmission system used for transmission among the transmitters 103a-n k . is sent to the receivers 113a-k of the corresponding system among the receivers 113a-k, and the transmitters 103a-n of the transmission system not used for transmission among the transmitters 103a-n k A switching unit that outputs signals subjected to transmission processing by k to the receivers 113a-k, respectively, and an amplitude correction value and a phase correction value are calculated based on the signals subjected to reception processing by the receivers 113a-k. and a DBF unit 102a for adjusting the amplitude and phase of the signals sent to the transmitters 103a- nk based on the calculation result of the signal processing unit 114a. That is, the transmitting apparatus acquires the error between the receivers 113a- k using the redundant system and calculates the pass amplitude phase error, which is the characteristic variation between the antenna elements 105a-nk, by adding the error. can be calibrated, and all calibration values can be obtained simultaneously. As a result, the transmission apparatus according to Embodiment 1 can perform calibration in consideration of the pass characteristics of each calibration device (receivers 113a-k). Moreover, the transmitting apparatus according to the first embodiment can be calibrated not only before shipment but also after installation, flexibly during operation or rest, so that more reliable calibration is possible.
実施の形態2.
 実施の形態1に係る送信装置では、冗長系を有する場合での構成を示した。これに対し、実施の形態2に係る送信装置では、冗長系を有していない場合での構成について示す。
Embodiment 2.
In the transmitting apparatus according to Embodiment 1, a configuration in which a redundant system is provided is shown. On the other hand, in the transmitting apparatus according to Embodiment 2, a configuration in which no redundant system is provided will be shown.
 図3は実施の形態2に係る送信装置の構成例を示す図である。送信装置は、ディジタルビームフォーミングを行うK個の系統のアレーアンテナを備えた送信装置である。アレーアンテナは、系統毎に、N個の送信系毎に設けられたアンテナ素子105b-n(n=1,2,・・・,N;k=1,2,・・・,K)により構成される。
 また、実施の形態2に係る送信装置は、冗長系(予備系)を有していない送信装置である。
FIG. 3 is a diagram showing a configuration example of a transmitting apparatus according to Embodiment 2. In FIG. The transmitting device is a transmitting device having K array antennas that perform digital beamforming. The array antenna is composed of antenna elements 105b-n k (n=1, 2, . . . , N; k=1, 2, . Configured.
Also, the transmitting apparatus according to Embodiment 2 is a transmitting apparatus that does not have a redundant system (standby system).
 送信装置は、図3に示すように、信号処理部101b、DBF部102b、送信機103b-n(n=1,2,・・・,N;k=1,2,・・・,K)、アンテナ素子105b-n(n=1,2,・・・,N;k=1,2,・・・,K)、チャネル検出部117b、信号生成部106b、注入部107b-n(n=1,2,・・・,N;k=1,2,・・・,K)、抽出部108b-n(n=1,2,・・・,N;k=1,2,・・・,K)、校正経路切替部110b-k(k=1,2,・・・,K)、校正経路切替部109b、分配器111b、合成器112b-k(k=1,2,・・・,K)、受信機113b-k(k=1,2,・・・,K)、及び信号処理部114bを備えている。
 また、信号処理部114bは、信号抽出部115b及び校正値算出部116bを有している。
As shown in FIG. 3, the transmitting device includes a signal processing unit 101b, a DBF unit 102b, a transmitter 103b-n k (n=1, 2, . . . , N; k=1, 2, . ), antenna elements 105b-n k (n=1, 2, . . . , N; k =1, 2, . (n = 1, 2, ..., N; k = 1, 2, ..., K), extraction unit 108b-n k (n = 1, 2, ..., N; k = 1, 2 , K), calibration path switching unit 110b-k (k=1, 2, . , K), a receiver 113b-k (k=1, 2, . . . , K), and a signal processing unit 114b.
Further, the signal processing section 114b has a signal extraction section 115b and a calibration value calculation section 116b.
 信号処理部101bは、送信用の信号(送信信号)を生成する。送信信号は、ベースバンド信号(ディジタル変調信号)である。そして、信号処理部101bは、生成した送信信号を、DBF部102bに送出する。
 また、信号処理部101bは、送信信号生成情報を生成する。送信信号生成情報には、系統毎に、送信に用いられる送信系である有効チャネル及び送信に用いられない送信系である空きチャネルに関する情報が含まれている。そして、信号処理部101bは、生成した送信信号生成情報を、チャネル検出部117bに送出する。
 信号処理部101bは、例えばCPUを実装している半導体集積回路又はワンチップマイコン等によって構成される。
The signal processing unit 101b generates a signal for transmission (transmission signal). The transmission signal is a baseband signal (digital modulated signal). Then, the signal processing unit 101b sends the generated transmission signal to the DBF unit 102b.
The signal processing unit 101b also generates transmission signal generation information. The transmission signal generation information includes, for each system, information about effective channels that are transmission systems used for transmission and free channels that are transmission systems that are not used for transmission. Then, the signal processing section 101b sends the generated transmission signal generation information to the channel detection section 117b.
The signal processing unit 101b is configured by, for example, a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, or the like.
 DBF部102bは、送信信号が入力されると、当該送信信号をアンテナ素子105b-nの素子数(N×K個)に分割する。そして、DBF部102bは、校正値算出部116bによる算出結果に基づいて、分割後の送信信号に対して振幅及び位相を調整する。そして、DBF部102bは、調整後の送信信号を、対応する送信系の送信機103b-nに送出する。この際、DBF部102bは、有効チャネルの送信機103b-nに、送信信号を送出する。一方、DBF部102bは、空きチャネルの送信機103b-nには、送信信号を送出しない。 DBF section 102b, when a transmission signal is input, divides the transmission signal into the number of antenna elements 105b- nk (N×K). Then, the DBF section 102b adjusts the amplitude and phase of the divided transmission signal based on the calculation result of the calibration value calculation section 116b. Then, the DBF section 102b sends the adjusted transmission signal to the corresponding transmitter 103b- nk of the transmission system. At this time, the DBF section 102b sends a transmission signal to the transmitter 103b- nk of the effective channel. On the other hand, the DBF section 102b does not send a transmission signal to the transmitters 103b- nk of the empty channels.
 送信機103b-nは、信号が入力されると、当該信号に対して送信処理を行う。すなわち、送信機103b-nは、上記信号をディジタル値からアナログ値へD/A変換してRF帯の信号(データ信号)に周波数変換する。また、送信機103b-nは、周波数変換後の信号を電力増幅する。そして、送信機103b-nは、電力増幅後の信号を、対応するアンテナ素子105b-nに送出する。 When a signal is input, the transmitter 103b- nk performs transmission processing on the signal. That is, the transmitters 103b- nk convert the above signal from a digital value to an analog value by D/A conversion and frequency-convert it into an RF band signal (data signal). Also, the transmitters 103b- nk power-amplify the frequency-converted signals. Transmitters 103b- nk then transmit the power-amplified signals to corresponding antenna elements 105b- nk .
 アンテナ素子105b-nは、信号が入力されると、当該信号を空間に放射する。 When a signal is input, the antenna elements 105b- nk radiate the signal into space.
 チャネル検出部117bは、信号処理部101bにより送出された送信信号生成情報に基づいて、有効チャネル及び空きチャネルを検出する。 The channel detection unit 117b detects effective channels and empty channels based on the transmission signal generation information sent by the signal processing unit 101b.
 信号生成部106bは、校正用の信号(校正信号)を生成する。校正信号は、任意のシンボルパターンの信号である。そして、信号生成部106bは、チャネル検出部117bによる検出結果に基づいて、生成した校正信号を、対応する送信系の注入部107b-nを介して対応する送信系の送信機103b-nに送出(注入)する。この際、信号生成部106bは、有効チャネルの送信機103b-n、及び、空きチャネルの送信機103b-nのうちの1つの送信機103b-nに、校正信号を送出する。
 また、信号生成部106bは、どのような校正信号を生成したかという情報(校正信号情報)を校正値算出部116bに送出する。
The signal generator 106b generates a calibration signal (calibration signal). A calibration signal is a signal of an arbitrary symbol pattern. Then, based on the detection result of the channel detection unit 117b, the signal generation unit 106b applies the generated calibration signal to the corresponding transmission system transmitter 103b- nk via the corresponding transmission system injection unit 107b- nk . send out (inject) to At this time, the signal generator 106b sends the calibration signal to one of the transmitters 103b- n k of the active channel and the transmitters 103b-n k of the idle channel.
Further, the signal generating section 106b sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculating section 116b.
 注入部107b-nは、校正信号が入力されると、当該校正信号を対応する送信機103b-nに注入する。 When the calibration signal is input, the injection unit 107b- nk injects the calibration signal into the corresponding transmitter 103b- nk .
 なお、信号生成部106b及び注入部107b-nは、「信号生成部により生成された信号を、送信機のうちの、送信に用いられる送信系の送信機、及び、送信に用いられない送信系の送信機のうちの1つの送信機に、注入する注入部(チャネル検出部による検出結果に基づいて、信号生成部により生成された信号を、送信機のうちの、有効チャネルの送信機、及び、空きチャネルの送信機のうちの1つの送信機に、注入する注入部)」として機能する。 Note that the signal generation unit 106b and the injection unit 107b- nk "transmit the signal generated by the signal generation unit An injection part (a signal generated by a signal generation part based on a detection result by a channel detection part) to be injected into one transmitter of the transmitters of the system, a transmitter of an effective channel, and an injector that injects into one of the transmitters of the idle channel).
 抽出部108b-nは、対応する送信系の送信機103b-nにより送出された信号を抽出する。そして、抽出部108b-nは、抽出した信号を、対応する系統の校正経路切替部110b-kに送出する。 The extractor 108b-nk extracts the signal sent by the transmitter 103b-nk of the corresponding transmission system. Then, the extractor 108b-nk sends the extracted signal to the calibration path switcher 110b- k of the corresponding system.
 校正経路切替部110b-kは、チャネル検出部117bによる検出結果に基づいて、抽出部108b-nにより送出された信号のうち、空きチャネルの抽出部108b-nにより送出された信号を、校正経路切替部109bに送出する。
 また、校正経路切替部110b-kは、抽出部108b-nにより送出された信号を、対応する系統の合成器112b-kに送出する。
Based on the detection result of the channel detection unit 117b, the calibration path switching unit 110b- k selects the signal output by the empty channel extraction unit 108b- nk among the signals output by the extraction unit 108b-nk as It is sent to the calibration path switching unit 109b.
Further, the calibration path switching unit 110b-k sends the signal sent by the extraction unit 108b- nk to the combiner 112b-k of the corresponding system.
 校正経路切替部109bは、校正経路切替部110b-kにより送出された信号のうち、校正信号に相当する信号を、分配器111bに送出する。 The calibration path switching section 109b transmits a signal corresponding to the calibration signal among the signals transmitted by the calibration path switching section 110b-k to the distributor 111b.
 分配器111bは、信号が入力されると、当該信号を系統数(K個)に分割する。そして、分配器111bは、分割後の信号を、合成器112b-kにそれぞれ送出する。 When a signal is input, the distributor 111b divides the signal into the number of systems (K). Then, the splitter 111b sends the split signals to the combiners 112b-k, respectively.
 合成器112b-kは、校正経路切替部110b-kにより送出された信号及び分配器111bにより送出された信号を合成する。そして、合成器112b-kは、合成後の信号を、対応する系統の受信機113b-kに送出する。 The synthesizer 112b-k synthesizes the signal sent by the calibration path switching section 110b-k and the signal sent by the distributor 111b. Then, combiner 112b-k sends the combined signal to receiver 113b-k of the corresponding system.
 なお、抽出部108b-n、校正経路切替部109b、校正経路切替部110b-k、分配器111b及び合成器112b-kは、「送信機のうちの送信に用いられる送信系の送信機により送信処理が行われた信号を、受信機のうちの対応する系統の受信機に送出し、送信機のうちの送信に用いられない送信系の送信機により送信処理が行われた信号を、受信機にそれぞれ送出する切替部(チャネル検出部による検出結果に基づいて、送信機のうちの有効チャネルの送信機により送信処理が行われた信号を、受信機のうちの対応する系統の受信機に送出し、送信機のうちの空きチャネルの送信機により送信処理が行われた信号を、受信機にそれぞれ送出する切替部)」として機能する。 Note that the extraction unit 108b-n k , the calibration path switching unit 109b, the calibration path switching unit 110b-k, the distributor 111b, and the combiner 112b-k are configured as follows: Transmit the signal that has undergone transmission processing to the receiver of the corresponding system among the receivers, and receive the signal that has undergone transmission processing by the transmitter of the transmission system that is not used for transmission among the transmitters. Based on the detection result by the switching unit (channel detection unit), the signal that has undergone transmission processing by the transmitter of the effective channel among the transmitters is sent to the receiver of the corresponding system among the receivers function as a switching unit that transmits signals that have been subjected to transmission processing by the transmitters of the empty channels among the transmitters to the receivers, respectively.
 受信機113b-kは、信号が入力されると、当該信号に対して受信処理を行う。すなわち、受信機113b-kは、合成器112b-kにより送出された信号を検波する。受信機113b-kにより検波された信号は、送信信号と校正信号とが混合した信号である。そして、受信機113b-kは、検波後の信号を、信号処理部114bの信号抽出部115bに送出する。 When a signal is input, the receiver 113b-k performs reception processing on the signal. That is, receiver 113b-k detects the signal sent by combiner 112b-k. The signal detected by receiver 113b-k is a mixture of the transmitted signal and the calibration signal. Then, receiver 113b-k sends the detected signal to signal extraction section 115b of signal processing section 114b.
 信号処理部114bは、受信機113b-kにより送出された信号のうち、有効チャネルを通過した信号から算出した相対振幅位相誤差、及び、空きチャネルを通過した信号から算出した相対振幅位相誤差を用いて、校正値を算出する。校正値は、信号の振幅を補正するための振幅補正値、及び、信号の位相を補正するための位相補正値を含む。 The signal processing unit 114b uses the relative amplitude phase error calculated from the signal that has passed through the effective channel and the relative amplitude phase error that has been calculated from the signal that has passed through the empty channel, among the signals transmitted by the receiver 113b-k. to calculate the calibration value. The calibration values include an amplitude correction value for correcting the amplitude of the signal and a phase correction value for correcting the phase of the signal.
 信号抽出部115bは、受信機113b-kにより送出された信号から、校正信号を抽出する。そして、信号抽出部115bは、抽出した校正信号を、校正値算出部116bに送出する。 The signal extractor 115b extracts the calibration signal from the signal sent by the receiver 113b-k. Then, the signal extractor 115b sends the extracted calibration signal to the calibration value calculator 116b.
 校正値算出部116bは、信号抽出部115bにより送出された校正信号に基づいて、校正値を算出する。 The calibration value calculation unit 116b calculates a calibration value based on the calibration signal sent by the signal extraction unit 115b.
 この際、校正値算出部116bは、信号生成部106bにより送出された校正信号情報に基づいて、信号抽出部115bにより送出された校正信号のうち、空きチャネルの送信機103b-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する。校正値算出部116bによる上記処理は、受信機113b-k間の相対振幅位相誤差の算出に相当する。 At this time, based on the calibration signal information transmitted by the signal generation unit 106b, the calibration value calculation unit 116b determines whether the calibration signal transmitted by the signal extraction unit 115b has passed through the transmitter 103b- nk of the empty channel. A relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal. The above processing by the calibration value calculator 116b corresponds to the calculation of the relative amplitude phase error between the receivers 113b-k.
 また、校正値算出部116bは、信号生成部106bにより送出された校正信号情報に基づいて、信号抽出部115bにより送出された校正信号のうち、有効チャネルの送信機103b-nを通過した校正信号から、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する。 Further, based on the calibration signal information sent by the signal generation unit 106b, the calibration value calculation unit 116b selects, among the calibration signals sent by the signal extraction unit 115b, the calibration values that have passed through the transmitters 103b- nk of the effective channels. A relative amplitude phase error (second relative amplitude phase error) is calculated from the signal.
 そして、校正値算出部116bは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する。
 そして、校正値算出部116bは、算出した校正値を示すデータを、DBF部102bに送出する。その後、DBF部102bは、上記校正値を示すデータに基づいて、送信信号に対する振幅及び位相の調整を実施する。
Then, the calibration value calculator 116b calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error.
Then, calibration value calculation section 116b sends data indicating the calculated calibration value to DBF section 102b. After that, the DBF section 102b adjusts the amplitude and phase of the transmission signal based on the data indicating the calibration values.
 次に、図3に示す実施の形態2に係る送信装置の校正動作例について、図4を参照しながら説明する。ここでは、主に校正信号の流れについて説明を行う。 Next, an example of calibration operation of the transmitter according to Embodiment 2 shown in FIG. 3 will be described with reference to FIG. Here, the flow of calibration signals will be mainly described.
 実施の形態2に係る送信装置は、例えば図3に示すように、冗長系を有していない送信装置である。このような送信装置では、全てのアンテナ素子105b-nで空間に信号を放射するのではなく、一部のアンテナ素子105b-nを用いて空間放射する場合があり、送信に用いられない送信系(空きチャネル)が存在する場合がある。
 そこで、実施の形態2に係る送信装置では、チャネル検出部117bが、信号処理部101bによる送信信号生成情報を用いて、有効チャネルと空きチャネルとを把握する。そして、信号生成部106bが、チャネル検出部117bで把握した情報を用いて、任意の空きチャネルに校正信号を注入する。
A transmitting apparatus according to Embodiment 2 is a transmitting apparatus that does not have a redundant system, as shown in FIG. 3, for example. In such a transmission device, not all antenna elements 105b-nk radiate signals into space, but some antenna elements 105b-n k may be used to radiate signals into space, which may not be used for transmission. A transmission system (empty channel) may exist.
Therefore, in the transmitting apparatus according to Embodiment 2, channel detection section 117b uses transmission signal generation information from signal processing section 101b to grasp valid channels and empty channels. Then, the signal generation section 106b injects the calibration signal into an arbitrary empty channel using the information grasped by the channel detection section 117b.
 なお、送信装置では、事前に、校正処理に関する条件設定が行われる。具体的には、送信装置では、校正信号の構成が決められる。校正信号の構成としては、位相変調波又は周波数変調波等のような任意の変調信号でもよいし、連続波(CW波)でもよい。校正信号は、送信信号に対して、時間方向で相関が低い(直交性の高い)変調波であることが望ましい。 It should be noted that, in the transmitting device, the conditions related to the calibration process are set in advance. Specifically, the transmitter determines the configuration of the calibration signal. The configuration of the calibration signal may be an arbitrary modulated signal such as a phase-modulated wave or a frequency-modulated wave, or may be a continuous wave (CW wave). The calibration signal is desirably a modulated wave with low correlation (high orthogonality) in the time direction with respect to the transmission signal.
 図3に示す実施の形態2に係る送信装置の校正動作例では、図4に示すように、まず、チャネル検出部117bは、信号処理部101bにより送出された送信信号生成情報に基づいて、有効チャネル及び空きチャネルを検出する(ステップST401)。 In the calibration operation example of the transmission apparatus according to Embodiment 2 shown in FIG. 3, as shown in FIG. Channels and empty channels are detected (step ST401).
 次いで、信号生成部106bは、校正信号を生成する(ステップST402)。この際、信号生成部106bは、条件設定に従って校正信号を生成する。そして、信号生成部106bは、チャネル検出部117bによる検出結果に基づいて、生成した校正信号を、対応する送信系の注入部107b-nを介して対応する送信系の送信機103b-nに送出(注入)する(ステップST403)。この際、信号生成部106bは、有効チャネルの送信機103b-n、及び、空きチャネルの送信機103b-nのうちの1つの送信機103b-nに、校正信号を送出する。
 また、信号生成部106bは、どのような校正信号を生成したかという情報(校正信号情報)を校正値算出部116bに送出する。
Next, signal generation section 106b generates a calibration signal (step ST402). At this time, the signal generator 106b generates the calibration signal according to the condition setting. Then, based on the detection result of the channel detection unit 117b, the signal generation unit 106b applies the generated calibration signal to the corresponding transmission system transmitter 103b- nk via the corresponding transmission system injection unit 107b- nk . (step ST403). At this time, the signal generator 106b sends the calibration signal to one of the transmitters 103b- n k of the active channel and the transmitters 103b-n k of the idle channel.
Further, the signal generating section 106b sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculating section 116b.
 なお図3では、理解し易くするため、物理的な構造として注入部107b-nを用い、送信信号と校正信号とに独立させて示している。しかしながら、この部分はディジタルデータの加算により実行可能である。そのため、実際には、物理的な経路の切替えではなく、送信機103b-nに送出される信号を、送信信号と校正信号とを加算した信号に置き換えるだけでよい。したがって、スイッチ又は方向性結合器等、ハードウェア固有の周波数特性等が校正精度に影響を与える恐れもない。 In FIG. 3, for ease of understanding, injection units 107b- nk are used as a physical structure, and the transmission signal and the calibration signal are shown separately. However, this part can be done by adding digital data. Therefore, in practice, instead of switching the physical path, it is only necessary to replace the signal sent to the transmitter 103b- nk with a signal obtained by adding the transmission signal and the calibration signal. Therefore, there is no possibility that the frequency characteristics or the like inherent in hardware such as switches or directional couplers will affect the calibration accuracy.
 その後、上記校正信号は、送信機103b-nにより、ディジタル値からアナログ値へD/A変換されRF帯の信号に周波数変換された後、電力増幅される。 Thereafter, the calibration signal is D/A-converted from a digital value to an analog value by the transmitter 103b- nk , frequency-converted to an RF band signal, and then power-amplified.
 次いで、抽出部108b-nは、対応する送信系の送信機103b-nにより送出された校正信号を抽出する(ステップST404)。そして、抽出部108b-nは、抽出した校正信号を、対応する系統の校正経路切替部110b-kに送出する。 Next, extraction section 108b-nk extracts the calibration signal sent by transmitter 103b- nk of the corresponding transmission system (step ST404 ). Then, the extractor 108b-nk sends the extracted calibration signal to the calibration path switcher 110b- k of the corresponding system.
 なお、送信機103b-nにより送出された校正信号は、RF帯のアナログ信号であるため、方向性結合器(カップラ)又はスイッチ等のハードウェアから成る抽出部108b-nにより抽出可能である。 Since the calibration signal sent by the transmitter 103b- nk is an RF band analog signal, it can be extracted by the extractor 108b- nk comprising hardware such as a directional coupler (coupler) or a switch. be.
 その後、校正経路切替部110b-kは、チャネル検出部117bによる検出結果に基づいて、抽出部108b-nにより送出された校正信号のうち、空きチャネルの抽出部108b-nにより送出された校正信号を、校正経路切替部109bに送出する。
 また、校正経路切替部110b-kは、抽出部108b-nにより送出された校正信号を、対応する系統の合成器112b-kに送出する。
After that, based on the detection result of the channel detection unit 117b, the calibration path switching unit 110b- k selects the calibration signal sent by the empty channel extraction unit 108b-nk among the calibration signals sent by the extraction unit 108b- nk . A calibration signal is sent to the calibration path switching unit 109b.
Further, the calibration path switching unit 110b-k sends the calibration signal sent by the extraction unit 108b- nk to the combiner 112b-k of the corresponding system.
 また、校正経路切替部109bは、校正経路切替部110b-kにより送出された校正信号を、分配器111bに送出する。 Further, the calibration path switching section 109b sends the calibration signal sent by the calibration path switching section 110b-k to the distributor 111b.
 また、分配器111bは、校正信号が入力されると、当該校正信号を系統数(K個)に分割する。そして、分配器111bは、分割後の校正信号を、合成器112b-kにそれぞれ送出する。 Also, when the calibration signal is input, the distributor 111b divides the calibration signal into the number of systems (K). Then, the distributor 111b sends the divided calibration signals to the combiners 112b-k, respectively.
 次いで、合成器112b-kは、校正経路切替部110b-kにより送出された校正信号及び分配器111bにより送出された校正信号を合成する(ステップST405)。そして、合成器112b-kは、合成後の校正信号を、対応する系統の受信機113b-kに送出する。 Next, the synthesizer 112b-k synthesizes the calibration signal sent by the calibration path switching section 110b-k and the calibration signal sent by the distributor 111b (step ST405). The synthesizer 112b-k then sends the synthesized calibration signal to the receiver 113b-k of the corresponding system.
 次いで、送信装置(受信機113b-k及び信号抽出部115b)は、合成器112b-kにより送出された校正信号を検波する(ステップST406)。具体的には、送信装置は、有効チャネルの抽出部108b-nにより抽出された校正信号、及び、空きチャネルの抽出部108b-nにより抽出された校正信号を、A/D変換し、ベースバンドのディジタル信号とする。そして、送信装置は、検波後の校正信号を、校正値算出部116bに送出する。 Next, the transmitting device (receiver 113b-k and signal extraction section 115b) detects the calibration signal sent from combiner 112b-k (step ST406). Specifically, the transmitting device A/D-converts the calibration signal extracted by the effective channel extraction unit 108b- nk and the calibration signal extracted by the empty channel extraction unit 108b- nk , It is a baseband digital signal. Then, the transmitting device sends the detected calibration signal to the calibration value calculating section 116b.
 次いで、校正値算出部116bは、信号生成部106bにより送出された校正信号情報に基づいて、信号抽出部115bにより送出された校正信号のうち、空きチャネルの送信機103b-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する(ステップST407)。校正値算出部116bによる上記処理は、受信機113b-k間の相対振幅位相誤差の算出に相当する。 Next, based on the calibration signal information sent by the signal generation unit 106b, the calibration value calculation unit 116b selects the calibration signal that has passed through the transmitter 103b- nk of the idle channel among the calibration signals sent by the signal extraction unit 115b. A relative amplitude phase error (first relative amplitude phase error) is calculated from the signal (step ST407). The above processing by the calibration value calculator 116b corresponds to the calculation of the relative amplitude phase error between the receivers 113b-k.
 また、校正値算出部116bは、信号生成部106bにより送出された校正信号情報に基づいて、信号抽出部115bにより送出された校正信号のうち、有効チャネルの送信機103b-nを通過した校正信号から、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する(ステップST408)。 Further, based on the calibration signal information sent by the signal generation unit 106b, the calibration value calculation unit 116b selects, among the calibration signals sent by the signal extraction unit 115b, the calibration values that have passed through the transmitters 103b- nk of the effective channels. A relative amplitude phase error (second relative amplitude phase error) is calculated from the signal (step ST408).
 次いで、校正値算出部116bは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、送信信号に対する校正値を算出する(ステップST409)。すなわち、校正値算出部116bは、式(1),(2)から、振幅補正値及び位相補正値を算出する。
 そして、校正値算出部116bは、算出した校正値を示すデータを、DBF部102bに送出する。
Next, calibration value calculation section 116b calculates a calibration value for the transmission signal based on the first relative amplitude-phase error and the second relative amplitude-phase error (step ST409). That is, the calibration value calculator 116b calculates the amplitude correction value and the phase correction value from equations (1) and (2).
Then, calibration value calculation section 116b sends data indicating the calculated calibration value to DBF section 102b.
 その後、DBF部102bは、校正値算出部116bにより算出された校正値に基づいて、送信信号に対する振幅及び位相の調整を実施する(ステップST410)。実施の形態2に係る送信装置は、この一連の処理を定期的に実施することで、送信機103b-nの健全性を担保することが可能となる。 Thereafter, DBF section 102b adjusts the amplitude and phase of the transmission signal based on the calibration values calculated by calibration value calculation section 116b (step ST410). By periodically performing this series of processes, the transmitting apparatus according to Embodiment 2 can ensure the soundness of the transmitters 103b- nk .
 以上のように、この実施の形態2によれば、冗長系を有していない送信装置でも、アンテナ素子105b-n間の特性ばらつきである通過振幅位相誤差について、空きチャネルを利用して受信機113b-k間の誤差を取得してその誤差を加味した上で算出し校正でき、全ての校正値を同時に取得できる。これにより、実施の形態2に係る送信装置は、各校正用の機器(受信機113b-k)の通過特性を考慮した校正が可能となる。また、実施の形態2に係る送信装置は、出荷前の校正だけでなく、設置後においても運用中又は休止中等に柔軟に校正可能であり、より信頼性の高い校正が可能となる。 As described above, according to the second embodiment, even a transmission apparatus having no redundant system can receive signals using empty channels with respect to the passing amplitude phase error, which is the characteristic variation among the antenna elements 105b- nk . It is possible to acquire the error between the machines 113b-k, calculate and calibrate the error after taking into account the error, and acquire all the calibrated values at the same time. As a result, the transmitting apparatus according to Embodiment 2 can perform calibration in consideration of the pass characteristics of each calibration device (receiver 113b-k). In addition, the transmitter according to the second embodiment can be calibrated not only before shipment but also after installation flexibly during operation or rest, so that more reliable calibration is possible.
実施の形態3.
 実施の形態1に係る送信装置では、分配器111aを用いた場合での構成を示した。これに対し、実施の形態3に係る送信装置では、分配器111aを用いない場合での構成について示す。
Embodiment 3.
In the transmission device according to Embodiment 1, the configuration in which the distributor 111a is used is shown. On the other hand, in the transmission apparatus according to Embodiment 3, a configuration in which the distributor 111a is not used is shown.
 図5は実施の形態3に係る送信装置の構成例を示す図である。この図5に示す実施の形態3に係る送信装置では、図1に示す実施の形態1に係る送信装置に対し、分配器111aが取除かれ、信号記録部118aが追加され、校正経路切替部109a、校正経路切替部110a-k、合成器112a-k、信号抽出部115a及び校正値算出部116aの処理が異なる。図5に示す実施の形態3に係る送信装置におけるその他の構成は、図1に示す実施の形態1に係る送信装置と同様であり、同一の符号を付してその説明を省略する。 FIG. 5 is a diagram showing a configuration example of a transmission device according to Embodiment 3. FIG. In the transmitting apparatus according to the third embodiment shown in FIG. 5, the distributor 111a is removed from the transmitting apparatus according to the first embodiment shown in FIG. 109a, calibration path switching units 110a-k, combiners 112a-k, signal extraction unit 115a, and calibration value calculation unit 116a. Other configurations of the transmitting apparatus according to Embodiment 3 shown in FIG. 5 are the same as those of the transmitting apparatus according to Embodiment 1 shown in FIG.
 校正経路切替部109aは、冗長系の抽出部108a-nにより送出された信号のうち、校正信号に相当する信号を、校正経路切替部110a-kにそれぞれ送出する。 The calibration path switching unit 109a sends signals corresponding to the calibration signals out of the signals sent by the redundant extraction units 108a-nk to the calibration path switching units 110a- k , respectively.
 校正経路切替部110a-kは、現用系の抽出部108a-nにより送出された信号、及び、校正経路切替部109aにより送出された信号のうち、一部の信号を時分割で切替えながら、対応する系統の合成器112a-kに送出する。 The calibration path switching units 110a- k time-divisionally switch some of the signals transmitted by the working system extraction units 108a-nk and the signals transmitted by the calibration path switching unit 109a, It is sent to the combiner 112a-k of the corresponding system.
 合成器112a-kは、校正経路切替部110a-kにより送出された信号を合成する。そして、合成器112a-kは、合成後の信号を、対応する系統の受信機113a-kに送出する。 The synthesizers 112a-k synthesize the signals sent by the calibration path switching units 110a-k. Then, the combiners 112a-k send the combined signals to the corresponding system receivers 113a-k.
 信号抽出部115aは、受信機113a-kにより送出された信号から、校正信号を抽出する。そして、信号抽出部115aは、抽出した校正信号を、信号記録部118aに送出する。 The signal extraction unit 115a extracts the calibration signal from the signals sent by the receivers 113a-k. The signal extraction unit 115a then sends the extracted calibration signal to the signal recording unit 118a.
 信号記録部118aは、信号抽出部115aにより送出された校正信号を記録する。
 ここで、信号記録部118aとしては、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD(Digital Versatile Disc)等が該当する。
The signal recording unit 118a records the calibration signal sent by the signal extraction unit 115a.
Here, as the signal recording unit 118a, for example, non-volatile or volatile semiconductors such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), etc. A memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like corresponds to this.
 校正値算出部116aは、信号記録部118aに記録された校正信号に基づいて、校正値を算出する。 The calibration value calculation unit 116a calculates a calibration value based on the calibration signal recorded in the signal recording unit 118a.
 この際、校正値算出部116aは、信号生成部106aにより送出された校正信号情報に基づいて、信号記録部118aに記録された校正信号のうち、冗長系且つ待機系の送信機103a-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する。校正値算出部116aによる上記処理は、受信機113a-k間の相対振幅位相誤差の算出に相当する。 At this time, based on the calibration signal information sent by the signal generation unit 106a, the calibration value calculation unit 116a selects one of the calibration signals recorded in the signal recording unit 118a from the redundant and standby transmitters 103a- nk . A relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through. The above processing by the calibration value calculator 116a corresponds to the calculation of the relative amplitude phase error between the receivers 113a-k.
 また、校正値算出部116aは、信号生成部106aにより送出された校正信号情報に基づいて、信号記録部118aに記録された校正信号のうち、実行系の送信機103a-nを通過した校正信号から、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する。 Further, based on the calibration signal information sent by the signal generation unit 106a, the calibration value calculation unit 116a selects the calibration signal that has passed through the active transmitters 103a- nk among the calibration signals recorded in the signal recording unit 118a. A relative amplitude phase error (second relative amplitude phase error) is calculated from the signal.
 そして、校正値算出部116aは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する。
 そして、校正値算出部116aは、算出した校正値を示すデータを、DBF部102aに送出する。その後、DBF部102aは、上記校正値を示すデータに基づいて、送信信号に対する振幅及び位相の調整を実施する。
Then, the calibration value calculator 116a calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error.
Then, calibration value calculation section 116a sends data indicating the calculated calibration value to DBF section 102a. After that, the DBF section 102a adjusts the amplitude and phase of the transmission signal based on the data indicating the calibration values.
 次に、図5に示す実施の形態3に係る送信装置の校正動作例について、図6を参照しながら説明する。ここでは、主に校正信号の流れについて説明を行う。 Next, an example of calibration operation of the transmission device according to Embodiment 3 shown in FIG. 5 will be described with reference to FIG. Here, the flow of calibration signals will be mainly described.
 ここで、実施の形態1に係る送信装置では、分配器111aにより分割された校正信号を用いることで、受信機113a-k間の相対振幅位相誤差を算出する場合を示した。しかしながら、これに限らず、分配器111aを用いずに、例えば、校正経路切替部110a-kにより校正経路の接続(送出対象である校正信号)を時分割で切替えることで、各校正経路を通過した全ての校正信号を取得することも可能である。 Here, in the transmitting apparatus according to Embodiment 1, the case where the relative amplitude phase error between the receivers 113a-k is calculated by using the calibration signal divided by the splitter 111a is shown. However, not limited to this, without using the distributor 111a, for example, by switching the connection of the calibration path (the calibration signal to be sent) by the calibration path switching units 110a-k in a time division manner, each calibration path can be passed. It is also possible to obtain all calibration signals that
 図6におけるステップST601~ST603までの処理は、図2におけるステップST201~ST203までの処理と同様であり、その説明を省略する。 The processing from steps ST601 to ST603 in FIG. 6 is the same as the processing from steps ST201 to ST203 in FIG. 2, and the description thereof will be omitted.
 図5に示す実施の形態3に係る送信装置の校正動作例では、図6に示すように、校正経路切替部109aは、冗長系の抽出部108a-nにより送出された校正信号を、校正経路切替部110a-kにそれぞれ送出する。 In the calibration operation example of the transmission apparatus according to Embodiment 3 shown in FIG. 5, as shown in FIG. They are respectively sent to the path switching units 110a-k.
 次いで、校正経路切替部110a-kは、現用系の抽出部108a-nにより送出された校正信号、及び、校正経路切替部109aにより送出された校正信号のうち、一部の校正信号を時分割で切替えながら、対応する系統の合成器112a-kに送出する(ステップST604)。 Next, the calibration path switching units 110a- k select some of the calibration signals sent by the active system extraction units 108a-nk and the calibration signals sent by the calibration path switching unit 109a. While switching by division, it is sent to the combiner 112a-k of the corresponding system (step ST604).
 次いで、合成器112a-kは、校正経路切替部110a-kにより送出された校正信号を合成する(ステップST605)。そして、合成器112a-kは、合成後の校正信号を、対応する系統の受信機113a-kに送出する。 Next, the synthesizer 112a-k synthesizes the calibration signals sent by the calibration path switching units 110a-k (step ST605). Then, the combiners 112a-k send the combined calibration signals to the corresponding system receivers 113a-k.
 次いで、送信装置(受信機113a-k及び信号抽出部115a)は、合成器112a-kにより送出された校正信号を検波する(ステップST606)。そして、送信装置は、検波後の校正信号を、信号記録部118aに送出する。 Next, the transmitting device (receiver 113a-k and signal extractor 115a) detects the calibration signal sent by combiner 112a-k (step ST606). Then, the transmitting device sends the detected calibration signal to the signal recording section 118a.
 次いで、信号記録部118aは、信号抽出部115aにより送出された校正信号を記録する(ステップST607)。 Next, the signal recording section 118a records the calibration signal sent by the signal extracting section 115a (step ST607).
 次いで、送信装置は、校正経路切替部110a-kを所望の切替回数だけ切替えたかを判定する(ステップST608)。ここで、上記切替回数は、全ての系統における送信系の総数+初期状態の数であり、N×K+1である。
 このステップST608において、送信装置が上記切替回数に達していないと判定した場合、シーケンスはステップST604に戻る。その後、送信装置は、校正経路切替部110a-kにより異なる校正経路の組合わせに切替えながら、校正信号の合成、検波及び記録を行う。
Next, the transmitting apparatus determines whether calibration path switching sections 110a-k have been switched a desired number of times (step ST608). Here, the number of times of switching is the total number of transmission systems in all systems+the number of initial states, which is N×K+1.
In step ST608, if the transmitter determines that the number of times of switching has not been reached, the sequence returns to step ST604. After that, the transmission device combines, detects, and records the calibration signal while switching to a different combination of calibration paths by the calibration path switching units 110a-k.
 ここで、図7に時間と校正経路切替部110a-kによる送出対象である校正信号の切替え例(校正経路の切替え例)を示す。
 図7において、t0は初期状態の時刻であり、冗長系である抽出部108a-nにより抽出された校正信号(Scal)は、送出対象となっていない。そして、送信装置では、まず、t0での切替え状態により、現用系の抽出部108a-nにより抽出された校正信号を合成して検波する。そして、信号記録部118aは、校正信号を記録する。
 その後、校正経路切替部110a-kは、各時刻での校正信号の切替え(t1~tNの校正経路設定)を所望の切替回数を満たすまで繰返し実施する。各時刻において得られる校正信号を図8に示す。図8において、S-n(tn)は時刻(tn)において校正経路切替部110a-kにより送出された校正信号を示す。
Here, FIG. 7 shows an example of switching of calibration signals to be sent by time and calibration path switching units 110a-k (an example of switching of calibration paths).
In FIG. 7, t0 is the time in the initial state, and the calibration signal ( Scal ) extracted by the extraction units 108a-nk in the redundant system is not to be sent. Then, in the transmitting apparatus, first, based on the switching state at t0, the calibration signals extracted by the extracting units 108a- nk of the working system are synthesized and detected. Then, the signal recording unit 118a records the calibration signal.
After that, the calibration path switching section 110a-k repeats the switching of the calibration signal at each time (setting of the calibration path from t1 1 to tN K ) until a desired number of switching times is satisfied. FIG. 8 shows the calibration signal obtained at each time. In FIG. 8, S−n k (tn k ) denotes the calibration signal sent by the calibration path switching section 110a-k at time (tn k ).
 一方、ステップST608において、送信装置が上記切替回数に達したと判定した場合、校正値算出部116aは、信号生成部106aにより送出された校正信号情報に基づいて、信号記録部118aに記録された校正信号のうち、冗長系且つ待機系の送信機103a-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する(ステップST609)。校正値算出部116aによる上記処理は、受信機113a-k間の相対振幅位相誤差の算出に相当する。 On the other hand, in step ST608, when it is determined that the transmission device has reached the number of times of switching, calibration value calculation section 116a performs calibration signal information recorded in signal recording section 118a based on the calibration signal information sent by signal generation section 106a. Of the calibration signals, the relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signals that have passed through the redundant and standby transmitters 103a- nk (step ST609). The above processing by the calibration value calculator 116a corresponds to the calculation of the relative amplitude phase error between the receivers 113a-k.
 また、校正値算出部116aは、信号生成部106aにより送出された校正信号情報に基づいて、信号記録部118aに記録された校正信号のうち、実行系の送信機103a-nを通過した校正信号から、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する(ステップST610)。ここで図8に示す通り、S-nは同一校正経路で複数存在するが、校正値算出部116aは、重複する校正信号については当該重複する校正信号のうちの1つの校正信号を用いて、相対振幅位相誤差を算出する。又は、校正値算出部116aは、上記重複する校正信号については当該重複する信号の平均値を用いて、相対振幅位相誤差を算出してもよい。 Further, based on the calibration signal information sent by the signal generation unit 106a, the calibration value calculation unit 116a selects the calibration signal that has passed through the active transmitters 103a- nk among the calibration signals recorded in the signal recording unit 118a. A relative amplitude phase error (second relative amplitude phase error) is calculated from the signal (step ST610). Here, as shown in FIG. 8, a plurality of Sn k exist in the same calibration path. , to calculate the relative amplitude phase error. Alternatively, the calibration value calculation section 116a may calculate the relative amplitude phase error using the average value of the overlapping calibration signals for the overlapping calibration signals.
 次いで、校正値算出部116aは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する(ステップST611)。すなわち、校正値算出部116aは、式(1),(2)から、振幅補正値及び位相補正値を算出する。
 そして、校正値算出部116aは、算出した校正値を示すデータを、DBF部102aに送出する。
Next, calibration value calculation section 116a calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST611). That is, the calibration value calculator 116a calculates the amplitude correction value and the phase correction value from equations (1) and (2).
Then, calibration value calculation section 116a sends data indicating the calculated calibration value to DBF section 102a.
 その後、DBF部102aは、校正値算出部116aにより算出された校正値に基づいて、送信信号に対する振幅及び位相の調整を実施する(ステップST612)。実施の形態3に係る送信装置は、この一連の処理を定期的に実施することで、送信機103a-nの健全性を担保することが可能となる。 Thereafter, DBF section 102a adjusts the amplitude and phase of the transmission signal based on the calibration values calculated by calibration value calculation section 116a (step ST612). By periodically performing this series of processes, the transmitting apparatus according to Embodiment 3 can ensure the soundness of the transmitters 103a- nk .
 以上のように、この実施の形態3によれば、送信装置は、アンテナ素子105a-n間の特性ばらつきである通過振幅位相誤差について、分配器111aを用いずに時分割で校正経路を切替えることで、冗長系を利用して受信機113a-k間の誤差を取得してその誤差を加味した上で算出し校正でき、全ての校正値を同時に取得できる。これにより、実施の形態3に係る送信装置は、各校正用の機器(受信機113a-k)の通過特性を考慮した校正が可能となる。また、実施の形態3に係る送信装置は、出荷前の校正だけでなく、設置後においても運用中又は休止中等に柔軟に校正可能であり、より信頼性の高い校正が可能となる。 As described above, according to the third embodiment, the transmission apparatus switches the calibration path in a time-division manner without using the distributor 111a for the pass amplitude phase error, which is the characteristic variation among the antenna elements 105a- nk . Thus, the error between the receivers 113a-k can be obtained using the redundant system, and the error can be taken into account for calculation and calibration, and all calibration values can be obtained at the same time. As a result, the transmitting apparatus according to Embodiment 3 can perform calibration in consideration of the pass characteristics of each calibration device (receivers 113a-k). In addition, the transmitting device according to the third embodiment can be calibrated not only before shipment but also after installation, flexibly calibrating during operation or rest, so that more reliable calibration is possible.
実施の形態4.
 図9は実施の形態4に係る受信装置の構成例を示す図である。受信装置は、ディジタルビームフォーミングを行うK個の系統のアレーアンテナを備えた受信装置である。アレーアンテナは、系統毎に、N個の受信系毎に設けられたアンテナ素子201a-n(n=1,2,・・・,N;k=1,2,・・・,K)を有する。
Embodiment 4.
FIG. 9 is a diagram showing a configuration example of a receiving apparatus according to Embodiment 4. In FIG. The receiving device is a receiving device having K-system array antennas that perform digital beamforming. The array antenna includes antenna elements 201a-n k (n=1, 2, . . . , N; k=1, 2, . . . , K) provided for each of N receiving systems. have.
 また、実施の形態4に係る受信装置は、冗長系(予備系)を有する受信装置である。以下では、受信装置のうち、系統毎に、受信処理を実行する受信系を実行系と称し、受信処理を実行しない待機中の受信系を待機系と称する。また、受信装置のうち、系統毎に、最初に実行系として起動する受信系を現用系と称し、最初に待機系として起動する受信系を冗長系と称す。すなわち、現用系及び冗長系は変更されないが、実行系及び待機系は系の切替えにより変更される場合がある。 Also, the receiving apparatus according to Embodiment 4 is a receiving apparatus having a redundant system (backup system). Hereinafter, among the receiving apparatuses, for each system, a receiving system that executes the receiving process will be referred to as an active system, and a receiving system that is on standby without executing the receiving process will be referred to as a standby system. Among the receiving apparatuses, a receiving system that is activated first as an active system is called an active system, and a receiving system that is activated first as a standby system is called a redundant system. That is, the active system and the redundant system are not changed, but the active system and the standby system may be changed by system switching.
 受信装置は、図9に示すように、アンテナ素子201a-n(n=1,2,・・・,N;k=1,2,・・・,K)、冗長系切替部202a-k(k=1,2,・・・,K)、受信機203a-n(n=1,2,・・・,N+1;k=1,2,・・・,K)、DBF部204a、信号処理部205a、信号生成部206a、送信機207a-k(k=1,2,・・・,K)、分配器208a-k(n=1,2,・・・,N;k=1,2,・・・,K)、合成器209a、校正経路切替部210a-k(k=1,2,・・・,K)、校正経路切替部211a、注入部212a-n(n=1,2,・・・,N+1;k=1,2,・・・,K)、抽出部213a-n(n=1,2,・・・,N+1;k=1,2,・・・,K)、及び信号処理部214aを備えている。すなわち、受信機203a-n、注入部212a-n及び抽出部213a-nは、受信系として、現用系に加えて冗長系を有する。
 また、信号処理部214aは、信号抽出部215a及び校正値算出部216aを有している。
As shown in FIG. 9, the receiving apparatus includes antenna elements 201a-n k (n=1, 2, . . . , N; k=1, 2, . . . , K), redundant system switching units 202a-k (k=1, 2, . . . , K), receivers 203a-n k (n=1, 2, . . . , N+1; k=1, 2, . Signal processor 205a, signal generator 206a, transmitter 207a-k (k=1, 2, . . . , K), distributor 208a-k (n=1, 2, . . . , N; k=1 , 2, . . . , K), synthesizer 209a, calibration path switching units 210a- k (k=1, 2, . 1, 2, . . . , N+1; k =1, 2, . , K) and a signal processing unit 214a. That is, the receivers 203a-n k , the injection units 212a-n k and the extraction units 213a-n k have a redundant system as a receiving system in addition to the active system.
The signal processor 214a also has a signal extractor 215a and a calibration value calculator 216a.
 アンテナ素子201a-nは、空間を伝搬する信号(データ信号)を受信する。そして、アンテナ素子201a-nは、受信した信号を、対応する系統の冗長系切替部202a-kに送出する。 Antenna elements 201a-n k receive signals propagating in space (data signals). Then, the antenna elements 201a-n k transmit the received signals to the redundant system switching units 202a-k of the corresponding system.
 冗長系切替部202a-kは、アンテナ素子201a-nにより送出された信号を、対応する受信系の受信機203a-nに送出する。この際、冗長系切替部202a-kは、実行系の受信機203a-nに、信号を送出する。一方、冗長系切替部202a-kは、待機系の受信機203a-nには、信号を送出しない。 Redundant system switching units 202a- k transmit signals transmitted by antenna elements 201a-nk to receivers 203a- nk of the corresponding receiving system. At this time, the redundant system switching unit 202a- k sends a signal to the active system receiver 203a-nk. On the other hand, the redundant switching units 202a- k do not send signals to the standby receivers 203a-nk.
 受信機203a-nは、信号が入力されると、当該信号に対して受信処理を行う。すなわち、受信機203a-nは、上記信号を検波する。そして、受信機203a-nは、検波後の信号を、DBF部204aに送出する。 Receivers 203a-n k , when receiving a signal, perform reception processing on the signal. That is, receivers 203a-n k detect the signals. Receivers 203a- nk then send the detected signals to DBF section 204a.
 DBF部204aは、信号が入力されると、校正値算出部216aによる算出結果に基づいて、当該信号に対して振幅及び位相を調整する。そして、DBF部204aは、調整後の信号を、信号処理部205aに送出する。 When a signal is input, the DBF section 204a adjusts the amplitude and phase of the signal based on the calculation result of the calibration value calculation section 216a. Then, the DBF section 204a sends the adjusted signal to the signal processing section 205a.
 信号処理部205aは、DBF部204aにより送出された信号に対して所望の処理を実施する。
 信号処理部205aは、例えばCPUを実装している半導体集積回路又はワンチップマイコン等によって構成される。
The signal processing unit 205a performs desired processing on the signal sent from the DBF unit 204a.
The signal processing unit 205a is configured by, for example, a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, or the like.
 信号生成部206aは、校正用の信号(校正信号)を生成する。校正信号は、任意のシンボルパターンの信号である。そして、信号生成部206aは、生成した校正信号を、送信機207a-kにそれぞれ送出する。
 また、信号生成部206aは、どのような校正信号を生成したかという情報(校正信号情報)を校正値算出部216aに送出する。
The signal generator 206a generates a calibration signal (calibration signal). A calibration signal is a signal of an arbitrary symbol pattern. Signal generator 206a then sends the generated calibration signals to transmitters 207a-k, respectively.
Further, the signal generator 206a sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculator 216a.
 送信機207a-kは、校正信号が入力されると、当該校正信号に対して送信処理を行う。すなわち、送信機207a-kは、上記校正信号をディジタル値からアナログ値へD/A変換してRF帯の信号(データ信号)に周波数変換する。そして、送信機207a-kは、周波数変換後の信号を電力増幅する。そして、送信機207a-kは、電力増幅後の信号を、対応する系統の分配器208a-kに送出する。 When the calibration signal is input, the transmitters 207a-k perform transmission processing on the calibration signal. That is, the transmitters 207a-k D/A-convert the calibration signal from a digital value to an analog value and frequency-convert it to an RF band signal (data signal). Transmitters 207a-k then power-amplify the frequency-converted signals. Then, the transmitters 207a-k send the power-amplified signals to the distributors 208a-k of the corresponding system.
 分配器208a-kは、信号が入力されると、当該信号を現用系及び冗長系の数(N+1個)に分割する。そして、分配器208a-kは、分割後の信号を、合成器209a及び対応する系統の校正経路切替部210a-kに送出する。 When a signal is input, the distributors 208a-k divide the signal into the number of active systems and redundant systems (N+1). Then, the distributors 208a-k send the divided signals to the combiner 209a and the calibration path switching units 210a-k of the corresponding system.
 合成器209aは、分配器208a-kにより送出された信号を合成する。そして、合成器209aは、合成後の信号を、校正経路切替部211aに送出する。 The combiner 209a combines the signals sent out by the distributors 208a-k. Then, the combiner 209a sends the combined signal to the calibration path switching section 211a.
 校正経路切替部210a-kは、分配器208a-kにより送出された信号を、現用系且つ実行系の注入部212a-n及び校正経路切替部211aに送出する。 The calibration path switching units 210a-k deliver the signals sent by the distributors 208a-k to the active and active injection units 212a- nk and the calibration path switching units 211a.
 校正経路切替部211aは、合成器209aにより送出された信号及び校正経路切替部210a-kにより送出された信号を、冗長系の注入部212a-nに送出する。この際、校正経路切替部211aは、冗長系且つ実行系の注入部212a-n、及び、冗長系の注入部212a-nのうちの1つの待機系の注入部212a-nに、信号を送出する。 The calibration path switcher 211a sends the signal sent by the combiner 209a and the signal sent by the calibration path switchers 210a- k to the injection parts 212a-nk of the redundant system. At this time, the calibration path switching unit 211a causes the redundant and active injection units 212a-n k and one standby injection unit 212a-n k of the redundant injection units 212a-n k to Send a signal.
 なお、分配器208a-k、合成器209a、校正経路切替部210a-k及び校正経路切替部211aは、「送信機により送信処理が行われた信号を注入部のうちの対応する系統且つ受信に用いられる受信系の注入部に送出するとともに、送信機により送信処理が行われた信号を注入部のうちの受信に用いられない受信系の1つの注入部に送出する切替部(送信機により送信処理が行われた信号を注入部のうちの対応する系統且つ実行系の注入部に送出するとともに、送信機により送信処理が行われた信号を注入部のうちの冗長系の注入部のうちの1つの待機系の注入部に送出する切替部)」として機能する。 Note that the distributors 208a-k, the combiner 209a, the calibration path switching units 210a-k, and the calibration path switching unit 211a "transmit a signal that has been subjected to transmission processing by the transmitter to the corresponding system of the injection units and the reception A switching unit (transmission by a transmitter) that transmits a signal that has undergone transmission processing by a transmitter to one of the injection units in the reception system that is not used for reception. The processed signal is sent to the injection part of the corresponding system and active system among the injection parts, and the signal subjected to transmission processing by the transmitter is sent to the injection part of the redundant system of the injection parts. It functions as a switching unit that sends out to the injection unit of one standby system.
 注入部212a-nは、信号が入力されると、当該信号を対応する受信系の受信機203a-nに注入する。 When a signal is input, injection section 212a-n k injects the signal into receiver 203a-n k of the corresponding receiving system.
 抽出部213a-nは、対応する受信系の受信機203a-nにより送出された信号を抽出する。抽出部213a-nにより抽出された信号は、受信用の信号(受信信号)と校正信号とが混合した信号である。そして、抽出部213a-nは、抽出した信号を、信号処理部214aの信号抽出部215aに送出する。 The extraction units 213a-n k extract signals sent by the corresponding receivers 203a-n k . The signals extracted by the extraction units 213a-n k are signals obtained by mixing signals for reception (received signals) and calibration signals. Then, the extraction units 213a- nk send the extracted signals to the signal extraction unit 215a of the signal processing unit 214a.
 信号処理部214aは、抽出部213a-nにより送出された信号のうち、実行系を通過した信号から算出した相対振幅位相誤差、及び、待機系を通過した信号から算出した相対振幅位相誤差を用いて、校正値を算出する。校正値は、信号の振幅を補正するための振幅補正値、及び、信号の位相を補正するための位相補正値を含む。 The signal processing unit 214a calculates the relative amplitude phase error calculated from the signal that has passed through the active system and the relative amplitude phase error that has been calculated from the signal that has passed through the standby system, among the signals sent by the extracting units 213a- nk . to calculate the calibration value. The calibration values include an amplitude correction value for correcting the amplitude of the signal and a phase correction value for correcting the phase of the signal.
 信号抽出部215aは、抽出部213a-nにより送出された信号から、校正信号を抽出する。そして、信号抽出部215aは、抽出した校正信号を、校正値算出部216aに送出する。 The signal extractor 215a extracts the calibration signal from the signals sent by the extractors 213a- nk . Then, the signal extractor 215a sends the extracted calibration signal to the calibration value calculator 216a.
 校正値算出部216aは、信号抽出部215aにより送出された校正信号に基づいて、校正値を算出する。 The calibration value calculation unit 216a calculates a calibration value based on the calibration signal sent by the signal extraction unit 215a.
 この際、校正値算出部216aは、信号生成部206aにより送出された校正信号情報に基づいて、信号抽出部215aにより送出された校正信号のうち、冗長系且つ待機系の受信機203a-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する。校正値算出部216aによる上記処理は、送信機207a-k間の相対振幅位相誤差の算出に相当する。 At this time, based on the calibration signal information sent by the signal generation unit 206a, the calibration value calculation unit 216a selects the redundant and standby receivers 203a- nk among the calibration signals sent by the signal extraction unit 215a. A relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through. The above processing by the calibration value calculator 216a corresponds to the calculation of the relative amplitude phase error between the transmitters 207a-k.
 また、校正値算出部216aは、信号生成部206aにより送出された校正信号情報に基づいて、信号抽出部215aにより送出された校正信号のうち、実行系の受信機203a-nを通過した校正信号から、系統毎に、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する。 Further, based on the calibration signal information sent by the signal generation unit 206a, the calibration value calculation unit 216a calculates, among the calibration signals sent by the signal extraction unit 215a, the calibration values that have passed through the active receivers 203a- nk . From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system.
 そして、校正値算出部216aは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する。
 そして、校正値算出部216aは、算出した校正値を示すデータを、DBF部204aに送出する。その後、DBF部204aは、上記校正値を示すデータに基づいて、信号に対する振幅及び位相の調整を実施する。
Then, the calibration value calculator 216a calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error.
Then, the calibration value calculation unit 216a sends data indicating the calculated calibration value to the DBF unit 204a. After that, the DBF unit 204a adjusts the amplitude and phase of the signal based on the data indicating the calibration values.
 次に、図9に示す実施の形態4に係る受信装置の校正動作例について、図10を参照しながら説明する。ここでは、主に校正信号の流れについて説明を行う。 Next, an example of calibration operation of the receiver according to Embodiment 4 shown in FIG. 9 will be described with reference to FIG. Here, the flow of calibration signals will be mainly described.
 なお、受信装置では、事前に、校正処理に関する条件設定が行われる。具体的には、受信装置では、校正信号の構成が決められる。校正信号の構成としては、位相変調波又は周波数変調波等のような任意の変調信号でもよいし、連続波(CW波)でもよい。校正信号は、受信信号に対して、時間方向で相関が低い(直交性の高い)変調波であることが望ましい。
 また、受信装置では、事前に、冗長系の受信機203a-nのうち、校正信号が注入される1つの待機系の受信機203a-nが選択される。
In addition, in the receiving device, the conditions related to the calibration process are set in advance. Specifically, in the receiving device, the configuration of the calibration signal is determined. The configuration of the calibration signal may be an arbitrary modulated signal such as a phase-modulated wave or a frequency-modulated wave, or may be a continuous wave (CW wave). The calibration signal is desirably a modulated wave with low correlation (high orthogonality) in the time direction with respect to the received signal.
Further, in the receiving apparatus, one standby receiver 203a- nk into which the calibration signal is injected is selected in advance from among the redundant receivers 203a- nk .
 図9に示す実施の形態4に係る送信装置の校正動作例では、図10に示すように、まず、信号生成部206aは、校正信号を生成する(ステップST1001)。この際、信号生成部206aは、条件設定に従って校正信号を生成する。そして、信号生成部206aは、生成した校正信号を、送信機207a-kにそれぞれ送出する。
 また、信号生成部206aは、どのような校正信号を生成したかという情報(校正信号情報)を校正値算出部216aに送出する。
In the calibration operation example of the transmitting apparatus according to Embodiment 4 shown in FIG. 9, as shown in FIG. 10, signal generation section 206a first generates a calibration signal (step ST1001). At this time, the signal generator 206a generates the calibration signal according to the condition setting. Signal generator 206a then sends the generated calibration signals to transmitters 207a-k, respectively.
Further, the signal generator 206a sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculator 216a.
 次いで、送信機207a-kは、校正信号が入力されると、当該校正信号をディジタル値からアナログ値へD/A変換してRF帯の信号に周波数変換する。そして、送信機207a-kは、周波数変換後の校正信号を電力増幅する。そして、送信機207a-kは、電力増幅後の校正信号を、対応する系統の分配器208a-kに送出する(ステップST1002)。 Next, when the calibration signal is input, the transmitters 207a-k D/A-converts the calibration signal from a digital value to an analog value and frequency-converts it into an RF band signal. Transmitters 207a-k then power-amplify the frequency-converted calibration signals. Transmitter 207a-k then sends the power-amplified calibration signal to distributor 208a-k of the corresponding system (step ST1002).
 次いで、分配器208a-kは、校正信号が入力されると、当該校正信号を現用系及び冗長系の数(N+1個)に分割する。そして、分配器208a-kは、分割後の校正信号を、合成器209a及び対応する系統の校正経路切替部210a-kに送出する(ステップST1003)。 Next, when the calibration signal is input, the distributors 208a-k divide the calibration signal into the number of active systems and redundant systems (N+1). Then, distributors 208a-k send the divided calibration signal to combiner 209a and calibration path switching section 210a-k of the corresponding system (step ST1003).
 その後、合成器209aは、分配器208a-kにより送出された校正信号を合成する。そして、合成器209aは、合成後の校正信号を、校正経路切替部211aに送出する。 The combiner 209a then combines the calibration signals sent by the splitters 208a-k. Then, the combiner 209a sends the combined calibration signal to the calibration path switching section 211a.
 また、校正経路切替部210a-kは、分配器208a-kにより送出された校正信号を、現用系且つ実行系の注入部212a-n及び校正経路切替部211aに送出する。 Further, the calibration path switching units 210a-k transmit the calibration signals transmitted by the distributors 208a-k to the active and active injection units 212a- nk and the calibration path switching unit 211a.
 また、校正経路切替部211aは、合成器209aにより送出された校正信号及び校正経路切替部210a-kにより送出された校正信号を、冗長系の注入部212a-nに送出する。この際、校正経路切替部211aは、冗長系且つ実行系の注入部212a-n、及び、冗長系の注入部212a-nのうちの1つの待機系の注入部212a-nに、校正信号を送出する。 Further, the calibration path switching section 211a transmits the calibration signal transmitted by the synthesizer 209a and the calibration signal transmitted by the calibration path switching sections 210a- k to the injection sections 212a-nk of the redundant system. At this time, the calibration path switching unit 211a causes the redundant and active injection units 212a-n k and one standby injection unit 212a-n k of the redundant injection units 212a-n k to Send a calibration signal.
 次いで、注入部212a-nは、校正信号が入力されると、当該校正信号を対応する受信機203a-nに注入する(ステップST1004)。 Next, when the calibration signal is input, injection section 212a- nk injects the calibration signal into corresponding receiver 203a- nk (step ST1004).
 なお、注入部212a-nに入力される校正信号は、RF帯のアナログ信号であるため、方向性結合器(カップラ)又はスイッチ等のハードウェアから成る注入部212a-nにより注入可能である。 Note that the calibration signals input to the injection units 212a- nk are analog signals in the RF band, and therefore can be injected by the injection units 212a- nk comprising hardware such as directional couplers (couplers) or switches. be.
 次いで、受信機203a-nは、校正信号が入力されると、当該校正信号を検波する(ステップST1005)。具体的には、受信機203a-nは、校正信号をA/D変換し、ベースバンドのディジタル信号とする。そして、受信機203a-nは、検波後の校正信号を、DBF部204aに送出する。 Next, receivers 203a-n k detect the calibration signal when the calibration signal is input (step ST1005). Specifically, the receivers 203a- nk A/D convert the calibration signal into a baseband digital signal. Receivers 203a- nk then send the detected calibration signal to DBF section 204a.
 次いで、受信装置(抽出部213a-n及び信号抽出部215a)は、受信機203a-nにより送出された校正信号を抽出する(ステップST1006)。そして、受信装置は、抽出した校正信号を、校正値算出部216aに送出する。 Next, the receiving device (extracting section 213a- nk and signal extracting section 215a) extracts the calibration signal sent by the receiver 203a-nk (step ST1006 ). Then, the receiving device sends the extracted calibration signal to calibration value calculation section 216a.
 なお図9では、理解し易くするため、物理的な構造として抽出部213a-nを用い、受信信号と校正信号とに独立させて示している。しかしながら、この部分はディジタルデータの分離により実行可能である。そのため、実際には、物理的な経路の切替えなしで処理できる。したがって、スイッチ又は方向性結合器等、ハードウェア固有の周波数特性等が校正精度に影響を与える恐れもない。 In FIG. 9, for ease of understanding, the extraction units 213a- nk are used as a physical structure, and the received signal and the calibration signal are shown separately. However, this part can be done by separating the digital data. Therefore, in practice, processing can be performed without physical route switching. Therefore, there is no possibility that the frequency characteristics or the like inherent in hardware such as switches or directional couplers will affect the calibration accuracy.
 次いで、この際、校正値算出部216aは、信号生成部206aにより送出された校正信号情報に基づいて、信号抽出部215aにより送出された校正信号のうち、冗長系且つ待機系の受信機203a-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する(ステップST1007)。校正値算出部216aによる上記処理は、送信機207a-k間の相対振幅位相誤差の算出に相当する。 Next, at this time, based on the calibration signal information sent by the signal generation unit 206a, the calibration value calculation unit 216a selects the redundant and standby receiver 203a- A relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through nk (step ST1007 ). The above processing by the calibration value calculator 216a corresponds to the calculation of the relative amplitude phase error between the transmitters 207a-k.
 また、校正値算出部216aは、信号生成部206aにより送出された校正信号情報に基づいて、信号抽出部215aにより送出された校正信号のうち、実行系の受信機203a-nを通過した校正信号から、系統毎に、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する(ステップST1008)。 Further, based on the calibration signal information sent by the signal generation unit 206a, the calibration value calculation unit 216a calculates, among the calibration signals sent by the signal extraction unit 215a, the calibration values that have passed through the active receivers 203a- nk . From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system (step ST1008).
 次いで、校正値算出部216aは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する(ステップST1009)。すなわち、校正値算出部216aは、下式(3),(4)から、振幅補正値及び位相補正値を算出する。式(3),(4)において、Dは第1の相対振幅位相誤差を示し、Enkは第2の相対振幅位相誤差を示し、Fnk_ampは振幅補正値を示し、Fnk_phsは位相補正値を示す。
 そして、校正値算出部216aは、算出した校正値を示すデータを、DBF部204aに送出する。
nk_amp=1/|Enk/D|     (3)
nk_phs=-arg(Enk/D)    (4)
Next, calibration value calculation section 216a calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST1009). That is, the calibration value calculator 216a calculates the amplitude correction value and the phase correction value from the following equations (3) and (4). In equations (3) and (4), Dk denotes the first relative amplitude phase error, Enk denotes the second relative amplitude phase error, Fnk_amp denotes the amplitude correction value, and Fnk_phs denotes the phase correction. indicate a value.
Then, the calibration value calculation unit 216a sends data indicating the calculated calibration value to the DBF unit 204a.
Fnk_amp =1/| Enk / Dk | (3)
F nk_phs =−arg(E nk /D k ) (4)
 その後、DBF部204aは、校正値算出部216aにより算出された校正値に基づいて、受信信号に対する振幅及び位相の調整を実施する(ステップST1010)。実施の形態4に係る受信装置は、この一連の処理を定期的に実施することで、受信機203a-nの健全性を担保することが可能となる。 After that, DBF section 204a adjusts the amplitude and phase of the received signal based on the calibration values calculated by calibration value calculation section 216a (step ST1010). The receiver according to Embodiment 4 can ensure the soundness of the receivers 203a- nk by periodically performing this series of processes.
 以上のように、この実施の形態4によれば、受信装置は、複数の受信系毎に設けられたアンテナ素子201a-nを有する複数系統のアレーアンテナと、校正用の信号を生成する信号生成部206aと、系統毎に設けられ、信号生成部206aにより生成された信号に対して送信処理を行う送信機207a-kと、受信系毎に設けられ、入力された信号に対して受信処理を行う受信機203a-nと、受信系毎に設けられ、入力された信号を受信機203a-nに注入する注入部212a-nと、送信機207a-kにより送信処理が行われた信号を注入部212a-nのうちの対応する系統且つ受信に用いられる受信系の注入部212a-nに送出するとともに、送信機207a-kにより送信処理が行われた信号を注入部212a-nのうちの受信に用いられない受信系の1つの注入部212a-nに送出する切替部と、受信系毎に設けられ、受信機203a-nにより受信処理が行われた信号を抽出する抽出部213a-nと、抽出部213a-nにより抽出された信号に基づいて、振幅補正値及び位相補正値を算出する信号処理部214aと、信号処理部214aによる算出結果に基づいて、受信機203a-nにより受信処理が施された信号の振幅及び位相の調整を行うDBF部204aとを備えた。すなわち、受信装置は、アンテナ素子201a-n間の特性ばらつきである通過振幅位相誤差について、冗長系を利用して送信機207a-k間の誤差を取得してその誤差を加味した上で算出し校正でき、全ての校正値を同時に取得できる。これにより、実施の形態4に係る受信装置は、各校正用の機器(送信機207a-k)の通過特性を考慮した校正が可能となる。また、実施の形態4に係る受信装置は、出荷前の校正だけでなく、設置後においても運用中又は休止中等に柔軟に校正可能であり、より信頼性の高い校正が可能となる。 As described above, according to the fourth embodiment, the receiving apparatus includes a plurality of system array antennas having antenna elements 201a- nk provided for each of a plurality of receiving systems, and a signal for generating a signal for calibration. A generator 206a, a transmitter 207a-k provided for each system and performing transmission processing on the signal generated by the signal generator 206a, and a receiver 207a-k provided for each reception system and performing reception processing on the input signal. transmission processing is performed by receivers 203a- nk that perform transmission processing, injection units 212a-nk that are provided for each receiving system and inject an input signal into the receivers 203a- nk , and transmitters 207a- k . 207a- k are sent to the injection units 212a-nk of the receiving system used for reception, and the signals subjected to transmission processing by the transmitters 207a- k are sent to the injection units 212a-nk. 212a - nk , which is not used for reception, and a switching unit provided for each receiving system, and receiving processing is performed by the receiver 203a- nk . Extraction units 213a-n k for extracting signals, signal processing units 214a for calculating amplitude correction values and phase correction values based on the signals extracted by the extraction units 213a-n k , and calculation results by the signal processing units 214a and a DBF unit 204a for adjusting the amplitude and phase of the signals that have been received and processed by the receivers 203a-n k , based on: That is, the receiving apparatus acquires the error between the transmitters 207a- k using the redundant system and calculates the pass amplitude phase error, which is the characteristic variation between the antenna elements 201a-nk, by adding the error. can be calibrated and all calibration values can be obtained simultaneously. As a result, the receiving apparatus according to Embodiment 4 can perform calibration in consideration of the pass characteristics of each calibration device (transmitters 207a-k). Moreover, the receiver according to the fourth embodiment can be calibrated not only before shipment but also flexibly during operation or rest after installation, so that more reliable calibration is possible.
実施の形態5.
 実施の形態4に係る受信装置では、冗長系を有する場合での構成を示した。これに対し、実施の形態5に係る受信装置では、冗長系を有していない場合での構成について示す。
Embodiment 5.
In the receiving apparatus according to Embodiment 4, a configuration in which a redundant system is provided is shown. On the other hand, in the receiving apparatus according to Embodiment 5, a configuration in which no redundant system is provided will be shown.
 図11は実施の形態5に係る受信装置の構成例を示す図である。受信装置は、ディジタルビームフォーミングを行うK個の系統のアレーアンテナを備えた受信装置である。アレーアンテナは、系統毎に、N個の受信系毎に設けられたアンテナ素子201b-n(n=1,2,・・・,N;k=1,2,・・・,K)により構成される。
 また、実施の形態5に係る受信装置は、冗長系(予備系)を有していない受信装置である。
FIG. 11 is a diagram showing a configuration example of a receiving apparatus according to Embodiment 5. In FIG. The receiving device is a receiving device having K-system array antennas that perform digital beamforming. The array antenna is composed of antenna elements 201b-n k (n=1, 2, . . . , N; k=1, 2, . Configured.
Also, the receiver according to Embodiment 5 is a receiver that does not have a redundant system (standby system).
 受信装置は、図11に示すように、アンテナ素子201b-n(n=1,2,・・・,N;k=1,2,・・・,K)、受信機203b-n(n=1,2,・・・,N;k=1,2,・・・,K)、DBF部204b、信号処理部205b、チャネル検出部217b、信号生成部206b、送信機207b-k(k=1,2,・・・,K)、分配器208b-k(n=1,2,・・・,N;k=1,2,・・・,K)、合成器209b、校正経路切替部211b、校正経路切替部210b-k(k=1,2,・・・,K)、注入部212b-n(n=1,2,・・・,N;k=1,2,・・・,K)、抽出部213b-n(n=1,2,・・・,N;k=1,2,・・・,K)、及び信号処理部214bを備えている。
 また、信号処理部214bは、信号抽出部215b及び校正値算出部216bを有している。
As shown in FIG. 11, the receiving apparatus includes antenna elements 201b-n k (n = 1, 2, ..., N; k = 1, 2, ..., K), receivers 203b-n k ( n = 1, 2, ..., N; k = 1, 2, ..., K), DBF unit 204b, signal processing unit 205b, channel detection unit 217b, signal generation unit 206b, transmitter 207b-k k=1, 2, . . . , K), distributors 208b-k (n=1, 2, . . . , N; k=1, 2, . switching unit 211b, calibration path switching unit 210b-k (k=1, 2, . . . , K), injection unit 212b-n k (n=1, 2, . , K), an extractor 213b-n k (n=1, 2, . . . , N; k=1, 2, . . . , K), and a signal processor 214b.
Further, the signal processing section 214b has a signal extraction section 215b and a calibration value calculation section 216b.
 アンテナ素子201b-nは、空間を伝搬する信号(データ信号)を受信する。そして、アンテナ素子201b-nは、受信した信号を、対応する受信系の受信機203b-nに送出する。 Antenna elements 201b-n k receive signals (data signals) propagating in space. Then, the antenna element 201b- nk transmits the received signal to the corresponding receiver 203b- nk of the receiving system.
 受信機203b-nは、信号が入力されると、当該信号に対して受信処理を行う。すなわち、受信機203b-nは、上記信号を検波する。そして、受信機203b-nは、検波後の信号を、DBF部204bに送出する。 When receiving a signal, the receiver 203b- nk performs reception processing on the signal. That is, the receivers 203b- nk detect the above signals. Then, receiver 203b- nk sends the detected signal to DBF section 204b.
 DBF部204bは、信号が入力されると、校正値算出部216bによる算出結果に基づいて、当該信号に対して振幅及び位相を調整する。そして、DBF部204bは、調整後の信号を、信号処理部205bに送出する。 When a signal is input, the DBF section 204b adjusts the amplitude and phase of the signal based on the calculation result of the calibration value calculation section 216b. Then, the DBF section 204b sends the adjusted signal to the signal processing section 205b.
 信号処理部205bは、DBF部204bにより送出された信号に対して所望の処理を実施する。
 また、信号処理部205bは、受信信号生成情報を生成する。受信信号生成情報には、系統毎に、受信に用いられる受信系である有効チャネル及び受信に用いられない受信系である空きチャネルに関する情報が含まれている。そして、信号処理部205bは、生成した受信信号生成情報を、チャネル検出部217bに送出する。
 信号処理部205bは、例えばCPUを実装している半導体集積回路又はワンチップマイコン等によって構成される。
The signal processing unit 205b performs desired processing on the signal sent from the DBF unit 204b.
The signal processing unit 205b also generates received signal generation information. The received signal generation information includes, for each system, information on effective channels that are reception systems used for reception and information on free channels that are reception systems that are not used for reception. Then, the signal processing section 205b sends the generated reception signal generation information to the channel detection section 217b.
The signal processing unit 205b is configured by, for example, a semiconductor integrated circuit mounting a CPU, a one-chip microcomputer, or the like.
 チャネル検出部217bは、信号処理部205bにより送出された受信信号生成情報に基づいて、有効チャネル及び空きチャネルを検出する。 The channel detection unit 217b detects effective channels and empty channels based on the received signal generation information sent by the signal processing unit 205b.
 信号生成部206bは、校正用の信号(校正信号)を生成する。校正信号は、任意のシンボルパターンの信号である。そして、信号生成部206bは、生成した校正信号を、送信機207b-kにそれぞれ送出する。
 また、信号生成部206bは、どのような校正信号を生成したかという情報(校正信号情報)を校正値算出部216bに送出する。
The signal generator 206b generates a calibration signal (calibration signal). A calibration signal is a signal of an arbitrary symbol pattern. Signal generator 206b then sends the generated calibration signals to transmitters 207b-k, respectively.
Further, the signal generator 206b sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculator 216b.
 送信機207b-kは、校正信号が入力されると、当該校正信号に対して送信処理を行う。すなわち、送信機207b-kは、上記校正信号をディジタル値からアナログ値へD/A変換してRF帯の信号(データ信号)に周波数変換する。そして、送信機207b-kは、周波数変換後の信号を電力増幅する。そして、送信機207b-kは、電力増幅後の信号を、対応する系統の分配器208b-kに送出する。 When the calibration signal is input, the transmitter 207b-k performs transmission processing on the calibration signal. That is, the transmitter 207b-k performs D/A conversion of the calibration signal from a digital value to an analog value, and frequency-converts it into an RF band signal (data signal). Transmitters 207b-k then power-amplify the frequency-converted signals. Transmitter 207b-k then sends the signal after power amplification to distributor 208b-k of the corresponding system.
 分配器208b-kは、信号が入力されると、当該信号を現用系及び冗長系の数(N+1個)に分割する。そして、分配器208b-kは、分割後の信号を、合成器209b及び対応する系統の校正経路切替部210b-kに送出する。 When a signal is input, the distributor 208b-k divides the signal into the number of active systems and redundant systems (N+1). Then, the distributor 208b-k sends the divided signal to the combiner 209b and the calibration path switching section 210b-k of the corresponding system.
 合成器209bは、分配器208b-kにより送出された信号を合成する。そして、合成器209bは、合成後の信号を、校正経路切替部211bに送出する。 The combiner 209b combines the signals sent by the distributors 208b-k. Then, the combiner 209b sends the combined signal to the calibration path switching section 211b.
 校正経路切替部211bは、合成器209bにより送出された信号を、校正経路切替部210b-kにそれぞれ送出する。 The calibration path switching section 211b sends the signal sent by the synthesizer 209b to the calibration path switching sections 210b-k, respectively.
 校正経路切替部210b-kは、チャネル検出部217bによる検出結果に基づいて、分配器208b-kにより送出された信号を、有効チャネルの注入部212b-nに送出する。
 また、校正経路切替部210b-kは、チャネル検出部217bによる検出結果に基づいて、校正経路切替部211bにより送出された信号を、空きチャネルの注入部212b-nのうちの1つの注入部212b-nに送出する。
The calibration path switching section 210b-k transmits the signal transmitted by the distributor 208b-k to the injection section 212b- nk of the effective channel based on the detection result of the channel detection section 217b.
Further, based on the detection result of the channel detection unit 217b, the calibration path switching unit 210b- k switches the signal sent by the calibration path switching unit 211b to one of the injection units 212b-nk of the empty channel. 212b- nk .
 なお、分配器208b-k、合成器209b、校正経路切替部210b-k及び校正経路切替部211bは、「送信機により送信処理が行われた信号を注入部のうちの対応する系統且つ受信に用いられる受信系の注入部に送出するとともに、送信機により送信処理が行われた信号を注入部のうちの受信に用いられない受信系の1つの注入部に送出する切替部(チャネル検出部による検出結果に基づいて、送信機により送信処理が行われた信号を注入部のうちの対応する系統且つ有効チャネルの注入部に送出するとともに、送信機により送信処理が行われた信号を注入部のうちの空きチャネルの1つの注入部に送出する切替部)」として機能する。 Note that the distributor 208b-k, the combiner 209b, the calibration path switching unit 210b-k, and the calibration path switching unit 211b "transmit a signal that has been subjected to transmission processing by the transmitter to the corresponding system of the injection unit and the reception unit. A switching unit (by a channel detection unit) that outputs a signal that has undergone transmission processing by the transmitter to one of the injection units in the reception system that is not used for reception. Based on the detection result, the signal that has undergone transmission processing by the transmitter is sent to the injection section of the corresponding system and effective channel among the injection sections, and the signal that has undergone transmission processing by the transmitter is sent to the injection section. It functions as a switching unit that sends out to one injection unit of one of the empty channels.
 注入部212b-nは、信号が入力されると、当該信号を対応する受信系の受信機203b-nに注入する。 When a signal is input, the injection unit 212b- nk injects the signal into the corresponding receiver 203b- nk of the reception system.
 抽出部213b-nは、対応する受信系の受信機203b-nにより送出された信号を抽出する。抽出部213b-nにより抽出された信号は、受信用の信号(受信信号)と校正信号とが混合した信号である。そして、抽出部213b-nは、抽出した信号を、信号処理部214bの信号抽出部215bに送出する。 The extractor 213b- nk extracts the signal sent by the corresponding receiver 203b- nk . The signal extracted by the extractor 213b-n k is a signal obtained by mixing the signal for reception (received signal) and the calibration signal. Then, the extractor 213b- nk sends the extracted signal to the signal extractor 215b of the signal processor 214b.
 信号処理部214bは、抽出部213b-nにより送出された信号のうち、有効チャネルを通過した信号から算出した相対振幅位相誤差、及び、空きチャネルを通過した信号から算出した相対振幅位相誤差を用いて、校正値を算出する。校正値は、信号の振幅を補正するための振幅補正値、及び、信号の位相を補正するための位相補正値を含む。 The signal processing unit 214b calculates the relative amplitude phase error calculated from the signal that passed through the effective channel and the relative amplitude phase error calculated from the signal that passed through the empty channel among the signals sent by the extraction unit 213b- nk . to calculate the calibration value. The calibration values include an amplitude correction value for correcting the amplitude of the signal and a phase correction value for correcting the phase of the signal.
 信号抽出部215bは、抽出部213b-nにより送出された信号から、校正信号を抽出する。そして、信号抽出部215bは、抽出した校正信号を、校正値算出部216bに送出する。 The signal extractor 215b extracts the calibration signal from the signal sent by the extractor 213b- nk . Then, the signal extractor 215b sends the extracted calibration signal to the calibration value calculator 216b.
 校正値算出部216bは、信号抽出部215bにより送出された校正信号に基づいて、校正値を算出する。 The calibration value calculation unit 216b calculates a calibration value based on the calibration signal sent by the signal extraction unit 215b.
 この際、校正値算出部216bは、信号生成部206bにより送出された校正信号情報に基づいて、信号抽出部215bにより送出された校正信号のうち、空きチャネルの受信機203b-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する。校正値算出部216bによる上記処理は、送信機207b-k間の相対振幅位相誤差の算出に相当する。 At this time, based on the calibration signal information transmitted by the signal generation unit 206b, the calibration value calculation unit 216b determines whether the calibration signal transmitted by the signal extraction unit 215b has passed through the empty channel receiver 203b- nk . A relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal. The above processing by the calibration value calculator 216b corresponds to calculation of the relative amplitude phase error between the transmitters 207b-k.
 また、校正値算出部216bは、信号生成部206bにより送出された校正信号情報に基づいて、信号抽出部215bにより送出された校正信号のうち、有効チャネルの受信機203b-nを通過した校正信号から、系統毎に、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する。 Further, based on the calibration signal information sent by the signal generation unit 206b, the calibration value calculation unit 216b calculates the calibration signal that has passed through the receiver 203b- nk of the effective channel among the calibration signals sent by the signal extraction unit 215b. From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system.
 そして、校正値算出部216bは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する。
 そして、校正値算出部216bは、算出した校正値を示すデータを、DBF部204bに送出する。その後、DBF部204bは、上記校正値を示すデータに基づいて、信号に対する振幅及び位相の調整を実施する。
Then, the calibration value calculator 216b calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error.
Then, the calibration value calculation unit 216b sends data indicating the calculated calibration value to the DBF unit 204b. After that, the DBF section 204b adjusts the amplitude and phase of the signal based on the data indicating the calibration values.
 次に、図11に示す実施の形態5に係る受信装置の校正動作例について、図12を参照しながら説明する。ここでは、主に校正信号の流れについて説明を行う。 Next, an example of calibration operation of the receiver according to Embodiment 5 shown in FIG. 11 will be described with reference to FIG. Here, the flow of calibration signals will be mainly described.
 実施の形態5に係る受信装置は、例えば図11に示すように、冗長系を有していない受信装置である。このような受信装置では、全てのアンテナ素子201b-nで空間から信号を受信するのではなく、一部のアンテナ素子201b-nを用いて受信する場合があり、受信に用いられない受信系(空きチャネル)が存在する場合がある。
 そこで、実施の形態5に係る受信装置では、チャネル検出部217bが、信号処理部205bによる受信信号生成情報を用いて、有効チャネルと空きチャネルとを把握する。そして、校正経路切替部210b-kが、チャネル検出部217bで把握した情報を用いて、任意の空きチャネルに校正信号を注入する。
A receiver according to Embodiment 5 is a receiver without a redundant system, as shown in FIG. 11, for example. In such a receiving apparatus, there are cases where signals are received from the space using some of the antenna elements 201b-n k instead of all the antenna elements 201b-n k , and reception is not used for reception. A system (empty channel) may exist.
Therefore, in the receiving apparatus according to Embodiment 5, channel detection section 217b uses received signal generation information from signal processing section 205b to grasp effective channels and empty channels. Then, the calibration path switching section 210b-k injects the calibration signal into an arbitrary empty channel using the information grasped by the channel detection section 217b.
 なお、送信装置では、事前に、校正処理に関する条件設定が行われる。具体的には、送信装置では、校正信号の構成が決められる。校正信号の構成としては、位相変調波又は周波数変調波等のような任意の変調信号でもよいし、連続波(CW波)でもよい。校正信号は、受信信号に対して、時間方向で相関が低い(直交性の高い)変調波であることが望ましい。 It should be noted that, in the transmitting device, the conditions related to the calibration process are set in advance. Specifically, the transmitter determines the configuration of the calibration signal. The configuration of the calibration signal may be an arbitrary modulated signal such as a phase-modulated wave or a frequency-modulated wave, or may be a continuous wave (CW wave). The calibration signal is desirably a modulated wave with low correlation (high orthogonality) in the time direction with respect to the received signal.
 図11に示す実施の形態5に係る受信装置の校正動作例では、図12に示すように、まず、チャネル検出部217bは、信号処理部205bにより送出された受信信号生成情報に基づいて、有効チャネル及び空きチャネルを検出する(ステップST1201)。 In the calibration operation example of the receiver according to Embodiment 5 shown in FIG. 11, as shown in FIG. Channels and empty channels are detected (step ST1201).
 次いで、信号生成部206bは、校正信号を生成する。校正信号は、任意のシンボルパターンの信号である(ステップST1202)。そして、信号生成部206bは、生成した校正信号を、送信機207b-kにそれぞれ送出する。
 また、信号生成部206bは、どのような校正信号を生成したかという情報(校正信号情報)を校正値算出部216bに送出する。
The signal generator 206b then generates a calibration signal. A calibration signal is a signal of an arbitrary symbol pattern (step ST1202). Signal generator 206b then sends the generated calibration signals to transmitters 207b-k, respectively.
Further, the signal generator 206b sends information (calibration signal information) indicating what kind of calibration signal is generated to the calibration value calculator 216b.
 次いで、送信機207b-kは、校正信号が入力されると、当該校正信号をディジタル値からアナログ値へD/A変換してRF帯の信号に周波数変換する。そして、送信機207b-kは、周波数変換後の校正信号を電力増幅する。そして、送信機207b-kは、電力増幅後の校正信号を、対応する系統の分配器208b-kに送出する(ステップST1203)。 Next, when the calibration signal is input, the transmitter 207b-k D/A-converts the calibration signal from a digital value to an analog value and frequency-converts it into an RF band signal. Transmitters 207b-k then power-amplify the frequency-converted calibration signal. Transmitter 207b-k then transmits the power-amplified calibration signal to distributor 208b-k of the corresponding system (step ST1203).
 次いで、分配器208b-kは、校正信号が入力されると、当該校正信号を現用系及び冗長系の数(N+1個)に分割する。そして、分配器208b-kは、分割後の校正信号を、合成器209b及び対応する系統の校正経路切替部210b-kに送出する(ステップST1204)。 Next, when the calibration signal is input, the distributor 208b-k divides the calibration signal into the number of active systems and redundant systems (N+1). Then, distributor 208b-k sends the divided calibration signal to combiner 209b and calibration path switching section 210b-k of the corresponding system (step ST1204).
 その後、合成器209bは、分配器208b-kにより送出された校正信号を合成する。そして、合成器209bは、合成後の校正信号を、校正経路切替部211bに送出する。 The synthesizer 209b then synthesizes the calibration signals sent by the distributors 208b-k. Then, the combiner 209b sends the combined calibration signal to the calibration path switching section 211b.
 また、校正経路切替部211bは、合成器209bにより送出された校正信号を、校正経路切替部210b-kにそれぞれ送出する。 Further, the calibration path switching section 211b sends the calibration signal sent by the synthesizer 209b to the calibration path switching sections 210b-k, respectively.
 また、校正経路切替部210b-kは、チャネル検出部217bによる検出結果に基づいて、分配器208b-kにより送出された校正信号を、有効チャネルの注入部212b-nに送出する。
 また、校正経路切替部210b-kは、チャネル検出部217bによる検出結果に基づいて、校正経路切替部211bにより送出された校正信号を、空きチャネルの注入部212b-nのうちの1つの注入部212b-nに送出する。
Further, the calibration path switching section 210b-k transmits the calibration signal transmitted by the distributor 208b-k to the injection section 212b- nk of the effective channel based on the detection result by the channel detection section 217b.
Further, based on the detection result of the channel detection unit 217b, the calibration path switching unit 210b- k transfers the calibration signal sent by the calibration path switching unit 211b to one of the injection units 212b-nk of the idle channel. 212b- nk .
 次いで、注入部212b-nは、校正信号が入力されると、当該校正信号を対応する受信系の受信機203b-nに注入する(ステップST1205)。 Next, when the calibration signal is input, injection section 212b-nk injects the calibration signal into corresponding receiver 203b- nk of the receiving system (step ST1205 ).
 なお、注入部212b-nに入力される信号は、RF帯のアナログ信号であるため、方向性結合器(カップラ)又はスイッチ等のハードウェアから成る注入部212b-nにより注入可能である。 Since the signal input to the injection unit 212b- nk is an RF band analog signal, it can be injected by the injection unit 212b- nk comprising hardware such as a directional coupler (coupler) or a switch. .
 次いで、受信機203b-nは、校正信号が入力されると、当該校正信号を検波する(ステップST1206)。具体的には、受信機203b-nは、校正信号をA/D変換し、ベースバンドのディジタル信号とする。そして、受信機203b-nは、検波後の校正信号を、DBF部204bに送出する。 Next, receivers 203b-nk, upon receiving the calibration signal, detect the calibration signal (step ST1206 ). Specifically, the receiver 203b- nk performs A/D conversion on the calibration signal to obtain a baseband digital signal. Then, the receivers 203b- nk send the detected calibration signal to the DBF section 204b.
 次いで、受信装置(抽出部213b-n及び信号抽出部215b)は、受信機203b-nにより送出された校正信号を抽出する(ステップST1207)。そして、受信装置は、抽出した校正信号を、校正値算出部216bに送出する。 Next, the receiving device (extracting section 213b- nk and signal extracting section 215b) extracts the calibration signal sent from receiver 203b-nk (step ST1207 ). Then, the receiving device sends the extracted calibration signal to calibration value calculation section 216b.
 なお図11では、理解し易くするため、物理的な構造として抽出部213b-nを用い、受信信号と校正信号とに独立させて示している。しかしながら、この部分はディジタルデータの分離により実行可能である。そのため、実際には、物理的な経路の切替えなしで処理できる。したがって、スイッチ又は方向性結合器等、ハードウェア固有の周波数特性等が校正精度に影響を与える恐れもない。 In FIG. 11, for ease of understanding, the extraction units 213b- nk are used as physical structures, and the received signal and the calibration signal are shown separately. However, this part can be done by separating the digital data. Therefore, in practice, processing can be performed without physical route switching. Therefore, there is no possibility that the frequency characteristics or the like inherent in hardware such as switches or directional couplers will affect the calibration accuracy.
 次いで、校正値算出部216bは、信号生成部206bにより送出された校正信号情報に基づいて、信号抽出部215bにより送出された校正信号のうち、空きチャネルの受信機203b-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する(ステップST1208)。校正値算出部216bによる上記処理は、送信機207b-k間の相対振幅位相誤差の算出に相当する。 Next, based on the calibration signal information sent by the signal generation unit 206b, the calibration value calculation unit 216b calculates the calibration signal that has passed through the receiver 203b- nk of the idle channel among the calibration signals sent by the signal extraction unit 215b. A relative amplitude phase error (first relative amplitude phase error) is calculated from the signal (step ST1208). The above processing by the calibration value calculator 216b corresponds to calculation of the relative amplitude phase error between the transmitters 207b-k.
 また、校正値算出部216bは、信号生成部206bにより送出された校正信号情報に基づいて、信号抽出部215bにより送出された校正信号のうち、有効チャネルの受信機203b-nを通過した校正信号から、系統毎に、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する(ステップST1209)。 Further, based on the calibration signal information sent by the signal generation unit 206b, the calibration value calculation unit 216b calculates the calibration signal that has passed through the receiver 203b- nk of the effective channel among the calibration signals sent by the signal extraction unit 215b. From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system (step ST1209).
 次いで、校正値算出部216bは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する(ステップST1210)。すなわち、校正値算出部216bは、式(3),(4)から、振幅補正値及び位相補正値を算出する。
 そして、校正値算出部216bは、算出した校正値を示すデータを、DBF部204bに送出する。
Next, calibration value calculation section 216b calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST1210). That is, the calibration value calculator 216b calculates the amplitude correction value and the phase correction value from equations (3) and (4).
Then, the calibration value calculation unit 216b sends data indicating the calculated calibration value to the DBF unit 204b.
 その後、DBF部204bは、校正値算出部216bにより算出された校正値に基づいて、受信信号に対する振幅及び位相の調整を実施する(ステップST1211)。実施の形態5に係る受信装置は、この一連の処理を定期的に実施することで、受信機203b-nの健全性を担保することが可能となる。 After that, DBF section 204b adjusts the amplitude and phase of the received signal based on the calibration value calculated by calibration value calculation section 216b (step ST1211). The receiver according to Embodiment 5 can ensure the soundness of the receivers 203b- nk by periodically performing this series of processes.
 以上のように、この実施の形態5によれば、冗長系を有していない受信装置でも、アンテナ素子201b-n間の特性ばらつきである通過振幅位相誤差について、空きチャネルを利用して送信機207b-k間の誤差を取得してその誤差を加味した上で算出し校正でき、全ての校正値を同時に取得できる。これにより、実施の形態5に係る受信装置は、各校正用の機器(送信機207b-k)の通過特性を考慮した校正が可能となる。また、実施の形態5に係る受信装置は、出荷前の校正だけでなく、設置後においても運用中又は休止中等に柔軟に校正可能であり、より信頼性の高い校正が可能となる。 As described above, according to the fifth embodiment, even in a receiving apparatus having no redundant system, the transmission amplitude phase error, which is the characteristic variation among the antenna elements 201b to 201b, can be corrected using an empty channel. It is possible to acquire the error between the machines 207b-k, calculate and calibrate after considering the error, and acquire all the calibrated values at the same time. As a result, the receiving apparatus according to Embodiment 5 can perform calibration in consideration of the pass characteristics of each calibration device (transmitters 207b-k). Moreover, the receiving apparatus according to Embodiment 5 can be calibrated not only before shipment but also after installation, flexibly during operation or rest, so that more reliable calibration is possible.
実施の形態6.
 実施の形態4に係る受信装置では、合成器209aを用いた場合での構成を示した。これに対し、実施の形態6に係る送信装置では、合成器209aを用いない場合での構成について示す。
Embodiment 6.
In the receiving apparatus according to Embodiment 4, the configuration in which combiner 209a is used is shown. On the other hand, in the transmission apparatus according to Embodiment 6, a configuration in which combiner 209a is not used is shown.
 図13は実施の形態6に係る受信装置の構成例を示す図である。この図13に示す実施の形態6に係る受信装置では、図9に示す実施の形態4に係る受信装置に対し、合成器209aが取除かれ、信号記録部218aが追加され、分配器208a-k、校正経路切替部210a-k、校正経路切替部211a、信号抽出部215a及び校正値算出部216aの処理が異なる。図13に示す実施の形態6に係る受信装置におけるその他の構成は、図9に示す実施の形態4に係る受信装置と同様であり、同一の符号を付してその説明を省略する。 FIG. 13 is a diagram showing a configuration example of a receiving device according to Embodiment 6. FIG. In the receiver according to the sixth embodiment shown in FIG. 13, the combiner 209a is removed from the receiver according to the fourth embodiment shown in FIG. k, calibration path switching units 210a-k, calibration path switching unit 211a, signal extraction unit 215a, and calibration value calculation unit 216a. Other configurations of the receiving apparatus according to Embodiment 6 shown in FIG. 13 are the same as those of the receiving apparatus according to Embodiment 4 shown in FIG.
 分配器208a-kは、信号が入力されると、当該信号を現用系及び冗長系の数(N+1個)に分割する。そして、分配器208a-kは、分割後の信号を、対応する系統の校正経路切替部210a-kに送出する。 When a signal is input, the distributors 208a-k divide the signal into the number of active systems and redundant systems (N+1). Then, the distributors 208a-k send the divided signals to the calibration path switching units 210a-k of the corresponding system.
 校正経路切替部210a-kは、分配器208a-kにより送出された信号のうち、一部の信号を時分割で切替えながら、現用系且つ実行系の注入部212a-n及び校正経路切替部211aに送出する。 The calibration path switching units 210a-k switch part of the signals output from the distributors 208a-k in a time-sharing manner, while switching between the active and active injection units 212a-n k and the calibration path switching units. 211a.
 校正経路切替部211aは、校正経路切替部210a-kにより送出された信号を、冗長系の注入部212a-nに送出する。この際、校正経路切替部211aは、冗長系且つ実行系の注入部212a-n、及び、冗長系の注入部212a-nのうちの1つの待機系の注入部212a-nに、信号を送出する。 The calibration path switching unit 211a transmits the signal sent by the calibration path switching unit 210a- k to the redundant injection unit 212a-nk. At this time, the calibration path switching unit 211a causes the redundant and active injection units 212a-n k and one standby injection unit 212a-n k of the redundant injection units 212a-n k to Send a signal.
 信号抽出部215aは、抽出部213a-nにより送出された信号から、校正信号を抽出する。そして、信号抽出部215aは、抽出した校正信号を、信号記録部218aに送出する。 The signal extractor 215a extracts the calibration signal from the signals sent by the extractors 213a- nk . The signal extraction unit 215a then sends the extracted calibration signal to the signal recording unit 218a.
 信号記録部218aは、信号抽出部215aにより送出された校正信号を記録する。
 ここで、信号記録部218aとしては、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD等が該当する。
The signal recording section 218a records the calibration signal sent by the signal extracting section 215a.
Here, as the signal recording unit 218a, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, etc. is applicable.
 校正値算出部216aは、信号記録部218aに記録された校正信号に基づいて、校正値を算出する。 The calibration value calculation unit 216a calculates a calibration value based on the calibration signal recorded in the signal recording unit 218a.
 この際、校正値算出部216aは、信号生成部206aにより送出された校正信号情報に基づいて、信号記録部218aに記録された校正信号のうち、冗長系且つ待機系の受信機203a-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する。校正値算出部216aによる上記処理は、送信機207a-k間の相対振幅位相誤差の算出に相当する。 At this time, based on the calibration signal information sent by the signal generation unit 206a, the calibration value calculation unit 216a selects the redundant and standby receivers 203a-nk among the calibration signals recorded in the signal recording unit 218a . A relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signal that has passed through. The above processing by the calibration value calculator 216a corresponds to the calculation of the relative amplitude phase error between the transmitters 207a-k.
 また、校正値算出部216aは、信号生成部206aにより送出された校正信号情報に基づいて、信号記録部218aに記録された校正信号のうち、実行系の受信機203a-nを通過した校正信号から、系統毎に、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する。 Further, based on the calibration signal information sent by the signal generation unit 206a, the calibration value calculation unit 216a selects the calibration signal that has passed through the active receivers 203a- nk among the calibration signals recorded in the signal recording unit 218a. From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system.
 そして、校正値算出部216aは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する。
 そして、校正値算出部216aは、算出した校正値を示すデータを、DBF部204aに送出する。その後、DBF部204aは、上記校正値を示すデータに基づいて、信号に対する振幅及び位相の調整を実施する。
Then, the calibration value calculator 216a calculates a calibration value based on the first relative amplitude-phase error and the second relative amplitude-phase error.
Then, the calibration value calculation unit 216a sends data indicating the calculated calibration value to the DBF unit 204a. After that, the DBF unit 204a adjusts the amplitude and phase of the signal based on the data indicating the calibration values.
 次に、図13に示す実施の形態6に係る受信装置の校正動作例について、図14を参照しながら説明する。ここでは、主に校正信号の流れについて説明を行う。 Next, an example of calibration operation of the receiver according to Embodiment 6 shown in FIG. 13 will be described with reference to FIG. Here, the flow of calibration signals will be mainly described.
 ここで、実施の形態4に係る受信装置では、合成器209aにより合成された校正信号を用いることで、送信機207a-k間の相対振幅位相誤差を算出する場合を示した。しかしながら、これに限らず、合成器209aを用いずに、例えば、校正経路切替部210a-kにより校正経路の接続(送出対象である校正信号)を時分割で切替えることで、各校正経路を通過した全ての校正信号を取得することも可能である。 Here, in the receiver according to Embodiment 4, the case where the relative amplitude phase error between the transmitters 207a-k is calculated by using the calibration signal synthesized by the synthesizer 209a is shown. However, not limited to this, without using the synthesizer 209a, for example, by switching the connection of the calibration path (the calibration signal to be sent) by the calibration path switching units 210a-k in a time division manner, each calibration path can be passed. It is also possible to obtain all calibration signals that
 図14におけるステップST1401~ST1403までの処理は、図10におけるステップST1001~ST1003までの処理と同様であり、その説明を省略する。なお、分配器208a-kは、分割した校正信号を、対応する系統の校正経路切替部210a-kに送出する。 The processing from steps ST1401 to ST1403 in FIG. 14 is the same as the processing from steps ST1001 to ST1003 in FIG. 10, and the description thereof will be omitted. Note that the distributors 208a-k send the divided calibration signals to the calibration path switching units 210a-k of the corresponding systems.
 図13に示す実施の形態6に係る受信装置の校正動作例では、図14に示すように、校正経路切替部210a-kは、分配器208a-kにより送出された校正信号のうち、一部の校正信号を時分割で切替えながら、現用系且つ実行系の注入部212a-n及び校正経路切替部211aに送出する(ステップST1404)。 In the calibration operation example of the receiver according to Embodiment 6 shown in FIG. 13, as shown in FIG. are sent to the injection units 212a- nk and the calibration path switching unit 211a of the working and active systems while switching the calibration signals in a time division manner (step ST1404).
 その後、校正経路切替部211aは、校正経路切替部210a-kにより送出された校正信号を、冗長系の注入部212a-nに送出する。この際、校正経路切替部211aは、冗長系且つ実行系の注入部212a-n、及び、冗長系の注入部212a-nのうちの1つの待機系の注入部212a-nに、校正信号を送出する。 After that, the calibration path switching unit 211a transmits the calibration signal transmitted by the calibration path switching unit 210a- k to the injection unit 212a-nk of the redundant system. At this time, the calibration path switching unit 211a causes the redundant and active injection units 212a-n k and one standby injection unit 212a-n k of the redundant injection units 212a-n k to Send a calibration signal.
 次いで、注入部212a-nは、校正信号が入力されると、当該校正信号を対応する受信機203a-nに注入する(ステップST1405)。 Next, when the calibration signal is input, injection section 212a- nk injects the calibration signal into corresponding receiver 203a- nk (step ST1405).
 次いで、受信機203a-nは、校正信号が入力されると、当該校正信号を検波する(ステップST1406)。そして、受信機203a-nは、検波後の校正信号を、DBF部204aに送出する。 Next, receivers 203a-n k detect the calibration signal when the calibration signal is input (step ST1406). Receivers 203a- nk then send the detected calibration signal to DBF section 204a.
 次いで、受信装置(抽出部213a-n及び信号抽出部215a)は、受信機203a-nにより送出された校正信号を抽出する(ステップST1407)。そして、受信装置は、抽出した校正信号を、信号記録部218aに送出する。 Next, the receiving device (extracting section 213a- nk and signal extracting section 215a) extracts the calibration signal sent by receiver 203a-nk (step ST1407 ). Then, the receiving device sends the extracted calibration signal to the signal recording section 218a.
 次いで、信号記録部218aは、信号抽出部215aにより送出された校正信号を記録する(ステップST1408)。 Next, the signal recording section 218a records the calibration signal sent by the signal extracting section 215a (step ST1408).
 次いで、受信装置は、校正経路切替部210a-kを所望の切替回数だけ切替えたかを判定する(ステップST1409)。ここで、上記切替回数は、全ての系統における受信系の総数+初期状態の数であり、N×K+1である。
 このステップST1409において、受信装置が上記切替回数に達していないと判定した場合、シーケンスはステップST1404に戻る。その後、受信装置は、校正経路切替部210a-kにより異なる校正経路の組合わせに切替えながら、校正信号の注入、検波、抽出及び記録を行う。
Next, the receiving apparatus determines whether calibration path switching sections 210a-k have been switched a desired number of times (step ST1409). Here, the number of times of switching is the total number of receiving systems in all systems+the number of initial states, which is N×K+1.
In step ST1409, if the receiver determines that the number of times of switching has not been reached, the sequence returns to step ST1404. After that, the receiver injects, detects, extracts, and records the calibration signal while switching to a different combination of calibration paths by the calibration path switching units 210a-k.
 一方、ステップST1409において、受信装置が上記切替回数に達したと判定した場合、校正値算出部216aは、信号生成部206aにより送出された校正信号情報に基づいて、信号記録部218aに記録された校正信号のうち、冗長系且つ待機系である受信機203a-nを通過した校正信号から、相対振幅位相誤差(第1の相対振幅位相誤差)を算出する(ステップST1410)。校正値算出部216aによる上記処理は、送信機207a-k間の相対振幅位相誤差の算出に相当する。 On the other hand, in step ST1409, when the receiving apparatus determines that the number of times of switching has been reached, calibration value calculation section 216a performs calibration signal information recorded in signal recording section 218a based on the calibration signal information sent by signal generation section 206a. Of the calibration signals, the relative amplitude phase error (first relative amplitude phase error) is calculated from the calibration signals that have passed through the redundant and standby receivers 203a-nk (step ST1410 ). The above processing by the calibration value calculator 216a corresponds to the calculation of the relative amplitude phase error between the transmitters 207a-k.
 また、校正値算出部216aは、信号生成部206aにより送出された校正信号情報に基づいて、信号記録部218aに記録された校正信号のうち、実行系の受信機203a-nを通過した校正信号から、系統毎に、相対振幅位相誤差(第2の相対振幅位相誤差)を算出する(ステップST1411)。ここで、S-nは同一校正経路で複数存在するが、校正値算出部216aは、重複する校正信号については当該重複する校正信号のうちの1つの校正信号を用いて、相対振幅位相誤差を算出する。又は、校正値算出部216aは、上記重複する校正信号については当該重複する信号の平均値を用いて、相対振幅位相誤差を算出してもよい。 Further, based on the calibration signal information sent by the signal generation unit 206a, the calibration value calculation unit 216a selects the calibration signal that has passed through the active receivers 203a- nk among the calibration signals recorded in the signal recording unit 218a. From the signal, a relative amplitude phase error (second relative amplitude phase error) is calculated for each system (step ST1411). Here, a plurality of Sn k exist in the same calibration path, but the calibration value calculation unit 216a uses one of the overlapping calibration signals for the overlapping calibration signals to calculate the relative amplitude phase error Calculate Alternatively, the calibration value calculation section 216a may calculate the relative amplitude phase error using the average value of the overlapping calibration signals for the overlapping calibration signals.
 次いで、校正値算出部216aは、第1の相対振幅位相誤差及び第2の相対振幅位相誤差に基づいて、校正値を算出する(ステップST1412)。すなわち、校正値算出部216aは、式(3),(4)から、振幅補正値及び位相補正値を算出する。
 そして、校正値算出部216aは、算出した校正値を示すデータを、DBF部204aに送出する。
Next, calibration value calculation section 216a calculates a calibration value based on the first relative amplitude phase error and the second relative amplitude phase error (step ST1412). That is, the calibration value calculator 216a calculates the amplitude correction value and the phase correction value from equations (3) and (4).
Then, the calibration value calculation unit 216a sends data indicating the calculated calibration value to the DBF unit 204a.
 その後、DBF部204aは、校正値算出部216aにより算出された校正値に基づいて、受信信号に対する振幅及び位相の調整を実施する(ステップST1413)。実施の形態6に係る受信装置は、この一連の処理を定期的に実施することで、受信機203a-nの健全性を担保することが可能となる。 Thereafter, DBF section 204a adjusts the amplitude and phase of the received signal based on the calibration values calculated by calibration value calculation section 216a (step ST1413). The receiver according to Embodiment 6 can ensure the soundness of the receivers 203a- nk by periodically performing this series of processes.
 以上のように、この実施の形態6によれば、受信装置は、アンテナ素子201a-n間の特性ばらつきである通過振幅位相誤差について、合成器209aを用いずに時分割で校正経路を切替えることで、冗長系を利用して送信機207a-k間の誤差を取得してその誤差を加味した上で算出し校正でき、全ての校正値を同時に取得できる。これにより、実施の形態6に係る受信装置は、各校正用の機器(送信機207a-k)の通過特性を考慮した校正が可能となる。また、実施の形態6に係る受信装置は、出荷前の校正だけでなく、設置後においても運用中又は休止中等に柔軟に校正可能であり、より信頼性の高い校正が可能となる。 As described above, according to the sixth embodiment, the receiving apparatus switches the calibration path in a time division manner without using the combiner 209a for the pass amplitude phase error, which is the characteristic variation among the antenna elements 201a- nk . Thus, the error between the transmitters 207a-k can be obtained using the redundant system, and the error can be taken into account for calculation and calibration, and all calibration values can be obtained at the same time. As a result, the receiving apparatus according to Embodiment 6 can perform calibration in consideration of the pass characteristics of each calibration device (transmitters 207a-k). Moreover, the receiving apparatus according to Embodiment 6 can be calibrated flexibly not only before shipment but also during operation or rest after installation, so that more reliable calibration is possible.
 最後に、図15を参照して、実施の形態1における信号処理部114aのハードウェア構成例を説明する。なお以下では、実施の形態1における信号処理部114aのハードウェア構成例についてのみ説明するが、実施の形態2~6における信号処理部のハードウェア構成例についても同様である。
 信号処理部114aにおける信号抽出部115a及び校正値算出部116aの各機能は、処理回路501により実現される。処理回路501は、図15Aに示すように、専用のハードウェアであってもよいし、図15Bに示すように、メモリ503に格納されるプログラムを実行するCPU502であってもよい。
Finally, a hardware configuration example of the signal processing unit 114a according to the first embodiment will be described with reference to FIG. Although only the hardware configuration example of the signal processing unit 114a in the first embodiment will be described below, the hardware configuration examples of the signal processing units in the second to sixth embodiments are the same.
Each function of the signal extraction unit 115a and the calibration value calculation unit 116a in the signal processing unit 114a is realized by the processing circuit 501. FIG. The processing circuit 501 may be dedicated hardware as shown in FIG. 15A, or may be a CPU 502 that executes a program stored in a memory 503 as shown in FIG. 15B.
 処理回路501が専用のハードウェアである場合、処理回路501は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。信号抽出部115a及び校正値算出部116aの各部の機能それぞれを処理回路501で実現してもよいし、各部の機能をまとめて処理回路501で実現してもよい。 When the processing circuit 501 is dedicated hardware, the processing circuit 501 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate). Array), or a combination thereof. The functions of the signal extraction unit 115a and the calibration value calculation unit 116a may be implemented individually by the processing circuit 501, or the functions of the respective units may be collectively implemented by the processing circuit 501. FIG.
 処理回路501がCPU502の場合、信号抽出部115a及び校正値算出部116aの機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリ503に格納される。処理回路501は、メモリ503に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、信号処理部114aは、処理回路501により実行されるときに、例えば図2に示した各ステップが結果的に実行されることになるプログラムを格納するためのメモリ503を備える。また、これらのプログラムは、信号抽出部115a及び校正値算出部116aの手順及び方法をコンピュータに実行させるものであるともいえる。ここで、メモリ503としては、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、又はDVD等が該当する。 When the processing circuit 501 is the CPU 502, the functions of the signal extraction unit 115a and the calibration value calculation unit 116a are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the memory 503 . The processing circuit 501 reads out and executes a program stored in the memory 503 to realize the function of each unit. That is, the signal processing unit 114a includes a memory 503 for storing a program that, when executed by the processing circuit 501, results in execution of the steps shown in FIG. 2, for example. It can also be said that these programs cause a computer to execute the procedures and methods of the signal extraction unit 115a and the calibration value calculation unit 116a. Examples of the memory 503 include nonvolatile or volatile semiconductor memories such as RAM, ROM, flash memory, EPROM, and EEPROM, magnetic disks, flexible disks, optical disks, compact disks, minidisks, DVDs, and the like. do.
 なお、信号抽出部115a及び校正値算出部116aの各機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、信号抽出部115aについては専用のハードウェアとしての処理回路501でその機能を実現し、校正値算出部116aについては処理回路501がメモリ503に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 It should be noted that the functions of the signal extraction unit 115a and the calibration value calculation unit 116a may be partially realized by dedicated hardware and partially realized by software or firmware. For example, the function of the signal extraction unit 115a is realized by a processing circuit 501 as dedicated hardware, and the calibration value calculation unit 116a is implemented by the processing circuit 501 reading out and executing a program stored in the memory 503. It is possible to realize the function.
 このように、処理回路501は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。 In this way, the processing circuit 501 can implement each function described above by hardware, software, firmware, or a combination thereof.
 なお、各実施の形態の自由な組み合わせ、或いは各実施の形態の任意の構成要素の変形、若しくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component from each embodiment.
 本開示に係る送信装置は、各校正用の機器の通過特性を考慮した校正が可能となり、アレーアンテナを備えた送信装置等に用いるのに適している。 The transmission device according to the present disclosure enables calibration in consideration of the pass characteristics of each calibration device, and is suitable for use in transmission devices equipped with array antennas.
 101a,101b 信号処理部、102a,102b DBF部、103a-n,103b-n 送信機、104a-k 冗長系切替部、105a-n,105b-n アンテナ素子、106a,106b 信号生成部、107a-n,107b-n 注入部、108a-n,108b-n 抽出部、109a,109b 校正経路切替部、110a-k,110b-k 校正経路切替部、111a,111b 分配器、112a-k,112b-k 合成器、113a-k,113b-k 受信機、114a,114b 信号処理部、115a,115b 信号抽出部、116a,116b 校正値算出部、117b チャネル検出部、118a 信号記録部、201a-n,201b-n アンテナ素子、202a-k 冗長系切替部、203a-n,203b-n 受信機、204a,204b DBF部、205a,205b 信号処理部、206a,206b 信号生成部、207a-k,207b-k 送信機、208a-k,208b-k 分配器、209a,209b 合成器、210a-k,210b-k 校正経路切替部、211a,211b 校正経路切替部、212a-n,212b-n 注入部、213a-n,213b-n 抽出部、214a,214b 信号処理部、215a,215b 信号抽出部、216a,216b 校正値算出部、217b チャネル検出部、218a 信号記録部。 101a, 101b signal processing units, 102a, 102b DBF units, 103a-n k , 103b-n k transmitters, 104a-k redundant system switching units, 105a-n k , 105b-n k antenna elements, 106a, 106b signal generation section, 107a-n k , 107b-n k injection section, 108a-n k , 108b-n k extraction section, 109a, 109b calibration path switching section, 110a-k, 110b-k calibration path switching section, 111a, 111b distribution device, 112a-k, 112b-k combiner, 113a-k, 113b-k receiver, 114a, 114b signal processor, 115a, 115b signal extractor, 116a, 116b calibration value calculator, 117b channel detector, 118a Signal recording unit, 201a-n k , 201b-n k antenna element, 202a-k Redundant system switching unit, 203a-n k , 203b-n k receiver, 204a, 204b DBF unit, 205a, 205b Signal processing unit, 206a , 206b signal generators, 207a-k, 207b-k transmitters, 208a-k, 208b-k distributors, 209a, 209b combiners, 210a-k, 210b-k calibration path switching units, 211a, 211b calibration path switching section, 212a-n k , 212b-n k injection section, 213a-n k , 213b-n k extraction section, 214a, 214b signal processing section, 215a, 215b signal extraction section, 216a, 216b calibration value calculation section, 217b channel detector, 218a signal recorder;

Claims (22)

  1.  複数の送信系毎に設けられたアンテナ素子を有する複数系統のアレーアンテナと、
     送信系毎に設けられ、入力された信号に対して送信処理を行う送信機と、
     校正用の信号を生成する信号生成部と、
     前記信号生成部により生成された信号を、前記送信機のうちの、送信に用いられる送信系の送信機、及び、送信に用いられない送信系の送信機のうちの1つの送信機に、注入する注入部と、
     系統毎に設けられ、入力された信号に対して受信処理を行う受信機と、
     前記送信機のうちの送信に用いられる送信系の送信機により送信処理が行われた信号を、前記受信機のうちの対応する系統の受信機に送出し、前記送信機のうちの送信に用いられない送信系の送信機により送信処理が行われた信号を、前記受信機にそれぞれ送出する切替部と、
     前記受信機により受信処理が行われた信号に基づいて、振幅補正値及び位相補正値を算出する信号処理部と、
     前記信号処理部による算出結果に基づいて、前記送信機に送出する信号の振幅及び位相の調整を行うDBF部と
     を備えた送信装置。
    a plurality of system array antennas having antenna elements provided for each of a plurality of transmission systems;
    a transmitter that is provided for each transmission system and performs transmission processing on an input signal;
    a signal generator that generates a signal for calibration;
    The signal generated by the signal generation unit is injected into one of the transmitters of the transmitters of the transmission system used for transmission and the transmitters of the transmission system not used for transmission. an injection part that
    a receiver that is provided for each system and performs reception processing on an input signal;
    A signal subjected to transmission processing by a transmitter of a transmission system used for transmission among the transmitters is sent to a receiver of a corresponding system among the receivers, and used for transmission among the transmitters. a switching unit that transmits signals that have been subjected to transmission processing by a transmitter of a transmission system that cannot be transmitted to the receivers;
    a signal processing unit that calculates an amplitude correction value and a phase correction value based on a signal that has undergone reception processing by the receiver;
    A transmission device comprising: a DBF section that adjusts the amplitude and phase of a signal to be sent to the transmitter based on the calculation result of the signal processing section.
  2.  送信系は、現用系及び冗長系を有し、
     前記注入部は、前記信号生成部により生成された信号を、前記送信機のうちの、実行系の送信機、及び、冗長系の送信機のうちの1つの待機系の送信機に、注入し、
     前記切替部は、前記送信機のうちの実行系の送信機により送信処理が行われた信号を、前記受信機のうちの対応する系統の受信機に送出し、前記送信機のうちの冗長系且つ待機系の送信機により送信処理が行われた信号を、前記受信機にそれぞれ送出する
     ことを特徴とする請求項1記載の送信装置。
    The transmission system has a working system and a redundant system,
    The injection unit injects the signal generated by the signal generation unit into one of the active transmitters and one of the standby transmitters of the redundant transmitters of the transmitters. ,
    The switching unit outputs a signal subjected to transmission processing by a transmitter of an active system among the transmitters to a receiver of a corresponding system of the receivers, and a redundant system of the transmitters. 2. The transmission apparatus according to claim 1, further comprising: transmitting to each of the receivers the signal that has been subjected to transmission processing by a standby-system transmitter.
  3.  送信系のうちの有効チャネル及び空きチャネルを検出するチャネル検出部を備え、
     前記注入部は、前記チャネル検出部による検出結果に基づいて、前記信号生成部により生成された信号を、前記送信機のうちの、有効チャネルの送信機、及び、空きチャネルの送信機のうちの1つの送信機に、注入し、
     前記切替部は、前記チャネル検出部による検出結果に基づいて、前記送信機のうちの有効チャネルの送信機により送信処理が行われた信号を、前記受信機のうちの対応する系統の受信機に送出し、前記送信機のうちの空きチャネルの送信機により送信処理が行われた信号を、前記受信機にそれぞれ送出する
     ことを特徴とする請求項1記載の送信装置。
    A channel detection unit that detects effective channels and empty channels in the transmission system,
    The injection unit distributes the signal generated by the signal generation unit to one of the active channel transmitters and one of the empty channel transmitters among the transmitters, based on the detection result of the channel detection unit. Inject into one transmitter,
    Based on the detection result by the channel detection unit, the switching unit transmits a signal that has been subjected to transmission processing by the transmitter of the effective channel among the transmitters to the receiver of the corresponding system among the receivers. 2. The transmission device according to claim 1, wherein the signals subjected to transmission processing by the transmitters of the empty channels among the transmitters are respectively transmitted to the receivers.
  4.  前記切替部は、前記送信機により送信処理が行われた信号を、時分割に切替えながら前記受信機に送出する
     ことを特徴とする請求項2記載の送信装置。
    3. The transmitting apparatus according to claim 2, wherein the switching unit transmits the signal, which has undergone transmission processing by the transmitter, to the receiver while switching in a time division manner.
  5.  前記信号処理部は、前記受信機により受信処理が行われた信号のうち、送信に用いられる送信系を通過した信号から算出した相対振幅位相誤差、及び、送信に用いられない送信系を通過した信号から算出した相対振幅位相誤差を用いて、振幅補正値及び位相補正値を算出する
     ことを特徴とする請求項1記載の送信装置。
    The signal processing unit calculates the relative amplitude phase error calculated from the signal that has passed through the transmission system used for transmission, among the signals that have undergone reception processing by the receiver, and the signal that has passed through the transmission system that is not used for transmission 2. The transmission device according to claim 1, wherein the amplitude correction value and the phase correction value are calculated using the relative amplitude phase error calculated from the signal.
  6.  前記信号生成部は、位相変調波を校正用の信号として生成する
     ことを特徴とする請求項1記載の送信装置。
    The transmission device according to claim 1, wherein the signal generator generates a phase-modulated wave as a signal for calibration.
  7.  前記信号生成部は、周波数変調波を校正用の信号として生成する
     ことを特徴とする請求項1記載の送信装置。
    The transmission device according to claim 1, wherein the signal generator generates a frequency-modulated wave as a signal for calibration.
  8.  前記注入部は、ディジタルデータの加算により信号の注入を行う
     ことを特徴とする請求項1記載の送信装置。
    2. The transmission device according to claim 1, wherein the injection unit performs signal injection by adding digital data.
  9.  前記信号処理部は、前記受信機により受信処理が行われた信号のうち、重複する信号については当該重複する信号のうちの1つの信号を用いて、振幅補正値及び位相補正値を算出する
     ことを特徴とする請求項4記載の送信装置。
    The signal processing unit calculates an amplitude correction value and a phase correction value by using one of the overlapping signals among the signals subjected to reception processing by the receiver, with respect to the overlapping signals. 5. The transmitting device according to claim 4, characterized by:
  10.  前記信号処理部は、前記受信機により受信処理が行われた信号のうち、重複する信号については当該重複する信号の平均値を用いて、振幅補正値及び位相補正値を算出する
     ことを特徴とする請求項4記載の送信装置。
    The signal processing unit calculates an amplitude correction value and a phase correction value using an average value of overlapping signals among the signals subjected to reception processing by the receiver. 5. The transmitting device according to claim 4.
  11.  複数の受信系毎に設けられたアンテナ素子を有する複数系統のアレーアンテナと、
     校正用の信号を生成する信号生成部と、
     系統毎に設けられ、前記信号生成部により生成された信号に対して送信処理を行う送信機と、
     受信系毎に設けられ、入力された信号に対して受信処理を行う受信機と、
     受信系毎に設けられ、入力された信号を前記受信機に注入する注入部と、
     前記送信機により送信処理が行われた信号を前記注入部のうちの対応する系統且つ受信に用いられる受信系の注入部に送出するとともに、前記送信機により送信処理が行われた信号を前記注入部のうちの受信に用いられない受信系の1つの注入部に送出する切替部と、
     受信系毎に設けられ、前記受信機により受信処理が行われた信号を抽出する抽出部と、
     前記抽出部により抽出された信号に基づいて、振幅補正値及び位相補正値を算出する信号処理部と、
     前記信号処理部による算出結果に基づいて、前記受信機により受信処理が施された信号の振幅及び位相の調整を行うDBF部と
     を備えた受信装置。
    a plurality of system array antennas having antenna elements provided for each of the plurality of receiving systems;
    a signal generator that generates a signal for calibration;
    a transmitter that is provided for each system and performs transmission processing on the signal generated by the signal generation unit;
    a receiver that is provided for each receiving system and performs reception processing on an input signal;
    an injection unit provided for each receiving system for injecting an input signal into the receiver;
    The signal subjected to transmission processing by the transmitter is sent to the injection unit of the corresponding system of the injection units and the reception system used for reception, and the signal subjected to transmission processing by the transmitter is injected into the injection unit. a switching unit that transmits to one injection unit of the receiving system that is not used for reception among the units;
    an extraction unit provided for each receiving system for extracting a signal that has undergone reception processing by the receiver;
    a signal processing unit that calculates an amplitude correction value and a phase correction value based on the signal extracted by the extraction unit;
    A receiving apparatus comprising: a DBF section that adjusts the amplitude and phase of a signal that has been subjected to reception processing by the receiver, based on a calculation result by the signal processing section.
  12.  受信系は、現用系及び冗長系を有し、
     前記切替部は、前記送信機により送信処理が行われた信号を前記注入部のうちの対応する系統且つ実行系の注入部に送出するとともに、前記送信機により送信処理が行われた信号を前記注入部のうちの冗長系の注入部のうちの1つの待機系の注入部に送出する
     ことを特徴とする請求項11記載の受信装置。
    The receiving system has a working system and a redundant system,
    The switching unit sends the signal subjected to transmission processing by the transmitter to the injection unit of the corresponding system and active system of the injection units, and transmits the signal subjected to transmission processing by the transmitter to the injection unit of the corresponding system and active system. 12. The receiving apparatus according to claim 11, wherein the signal is sent to one of the standby injection units of the redundant injection units of the injection units.
  13.  受信系のうちの有効チャネル及び空きチャネルを検出するチャネル検出部を備え、
     前記切替部は、前記チャネル検出部による検出結果に基づいて、前記送信機により送信処理が行われた信号を前記注入部のうちの対応する系統且つ有効チャネルの注入部に送出するとともに、前記送信機により送信処理が行われた信号を前記注入部のうちの空きチャネルの1つの注入部に送出する
     ことを特徴とする請求項11記載の受信装置。
    Equipped with a channel detection unit that detects effective channels and empty channels in the receiving system,
    The switching unit transmits the signal, which has undergone transmission processing by the transmitter, to the injection unit of the corresponding system and effective channel among the injection units based on the detection result of the channel detection unit, and 12. The receiving apparatus according to claim 11, wherein the signal subjected to transmission processing by the receiver is sent to one injection section of an empty channel among the injection sections.
  14.  前記切替部は、前記送信機により送信処理が行われた信号を、時分割に切替えながら前記受信機に送出する
     ことを特徴とする請求項12記載の受信装置。
    13. The receiving apparatus according to claim 12, wherein the switching unit transmits the signal, which has undergone transmission processing by the transmitter, to the receiver while switching in a time division manner.
  15.  前記信号処理部は、前記抽出部により抽出された信号のうち、受信に用いられる受信系を通過した信号から算出した相対振幅位相誤差、及び、受信に用いられない受信系を通過した信号から算出した相対振幅位相誤差を用いて、振幅補正値及び位相補正値を算出する
     ことを特徴とする請求項11記載の受信装置。
    Among the signals extracted by the extraction unit, the signal processing unit calculates a relative amplitude phase error calculated from a signal that has passed through a receiving system used for reception, and a signal that has passed through a receiving system that is not used for reception. 12. The receiving apparatus according to claim 11, wherein an amplitude correction value and a phase correction value are calculated using the obtained relative amplitude phase error.
  16.  前記信号生成部は、位相変調波を校正用の信号として生成する
     ことを特徴とする請求項11記載の受信装置。
    12. The receiving apparatus according to claim 11, wherein the signal generator generates a phase-modulated wave as a signal for calibration.
  17.  前記信号生成部は、周波数変調波を校正用の信号として生成する
     ことを特徴とする請求項11記載の受信装置。
    12. The receiving apparatus according to claim 11, wherein the signal generator generates a frequency-modulated wave as a signal for calibration.
  18.  前記抽出部は、ディジタルデータの分離により信号の抽出を行う
     ことを特徴とする請求項11記載の受信装置。
    12. The receiving apparatus according to claim 11, wherein the extraction unit extracts the signal by separating digital data.
  19.  前記信号処理部は、前記抽出部により抽出された信号のうち、重複する信号については当該重複する信号のうちの1つの信号を用いて、振幅補正値及び位相補正値を算出する
     ことを特徴とする請求項14記載の受信装置。
    The signal processing unit calculates an amplitude correction value and a phase correction value using one of the overlapping signals among the signals extracted by the extracting unit. 15. The receiving device according to claim 14.
  20.  前記信号処理部は、前記抽出部により抽出された信号のうち、重複する信号については当該重複する信号の平均値を用いて、振幅補正値及び位相補正値を算出する
     ことを特徴とする請求項14記載の受信装置。
    3. The signal processing unit calculates an amplitude correction value and a phase correction value using an average value of overlapping signals among the signals extracted by the extracting unit, for overlapping signals. 15. The receiving device according to 14.
  21.  複数の送信系毎に設けられたアンテナ素子を有する複数系統のアレーアンテナを備えた送信装置の校正方法であって、
     送信系毎に設けられた送信機が、入力された信号に対して送信処理を行うステップと、
     信号生成部が、校正用の信号を生成するステップと、
     注入部が、前記信号生成部により生成された信号を、前記送信機のうちの、送信に用いられる送信系の送信機、及び、送信に用いられない送信系の送信機のうちの1つの送信機に、注入するステップと、
     系統毎に設けられた受信機が、入力された信号に対して受信処理を行うステップと、
     切替部が、前記送信機のうちの送信に用いられる送信系の送信機により送信処理が行われた信号を、前記受信機のうちの対応する系統の受信機に送出し、前記送信機のうちの送信に用いられない送信系の送信機により送信処理が行われた信号を、前記受信機にそれぞれ送出するステップと、
     信号処理部が、前記受信機により受信処理が行われた信号に基づいて、振幅補正値及び位相補正値を算出するステップと、
     DBF部が、前記信号処理部による算出結果に基づいて、前記送信機に送出する信号の振幅及び位相の調整を行うステップと
     を有する送信装置の校正方法。
    A method for calibrating a transmission device having a plurality of systems of array antennas having antenna elements provided for each of a plurality of transmission systems,
    a step in which a transmitter provided for each transmission system performs transmission processing on an input signal;
    a signal generator generating a signal for calibration;
    The injection unit transmits the signal generated by the signal generation unit to one of the transmitter of the transmission system used for transmission and the transmitter of the transmission system not used for transmission among the transmitters injecting into the machine;
    a step in which a receiver provided for each system performs reception processing on the input signal;
    a switching unit for transmitting a signal subjected to transmission processing by a transmitter of a transmission system used for transmission among the transmitters to a receiver of a corresponding system among the receivers; a step of transmitting to each of the receivers signals that have undergone transmission processing by transmitters of a transmission system that are not used for transmission of
    a step in which the signal processing unit calculates an amplitude correction value and a phase correction value based on the signal subjected to reception processing by the receiver;
    A method of calibrating a transmitter, comprising: a step in which a DBF unit adjusts the amplitude and phase of a signal to be sent to the transmitter based on the calculation result by the signal processing unit.
  22.  複数の受信系毎に設けられたアンテナ素子を有する複数系統のアレーアンテナを備えた受信装置の校正方法であって、
     信号生成部が、校正用の信号を生成するステップと、
     系統毎に設けられた送信機が、前記信号生成部により生成された信号に対して送信処理を行うステップと、
     受信系毎に設けられた受信機が、入力された信号に対して受信処理を行うステップと、
     受信系毎に設けられた注入部が、入力された信号を前記受信機に注入するステップと、
     切替部が、前記送信機により送信処理が行われた信号を前記注入部のうちの対応する系統且つ受信に用いられる受信系の注入部に送出するとともに、前記送信機により送信処理が行われた信号を前記注入部のうちの受信に用いられない受信系の1つの注入部に送出するステップと、
     受信系毎に設けられた抽出部が、前記受信機により受信処理が行われた信号を抽出するステップと、
     信号処理部が、前記抽出部により抽出された信号に基づいて、振幅補正値及び位相補正値を算出するステップと、
     DBF部が、前記信号処理部による算出結果に基づいて、前記受信機により受信処理が施された信号の振幅及び位相の調整を行うステップと
     を有する受信装置の校正方法。
    A method for calibrating a receiving device having a plurality of systems of array antennas having antenna elements provided for each of a plurality of receiving systems,
    a signal generator generating a signal for calibration;
    a step in which a transmitter provided for each system performs transmission processing on the signal generated by the signal generation unit;
    a step in which a receiver provided for each receiving system performs reception processing on an input signal;
    a step in which an injection unit provided for each receiving system injects the input signal into the receiver;
    The switching unit sends the signal, which has been subjected to transmission processing by the transmitter, to the injection unit of the corresponding system of the injection units and the reception system used for reception, and the transmission processing is performed by the transmitter. a step of sending the signal to one injection part of a receiving system that is not used for reception among the injection parts;
    a step in which an extraction unit provided for each receiving system extracts a signal that has undergone reception processing by the receiver;
    a signal processing unit calculating an amplitude correction value and a phase correction value based on the signal extracted by the extraction unit;
    A method for calibrating a receiver, comprising a step in which a DBF unit adjusts the amplitude and phase of a signal that has undergone reception processing by the receiver, based on a calculation result by the signal processing unit.
PCT/JP2021/009399 2021-03-10 2021-03-10 Transmission device, reception device, transmission device calibration method, and reception device calibration method WO2022190228A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/009399 WO2022190228A1 (en) 2021-03-10 2021-03-10 Transmission device, reception device, transmission device calibration method, and reception device calibration method
JP2021541431A JPWO2022190228A1 (en) 2021-03-10 2021-03-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009399 WO2022190228A1 (en) 2021-03-10 2021-03-10 Transmission device, reception device, transmission device calibration method, and reception device calibration method

Publications (1)

Publication Number Publication Date
WO2022190228A1 true WO2022190228A1 (en) 2022-09-15

Family

ID=83226389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009399 WO2022190228A1 (en) 2021-03-10 2021-03-10 Transmission device, reception device, transmission device calibration method, and reception device calibration method

Country Status (2)

Country Link
JP (1) JPWO2022190228A1 (en)
WO (1) WO2022190228A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009665A (en) * 2017-06-27 2019-01-17 富士通株式会社 Radio communication device and calibration method
WO2019176388A1 (en) * 2018-03-13 2019-09-19 日本電気株式会社 Wireless communication system, wireless communication device, wireless communication method, and non-transitory computer-readable medium
JP2020057968A (en) * 2018-10-03 2020-04-09 日本電気株式会社 Transmission/reception baseband processing device, communication system, correction method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009665A (en) * 2017-06-27 2019-01-17 富士通株式会社 Radio communication device and calibration method
WO2019176388A1 (en) * 2018-03-13 2019-09-19 日本電気株式会社 Wireless communication system, wireless communication device, wireless communication method, and non-transitory computer-readable medium
JP2020057968A (en) * 2018-10-03 2020-04-09 日本電気株式会社 Transmission/reception baseband processing device, communication system, correction method, and program

Also Published As

Publication number Publication date
JPWO2022190228A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JP5489362B2 (en) Calibration apparatus and calibration method
US10333633B2 (en) Angle of arrival estimation in a radio communications network
EP0840961B1 (en) Self-calibration apparatus and method for communication device
JP3880993B2 (en) Method and apparatus for error compensation in a hybrid matrix amplification system
US20010016505A1 (en) Calibration method for an adaptive antenna system
JP5966419B2 (en) Antenna scanning device and wireless device using the same
JPWO2020021628A1 (en) Array antenna calibration device and calibration method, array antenna, and program
JP2017143356A (en) Antenna device
WO2022190228A1 (en) Transmission device, reception device, transmission device calibration method, and reception device calibration method
CN100442080C (en) Radar apparatus
US10009073B2 (en) System for acquiring channel knowledge and method thereof
EP3127251B1 (en) Signal distribution network
JP7182929B2 (en) Radar system and signal processing method
JP2010068482A (en) Array antenna apparatus
KR100392253B1 (en) Mobile Active Antenna System and its Tracking Method for Multi-satellite signal reception
JP2010081307A (en) Repeater base station apparatus and isolation adjustment method
JP6659642B2 (en) Array antenna device and calibration method
US20170005894A1 (en) System for measuring multi-port amplifier errors
US20230261374A1 (en) Mimo antenna system and method
KR102356692B1 (en) Beamforming power transmitter having shared structure
WO2023017726A1 (en) Spectrum analysis program, signal processing device, radar device, communication terminal, fixed communication device, and recording medium
JP3616502B2 (en) Transceiver module
JPH11160414A (en) Dbf radar apparatus
US20040002304A1 (en) Receiving apparatus, receiving method, receiving program, recording medium with the program recorded therein and communication system
JP2001203629A (en) Adaptive zone forming system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021541431

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930085

Country of ref document: EP

Kind code of ref document: A1