WO2022190225A1 - Balloon-type electrode catheter - Google Patents

Balloon-type electrode catheter Download PDF

Info

Publication number
WO2022190225A1
WO2022190225A1 PCT/JP2021/009394 JP2021009394W WO2022190225A1 WO 2022190225 A1 WO2022190225 A1 WO 2022190225A1 JP 2021009394 W JP2021009394 W JP 2021009394W WO 2022190225 A1 WO2022190225 A1 WO 2022190225A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
outer tube
sub
lumen
lumens
Prior art date
Application number
PCT/JP2021/009394
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 飯島
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to PCT/JP2021/009394 priority Critical patent/WO2022190225A1/en
Publication of WO2022190225A1 publication Critical patent/WO2022190225A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the present invention relates to a balloon-type electrode catheter for high-frequency ablation treatment.
  • an outer tube catheter shaft
  • a balloon connected to the tip of the outer tube and an outer tube
  • the inner tube guidewire lumen
  • the lumen tube supply lumen
  • the lumen tube inserted through the lumen of the outer tube to supply fluid to the inside of the balloon
  • the inside of the balloon A device comprising a lumen tube (return lumen) inserted through the lumen of the outer tube for discharging the fluid supplied to the balloon and a surface electrode provided on the outer surface of the balloon is introduced (see below). See Patent Document 1).
  • a balloon that constitutes the balloon-type electrode catheter described in Patent Document 1 has an expansion portion that expands and contracts and neck portions formed at both ends thereof, and the proximal neck portion is fixed to the outer tube. and the distal neck portion is fixed to the inner tube (guidewire lumen).
  • a fluid supplied to the inside of the balloon by a lumen tube is circulated inside the balloon, and then discharged from the lumen tube (return lumen). Ejection is intended to cool the interior of the balloon, thereby cooling the tissue surrounding the surface electrodes.
  • both the lumen tube (supply lumen) and the lumen tube (return lumen) are open near the proximal end of the balloon. After expansion, the fluid supplied to the inside of the balloon from the opening of the lumen tube (supply lumen) is immediately discharged from the opening of the lumen tube (return lumen) without flowing and circulating in the distal direction. Therefore, there is a problem that the inside of the balloon and the surrounding tissue of the surface electrodes cannot be sufficiently cooled.
  • the present applicant has proposed a balloon-type electrode catheter for performing high-frequency ablation treatment, an outer tube having a central lumen and a plurality of sub-lumens arranged around the central lumen, a current-carrying connector arranged on the base end side of the outer tube; It has an expanding portion that expands and contracts and neck portions that are continuous to both ends thereof, the proximal neck portion being fixed to the distal end portion of the outer tube, and the expanding portion enclosing the distal end portion of the outer tube.
  • a balloon connected to the distal end side of the outer tube; an inner shaft that is inserted through the central lumen of the outer tube, extends into the balloon from the opening of the central lumen, is fixed to a distal neck portion of the balloon, and extends to the outside of the balloon; a surface electrode made of a thin metal film formed on the outer surface of the balloon at least in the expanded portion of the balloon; a conductor for electrically connecting the surface electrode and the conducting connector; at least one of the sub-lumens of the outer tube is a fluid-supplying sub-lumen through which the fluid is circulated in order to supply the fluid to the inside of the balloon; at least one of the sub-lumens of the outer tube is a fluid-discharging sub-lumen through which the fluid supplied to the balloon is discharged from the balloon;
  • the outer tube has a tubular portion extending in the proximal direction from the proximal end of the extension portion or a position in the vicinity thereof; a semi-circular tubular portion extending from the base end
  • the fluid is discharged (supplied) from the opening of the fluid supply sub-lumen formed in the distal end surface of the semicircular tubular portion, which is the distal end surface of the outer tube.
  • the fluid is discharged from the opening of the fluid discharge sub-lumen formed in the distal end surface of the circular tubular portion located at or near the proximal end, thereby causing the fluid to flow from the distal end side to the proximal end side inside the balloon.
  • the inside of the balloon and, by extension, the tissue surrounding the surface electrodes can be sufficiently cooled.
  • the balloon-type electrode catheter described in Patent Document 2 cannot exhibit a uniform cooling effect in the circumferential direction of the balloon. That is, the flow (flow rate) of the fluid from the distal end side to the proximal end side inside the balloon is small on the semicircular side where the semicircular tubular portion is arranged (where the fluid supply sub-lumen extends). It is larger on the semi-peripheral side where the tubular portion is not arranged (where the opening of the fluid discharge sub-lumen is located). For this reason, the inside of the balloon on the semicircular side where the semicircular tubular portion is arranged cannot be sufficiently cooled, and there is a new problem that cooling unevenness (in other words, cauterization unevenness) occurs in the circumferential direction of the balloon. occured.
  • cooling unevenness in other words, cauterization unevenness
  • An object of the present invention is to provide a balloon-type electrode catheter capable of uniformly cooling the inside of the balloon in the circumferential direction of the balloon.
  • a balloon-type electrode catheter of the present invention is a balloon-type electrode catheter for performing high-frequency ablation treatment, an outer tube having a central lumen and at least four sub-lumens arranged therearound; a current-carrying connector arranged on the base end side of the outer tube; It has an expanding portion that expands and contracts and neck portions that are continuous to both ends thereof, the proximal neck portion being fixed to the distal end portion of the outer tube, and the expanding portion enclosing the distal end portion of the outer tube.
  • a balloon connected to the distal end side of the outer tube; an inner shaft that is inserted through the central lumen of the outer tube, extends into the balloon from the opening of the central lumen, is fixed to a distal neck portion of the balloon, and extends to the outside of the balloon; a surface electrode made of a thin metal film formed on the outer surface of the balloon at least in the expanded portion of the balloon; a conducting wire that electrically connects the surface electrode and the current-carrying connector; at least two of the sub-lumens of the outer tube are fluid-supplying sub-lumens for circulating a cooling fluid to be supplied to the inside of the balloon; at least two of the sub-lumens of the outer tube are fluid-discharging sub-lumens for circulating the cooled fluid discharged from the inside of the balloon;
  • the outer tube is formed with an opening for the fluid supply sub-lumen on the distal end side of the intermediate position of the extension portion, and an opening for the fluid discharge sub-lumen is formed near the proximal end of
  • the fluid supply sub-lumen and the fluid discharge sub-lumen are seen in the cross-sectional view of each divided portion.
  • the feature is that the area ratio to the sublumen is always in the range of 40:60 to 60:40.
  • the opening of the fluid supply sub-lumen is formed on the tip side of the intermediate position in the axial direction of the expanded portion of the balloon, and the opening of the fluid discharge sub-lumen is formed on the expanded portion.
  • the fluid supply port to the interior of the balloon and the fluid discharge port from the interior of the balloon are axially displaced from each other, thereby expanding the balloon.
  • a fluid flow is formed from the distal end side to the proximal end side inside the balloon, and the fluid can flow in the axial direction inside the balloon.
  • the tissue inside the balloon and thus surrounding the surface electrodes can be sufficiently cooled.
  • the fluid supply sub-lumen and the fluid supply sub-lumen are seen in the cross-sectional view of each divided part. Since the area ratio to the lumen is always in the range of 40:60 to 60:40, the total area ratio of the fluid supply sub-lumen and the fluid supply sub-lumen in the outer tube is 40:60 to 60:40. Since the fluid-supplying sub-lumens and the fluid-supplying sub-lumens are not ubiquitous on either half-circumferential side of the balloon in the circumferential direction, The fluid flow can be uniform in the circumferential direction of the balloon, thereby cooling the interior of the balloon uniformly in the circumferential direction.
  • the outer tube is a circular multi-lumen tube over its entire length
  • the opening of the fluid supply sub-lumen is formed on the distal end surface of the outer tube
  • the opening of the fluid discharge sub-lumen is formed on the outer peripheral surface of the outer tube.
  • the outer tube including the distal end portion extending inside the balloon has a circular tube shape, so that the flow path of the fluid inside the balloon (the inner peripheral surface of the balloon and the Since the flow path partitioned by the outer peripheral surface of the outer tube) is formed uniformly in the circumferential direction, the flow of the fluid from the distal side to the proximal side inside the balloon is more uniform in the circumferential direction of the balloon.
  • the fluid supply sub-lumens and the fluid discharge sub-lumens are alternately arranged along the circumferential direction of the outer tube. .
  • the balloon-type electrode catheter having such a configuration, it is possible to reliably prevent the fluid-supplying sub-lumen and the fluid-supplying sub-lumen from being omnipresent on either half-circumference side of the balloon in the circumferential direction. .
  • the number of the fluid supply sub-lumens and the number of the fluid discharge sub-lumens are 2 to 5, respectively.
  • the number of the fluid supply sub-lumens and the number of the fluid discharge sub-lumens is two or more.
  • the sub-lumens can be opposed, and two fluid discharge sub-lumens can be opposed. Further, since the number of the fluid supply sub-lumens and the number of the fluid discharge sub-lumens are each 5 or less, the resistance of the fluid flowing through the lumens (pipe resistance) can be kept low, and a sufficient flow rate can be ensured.
  • the circumferential direction range is 0° to 90° and the circumferential direction is 180° to 270°, with an arbitrary circumferential position of the outer tube as a reference (0°).
  • one or more fluid ejection sub-lumens are formed in each of the ranges;
  • One or more fluid supply sub-lumens are preferably formed in each of the circumferential range of 90° to 180° and the circumferential range of 270° to 360°.
  • the fluid discharge sub-lumen having an opening on the outer peripheral surface of the outer tube may extend to the distal end of the outer tube and open at the distal end surface.
  • the outer tube can be configured with a multi-lumen tube having the same lumen structure over the entire length.
  • the opening of the fluid discharge sub-lumen is formed on the outer peripheral surface of the outer tube, it is substantially possible to prevent the fluid from flowing into the fluid discharge sub-lumen from the opening formed on the distal end surface of the outer tube. can be prevented.
  • the opening of the fluid discharge sub-lumen formed on the outer peripheral surface of the outer tube corresponds to the fluid discharge sub-lumen formed on the distal end surface. It is preferably larger in area than said opening of the lumen.
  • the fluid is efficiently allowed to flow into the fluid discharge sub-lumen from the opening formed on the outer peripheral surface of the outer tube, and the sub-lumen is formed on the distal end surface of the outer tube. Inflow from the opening can be effectively prevented.
  • the opening of the fluid discharge sub-lumen on the distal end surface of the outer tube may be closed.
  • the balloon-type electrode catheter having such a configuration, it is possible to reliably prevent the inflow of fluid from the opening of the fluid discharge sub-lumen formed on the distal end surface of the outer tube.
  • the inside of the balloon and, by extension, the tissue around the surface electrode can be sufficiently cooled, and the inside of the balloon is uniformly cooled in the circumferential direction of the balloon. be able to.
  • FIG. 1 is a plan view of a balloon-type electrode catheter according to a first embodiment of the present invention
  • FIG. FIG. 2 is a partially broken front view of the balloon electrode catheter shown in FIG. 1 (a front view including the II-II cross section in FIG. 1);
  • FIG. 2 is a plan view (detailed view of section III in FIG. 1) showing the tip portion of the balloon electrode catheter shown in FIG. 1;
  • FIG. 4 is a sectional view along IV-IV in FIG. 3;
  • FIG. 4 is a cross-sectional view taken along line VV of FIG. 3;
  • FIG. 5 is a partially enlarged view (cross-sectional view of an outer tube) of FIG. 4;
  • FIG. 5 is a partially enlarged view (cross-sectional view of an outer tube) of FIG. 4;
  • FIG. 4 is a partially enlarged view (cross-sectional view of an outer tube) of FIG. 4;
  • FIG. 5 is a partially enlarged view (cross-sectional view of an outer tube)
  • FIG. 5 is a partially enlarged view (cross-sectional view of an outer tube) of FIG. 4;
  • FIG. 10 is a plan view showing the tip portion of a balloon-type electrode catheter according to a second embodiment of the present invention;
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII of FIG. 7;
  • FIG. 8 is a cross-sectional view taken along line IX-IX of FIG. 7;
  • FIG. 9 is a partially enlarged view of FIG. 8 (cross-sectional view of an outer tube);
  • FIG. 9 is a partially enlarged view of FIG. 8 (cross-sectional view of an outer tube);
  • 2 is a cross-sectional view of an outer tube that constitutes the balloon-type electrode catheter described in Patent Document 2.
  • FIG. 2 is a cross-sectional view of an outer tube that constitutes the balloon-type electrode catheter described in Patent Document 2.
  • FIG. 2 is a cross-sectional view of an outer tube that constitutes the balloon-type electrode catheter described in Patent Document
  • the balloon-type electrode catheter 100 of this embodiment is a balloon-type electrode that is introduced intravascularly to treat focal tissue, such as tumors, in or around a vessel by high-frequency ablation. a catheter.
  • This balloon-type electrode catheter 100 comprises a circular tubular outer tube 10 having a central lumen 10L and sub-lumens 101L to 112L arranged therearound; and an electrical connector 21 arranged on the proximal end side of the outer tube 10.
  • a fluid supply connector 22 arranged on the proximal end side of the outer tube 10;
  • a fluid discharge connector 23 arranged on the proximal end side of the outer tube 10;
  • the proximal neck portion 35 is fixed to the distal end portion of the outer tube 10, and the extended portion 31 includes the distal end portion of the outer tube 10.
  • a balloon 30 connected to the distal end side of the outer tube 10; and a guide wire lumen, which is inserted through the central lumen 10L of the outer tube 10 and extends from the opening of the central lumen 10L to the inside of the balloon 30. and a lumen (guide wire lumen) that communicates with the guide wire lumen of the inner tube 41, is connected to the distal end of the inner tube 41 inside the balloon 30, and is connected to the distal neck portion 33
  • a distal tip 46 fixed to and extending outside the balloon 30 strip electrodes 51 to 54 (surface electrodes) made of metal thin films formed on the outer surfaces of the expanded portion 31 and the distal neck portion 33 of the balloon 30; and strip electrodes 51 attached to the distal neck portion 33 of the balloon 30 to 54 are fixed to the outer peripheral surface thereof, the metal ring 60 is electrically connected to each of the strip electrodes 51 to 54; and the tip is connected to the inner peripheral surface of the metal ring 60.
  • the conducting wire 70 extending to the inside of the balloon 30 and the sub-lumen 106L of the outer tube 10, and having its proximal end connected to the electrical connector 21; ) is embedded, extends to the tube wall of the extension portion 31 and the proximal neck portion 35 and the sub-lumen 112L of the outer tube 10, and has its proximal end connected to the electrical connector 21, a temperature sensor (thermocouple) 80
  • the sub-lumens 102L, 104L, 107L, 109L, and 111L of the outer tube 10 communicate with the fluid supply connector 22, respectively, so that cooling fluid supplied to the inside of the balloon 30 is provided.
  • the sub-lumens 101L, 103L, 105L, 108L and 110L of the outer tube 10 are fluid supply sub-lumens for circulating the fluid.
  • the outer tube 10 has sub-lumens 101L to 112L on its distal end surface 12 located on the distal end side of the intermediate position of the extended portion 31.
  • Openings are formed, and openings of the fluid discharge sub-lumens 101L, 103L, 105L, 108L and 110L are formed on the outer peripheral surface of the extended portion 31 located near the proximal end thereof;
  • the area to lumen ratio is always in the range of 40:60 to 60:40.
  • 20 is a Y connector connected to the proximal end of the outer tube 10
  • 24 is a guide wire connector
  • 26 is a wire protection tube
  • 27 is a fluid supply tube
  • 28 is a fluid discharge tube.
  • the outer tube 10 constituting the balloon-type electrode catheter 100 is a circular tube having a central lumen 10L and 12 sub-lumens 101L to 112L arranged at equiangular (30°) intervals around the central lumen 10L.
  • Each of the sub-lumens 101L to 112L is formed by a lumen tube surrounding it, and these lumen tubes are fixed by the binder resin forming the outer tube 10. As shown in FIG.
  • Each of the sub-lumens 101L to 112L opens at the distal end surface 12 of the outer tube 10.
  • Each of the sub-lumens 102L, 104L, 107L, 109L and 111L communicates with the fluid supply connector 22 shown in FIGS.
  • the sub-lumens 102L, 104L, 107L, 109L and 111L become "fluid-supplying sub-lumens" for supplying fluid to the inside of the balloon 30 (expansion portion 31).
  • physiological saline can be exemplified as the fluid supplied inside the balloon 30 .
  • Each of the sub-lumens 101L, 103L, 105L, 108L and 110L communicates with the fluid discharge connector 23 shown in FIGS.
  • the sub-lumens 101L, 103L, 105L, 108L and 110L become "fluid discharge sub-lumens" for discharging the fluid supplied to the inside of the balloon 30 (expansion portion 31) from the inside of the balloon 30.
  • the fluid discharge sub-lumens 101L, 103L, 105L, 108L, and 110L are respectively open at the distal end surface 12 of the outer tube 10 and, as shown in FIGS.
  • the outer peripheral surface of the outer tube 10 located in the vicinity of the end (inside the proximal end cone portion 315) is also open.
  • the opening formed on the outer peripheral surface of the outer tube 10 has a larger area than the opening formed on the distal end surface 12 of the outer tube 10 .
  • the fluid discharge sub-lumen 101L Since an opening is formed in the outer peripheral surface of the outer tube 10 located near the proximal end of the expanded portion 31 of the balloon 30, the fluid discharge sub-lumen 101L, It is possible to substantially prevent fluid from flowing into 103L, 105L, 108L and 110L, which has been confirmed by experiments.
  • the constituent material of the outer tube 10 is not particularly limited, but examples thereof include polyamide-based resins such as polyamide, polyether polyamide, polyether block amide (PEBAX (registered trademark)), and nylon. Of these, PEBAX is preferred.
  • the outer diameter of the outer tube 10 (the outer diameter at the base end portion, which will be described later) is usually 1.0 to 3.3 mm, and a preferred example is 1.45 mm.
  • the diameter of the central lumen 10L of the outer tube 10 is usually 0.35 to 0.95 mm, preferably 0.85 mm.
  • the diameter of the sub-lumens 101L to 112L of the outer tube 10 is normally 0.10 to 0.75 mm, and a preferred example is 0.25 mm.
  • the length of the outer tube 10 is usually 100-2200 mm, and a preferred example is 1800 mm.
  • a Y connector 20 is connected to the proximal end of the outer tube 10 .
  • a lumen tube surrounding the sub-lumens 101L to 105L and the sub-lumens 107L to 111L of the outer tube 10 enters the inside of the Y connector 20 from the proximal end of the outer tube 10 .
  • the proximal end of the lumen tube surrounding the sub-lumens 102L, 104L, 107L, 109L and 111L is connected to the single-lumen-structured fluid-supplying tube 27 inside the Y connector 20 (using an adhesive). fixed by The fluid supply tube 27 extends outside the Y connector 20 , and the proximal end of the fluid supply tube 27 is connected to the fluid supply connector 22 .
  • the base ends of the lumen tubes surrounding the sub-lumens 101L, 103L, 105L, 108L and 110L are connected to the single-lumen structure fluid discharge tube 28 inside the Y connector 20 (using an adhesive). Fixed by The fluid discharge tube 28 extends outside the Y connector 20 , and the proximal end of the fluid discharge tube 28 is connected to the fluid discharge connector 23 .
  • the balloon 30 constituting the balloon-type electrode catheter 100 includes an expanding portion 31 that expands and contracts, a distal neck portion 33 that continues to the distal end of the expanding portion 31, and a proximal neck portion 35 that continues to the proximal end of the expanding portion 31. It is composed of
  • the expanded portion 31 of the balloon 30 is a space-forming portion that expands when fluid is supplied to its interior and contracts when the fluid is discharged from its interior.
  • the expansion portion 31 of the balloon 30 includes a cylindrical portion 311, a distal cone portion 313 extending from the distal end of the cylindrical portion 311 to the proximal end of the distal neck portion 33, and a proximal end of the cylindrical portion 311 to the proximal neck portion. and a proximal cone portion 315 extending to the distal end of the portion 35 .
  • the balloon 30 is connected to the distal end of the outer tube 10 by fixing the proximal neck portion 35 to the distal end of the outer tube 10 and enclosing the distal end of the outer tube 10 in the expanded portion 31 . ing.
  • the distal end surface 12 of the outer tube 10 is positioned near the distal end of the cylindrical portion 311 that is distal to the intermediate position of the expanded portion 31 of the balloon 30 in the axial direction.
  • the fluid flowing through the fluid supply sub-lumens 102L, 104L, 107L, 109L, and 111L is discharged in the distal direction from each opening positioned near the distal end of the cylindrical portion 311, and the discharged fluid expands. It can reach the vicinity of the distal end of the portion 31 (distal cone portion 313), thereby forming a fluid flow from the distal side to the proximal side inside the balloon 30 (expansion portion 31).
  • the opening position of the fluid supply sub-lumen is on the proximal side of the intermediate position in the axial direction of the expanded portion of the balloon, even if the fluid is discharged in the distal direction from the opening after the balloon is expanded, The fluid cannot reach the vicinity of the distal end of the balloon, and a flow of the fluid from the distal end side to the proximal end side cannot be formed inside the balloon.
  • the constituent material of the balloon 30 is not particularly limited, and the same materials as the balloon constituting the conventionally known balloon catheter can be used.
  • polyamide such as polyamide, polyether polyamide, PEBAX and nylon
  • Polyurethane resins such as thermoplastic polyether urethane, polyether polyurethane urea, fluorine polyether urethane urea, polyether polyurethane urea resin and polyether polyurethane ureaamide.
  • the diameter of the balloon 30 (expansion portion 31) is normally 0.70 to 30.0 mm, and a preferred example is 2.0 mm.
  • the outer diameter of the proximal neck portion 35 of the balloon 30 is substantially equal to the outer diameter of the proximal end portion of the outer tube 10, and is usually 1.0 to 3.3 mm, and a preferred example is 1.45 mm. is.
  • the length of the balloon 30 (expansion portion 31) is normally 8 to 50 mm, and a preferred example is 20 mm.
  • the inner tube 41 and the distal tip 46 constitute an inner shaft.
  • the inner tube 41 constituting the balloon-type electrode catheter 100 has a lumen through which a guidewire can be inserted (guidewire lumen), is inserted through the central lumen 10L of the outer tube 10, and has its distal end opening in the central lumen 10L. extends into the balloon 30 (expansion portion 31).
  • the distal end portion of the inner tube 41 extending inside the balloon 30 extends inside the cylindrical portion 311 of the expanded portion 31 and is connected to the distal tip 46 inside the cylindrical portion 311 .
  • the proximal end of the inner tube 41 enters the inside of the Y connector 20 from the proximal end of the outer tube 10 (the opening on the proximal side of the central lumen 10L), extends inside the Y connector 20, It extends outside the connector 20 , and the proximal end of the inner tube 41 is connected to the guide wire connector 24 .
  • the same material as the inner tube constituting a conventionally known balloon catheter can be used. ketone resins) are preferred.
  • the outer diameter of the inner tube 41 is the same as or slightly smaller than the diameter of the central lumen 10L of the outer tube 10 through which it is inserted, and is usually 0.34 to 0.99 mm, and a preferred example is 0.84 mm. It is said that The inner diameter of the inner tube 41 is normally 0.31 to 0.92 mm, preferably 0.68 mm.
  • the distal tip 46 constituting the balloon-type electrode catheter 100 has a lumen (guidewire lumen) that communicates with the guidewire lumen of the inner tube 41, and includes a cylindrical portion 311 and a distal cone portion 313 of the expanded portion 31 of the balloon 30. and is fixed to the distal neck portion 33 and extends outside the balloon 30 .
  • the constituent material of the distal tip 46 is not particularly limited, but examples include polyamide resins such as polyamide, polyether polyamide, PEBAX and nylon, and polyurethane.
  • the inner diameter of the distal tip 46 is substantially the same as the inner diameter of the inner tube 41, usually 0.31 to 0.92 mm, preferably 0.68 mm.
  • the outer diameter of the distal tip 46 is normally 0.35 to 2.6 mm, and a preferred example is 1.0 mm.
  • the outer diameter of the distal neck portion 33 of the balloon 30 to which the distal tip 46 is fixed is usually 0.37 to 3.3 mm, and a preferred example is 1.18 mm.
  • surface electrodes to which a high-frequency current is applied are provided so as to extend along the axial direction of the balloon 30.
  • Strip electrodes 51 to 54 formed of metal thin films are arranged along the circumferential direction of the balloon 30 at intervals of 90°.
  • Examples of materials for forming the thin metal films forming the strip electrodes 51 to 54 include gold, platinum, silver, copper, alloys thereof, and stainless steel.
  • the film thickness of the thin metal films forming the strip electrodes 51 to 54 is preferably 0.5 to 5 ⁇ m, more preferably 1.0 to 2.5 ⁇ m. If this film thickness is too small, the temperature of the metal thin film may rise to a high temperature due to Joule heat during the procedure (during high-frequency current application). On the other hand, if the film thickness of the thin film is too large, the metal thin film will be less likely to follow the change in shape of the balloon that accompanies expansion and contraction, which may impair the expansion/contraction properties of the balloon.
  • the method of forming the metal thin films constituting the strip electrodes 51 to 54 on the outer surface of the balloon 30 is not particularly limited, and ordinary metal thin film forming methods such as vapor deposition, sputtering, plating, and printing can be employed. can.
  • a metal ring 60 is attached to the distal neck portion 33 of the balloon 30 .
  • the ends of the strip electrodes 51 to 54 are fixed to the outer peripheral surface of the metal ring 60 . Thereby, each of the strip electrodes 51 to 54 and the metal ring 60 are electrically connected.
  • Examples of the constituent material of the metal ring 60 include platinum and platinum-based alloys.
  • the inner diameter of the metal ring 60 attached to the distal neck portion 33 is substantially the same as the outer diameter of the distal neck portion 33, and is usually 0.37 to 3.3 mm. .18 mm.
  • the outer diameter of the metal ring 60 attached to the distal neck portion 33 is smaller than the outer diameters of the outer tube 10 and the proximal neck portion 35, and is usually 0.98 to 3.28 mm. is 1.32 mm.
  • a leading end of a conducting wire 70 is fixed to the inner peripheral surface of the metal ring 60 .
  • This conducting wire 70 extends inside the tube wall of the distal tip 46, extends inside the expanded portion 31 of the balloon 30 along the inner tube 41, extends to the sub-lumen 106L of the outer tube 10, and is connected to the Y connector. 20 and extends from the Y connector 20 through the interior of a conductor protection tube 26 extending from the Y connector 20 .
  • the base end of the conducting wire 70 is connected to the electrical connector 21 .
  • the electrical connector 21 has both a function as a connector for conducting a high-frequency current to each of the strip electrodes 51 to 54 and a function as a thermocouple connector for connecting a temperature sensor 80 to a temperature measuring instrument, which will be described later. ing.
  • each of the strip electrodes 51 to 54 By connecting each of the strip electrodes 51 to 54 to the electrical connector 21 via the metal ring 60 and the lead wire 70, a high frequency current can be applied to each of the strip electrodes 51 to 54 evenly.
  • Examples of the constituent material of the conducting wire 70 include copper, silver, gold, platinum, tungsten, and alloys of these metals, and it is preferable that an electrically insulating protective coating such as fluororesin is applied.
  • a temperature sensor 80 consisting of a thermocouple is embedded in the tube wall of the balloon 30 .
  • a side temperature portion 81 (temperature measuring junction) of the temperature sensor 80 is located on the pipe wall of the extension portion 31 .
  • the temperature sensor 80 enters the sub-lumen 112L of the outer tube 10 from the tube wall of the proximal neck portion 35 of the balloon 30, extends into the sub-lumen 112L, and extends inside the Y connector 20 together with the conducting wire 70. , and extends from the Y connector 20 through the inside of the conductor protection tube 26 extending from the Y connector 20 .
  • a proximal end of the temperature sensor 80 is connected to the electrical connector 21 .
  • the area ratio of the fluid supply sub-lumen to the fluid discharge sub-lumen is always in the range of 40:60 to 60:40.
  • the outer tube 10 when the outer tube 10 is divided into two parts (10A1 and 10A2) on the imaginary plane P1, in the part 10A1, sub-lumens for fluid supply (102L, 104L) and sub-lumens for fluid discharge (102L, 104L)
  • the area ratio with the lumens (101L, 103L, 105L) is 40:60
  • the sub-lumen for fluid supply (1 07L, 109L, 111L) and the fluid discharge sub-lumens (108L, 110L) are 60:40.
  • the area ratio between the fluid supply sub-lumen and the fluid discharge sub-lumen in the cross-sectional view of each divided portion is always 40:60. ⁇ 60:40, the total area ratio of the fluid supply sub-lumen and the fluid supply sub-lumen in the outer tube 10 is in the range of 40:60 to 60:40, and the fluid supply sub-lumen Since the lumens and fluid supply sub-lumens are arranged without being ubiquitous in the circumferential direction of the outer tube 10, the fluid flow (flow rate) from the distal side to the proximal side inside the balloon 30 can be controlled by the balloon. 30 can be uniform in the circumferential direction.
  • each of the band-shaped electrodes 51 to 54 formed on the outer surface of the balloon 30 can perform high-frequency ablation treatment over a wide range on a lesion in or around a vessel. can.
  • each of the fluid supply sub-lumens 102L, 104L, 107L, 109L and 111L opens at the distal end surface 12 of the outer tube 10 located near the distal end of the cylindrical portion 311 of the expanded portion 31 of the balloon 30 to discharge the fluid.
  • Each of the sub-lumens 101L, 103L, 105L, 108L, and 110L is open on the outer peripheral surface of the outer tube 10 located near the proximal end of the expanded portion 31 (inside the proximal-side cone portion 315).
  • fluid supply sub-lumens 102L, 104L, 107L, 109L and 111 The fluid discharged in the distal direction from the opening of L hits the inner wall surface of the distal cone portion 313 of the extension portion 31, and then along the inner wall surfaces of the cylindrical portion 311 and the proximal cone portion 315 of the extension portion 31.
  • the fluid can be circulated inside the balloon 30 (expansion portion 31) by flowing in the proximal direction.
  • the inside of the balloon 30 can be efficiently cooled over the entire area of the expanded portion 31, thereby sufficiently cooling the tissue around the strip electrodes 51 to 54, thereby preventing the tissue from fibrosis. can be reliably prevented.
  • the fluid supply sub-lumen and the fluid discharge The area ratio to the sub-lumen for the fluid supply is always in the range of 40:60 to 60:40, and the fluid-supplying sub-lumens and the fluid-supplying sub-lumens are arranged without being ubiquitous in the circumferential direction of the outer tube 10. Therefore, the flow (flow rate) of the fluid from the distal side to the proximal side inside the balloon 30 can be made uniform in the circumferential direction of the balloon 30, thereby making the inside of the balloon 30 uniform. Uniform cooling can be achieved in the circumferential direction.
  • the outer tube 10 including the distal end extending inside the balloon 30 has a circular tubular shape, the flow path of the fluid inside the balloon 30 (between the inner peripheral surface of the balloon 30 and the outer peripheral surface of the outer tube 10) ) are formed uniformly in the circumferential direction, so that the fluid flow (flow rate) from the distal side to the proximal side inside the balloon 30 is more uniform in the circumferential direction of the balloon 30.
  • Cases to which the balloon-type electrode catheter 100 of the present embodiment can be applied include tumors and vagus nerves in and around blood vessels, specifically bile duct cancer, lung cancer, liver cancer, kidney cancer, and adrenal adenoma. , renal artery vagus nerve, and the like.
  • ⁇ Second embodiment> 7 is a plan view showing the tip portion of the balloon electrode catheter 200 according to this embodiment
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 10A and 10B are partial enlarged views of FIG. 8 (cross-sectional views of the outer tube). 7 to 9, the same reference numerals are used for the same components as those of the balloon electrode catheter 100 according to the first embodiment.
  • This balloon-type electrode catheter 200 includes a circular tubular outer tube 15 having a central lumen 15L and sub-lumens 151L to 156L arranged therearound; an electrical connector arranged on the proximal end side of the outer tube 15; A fluid supply connector arranged on the proximal side of the outer tube 15; a fluid discharge connector arranged on the proximal side of the outer tube 15; an expanding portion 31 that expands and contracts; The proximal neck portion 35 is fixed to the distal end portion of the outer tube 15, and the extended portion 31 encloses the distal end portion of the outer tube 15.
  • the balloon 30 connected to the distal end side of the outer tube 15 has a guide wire lumen, is inserted through the central lumen 15L of the outer tube 15, and extends inside the balloon 30 from the opening of the central lumen 15L. and a lumen communicating with the guide wire lumen of the inner tube 41 (guide wire lumen).
  • a distal tip 46 extending to the outside of the balloon 30; belt-shaped electrodes 51 to 54 (surface electrodes) made of metal thin films formed on the outer surfaces of the expanded portion 31 and the distal neck portion 33 of the balloon 30; a metal ring 60 attached to the distal neck portion 33 and electrically connected to each of the strip electrodes 51 to 54 by fixing the tip portion of each of the strip electrodes 51 to 54 to its outer peripheral surface; a conducting wire 70 whose distal end is connected to the inner peripheral surface of the ring 60, extends to the inside of the balloon 30 and the sub-lumen 156L of the outer tube 15, and whose proximal end is connected to the electrical connector 21;
  • the distal end (temperature measuring portion 81) is embedded in the tube wall of 31, extends to the tube walls of the expanded portion 31, the proximal side neck portion 35, and the sub-lumen 155L of the outer tube 15, and the proximal end is connected to the electrical connector.
  • sub-lumens 152L and 154L of the outer tube 15 are fluid-supply sub-lumens communicating with the fluid-supply connector; 15 have sub-lumens 151L and 153L, respectively, which are fluid discharge sub-lumens; Openings of the sub-lumens 151L to 156L are formed on the distal end surface 17 located on the distal side of the intermediate position of the extended portion 31, and the outer peripheral surface located near the proximal end of the extended portion 31 is filled with fluid.
  • Openings of the discharge sub-lumens 151L and 153L are formed; when the outer tube 15 is longitudinally divided into two on any imaginary plane passing through the central axis of the outer tube 15, the cross section of each divided portion Visually, the area ratio between the fluid supply sub-lumen and the fluid discharge sub-lumen is always in the range of 40:60 to 60:40.
  • the outer tube 15 constituting the balloon-type electrode catheter 100 is a circular tubular tube having a central lumen 15L and sub-lumens 151L to 156L.
  • the sub-lumens 151L to 154L have substantially elliptical cross-sectional shapes, and the sub-lumens 155L and 156L have circular cross-sectional shapes.
  • Each of the sub-lumens 151L to 156L is formed by a lumen tube surrounding it, and these lumen tubes are fixed by the binder resin forming the outer tube 15. As shown in FIG.
  • the sub-lumens 151L to 156L are open at the distal end surface 17 of the outer tube 15, respectively.
  • Each of the sub-lumens 152L and 154L communicates with a fluid-supply connector, whereby the sub-lumens 152L and 154L are "fluid-supplying sub-lumens” for supplying fluid to the inside of the balloon 30 (expansion portion 31). "Lumen”.
  • Each of the sub-lumens 151L and 153L communicates with a fluid discharge connector, whereby the sub-lumens 151L and 153L discharge the fluid supplied to the inside of the balloon 30 (expansion portion 31) from the inside of the balloon 30. It becomes a "fluid discharge sub-lumen" for
  • the temperature sensor 80 extends to the sub-lumen 155L, and the conducting wire 70 extends to the sub-lumen 156L.
  • the fluid discharge sub-lumens 151L and 153L are open to the distal end face 17 of the outer tube 15, respectively, and extend near the proximal end (base end side) of the expanded portion 31 of the balloon 30 as shown in FIGS.
  • the outer peripheral surface of the outer tube 15 located inside the cone portion 315 is also open.
  • the opening is formed in the outer peripheral surface of the outer tube 15 located near the proximal end of the expanded portion 31 of the balloon 30, the fluid discharge sub-lumen 151L and the fluid discharge sub-lumen 151L and Fluid can be substantially prevented from flowing into 153L.
  • the fluid discharge sub-lumen 151L is formed in the range of 0° to 90°
  • a fluid discharge sub-lumen 153L is formed in a range of 180° to 270°
  • the fluid discharge sub-lumen 151L and the fluid discharge sub-lumen 153L are arranged to face each other across the central axis of the outer tube 15. .
  • a fluid supply sub-lumen 152L is formed in the range of 90° to 180°, and a fluid supply sub-lumen 154L is formed in the range of 270° to 360°.
  • the sub-lumen 154 ⁇ /b>L is arranged to face the central axis of the outer tube 15 .
  • both the part 15A1 and the part 15A2 have fluid supply sub-lumens and fluid discharge sub-lumens. is 50:50.
  • both the part 15B1 and the part 15B2 have fluid supply sub-lumens and fluid discharge sub-lumens.
  • the area ratio with the sublumen is 50:50.
  • the area ratio between the fluid supply sub-lumen and the fluid discharge sub-lumen in the cross-sectional view of each divided portion is always 50:50. Since the fluid-supplying sub-lumens and the fluid-supplying sub-lumens are arranged without being ubiquitous in the circumferential direction of the outer tube 15, the fluid flows inside the balloon 30 from the distal side to the proximal side. (Flow rate) can be made uniform in the circumferential direction of the balloon 30 . Thereby, the inside of the balloon 30 can be uniformly cooled in its circumferential direction.
  • the resistance of the fluid flowing through these lumens can be kept low and sufficient Flow rate can be secured.
  • balloon type electrode catheter 10 outer tube 10L central lumen 102L, 104L, 107L, 109L, 111L sub-lumen for fluid supply 101L, 103L, 105L, 108L, 110L sub-lumen for fluid discharge 106L, 112L sub-lumen 12 tip surface of outer tube 20 Y-connector 21 Electrical connector 22 Fluid supply connector 23 Fluid discharge connector 24 Guide wire connector 26 Conductive wire protection tube 27 Fluid supply tube 28 Fluid discharge tube 30 Balloon 31 Expansion part 311 Cylindrical part 311 313 distal cone portion 313 315 proximal cone portion 315 33 distal side neck portion 35 proximal side neck portion 41 inner tube 46 distal tip 51-54 strip electrodes (surface electrodes) 60 metal ring 70 wire 80 temperature sensor (thermocouple) 81 temperature measuring part 200 balloon type electrode catheter 15 outer tube 15L central lumen 152L, 154L fluid supply sub-lumen 151L, 153L fluid discharge sub-lumen 155L,

Abstract

The purpose of the present invention is to provide a balloon-type electrode catheter that is capable of uniformly cooling the interior of the balloon in the circumferential direction thereof. An electrode catheter (100) according to the present invention comprises an outer tube (10), an electrical connector (21), a balloon (30), an inner shaft (41, 46), surface electrodes (51 to 54) formed on an outer surface of the balloon, and a conducting wire (70) for the surface electrodes. Fluid supply sub-lumens and fluid discharge sub-lumens are formed in the outer tube, the fluid supply sub-lumens are open at the distal-end surface of the outer tube, the fluid discharge sub-lumens are open at the outer circumferential surface of the outer tube in the vicinity of the proximal end of an expansion section of the balloon, and when the outer tube is divided into two parts by an arbitrary imaginary plane, the area ratio of the fluid supply sub-lumens and the fluid discharge sub-lumens in a lateral cross-sectional view of the divided parts is always in the range of 40:60 to 60:40.

Description

バルーン型電極カテーテルballoon electrode catheter
 本発明は、高周波焼灼治療を行うためのバルーン型電極カテーテルに関する。 The present invention relates to a balloon-type electrode catheter for high-frequency ablation treatment.
 脈管またはその周囲の組織を高周波焼灼治療するためのバルーン型の電極カテーテル(脈管内アブレーション装置)として、従来、アウターチューブ(カテーテルシャフト)と、アウターチューブの先端に接続されたバルーンと、アウターチューブのルーメンおよびバルーンの内部に挿通されたインナーチューブ(ガイドワイヤ管腔)と、バルーンの内部に流体を供給するためにアウターチューブのルーメンに挿通されたルーメンチューブ(供給管腔)と、バルーンの内部に供給された流体を排出するためにアウターチューブのルーメンに挿通されたルーメンチューブ(帰還管腔)と、バルーンの外表面に設けられた表面電極とを備えてなるものが紹介されている(下記特許文献1参照)。 As a balloon-type electrode catheter (intravascular ablation device) for high-frequency ablation treatment of a vessel or its surrounding tissue, conventionally, an outer tube (catheter shaft), a balloon connected to the tip of the outer tube, and an outer tube are used. The inner tube (guidewire lumen) inserted through the lumen of the balloon and the balloon, the lumen tube (supply lumen) inserted through the lumen of the outer tube to supply fluid to the inside of the balloon, and the inside of the balloon A device comprising a lumen tube (return lumen) inserted through the lumen of the outer tube for discharging the fluid supplied to the balloon and a surface electrode provided on the outer surface of the balloon is introduced (see below). See Patent Document 1).
 特許文献1に記載されているバルーン型電極カテーテルを構成するバルーンは、拡張収縮する拡張部と、その両端に形成されたネック部とを有しており、基端側ネック部はアウターチューブに固定され、先端側ネック部はインナーチューブ(ガイドワイヤ管腔)に固定されている。 A balloon that constitutes the balloon-type electrode catheter described in Patent Document 1 has an expansion portion that expands and contracts and neck portions formed at both ends thereof, and the proximal neck portion is fixed to the outer tube. and the distal neck portion is fixed to the inner tube (guidewire lumen).
 また、特許文献1に記載されているバルーン型電極カテーテルでは、ルーメンチューブ(供給管腔)によってバルーンの内部に供給された流体を、バルーンの内部で循環させて、ルーメンチューブ(帰還管腔)から排出することにより、当該バルーンの内部を冷却し、これにより、表面電極の周囲の組織を冷却しようとしている。 Further, in the balloon-type electrode catheter described in Patent Document 1, a fluid supplied to the inside of the balloon by a lumen tube (supply lumen) is circulated inside the balloon, and then discharged from the lumen tube (return lumen). Ejection is intended to cool the interior of the balloon, thereby cooling the tissue surrounding the surface electrodes.
 しかしながら、特許文献1に記載されているバルーン型電極カテーテルでは、ルーメンチューブ(供給管腔)およびルーメンチューブ(帰還管腔)の何れもが、バルーンの基端近傍において開口しているため、バルーンの拡張後において、ルーメンチューブ(供給管腔)の開口からバルーンの内部に供給された流体が、先端方向に流動して循環することなく、ルーメンチューブ(帰還管腔)の開口から直ちに排出されてしまい、このため、バルーンの内部、延いては、表面電極の周囲の組織を十分に冷却することができない、という問題がある。 However, in the balloon electrode catheter described in Patent Document 1, both the lumen tube (supply lumen) and the lumen tube (return lumen) are open near the proximal end of the balloon. After expansion, the fluid supplied to the inside of the balloon from the opening of the lumen tube (supply lumen) is immediately discharged from the opening of the lumen tube (return lumen) without flowing and circulating in the distal direction. Therefore, there is a problem that the inside of the balloon and the surrounding tissue of the surface electrodes cannot be sufficiently cooled.
 特に、バルーン型電極カテーテルにより腫瘍などの焼灼治療を行う場合には、表面電極に高い電圧を印加する必要があるため、冷却が不十分であると、表面電極の周囲の組織が高温(例えば、80℃を超える温度)となって線維化されやすくなり、線維化された組織が介在すると、事後の焼灼治療が実質的に不可能になる。 In particular, when performing ablation treatment of a tumor or the like with a balloon electrode catheter, it is necessary to apply a high voltage to the surface electrode. When the temperature exceeds 80° C., fibrosis is likely to occur, and if the fibrotic tissue intervenes, subsequent cauterization treatment becomes substantially impossible.
 上記のような問題に対して、本出願人は、高周波焼灼治療を行うためのバルーン型電極カテーテルとして、中央ルーメンと、その周囲に複数配置されたサブルーメンとを有するアウターチューブと、
 前記アウターチューブの基端側に配置された通電用コネクタと、
 拡張収縮する拡張部と、その両端に連続するネック部とを有し、基端側ネック部が前記アウターチューブの先端部に固定され、前記拡張部が前記アウターチューブの前記先端部を内包していることにより、前記アウターチューブの先端側に接続されたバルーンと、
 前記アウターチューブの前記中央ルーメンに挿通されて、当該中央ルーメンの開口から前記バルーンの内部に延出し、前記バルーンの先端側ネック部に固定されて前記バルーンの外部に延出するインナーシャフトと、
 少なくとも前記バルーンの前記拡張部において当該バルーンの外表面に形成された金属
薄膜からなる表面電極と、
 前記表面電極と前記通電用コネクタとを電気的に接続する導線とを備えてなり、
 前記アウターチューブの有する前記サブルーメンの少なくとも1本は、前記バルーンの内部に流体を供給するために当該流体を流通させる流体供給用サブルーメンであり、
 前記アウターチューブの有する前記サブルーメンの少なくとも1本は、前記バルーンの内部に供給された流体を当該バルーンの内部から排出するために、当該流体を流通させる流体排出用サブルーメンであり、
 前記アウターチューブは、前記拡張部の前記基端またはその近傍の位置から基端方向に延びる円管状部分と、
 前記拡張部の前記基端またはその近傍の位置から、前記拡張部の内部を当該拡張部の軸方向の中間位置を越えて先端方向に延びる半円管状部分とからなり、
 前記流体供給用サブルーメンは、前記円管状部分および前記半円管状部分の内部に配置されて、当該半円管状部分の先端面において開口し(これにより、前記流体供給用サブルーメンの前記開口は、前記拡張部の軸方向の中間位置よりも先端側に位置し)、
 前記流体排出用サブルーメンは、前記円管状部分の内部に配置されて、当該円管状部分の先端面において開口している(これにより、前記流体排出用サブルーメンの前記開口は、前記拡張部の前記基端またはその近傍に位置している)バルーン型電極カテーテルを提案している(下記特許文献2参照)。
In response to the above problems, the present applicant has proposed a balloon-type electrode catheter for performing high-frequency ablation treatment, an outer tube having a central lumen and a plurality of sub-lumens arranged around the central lumen,
a current-carrying connector arranged on the base end side of the outer tube;
It has an expanding portion that expands and contracts and neck portions that are continuous to both ends thereof, the proximal neck portion being fixed to the distal end portion of the outer tube, and the expanding portion enclosing the distal end portion of the outer tube. a balloon connected to the distal end side of the outer tube;
an inner shaft that is inserted through the central lumen of the outer tube, extends into the balloon from the opening of the central lumen, is fixed to a distal neck portion of the balloon, and extends to the outside of the balloon;
a surface electrode made of a thin metal film formed on the outer surface of the balloon at least in the expanded portion of the balloon;
a conductor for electrically connecting the surface electrode and the conducting connector;
at least one of the sub-lumens of the outer tube is a fluid-supplying sub-lumen through which the fluid is circulated in order to supply the fluid to the inside of the balloon;
at least one of the sub-lumens of the outer tube is a fluid-discharging sub-lumen through which the fluid supplied to the balloon is discharged from the balloon;
The outer tube has a tubular portion extending in the proximal direction from the proximal end of the extension portion or a position in the vicinity thereof;
a semi-circular tubular portion extending from the base end of the expansion portion or a position near it to the inside of the expansion portion in a distal direction beyond an axially intermediate position of the expansion portion;
The fluid-supplying sub-lumen is arranged inside the circular tubular portion and the semi-circular tubular portion, and is open at the distal end surface of the semi-circular tubular portion (therefore, the opening of the fluid-supplying sub-lumen is , located on the tip side of the intermediate position in the axial direction of the extension),
The fluid discharge sub-lumen is arranged inside the circular tubular portion and opens at the distal end surface of the circular tubular portion. proposed a balloon-type electrode catheter (located at or near the proximal end) (see Patent Document 2 below).
 このような構成のバルーン型電極カテーテルによれば、アウターチューブの先端面である半円管状部分の先端面に形成された流体供給用サブルーメンの開口から流体が吐出(供給)され、拡張部の基端または基端近傍に位置する円管状部分の先端面に形成された流体排出用サブルーメンの開口から当該流体が排出されることにより、バルーンの内部において先端側から基端側への流体の流れを形成することができる。この結果、バルーンの内部、延いては、表面電極の周囲の組織を十分に冷却することができるとされる。 According to the balloon electrode catheter having such a configuration, the fluid is discharged (supplied) from the opening of the fluid supply sub-lumen formed in the distal end surface of the semicircular tubular portion, which is the distal end surface of the outer tube. The fluid is discharged from the opening of the fluid discharge sub-lumen formed in the distal end surface of the circular tubular portion located at or near the proximal end, thereby causing the fluid to flow from the distal end side to the proximal end side inside the balloon. Can form a flow. As a result, the inside of the balloon and, by extension, the tissue surrounding the surface electrodes can be sufficiently cooled.
特表2013-532564号公報Japanese Patent Publication No. 2013-532564 国際公開第2020/035919号WO2020/035919
 しかしながら、特許文献2に記載されているバルーン型電極カテーテルでは、バルーンの円周方向において均一な冷却効果を発揮することができない。
 すなわち、バルーン内部における先端側から基端側への流体の流れ(流量)は、半円管状部分が配置されている(流体供給用サブルーメンが延在している)半周側において小さく、半円管状部分が配置されていない(流体排出用サブルーメンの開口が位置している)半周側において大きい。
 このため、半円管状部分が配置されている半周側のバルーンの内部を十分に冷却することができず、バルーンの円周方向において冷却ムラ(換言すれば焼灼ムラ)が生じるという問題が新たに生じた。
However, the balloon-type electrode catheter described in Patent Document 2 cannot exhibit a uniform cooling effect in the circumferential direction of the balloon.
That is, the flow (flow rate) of the fluid from the distal end side to the proximal end side inside the balloon is small on the semicircular side where the semicircular tubular portion is arranged (where the fluid supply sub-lumen extends). It is larger on the semi-peripheral side where the tubular portion is not arranged (where the opening of the fluid discharge sub-lumen is located).
For this reason, the inside of the balloon on the semicircular side where the semicircular tubular portion is arranged cannot be sufficiently cooled, and there is a new problem that cooling unevenness (in other words, cauterization unevenness) occurs in the circumferential direction of the balloon. occured.
 本発明は以上のような事情に基いてなされたものである。
 本発明の目的は、バルーンの内部を、当該バルーンの円周方向において均一に冷却することができるバルーン型電極カテーテルを提供することにある。
The present invention has been made based on the circumstances as described above.
An object of the present invention is to provide a balloon-type electrode catheter capable of uniformly cooling the inside of the balloon in the circumferential direction of the balloon.
(1)本発明のバルーン型電極カテーテルは、高周波焼灼治療を行うためのバルーン型電極カテーテルであって、
 中央ルーメンと、その周囲に配置された少なくとも4つのサブルーメンとを有するアウターチューブと、
 前記アウターチューブの基端側に配置された通電用コネクタと、
 拡張収縮する拡張部と、その両端に連続するネック部とを有し、基端側ネック部が前記アウターチューブの先端部に固定され、前記拡張部が前記アウターチューブの前記先端部を内包していることにより、前記アウターチューブの先端側に接続されたバルーンと、
 前記アウターチューブの前記中央ルーメンに挿通されて、当該中央ルーメンの開口から前記バルーンの内部に延出し、前記バルーンの先端側ネック部に固定されて前記バルーンの外部に延出するインナーシャフトと、
 少なくとも前記バルーンの前記拡張部において当該バルーンの外表面に形成された金属薄膜からなる表面電極と、
 前記表面電極と前記通電用コネクタとを電気的に接続する導線とを備えてなり;
 前記アウターチューブの有する前記サブルーメンの少なくとも2本は、前記バルーンの内部に供給される冷却用の流体を流通させる流体供給用サブルーメンであり、
 前記アウターチューブの有する前記サブルーメンの少なくとも2本は、前記バルーンの内部から排出される冷却後の前記流体を流通させる流体排出用サブルーメンであり;
 前記アウターチューブには、前記拡張部の中間位置よりも先端側において前記流体供給用サブルーメンの開口が形成されているとともに、前記拡張部の基端の近傍において前記流体排出用サブルーメンの開口が形成され、
 前記アウターチューブの中心軸を通る任意の仮想平面で当該アウターチューブを縦断して2つに分割したときに、分割された各部分の横断面視において、前記流体供給用サブルーメンと前記流体排出用サブルーメンとの面積比が常に40:60~60:40の範囲にあることを特徴とする。
(1) A balloon-type electrode catheter of the present invention is a balloon-type electrode catheter for performing high-frequency ablation treatment,
an outer tube having a central lumen and at least four sub-lumens arranged therearound;
a current-carrying connector arranged on the base end side of the outer tube;
It has an expanding portion that expands and contracts and neck portions that are continuous to both ends thereof, the proximal neck portion being fixed to the distal end portion of the outer tube, and the expanding portion enclosing the distal end portion of the outer tube. a balloon connected to the distal end side of the outer tube;
an inner shaft that is inserted through the central lumen of the outer tube, extends into the balloon from the opening of the central lumen, is fixed to a distal neck portion of the balloon, and extends to the outside of the balloon;
a surface electrode made of a thin metal film formed on the outer surface of the balloon at least in the expanded portion of the balloon;
a conducting wire that electrically connects the surface electrode and the current-carrying connector;
at least two of the sub-lumens of the outer tube are fluid-supplying sub-lumens for circulating a cooling fluid to be supplied to the inside of the balloon;
at least two of the sub-lumens of the outer tube are fluid-discharging sub-lumens for circulating the cooled fluid discharged from the inside of the balloon;
The outer tube is formed with an opening for the fluid supply sub-lumen on the distal end side of the intermediate position of the extension portion, and an opening for the fluid discharge sub-lumen is formed near the proximal end of the extension portion. formed,
When the outer tube is longitudinally divided into two on an arbitrary virtual plane passing through the central axis of the outer tube, the fluid supply sub-lumen and the fluid discharge sub-lumen are seen in the cross-sectional view of each divided portion. The feature is that the area ratio to the sublumen is always in the range of 40:60 to 60:40.
 このような構成のバルーン型電極カテーテルによれば、流体供給用サブルーメンの開口が、バルーンの拡張部の軸方向の中間位置よりも先端側に形成され、流体排出用サブルーメンの開口が、拡張部の基端近傍に形成されていること、すなわち、バルーンの内部への流体の供給口と、バルーンの内部からの流体の排出口とが互いに軸方向に変位していることにより、バルーンの拡張後(内部に流体が充填された後)においても、バルーンの内部における先端側から基端側への流体の流れが形成され、バルーンの内部において当該流体を軸方向に流動させることができるので、バルーンの内部、延いては、表面電極の周囲の組織を十分に冷却することができる。
 また、アウターチューブの中心軸を通る任意の仮想平面で当該アウターチューブを縦断して2つに分割したときに、分割された各部分の横断面視において、流体供給用サブルーメンと流体供給用サブルーメンとの面積比が常に40:60~60:40の範囲にあることにより、アウターチューブにおける流体供給用サブルーメンと流体供給用サブルーメンとの全体の面積比が40:60~60:40の範囲にあるとともに、流体供給用サブルーメンおよび流体供給用サブルーメンが、バルーンの円周方向における何れかの半周側に遍在することがないので、バルーンの内部を先端側から基端側へ向かう流体の流れを、バルーンの円周方向において均一なものとすることができ、これにより、バルーンの内部を、その円周方向において均一に冷却することができる。
According to the balloon-type electrode catheter having such a configuration, the opening of the fluid supply sub-lumen is formed on the tip side of the intermediate position in the axial direction of the expanded portion of the balloon, and the opening of the fluid discharge sub-lumen is formed on the expanded portion. In other words, the fluid supply port to the interior of the balloon and the fluid discharge port from the interior of the balloon are axially displaced from each other, thereby expanding the balloon. Later (after the inside is filled with fluid), a fluid flow is formed from the distal end side to the proximal end side inside the balloon, and the fluid can flow in the axial direction inside the balloon. The tissue inside the balloon and thus surrounding the surface electrodes can be sufficiently cooled.
Further, when the outer tube is longitudinally divided into two by an arbitrary virtual plane passing through the central axis of the outer tube, the fluid supply sub-lumen and the fluid supply sub-lumen are seen in the cross-sectional view of each divided part. Since the area ratio to the lumen is always in the range of 40:60 to 60:40, the total area ratio of the fluid supply sub-lumen and the fluid supply sub-lumen in the outer tube is 40:60 to 60:40. Since the fluid-supplying sub-lumens and the fluid-supplying sub-lumens are not ubiquitous on either half-circumferential side of the balloon in the circumferential direction, The fluid flow can be uniform in the circumferential direction of the balloon, thereby cooling the interior of the balloon uniformly in the circumferential direction.
(2)本発明のバルーン型電極カテーテルにおいて、前記アウターチューブは、全長にわたり円管状のマルチルーメンチューブからなり、
 前記アウターチューブの先端面に前記流体供給用サブルーメンの前記開口が形成され、
 前記アウターチューブの外周面に前記流体排出用サブルーメンの前記開口が形成されていることが好ましい。
(2) In the balloon electrode catheter of the present invention, the outer tube is a circular multi-lumen tube over its entire length,
the opening of the fluid supply sub-lumen is formed on the distal end surface of the outer tube,
It is preferable that the opening of the fluid discharge sub-lumen is formed on the outer peripheral surface of the outer tube.
 このような構成のバルーン型電極カテーテルによれば、バルーンの内部に延在する先端部を含めてアウターチューブが円管状であることにより、バルーンの内部における流体の
流路(バルーンの内周面とアウターチューブの外周面とにより区画される流路)が円周方向において均一に形成されるので、バルーンの内部を先端側から基端側へ向かう流体の流れを、バルーンの円周方向において更に均一なものとすることができる。
According to the balloon-type electrode catheter having such a configuration, the outer tube including the distal end portion extending inside the balloon has a circular tube shape, so that the flow path of the fluid inside the balloon (the inner peripheral surface of the balloon and the Since the flow path partitioned by the outer peripheral surface of the outer tube) is formed uniformly in the circumferential direction, the flow of the fluid from the distal side to the proximal side inside the balloon is more uniform in the circumferential direction of the balloon. can be
(3)上記(2)のバルーン型電極カテーテルにおいて、前記流体供給用サブルーメンと、前記流体排出用サブルーメンとが、前記アウターチューブの円周方向に沿って交互に配置されていることが好ましい。 (3) In the balloon electrode catheter of (2) above, it is preferable that the fluid supply sub-lumens and the fluid discharge sub-lumens are alternately arranged along the circumferential direction of the outer tube. .
 このような構成のバルーン型電極カテーテルによれば、流体供給用サブルーメンおよび流体供給用サブルーメンが、バルーンの円周方向における何れかの半周側に遍在することを確実に防止することができる。 According to the balloon-type electrode catheter having such a configuration, it is possible to reliably prevent the fluid-supplying sub-lumen and the fluid-supplying sub-lumen from being omnipresent on either half-circumference side of the balloon in the circumferential direction. .
(4)本発明のバルーン型電極カテーテルにおいて、前記流体供給用サブルーメンおよび前記流体排出用サブルーメンの数が、それぞれ2~5であることが好ましい。 (4) In the balloon electrode catheter of the present invention, it is preferable that the number of the fluid supply sub-lumens and the number of the fluid discharge sub-lumens are 2 to 5, respectively.
 このような構成のバルーン型電極カテーテルによれば、流体供給用サブルーメンおよび流体排出用サブルーメンの数が、それぞれ2以上であることにより、アウターチューブの中心軸を挟んで、2つの流体供給用サブルーメンを対向配置することができ、2つの流体排出用サブルーメンを対向配置することができる。
 また、流体供給用サブルーメンおよび流体排出用サブルーメンの数が、それぞれ5以下であることにより、ルーメンを流れる流体の抵抗(管内抵抗)を低く抑えて、十分な流量を確保することができる。
According to the balloon-type electrode catheter having such a configuration, the number of the fluid supply sub-lumens and the number of the fluid discharge sub-lumens is two or more. The sub-lumens can be opposed, and two fluid discharge sub-lumens can be opposed.
Further, since the number of the fluid supply sub-lumens and the number of the fluid discharge sub-lumens are each 5 or less, the resistance of the fluid flowing through the lumens (pipe resistance) can be kept low, and a sufficient flow rate can be ensured.
(5)本発明のバルーン型電極カテーテルにおいて、前記アウターチューブの任意の円周方向位置を基準(0°)として、0°~90°の円周方向範囲および180°~270°の円周方向範囲のそれぞれに1または2以上の前記流体排出用サブルーメンが形成され、
 90°~180°の円周方向範囲および270°~360°の円周方向範囲のそれぞれに1または2以上の前記流体供給用サブルーメンが形成されていることが好ましい。
(5) In the balloon electrode catheter of the present invention, the circumferential direction range is 0° to 90° and the circumferential direction is 180° to 270°, with an arbitrary circumferential position of the outer tube as a reference (0°). one or more fluid ejection sub-lumens are formed in each of the ranges;
One or more fluid supply sub-lumens are preferably formed in each of the circumferential range of 90° to 180° and the circumferential range of 270° to 360°.
(6)上記(2)のバルーン型電極カテーテルにおいて、前記アウターチューブの外周面に開口を有する前記流体排出用サブルーメンは、前記アウターチューブの先端まで延びて前記先端面において開口していてもよい。 (6) In the balloon electrode catheter of (2) above, the fluid discharge sub-lumen having an opening on the outer peripheral surface of the outer tube may extend to the distal end of the outer tube and open at the distal end surface. .
 このような構成のバルーン型電極カテーテルによれば、全長にわたり同じルーメン構造を有するマルチルーメンチューブによりアウターチューブを構成することができる。
 また、アウターチューブの外周面に流体排出用サブルーメンの開口が形成されていることにより、アウターチューブの先端面に形成されている開口から流体排出用サブルーメンに流体が流入されることを実質的に防止することができる。
According to the balloon-type electrode catheter having such a configuration, the outer tube can be configured with a multi-lumen tube having the same lumen structure over the entire length.
In addition, since the opening of the fluid discharge sub-lumen is formed on the outer peripheral surface of the outer tube, it is substantially possible to prevent the fluid from flowing into the fluid discharge sub-lumen from the opening formed on the distal end surface of the outer tube. can be prevented.
(7)上記(6)のバルーン型電極カテーテルにおいて、前記アウターチューブの前記外周面に形成されている前記流体排出用サブルーメンの前記開口は、前記先端面に形成されている前記流体排出用サブルーメンの前記開口よりも面積が大きいことが好ましい。 (7) In the balloon electrode catheter of (6) above, the opening of the fluid discharge sub-lumen formed on the outer peripheral surface of the outer tube corresponds to the fluid discharge sub-lumen formed on the distal end surface. It is preferably larger in area than said opening of the lumen.
 このような構成のバルーン型電極カテーテルによれば、アウターチューブの外周面に形成されている開口から流体排出用サブルーメンに流体を効率的に流入させて、アウターチューブの先端面に形成されている開口からの流入を効果的に防止することができる。 According to the balloon-type electrode catheter having such a configuration, the fluid is efficiently allowed to flow into the fluid discharge sub-lumen from the opening formed on the outer peripheral surface of the outer tube, and the sub-lumen is formed on the distal end surface of the outer tube. Inflow from the opening can be effectively prevented.
(8)上記(6)のバルーン型電極カテーテルにおいて、前記アウターチューブの前記先端面における前記流体排出用サブルーメンの前記開口が閉鎖されていてもよい。 (8) In the balloon electrode catheter of (6) above, the opening of the fluid discharge sub-lumen on the distal end surface of the outer tube may be closed.
 このような構成のバルーン型電極カテーテルによれば、アウターチューブの先端面に形成されている流体排出用サブルーメンの開口から流体が流入されることを確実に防止することができる。 According to the balloon-type electrode catheter having such a configuration, it is possible to reliably prevent the inflow of fluid from the opening of the fluid discharge sub-lumen formed on the distal end surface of the outer tube.
 本発明のバルーン型電極カテーテルによれば、バルーンの内部、延いては、表面電極の周囲の組織を十分に冷却することができ、バルーンの内部を、当該バルーンの円周方向において均一に冷却することができる。 According to the balloon-type electrode catheter of the present invention, the inside of the balloon and, by extension, the tissue around the surface electrode can be sufficiently cooled, and the inside of the balloon is uniformly cooled in the circumferential direction of the balloon. be able to.
本発明の第1実施形態に係るバルーン型電極カテーテルの平面図である。1 is a plan view of a balloon-type electrode catheter according to a first embodiment of the present invention; FIG. 図1に示したバルーン型電極カテーテルの部分破断正面図(図1のII-II断面を含む正面図)である。FIG. 2 is a partially broken front view of the balloon electrode catheter shown in FIG. 1 (a front view including the II-II cross section in FIG. 1); 図1に示したバルーン型電極カテーテルの先端部分を示す平面図(図1のIII部詳細図)である。FIG. 2 is a plan view (detailed view of section III in FIG. 1) showing the tip portion of the balloon electrode catheter shown in FIG. 1; 図3のIV-IV断面図である。FIG. 4 is a sectional view along IV-IV in FIG. 3; 図3のV-V断面図である。FIG. 4 is a cross-sectional view taken along line VV of FIG. 3; 図4の部分拡大図(アウターチューブの断面図)である。FIG. 5 is a partially enlarged view (cross-sectional view of an outer tube) of FIG. 4; 図4の部分拡大図(アウターチューブの断面図)である。FIG. 5 is a partially enlarged view (cross-sectional view of an outer tube) of FIG. 4; 図4の部分拡大図(アウターチューブの断面図)である。FIG. 5 is a partially enlarged view (cross-sectional view of an outer tube) of FIG. 4; 本発明の第2実施形態に係るバルーン型電極カテーテルの先端部分を示す平面図である。FIG. 10 is a plan view showing the tip portion of a balloon-type electrode catheter according to a second embodiment of the present invention; 図7のVIII-VIII断面図である。FIG. 8 is a cross-sectional view taken along line VIII-VIII of FIG. 7; 図7のIX-IX断面図である。FIG. 8 is a cross-sectional view taken along line IX-IX of FIG. 7; 図8の部分拡大図(アウターチューブの断面図)である。FIG. 9 is a partially enlarged view of FIG. 8 (cross-sectional view of an outer tube); 図8の部分拡大図(アウターチューブの断面図)である。FIG. 9 is a partially enlarged view of FIG. 8 (cross-sectional view of an outer tube); 特許文献2に記載されたバルーン型電極カテーテルを構成するアウターチューブの断面図である。2 is a cross-sectional view of an outer tube that constitutes the balloon-type electrode catheter described in Patent Document 2. FIG. 特許文献2に記載されたバルーン型電極カテーテルを構成するアウターチューブの断面図である。2 is a cross-sectional view of an outer tube that constitutes the balloon-type electrode catheter described in Patent Document 2. FIG.
<第1実施形態>
 図1~図6に示すこの実施形態のバルーン型電極カテーテル100は、経脈管的に導入され、脈管またはその周囲における腫瘍などの病巣組織を、高周波焼灼により治療するためのバルーン型の電極カテーテルである。
<First Embodiment>
The balloon-type electrode catheter 100 of this embodiment, shown in FIGS. 1-6, is a balloon-type electrode that is introduced intravascularly to treat focal tissue, such as tumors, in or around a vessel by high-frequency ablation. a catheter.
 このバルーン型電極カテーテル100は、中央ルーメン10Lと、その周囲に配置されたサブルーメン101L~112Lとを有する円管状のアウターチューブ10と;アウターチューブ10の基端側に配置された電気コネクタ21と;アウターチューブ10の基端側に配置された流体供給用コネクタ22と;アウターチューブ10の基端側に配置された流体排出用コネクタ23と;拡張収縮する拡張部31と、その両端に連続するネック部(先端側ネック部33および基端側ネック部35)とを有し、基端側ネック部35がアウターチューブ10の先端部に固定され、拡張部31がアウターチューブ10の先端部を内包していることにより、アウターチューブ10の先端側に接続されたバルーン30と;ガイドワイヤルーメンを有し、アウターチューブ10の中央ルーメン10Lに挿通されて、当該中央ルーメン10Lの開口からバルーン30の内部に延出するインナーチューブ41と、インナーチューブ41のガイドワイヤルーメンに連通するルーメン(ガイドワイヤルーメン)を有し、バルーン30の内部においてインナーチューブ41の先端に接続されるとともに、先端側ネック部33に固定されてバルーン30の外部に延出する先端チップ46
と;バルーン30の拡張部31および先端側ネック部33の外表面に形成された金属薄膜による帯状電極51~54(表面電極)と;バルーン30の先端側ネック部33に装着され、帯状電極51~54の各々の先端部がその外周面に固着されることにより、帯状電極51~54の各々と電気的に接続された金属リング60と;金属リング60の内周面にその先端が接続され、バルーン30の内部およびアウターチューブ10のサブルーメン106Lに延在し、その基端が電気コネクタ21に接続された導線70と;バルーン30の拡張部31の管壁にその先端(測温部81)が埋設され、拡張部31および基端側ネック部35の管壁並びにアウターチューブ10のサブルーメン112Lに延在し、電気コネクタ21にその基端が接続された、温度センサ(熱電対)80とを備えており;アウターチューブ10の有するサブルーメン102L,104L,107L,109Lおよび111Lは、それぞれ、流体供給用コネクタ22と連通していることにより、バルーン30の内部に供給される冷却用の流体を流通させる流体供給用サブルーメンであり;アウターチューブ10の有するサブルーメン101L,103L,105L,108Lおよび110Lは、それぞれ、流体排出用コネクタ23と連通していることにより、、バルーン30の内部から排出される冷却後の流体を流通させる流体排出用サブルーメンであり;アウターチューブ10には、拡張部31の中間位置よりも先端側に位置するその先端面12に、サブルーメン101L~112Lの開口が形成されているとともに、拡張部31の基端の近傍に位置するその外周面に、流体排出用サブルーメン101L,103L,105L,108Lおよび110Lの開口が形成され;
 アウターチューブ10の中心軸を通る任意の仮想平面で当該アウターチューブ10を縦断して2つに分割したときに、分割された各部分の横断面視において、流体供給用サブルーメンと流体排出用サブルーメンとの面積比が常に40:60~60:40の範囲にある。
This balloon-type electrode catheter 100 comprises a circular tubular outer tube 10 having a central lumen 10L and sub-lumens 101L to 112L arranged therearound; and an electrical connector 21 arranged on the proximal end side of the outer tube 10. a fluid supply connector 22 arranged on the proximal end side of the outer tube 10; a fluid discharge connector 23 arranged on the proximal end side of the outer tube 10; The proximal neck portion 35 is fixed to the distal end portion of the outer tube 10, and the extended portion 31 includes the distal end portion of the outer tube 10. a balloon 30 connected to the distal end side of the outer tube 10; and a guide wire lumen, which is inserted through the central lumen 10L of the outer tube 10 and extends from the opening of the central lumen 10L to the inside of the balloon 30. and a lumen (guide wire lumen) that communicates with the guide wire lumen of the inner tube 41, is connected to the distal end of the inner tube 41 inside the balloon 30, and is connected to the distal neck portion 33 A distal tip 46 fixed to and extending outside the balloon 30
strip electrodes 51 to 54 (surface electrodes) made of metal thin films formed on the outer surfaces of the expanded portion 31 and the distal neck portion 33 of the balloon 30; and strip electrodes 51 attached to the distal neck portion 33 of the balloon 30 to 54 are fixed to the outer peripheral surface thereof, the metal ring 60 is electrically connected to each of the strip electrodes 51 to 54; and the tip is connected to the inner peripheral surface of the metal ring 60. , the conducting wire 70 extending to the inside of the balloon 30 and the sub-lumen 106L of the outer tube 10, and having its proximal end connected to the electrical connector 21; ) is embedded, extends to the tube wall of the extension portion 31 and the proximal neck portion 35 and the sub-lumen 112L of the outer tube 10, and has its proximal end connected to the electrical connector 21, a temperature sensor (thermocouple) 80 The sub-lumens 102L, 104L, 107L, 109L, and 111L of the outer tube 10 communicate with the fluid supply connector 22, respectively, so that cooling fluid supplied to the inside of the balloon 30 is provided. The sub-lumens 101L, 103L, 105L, 108L and 110L of the outer tube 10 are fluid supply sub-lumens for circulating the fluid. The outer tube 10 has sub-lumens 101L to 112L on its distal end surface 12 located on the distal end side of the intermediate position of the extended portion 31. Openings are formed, and openings of the fluid discharge sub-lumens 101L, 103L, 105L, 108L and 110L are formed on the outer peripheral surface of the extended portion 31 located near the proximal end thereof;
When the outer tube 10 is longitudinally divided into two on an arbitrary imaginary plane passing through the central axis of the outer tube 10, a fluid supply sub-lumen and a fluid discharge sub-lumen are seen in a cross-sectional view of each divided portion. The area to lumen ratio is always in the range of 40:60 to 60:40.
 図1および図2において、20は、アウターチューブ10の基端側に接続されたYコネクタ、24はガイドワイヤコネクタ、26は導線保護チューブ、27は流体供給用チューブ、28は流体排出用チューブである。 1 and 2, 20 is a Y connector connected to the proximal end of the outer tube 10, 24 is a guide wire connector, 26 is a wire protection tube, 27 is a fluid supply tube, and 28 is a fluid discharge tube. be.
 バルーン型電極カテーテル100を構成するアウターチューブ10は、中央ルーメン10Lと、その周囲に等角度(30°)間隔に配置された12本のサブルーメン101L~112Lとを有する円管状のチューブである。
 サブルーメン101L~112Lの各々は、これを囲繞するルーメンチューブにより形成され、これらのルーメンチューブは、アウターチューブ10を形成するバインダ樹脂により固定されている。
The outer tube 10 constituting the balloon-type electrode catheter 100 is a circular tube having a central lumen 10L and 12 sub-lumens 101L to 112L arranged at equiangular (30°) intervals around the central lumen 10L.
Each of the sub-lumens 101L to 112L is formed by a lumen tube surrounding it, and these lumen tubes are fixed by the binder resin forming the outer tube 10. As shown in FIG.
 サブルーメン101L~112Lは、それぞれ、アウターチューブ10の先端面12において開口している。 Each of the sub-lumens 101L to 112L opens at the distal end surface 12 of the outer tube 10.
 サブルーメン102L,104L,107L,109Lおよび111Lは、それぞれ、図1および図2に示した流体供給用コネクタ22と連通している。
 これにより、サブルーメン102L,104L,107L,109Lおよび111Lは、バルーン30(拡張部31)の内部に流体を供給するための「流体供給用サブルーメン」となる。
 ここに、バルーン30の内部に供給される流体としては、生理食塩水を例示することができる。
Each of the sub-lumens 102L, 104L, 107L, 109L and 111L communicates with the fluid supply connector 22 shown in FIGS.
As a result, the sub-lumens 102L, 104L, 107L, 109L and 111L become "fluid-supplying sub-lumens" for supplying fluid to the inside of the balloon 30 (expansion portion 31).
Here, physiological saline can be exemplified as the fluid supplied inside the balloon 30 .
 サブルーメン101L,103L,105L,108Lおよび110Lは、それぞれ、図1および図2に示した流体排出用コネクタ23と連通している。
 これにより、サブルーメン101L,103L,105L,108Lおよび110Lは、バルーン30(拡張部31)の内部に供給された流体をバルーン30の内部から排出す
るための「流体排出用サブルーメン」となる。
Each of the sub-lumens 101L, 103L, 105L, 108L and 110L communicates with the fluid discharge connector 23 shown in FIGS.
As a result, the sub-lumens 101L, 103L, 105L, 108L and 110L become "fluid discharge sub-lumens" for discharging the fluid supplied to the inside of the balloon 30 (expansion portion 31) from the inside of the balloon 30. FIG.
 流体排出用サブルーメン101L,103L,105L,108Lおよび110Lは、それぞれ、アウターチューブ10の先端面12に開口しているとともに、図3および図5に示すように、バルーン30の拡張部31の基端近傍(基端側コーン部分315の内部)に位置するアウターチューブ10の外周面においても開口している。
 ここに、アウターチューブ10の外周面に形成されている開口は、アウターチューブ10の先端面12に形成されている開口より面積が大きくなっている。
The fluid discharge sub-lumens 101L, 103L, 105L, 108L, and 110L are respectively open at the distal end surface 12 of the outer tube 10 and, as shown in FIGS. The outer peripheral surface of the outer tube 10 located in the vicinity of the end (inside the proximal end cone portion 315) is also open.
Here, the opening formed on the outer peripheral surface of the outer tube 10 has a larger area than the opening formed on the distal end surface 12 of the outer tube 10 .
 バルーン30の拡張部31の基端近傍に位置するアウターチューブ10の外周面に開口が形成されていることにより、アウターチューブ10の先端面12に形成されている開口から流体排出用サブルーメン101L,103L,105L,108Lおよび110Lに流体が流入されることを実質的に防止することができ、このことは、実験により確認されている。 Since an opening is formed in the outer peripheral surface of the outer tube 10 located near the proximal end of the expanded portion 31 of the balloon 30, the fluid discharge sub-lumen 101L, It is possible to substantially prevent fluid from flowing into 103L, 105L, 108L and 110L, which has been confirmed by experiments.
 アウターチューブ10の構成材料としては、特に限定されるものではないが、例えば、ポリアミド、ポリエーテルポリアミド、ポリエーテルブロックアミド(PEBAX(登録商標))およびナイロンなどのポリアミド系樹脂を挙げることができ、これらのうち、PEBAXが好ましい。 The constituent material of the outer tube 10 is not particularly limited, but examples thereof include polyamide-based resins such as polyamide, polyether polyamide, polyether block amide (PEBAX (registered trademark)), and nylon. Of these, PEBAX is preferred.
 アウターチューブ10の外径(後述する基端部における外径)は、通常1.0~3.3mmとされ、好適な一例を示せば1.45mmとされる。
 アウターチューブ10の中央ルーメン10Lの径は、通常0.35~0.95mmとされ、好適な一例を示せば0.85mmとされる。
 アウターチューブ10のサブルーメン101L~112Lの径は、通常0.10~0.75mmとされ、好適な一例を示せば0.25mmとされる。
 アウターチューブ10の長さは、通常100~2200mmとされ、好適な一例を示せば1800mmとされる。
The outer diameter of the outer tube 10 (the outer diameter at the base end portion, which will be described later) is usually 1.0 to 3.3 mm, and a preferred example is 1.45 mm.
The diameter of the central lumen 10L of the outer tube 10 is usually 0.35 to 0.95 mm, preferably 0.85 mm.
The diameter of the sub-lumens 101L to 112L of the outer tube 10 is normally 0.10 to 0.75 mm, and a preferred example is 0.25 mm.
The length of the outer tube 10 is usually 100-2200 mm, and a preferred example is 1800 mm.
 図1および図2に示すように、アウターチューブ10の基端側には、Yコネクタ20が接続されている。
 アウターチューブ10のサブルーメン101L~105Lおよびサブルーメン107L~111Lを囲繞するルーメンチューブは、アウターチューブ10の基端からYコネクタ20の内部に進入している。
As shown in FIGS. 1 and 2, a Y connector 20 is connected to the proximal end of the outer tube 10 .
A lumen tube surrounding the sub-lumens 101L to 105L and the sub-lumens 107L to 111L of the outer tube 10 enters the inside of the Y connector 20 from the proximal end of the outer tube 10 .
 サブルーメン102L,104L,107L,109Lおよび111L(流体供給用サブルーメン)を囲繞するルーメンチューブの基端部は、Yコネクタ20の内部において、シングルルーメン構造の流体供給用チューブ27に連結(接着剤により固定)されている。この流体供給用チューブ27は、Yコネクタ20の外部に延出し、流体供給用チューブ27の基端は流体供給用コネクタ22に連結している。 The proximal end of the lumen tube surrounding the sub-lumens 102L, 104L, 107L, 109L and 111L (fluid-supplying sub-lumens) is connected to the single-lumen-structured fluid-supplying tube 27 inside the Y connector 20 (using an adhesive). fixed by The fluid supply tube 27 extends outside the Y connector 20 , and the proximal end of the fluid supply tube 27 is connected to the fluid supply connector 22 .
 サブルーメン101L,103L,105L,108Lおよび110L(流体排出用サブルーメン)を囲繞するルーメンチューブの基端部は、Yコネクタ20の内部において、シングルルーメン構造の流体排出用チューブ28に連結(接着剤により固定)されている。この流体排出用チューブ28は、Yコネクタ20の外部に延出し、流体排出用チューブ28の基端は流体排出用コネクタ23に連結している。 The base ends of the lumen tubes surrounding the sub-lumens 101L, 103L, 105L, 108L and 110L (fluid discharge sub-lumens) are connected to the single-lumen structure fluid discharge tube 28 inside the Y connector 20 (using an adhesive). fixed by The fluid discharge tube 28 extends outside the Y connector 20 , and the proximal end of the fluid discharge tube 28 is connected to the fluid discharge connector 23 .
 バルーン型電極カテーテル100を構成するバルーン30は、拡張収縮する拡張部31と、拡張部31の先端に連続する先端側ネック部33と、拡張部31の基端に連続する基端側ネック部35とにより構成されている。 The balloon 30 constituting the balloon-type electrode catheter 100 includes an expanding portion 31 that expands and contracts, a distal neck portion 33 that continues to the distal end of the expanding portion 31, and a proximal neck portion 35 that continues to the proximal end of the expanding portion 31. It is composed of
 バルーン30の拡張部31は、その内部に流体が供給されることによって拡張し、その内部から流体が排出されることによって収縮する空間形成部分である。
 バルーン30の拡張部31は、円筒状部分311と、円筒状部分311の先端から先端側ネック部33の基端に至る先端側コーン部分313と、円筒状部分311の基端から基端側ネック部35の先端に至る基端側コーン部分315とからなる。
The expanded portion 31 of the balloon 30 is a space-forming portion that expands when fluid is supplied to its interior and contracts when the fluid is discharged from its interior.
The expansion portion 31 of the balloon 30 includes a cylindrical portion 311, a distal cone portion 313 extending from the distal end of the cylindrical portion 311 to the proximal end of the distal neck portion 33, and a proximal end of the cylindrical portion 311 to the proximal neck portion. and a proximal cone portion 315 extending to the distal end of the portion 35 .
 アウターチューブ10の先端部に基端側ネック部35が固定されるとともに、アウターチューブ10の先端部を拡張部31が内包していることにより、バルーン30は、アウターチューブ10の先端側に接続されている。 The balloon 30 is connected to the distal end of the outer tube 10 by fixing the proximal neck portion 35 to the distal end of the outer tube 10 and enclosing the distal end of the outer tube 10 in the expanded portion 31 . ing.
 アウターチューブ10の先端面12は、バルーン30の拡張部31の軸方向の中間位置よりも先端側である円筒状部分311の先端近傍に位置している。
 これにより、流体供給用サブルーメン102L,104L,107L,109Lおよび111Lを流通する流体は、円筒状部分311の先端近傍に位置する各々の開口から先端方向に吐出され、吐出された流体は、拡張部31(先端側コーン部分313)の先端近傍に到達することができ、これにより、バルーン30(拡張部31)の内部において先端側から基端側への流体の流れを形成することができる。
The distal end surface 12 of the outer tube 10 is positioned near the distal end of the cylindrical portion 311 that is distal to the intermediate position of the expanded portion 31 of the balloon 30 in the axial direction.
As a result, the fluid flowing through the fluid supply sub-lumens 102L, 104L, 107L, 109L, and 111L is discharged in the distal direction from each opening positioned near the distal end of the cylindrical portion 311, and the discharged fluid expands. It can reach the vicinity of the distal end of the portion 31 (distal cone portion 313), thereby forming a fluid flow from the distal side to the proximal side inside the balloon 30 (expansion portion 31).
 流体供給用サブルーメンの開口位置が、バルーンの拡張部の軸方向の中間位置より基端側にある場合には、バルーンの拡張後、当該開口から先端方向に流体を吐出させても、拡張部の先端近傍まで当該流体を到達させることができず、バルーンの内部において先端側から基端側への流体の流れを形成することができない。 When the opening position of the fluid supply sub-lumen is on the proximal side of the intermediate position in the axial direction of the expanded portion of the balloon, even if the fluid is discharged in the distal direction from the opening after the balloon is expanded, The fluid cannot reach the vicinity of the distal end of the balloon, and a flow of the fluid from the distal end side to the proximal end side cannot be formed inside the balloon.
 バルーン30の構成材料としては、特に限定されるものではなく、従来公知のバルーンカテーテルを構成するバルーンと同一のものを使用することができ、例えば、ポリアミド、ポリエーテルポリアミド、PEBAXおよびナイロンなどのポリアミド系樹脂;熱可塑性ポリエーテルウレタン、ポリエーテルポリウレタンウレア、フッ素ポリエーテルウレタンウレア、ポリエーテルポリウレタンウレア樹脂およびポリエーテルポリウレタンウレアアミドなどのポリウレタン系樹脂を挙げることができる。 The constituent material of the balloon 30 is not particularly limited, and the same materials as the balloon constituting the conventionally known balloon catheter can be used. For example, polyamide such as polyamide, polyether polyamide, PEBAX and nylon Polyurethane resins such as thermoplastic polyether urethane, polyether polyurethane urea, fluorine polyether urethane urea, polyether polyurethane urea resin and polyether polyurethane ureaamide.
 バルーン30(拡張部31)の直径としては、通常0.70~30.0mmとされ、好適な一例を示せば2.0mmとされる。
 バルーン30の基端側ネック部35の外径は、アウターチューブ10の基端部の外径と実質的に等しく、通常1.0~3.3mmとされ、好適な一例を示せば1.45mmである。
 バルーン30(拡張部31)の長さとしては、通常8~50mmとされ、好適な一例を示せば20mmとされる。
The diameter of the balloon 30 (expansion portion 31) is normally 0.70 to 30.0 mm, and a preferred example is 2.0 mm.
The outer diameter of the proximal neck portion 35 of the balloon 30 is substantially equal to the outer diameter of the proximal end portion of the outer tube 10, and is usually 1.0 to 3.3 mm, and a preferred example is 1.45 mm. is.
The length of the balloon 30 (expansion portion 31) is normally 8 to 50 mm, and a preferred example is 20 mm.
 本実施形態のバルーン型電極カテーテル100においては、インナーチューブ41と、先端チップ46とにより、インナーシャフトが構成されている。
 バルーン型電極カテーテル100を構成するインナーチューブ41は、ガイドワイヤを挿通可能なルーメン(ガイドワイヤルーメン)を有し、アウターチューブ10の中央ルーメン10Lに挿通され、その先端部が当該中央ルーメン10Lの開口からバルーン30(拡張部31)の内部に延出している。
In the balloon electrode catheter 100 of this embodiment, the inner tube 41 and the distal tip 46 constitute an inner shaft.
The inner tube 41 constituting the balloon-type electrode catheter 100 has a lumen through which a guidewire can be inserted (guidewire lumen), is inserted through the central lumen 10L of the outer tube 10, and has its distal end opening in the central lumen 10L. extends into the balloon 30 (expansion portion 31).
 バルーン30の内部に延出したインナーチューブ41の先端部は、拡張部31の円筒状部分311の内部を延在し、円筒状部分311の内部において先端チップ46に連結されている。 The distal end portion of the inner tube 41 extending inside the balloon 30 extends inside the cylindrical portion 311 of the expanded portion 31 and is connected to the distal tip 46 inside the cylindrical portion 311 .
 他方、インナーチューブ41の基端部は、アウターチューブ10の基端(中央ルーメン10Lの基端側の開口)からYコネクタ20の内部に進入し、Yコネクタ20の内部を延在して、Yコネクタ20の外部に延出しており、インナーチューブ41の基端は、ガイドワイヤコネクタ24に連結している。 On the other hand, the proximal end of the inner tube 41 enters the inside of the Y connector 20 from the proximal end of the outer tube 10 (the opening on the proximal side of the central lumen 10L), extends inside the Y connector 20, It extends outside the connector 20 , and the proximal end of the inner tube 41 is connected to the guide wire connector 24 .
 インナーチューブ41の構成材料としては、従来公知のバルーンカテーテルを構成するインナーチューブと同一のものを使用することができるが、機械的特性に優れた結晶性熱可塑性樹脂であるPEEK樹脂(ポリエーテルエーテルケトン樹脂)が好ましい。 As the material for forming the inner tube 41, the same material as the inner tube constituting a conventionally known balloon catheter can be used. ketone resins) are preferred.
 インナーチューブ41の外径は、これが挿通されるアウターチューブ10の中央ルーメン10Lの径と同一であるか僅かに小さく、通常0.34~0.99mmとされ、好適な一例を示せば0.84mmとされる。
 インナーチューブ41の内径は、通常0.31~0.92mmとされ、好適な一例を示せば0.68mmとされる。
The outer diameter of the inner tube 41 is the same as or slightly smaller than the diameter of the central lumen 10L of the outer tube 10 through which it is inserted, and is usually 0.34 to 0.99 mm, and a preferred example is 0.84 mm. It is said that
The inner diameter of the inner tube 41 is normally 0.31 to 0.92 mm, preferably 0.68 mm.
 バルーン型電極カテーテル100を構成する先端チップ46は、インナーチューブ41のガイドワイヤルーメンに連通するルーメン(ガイドワイヤルーメン)を有し、バルーン30の拡張部31の円筒状部分311および先端側コーン部分313の内部を延在し、先端側ネック部33に固定されてバルーン30の外部に延出している。 The distal tip 46 constituting the balloon-type electrode catheter 100 has a lumen (guidewire lumen) that communicates with the guidewire lumen of the inner tube 41, and includes a cylindrical portion 311 and a distal cone portion 313 of the expanded portion 31 of the balloon 30. and is fixed to the distal neck portion 33 and extends outside the balloon 30 .
 先端チップ46の構成材料としては、特に限定されるものではないが、例えば、ポリアミド、ポリエーテルポリアミド、PEBAXおよびナイロンなどのポリアミド系樹脂、ポリウレタンなどを挙げることができる。 The constituent material of the distal tip 46 is not particularly limited, but examples include polyamide resins such as polyamide, polyether polyamide, PEBAX and nylon, and polyurethane.
 先端チップ46の内径は、インナーチューブ41の内径と実質的に同一であり、通常0.31~0.92mmとされ、好適な一例を示せば0.68mmとされる。
 先端チップ46の外径は、通常0.35~2.6mmとされ、好適な一例を示せば1.0mmとされる。
 先端チップ46が固定されるバルーン30の先端側ネック部33の外径は、通常0.37~3.3mmとされ、好適な一例を示せば1.18mmである。
The inner diameter of the distal tip 46 is substantially the same as the inner diameter of the inner tube 41, usually 0.31 to 0.92 mm, preferably 0.68 mm.
The outer diameter of the distal tip 46 is normally 0.35 to 2.6 mm, and a preferred example is 1.0 mm.
The outer diameter of the distal neck portion 33 of the balloon 30 to which the distal tip 46 is fixed is usually 0.37 to 3.3 mm, and a preferred example is 1.18 mm.
 バルーン30(拡張部31の円筒状部分311および先端側コーン部分313並びに先端側ネック部33)の外表面には、高周波電流が通電される表面電極として、バルーン30の軸方向に沿って延びるよう金属薄膜によって形成された帯状電極51~54が、バルーン30の円周方向に沿って90°間隔で配置されている。 On the outer surface of the balloon 30 (cylindrical portion 311 and distal cone portion 313 of the expansion portion 31 and distal neck portion 33), surface electrodes to which a high-frequency current is applied are provided so as to extend along the axial direction of the balloon 30. Strip electrodes 51 to 54 formed of metal thin films are arranged along the circumferential direction of the balloon 30 at intervals of 90°.
 帯状電極51~54を構成する金属薄膜の構成材料としては、金、白金、銀、銅およびこれらの合金、ステンレススチールなどを挙げることができる。
 帯状電極51~54を構成する金属薄膜の膜厚としては0.5~5μmであることが好ましく、更に好ましくは1.0~2.5μmとされる。
 この膜厚が過小である場合には、手技中(高周波通電中)において、ジュール熱により金属薄膜が高温となるおそれがある。
 他方、薄膜の膜厚が過大である場合には、拡張収縮に伴うバルーンの形状変化に当該金属薄膜が追従しにくくなり、バルーンの拡張・収縮性が損なわれることがある。
Examples of materials for forming the thin metal films forming the strip electrodes 51 to 54 include gold, platinum, silver, copper, alloys thereof, and stainless steel.
The film thickness of the thin metal films forming the strip electrodes 51 to 54 is preferably 0.5 to 5 μm, more preferably 1.0 to 2.5 μm.
If this film thickness is too small, the temperature of the metal thin film may rise to a high temperature due to Joule heat during the procedure (during high-frequency current application).
On the other hand, if the film thickness of the thin film is too large, the metal thin film will be less likely to follow the change in shape of the balloon that accompanies expansion and contraction, which may impair the expansion/contraction properties of the balloon.
 帯状電極51~54を構成する金属薄膜をバルーン30の外表面に形成する方法としては特に限定されるものではなく、蒸着、スパッタリング、メッキ、印刷など、通常の金属薄膜形成方法を採用することができる。 The method of forming the metal thin films constituting the strip electrodes 51 to 54 on the outer surface of the balloon 30 is not particularly limited, and ordinary metal thin film forming methods such as vapor deposition, sputtering, plating, and printing can be employed. can.
 バルーン30の先端側ネック部33には金属リング60が装着されている。金属リング
60の外周面には、帯状電極51~54の各々の先端部が固着されている。これにより、帯状電極51~54の各々と金属リング60とが電気的に接続されている。
A metal ring 60 is attached to the distal neck portion 33 of the balloon 30 . The ends of the strip electrodes 51 to 54 are fixed to the outer peripheral surface of the metal ring 60 . Thereby, each of the strip electrodes 51 to 54 and the metal ring 60 are electrically connected.
 金属リング60の構成材料としては、白金または白金系の合金などを挙げることができる。 Examples of the constituent material of the metal ring 60 include platinum and platinum-based alloys.
 先端側ネック部33に装着される金属リング60の内径は、先端側ネック部33の外径と実質的に同一であり、通常0.37~3.3mmとされ、好適な一例を示せば1.18mmとされる。
 先端側ネック部33に装着される金属リング60の外径は、アウターチューブ10や基端側ネック部35の外径よりも小さく、通常0.98~3.28mmとされ、好適な一例を示せば1.32mmとされる。
The inner diameter of the metal ring 60 attached to the distal neck portion 33 is substantially the same as the outer diameter of the distal neck portion 33, and is usually 0.37 to 3.3 mm. .18 mm.
The outer diameter of the metal ring 60 attached to the distal neck portion 33 is smaller than the outer diameters of the outer tube 10 and the proximal neck portion 35, and is usually 0.98 to 3.28 mm. is 1.32 mm.
 金属リング60の内周面には導線70の先端が固定されている。
 この導線70は、先端チップ46の管壁内に延在し、インナーチューブ41に沿ってバルーン30の拡張部31の内部に延在し、アウターチューブ10のサブルーメン106Lに延在し、Yコネクタ20の内部に延在し、Yコネクタ20から延出する導線保護チューブ26の内部を通ってYコネクタ20から延出している。
A leading end of a conducting wire 70 is fixed to the inner peripheral surface of the metal ring 60 .
This conducting wire 70 extends inside the tube wall of the distal tip 46, extends inside the expanded portion 31 of the balloon 30 along the inner tube 41, extends to the sub-lumen 106L of the outer tube 10, and is connected to the Y connector. 20 and extends from the Y connector 20 through the interior of a conductor protection tube 26 extending from the Y connector 20 .
 導線70の基端は電気コネクタ21に接続されている。この電気コネクタ21は、帯状電極51~54にの各々に高周波電流を通電する通電用コネクタとしての機能と、後述する温度センサ80を温度測定器に接続するための熱電対コネクタとの機能を兼ね備えている。 The base end of the conducting wire 70 is connected to the electrical connector 21 . The electrical connector 21 has both a function as a connector for conducting a high-frequency current to each of the strip electrodes 51 to 54 and a function as a thermocouple connector for connecting a temperature sensor 80 to a temperature measuring instrument, which will be described later. ing.
 金属リング60および導線70を介して、帯状電極51~54の各々を、電気コネクタ21に接続することにより、帯状電極51~54の各々に対して均等に高周波電流を通電することができる。 By connecting each of the strip electrodes 51 to 54 to the electrical connector 21 via the metal ring 60 and the lead wire 70, a high frequency current can be applied to each of the strip electrodes 51 to 54 evenly.
 導線70の構成材料としては、例えば、銅、銀、金、白金、タングステンおよびこれら金属の合金を挙げることができ、フッ素樹脂などの電気絶縁性保護被覆が施されていることが好ましい。 Examples of the constituent material of the conducting wire 70 include copper, silver, gold, platinum, tungsten, and alloys of these metals, and it is preferable that an electrically insulating protective coating such as fluororesin is applied.
 バルーン30の管壁には、熱電対からなる温度センサ80が埋設配置されている。この温度センサ80の側温部81(測温接点)は、拡張部31の管壁に位置している。 A temperature sensor 80 consisting of a thermocouple is embedded in the tube wall of the balloon 30 . A side temperature portion 81 (temperature measuring junction) of the temperature sensor 80 is located on the pipe wall of the extension portion 31 .
 温度センサ80は、バルーン30の基端側ネック部35の管壁からアウターチューブ10のサブルーメン112Lに進入して当該サブルーメン112Lに延在し、導線70とともに、Yコネクタ20の内部に延在し、Yコネクタ20から延出する導線保護チューブ26の内部を通ってYコネクタ20から延出している。
 温度センサ80の基端は電気コネクタ21に接続されている。
The temperature sensor 80 enters the sub-lumen 112L of the outer tube 10 from the tube wall of the proximal neck portion 35 of the balloon 30, extends into the sub-lumen 112L, and extends inside the Y connector 20 together with the conducting wire 70. , and extends from the Y connector 20 through the inside of the conductor protection tube 26 extending from the Y connector 20 .
A proximal end of the temperature sensor 80 is connected to the electrical connector 21 .
 本実施形態のバルーン型電極カテーテル100では、アウターチューブ10の中心軸を通る任意の仮想平面で当該アウターチューブ10を縦断して2つに分割したときに、分割された各部分の横断面視において、流体供給用サブルーメンと流体排出用サブルーメンとの面積比が常に40:60~60:40の範囲にある。 In the balloon electrode catheter 100 of the present embodiment, when the outer tube 10 is longitudinally divided into two on any virtual plane passing through the central axis of the outer tube 10, in the cross-sectional view of each divided portion , the area ratio of the fluid supply sub-lumen to the fluid discharge sub-lumen is always in the range of 40:60 to 60:40.
 例えば、図6Aに示すように、アウターチューブ10を仮想平面P1で2つの部分(10A1および10A2)に分割したときに、部分10A1において、流体供給用サブルーメン(102L,104L)と流体排出用サブルーメン(101L,103L,105L)との面積比は40:60となり、部分10A2において、流体供給用サブルーメン(1
07L,109L,111L)と流体排出用サブルーメン(108L,110L)との面積比は60:40となる。
For example, as shown in FIG. 6A, when the outer tube 10 is divided into two parts (10A1 and 10A2) on the imaginary plane P1, in the part 10A1, sub-lumens for fluid supply (102L, 104L) and sub-lumens for fluid discharge (102L, 104L) The area ratio with the lumens (101L, 103L, 105L) is 40:60, and in the portion 10A2, the sub-lumen for fluid supply (1
07L, 109L, 111L) and the fluid discharge sub-lumens (108L, 110L) are 60:40.
 また、図6Bに示すように、アウターチューブ10を仮想平面P2で2つの部分(10B1および10B2)に分割したときに、部分10B1において、流体供給用サブルーメン(102L,109L,111L)と流体排出用サブルーメン(101L,110L)との面積比は60:40となり、部分10B2において、流体供給用サブルーメン(104L,107L)と流体排出用サブルーメン(103L,105L,108L)との面積比は40:60となる。 Further, as shown in FIG. 6B, when the outer tube 10 is divided into two parts (10B1 and 10B2) on the imaginary plane P2, in the part 10B1, fluid supply sub-lumens (102L, 109L, 111L) and fluid discharge sub-lumens (102L, 109L, 111L) The area ratio of the fluid supply sub-lumens (101L, 110L) is 60:40. It becomes 40:60.
 更に、図6Cに示すように、アウターチューブ10を仮想平面P3で2つの部分(10C1および10C2)に分割したときに、部分10C1および部分10C2において、流体供給用サブルーメンと流体排出用サブルーメンとの面積比は50:50となる。 Furthermore, as shown in FIG. 6C, when the outer tube 10 is divided into two parts (10C1 and 10C2) on the imaginary plane P3, the fluid supply sub-lumen and the fluid discharge sub-lumen are formed in the parts 10C1 and 10C2. area ratio is 50:50.
 このように、アウターチューブ10をその中心軸を通る仮想平面で分割したときには、分割された各部分の横断面視における流体供給用サブルーメンと流体排出用サブルーメンとの面積比が常に40:60~60:40の範囲にあることにより、アウターチューブ10における流体供給用サブルーメンと流体供給用サブルーメンとの全体の面積比が40:60~60:40の範囲にあるとともに、流体供給用サブルーメンおよび流体供給用サブルーメンが、アウターチューブ10の円周方向において遍在することなく配置されているので、バルーン30の内部を先端側から基端側へ向かう流体の流れ(流量)を、バルーン30の円周方向において均一なものとすることができる。 Thus, when the outer tube 10 is divided along the virtual plane passing through its central axis, the area ratio between the fluid supply sub-lumen and the fluid discharge sub-lumen in the cross-sectional view of each divided portion is always 40:60. ∼60:40, the total area ratio of the fluid supply sub-lumen and the fluid supply sub-lumen in the outer tube 10 is in the range of 40:60 to 60:40, and the fluid supply sub-lumen Since the lumens and fluid supply sub-lumens are arranged without being ubiquitous in the circumferential direction of the outer tube 10, the fluid flow (flow rate) from the distal side to the proximal side inside the balloon 30 can be controlled by the balloon. 30 can be uniform in the circumferential direction.
 これに対して、図11Aに示すように、特許文献2に記載されたバルーン型電極カテーテルを構成するアウターチューブ1を仮想平面P4で2つの部分(1A1および1A2)に分割したときに、部分1A1および部分1A2において、流体供給用サブルーメン2と流体排出用サブルーメン3との面積比は50:50となる。
 しかし、図11Bに示すように、このアウターチューブ1を仮想平面P5で2つの部分(1B1および1B2)に分割したときには、部分B1における流体供給用サブルーメン2と流体排出用サブルーメン3との面積比は0:100となり、部分1B2における流体供給用サブルーメン2と流体排出用サブルーメン3との面積比は100:0となり、流体供給用サブルーメン2が部分1B2に遍在し、流体排出用サブルーメン3が部分1B1に遍在している。このようなアウターチューブ1を備えたバルーン型電極カテーテルによっては、バルーンの内部を先端側から基端側へ向かう流体の流れ(流量)を、バルーンの円周方向において均一なものとすることができない。
On the other hand, as shown in FIG. 11A, when the outer tube 1 constituting the balloon electrode catheter described in Patent Document 2 is divided into two parts (1A1 and 1A2) along a virtual plane P4, the part 1A1 and in the portion 1A2, the area ratio between the fluid supply sub-lumen 2 and the fluid discharge sub-lumen 3 is 50:50.
However, as shown in FIG. 11B, when this outer tube 1 is divided into two parts (1B1 and 1B2) on a virtual plane P5, the area of the fluid supply sub-lumen 2 and the fluid discharge sub-lumen 3 in the part B1 is The ratio is 0:100, the area ratio of the fluid supply sub-lumen 2 and the fluid discharge sub-lumen 3 in the portion 1B2 is 100:0, the fluid supply sub-lumen 2 is ubiquitous in the portion 1B2, and the fluid discharge sub-lumen 2 is ubiquitous in the portion 1B2. Sublumens 3 are ubiquitous in portion 1B1. With a balloon electrode catheter having such an outer tube 1, it is not possible to make the flow (flow rate) of the fluid from the distal end to the proximal end of the balloon uniform in the circumferential direction of the balloon. .
 本実施形態のバルーン型電極カテーテル100によれば、バルーン30の外表面に形成された帯状電極51~54の各々により、脈管またはその周囲における病巣に対して広範囲にわたる高周波焼灼治療を行うことができる。 According to the balloon-type electrode catheter 100 of the present embodiment, each of the band-shaped electrodes 51 to 54 formed on the outer surface of the balloon 30 can perform high-frequency ablation treatment over a wide range on a lesion in or around a vessel. can.
 また、流体供給用サブルーメン102L,104L,107L,109Lおよび111Lの各々が、バルーン30の拡張部31の円筒状部分311の先端近傍に位置するアウターチューブ10の先端面12において開口し、流体排出用サブルーメン101L,103L,105L,108Lおよび110Lの各々が、拡張部31の基端の近傍(基端側コーン部分315の内部)に位置するアウターチューブ10の外周面において開口していることにより、バルーン30の拡張後(内部に流体が充填された後)であっても、バルーン30の内部において、先端側から基端側への流体の流れを形成することができ、当該流体を流動させることができる。 Further, each of the fluid supply sub-lumens 102L, 104L, 107L, 109L and 111L opens at the distal end surface 12 of the outer tube 10 located near the distal end of the cylindrical portion 311 of the expanded portion 31 of the balloon 30 to discharge the fluid. Each of the sub-lumens 101L, 103L, 105L, 108L, and 110L is open on the outer peripheral surface of the outer tube 10 located near the proximal end of the expanded portion 31 (inside the proximal-side cone portion 315). , even after the balloon 30 is expanded (after the inside is filled with fluid), a fluid flow can be formed from the distal side to the proximal side inside the balloon 30, and the fluid can flow. be able to.
 特に、流体供給用サブルーメン102L,104L,107L,109Lおよび111
Lの開口から、先端方向に吐出される流体が、拡張部31の先端側コーン部分313の内壁面に当たり、その後、拡張部31の円筒状部分311および基端側コーン部分315の内壁面に沿って基端方向に流れることにより、バルーン30(拡張部31)の内部において流体を循環させることができる。
In particular, fluid supply sub-lumens 102L, 104L, 107L, 109L and 111
The fluid discharged in the distal direction from the opening of L hits the inner wall surface of the distal cone portion 313 of the extension portion 31, and then along the inner wall surfaces of the cylindrical portion 311 and the proximal cone portion 315 of the extension portion 31. The fluid can be circulated inside the balloon 30 (expansion portion 31) by flowing in the proximal direction.
 この結果、バルーン30の内部を、拡張部31の全域にわたり効率よく冷却することができ、これにより、帯状電極51~54の周囲の組織が十分に冷却され、当該組織が線維化されることを確実に防止することができる。 As a result, the inside of the balloon 30 can be efficiently cooled over the entire area of the expanded portion 31, thereby sufficiently cooling the tissue around the strip electrodes 51 to 54, thereby preventing the tissue from fibrosis. can be reliably prevented.
 更に、アウターチューブ10の中心軸を通る任意の仮想平面で当該アウターチューブ10を縦断して2つに分割したときに、分割された各部分の横断面視において、流体供給用サブルーメンと流体排出用サブルーメンとの面積比が常に40:60~60:40の範囲にあり、流体供給用サブルーメンおよび流体供給用サブルーメンが、アウターチューブ10の円周方向において遍在することなく配置されているので、バルーン30の内部を先端側から基端側へ向かう流体の流れ(流量)を、バルーン30の円周方向において均一なものとすることができ、これにより、バルーン30の内部を、その円周方向において均一に冷却することができる。 Furthermore, when the outer tube 10 is longitudinally divided into two on an arbitrary imaginary plane passing through the central axis of the outer tube 10, in the cross-sectional view of each divided portion, the fluid supply sub-lumen and the fluid discharge The area ratio to the sub-lumen for the fluid supply is always in the range of 40:60 to 60:40, and the fluid-supplying sub-lumens and the fluid-supplying sub-lumens are arranged without being ubiquitous in the circumferential direction of the outer tube 10. Therefore, the flow (flow rate) of the fluid from the distal side to the proximal side inside the balloon 30 can be made uniform in the circumferential direction of the balloon 30, thereby making the inside of the balloon 30 uniform. Uniform cooling can be achieved in the circumferential direction.
 特に、バルーン30の内部に延在する先端部を含めてアウターチューブ10が円管状であることにより、バルーン30の内部における流体の流路(バルーン30の内周面とアウターチューブ10の外周面とにより区画される流路)が円周方向において均一に形成されるので、、バルーン30の内部を先端側から基端側へ向かう流体の流れ(流量)を、バルーン30の円周方向において更に均一なものとすることができる。 In particular, since the outer tube 10 including the distal end extending inside the balloon 30 has a circular tubular shape, the flow path of the fluid inside the balloon 30 (between the inner peripheral surface of the balloon 30 and the outer peripheral surface of the outer tube 10) ) are formed uniformly in the circumferential direction, so that the fluid flow (flow rate) from the distal side to the proximal side inside the balloon 30 is more uniform in the circumferential direction of the balloon 30. can be
 本実施形態のバルーン型電極カテーテル100が適用可能な症例としては、脈管またはその周囲における腫瘍や迷走神経などであり、具体的には、胆管ガン、肺ガン、肝ガン、腎臓ガン、副腎腺腫、腎動脈迷走神経などを挙げることができる。 Cases to which the balloon-type electrode catheter 100 of the present embodiment can be applied include tumors and vagus nerves in and around blood vessels, specifically bile duct cancer, lung cancer, liver cancer, kidney cancer, and adrenal adenoma. , renal artery vagus nerve, and the like.
<第2実施形態>
 図7は、この実施形態に係るバルーン型電極カテーテル200の先端部分を示す平面図であり、図8は、図7のVIII-VIII断面図、図9は、図7のIX-IX断面図、図10Aおよび図10Bは、図8の部分拡大図(アウターチューブの断面図)である。
 図7~図9において、第1実施形態に係るバルーン型電極カテーテル100と同一の構成要素には、同一符合を用いている。
<Second embodiment>
7 is a plan view showing the tip portion of the balloon electrode catheter 200 according to this embodiment, FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7, FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 10A and 10B are partial enlarged views of FIG. 8 (cross-sectional views of the outer tube).
7 to 9, the same reference numerals are used for the same components as those of the balloon electrode catheter 100 according to the first embodiment.
 このバルーン型電極カテーテル200は、中央ルーメン15Lと、その周囲に配置されたサブルーメン151L~156Lとを有する円管状のアウターチューブ15と;アウターチューブ15の基端側に配置された電気コネクタと;アウターチューブ15の基端側に配置された流体供給用コネクタと;アウターチューブ15の基端側に配置された流体排出用コネクタと;拡張収縮する拡張部31と、その両端に連続するネック部(先端側ネック部33および基端側ネック部35)とを有し、基端側ネック部35がアウターチューブ15の先端部に固定され、拡張部31がアウターチューブ15の先端部を内包していることにより、アウターチューブ15の先端側に接続されたバルーン30と;ガイドワイヤルーメンを有し、アウターチューブ15の中央ルーメン15Lに挿通されて、当該中央ルーメン15Lの開口からバルーン30の内部に延出するインナーチューブ41と、インナーチューブ41のガイドワイヤルーメンに連通するルーメン(ガイドワイヤルーメン)を有し、バルーン30の内部においてインナーチューブ41の先端に接続されるとともに、先端側ネック部33に固定されてバルーン30の外部に延出する先端チップ46と;バルーン30の拡張部31および先端側ネック部33の外表面に形成された金属薄膜による帯状電極51~54(表面電極)と;バルーン30の先端側ネック部33に装着され、帯状電極
51~54の各々の先端部がその外周面に固着されることにより、帯状電極51~54の各々と電気的に接続された金属リング60と;金属リング60の内周面にその先端が接続され、バルーン30の内部およびアウターチューブ15のサブルーメン156Lに延在し、その基端が電気コネクタ21に接続された導線70と;バルーン30の拡張部31の管壁にその先端(測温部81)が埋設され、拡張部31および基端側ネック部35の管壁並びにアウターチューブ15のサブルーメン155Lに延在し、電気コネクタにその基端が接続された、温度センサ(熱電対)80とを備えており;アウターチューブ15の有するサブルーメン152Lおよび154Lは、それぞれ、流体供給用コネクタと連通している流体供給用サブルーメンであり;アウターチューブ15の有するサブルーメン151Lおよび153Lは、それぞれ、流体排出用サブルーメンであり;アウターチューブ15には、拡張部31の中間位置よりも先端側に位置するその先端面17に、サブルーメン151L~156Lの開口が形成されているとともに、拡張部31の基端の近傍に位置するその外周面に、流体排出用サブルーメン151Lおよび153Lの開口が形成され;アウターチューブ15の中心軸を通る任意の仮想平面で当該アウターチューブ15を縦断して2つに分割したときに、分割された各部分の横断面視において、流体供給用サブルーメンと流体排出用サブルーメンとの面積比が常に40:60~60:40の範囲にある。
This balloon-type electrode catheter 200 includes a circular tubular outer tube 15 having a central lumen 15L and sub-lumens 151L to 156L arranged therearound; an electrical connector arranged on the proximal end side of the outer tube 15; A fluid supply connector arranged on the proximal side of the outer tube 15; a fluid discharge connector arranged on the proximal side of the outer tube 15; an expanding portion 31 that expands and contracts; The proximal neck portion 35 is fixed to the distal end portion of the outer tube 15, and the extended portion 31 encloses the distal end portion of the outer tube 15. Thus, the balloon 30 connected to the distal end side of the outer tube 15; has a guide wire lumen, is inserted through the central lumen 15L of the outer tube 15, and extends inside the balloon 30 from the opening of the central lumen 15L. and a lumen communicating with the guide wire lumen of the inner tube 41 (guide wire lumen). a distal tip 46 extending to the outside of the balloon 30; belt-shaped electrodes 51 to 54 (surface electrodes) made of metal thin films formed on the outer surfaces of the expanded portion 31 and the distal neck portion 33 of the balloon 30; a metal ring 60 attached to the distal neck portion 33 and electrically connected to each of the strip electrodes 51 to 54 by fixing the tip portion of each of the strip electrodes 51 to 54 to its outer peripheral surface; a conducting wire 70 whose distal end is connected to the inner peripheral surface of the ring 60, extends to the inside of the balloon 30 and the sub-lumen 156L of the outer tube 15, and whose proximal end is connected to the electrical connector 21; The distal end (temperature measuring portion 81) is embedded in the tube wall of 31, extends to the tube walls of the expanded portion 31, the proximal side neck portion 35, and the sub-lumen 155L of the outer tube 15, and the proximal end is connected to the electrical connector. a temperature sensor (thermocouple) 80 connected thereto; sub-lumens 152L and 154L of the outer tube 15 are fluid-supply sub-lumens communicating with the fluid-supply connector; 15 have sub-lumens 151L and 153L, respectively, which are fluid discharge sub-lumens; Openings of the sub-lumens 151L to 156L are formed on the distal end surface 17 located on the distal side of the intermediate position of the extended portion 31, and the outer peripheral surface located near the proximal end of the extended portion 31 is filled with fluid. Openings of the discharge sub-lumens 151L and 153L are formed; when the outer tube 15 is longitudinally divided into two on any imaginary plane passing through the central axis of the outer tube 15, the cross section of each divided portion Visually, the area ratio between the fluid supply sub-lumen and the fluid discharge sub-lumen is always in the range of 40:60 to 60:40.
 バルーン型電極カテーテル100を構成するアウターチューブ15は、中央ルーメン15Lと、サブルーメン151L~156Lとを有する円管状のチューブである。
 サブルーメン151L~154Lは略楕円形の横断面形状を有し、サブルーメン155Lおよび156Lは円形の横断面形状を有している。
 サブルーメン151L~156Lの各々は、これを囲繞するルーメンチューブにより形成され、これらのルーメンチューブは、アウターチューブ15を形成するバインダ樹脂により固定されている。
The outer tube 15 constituting the balloon-type electrode catheter 100 is a circular tubular tube having a central lumen 15L and sub-lumens 151L to 156L.
The sub-lumens 151L to 154L have substantially elliptical cross-sectional shapes, and the sub-lumens 155L and 156L have circular cross-sectional shapes.
Each of the sub-lumens 151L to 156L is formed by a lumen tube surrounding it, and these lumen tubes are fixed by the binder resin forming the outer tube 15. As shown in FIG.
 サブルーメン151L~156Lは、それぞれ、アウターチューブ15の先端面17において開口している。 The sub-lumens 151L to 156L are open at the distal end surface 17 of the outer tube 15, respectively.
 サブルーメン152Lおよび154Lは、それぞれ、流体供給用コネクタと連通しており、これにより、サブルーメン152Lおよび154Lは、バルーン30(拡張部31)の内部に流体を供給するための「流体供給用サブルーメン」となる。 Each of the sub-lumens 152L and 154L communicates with a fluid-supply connector, whereby the sub-lumens 152L and 154L are "fluid-supplying sub-lumens" for supplying fluid to the inside of the balloon 30 (expansion portion 31). "Lumen".
 サブルーメン151Lおよび153Lは、それぞれ、流体排出用コネクタと連通しており、これにより、サブルーメン151Lおよび153Lは、バルーン30(拡張部31)の内部に供給された流体をバルーン30の内部から排出するための「流体排出用サブルーメン」となる。 Each of the sub-lumens 151L and 153L communicates with a fluid discharge connector, whereby the sub-lumens 151L and 153L discharge the fluid supplied to the inside of the balloon 30 (expansion portion 31) from the inside of the balloon 30. It becomes a "fluid discharge sub-lumen" for
 図9に示すように、サブルーメン155Lには温度センサ80が延在し、サブルーメン156Lには導線70が延在している。 As shown in FIG. 9, the temperature sensor 80 extends to the sub-lumen 155L, and the conducting wire 70 extends to the sub-lumen 156L.
 流体排出用サブルーメン151Lおよび153Lは、それぞれ、アウターチューブ15の先端面17に開口しているとともに、図7および図9に示すように、バルーン30の拡張部31の基端近傍(基端側コーン部分315の内部)に位置するアウターチューブ15の外周面においても開口している。 The fluid discharge sub-lumens 151L and 153L are open to the distal end face 17 of the outer tube 15, respectively, and extend near the proximal end (base end side) of the expanded portion 31 of the balloon 30 as shown in FIGS. The outer peripheral surface of the outer tube 15 located inside the cone portion 315 is also open.
 バルーン30の拡張部31の基端近傍に位置するアウターチューブ15の外周面に開口が形成されていることにより、アウターチューブ15の先端面17に形成されている開口から流体排出用サブルーメン151Lおよび153Lに流体が流入されることを実質的に防止することができる。 Since the opening is formed in the outer peripheral surface of the outer tube 15 located near the proximal end of the expanded portion 31 of the balloon 30, the fluid discharge sub-lumen 151L and the fluid discharge sub-lumen 151L and Fluid can be substantially prevented from flowing into 153L.
 図8に示すように、サブルーメン155Lが形成されているアウターチューブ15の円周方向位置を基準(0°)とすると、0°~90°の範囲に流体排出用サブルーメン151Lが形成され、180°~270°の範囲に流体排出用サブルーメン153Lが形成されており、流体排出用サブルーメン151Lと流体排出用サブルーメン153Lとは、アウターチューブ15の中心軸を挟んで対向配置されている。 As shown in FIG. 8, when the circumferential position of the outer tube 15 in which the sub-lumen 155L is formed is taken as a reference (0°), the fluid discharge sub-lumen 151L is formed in the range of 0° to 90°, A fluid discharge sub-lumen 153L is formed in a range of 180° to 270°, and the fluid discharge sub-lumen 151L and the fluid discharge sub-lumen 153L are arranged to face each other across the central axis of the outer tube 15. .
 また、90°~180°の範囲に流体供給用サブルーメン152Lが形成され、270°~360°の範囲に流体供給用サブルーメン154Lが形成されており、流体供給用サブルーメン152Lと流体供給用サブルーメン154Lとは、アウターチューブ15の中心軸を挟んで対向配置されている。 A fluid supply sub-lumen 152L is formed in the range of 90° to 180°, and a fluid supply sub-lumen 154L is formed in the range of 270° to 360°. The sub-lumen 154</b>L is arranged to face the central axis of the outer tube 15 .
 図10Aに示すように、アウターチューブ15を仮想平面P6で2つの部分(15A1および15A2)に分割したときに、部分15A1および部分15A2の何れにおいても、流体供給用サブルーメンと流体排出用サブルーメンとの面積比は50:50となる。 As shown in FIG. 10A, when the outer tube 15 is divided into two parts (15A1 and 15A2) on the imaginary plane P6, both the part 15A1 and the part 15A2 have fluid supply sub-lumens and fluid discharge sub-lumens. is 50:50.
 また、図10Bに示すように、アウターチューブ15を仮想平面P7で2つの部分(15B1および15B2)に分割したときに、部分15B1および部分15B2の何れにおいても、流体供給用サブルーメンと流体排出用サブルーメンとの面積比は50:50となる。 Further, as shown in FIG. 10B, when the outer tube 15 is divided into two parts (15B1 and 15B2) on the imaginary plane P7, both the part 15B1 and the part 15B2 have fluid supply sub-lumens and fluid discharge sub-lumens. The area ratio with the sublumen is 50:50.
 このように、アウターチューブ15をその中心軸を通る仮想平面で分割したときには、分割された各部分の横断面視における流体供給用サブルーメンと流体排出用サブルーメンとの面積比が常に50:50となり、流体供給用サブルーメンおよび流体供給用サブルーメンが、アウターチューブ15の円周方向において遍在することなく配置されているので、バルーン30の内部を先端側から基端側へ向かう流体の流れ(流量)を、バルーン30の円周方向において均一なものとすることができる。これにより、バルーン30の内部を、その円周方向において均一に冷却することができる。 Thus, when the outer tube 15 is divided along the virtual plane passing through its central axis, the area ratio between the fluid supply sub-lumen and the fluid discharge sub-lumen in the cross-sectional view of each divided portion is always 50:50. Since the fluid-supplying sub-lumens and the fluid-supplying sub-lumens are arranged without being ubiquitous in the circumferential direction of the outer tube 15, the fluid flows inside the balloon 30 from the distal side to the proximal side. (Flow rate) can be made uniform in the circumferential direction of the balloon 30 . Thereby, the inside of the balloon 30 can be uniformly cooled in its circumferential direction.
 また、流体供給用サブルーメン152Lおよび154Lおよび流体排出用サブルーメン151Lおよび153Lの数が、それぞれ2つであることにより、これらのルーメンを流れる流体の抵抗(管内抵抗)を低く抑えて、十分な流量を確保することができる。 Further, since the number of the fluid supply sub-lumens 152L and 154L and the number of the fluid discharge sub-lumens 151L and 153L are two, respectively, the resistance of the fluid flowing through these lumens (intra-tube resistance) can be kept low and sufficient Flow rate can be secured.
100 バルーン型電極カテーテル
 10 アウターチューブ
 10L 中央ルーメン
 102L,104L,107L,109L,111L 流体供給用サブルーメン
 101L,103L,105L,108L,110L 流体排出用サブルーメン
 106L,112L サブルーメン
 12 アウターチューブの先端面
 20 Yコネクタ
 21 電気コネクタ
 22 流体供給用コネクタ
 23 流体排出用コネクタ
 24 ガイドワイヤコネクタ
 26 導線保護チューブ
 27 流体供給用チューブ
 28 流体排出用チューブ
 30 バルーン
 31 拡張部
 311 円筒状部分311
 313 先端側コーン部分313
 315 基端側コーン部分315
 33 先端側ネック部
 35 基端側ネック部
 41 インナーチューブ
 46 先端チップ
 51~54 帯状電極(表面電極)
 60 金属リング
 70 導線
 80 温度センサ(熱電対)
 81 温度センサの測温部
200 バルーン型電極カテーテル
 15 アウターチューブ
 15L 中央ルーメン
 152L,154L 流体供給用サブルーメン
 151L,153L 流体排出用サブルーメン
 155L,156L サブルーメン
 17 アウターチューブの先端面
REFERENCE SIGNS LIST 100 balloon type electrode catheter 10 outer tube 10L central lumen 102L, 104L, 107L, 109L, 111L sub-lumen for fluid supply 101L, 103L, 105L, 108L, 110L sub-lumen for fluid discharge 106L, 112L sub-lumen 12 tip surface of outer tube 20 Y-connector 21 Electrical connector 22 Fluid supply connector 23 Fluid discharge connector 24 Guide wire connector 26 Conductive wire protection tube 27 Fluid supply tube 28 Fluid discharge tube 30 Balloon 31 Expansion part 311 Cylindrical part 311
313 distal cone portion 313
315 proximal cone portion 315
33 distal side neck portion 35 proximal side neck portion 41 inner tube 46 distal tip 51-54 strip electrodes (surface electrodes)
60 metal ring 70 wire 80 temperature sensor (thermocouple)
81 temperature measuring part 200 balloon type electrode catheter 15 outer tube 15L central lumen 152L, 154L fluid supply sub-lumen 151L, 153L fluid discharge sub-lumen 155L, 156L sub-lumen 17 tip surface of outer tube

Claims (8)

  1.  高周波焼灼治療を行うためのバルーン型電極カテーテルであって、
     中央ルーメンと、その周囲に配置された少なくとも4つのサブルーメンとを有するアウターチューブと、
     前記アウターチューブの基端側に配置された通電用コネクタと、
     拡張収縮する拡張部と、その両端に連続するネック部とを有し、基端側ネック部が前記アウターチューブの先端部に固定され、前記拡張部が前記アウターチューブの前記先端部を内包していることにより、前記アウターチューブの先端側に接続されたバルーンと、
     前記アウターチューブの前記中央ルーメンに挿通されて、当該中央ルーメンの開口から前記バルーンの内部に延出し、前記バルーンの先端側ネック部に固定されて前記バルーンの外部に延出するインナーシャフトと、
     少なくとも前記バルーンの前記拡張部において当該バルーンの外表面に形成された金属薄膜からなる表面電極と、
     前記表面電極と前記通電用コネクタとを電気的に接続する導線とを備えてなり;
     前記アウターチューブの有する前記サブルーメンの少なくとも2本は、前記バルーンの内部に供給される冷却用の流体を流通させる流体供給用サブルーメンであり、
     前記アウターチューブの有する前記サブルーメンの少なくとも2本は、前記バルーンの内部から排出される冷却後の前記流体を流通させる流体排出用サブルーメンであり;
     前記アウターチューブには、前記拡張部の中間位置よりも先端側において前記流体供給用サブルーメンの開口が形成されているとともに、前記拡張部の基端の近傍において前記流体排出用サブルーメンの開口が形成され、
     前記アウターチューブの中心軸を通る任意の仮想平面で当該アウターチューブを縦断して2つに分割したときに、分割された各部分の横断面視において、前記流体供給用サブルーメンと前記流体排出用サブルーメンとの面積比が常に40:60~60:40の範囲にあることを特徴とするバルーン型電極カテーテル。
    A balloon-type electrode catheter for performing high-frequency ablation treatment,
    an outer tube having a central lumen and at least four sub-lumens arranged therearound;
    a current-carrying connector arranged on the base end side of the outer tube;
    It has an expanding portion that expands and contracts and neck portions that are continuous to both ends thereof, the proximal neck portion being fixed to the distal end portion of the outer tube, and the expanding portion enclosing the distal end portion of the outer tube. a balloon connected to the distal end side of the outer tube;
    an inner shaft that is inserted through the central lumen of the outer tube, extends into the balloon from the opening of the central lumen, is fixed to a distal neck portion of the balloon, and extends to the outside of the balloon;
    a surface electrode made of a thin metal film formed on the outer surface of the balloon at least in the expanded portion of the balloon;
    a conducting wire that electrically connects the surface electrode and the current-carrying connector;
    at least two of the sub-lumens of the outer tube are fluid-supplying sub-lumens for circulating a cooling fluid to be supplied to the inside of the balloon;
    at least two of the sub-lumens of the outer tube are fluid-discharging sub-lumens for circulating the cooled fluid discharged from the inside of the balloon;
    The outer tube is formed with an opening for the fluid supply sub-lumen on the distal end side of the intermediate position of the extension portion, and an opening for the fluid discharge sub-lumen is formed near the proximal end of the extension portion. formed,
    When the outer tube is longitudinally divided into two on an arbitrary virtual plane passing through the central axis of the outer tube, the fluid supply sub-lumen and the fluid discharge sub-lumen are seen in the cross-sectional view of each divided portion. A balloon-type electrode catheter, characterized in that the area ratio to the sublumen is always in the range of 40:60 to 60:40.
  2.  前記アウターチューブは、全長にわたり円管状のマルチルーメンチューブからなり、
     前記アウターチューブの先端面に前記流体供給用サブルーメンの前記開口が形成され、
     前記アウターチューブの外周面に前記流体排出用サブルーメンの前記開口が形成されていることを特徴とする請求項1に記載のバルーン型電極カテーテル。
    The outer tube is a circular multi-lumen tube over its entire length,
    the opening of the fluid supply sub-lumen is formed on the distal end surface of the outer tube,
    2. The balloon electrode catheter according to claim 1, wherein the opening of the fluid discharge sub-lumen is formed on the outer peripheral surface of the outer tube.
  3.  前記流体供給用サブルーメンと、前記流体排出用サブルーメンとが、前記アウターチューブの円周方向に沿って交互に配置されていることを特徴とする請求項2に記載のバルーン型電極カテーテル。 The balloon electrode catheter according to claim 2, wherein the fluid supply sub-lumens and the fluid discharge sub-lumens are alternately arranged along the circumferential direction of the outer tube.
  4.  前記流体供給用サブルーメンおよび前記流体排出用サブルーメンの数が、それぞれ2~5であることを特徴とする請求項1~3の何れかに記載のバルーン型電極カテーテル。 The balloon electrode catheter according to any one of claims 1 to 3, wherein the number of said fluid supply sub-lumens and said fluid discharge sub-lumens is 2 to 5, respectively.
  5.  前記アウターチューブの任意の円周方向位置を基準(0°)として0°~90°の範囲および180°~270°の範囲のそれぞれに1または2以上の前記流体排出用サブルーメンが形成され、
     90°~180°の範囲および270°~360°の範囲のそれぞれに1または2以上の前記流体供給用サブルーメンが形成されていることを特徴とする請求項1~3の何れかに記載のバルーン型電極カテーテル。
    One or two or more fluid discharge sub-lumens are formed in each of a range of 0° to 90° and a range of 180° to 270° with an arbitrary circumferential position of the outer tube as a reference (0°),
    4. The fluid supply sub-lumen according to any one of claims 1 to 3, characterized in that one or two or more of the fluid supply sub-lumens are formed in each of the range of 90° to 180° and the range of 270° to 360°. Balloon electrode catheter.
  6.  前記流体排出用サブルーメンは、前記アウターチューブの先端まで延びて前記先端面においても開口していることを特徴とする請求項2に記載のバルーン型電極カテーテル。 The balloon-type electrode catheter according to claim 2, wherein the fluid discharge sub-lumen extends to the distal end of the outer tube and is also open at the distal end surface.
  7.  前記アウターチューブの前記外周面に形成されている前記流体排出用サブルーメンの前
    記開口は、前記先端面に形成されている前記流体排出用サブルーメンの前記開口よりも面積が大きいことを特徴とする請求項6に記載のバルーン型電極カテーテル。
    The opening of the fluid discharge sub-lumen formed on the outer peripheral surface of the outer tube has a larger area than the opening of the fluid discharge sub-lumen formed on the tip end surface. The balloon-type electrode catheter according to claim 6.
  8.  前記アウターチューブの前記先端面における前記流体排出用サブルーメンの前記開口が閉鎖されていることを特徴とする請求項6に記載のバルーン型電極カテーテル。 The balloon-type electrode catheter according to claim 6, wherein the opening of the fluid discharge sub-lumen on the distal end surface of the outer tube is closed.
PCT/JP2021/009394 2021-03-09 2021-03-09 Balloon-type electrode catheter WO2022190225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009394 WO2022190225A1 (en) 2021-03-09 2021-03-09 Balloon-type electrode catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009394 WO2022190225A1 (en) 2021-03-09 2021-03-09 Balloon-type electrode catheter

Publications (1)

Publication Number Publication Date
WO2022190225A1 true WO2022190225A1 (en) 2022-09-15

Family

ID=83226388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009394 WO2022190225A1 (en) 2021-03-09 2021-03-09 Balloon-type electrode catheter

Country Status (1)

Country Link
WO (1) WO2022190225A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508121A (en) * 2009-10-27 2013-03-07 イノベイティブ パルモナリー ソリューションズ, インコーポレイテッド Delivery device having a coolable energy release assembly
JP2013523414A (en) * 2010-04-14 2013-06-17 ボストン サイエンティフィック サイムド,インコーポレイテッド Renal artery denervation device using a spiral shaped component
JP2015524705A (en) * 2012-08-07 2015-08-27 コビディエン エルピー Microwave ablation catheter and method of using the same
WO2020035919A1 (en) * 2018-08-15 2020-02-20 日本ライフライン株式会社 Balloon-type electrode catheter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508121A (en) * 2009-10-27 2013-03-07 イノベイティブ パルモナリー ソリューションズ, インコーポレイテッド Delivery device having a coolable energy release assembly
JP2013523414A (en) * 2010-04-14 2013-06-17 ボストン サイエンティフィック サイムド,インコーポレイテッド Renal artery denervation device using a spiral shaped component
JP2015524705A (en) * 2012-08-07 2015-08-27 コビディエン エルピー Microwave ablation catheter and method of using the same
WO2020035919A1 (en) * 2018-08-15 2020-02-20 日本ライフライン株式会社 Balloon-type electrode catheter

Similar Documents

Publication Publication Date Title
EP3838204B1 (en) Balloon-type electrode catheter
JP6265434B2 (en) Balloon type ablation catheter and ablation catheter device
US7416552B2 (en) Multipolar, multi-lumen, virtual-electrode catheter with at least one surface electrode and method for ablation
WO2012169607A1 (en) Ablation catheter with balloon
WO2011155424A1 (en) Catheter for measuring electric potential
CA2768454A1 (en) Open-irrigated ablation catheter with turbulent flow
CN102665586A (en) Flexible tip catheter with extended fluid lumen
JP7407843B2 (en) Balloon electrode catheter
JP7385716B2 (en) balloon catheter
TW201404422A (en) Electrode catheter
WO2022190225A1 (en) Balloon-type electrode catheter
JP6894582B2 (en) Balloon type electrode catheter
JP7352728B2 (en) Balloon electrode catheter
WO2022259438A1 (en) Balloon-type electrode catheter
WO2023190670A1 (en) Balloon catheter and balloon catheter system
TW202203857A (en) Balloon catheter and balloon catheter system
JP2002200177A (en) Pacing catheter
JP2005058503A (en) Ablation catheter with balloon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930082

Country of ref document: EP

Kind code of ref document: A1