WO2022189689A1 - Method for obtaining h2, co and/or synthesis gas, using perovskita-type materials and use of said materials - Google Patents

Method for obtaining h2, co and/or synthesis gas, using perovskita-type materials and use of said materials Download PDF

Info

Publication number
WO2022189689A1
WO2022189689A1 PCT/ES2022/070134 ES2022070134W WO2022189689A1 WO 2022189689 A1 WO2022189689 A1 WO 2022189689A1 ES 2022070134 W ES2022070134 W ES 2022070134W WO 2022189689 A1 WO2022189689 A1 WO 2022189689A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
production
stage
metal oxide
stream
Prior art date
Application number
PCT/ES2022/070134
Other languages
Spanish (es)
French (fr)
Inventor
María ORFILA DEL HOYO
María LINARES SERRANO
Raúl Molina Gil
Ángel Javier MARUGAN AGUADO
Juan Ángel BOTAS ECHEVARRÍA
Raúl SANZ MARTÍN
María Teresa AZCONDO SÁNCHEZ
Ulises Julio AMADOR ELIZONDO
Original Assignee
Universidad Rey Juan Carlos
Fundación Universitaria San Pablo-Ceu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Rey Juan Carlos, Fundación Universitaria San Pablo-Ceu filed Critical Universidad Rey Juan Carlos
Publication of WO2022189689A1 publication Critical patent/WO2022189689A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention belongs to the technical field of new materials for producing fuels, and more specifically to a method for obtaining hydrogen (H2), carbon monoxide (CO) and/or synthesis gas by means of thermochemical cycles based on perovskite-type materials.
  • the invention also relates to the use of these perovskite-type materials for the production of H2, CO or synthesis gas.
  • Hydrogen production at an industrial level is carried out through steam reforming, partial oxidation and autothermal reforming of hydrocarbons, gasification of coal and heavy hydrocarbons (96% of production) and electrolysis of water (4 % of production), so that the main raw materials are hydrocarbons and water (1).
  • hydrocarbons it is necessary to carry out a subsequent purification stage of the H2 obtained, while in the case of electrolysis, it is not (2).
  • thermochemical cycles Many multi-stage thermochemical cycles have been investigated (8), but two-stage thermochemical cycles based on metal oxides are the most attractive due to their simplicity and potential application on an industrial scale (9).
  • the metal oxide is thermally reduced using concentrated solar energy as a source of energy to reach the required temperature.
  • the reduced metal oxide reacts with H2O to produce H2, with CO2 to produce CO or with a mixture of H2O and CO2 to obtain H2 and CO (synthesis gas), recovering the initial metal oxide (10) .
  • thermochemical cycles can be divided into thermochemical cycles based on volatile metal oxides and non-volatile metal oxides.
  • the cycles based on volatile metal oxides are so named because during the reduction stage the reduced material is in the gas phase, like those based on the ZnO/Zn and CdO/Cd pairs (11).
  • the problem with these cycles is the operating temperatures (1500-2000°C) and the need to quench or rapidly cool the reduction products to prevent their recombination (12).
  • thermochemical cycles based on non-volatile metal oxides these in turn are divided into two groups, stoichiometric and non-stoichiometric metal oxides.
  • thermochemical cycles based on the FesCU/FeO redox couple have another disadvantage, which is the deactivation of the active material due to its sintering due to the high operating temperatures (14).
  • ferrite-type materials in which Fe atoms have been partially replaced by atoms of other metals such as Mn, Cu, Ni or Co, obtaining materials of type (Fei. x Me x )3C>4 capable of being reduced at lower temperatures.
  • the Nio ferrite . 5M no . 5Fe2C>4 is reduced from 1100°C, and subsequently decomposes water at temperatures of 800°C (13,15).
  • sintering processes are still important and hydrogen production is low (0.37%) (8,12).
  • One solution to sintering problems was to support the materials with ZrÜ2, AI 2 O 3 , Hf0 2 or T1O2, but H 2 production remains low (12).
  • thermochemical cycles based on non-stoichiometric oxides arose. These oxides have labile oxygen atoms in their structure thanks to which they are capable of undergoing high degrees of reduction at moderate temperatures. Furthermore, they have favorable oxidation thermodynamics, are stable, and exhibit rapid reduction and oxidation kinetics (17). Cerium oxide and perovskite-type materials are the most studied non-stoichiometric oxides.
  • the thermochemical cycle of cerium oxide for the production of H2 consists of a first stage in which cerium oxide IV (CeC>2) is reduced to Ce2C>3 at temperatures above 2000°C (18), to be subsequently reoxidized with water at temperatures of 400°C (19).
  • CeC>2 cerium oxide IV
  • the reduction temperature is still very high, and very different from the oxidation temperature.
  • the investigations focused on carrying out the partial reduction of CeC>2 up to CeC>2-6 at temperatures of 1500°C, to subsequently produce H2 by reaction with water (20). This material has been tested for many successive cycles demonstrating its stability (21,22).
  • the other type of non-stoichiometric oxides studied for thermochemical cycles are perovskite-type materials (17,25,26), which can have very different compositions for a wide range of oxygen non-stoichiometry.
  • this type of materials in general, the reduction takes place at temperatures between 1000 and 1400°C, while the oxidation takes place at temperatures between 600 and 800°C (17,25, 27). These materials have lower hydrogen yields than the other oxides discussed in this section.
  • the first route uses the photons of solar radiation to carry out different chemical and biological reactions (28).
  • the electrochemical route the electrical energy obtained through photovoltaic panels is used to carry out the rupture of the H2O and CO2 contained in mixtures of these gases (29).
  • thermochemical route uses solar energy to carry out different chemical reactions for the transformation of raw materials of fossil origin, H2O or CO2 into H2 and CO.
  • chemical reactions can be steam reforming of natural gas (30), gasification of carbon compounds such as coal or biomass (31), or based on the concept of hydrogen production through thermochemical cycles, the production of synthesis gas by simultaneously decomposing water and carbon dioxide in the oxidation stage.
  • thermochemical cycles have serious associated problems due to the high reduction temperatures, the lack of stability of the materials at those temperatures and/or the low production of H2 or CO.
  • the present invention solves the existing problems in the state of the art through a method of obtaining hydrogen (H 2 ), carbon monoxide (CO) and/or synthesis gas through thermochemical cycles based on perovskite-type materials, more specifically through the reaction of perovskite-type metal oxides of formula Ai- c B c Mi- g N g q 3-z (I) with water vapor and/or CO 2 .
  • the perovskite-type metal oxides of the present invention showed superior activity to that of other perovskite-type oxides found in the state of the art and operate at lower temperatures.
  • most of the perovskite-type metal oxides of the present invention have very good cyclability, that is, a good production of H 2 , CO and/or synthesis gas is obtained throughout the cycles.
  • synthesis gas in the present invention refers to a mixture of H 2 and CO.
  • thermochemical cycle in the present invention refers to a process that comprises a plurality of chemical reactions in which at least one of them is the reduction of the perovskite-type metal oxide, and at least one of them is the re-oxidation of this one, for the production of H 2 , CO and/or synthesis gas.
  • the stage of Reduction is an endothermic reaction while the H2, CO and/or synthesis gas production step is exothermic.
  • the heat required in the endothermic stage can be provided by any convenient means: electrical resistors, fuel combustion, radiation (including solar energy), or any other means suitable for producing the reaction.
  • perovskite-type metal oxide in the present invention refers to a chemical compound with the generic formula A IX B X M IY N Y 0 3-z, referred to in the present invention as Formula (I), where A represents a element of the lanthanide, alkali or alkaline earth series (according to the IUPAC Periodic Table of Elements), B represents an element of the alkali or alkaline earth series, M represents Fe or Co, N represents a transition metal or a element of the groups of block p of the Periodic Table, x and y has a value between 0 and 1, and z has a value between 0 and 0.75, so that the oxygen content of perovskite-type oxides can vary between a maximum value of 3 and a minimum of 2.25 per formula.
  • A represents a element of the lanthanide, alkali or alkaline earth series (according to the IUPAC Periodic Table of Elements)
  • B represents an element of the alkali or alkaline earth series
  • the M and N type atoms are located in the center of a more or less regular polyhedron of oxygen atoms, polyhedrons that can be octahedrons, square-based pyramids or flat-square environments depending on the oxygen content and the nature of the element M.
  • type A and B atoms occupy generally irregular environments with coordination of neighboring oxygen atoms ranging from 12 to 6.
  • the three-dimensional arrangement of type A (and B) and M (and N) atoms and oxygens can give rise to highly regular and symmetric (cubic) structures as well as highly distorted structures with low symmetry (monoclinic and triclinic symmetries).
  • the present invention provides a method for obtaining H2, CO or synthesis gas, comprising the following steps: i) heating a perovskite-type metal oxide of formula (I)
  • B represents an element of the alkali or alkaline earth series
  • M represents Fe or Co
  • N represents a transition metal or an element selected from the groups of the p block of the Periodic Table; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75; for the thermal reduction of said metal oxide in a current of air or an inert gas; and ii) reacting the reduced metal oxide obtained from step i) with a gaseous stream comprising steam and/or CO2 to obtain H2, CO or synthesis gas and re-oxidation of the metal oxide to recover the oxide metal of formula (I), in which steps i) and ii) are carried out at a temperature between 300 and 800°C and a pressure between 0.1 MPa and 20 MPa.
  • A represents La or Nd
  • B represents Ca or Sr
  • M represents Fe or Co
  • N represents Fe, Co, Ti, Mo, Sb or Al
  • x and y have a value between 0 and 1
  • z has a value between 0 and 0.75.
  • the gas stream of step i) is air.
  • the gas stream of step ii) comprises air or an inert gas, such as N2 or Ar, but not limited to these.
  • the method of obtaining the present invention comprises a first stage in which a metal oxide of the perovskite type of formula (I) is heated, as described above, and a second stage of re-oxidation of the metal oxide obtained in the previous stage and production of H2 by reaction with a current of air or inert gas (for example, N2 or Ar) saturated in water.
  • a current of air or inert gas for example, N2 or Ar
  • the method of this embodiment is characterized by an operation temperature ranging from 300 to 800°C and a working pressure in the range of 0.1 MPa to 20 MPa.
  • the gas stream fed into the reduction stage is preferably air, although an inert gas can be used, preferably N2 or Ar (but not limited to these) with a sufficient flow rate to entrain the oxygen produced during the reduction stage.
  • the stream fed into the oxidation stage (second stage) is air or any other inert carrier gas (for example N2 or Ar) saturated in steam at 50-120°C or a steam stream.
  • the method of obtaining the present invention comprises a first stage in which a metal oxide of the perovskite type of formula (I) is heated, as described above, and a second stage of re-oxidation of the metal oxide obtained in the previous stage and production of CO by reaction with a current of air or inert gas mixed with CO2 in a sufficient proportion for the reaction to take place.
  • the method of this particular embodiment is characterized by an operating temperature ranging between 300 and 800°C and a working pressure in the range of 0.1 MPa to 20 MPa.
  • the gas stream fed into the reduction stage is preferably air, although an inert gas can be used, preferably N2 or Ar (but not limited to these) with a sufficient flow rate to entrain the oxygen produced during the reduction stage. reduction, while the stream fed to the oxidation stage (second stage) is CO2 mixed with air or any other inert carrier gas (for example N2 or Ar) in a volume percentage of CO2 in the range 10-100%, preferably between 30 and 100%.
  • the method of obtaining the present invention comprises a first stage in which a metal oxide of the perovskite type of formula (I) is heated, as described above, and a second stage of re-oxidation of the metal oxide obtained in the previous stage and production of synthesis gas by reaction with a stream of inert gas (N2 or Ar) or air mixed with water vapor and CO2 in a sufficient proportion for the reaction to take place.
  • a metal oxide of the perovskite type of formula (I) is heated, as described above
  • a second stage of re-oxidation of the metal oxide obtained in the previous stage and production of synthesis gas by reaction with a stream of inert gas (N2 or Ar) or air mixed with water vapor and CO2 in a sufficient proportion for the reaction to take place a stream of inert gas (N2 or Ar) or air mixed with water vapor and CO2 in a sufficient proportion for the reaction to take place.
  • the method of this particular embodiment is characterized by an operating temperature ranging between 300 and 800°C and a working pressure in the range of 0.1 MPa to 20 MPa.
  • the gas stream fed into the reduction stage is preferably air, although an inert gas can be used, preferably N2 or Ar (but not limited to these) with a sufficient flow rate to entrain the oxygen produced during the reduction stage.
  • reduction while the stream fed to the oxidation stage (second stage) is a mixture of N2, Ar or air with CO2 in a volume percentage of CO2 in the range 10-100%, preferably between 30 and 100%. %, saturated in water vapor at 50-120°C or a mixture of a stream of water vapor and CO2 with a volume percentage of CO2 of 10-90%.
  • the present invention describes the use of a perovskite-type metal oxide of formula (I)
  • B represents an element of the alkali or alkaline earth series
  • M represents Fe or Co
  • N represents a transition metal or an element selected from the groups of the p block of the Periodic Table; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75, for the production of H2, CO or synthesis gas (CO+H2).
  • A represents La or Nd
  • B represents Ca or Sr
  • M represents Fe or Co
  • N represents Fe, Co, Ti, Mo, Sb or Al
  • x and y have a value between 0 and 1
  • z has a value between 0 and 0.75.
  • the perovskite-type metal oxide with composition Ndi / 3Sr2 / 3CoC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any expert in the field. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a plate heater and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 2.7089 g.
  • the reagent mixture was dissolved in 30 mL of distilled water at room temperature. Subsequently, 4.5735 g of glycine were dissolved in said solution.
  • This solution was used in a spray-pyrolysis system (consisting of a liquid projection system in the form of fine drops, like a nebulizer, which is projected onto a hot surface, 450°C in this case) that promotes the combustion reaction by thermal activation.
  • the powder produced in the pyrolysis was treated at 900°C for 4 hours to produce the perovskite of composition Ndi /3 Sr 2/3 Co0 3-z .
  • the following stoichiometric quantities of reagents were used: 1.3180 g of Nd 2 0 3 , 1.8740 g of Sr0 2 and 2.1605 g of CoOOH to obtain 5 g of perovskite oxide with composition Ndi /3 Sr 2/3 Co0 3 .z .
  • the mixture of the reagents was placed in a 50 mL volume zirconia grinding container with 5 mm diameter balls of the same material with a total mass of 50 g. Milling was carried out for 12 hours at 500 rpm.
  • the Ndi / 3Sr2 / 3CoC>3- z sample obtained by the conventional ceramic method, was used as perovskite-type metal oxide in the method of the present invention.
  • thermobalance During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the O2 produced during the reduction stage. After completing the heating, the air stream fed to the thermobalance was replaced by a stream of pure CO2 to carry out the production of CO and the recovery of the initial perovskite.
  • Ndi / 3Sr2 / 3CoC>3- z has a stable behavior against cycles with a steady state CO production of 3038 pmol/g material ⁇ cycle, much higher than that of other perovskite-type materials. Furthermore, the reduction has been carried out at much lower temperatures (see Table 1).
  • Example 2 Evaluation of the material Ndi/3Sr 2/3 Co03-z in the production of H2
  • the production of H2 was evaluated using the Ndi / 3Sr2 / 3CoC>3- z sample, obtained by the conventional ceramic method described in example 1, as perovskite-type metal oxide in the method of the present invention.
  • 1 g of the perovskite-type metal oxide Ndi / 3Sr2 / 3CoC>3- z was introduced into a crucible of Pt/Rh 90/10 in an oven.
  • the temperature was increased to 700°C with a heating ramp of 10°C/min.
  • the furnace was fed with an air current of 50 NL/h, to transport the O2 produced in this stage to a gas analyzer. Once the temperature of 700°C was reached and the reduction finished, the air stream was saturated with water at 80°C to feed it to the reactor and carry out the perovskite oxidation stage and H2 production.
  • the perovskite-type metal oxide with composition Lai / 3Sr2 / 3CoC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any person skilled in the art. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
  • the methods chosen to carry out this example were the following: conventional high temperature ceramic method, Pechini sol-gel method and solid state combustion. a) Preparation by the ceramic method The following stoichiometric amounts of metal nitrates were used: 0.6786 g of La(N0 3 ) 3 -6H 2 0, 1.3822 g of Co(N0 3 ) 2 -6H 2 0 and 0.6633 g Sr(N0 3 ) 2 to obtain 1 g of the perovskite oxide of composition Lai /3 Sr 2/3 Co0 3-z .
  • the mixture of reagents was ground and homogenized. This mixture was subjected to a first heat treatment at 800°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1100°C for 72 hours with intermediate grinding every 24 hours.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 2.7665 g.
  • the reagent mixture was dissolved in 10 mL of distilled water at room temperature. Subsequently, 1.5365 g of glycine were dissolved in said solution.
  • This solution was dehydrated at 60°C under vacuum for 24 hours, obtaining a solid resin that was ground. Later, it was shaped into a cylinder using a die and a hand press.
  • the ignition of the tablet was induced by contact with a flame from a lighter or gas torch.
  • the dust produced in the combustion was treated at 1100°C for 12 hours.
  • the Lai /3 Sr 2/3 Co0 3-z sample obtained by the conventional ceramic method, was used as perovskite-type metal oxide in the method of the present invention.
  • thermobalance During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the 0 2 produced during the reduction stage. After heating, the air stream fed to the thermobalance was replaced by a stream of pure C0 2 to carry out the production of CO and the recovery of the initial perovskite.
  • the Lai / 3Sr2 / 3CoC>3- z does not have a stable behavior against cycles with a production of CO in the first cycle of 500 pmol/g material . However, the reduction has been carried out at much lower temperatures (see Table 1).
  • the production of H2 was evaluated using the Lai / 3Sr2 / 3CoC>3- z sample, obtained by the conventional ceramic method described in example 3, as perovskite-type metal oxide in the method of the present invention.
  • the H2 production of the first cycle is higher than that of the rest, in this case a H2 production of 225.1 pmol/g material is obtained, because the first cycle is always considered a material stabilization stage.
  • the production of H2 is stable, reaching a steady state value of 133.7 prnol /g material - cycle, similar to that found in the literature for other perovskite-type materials (see Table 2), but leading The process is carried out in isotherm at 800°C, which implies working temperatures much lower than those listed in Table 2 (1250-1400°C).
  • the perovskite-type metal oxide of composition Lai / 3Sr2 / 3Coo . 69Ugly . 3iC>3- z was synthesized through different synthesis methods, which are known in the state of the art. art and any expert in the field could use them without difficulty. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
  • the mixture of reagents was ground and homogenized. Subsequently, it was subjected to a first heat treatment at 900°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1350°C for 48 hours with intermediate grinding every 24 hours.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 11 g. Maintaining heating and stirring, 1/10 of the initial volume of ethylene glycol (4 ml_) was added and polymerization occurred with the formation of the sol.
  • the solid mixture was allowed to cool and was ground to produce a powder which was calcined at 800°C to remove organic matter and produce an inorganic ash. Said ash was ground to homogenize it and treated at 1200°C for 24 hours.
  • the reagent mixture was dissolved in 10 mL of distilled water at room temperature. Subsequently, 3.3087 g of glycine were dissolved in said solution.
  • This solution was dehydrated at 60°C under vacuum for 24 hours, obtaining a solid resin that was ground. Later, it was shaped into a cylinder using a die and a hand press.
  • the pellet was then ignited by contact with a flame from a gas burner or torch.
  • the dust produced in the combustion was treated at 1100°C for 12 hours.
  • the Lai /3 Sr 2/3 Coo .69 Feo .3i 0 3-z sample obtained by the Pechini sol-gel method, was used as a perovskite-type metal oxide in the method of the present invention.
  • 1 g of the perovskite-type metal oxide Lai / 3Sr2 / 3Coo was introduced into a furnace . 69Ugly . 3iC>3- z using a Pt/Rh 90/10 crucible.
  • the temperature was increased to 800°C with a heating ramp of 10°C/min.
  • the furnace was fed with a stream of N2 at 50 NL/h, to transport the O2 produced in this stage to a gas analyzer. Once the temperature of 800°C was reached and the reduction was complete, the N2 stream was saturated with water at 80°C to feed it to the reactor and carry out the perovskite oxidation stage and H2 production.
  • the H2 production of the first cycle is higher than that of the rest (as explained above), obtaining in this case 514.8 pmol/g material .
  • the production of H2 is stable around 435.0 pmol/g mater ⁇ ai ⁇ cycle, this production being higher than that found in the literature for other perovskite-type materials (see Table 2), and also the process is carried out isothermally at 800°C, which implies working temperatures much lower than those listed in Table 2 (1250-1400°C).
  • the perovskite-type metal oxide with composition SrFeC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any expert in the field. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
  • the following stoichiometric amounts were started: 0.4170 g Fe2C>3 and 0.7677 g of Sr(CC>3) to obtain 1 g of perovskite oxide with composition SrFeC>3- z.
  • the mixture of reagents was ground and homogenized. Subsequently, it was subjected to a first heat treatment at 900°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1300°C for 48 hours, after which the oven was turned off and the sample was allowed to cool slowly.
  • the resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material. In this case, a material with a structure derived from tetragonal symmetry perovskite was obtained.
  • the SrFeC> 3-z compound has a structure brownmillerite in the reducing stage and a highly symmetric cubic structure in the oxidizing stage.
  • the following stoichiometric amounts of metal nitrates were used: 2.1008 g of Fe(NC> 3 ) 3 -9H 2 0 and 1.1005 g of Sr(NC> 3) 2 to obtain 1 g of perovskite oxide SrFeC>3-z composition.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature and a 0.5 M Na2(CC>3) solution was added until reaching a pH between 12 and 14, producing the quantitative coprecipitation of Fe(OH)3 and SrCC>3.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 2.9971 g.
  • the following stoichiometric amounts of metal nitrates were used: 10.5040 g of Fe(N0 3 ) 3 -9F ⁇ 2 0 and 5.5025 g of Sr(NC>3)2 to obtain 5 g of perovskite oxide with composition SrFeC>3-z.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. Subsequently, 5.4217 g of glycine were dissolved in said solution.
  • the powder obtained from the combustion induced by treatment in a microwave oven was treated at 1100°C for 12 hours to produce the perovskite of composition SrFeC> 3-z.
  • the resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material that corresponds to a structure derived from orthorhombic symmetry perovskite.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. Subsequently, 5.4454 g of glycine were dissolved in said solution.
  • This solution was used in a spray-pyrolysis system that promotes the combustion reaction by thermal activation.
  • the powder obtained from the combustion was treated at 1100°C for 12 hours to produce the perovskite with composition SrFeC> 3-z.
  • the resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material that corresponds to a structure derived from orthorhombic symmetry perovskite.
  • the SrFeC> 3-z sample obtained by the Pechini sol-gel method, was used as perovskite-type metal oxide in the method of the present invention.
  • H2 is remarkable from the first cycle, 718.2 pmol/g material and remains stable, 714.1 pmol/g material ⁇ cycle, so that this material does not seem to need a stabilization step.
  • Its steady-state production is similar to that achieved from the beginning, being higher than that found in the literature for most of the perovskite-type state-of-the-art materials (see Table 2), but carrying out the process in isotherm at 800°C, which represents a notable decrease in the working temperature with respect to those listed in Table 2 (1250-1400°C).
  • Example 7 Evaluation of the material SrFeC> 3- z in the production of CO
  • the production of CO was evaluated using the sample of SrFeC> 3-z , obtained by the Pechini sol-gel method described in example 6, as perovskite-type metal oxide in the method of the present invention.
  • thermobalance During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the O2 produced during the reduction stage. After completing the heating, the air stream fed to the thermobalance was replaced by a stream of pure CO2 to carry out the production of CO and the recovery of the initial perovskite.
  • This oxidation step was maintained for 90 min. After this time, the introduction of CO2 was stopped and air was re-introduced to carry out the reduction again. This stage lasted approximately 70 min. These changes in the gas current were carried out periodically until 16 cycles were carried out.
  • the mass variations recorded in the thermobalance correspond to the oxygen lost or gained by the material depending on whether it is in the reduction or oxidation stage. The results of this example are shown in Table 1. This material does not present a stable behavior against cycles. Although in the first cycle it presents a high production of CO, 1262 prnol/g matemi , as the cycles go by a modification of the redox process is observed.
  • Example 8 Evaluation of the material SrFeo9oMoo io0 3 - in the production of H2
  • the metal oxide type perovskite of composition SrFeo . 9oMoo .i oC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any person skilled in the art. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
  • the methods chosen to carry out this example were the following: conventional high-temperature ceramic method, Pechini sol-gel method and spray-pyrolysis assisted solution combustion. a) Preparation by the ceramic method The following stoichiometric amounts were started from: 0.3677 g Fe2C>3 , 0.0737 g of M0O3 and 0.7553 g of Sr(CC>3) to obtain 1 g of the perovskite oxide of composition SrFeo.9oMoo.ioC>3-z.
  • the mixture of reagents was ground and homogenized. Subsequently, it was subjected to a first heat treatment at 900°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1350°C for 48 hours, after which the oven was turned off and the sample was allowed to cool slowly.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 5.8788 g.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. Subsequently, 8.0115 g of glycine were dissolved in said solution.
  • This solution was used in a spray-pyrolysis system that promotes the combustion reaction by thermal activation.
  • the powder obtained from the combustion was treated at 1000°C for 8 hours to produce the perovskite with composition SrFeo .9 oMoo .i o0 3-z.
  • the SrFeo sample was used .
  • 9oMoo .i oC>3- z obtained by the ceramic method, as perovskite-type metal oxide in the method of the present invention.
  • H2 The production of H2 is high from the first cycle, 882.7 prnol/g matemi , and grows slightly until reaching a steady-state production of 1176.7 prnol/g matemi -cycle, which is much higher than that found in the literature for the most state-of-the-art materials of the perovskite type (see Table 2), but carrying out the process in isotherm at 800°C, which implies a notable decrease in the working temperature with respect to those collected in Table 2 ( 1250-1400°C).
  • Example 9 Evaluation of the material SrFeo9oMoo io0 3 - in the production of CO
  • the production of CO was evaluated using the SrFeo sample .
  • 9oMoo .i oC>3- z obtained by the ceramic method described in example 8, as perovskite-type metal oxide in the method of the present invention.
  • thermobalance During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the O2 produced during the reduction stage. After completion of heating, the air stream fed to the thermobalance was replaced by a stream of pure CO2 to carry out the production of CO and the recovery of the initial perovskite.
  • the perovskite-type metal oxide of composition SrFeo . 9oTio .i oC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any person skilled in the art. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
  • the reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 6.0461 g.
  • the powder obtained from the combustion induced by treatment in a microwave oven was treated at 1000°C for 12 hours to produce the perovskite of composition SrFeo . 9oThio .i oC>3- z.
  • the SrFeo sample was used .
  • 9oTio .i oC>3- z obtained by the ceramic method, as perovskite-type metal oxide in the method of the present invention.
  • H2 The production of H2 is notable from the first cycle, 568.8 prnol/g matemi , and grows slightly until reaching a steady-state production of 719.6 prnol/g matemi -cycle, which is higher than that found in the literature for most of the state-of-the-art materials of the perovskite type (see Table 2), but carrying out the process in isotherm at 800°C, which implies a notable decrease in the working temperature with respect to those collected in Table 2 (1250 -1400°C).
  • CO production was evaluated using the SrFeo sample . 9oTio .i oC>3- z , obtained by the ceramic method described in example 10, as perovskite-type metal oxide in the method of the present invention.
  • 50 mg of the perovskite-type metal oxide SrFeo were introduced . 9oTio .i oC>3- z in a 150 pl_ alumina crucible in the thermobalance.
  • the sample was heated with a ramp of 10°C/min until reaching 800°C. This temperature was kept constant for the rest of the test.
  • an air current of 100 mL/min was introduced into the thermobalance to entrain the O2 produced during the reduction stage.
  • thermobalance After completing the heating, the air stream fed to the thermobalance was replaced by a stream of pure CO2 to carry out the production of CO and the recovery of the initial perovskite. This oxidation step was maintained for 90 min. After this time, the introduction of CO2 was stopped and air was re-introduced to carry out the reduction again. This stage lasted approximately 70 min. These changes in the gas current were carried out periodically until 16 cycles were carried out.
  • the mass variations recorded in the thermobalance correspond to the oxygen lost or gained by the material depending on whether it is in the reduction or oxidation stage. The results of this test are shown in Table 1.
  • This material has stable behavior against cycles with a steady state CO production of 1262 pmol/g material , higher than that of other perovskite-type materials. Furthermore, in this case, the reduction is carried out at much lower temperatures (see Table 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Disclosed is a method for obtaining H2, CO and/or synthesis gas, using perovskite-type materials, and the use of said materials. The present invention relates to a method for obtaining H2, CO and/or synthesis gas by means of thermochemical cycles based on perovskite-type materials, more specifically by reacting perovskite-type metallic oxides of formula (I): A1-xBxM1-yNyO3-z with steam and/or CO2. The perovskite-type metallic oxides of the invention displayed more activity than other perovskite-type metallic oxides found in the prior art and operate at a lower temperature. In addition, they also display very good cyclability, i.e., good production of H2, CO and/or synthesis gas is obtained during the cycles. The invention also relates to the use of the oxides of formula (I) to produce H2, CO and/or synthesis gas.

Description

MÉTODO DE OBTENCIÓN DE H2. CO Y/O GAS DE SÍNTESIS EMPLEANDO MATERIALES DE TIPO PEROVSKITA Y USO DE ESTOS MATERIALES METHOD OF OBTAINING H 2 . CO AND/OR SYNTHESIS GAS USING PEROVSKITE TYPE MATERIALS AND USE OF THESE MATERIALS
DESCRIPCIÓN DESCRIPTION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención pertenece al campo técnico de nuevos materiales para producir combustibles, y más concretamente a un método de obtención de hidrógeno (H2), monóxido de carbono (CO) y/o gas de síntesis mediante ciclos termoquímicos basados en materiales de tipo perovskita. La invención también se refiere al uso de estos materiales de tipo perovskita para la producción de H2, CO o gas de síntesis. The present invention belongs to the technical field of new materials for producing fuels, and more specifically to a method for obtaining hydrogen (H2), carbon monoxide (CO) and/or synthesis gas by means of thermochemical cycles based on perovskite-type materials. The invention also relates to the use of these perovskite-type materials for the production of H2, CO or synthesis gas.
ANTECEDENTES DE LA INVENCIÓN - Producción de H2 BACKGROUND OF THE INVENTION - Production of H2
La producción de hidrógeno a nivel industrial se lleva a cabo mediante el reformado con vapor de agua, la oxidación parcial y el reformado autotérmico de hidrocarburos, la gasificación de carbón e hidrocarburos pesados (96 % de la producción) y la electrólisis del agua (4 % de la producción), de manera que las principales materias primas son hidrocarburos y agua (1). En el caso de los procesos que emplean hidrocarburos es necesario llevar a cabo una posterior etapa de purificación del H2 obtenido, mientras que en el caso de la electrólisis no (2). Hydrogen production at an industrial level is carried out through steam reforming, partial oxidation and autothermal reforming of hydrocarbons, gasification of coal and heavy hydrocarbons (96% of production) and electrolysis of water (4 % of production), so that the main raw materials are hydrocarbons and water (1). In the case of processes that use hydrocarbons, it is necessary to carry out a subsequent purification stage of the H2 obtained, while in the case of electrolysis, it is not (2).
Los procesos que parten de hidrocarburos son altamente endotérmicos, requieren elevadas presiones y el coste de producción depende en gran medida del coste de las materias primas. Además, el hidrógeno obtenido hay que purificarlo y con este método no se elimina la dependencia de combustibles fósiles. En lo que respecta a la electrólisis, este proceso requiere mucha energía eléctrica y resulta mucho más ineficiente y costoso que las tecnologías basadas en hidrocarburos (2). The processes that start from hydrocarbons are highly endothermic, require high pressures and the cost of production depends largely on the cost of the raw materials. In addition, the hydrogen obtained must be purified and with this method the dependence on fossil fuels is not eliminated. Regarding electrolysis, this process requires a lot of electrical energy and is much more inefficient and expensive than hydrocarbon-based technologies (2).
Por lo tanto, los procesos tradicionales de producción de hidrógeno tienen serios inconvenientes asociados. Por este motivo están adquiriendo importancia aquellos procesos que usan agua y biomasa como materia prima y fuentes de energía de carácter renovable, especialmente la energía solar. Entre estos procesos cabe destacar los procesos fotoquímicos (3-4), los procesos electroquímicos (5), y los procesos termoquímicos (6). No obstante, la eficiencia de la conversión de energía solar a combustible (H2) es muy baja (7). Therefore, traditional hydrogen production processes have serious drawbacks associated with them. For this reason, those processes that use water and biomass as raw material and renewable energy sources, especially solar energy, are gaining importance. Among these processes, the photochemical processes (3-4), the electrochemical processes (5), and the thermochemical processes (6). However, the efficiency of the conversion of solar energy to fuel (H2) is very low (7).
Un proceso alternativo a los tradicionalmente empleados para la producción de hidrógeno y más eficiente que los anteriormente indicados es la ruptura de la molécula de agua a través de una serie de reacciones endotérmicas y exotérmicas, utilizando la energía solar como fuente de energía. An alternative process to those traditionally used for the production of hydrogen and more efficient than those indicated above is the rupture of the water molecule through a series of endothermic and exothermic reactions, using solar energy as an energy source.
Esto procesos son conocidos como ciclos termoquímicos. Se han investigado muchos ciclos termoquímicos de múltiples etapas (8), pero los que resultan más atractivos por su simplicidad y su posible aplicación a escala industrial son los ciclos termoquímicos de dos etapas basados en óxidos metálicos (9). En estos ciclos, el óxido metálico es térmicamente reducido utilizando la energía solar de concentración como fuente de energía para alcanzar la temperatura requerida. En una segunda etapa, el óxido metálico reducido reacciona con H2O para producir H2, con CO2 para producir CO o con una mezcla de H2O y CO2 para la obtención de H2 y CO (gas de síntesis), recuperando el óxido metálico inicial (10). These processes are known as thermochemical cycles. Many multi-stage thermochemical cycles have been investigated (8), but two-stage thermochemical cycles based on metal oxides are the most attractive due to their simplicity and potential application on an industrial scale (9). In these cycles, the metal oxide is thermally reduced using concentrated solar energy as a source of energy to reach the required temperature. In a second stage, the reduced metal oxide reacts with H2O to produce H2, with CO2 to produce CO or with a mixture of H2O and CO2 to obtain H2 and CO (synthesis gas), recovering the initial metal oxide (10) .
Los ciclos termoquímicos de dos etapas se pueden dividir en ciclos termoquímicos basados en óxidos metálicos volátiles y óxidos metálicos no volátiles. Two-stage thermochemical cycles can be divided into thermochemical cycles based on volatile metal oxides and non-volatile metal oxides.
Los ciclos basados en óxidos metálicos volátiles se llaman así porque durante la etapa de reducción el material reducido se encuentra en fase gas como los basados en los pares ZnO/Zn y CdO/Cd (11). El problema de estos ciclos son las temperaturas de operación (1500-2000°C) y la necesidad de llevar a cabo un “quenching” o enfriamiento rápido de los productos de la reducción para evitar su recombinación (12). The cycles based on volatile metal oxides are so named because during the reduction stage the reduced material is in the gas phase, like those based on the ZnO/Zn and CdO/Cd pairs (11). The problem with these cycles is the operating temperatures (1500-2000°C) and the need to quench or rapidly cool the reduction products to prevent their recombination (12).
En lo que respecta a los ciclos termoquímicos basados en óxidos metálicos no volátiles, estos a su vez se dividen en dos grupos, los óxidos metálicos estequiométricos y los no estequiométricos. Regarding thermochemical cycles based on non-volatile metal oxides, these in turn are divided into two groups, stoichiometric and non-stoichiometric metal oxides.
Dentro de los ciclos termoquímicos de dos etapas basados en óxidos metálicos estequiométricos destaca el basado en óxido de hierro (FesCL/FeO). Este ciclo resulta interesante porque los óxidos empleados no son corrosivos ni peligrosos. El problema de este ciclo es que la reacción de reducción requiere temperaturas de 2000°C, mientras que la oxidación tiene lugar a 600°C, lo que implica una baja eficiencia por la alta temperatura necesaria para la etapa de reducción y la elevada diferencia de temperaturas (8,13). Among the two-stage thermochemical cycles based on stoichiometric metal oxides, the one based on iron oxide (FesCL/FeO) stands out. This cycle is interesting because the oxides used are not corrosive or dangerous. The problem with this cycle is that the reduction reaction requires temperatures of 2000°C, while oxidation takes place at 600°C, which implies low efficiency due to the high temperature required for the reduction stage and the high temperature difference (8,13).
Además de los problemas indicados anteriormente, los ciclos termoquímicos basados en el par redox FesCU/FeO tienen otra desventaja, y es la desactivación del material activo por la sinterización de éste debido a las altas temperaturas de operación (14). In addition to the problems indicated above, the thermochemical cycles based on the FesCU/FeO redox couple have another disadvantage, which is the deactivation of the active material due to its sintering due to the high operating temperatures (14).
Por estos motivos, en lugar de trabajar con el FesCU puro, se trabaja con materiales de tipo ferrita en los cuales se ha producido la sustitución parcial de átomos de Fe por átomos de otros metales como Mn, Cu, Ni o Co, obteniéndose materiales de tipo (Fei. xMex)3C>4 capaces de reducirse a menores temperaturas. Por ejemplo, la ferrita Nio.5Mno.5Fe2C>4 se reduce a partir de 1100°C, y posteriormente descompone el agua a temperaturas de 800°C (13,15). For these reasons, instead of working with pure FesCU, we work with ferrite-type materials in which Fe atoms have been partially replaced by atoms of other metals such as Mn, Cu, Ni or Co, obtaining materials of type (Fei. x Me x )3C>4 capable of being reduced at lower temperatures. For example, the Nio ferrite . 5M no . 5Fe2C>4 is reduced from 1100°C, and subsequently decomposes water at temperatures of 800°C (13,15).
Otro ejemplo son las ferritas MeFe204 (Me=Cu, Ni y Mn) que pueden reducirse a 1200°C y reoxidarse en presencia de agua a 800°C (16). Sin embargo, a pesar de que el uso de ferritas reduce notoriamente las temperaturas de operación, los procesos de sinterización siguen siendo importantes y la producción de hidrógeno es baja (0,37 %) (8,12). Una solución a los problemas de sinterización fue soportar los materiales con ZrÜ2, AI2O3, Hf02 o T1O2, pero la producción de H2 sigue siendo baja (12). Another example is the MeFe 2 0 4 ferrites (Me=Cu, Ni and Mn) that can be reduced at 1200°C and reoxidized in the presence of water at 800°C (16). However, despite the fact that the use of ferrites notoriously reduces operating temperatures, sintering processes are still important and hydrogen production is low (0.37%) (8,12). One solution to sintering problems was to support the materials with ZrÜ2, AI 2 O 3 , Hf0 2 or T1O2, but H 2 production remains low (12).
Por este motivo surgió el estudio de los ciclos termoquímicos basados en óxidos no estequiométricos. Estos óxidos poseen átomos de oxígeno lábil en su estructura gracias a lo cual son capaces de experimentar altos grados de reducción a temperaturas moderadas. Además, tienen termodinámicas de oxidación favorables, son estables, y presentan rápidas cinéticas de reducción y oxidación (17). El óxido de cerio y los materiales de tipo perovskita son los óxidos no estequiométricos más estudiados. For this reason, the study of thermochemical cycles based on non-stoichiometric oxides arose. These oxides have labile oxygen atoms in their structure thanks to which they are capable of undergoing high degrees of reduction at moderate temperatures. Furthermore, they have favorable oxidation thermodynamics, are stable, and exhibit rapid reduction and oxidation kinetics (17). Cerium oxide and perovskite-type materials are the most studied non-stoichiometric oxides.
El ciclo termoquímico del óxido de cerio para la producción de H2 consiste en una primera etapa en la cual el óxido de cerio IV (CeC>2) es reducido a Ce2C>3 a unas temperaturas superiores a los 2000°C (18), para ser posteriormente reoxidado con agua a temperaturas de 400°C (19). No obstante, la temperatura de la reducción sigue siendo muy elevada, y muy diferente de la temperatura de la oxidación. Por este motivo, las investigaciones se centraron en llevar a cabo la reducción parcial de CeC>2 hasta CeC>2-6 a temperaturas de 1500°C, para posteriormente producir H2 por reacción con agua (20). Este material ha sido probado durante muchos ciclos sucesivos demostrando su estabilidad (21,22). Por otra parte, para disminuir aún más la temperatura de reducción, algunos autores han sustituido parcialmente los átomos de cerio en el óxido por otros metales (21,23,24) consiguiendo materiales con defectos de oxígeno lo que favorece la reducción contribuyendo a un aumento de la producción de hidrógeno durante la etapa de oxidación. The thermochemical cycle of cerium oxide for the production of H2 consists of a first stage in which cerium oxide IV (CeC>2) is reduced to Ce2C>3 at temperatures above 2000°C (18), to be subsequently reoxidized with water at temperatures of 400°C (19). However, the reduction temperature is still very high, and very different from the oxidation temperature. For this reason, the investigations focused on carrying out the partial reduction of CeC>2 up to CeC>2-6 at temperatures of 1500°C, to subsequently produce H2 by reaction with water (20). This material has been tested for many successive cycles demonstrating its stability (21,22). On the other hand, to further reduce the reduction temperature, some authors have partially replaced the cerium atoms in the oxide with other metals (21,23,24), obtaining materials with oxygen defects, which favors the reduction, contributing to an increase. of hydrogen production during the oxidation step.
El otro tipo de óxidos no estequiométricos estudiados para ciclos termoquímicos son los materiales de tipo perovskita (17,25,26), los cuales pueden tener composiciones muy diferentes para un amplio rango de no-estequiometría de oxígeno. En el caso de este tipo de materiales en general, la reducción tiene lugar a temperaturas de entre 1000 y 1400°C, mientras que la oxidación tiene lugar a temperaturas de entre 600 y 800°C (17,25, 27). Estos materiales presentan menores rendimientos a hidrógeno que los otros óxidos comentados en este apartado. The other type of non-stoichiometric oxides studied for thermochemical cycles are perovskite-type materials (17,25,26), which can have very different compositions for a wide range of oxygen non-stoichiometry. In the case of this type of materials, in general, the reduction takes place at temperatures between 1000 and 1400°C, while the oxidation takes place at temperatures between 600 and 800°C (17,25, 27). These materials have lower hydrogen yields than the other oxides discussed in this section.
- Producción de gas de síntesis - Synthesis gas production
Para la producción de gas de síntesis existen varias rutas que emplean energía solar, fotoquímica/fotobiológica, electroquímica y termoquímica. La primera ruta usa los fotones de la radiación solar para llevar a cabo diferentes reacciones químicas y biológicas (28). En la ruta electroquímica se usa la energía eléctrica obtenida mediante paneles fotovoltaicos para llevar a cabo la ruptura del H2O y CO2 contenido en mezclas de estos gases (29). For the production of synthesis gas there are several routes that use solar, photochemical/photobiological, electrochemical and thermochemical energy. The first route uses the photons of solar radiation to carry out different chemical and biological reactions (28). In the electrochemical route, the electrical energy obtained through photovoltaic panels is used to carry out the rupture of the H2O and CO2 contained in mixtures of these gases (29).
La ruta termoquímica usa la energía solar para llevar a cabo diferentes reacciones químicas para la transformación de materias primas de origen fósil, H2O o CO2 en H2 y CO. Estas reacciones químicas pueden ser el reformado con vapor de agua del gas natural (30), la gasificación de compuestos de carbono como el carbón o la biomasa (31), o basado en el concepto de producción de hidrógeno mediante ciclos termoquímicos, la producción de gas de síntesis descomponiendo simultáneamente agua y dióxido de carbono en la etapa de oxidación. The thermochemical route uses solar energy to carry out different chemical reactions for the transformation of raw materials of fossil origin, H2O or CO2 into H2 and CO. These chemical reactions can be steam reforming of natural gas (30), gasification of carbon compounds such as coal or biomass (31), or based on the concept of hydrogen production through thermochemical cycles, the production of synthesis gas by simultaneously decomposing water and carbon dioxide in the oxidation stage.
Para la obtención de gas de síntesis mediante ciclos termoquímicos se han estudiado menos materiales que en el caso de la producción de hidrógeno. En este caso, los más estudiados han sido el óxido de cerio (32) y los materiales de tipo perovskita (27). Las limitaciones asociadas a la producción de gas de síntesis mediante ciclos termoquímicos basados en el óxido de cerio o materiales de tipo perovskita son semejantes a las descritas para la producción de H2: altas temperaturas de operación para el caso del óxido de cerio, y bajos rendimientos de H2 para el caso de los materiales de tipo perovskita. Fewer materials have been studied to obtain synthesis gas by thermochemical cycles than in the case of hydrogen production. In this case, the most studied have been cerium oxide (32) and perovskite-type materials (27). The limitations associated with the production of synthesis gas through thermochemical cycles based on cerium oxide or perovskite-type materials are similar to those described for the production of H 2 : high operating temperatures in the case of cerium oxide, and low H 2 yields for the case of perovskite-type materials.
En resumen, los procesos conocidos para la generación de H2, CO y gas de síntesis mediante ciclos termoquímicos tienen serios problemas asociados debido a las altas temperaturas de reducción, la falta de estabilidad de los materiales a esas temperaturas y/o la baja producción de H2 o CO. In summary, the known processes for the generation of H 2 , CO and synthesis gas through thermochemical cycles have serious associated problems due to the high reduction temperatures, the lack of stability of the materials at those temperatures and/or the low production of H2 or CO.
Por lo tanto, existe una necesidad de nuevos materiales en el sector de la generación de H2, CO y gas de síntesis para poder producir estos combustibles de manera eficiente, compatible con la tecnología solar actual y prolongada en el tiempo. Therefore, there is a need for new materials in the H 2 , CO and synthesis gas generation sector in order to produce these fuels efficiently, compatible with current solar technology and over time.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención resuelve los problemas existentes en el estado de la técnica mediante un método de obtención de hidrógeno (H2), monóxido de carbono (CO) y/o gas de síntesis mediante ciclos termoquímicos basados en materiales de tipo perovskita, más específicamente mediante la reacción de óxidos metálicos de tipo perovskita de fórmula Ai-cBcMi-gNgq3-z (I) con vapor de agua y/o CO2. The present invention solves the existing problems in the state of the art through a method of obtaining hydrogen (H 2 ), carbon monoxide (CO) and/or synthesis gas through thermochemical cycles based on perovskite-type materials, more specifically through the reaction of perovskite-type metal oxides of formula Ai- c B c Mi- g N g q 3-z (I) with water vapor and/or CO 2 .
Los óxidos metálicos de tipo perovskita de la presente invención mostraron una actividad superior a la de otros óxidos de tipo perovskita encontrados en el estado del arte y operan a menor temperatura. Además, la mayoría de los óxidos metálicos de tipo perovskita de la presente invención presentan muy buena ciclabilidad, es decir, se obtiene una buena producción de H2, CO y/o gas de síntesis a lo largo de los ciclos. The perovskite-type metal oxides of the present invention showed superior activity to that of other perovskite-type oxides found in the state of the art and operate at lower temperatures. In addition, most of the perovskite-type metal oxides of the present invention have very good cyclability, that is, a good production of H 2 , CO and/or synthesis gas is obtained throughout the cycles.
El término “gas de síntesis” en la presente invención se refiere a una mezcla de H2 y CO. The term "synthesis gas" in the present invention refers to a mixture of H 2 and CO.
El término “ciclo termoquímico” en la presente invención se refiere a un proceso que comprende una pluralidad de reacciones químicas en las que al menos una de ellas es la reducción del óxido metálico de tipo perovskita, y al menos otra de ellas la re oxidación de éste, para la producción de H2, CO y/o gas de síntesis. La etapa de reducción es una reacción endotérmica mientras que la etapa de producción de H2, CO y/o gas de síntesis es exotérmica. El calor requerido en la etapa endotérmica puede ser proporcionado por cualquier medio conveniente: resistencias eléctricas, quema de combustible, radiación (incluida la energía solar), o cualquier otro medio adecuado para producir la reacción. The term "thermochemical cycle" in the present invention refers to a process that comprises a plurality of chemical reactions in which at least one of them is the reduction of the perovskite-type metal oxide, and at least one of them is the re-oxidation of this one, for the production of H 2 , CO and/or synthesis gas. the stage of Reduction is an endothermic reaction while the H2, CO and/or synthesis gas production step is exothermic. The heat required in the endothermic stage can be provided by any convenient means: electrical resistors, fuel combustion, radiation (including solar energy), or any other means suitable for producing the reaction.
El término “óxido metálico de tipo perovskita” en la presente invención se refiere a un compuesto químico con fórmula genérica AI-XBXMI-YNY03-z, denominada en la presente invención como Fórmula (I), donde A representa un elemento de la serie de los lantánidos, alcalinos o alcalinotérreos (según la Tabla Periódica de los Elementos de la IUPAC), B representa un elemento de la serie de alcalinos o alcalinotérreos, M representa Fe o Co, N representa un metal de transición o un elemento de los grupos del bloque p de la Tabla Periódica, x e y tiene un valor entre 0 y 1, y z tiene un valor entre 0 y 0,75, de modo que el contenido de oxígeno de los óxidos tipo perovskita puede variar entre un valor máximo de 3 y un mínimo de 2,25 por fórmula. The term "perovskite-type metal oxide" in the present invention refers to a chemical compound with the generic formula A IX B X M IY N Y 0 3-z, referred to in the present invention as Formula (I), where A represents a element of the lanthanide, alkali or alkaline earth series (according to the IUPAC Periodic Table of Elements), B represents an element of the alkali or alkaline earth series, M represents Fe or Co, N represents a transition metal or a element of the groups of block p of the Periodic Table, x and y has a value between 0 and 1, and z has a value between 0 and 0.75, so that the oxygen content of perovskite-type oxides can vary between a maximum value of 3 and a minimum of 2.25 per formula.
Los átomos tipo M y N se localizan en el centro de un poliedro más o menos regular de átomos de oxígeno, poliedros que pueden ser octaedros, pirámides de base cuadrada o entornos plano-cuadrados dependiendo del contenido en oxígeno y de la naturaleza del elemento M. Por su parte, los átomos de tipo A y B ocupan entornos en general irregulares con coordinación de átomos de oxígeno vecinos que van desde 12 a 6. El arreglo tridimensional de los átomos tipo A (y B) y M (y N) y los oxígenos puede dar lugar a estructuras altamente regulares y simétricas (cúbicas) así como a estructuras muy distorsionadas de baja simetría (de simetrías monoclínica y triclínica). The M and N type atoms are located in the center of a more or less regular polyhedron of oxygen atoms, polyhedrons that can be octahedrons, square-based pyramids or flat-square environments depending on the oxygen content and the nature of the element M. For their part, type A and B atoms occupy generally irregular environments with coordination of neighboring oxygen atoms ranging from 12 to 6. The three-dimensional arrangement of type A (and B) and M (and N) atoms and oxygens can give rise to highly regular and symmetric (cubic) structures as well as highly distorted structures with low symmetry (monoclinic and triclinic symmetries).
Así mismo, cuando existen posiciones de oxígeno no ocupadas (vacantes) éstas pueden estar totalmente desordenadas o presentar diferentes grados de orden, dando lugar a lo que se denomina superestructura. Independientemente de la mayor o menor simetría, de la mayor o menor cantidad de vacantes de oxígeno y de su mayor o menor grado de orden y de la composición química más o menos compleja, todos estos compuestos se consideran compuestos con estructura tipo perovskita y así se refieren en la presente invención (33). Likewise, when there are unoccupied oxygen positions (vacancies), they can be totally disordered or present different degrees of order, giving rise to what is called superstructure. Regardless of the greater or lesser symmetry, the greater or lesser number of oxygen vacancies and their greater or lesser degree of order and the more or less complex chemical composition, all these compounds are considered compounds with a perovskite-type structure and are thus refer to in the present invention (33).
En un primer aspecto, la presente invención proporciona un método de obtención de H2, CO o gas de síntesis, que comprende las siguientes etapas: i) calentar un óxido metálico de tipo perovskita de fórmula (I) In a first aspect, the present invention provides a method for obtaining H2, CO or synthesis gas, comprising the following steps: i) heating a perovskite-type metal oxide of formula (I)
Al-xBxMl-yNy03-Z (I) donde A representa un elemento de la serie de los lantánidos, alcalinos o alcalinotérreos; Al-xBxMl-yNy0 3 - Z (I) where A represents an element of the lanthanide, alkaline or alkaline-earth series;
B representa un elemento de la serie de alcalinos o alcalinotérreos; B represents an element of the alkali or alkaline earth series;
M representa Fe o Co; M represents Fe or Co;
N representa un metal de transición o un elemento seleccionado de los grupos del bloque p de la Tabla Periódica; x e y tienen un valor entre 0 y 1 ; y z tiene un valor entre 0 y 0,75; para la reducción térmica de dicho óxido metálico en una corriente de aire o un gas inerte; y ii) hacer reaccionar el óxido metálico reducido obtenido de la etapa i) con una corriente gaseosa que comprende vapor de agua y/o CO2 para la obtención de H2, CO o gas de síntesis y re-oxidación del óxido metálico para recuperar el óxido metálico de fórmula (I), en el que las etapas i) y ii) se llevan a cabo a una temperatura comprendida entre 300 y 800°C y una presión entre 0,1 MPa y 20 MPa. N represents a transition metal or an element selected from the groups of the p block of the Periodic Table; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75; for the thermal reduction of said metal oxide in a current of air or an inert gas; and ii) reacting the reduced metal oxide obtained from step i) with a gaseous stream comprising steam and/or CO2 to obtain H2, CO or synthesis gas and re-oxidation of the metal oxide to recover the oxide metal of formula (I), in which steps i) and ii) are carried out at a temperature between 300 and 800°C and a pressure between 0.1 MPa and 20 MPa.
Preferiblemente, en el óxido metálico de tipo perovskita de fórmula (I): A representa La o Nd; B representa Ca o Sr; M representa Fe o Co; N representa Fe, Co, Ti, Mo, Sb o Al; x e y tienen un valor entre 0 y 1 y z tiene un valor entre 0 y 0,75. Preferably, in the perovskite-type metal oxide of formula (I): A represents La or Nd; B represents Ca or Sr; M represents Fe or Co; N represents Fe, Co, Ti, Mo, Sb or Al; x and y have a value between 0 and 1 and z has a value between 0 and 0.75.
Preferiblemente, la corriente gaseosa de la etapa i) es aire. Preferably, the gas stream of step i) is air.
Adicionalmente, la corriente gaseosa de la etapa ii) comprende aire o un gas inerte, como por ejemplo N2 o Ar, pero sin limitarse a estos. Additionally, the gas stream of step ii) comprises air or an inert gas, such as N2 or Ar, but not limited to these.
En una realización particular, el método de obtención de la presente invención comprende una primera etapa en la que se calienta un óxido metálico de tipo perovskita de fórmula (I), tal y como se ha descrito anteriormente, y una segunda etapa de re-oxidación del óxido metálico obtenido en la etapa anterior y producción de H2 por reacción con una corriente de aire o gas inerte (por ejemplo, N2 o Ar) saturada en agua. El método de esta realización se caracteriza por una temperatura de operación que oscila entre los 300 y los 800°C y una presión de trabajo en el rango de 0,1 MPa a 20 MPa. In a particular embodiment, the method of obtaining the present invention comprises a first stage in which a metal oxide of the perovskite type of formula (I) is heated, as described above, and a second stage of re-oxidation of the metal oxide obtained in the previous stage and production of H2 by reaction with a current of air or inert gas (for example, N2 or Ar) saturated in water. The method of this embodiment is characterized by an operation temperature ranging from 300 to 800°C and a working pressure in the range of 0.1 MPa to 20 MPa.
La corriente de gas alimentada en la etapa de reducción (primera etapa) es preferentemente aire, aunque se puede emplear un gas inerte, preferentemente N2 o Ar (pero sin limitarse a estos) con un caudal suficiente para arrastrar el oxígeno producido durante la etapa de reducción, mientras que la corriente alimentada en la etapa de oxidación (segunda etapa) es aire o cualquier otro gas portador inerte (por ejemplo N2 o Ar) saturado en vapor de agua a 50-120°C o una corriente de vapor de agua. The gas stream fed into the reduction stage (first stage) is preferably air, although an inert gas can be used, preferably N2 or Ar (but not limited to these) with a sufficient flow rate to entrain the oxygen produced during the reduction stage. while the stream fed into the oxidation stage (second stage) is air or any other inert carrier gas (for example N2 or Ar) saturated in steam at 50-120°C or a steam stream.
En otra realización particular, el método de obtención de la presente invención comprende una primera etapa en la que se calienta un óxido metálico de tipo perovskita de fórmula (I), tal y como se ha descrito anteriormente, y una segunda etapa de re-oxidación del óxido metálico obtenido en la etapa anterior y producción de CO por reacción con una corriente de aire o gas inerte mezclado con CO2 en una proporción suficiente para que la reacción tenga lugar. In another particular embodiment, the method of obtaining the present invention comprises a first stage in which a metal oxide of the perovskite type of formula (I) is heated, as described above, and a second stage of re-oxidation of the metal oxide obtained in the previous stage and production of CO by reaction with a current of air or inert gas mixed with CO2 in a sufficient proportion for the reaction to take place.
El método de esta realización particular se caracteriza por una temperatura de operación que oscila entre los 300 y los 800°C y una presión de trabajo en el rango de 0,1 MPa a 20 MPa. The method of this particular embodiment is characterized by an operating temperature ranging between 300 and 800°C and a working pressure in the range of 0.1 MPa to 20 MPa.
La corriente de gas alimentada en la etapa de reducción (primera etapa) es preferentemente aire, aunque se puede emplear un gas inerte, preferentemente N2 o Ar (pero sin limitarse a estos) con un caudal suficiente para arrastrar el oxígeno producido durante la etapa de reducción, mientras que la corriente alimentada en la etapa de oxidación (segunda etapa) es CO2 mezclado con aire o cualquier otro gas portador inerte (por ejemplo N2 o Ar) en un porcentaje en volumen de CO2 comprendido en el intervalo 10-100 %, preferiblemente entre el 30 y el 100 %. The gas stream fed into the reduction stage (first stage) is preferably air, although an inert gas can be used, preferably N2 or Ar (but not limited to these) with a sufficient flow rate to entrain the oxygen produced during the reduction stage. reduction, while the stream fed to the oxidation stage (second stage) is CO2 mixed with air or any other inert carrier gas (for example N2 or Ar) in a volume percentage of CO2 in the range 10-100%, preferably between 30 and 100%.
En otra realización particular, el método de obtención de la presente invención comprende una primera etapa en la que se calienta un óxido metálico de tipo perovskita de fórmula (I), tal y como se ha descrito anteriormente, y una segunda etapa de re-oxidación del óxido metálico obtenido en la etapa anterior y producción de gas de síntesis por reacción con una corriente de gas inerte (N2 o Ar) o aire mezclado con vapor de agua y CO2 en una proporción suficiente para que la reacción tenga lugar. In another particular embodiment, the method of obtaining the present invention comprises a first stage in which a metal oxide of the perovskite type of formula (I) is heated, as described above, and a second stage of re-oxidation of the metal oxide obtained in the previous stage and production of synthesis gas by reaction with a stream of inert gas (N2 or Ar) or air mixed with water vapor and CO2 in a sufficient proportion for the reaction to take place.
El método de esta realización particular se caracteriza por una temperatura de operación que oscila entre los 300 y los 800°C y una presión de trabajo en el rango de 0,1 MPa a 20 MPa. The method of this particular embodiment is characterized by an operating temperature ranging between 300 and 800°C and a working pressure in the range of 0.1 MPa to 20 MPa.
La corriente de gas alimentada en la etapa de reducción (primera etapa) es preferentemente aire, aunque se puede emplear un gas inerte, preferentemente N2 o Ar (pero sin limitarse a estos) con un caudal suficiente para arrastrar el oxígeno producido durante la etapa de reducción, mientras que la corriente alimentada en la etapa de oxidación (segunda etapa) es una mezcla de N2, Ar o aire con CO2 en un porcentaje en volumen de CO2 comprendido en el intervalo 10-100 %, preferiblemente entre el 30 y el 100 %, saturada en vapor de agua a 50-120°C o una mezcla de una corriente de vapor de agua y CO2 con un porcentaje en volumen de CO2 del 10-90 %. The gas stream fed into the reduction stage (first stage) is preferably air, although an inert gas can be used, preferably N2 or Ar (but not limited to these) with a sufficient flow rate to entrain the oxygen produced during the reduction stage. reduction, while the stream fed to the oxidation stage (second stage) is a mixture of N2, Ar or air with CO2 in a volume percentage of CO2 in the range 10-100%, preferably between 30 and 100%. %, saturated in water vapor at 50-120°C or a mixture of a stream of water vapor and CO2 with a volume percentage of CO2 of 10-90%.
En un segundo aspecto, la presente invención describe el uso de un óxido metálico de tipo perovskita de fórmula (I) In a second aspect, the present invention describes the use of a perovskite-type metal oxide of formula (I)
Al-xBxMl-yNy03-Z (I) donde A representa un elemento de la serie de los lantánidos, alcalinos o alcalinotérreos; Al-xBxMl-yNy0 3 - Z (I) where A represents an element of the lanthanide, alkaline or alkaline-earth series;
B representa un elemento de la serie de alcalinos o alcalinotérreos; B represents an element of the alkali or alkaline earth series;
M representa Fe o Co; M represents Fe or Co;
N representa un metal de transición o un elemento seleccionado de los grupos del bloque p de la Tabla Periódica; x e y tienen un valor entre 0 y 1 ; y z tiene un valor entre 0 y 0,75, para la producción de H2, CO o gas de síntesis (CO+H2). N represents a transition metal or an element selected from the groups of the p block of the Periodic Table; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75, for the production of H2, CO or synthesis gas (CO+H2).
Preferiblemente, en el óxido metálico de tipo perovskita de fórmula (I): A representa La o Nd; B representa Ca o Sr; M representa Fe o Co; N representa Fe, Co, Ti, Mo, Sb o Al; x e y tienen un valor entre 0 y 1 ; y z tiene un valor entre 0 y 0,75. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Preferably, in the perovskite-type metal oxide of formula (I): A represents La or Nd; B represents Ca or Sr; M represents Fe or Co; N represents Fe, Co, Ti, Mo, Sb or Al; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75. DETAILED DESCRIPTION OF THE INVENTION
Ejemplo 1. Evaluación del material Ndi/3Sr2/3Co03- en la producción de CO Example 1. Evaluation of the material Ndi/3Sr 2/3 Co03- in the production of CO
El óxido metálico tipo perovskita de composición Ndi/3Sr2/3CoC>3-z se sintetizó a través de diferentes métodos de síntesis, los cuales son conocidos en el estado del arte y cualquier experto en la materia podría emplearlos sin dificultad. Se han descrito estos métodos sin perjuicio de que pueda sintetizarse con otros métodos, conduciendo a la obtención de muestras de características idénticas en lo referente al uso que se protege en esta presente invención. The perovskite-type metal oxide with composition Ndi / 3Sr2 / 3CoC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any expert in the field. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
Los métodos elegidos para realizar este ejemplo fueron los siguientes: método cerámico convencional de alta temperatura, método sol-gel de Pechini, combustión en disolución y síntesis mecano-química. a) Preparación por el método cerámico The methods chosen to carry out this example were the following: conventional high-temperature ceramic method, Pechini sol-gel method, solution combustion and mechano-chemical synthesis. a) Preparation by the ceramic method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 0,7235 g de Nd(N03)36H20, 1 ,4552 g de Co(N03)26H20 y 0,4921 g de Sr(N03) para obtener 1 g del óxido perovskita de composición Ndi/3Sr2/3CoC>3-z. The following stoichiometric amounts of metal nitrates were used: 0.7235 g of Nd(N0 3 ) 3 6H 2 0, 1.4552 g of Co(N0 3 ) 2 6H 2 0 and 0.4921 g of Sr (N0 3 ) to obtain 1 g of perovskite oxide with composition Ndi / 3Sr 2/ 3CoC>3- z .
La mezcla de los reactivos se molió y homogeneizó. Esta mezcla se sometió a un primer tratamiento térmico a 800°C durante 12 horas en un horno al aire. Tras moler y homogeneizar la mezcla de precursores se conformó una pastilla y se calentó a 1100°C durante 72 horas con moliendas intermedias cada 24 horas. La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,89±3 Á y simetría cúbica Pm3m. b) Preparación por el método sol-gel de Pechini The mixture of reagents was ground and homogenized. This mixture was subjected to a first heat treatment at 800°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1100°C for 72 hours with intermediate grinding every 24 hours. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.89±3 Á and cubic symmetry Pm3m. b) Preparation by the Pechini sol-gel method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 0,7235 g de Nd(N03)36H20, 1 ,4552 g de Co(N03)26H20 y 0,4921 g de Sr(N03)2 para obtener 1 g del óxido perovskita de composición Ndi/3Sr2/3CoC>3-z. The following stoichiometric amounts of metal nitrates were used: 0.7235 g of Nd(N0 3 ) 3 6H 2 0, 1.4552 g of Co(N0 3 ) 2 6H 2 0 and 0.4921 g of Sr (N0 3 ) 2 to obtain 1 g of perovskite oxide with composition Ndi / 3Sr 2/ 3CoC>3- z .
La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Esta disolución se calentó en torno a los 80°C con agitación en una placa calefactora y se añadió ácido cítrico en proporción estequiométrica de 1 metal:3 ácido cítrico, en este caso 2,7089 g. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a plate heater and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 2.7089 g.
Manteniendo la calefacción y agitación se añadió 1/10 de volumen inicial de etilenglicol (2 ml_) y se produjo la polimerización con formación del sol. La mezcla solida se dejó enfriar y se molió para producir un polvo que se calcinó a 800°C para eliminar la materia orgánica y producir una ceniza inorgánica. Dicha ceniza se molió para homogeneizarla y se trató a 900°C durante 12 horas. La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,87±3 Á y simetría cúbica Pm3m. c) Preparación por el método combustión en disolución asistida por spray-pirólisis Maintaining heating and stirring, 1/10 of the initial volume of ethylene glycol (2 ml_) was added and polymerization with the formation of the sol occurred. The solid mixture was allowed to cool and was ground to produce a powder which was calcined at 800°C to remove organic matter and produce an inorganic ash. Said ash was ground to homogenize it and treated at 900°C for 12 hours. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.87±3 Á and cubic symmetry Pm3m. c) Preparation by the spray-pyrolysis-assisted combustion method in solution
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 3,6175 g de Nd(N03)3-6H20, 7,2760 g de Co(N03)2-6H20 y 2,4605 g de Sr(N03)2 para obtener 5 g del óxido perovskita de composición Ndi/3Sr2/3Co03-z. The following stoichiometric quantities of metal nitrates were used: 3.6175 g of Nd(N0 3 ) 3 -6H 2 0, 7.2760 g of Co(N0 3 ) 2 -6H 2 0 and 2.4605 g of Sr(N0 3 ) 2 to obtain 5 g of perovskite oxide with composition Ndi /3 Sr 2/3 Co0 3-z .
La mezcla de reactivos se disolvió en 30 mL de agua destilada a temperatura ambiente. Posteriormente, se disolvieron 4,5735 g de glicina en dicha disolución. The reagent mixture was dissolved in 30 mL of distilled water at room temperature. Subsequently, 4.5735 g of glycine were dissolved in said solution.
Esta disolución se empleó en un sistema de spray-pirólisis (que consiste en un sistema de proyección de líquido en forma de gotas finas, a modo de nebulizador, que se proyecta sobre una superficie caliente, 450°C en este caso) que promueve la reacción de combustión por activación térmica. This solution was used in a spray-pyrolysis system (consisting of a liquid projection system in the form of fine drops, like a nebulizer, which is projected onto a hot surface, 450°C in this case) that promotes the combustion reaction by thermal activation.
El polvo producido en la pirólisis se trató a 900°C durante 4 horas para producir la perovskita de composición Ndi/3Sr2/3Co03-z. La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,89±3 Á y simetría Pm3m. d) Preparación por el método mecano-químico The powder produced in the pyrolysis was treated at 900°C for 4 hours to produce the perovskite of composition Ndi /3 Sr 2/3 Co0 3-z . The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.89±3 Á and Pm3m symmetry. d) Preparation by the mechano-chemical method
Se partió de las siguientes cantidades estequiométricas de reactivos: 1,3180 g de Nd203, 1,8740 g Sr02 y 2,1605 g CoOOH para obtener 5 g del óxido perovskita de composición Ndi/3Sr2/3Co03.z. La mezcla de los reactivos se introdujo en un recipiente de molienda de circona de volumen 50 mL con bolas del mismo material de diámetro 5 mm con una masa total de 50 g. La molienda se realizó durante 12 horas a 500 rpm. The following stoichiometric quantities of reagents were used: 1.3180 g of Nd 2 0 3 , 1.8740 g of Sr0 2 and 2.1605 g of CoOOH to obtain 5 g of perovskite oxide with composition Ndi /3 Sr 2/3 Co0 3 .z . The mixture of the reagents was placed in a 50 mL volume zirconia grinding container with 5 mm diameter balls of the same material with a total mass of 50 g. Milling was carried out for 12 hours at 500 rpm.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,9±1 Á y simetría cúbica Pm3m. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.9±1 Á and cubic symmetry Pm3m.
Para poder evaluar la producción de CO, se utilizó la muestra de Ndi/3Sr2/3CoC>3-z, obtenida por el método cerámico convencional, como óxido metálico de tipo perovskita en el método de la presente invención. In order to evaluate the CO production, the Ndi / 3Sr2 / 3CoC>3- z sample, obtained by the conventional ceramic method, was used as perovskite-type metal oxide in the method of the present invention.
Se introdujeron 50 mg del óxido metálico tipo perovskita Ndi/3Sr2/3CoC>3-z en un crisol de alúmina de 150 pL en la termobalanza. A continuación, la muestra fue calentada con una rampa de 10°C/min hasta alcanzar los 800°C. Esta temperatura se mantuvo constante durante el resto del ensayo. 50 mg of the perovskite type metal oxide Ndi / 3Sr2 / 3CoC>3- z were introduced into a 150 pL alumina crucible in the thermobalance. Next, the sample was heated with a ramp of 10°C/min until reaching 800°C. This temperature was kept constant for the rest of the test.
Durante el calentamiento inicial una corriente de aire de 100 mL/min fue introducida en la termobalanza para arrastrar el O2 producido durante la etapa de reducción. Tras finalizar el calentamiento, la corriente de aire alimentada a la termobalanza fue sustituida por una corriente de CO2 puro para llevar a cabo la producción de CO y la recuperación de la perovskita inicial. During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the O2 produced during the reduction stage. After completing the heating, the air stream fed to the thermobalance was replaced by a stream of pure CO2 to carry out the production of CO and the recovery of the initial perovskite.
Esta etapa de oxidación se mantuvo durante 90 min. Transcurrido este tiempo, se dejó de introducir CO2 y se volvió a introducir aire para llevar a cabo de nuevo la reducción. Esta etapa duró aproximadamente 70 min. Estos cambios en la corriente gaseosa se realizaron de manera periódica hasta realizar 16 ciclos. Las variaciones de masa recogidas en la termobalanza se corresponden con el oxígeno perdido o ganado por el material según si se encuentra en la etapa de reducción u oxidación. Los resultados de este ejemplo se muestran en la Tabla 1. This oxidation step was maintained for 90 min. After this time, the introduction of CO2 was stopped and air was re-introduced to carry out the reduction again. This stage lasted approximately 70 min. These changes in the gas current were carried out periodically until 16 cycles were carried out. The mass variations recorded in the thermobalance correspond to the oxygen lost or gained by the material depending on whether it is in the reduction or oxidation stage. The results of this example are shown in Table 1.
El Ndi/3Sr2/3CoC>3-z tiene un comportamiento estable frente a ciclos con una producción de CO en estado estacionario de 3038 pmol/gmater¡ai· ciclo, muy superior a la de otros materiales de tipo perovskita. Además, la reducción se ha llevado a cabo a temperaturas muy inferiores (véase Tabla 1). Ejemplo 2. Evaluación del material Ndi/3Sr2/3Co03-z en la producción de H2 Ndi / 3Sr2 / 3CoC>3- z has a stable behavior against cycles with a steady state CO production of 3038 pmol/g material · cycle, much higher than that of other perovskite-type materials. Furthermore, the reduction has been carried out at much lower temperatures (see Table 1). Example 2. Evaluation of the material Ndi/3Sr 2/3 Co03-z in the production of H2
En este ejemplo se evaluó la producción de H2 utilizando la muestra de Ndi/3Sr2/3CoC>3- z, obtenida por el método cerámico convencional descrito en el ejemplo 1, como óxido metálico de tipo perovskita en el método de la presente invención. Se introdujo 1 g del óxido metálico de tipo perovskita Ndi/3Sr2/3CoC>3-z en un crisol de Pt/Rh 90/10 en un horno. Para llevar a cabo la etapa de reducción, la temperatura se incrementó hasta los 700°C con una rampa de calentamiento de 10°C/min. Durante esta etapa de reducción térmica del material, el horno era alimentado con una corriente de aire de 50 NL/h, para transportar el O2 producido en esta etapa a un analizador de gases. Una vez alcanzada la temperatura de 700°C y terminada la reducción, la corriente de aire fue saturada en agua a 80°C para alimentarla al reactor y llevar a cabo la etapa de oxidación de la perovskita y producción de H2. In this example, the production of H2 was evaluated using the Ndi / 3Sr2 / 3CoC>3- z sample, obtained by the conventional ceramic method described in example 1, as perovskite-type metal oxide in the method of the present invention. 1 g of the perovskite-type metal oxide Ndi / 3Sr2 / 3CoC>3- z was introduced into a crucible of Pt/Rh 90/10 in an oven. To carry out the reduction step, the temperature was increased to 700°C with a heating ramp of 10°C/min. During this stage of thermal reduction of the material, the furnace was fed with an air current of 50 NL/h, to transport the O2 produced in this stage to a gas analyzer. Once the temperature of 700°C was reached and the reduction finished, the air stream was saturated with water at 80°C to feed it to the reactor and carry out the perovskite oxidation stage and H2 production.
En el primer ciclo se obtiene una producción de H2 de 898,7 pmol/gmater¡ai, que desciende ligeramente al ciclar para alcanzar un valor estacionario de 497,9 prnol/gmateriai- ciclo, que es superior al de muchos materiales del estado del arte que trabajan a temperaturas mucho más elevadas (véase Tabla 2). In the first cycle, a production of H2 of 898.7 pmol/g material is obtained, which decreases slightly when cycling to reach a stationary value of 497.9 pmol/g material - cycle, which is higher than that of many materials of the state of the art that work at much higher temperatures (see Table 2).
Ejemplo 3. Evaluación del material Lai/3Sr2/3Co03-z en la producción de CO Example 3. Evaluation of the material Lai/3Sr 2/3 Co03-z in the production of CO
El óxido metálico tipo perovskita de composición Lai/3Sr2/3CoC>3-z se sintetizó a través de diferentes métodos de síntesis, los cuales son conocidos en el estado del arte y cualquier experto en la materia podría emplearlos sin dificultad. Se han descrito estos métodos sin perjuicio de que pueda sintetizarse con otros métodos, conduciendo a la obtención de muestras de características idénticas en lo referente al uso que se protege en esta presente invención. The perovskite-type metal oxide with composition Lai / 3Sr2 / 3CoC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any person skilled in the art. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
Los métodos elegidos para realizar este ejemplo fueron los siguientes: método cerámico convencional de alta temperatura, método sol-gel de Pechini y combustión en estado sólido. a) Preparación por el método cerámico Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 0,6786 g de La(N03)3-6H20, 1,3822 g de Co(N03)2-6H20 y 0,6633 g Sr(N03)2 para obtener 1 g del óxido perovskita de composición Lai/3Sr2/3Co03-z. The methods chosen to carry out this example were the following: conventional high temperature ceramic method, Pechini sol-gel method and solid state combustion. a) Preparation by the ceramic method The following stoichiometric amounts of metal nitrates were used: 0.6786 g of La(N0 3 ) 3 -6H 2 0, 1.3822 g of Co(N0 3 ) 2 -6H 2 0 and 0.6633 g Sr(N0 3 ) 2 to obtain 1 g of the perovskite oxide of composition Lai /3 Sr 2/3 Co0 3-z .
La mezcla de los reactivos se molió y homogeneizó. Esta mezcla se sometió a un primer tratamiento térmico a 800°C durante 12 horas en un horno al aire. Tras moler y homogeneizar la mezcla de precursores se conformó una pastilla y se calentó a 1100°C durante 72 horas con moliendas intermedias cada 24 horas. The mixture of reagents was ground and homogenized. This mixture was subjected to a first heat treatment at 800°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1100°C for 72 hours with intermediate grinding every 24 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,89±3 Á y simetría cúbica Pm3m. b) Preparación por el método sol-gel de Pechini The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.89±3 Á and cubic symmetry Pm3m. b) Preparation by the Pechini sol-gel method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 0,6786 g de La(N03)3-6H20, 1,3822 g de Co(N03)2-6H20 y 0,6633 g Sr(N03)2 para obtener 1 g del óxido perovskita de composición Lai/3Sr2/3Co03-z. The following stoichiometric amounts of metal nitrates were used: 0.6786 g of La(N0 3 ) 3 -6H 2 0, 1.3822 g of Co(N0 3 ) 2 -6H 2 0 and 0.6633 g Sr(N0 3 ) 2 to obtain 1 g of the perovskite oxide of composition Lai /3 Sr 2/3 Co0 3-z .
La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Esta disolución se calentó en torno a los 80°C con agitación en una placa calefactora y se añadió ácido cítrico en proporción estequiométrica de 1 metal:3 ácido cítrico, en este caso 2,7665 g. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 2.7665 g.
Manteniendo la calefacción y agitación se añadió 1/10 de volumen inicial de etilenglicol (2 mL) y se produjo la polimerización con formación del sol. La mezcla solida se dejó enfriar y se molió para producir un polvo que se calcinó a 800°C para eliminar la materia orgánica y producir una ceniza inorgánica. Dicha ceniza se molió para homogeneizarla y se trató a 1100°C durante 12 horas. Maintaining heating and stirring, 1/10 of the initial volume of ethylene glycol (2 mL) was added and polymerization occurred with formation of the sol. The solid mixture was allowed to cool and was ground to produce a powder which was calcined at 800°C to remove organic matter and produce an inorganic ash. Said ash was ground to homogenize it and treated at 1100°C for 12 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,83±3 Á y simetría cúbica Pm3m. c) Preparación por el método combustión en estado sólido Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 0,6786 g de La(N03)3-6H20, 1,3822 g de Co(N03)2-6H20 y 0,6633 g Sr(N03)2 para obtener 1 g del óxido perovskita de composición Lai/3Sr2/3Co03-z. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.83±3 Á and cubic symmetry Pm3m. c) Preparation by the solid state combustion method The following stoichiometric amounts of metal nitrates were used: 0.6786 g of La(N0 3 ) 3 -6H 2 0, 1.3822 g of Co(N0 3 ) 2 -6H 2 0 and 0.6633 g Sr(N0 3 ) 2 to obtain 1 g of the perovskite oxide of composition Lai /3 Sr 2/3 Co0 3-z .
La mezcla de reactivos se disolvió en 10 mL de agua destilada a temperatura ambiente. Posteriormente, se disolvieron 1,5365 g de glicina en dicha disolución. The reagent mixture was dissolved in 10 mL of distilled water at room temperature. Subsequently, 1.5365 g of glycine were dissolved in said solution.
Esta disolución se deshidrató a 60°C a vacío durante 24 horas obteniéndose una resina solida que se molió. Posteriormente, se conformó como un cilindro usando un troquel y una prensa de mano. This solution was dehydrated at 60°C under vacuum for 24 hours, obtaining a solid resin that was ground. Later, it was shaped into a cylinder using a die and a hand press.
Posteriormente, se indujo la ignición de la pastilla por contacto con una llama de un mechero o soplete de gas. El polvo producido en la combustión se trató a 1100°C durante 12 horas. Subsequently, the ignition of the tablet was induced by contact with a flame from a lighter or gas torch. The dust produced in the combustion was treated at 1100°C for 12 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,84±3 Á y simetría cúbica Pm3m. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.84±3 Á and cubic symmetry Pm3m.
Para poder evaluar la producción de CO, se utilizó la muestra de Lai/3Sr2/3Co03-z, obtenida por el método cerámico convencional, como óxido metálico de tipo perovskita en el método de la presente invención. In order to evaluate the production of CO, the Lai /3 Sr 2/3 Co0 3-z sample, obtained by the conventional ceramic method, was used as perovskite-type metal oxide in the method of the present invention.
Se introdujeron 50 mg del óxido metálico tipo perovskita Lai/3Sr2/3Co03.z en un crisol de alúmina de 150 pL en la termobalanza. A continuación, la muestra fue calentada con una rampa de 10°C/min hasta alcanzar los 800°C. Esta temperatura se mantuvo constante durante el resto del ensayo. 50 mg of the perovskite-type metal oxide Lai /3 Sr 2/3 Co0 3.z were introduced into a 150 pL alumina crucible in the thermobalance. Next, the sample was heated with a ramp of 10°C/min until reaching 800°C. This temperature was kept constant for the rest of the test.
Durante el calentamiento inicial una corriente de aire de 100 mL/min fue introducida en la termobalanza para arrastrar el 02 producido durante la etapa de reducción. Tras finalizar el calentamiento, la corriente de aire alimentada a la termobalanza fue sustituida por una corriente de C02 puro para llevar a cabo la producción de CO y la recuperación de la perovskita inicial. During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the 0 2 produced during the reduction stage. After heating, the air stream fed to the thermobalance was replaced by a stream of pure C0 2 to carry out the production of CO and the recovery of the initial perovskite.
Esta etapa de oxidación se mantuvo durante 90 min. Transcurrido este tiempo, se dejó de introducir C02 y se volvió a introducir aire para llevar a cabo de nuevo la reducción. Esta etapa duró aproximadamente 70 min. Estos cambios en la corriente gaseosa se realizaron de manera periódica hasta realizar 4 ciclos. Las variaciones de masa recogidas en la termobalanza se corresponden con el oxígeno perdido o ganado por el material según si se encuentra en la etapa de reducción u oxidación. Los resultados de este ensayo se muestran en la Tabla 1. This oxidation step was maintained for 90 min. After this time, the introduction of C0 2 was stopped and air was re-introduced to carry out the reduction again. This stage lasted approximately 70 min. These changes in the gas stream performed periodically until performing 4 cycles. The mass variations recorded in the thermobalance correspond to the oxygen lost or gained by the material depending on whether it is in the reduction or oxidation stage. The results of this test are shown in Table 1.
El Lai/3Sr2/3CoC>3-z no tiene un comportamiento estable frente a ciclos con una producción de CO en el primer ciclo de 500 pmol/gmater¡ai. No obstante, la reducción se ha llevado a cabo a temperaturas muy inferiores (véase Tabla 1). The Lai / 3Sr2 / 3CoC>3- z does not have a stable behavior against cycles with a production of CO in the first cycle of 500 pmol/g material . However, the reduction has been carried out at much lower temperatures (see Table 1).
Ejemplo 4. Evaluación del material Lai/3Sr2/3Co03-7 en la producción de H2 Example 4. Evaluation of the material Lai/3Sr 2/3 Co03- 7 in the production of H2
En este ejemplo se evaluó la producción de H2 utilizando la muestra de Lai/3Sr2/3CoC>3- z, obtenida por el método cerámico convencional descrito en el ejemplo 3, como óxido metálico de tipo perovskita en el método de la presente invención. In this example, the production of H2 was evaluated using the Lai / 3Sr2 / 3CoC>3- z sample, obtained by the conventional ceramic method described in example 3, as perovskite-type metal oxide in the method of the present invention.
Se introdujo 1 g del óxido metálico de tipo perovskita Lai/3Sr2/3CoC>3-z en un crisol de Pt/Rh 90/10 en un horno. Para llevar a cabo la etapa de reducción, la temperatura se incrementó hasta los 800°C con una rampa de calentamiento de 10°C/min. Durante esta etapa de reducción térmica del material, el horno era alimentado con una corriente de N2 de 50 NL/h, para transportar el O2 producido en esta etapa a un analizador de gases. Una vez alcanzada la temperatura de 800°C y terminada la reducción, la corriente de N2 fue saturada en agua a 80°C para alimentarla al reactor y llevar a cabo la etapa de oxidación de la perovskita y producción de H2. 1 g of the perovskite-type metal oxide Lai / 3Sr2 / 3CoC>3- z was placed in a crucible of Pt/Rh 90/10 in an oven. To carry out the reduction step, the temperature was increased to 800°C with a heating ramp of 10°C/min. During this stage of thermal reduction of the material, the furnace was fed with a stream of N2 at 50 NL/h, to transport the O2 produced in this stage to a gas analyzer. Once the temperature of 800°C was reached and the reduction was complete, the N2 stream was saturated with water at 80°C to feed it to the reactor and carry out the perovskite oxidation stage and H2 production.
La producción de H2 del primer ciclo es superior a la del resto, en este caso se obtiene una producción de H2 225,1 pmol/gmater¡ai, debido a que el primer ciclo siempre se considera una etapa de estabilización del material. Durante el resto de los ciclos la producción de H2 es estable, alcanzando un valor en estado estacionario de 133,7 prnol/gmateriai- ciclo, similar a la encontrada en bibliografía para otros materiales de tipo perovskita (véase Tabla 2), pero llevando a cabo el proceso en isotermo a 800°C, lo que implica temperaturas de trabajo muy inferiores a las recogidas en la Tabla 2 (1250-1400°C). The H2 production of the first cycle is higher than that of the rest, in this case a H2 production of 225.1 pmol/g material is obtained, because the first cycle is always considered a material stabilization stage. During the rest of the cycles, the production of H2 is stable, reaching a steady state value of 133.7 prnol /g material - cycle, similar to that found in the literature for other perovskite-type materials (see Table 2), but leading The process is carried out in isotherm at 800°C, which implies working temperatures much lower than those listed in Table 2 (1250-1400°C).
Ejemplo 5. Evaluación del material Lai/3Sr2/3Coo.69Feo.3iC>3-z en la producción de H2 Example 5. Evaluation of the material Lai / 3Sr2 / 3Coo . 69Ugly . 3iC>3- z in H2 production
El óxido metálico tipo perovskita de composición Lai/3Sr2/3Coo.69Feo.3iC>3-z se sintetizó a través de diferentes métodos de síntesis, los cuales son conocidos en el estado del arte y cualquier experto en la materia podría emplearlos sin dificultad. Se han descrito estos métodos sin perjuicio de que pueda sintetizarse con otros métodos, conduciendo a la obtención de muestras de características idénticas en lo referente al uso que se protege en esta presente invención. The perovskite-type metal oxide of composition Lai / 3Sr2 / 3Coo . 69Ugly . 3iC>3- z was synthesized through different synthesis methods, which are known in the state of the art. art and any expert in the field could use them without difficulty. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
Los métodos elegidos para realizar este ejemplo fueron los siguientes: método cerámico convencional de alta temperatura, método sol-gel de Pechini y combustión en estado sólido. a) Preparación por el método cerámico The methods chosen to carry out this example were the following: conventional high temperature ceramic method, Pechini sol-gel method and solid state combustion. a) Preparation by the ceramic method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 1,3634 g de La(N03)3-6H20, 1,9160 g de Co(N03)2-6H20, 1,1950 g de Fe(N03)2-9H20 y 1,3327 g de Sr(N03)2 para obtener 2 g del óxido perovskita de composiciónThe following stoichiometric quantities of metal nitrates were used: 1.3634 g of La(N0 3 ) 3 -6H 2 0, 1.9160 g of Co(N0 3 ) 2 -6H 2 0, 1.1950 g of Fe(N0 3 ) 2 -9H 2 0 and 1.3327 g of Sr(N0 3 ) 2 to obtain 2 g of perovskite oxide of composition
Lai/3Sr2/3Coo.69Feo.3i03-z. Lai/ 3 Sr 2/3 Coo.69Ugly. 3i 0 3 -z.
La mezcla de los reactivos se molió y homogeneizó. Posteriormente, se sometió a un primer tratamiento térmico a 900°C durante 12 horas en un horno al aire. Tras moler y homogeneizar la mezcla de precursores se conformó una pastilla y se calentó a 1350°C durante 48 horas con moliendas intermedias cada 24 horas. The mixture of reagents was ground and homogenized. Subsequently, it was subjected to a first heat treatment at 900°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1350°C for 48 hours with intermediate grinding every 24 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,84±3 Á y simetría cúbica Pm3m. b) Preparación por el método sol-gel de Pechini The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.84±3 Á and cubic symmetry Pm3m. b) Preparation by the Pechini sol-gel method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 1,3634 g de La(N03)3-6H20, 1,9160 g de Co(N03)2-6H20, 1,1950 g de Fe(N03)2-9H20 y 1,3327 g de Sr(N03)2 para obtener 2 g del óxido perovskita de composiciónThe following stoichiometric quantities of metal nitrates were used: 1.3634 g of La(N0 3 ) 3 -6H 2 0, 1.9160 g of Co(N0 3 ) 2 -6H 2 0, 1.1950 g of Fe(N0 3 ) 2 -9H 2 0 and 1.3327 g of Sr(N0 3 ) 2 to obtain 2 g of perovskite oxide of composition
Lai/3Sr2/3Coo.69Feo.3i03-z. Lai/ 3 Sr 2/3 Coo.69Ugly. 3i 0 3 -z.
La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Esta disolución se calentó en torno a los 80°C con agitación en una placa calefactora y se añadió ácido cítrico en proporción estequiométrica de 1 metal:3 ácido cítrico, en este caso 11 g. Manteniendo la calefacción y agitación se añadió 1/10 de volumen inicial de etilenglicol (4 ml_) y se produjo la polimerización con formación del sol. La mezcla solida se dejó enfriar y se molió para producir un polvo que se calcinó a 800°C para eliminar la materia orgánica y producir una ceniza inorgánica. Dicha ceniza se molió para homogeneizarla y se trató a 1200°C durante 24 horas. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 11 g. Maintaining heating and stirring, 1/10 of the initial volume of ethylene glycol (4 ml_) was added and polymerization occurred with the formation of the sol. The solid mixture was allowed to cool and was ground to produce a powder which was calcined at 800°C to remove organic matter and produce an inorganic ash. Said ash was ground to homogenize it and treated at 1200°C for 24 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,84±3 Á y simetría cúbica Pm3m. c) Preparación por el método combustión en estado sólido The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.84±3 Á and cubic symmetry Pm3m. c) Preparation by the solid state combustion method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 1,3634 g de La(N03)3-6H20, 1,9160 g de Co(N03)2-6H20, 1,1950 g de Fe(N03)2-9H20 y 1,3327 g de Sr(N03)2 para obtener 2 g del óxido perovskita de composiciónThe following stoichiometric quantities of metal nitrates were used: 1.3634 g of La(N0 3 ) 3 -6H 2 0, 1.9160 g of Co(N0 3 ) 2 -6H 2 0, 1.1950 g of Fe(N0 3 ) 2 -9H 2 0 and 1.3327 g of Sr(N0 3 ) 2 to obtain 2 g of perovskite oxide of composition
Lai/3Sr2/3Coo.69Feo.3i03-z. Lai/ 3 Sr 2/3 Coo.69Ugly. 3i 0 3 -z.
La mezcla de reactivos se disolvió en 10 mL de agua destilada a temperatura ambiente. Posteriormente, se disolvieron 3,3087 g de glicina en dicha disolución. The reagent mixture was dissolved in 10 mL of distilled water at room temperature. Subsequently, 3.3087 g of glycine were dissolved in said solution.
Esta disolución se deshidrató a 60°C a vacío durante 24 horas obteniéndose una resina solida que se molió. Posteriormente, se conformó como un cilindro usando un troquel y una prensa de mano. This solution was dehydrated at 60°C under vacuum for 24 hours, obtaining a solid resin that was ground. Later, it was shaped into a cylinder using a die and a hand press.
A continuación, se indujo la ignición de la pastilla por contacto con una llama de un mechero o soplete de gas. El polvo producido en la combustión se trató a 1100°C durante 12 horas. The pellet was then ignited by contact with a flame from a gas burner or torch. The dust produced in the combustion was treated at 1100°C for 12 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,84±3 Á y simetría cúbica Pm3m. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.84±3 Á and cubic symmetry Pm3m.
Para poder evaluar la producción de H2, se utilizó la muestra de Lai/3Sr2/3Coo.69Feo.3i03-z, obtenida por el método sol-gel de Pechini, como óxido metálico de tipo perovskita en el método de la presente invención. Se introdujo en un horno 1 g del óxido metálico de tipo perovskita Lai/3Sr2/3Coo.69Feo.3iC>3-z utilizando un crisol de Pt/Rh 90/10. Para llevar a cabo la etapa de reducción, la temperatura se incrementó hasta los 800°C con una rampa de calentamiento de 10°C/min. Durante esta etapa de reducción térmica del material, el horno era alimentado con una corriente de N2 de 50 NL/h, para transportar el O2 producido en esta etapa a un analizador de gases. Una vez alcanzada la temperatura de 800°C y terminada la reducción, la corriente de N2 fue saturada en agua a 80°C para alimentarla al reactor y llevar a cabo la etapa de oxidación de la perovskita y producción de H2. In order to evaluate the production of H 2 , the Lai /3 Sr 2/3 Coo .69 Feo .3i 0 3-z sample, obtained by the Pechini sol-gel method, was used as a perovskite-type metal oxide in the method of the present invention. 1 g of the perovskite-type metal oxide Lai / 3Sr2 / 3Coo was introduced into a furnace . 69Ugly . 3iC>3- z using a Pt/Rh 90/10 crucible. To carry out the reduction step, the temperature was increased to 800°C with a heating ramp of 10°C/min. During this stage of thermal reduction of the material, the furnace was fed with a stream of N2 at 50 NL/h, to transport the O2 produced in this stage to a gas analyzer. Once the temperature of 800°C was reached and the reduction was complete, the N2 stream was saturated with water at 80°C to feed it to the reactor and carry out the perovskite oxidation stage and H2 production.
La producción de H2 del primer ciclo es superior a la del resto (como ya se explicó anteriormente), obteniéndose este caso 514,8 pmol/gmater¡ai. Durante el resto de los ciclos la producción de H2 es estable en torno a 435,0 pmol/gmater¡ai· ciclo, siendo esta producción superior a la encontrada en bibliografía para otros materiales de tipo perovskita (véase Tabla 2), y además el proceso se lleva a cabo en isotermo a 800°C, lo que implica temperaturas de trabajo muy inferiores a las recogidas en la Tabla 2 (1250-1400°C). The H2 production of the first cycle is higher than that of the rest (as explained above), obtaining in this case 514.8 pmol/g material . During the rest of the cycles, the production of H2 is stable around 435.0 pmol/g mater¡ai · cycle, this production being higher than that found in the literature for other perovskite-type materials (see Table 2), and also the process is carried out isothermally at 800°C, which implies working temperatures much lower than those listed in Table 2 (1250-1400°C).
Ejemplo 6. Evaluación del material SrFeC>3-z en la producción de H2 Example 6. Evaluation of the SrFeC>3-z material in the production of H2
El óxido metálico tipo perovskita de composición SrFeC>3-z se sintetizó a través de diferentes métodos de síntesis, los cuales son conocidos en el estado del arte y cualquier experto en la materia podría emplearlos sin dificultad. Se han descrito estos métodos sin perjuicio de que pueda sintetizarse con otros métodos, conduciendo a la obtención de muestras de características idénticas en lo referente al uso que se protege en esta presente invención. The perovskite-type metal oxide with composition SrFeC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any expert in the field. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
Los métodos elegidos para realizar este ejemplo fueron los siguientes: método cerámico convencional de alta temperatura, coprecipitación, método sol-gel de Pechini y combustión en disolución asistida por microondas. a) Preparación por el método cerámico The methods chosen to carry out this example were the following: conventional high-temperature ceramic method, co-precipitation, Pechini sol-gel method and microwave-assisted solution combustion. a) Preparation by the ceramic method
Se partió de las siguientes cantidades estequiométricas de: 0,4170 g Fe2C>3 y 0,7677 g de Sr(CC>3) para obtener 1 g del óxido perovskita de composición SrFeC>3-z. La mezcla de los reactivos se molió y homogeneizó. Posteriormente, se sometió a un primer tratamiento térmico a 900°C durante 12 horas en un horno al aire. Tras moler y homogeneizar la mezcla de precursores se conformó una pastilla y se calentó a 1300°C durante 48 horas, tras lo cual se apagó el horno y se dejó enfriar lentamente la muestra. The following stoichiometric amounts were started: 0.4170 g Fe2C>3 and 0.7677 g of Sr(CC>3) to obtain 1 g of perovskite oxide with composition SrFeC>3- z. The mixture of reagents was ground and homogenized. Subsequently, it was subjected to a first heat treatment at 900°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1300°C for 48 hours, after which the oven was turned off and the sample was allowed to cool slowly.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino. En este caso se obtuvo un material con estructura derivada de la perovskita de simetría tetragonal. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material. In this case, a material with a structure derived from tetragonal symmetry perovskite was obtained.
La estructura del compuesto obtenido depende del contenido de oxígeno, de modo que puede presentar diferentes estructuras tipo perovskita en función de la estequiometría en oxígeno; así para 0£z<0,125 se obtiene una perovskita de alta simetría (cúbica con parámetros de red a=3,85±2 Á y simetría Pm3m), para 0,125£z<0,250 el orden de la vacantes de oxígeno produce una perovskita tetragonal (simetría 14/mmm y parámetros a=10,93(2) Á y c=7,70(2) Á), para 0,250£z<0,50 el orden de la vacantes de oxígeno produce una perovskita ortorrómbica (simetría Cmmm y parámetros a=10,97(2) Á, b=7,70(2) Á y c=5,47(2) Á), z=0,5 marca el límite composicional para el que se obtiene un compuesto derivado de la perovskita de simetría ortorrómbica (Ima2) y parámetros de red z=15,78(2) Á, b=5,57(2) Á y c=5,47(2) Á que recibe el nombre de brownmillerita. The structure of the compound obtained depends on the oxygen content, so that it can present different perovskite-type structures depending on the stoichiometry in oxygen; thus, for 0£z<0.125 a high symmetry perovskite is obtained (cubic with lattice parameters a=3.85±2 Á and Pm3m symmetry), for 0.125£z<0.250 the order of the oxygen vacancies produces a tetragonal perovskite (symmetry 14/mmm and parameters a=10.93(2) Á and c=7.70(2) Á), for 0.250£z<0.50 the order of the oxygen vacancies produces an orthorhombic perovskite (Cmmm symmetry and parameters a=10.97(2) Á, b=7.70(2) Á and c=5.47(2) Á), z=0.5 marks the compositional limit for which a compound derived from the Perovskite with orthorhombic symmetry (Ima2) and lattice parameters z=15.78(2) Á, b=5.57(2) Á and c=5.47(2) Á, which is called brownmillerite.
En cualquier caso, cualquiera que sea el contenido en oxígeno y la estructura obtenida en la síntesis, a las temperaturas de operación del método de la presente invención (igual o superior a 300°C), el compuesto SrFeC>3-z presenta una estructura brownmillerita en la etapa reductora y una estructura cúbica de alta simetría en la etapa oxidante. b) Preparación por el método de precipitación In any case, whatever the oxygen content and the structure obtained in the synthesis, at the operating temperatures of the method of the present invention (equal to or greater than 300°C), the SrFeC> 3-z compound has a structure brownmillerite in the reducing stage and a highly symmetric cubic structure in the oxidizing stage. b) Preparation by the precipitation method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 2,1008 g de Fe(NC>3)3-9H20 y 1,1005 g Sr(NC>3)2 para obtener 1 g del óxido perovskita de composición SrFeC>3-z. La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente y se añadió una disolución 0,5 M de Na2(CC>3) hasta conseguir un pH entre 12 y 14, produciéndose la coprecipitación cuantitativa de Fe(OH)3 y SrCC>3. The following stoichiometric amounts of metal nitrates were used: 2.1008 g of Fe(NC> 3 ) 3 -9H 2 0 and 1.1005 g of Sr(NC> 3) 2 to obtain 1 g of perovskite oxide SrFeC>3-z composition. The reagent mixture was dissolved in 50 mL of distilled water at room temperature and a 0.5 M Na2(CC>3) solution was added until reaching a pH between 12 and 14, producing the quantitative coprecipitation of Fe(OH)3 and SrCC>3.
Posteriormente se filtró el precipitado y se lava repetidas veces con agua destilada el sólido obtenido se seca, se muele y se trata a 1100°C 12 horas. La muestra resultante se caracterizó por difracción de rayos-X obteniéndose una mezcla de las perovskitas de simetría tetragonal (66 %) y ortorrómbica (33 %) (véase apartado a)). c) Preparación por el método sol-gel de Pechini Subsequently, the precipitate was filtered and the solid obtained was washed repeatedly with distilled water, dried, ground and treated at 1100°C for 12 hours. The resulting sample was characterized by X-ray diffraction, obtaining a mixture of perovskites with tetragonal (66%) and orthorhombic (33%) symmetry (see section a)). c) Preparation by the Pechini sol-gel method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 2,1008 g de Fe(NC>3)3-9H20 y 1,1005 g Sr(NC>3)2 para obtener 1 g del óxido perovskita de composición SrFeC>3-z. The following stoichiometric amounts of metal nitrates were used: 2.1008 g of Fe(NC> 3 ) 3 -9H 2 0 and 1.1005 g of Sr(NC> 3) 2 to obtain 1 g of perovskite oxide SrFeC>3-z composition.
La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Esta disolución se calentó en torno a los 80°C con agitación en una placa calefactora y se añadió ácido cítrico en proporción estequiométrica de 1 metal:3 ácido cítrico, en este caso 2,9971 g. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 2.9971 g.
Manteniendo la calefacción y agitación se añadió 1/10 de volumen inicial de etilenglicol (2 mL) y se produjo la polimerización con formación del sol. La mezcla solida se dejó enfriar y se molió para producir un polvo que se calcinó a 800°C durante 12 horas para eliminar la materia orgánica y producir una ceniza inorgánica. Dicha ceniza se molió para homogeneizarla y se trató a 1000°C durante 12 horas. Maintaining heating and stirring, 1/10 of the initial volume of ethylene glycol (2 mL) was added and polymerization occurred with formation of the sol. The solid mixture was allowed to cool and was ground to produce a powder which was calcined at 800°C for 12 hours to remove organic matter and produce an inorganic ash. Said ash was ground to homogenize it and treated at 1000°C for 12 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una estructura derivada de la perovskita de simetría tetragonal. d) Preparación por el método combustión en disolución asistida por microondas The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material that corresponds to a structure derived from perovskite with tetragonal symmetry. d) Preparation by the microwave-assisted solution combustion method
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 10,5040 g de Fe(N03)3-9FÍ20 y 5,5025 g Sr(NC>3)2 para obtener 5 g del óxido perovskita de composición SrFeC>3-z. La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Posteriormente, se disolvieron 5,4217 g de glicina en dicha disolución. The following stoichiometric amounts of metal nitrates were used: 10.5040 g of Fe(N0 3 ) 3 -9FÍ 2 0 and 5.5025 g of Sr(NC>3)2 to obtain 5 g of perovskite oxide with composition SrFeC>3-z. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. Subsequently, 5.4217 g of glycine were dissolved in said solution.
El polvo obtenido de la combustión inducida por tratamiento en un horno de microondas se trató a 1100°C durante 12 horas para producir la perovskita de composición SrFeC>3-z. La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una estructura derivada de la perovskita de simetría ortorrómbica. e) Preparación por el método combustión en disolución asistida por spray-pirólisis The powder obtained from the combustion induced by treatment in a microwave oven was treated at 1100°C for 12 hours to produce the perovskite of composition SrFeC> 3-z. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material that corresponds to a structure derived from orthorhombic symmetry perovskite. e) Preparation by the spray-pyrolysis-assisted combustion method in solution
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 10,5555 g de Fe(NC>3)3-9H20 y 5,6254 g Sr(NC>3)2 para obtener 5 g del óxido perovskita de composición SrFeC>3-z. The following stoichiometric quantities of metal nitrates were used: 10.5555 g of Fe(NC> 3 ) 3 -9H 2 0 and 5.6254 g of Sr(NC> 3) 2 to obtain 5 g of the perovskite oxide of SrFeC>3-z composition.
La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Posteriormente, se disolvieron 5,4454 g de glicina en dicha disolución. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. Subsequently, 5.4454 g of glycine were dissolved in said solution.
Esta disolución se utilizó en un sistema de spray-pirólisis que promueve la reacción de combustión por activación térmica. El polvo obtenido de la combustión se trató a 1100°C durante 12 horas para producir la perovskita de composición SrFeC>3-z. La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una estructura derivada de la perovskita de simetría ortorrómbica. This solution was used in a spray-pyrolysis system that promotes the combustion reaction by thermal activation. The powder obtained from the combustion was treated at 1100°C for 12 hours to produce the perovskite with composition SrFeC> 3-z. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material that corresponds to a structure derived from orthorhombic symmetry perovskite.
Para poder evaluar la producción de H2, se utilizó la muestra de SrFeC>3-z, obtenida por el método sol-gel de Pechini, como óxido metálico de tipo perovskita en el método de la presente invención. In order to evaluate the production of H 2 , the SrFeC> 3-z sample, obtained by the Pechini sol-gel method, was used as perovskite-type metal oxide in the method of the present invention.
Se introdujo en un horno 1 g del óxido metálico de tipo perovskita SrFeC>3-z utilizando un crisol de Pt/Rh 90/10. Para llevar a cabo la etapa de reducción, la temperatura se incrementó hasta los 800°C con una rampa de calentamiento de 10°C/min. Durante esta etapa de reducción térmica del material, el horno era alimentado con una corriente de N2 de 50 NL/h, para transportar el O2 producido en esta etapa a un analizador de gases. Una vez alcanzada la temperatura de 800°C y terminada la reducción, la corriente de N2 fue saturada en agua a 80°C para alimentarla al reactor y llevar a cabo la etapa de oxidación de la perovskita y producción de H2. La producción de H2 es notable desde el primer ciclo, 718,2 pmol/gmater¡ai y permanece estable, 714,1 pmol/gmater¡ai· ciclo, de modo que este material no parece necesitar una etapa de estabilización. Su producción en régimen estacionario es similar a la alcanzada desde el inicio, siendo superior a la encontrada en bibliografía para la mayoría de los materiales estado-del-arte de tipo perovskita (véase Tabla 2), pero llevando a cabo el proceso en isotermo a 800°C, lo que supone una notable disminución de la temperatura de trabajo con respecto a las recogidas en la Tabla 2 (1250-1400°C). 1 g of the perovskite-type metal oxide SrFeC>3- z was introduced into a furnace using a Pt/Rh 90/10 crucible. To carry out the reduction step, the temperature was increased to 800°C with a heating ramp of 10°C/min. During this stage of thermal reduction of the material, the furnace was fed with a stream of N2 at 50 NL/h, to transport the O2 produced in this stage to a gas analyzer. Once the temperature of 800°C was reached and the reduction was complete, the N2 stream was saturated with water at 80°C to feed it to the reactor and carry out the perovskite oxidation stage and H2 production. The production of H2 is remarkable from the first cycle, 718.2 pmol/g material and remains stable, 714.1 pmol/g material · cycle, so that this material does not seem to need a stabilization step. Its steady-state production is similar to that achieved from the beginning, being higher than that found in the literature for most of the perovskite-type state-of-the-art materials (see Table 2), but carrying out the process in isotherm at 800°C, which represents a notable decrease in the working temperature with respect to those listed in Table 2 (1250-1400°C).
Ejemplo 7. Evaluación del material SrFeC>3-z en la producción de CO En este ejemplo se evaluó la producción de CO utilizando la muestra de SrFeC>3-z, obtenida por el método sol-gel de Pechini descrito en el ejemplo 6, como óxido metálico de tipo perovskita en el método de la presente invención. Example 7. Evaluation of the material SrFeC> 3- z in the production of CO In this example, the production of CO was evaluated using the sample of SrFeC> 3-z , obtained by the Pechini sol-gel method described in example 6, as perovskite-type metal oxide in the method of the present invention.
Se introdujeron 50 mg del óxido metálico tipo perovskita SrFeC>3-z en un crisol de alúmina de 150 pl_ en la termobalanza. A continuación, la muestra fue calentada con una rampa de 10°C/min hasta alcanzar los 800°C. Esta temperatura se mantuvo constante durante el resto del ensayo. 50 mg of the perovskite-type metal oxide SrFeC>3- z were introduced into a 150 pl_ alumina crucible in the thermobalance. Next, the sample was heated with a ramp of 10°C/min until reaching 800°C. This temperature was kept constant for the rest of the test.
Durante el calentamiento inicial una corriente de aire de 100 mL/min fue introducida en la termobalanza para arrastrar el O2 producido durante la etapa de reducción. Tras finalizar el calentamiento, la corriente de aire alimentada a la termobalanza fue sustituida por una corriente de CO2 puro para llevar a cabo la producción de CO y la recuperación de la perovskita inicial. During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the O2 produced during the reduction stage. After completing the heating, the air stream fed to the thermobalance was replaced by a stream of pure CO2 to carry out the production of CO and the recovery of the initial perovskite.
Esta etapa de oxidación se mantuvo durante 90 min. Transcurrido este tiempo, se dejó de introducir CO2 y se volvió a introducir aire para llevar a cabo de nuevo la reducción. Esta etapa duró aproximadamente 70 min. Estos cambios en la corriente gaseosa se realizaron de manera periódica hasta realizar 16 ciclos. Las variaciones de masa recogidas en la termobalanza se corresponden con el oxígeno perdido o ganado por el material según si se encuentra en la etapa de reducción u oxidación. Los resultados de este ejemplo se muestran en la Tabla 1. Este material no presenta un comportamiento estable frente a ciclos. Aunque en el primer ciclo presenta una elevada producción de CO, 1262 prnol/gmatemi, conforme transcurren los ciclos se observa una modificación del proceso redox. This oxidation step was maintained for 90 min. After this time, the introduction of CO2 was stopped and air was re-introduced to carry out the reduction again. This stage lasted approximately 70 min. These changes in the gas current were carried out periodically until 16 cycles were carried out. The mass variations recorded in the thermobalance correspond to the oxygen lost or gained by the material depending on whether it is in the reduction or oxidation stage. The results of this example are shown in Table 1. This material does not present a stable behavior against cycles. Although in the first cycle it presents a high production of CO, 1262 prnol/g matemi , as the cycles go by a modification of the redox process is observed.
Ejemplo 8. Evaluación del material SrFeo9oMoo io03- en la producción de H2 El óxido metálico tipo perovskita de composición SrFeo.9oMoo.ioC>3-z se sintetizó a través de diferentes métodos de síntesis, los cuales son conocidos en el estado del arte y cualquier experto en la materia podría emplearlos sin dificultad. Se han descrito estos métodos sin perjuicio de que pueda sintetizarse con otros métodos, conduciendo a la obtención de muestras de características idénticas en lo referente al uso que se protege en esta presente invención. Example 8. Evaluation of the material SrFeo9oMoo io0 3 - in the production of H2 The metal oxide type perovskite of composition SrFeo . 9oMoo .i oC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any person skilled in the art. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
Los métodos elegidos para realizar este ejemplo fueron los siguientes: método cerámico convencional de alta temperatura, método sol-gel de Pechini y combustión en disolución asistida por spray-pirólisis. a) Preparación por el método cerámico Se partió de las siguientes cantidades estequiométricas de: 0,3677 g Fe2C>3, 0,0737 g de M0O3 y 0,7553 g de Sr(CC>3) para obtener 1 g del óxido perovskita de composición SrFeo.9oMoo.ioC>3-z. The methods chosen to carry out this example were the following: conventional high-temperature ceramic method, Pechini sol-gel method and spray-pyrolysis assisted solution combustion. a) Preparation by the ceramic method The following stoichiometric amounts were started from: 0.3677 g Fe2C>3 , 0.0737 g of M0O3 and 0.7553 g of Sr(CC>3) to obtain 1 g of the perovskite oxide of composition SrFeo.9oMoo.ioC>3-z.
La mezcla de los reactivos se molió y homogeneizó. Posteriormente, se sometió a un primer tratamiento térmico a 900°C durante 12 horas en un horno al aire. Tras moler y homogeneizar la mezcla de precursores se conformó una pastilla y se calentó a 1350°C durante 48 horas, tras lo cual se apagó el horno y se dejó enfriar lentamente la muestra. The mixture of reagents was ground and homogenized. Subsequently, it was subjected to a first heat treatment at 900°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1350°C for 48 hours, after which the oven was turned off and the sample was allowed to cool slowly.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,88±2 Á y simetría cúbica Pm3m. b) Preparación por el método sol-gel de Pechini Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 3,7207 g de Fe(N03)3-9H20, 2,1586 g Sr(N03)2 y 0.1800 g de (NH4)6Mo7024-4H20 para obtener 2 g del óxido perovskita de composición SrFeo.9oMoo.io03-z. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.88±2 Á and cubic symmetry Pm3m. b) Preparation by the Pechini sol-gel method The following stoichiometric quantities of metal nitrates were used: 3.7207 g of Fe(N0 3 ) 3 -9H 2 0, 2.1586 g of Sr(N0 3 ) 2 and 0.1800 g of (NH 4 ) 6 Mo 7 0 24 -4H 2 0 to obtain 2 g of the perovskite oxide of composition SrFeo .9 oMoo .i o0 3-z.
La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Esta disolución se calentó en torno a los 80°C con agitación en una placa calefactora y se añadió ácido cítrico en proporción estequiométrica de 1 metal:3 ácido cítrico, en este caso 5,8788 g. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 5.8788 g.
Manteniendo la calefacción y agitación se añadió 1/10 de volumen inicial de etilenglicol (2 mL) y se produjo la polimerización con formación del sol. La mezcla solida se dejó enfriar y se molió para producir un polvo que se calcinó a 800°C durante 12 horas para eliminar la materia orgánica y producir una ceniza inorgánica. Dicha ceniza se molió para homogeneizarla y se trató a 1000°C durante 12 horas. Maintaining heating and stirring, 1/10 of the initial volume of ethylene glycol (2 mL) was added and polymerization occurred with formation of the sol. The solid mixture was allowed to cool and was ground to produce a powder which was calcined at 800°C for 12 hours to remove organic matter and produce an inorganic ash. Said ash was ground to homogenize it and treated at 1000°C for 12 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,90±1 Á y simetría cúbica Pm3m. c) Preparación por el método combustión en disolución asistida por spray-pirólisis The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.90±1 Á and cubic symmetry Pm3m. c) Preparation by the spray-pyrolysis-assisted combustion method in solution
Se partió de las siguientes cantidades estequiométricas de los nitratos de los metales: 9,3001 g de Fe(N03)3-9H20, 5,3966 g de Sr(N03)2 y 0.4590 g de (NH4)6Mo7024·4H20 para obtener 5 g del óxido perovskita de composición SrFeo.9oMoo.io03-z. The following stoichiometric quantities of metal nitrates were used: 9.3001 g of Fe(N0 3 ) 3 -9H 2 0, 5.3966 g of Sr(N0 3 ) 2 and 0.4590 g of (NH 4 ) 6 Mo 7 0 24 ·4H 2 0 to obtain 5 g of perovskite oxide with composition SrFeo .9 oMoo .i o0 3-z .
La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Posteriormente, se disolvieron 8,0115 g de glicina en dicha disolución. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. Subsequently, 8.0115 g of glycine were dissolved in said solution.
Esta disolución se utilizó en un sistema de spray-pirólisis que promueve la reacción de combustión por activación térmica. El polvo obtenido de la combustión se trató a 1000°C durante 8 horas para producir la perovskita de composición SrFeo.9oMoo.io03-z. This solution was used in a spray-pyrolysis system that promotes the combustion reaction by thermal activation. The powder obtained from the combustion was treated at 1000°C for 8 hours to produce the perovskite with composition SrFeo .9 oMoo .i o0 3-z.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,889±5 Á y simetría cúbica Pm3m. Para poder evaluar la producción de H2, se utilizó la muestra de SrFeo.9oMoo.ioC>3-z, obtenida por el método cerámico, como óxido metálico de tipo perovskita en el método de la presente invención. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.889±5 Á and cubic symmetry Pm3m. In order to evaluate the H2 production, the SrFeo sample was used . 9oMoo .i oC>3- z , obtained by the ceramic method, as perovskite-type metal oxide in the method of the present invention.
Se introdujo en un horno 1 g del óxido metálico de tipo perovskita SrFeo.9oMoo.ioC>3-z utilizando un crisol de Pt/Rh 90/10. Para llevar a cabo la etapa de reducción, la temperatura se incrementó hasta los 800°C con una rampa de calentamiento de 10°C/min. Durante esta etapa de reducción térmica del material, el horno era alimentado con una corriente de N2 de 50 NL/h, para transportar el O2 producido en esta etapa a un analizador de gases. Una vez alcanzada la temperatura de 800°C y terminada la reducción, la corriente de N2 fue saturada en agua a 80°C para alimentarla al reactor y llevar a cabo la etapa de oxidación de la perovskita y producción de H2. Los resultados de este ensayo se muestran en la Tabla 2. 1 g of the perovskite-type metal oxide SrFeo was introduced into a furnace . 9oMoo .i oC>3- z using a Pt/Rh 90/10 crucible. To carry out the reduction step, the temperature was increased to 800°C with a heating ramp of 10°C/min. During this stage of thermal reduction of the material, the furnace was fed with a stream of N2 at 50 NL/h, to transport the O2 produced in this stage to a gas analyzer. Once the temperature of 800°C was reached and the reduction was complete, the N2 stream was saturated with water at 80°C to feed it to the reactor and carry out the perovskite oxidation stage and H2 production. The results of this test are shown in Table 2.
La producción de H2 es elevada desde el primer ciclo, 882,7 prnol/gmatemi y crece ligeramente hasta alcanzar una producción en régimen estacionario de 1176,7 prnol/gmateriai- ciclo, que es muy superior a la encontrada en bibliografía para la mayoría de los materiales estado del arte de tipo perovskita (véase Tabla 2), pero llevando a cabo el proceso en isotermo a 800°C, lo que supone una notable disminución de la temperatura de trabajo con respecto a las recogidas en la Tabla 2 (1250-1400°C). The production of H2 is high from the first cycle, 882.7 prnol/g matemi , and grows slightly until reaching a steady-state production of 1176.7 prnol/g matemi -cycle, which is much higher than that found in the literature for the most state-of-the-art materials of the perovskite type (see Table 2), but carrying out the process in isotherm at 800°C, which implies a notable decrease in the working temperature with respect to those collected in Table 2 ( 1250-1400°C).
Ejemplo 9. Evaluación del material SrFeo9oMoo io03- en la producción de CO En este ejemplo se evaluó la producción de CO utilizando la muestra de SrFeo.9oMoo.ioC>3-z, obtenida por el método cerámico descrito en el ejemplo 8, como óxido metálico de tipo perovskita en el método de la presente invención. Example 9. Evaluation of the material SrFeo9oMoo io0 3 - in the production of CO In this example the production of CO was evaluated using the SrFeo sample . 9oMoo .i oC>3- z , obtained by the ceramic method described in example 8, as perovskite-type metal oxide in the method of the present invention.
Se introdujeron 50 mg del óxido metálico tipo perovskita SrFeo.9oMoo.ioC>3-z en un crisol de alúmina de 150 pl_ en la termobalanza. A continuación, la muestra fue calentada con una rampa de 10°C/min hasta alcanzar los 800°C. Esta temperatura se mantuvo constante durante el resto del ensayo. 50 mg of the perovskite-type metal oxide SrFeo were introduced . 9oMoo .i oC>3- z in a 150 pl_ alumina crucible in the thermobalance. Next, the sample was heated with a ramp of 10°C/min until reaching 800°C. This temperature was kept constant for the rest of the test.
Durante el calentamiento inicial una corriente de aire de 100 mL/min fue introducida en la termobalanza para arrastrar el O2 producido durante la etapa de reducción. Tras finalizar el calentamiento, la corriente de aire alimentada a la termobalanza fue sustituida por una corriente de CO2 puro para llevar a cabo la producción de CO y la recuperación de la perovskita inicial. During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the O2 produced during the reduction stage. After completion of heating, the air stream fed to the thermobalance was replaced by a stream of pure CO2 to carry out the production of CO and the recovery of the initial perovskite.
Esta etapa de oxidación se mantuvo durante 90 min. Transcurrido este tiempo, se dejó de introducir CO2 y se volvió a introducir aire para llevar a cabo de nuevo la reducción. Esta etapa duró aproximadamente 70 min. Estos cambios en la corriente gaseosa se realizaron de manera periódica hasta realizar 16 ciclos. Las variaciones de masa recogidas en la termobalanza se corresponden con el oxígeno perdido o ganado por el material según si se encuentra en la etapa de reducción u oxidación. Los resultados de este ensayo se muestran en la Tabla 1. Este material tiene un comportamiento estable frente a ciclos con una producción de CO en estado estacionario de 988 pmol/gmater¡ai, comparable a la de otros materiales de tipo perovskita. Además, en este caso, la reducción se lleva a cabo a temperaturas muy inferiores (véase Tabla 1). Ejemplo 10. Evaluación del material SrFeo9oT¡oio03-7 en la producción de H2 This oxidation step was maintained for 90 min. After this time, the introduction of CO2 was stopped and air was re-introduced to carry out the reduction again. This stage lasted approximately 70 min. These changes in the gas current were carried out periodically until 16 cycles were carried out. The mass variations recorded in the thermobalance correspond to the oxygen lost or gained by the material depending on whether it is in the reduction or oxidation stage. The results of this test are shown in Table 1. This material has stable behavior against cycles with a steady state CO production of 988 pmol/g material , comparable to that of other perovskite-type materials. Furthermore, in this case, the reduction is carried out at much lower temperatures (see Table 1). Example 10. Evaluation of the material SrFeo9oT¡oio03-7 in the production of H2
El óxido metálico tipo perovskita de composición SrFeo.9oTio.ioC>3-z se sintetizó a través de diferentes métodos de síntesis, los cuales son conocidos en el estado del arte y cualquier experto en la materia podría emplearlos sin dificultad. Se han descrito estos métodos sin perjuicio de que pueda sintetizarse con otros métodos, conduciendo a la obtención de muestras de características idénticas en lo referente al uso que se protege en esta presente invención. The perovskite-type metal oxide of composition SrFeo . 9oTio .i oC>3- z was synthesized through different synthesis methods, which are known in the state of the art and could be used without difficulty by any person skilled in the art. These methods have been described without prejudice to the fact that it can be synthesized with other methods, leading to obtaining samples with identical characteristics in relation to the use that is protected in this present invention.
Los métodos elegidos para realizar este ejemplo fueron los siguientes: método cerámico convencional de alta temperatura, método sol-gel de Pechini y combustión en disolución asistida por microondas. a) Preparación por el método cerámico The methods chosen to carry out this example were the following: conventional high-temperature ceramic method, Pechini sol-gel method and microwave-assisted solution combustion. a) Preparation by the ceramic method
Se partió de las siguientes cantidades estequiométricas de: 1,9071 g de Fe(NC>3)3-9H20, 0,0419 g T1O2 (anatasa) y 1,1100 g de Sr(NC>3)2 para obtener 1 g del óxido perovskita de composición SrFeo.9oTio.ioC>3-z. La mezcla de los reactivos se molió y homogeneizó. Posteriormente, se sometió a un primer tratamiento térmico a 900°C durante 12 horas en un horno al aire. Tras moler y homogeneizar la mezcla de precursores se conformó una pastilla y se calentó a 1300°C durante 48 horas, tras lo cual se apagó el horno y se dejó enfriar lentamente la muestra. We started from the following stoichiometric amounts: 1.9071 g of Fe(NC> 3 ) 3 -9H 2 0, 0.0419 g T1O2 (anatase) and 1.1100 g of Sr(NC> 3) 2 to obtain 1 g of the perovskite oxide of composition SrFeo.9oTio.ioC>3-z. The mixture of reagents was ground and homogenized. Subsequently, it was subjected to a first heat treatment at 900°C for 12 hours in an air oven. After grinding and homogenizing the mixture of precursors, a pellet was formed and heated at 1300°C for 48 hours, after which the oven was turned off and the sample was allowed to cool slowly.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,88±2 Á y simetría cúbica Pm3m. b) Preparación por el método sol-gel de Pechini The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.88±2 Á and cubic symmetry Pm3m. b) Preparation by the Pechini sol-gel method
Se partió de las siguientes cantidades estequiométricas de: 1,9071 g de Fe(N03)3-9H20, 0,1784 g (NH4)8[Tί4(06H407)(02)]·8H20 y 1,1105 g de Sr(N03)2 para obtener 1 g del óxido perovskita de composición SrFeo.9oTio.io03-z. We started from the following stoichiometric quantities: 1.9071 g of Fe(N0 3 ) 3 -9H 2 0, 0.1784 g (NH 4 ) 8 [Tί 4 (0 6 H 4 0 7 )(0 2 )] ·8H 2 0 and 1.1105 g of Sr(N0 3 ) 2 to obtain 1 g of perovskite oxide with composition SrFeo .9 oTio .i o0 3-z .
La mezcla de reactivos se disolvió en 50 mL de agua destilada a temperatura ambiente. Esta disolución se calentó en torno a los 80°C con agitación en una placa calefactora y se añadió ácido cítrico en proporción estequiométrica de 1 metal:3 ácido cítrico, en este caso 6,0461 g. The reagent mixture was dissolved in 50 mL of distilled water at room temperature. This solution was heated to around 80°C with stirring on a hot plate and citric acid was added in a stoichiometric ratio of 1 metal:3 citric acid, in this case 6.0461 g.
Manteniendo la calefacción y agitación se añadió 1/10 de volumen inicial de etilenglicol (2 mL) y se produjo la polimerización con formación del sol. La mezcla solida se dejó enfriar y se molió para producir un polvo que se calcinó a 800°C durante 12 horas para eliminar la materia orgánica y producir una ceniza inorgánica. Dicha ceniza se molió para homogeneizarla y se trató a 1000°C durante 24 horas. Maintaining heating and stirring, 1/10 of the initial volume of ethylene glycol (2 mL) was added and polymerization occurred with formation of the sol. The solid mixture was allowed to cool and was ground to produce a powder which was calcined at 800°C for 12 hours to remove organic matter and produce an inorganic ash. Said ash was ground to homogenize it and treated at 1000°C for 24 hours.
La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,88±2 Á y simetría cúbica Pm3m. c) Preparación por el método combustión en disolución asistida por microondas The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.88±2 Á and cubic symmetry Pm3m. c) Preparation by the microwave-assisted solution combustion method
Se partió de las siguientes cantidades estequiométricas de: 1,9071 g de Fe(N03)3-9H20, 0,1784 g (NH4)8[Tί4(06H407)(02)]·8H20 y 1,1105 g de Sr(N03)2 para obtener 1 g del óxido perovskita de composición SrFeo.9oTio.io03-z. La mezcla de reactivos se disolvió en 10 mL de agua destilada a temperatura ambiente. Posteriormente, se disolvieron 1,9431 g de glicina en dicha disolución. We started from the following stoichiometric quantities: 1.9071 g of Fe(N0 3 ) 3 -9H 2 0, 0.1784 g (NH 4 ) 8 [Tί 4 (0 6 H 4 0 7 )(0 2 )] ·8H 2 0 and 1.1105 g of Sr(N0 3 ) 2 to obtain 1 g of perovskite oxide with composition SrFeo .9 oTio .i o0 3-z . The reagent mixture was dissolved in 10 mL of distilled water at room temperature. Subsequently, 1.9431 g of glycine were dissolved in said solution.
El polvo obtenido de la combustión inducida por tratamiento en un horno de microondas se trató a 1000°C durante 12 horas para producir la perovskita de composición SrFeo.9oTio.ioC>3-z. La muestra resultante se caracterizó por difracción de rayos-X obteniéndose un material puro altamente cristalino que corresponde a una perovskita de alta simetría, con parámetros de red a=3,88±3 Á y simetría cúbica Pm3m. The powder obtained from the combustion induced by treatment in a microwave oven was treated at 1000°C for 12 hours to produce the perovskite of composition SrFeo . 9oThio .i oC>3- z. The resulting sample was characterized by X-ray diffraction, obtaining a highly crystalline pure material corresponding to a highly symmetrical perovskite, with lattice parameters a=3.88±3 Á and cubic symmetry Pm3m.
Para poder evaluar la producción de H2, se utilizó la muestra de SrFeo.9oTio.ioC>3-z, obtenida por el método cerámico, como óxido metálico de tipo perovskita en el método de la presente invención. In order to evaluate the H2 production, the SrFeo sample was used . 9oTio .i oC>3- z , obtained by the ceramic method, as perovskite-type metal oxide in the method of the present invention.
Se introdujo en un horno 1 g del óxido metálico de tipo perovskita SrFeo.9oTio.ioC>3-z utilizando un crisol de Pt/Rh 90/10. Para llevar a cabo la etapa de reducción, la temperatura se incrementó hasta los 800°C con una rampa de calentamiento de 10°C/min. Durante esta etapa de reducción térmica del material, el horno era alimentado con una corriente de N2 de 50 NL/h, para transportar el O2 producido en esta etapa a un analizador de gases. Una vez alcanzada la temperatura de 800°C y terminada la reducción, la corriente de N2 fue saturada en agua a 80°C para alimentarla al reactor y llevar a cabo la etapa de oxidación de la perovskita y producción de H2. Los resultados de este ensayo se muestran en la Tabla 2. 1 g of the perovskite-type metal oxide SrFeo was introduced into a furnace . 9oThio .i oC>3- z using a Pt/Rh 90/10 crucible. To carry out the reduction step, the temperature was increased to 800°C with a heating ramp of 10°C/min. During this stage of thermal reduction of the material, the furnace was fed with a stream of N2 at 50 NL/h, to transport the O2 produced in this stage to a gas analyzer. Once the temperature of 800°C was reached and the reduction was complete, the N2 stream was saturated with water at 80°C to feed it to the reactor and carry out the perovskite oxidation stage and H2 production. The results of this test are shown in Table 2.
La producción de H2 es notable desde el primer ciclo, 568,8 prnol/gmatemi y crece ligeramente hasta alcanzar una producción en régimen estacionario de 719,6 prnol/gmateriai- ciclo, que es superior a la encontrada en bibliografía para la mayoría de los materiales estado del arte de tipo perovskita (véase Tabla 2), pero llevando a cabo el proceso en isotermo a 800°C, lo que supone una notable disminución de la temperatura de trabajo con respecto a las recogidas en la Tabla 2 (1250-1400°C). The production of H2 is notable from the first cycle, 568.8 prnol/g matemi , and grows slightly until reaching a steady-state production of 719.6 prnol/g matemi -cycle, which is higher than that found in the literature for most of the state-of-the-art materials of the perovskite type (see Table 2), but carrying out the process in isotherm at 800°C, which implies a notable decrease in the working temperature with respect to those collected in Table 2 (1250 -1400°C).
Ejemplo 11. Evaluación del material SrFeo9oTio io03- en la producción de CO Example 11. Evaluation of the material SrFeo9oTio io03- in the production of CO
En este ejemplo se evaluó la producción de CO utilizando la muestra de SrFeo.9oTio.ioC>3-z, obtenida por el método cerámico descrito en el ejemplo 10, como óxido metálico de tipo perovskita en el método de la presente invención. Se introdujeron 50 mg del óxido metálico tipo perovskita SrFeo.9oTio.ioC>3-z en un crisol de alúmina de 150 pl_ en la termobalanza. A continuación, la muestra fue calentada con una rampa de 10°C/min hasta alcanzar los 800°C. Esta temperatura se mantuvo constante durante el resto del ensayo. Durante el calentamiento inicial una corriente de aire de 100 mL/min fue introducida en la termobalanza para arrastrar el O2 producido durante la etapa de reducción. Tras finalizar el calentamiento, la corriente de aire alimentada a la termobalanza fue sustituida por una corriente de CO2 puro para llevar a cabo la producción de CO y la recuperación de la perovskita inicial. Esta etapa de oxidación se mantuvo durante 90 min. Transcurrido este tiempo, se dejó de introducir CO2 y se volvió a introducir aire para llevar a cabo de nuevo la reducción. Esta etapa duró aproximadamente 70 min. Estos cambios en la corriente gaseosa se realizaron de manera periódica hasta realizar 16 ciclos. Las variaciones de masa recogidas en la termobalanza se corresponden con el oxígeno perdido o ganado por el material según si se encuentra en la etapa de reducción u oxidación. Los resultados de este ensayo se muestran en la Tabla 1. In this example, CO production was evaluated using the SrFeo sample . 9oTio .i oC>3- z , obtained by the ceramic method described in example 10, as perovskite-type metal oxide in the method of the present invention. 50 mg of the perovskite-type metal oxide SrFeo were introduced . 9oTio .i oC>3- z in a 150 pl_ alumina crucible in the thermobalance. Next, the sample was heated with a ramp of 10°C/min until reaching 800°C. This temperature was kept constant for the rest of the test. During the initial heating, an air current of 100 mL/min was introduced into the thermobalance to entrain the O2 produced during the reduction stage. After completing the heating, the air stream fed to the thermobalance was replaced by a stream of pure CO2 to carry out the production of CO and the recovery of the initial perovskite. This oxidation step was maintained for 90 min. After this time, the introduction of CO2 was stopped and air was re-introduced to carry out the reduction again. This stage lasted approximately 70 min. These changes in the gas current were carried out periodically until 16 cycles were carried out. The mass variations recorded in the thermobalance correspond to the oxygen lost or gained by the material depending on whether it is in the reduction or oxidation stage. The results of this test are shown in Table 1.
Este material tiene un comportamiento estable frente a ciclos con una producción de CO en estado estacionario de 1262 pmol/gmater¡ai, superior a la de otros materiales de tipo perovskita. Además, en este caso, la reducción se lleva a cabo a temperaturas muy inferiores (véase Tabla 1). This material has stable behavior against cycles with a steady state CO production of 1262 pmol/g material , higher than that of other perovskite-type materials. Furthermore, in this case, the reduction is carried out at much lower temperatures (see Table 1).
Tabla 1. Comparación de la producción de CO por ciclos termoquímicos de óxidos con estructura perovskita como material activo descritos en el estado del arte (27) frente a los óxidos metálicos de tipo perovskita de la presente invención.
Figure imgf000031_0001
Figure imgf000032_0001
Table 1. Comparison of the production of CO by thermochemical cycles of oxides with perovskite structure as active material described in the state of the art (27) compared to metal oxides of perovskite type of the present invention.
Figure imgf000031_0001
Figure imgf000032_0001
* Datos correspondientes ei primer cicio, materiales no estables frente a cielos. * Data corresponding to the first cycle, materials not stable against the skies.
Tabla 2. Comparación de la producción de H2 por ciclos termoquímicos de óxidos con estructura perovskita como material activo descritos en el estado del arte (27) frente a los óxidos metálicos de tipo perovskita de la presente invención.
Figure imgf000032_0002
Figure imgf000033_0001
Table 2. Comparison of the production of H2 by thermochemical cycles of oxides with perovskite structure as active material described in the state of the art (27) compared to metal oxides of perovskite type of the present invention.
Figure imgf000032_0002
Figure imgf000033_0001
REFERENCIAS BIBLIOGRÁFICAS BIBLIOGRAPHIC REFERENCES
(1) F. Yilmaz, M. Tolga Balta, “Energy and exergy analyses of hydrogen production step in boron based thermochemical cycle for hydrogen production” International Journal of Hydrogen Energy, 42(4), (2017) 2485-2491. (1) F. Yilmaz, M. Tolga Balta, “Energy and exergy analyzes of hydrogen production step in boron based thermochemical cycle for hydrogen production,” International Journal of Hydrogen Energy, 42(4), (2017) 2485-2491.
(2) P. Nikolaidis y A. Poullikkas, “A comparative overview of hydrogen production processes” Renewable Sustainable. Energy Reviews, 67, (2017) 597-611. (2) P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renewable Sustainable. Energy Reviews, 67, (2017) 597-611.
(3) K. Ladomenou, M. Natali, E. lengo, G. Charalampidis, F. Scandola, A.G. Coutsolelos, “Photochemical hydrogen generation with porphyrin-based systems” Coordination Chemistry Reviews, 304-305, (2015) 38-54. (3) K. Ladomenou, M. Natali, E. lengo, G. Charalampidis, F. Scandola, A.G. Coutsolelos, “Photochemical hydrogen generation with porphyrin-based systems” Coordination Chemistry Reviews, 304-305, (2015) 38-54.
(4) S. Raí, A. Ikram. S. Sahai, S. Dass, R. Shrivastav, V.R. Satsangi, “CNT based photoelectrodes for PEC generation of hydrogen: A review” International Journal of Hydrogen Energy, 42 (7), (2017) 3994^006. (4) S. Rai, A. Ikram. S. Sahai, S. Dass, R. Shrivastav, V.R. Satsangi, “CNT based photoelectrodes for PEC generation of hydrogen: A review” International Journal of Hydrogen Energy, 42 (7), (2017) 3994^006.
(5) R. Bhattacharyya, “Photovoltaic solar energy conversión for hydrogen production by alkaline water electrolysis: Conceptual design and analysis” Energy Conversión and Management, 133, (2017) 1-13. (5) R. Bhattacharyya, “Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: Conceptual design and analysis,” Energy Conversion and Management, 133, (2017) 1-13.
(6) N. Koumi, “An overview of hydrogen gas production from solar energy” Renewable and Sustainable Energy Review, 16 (9), (2012) 6782-6792. (6) N. Koumi, “An overview of hydrogen gas production from solar energy” Renewable and Sustainable Energy Review, 16 (9), (2012) 6782-6792.
(7) Z. Wang, “Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies” International Journal of Hydrogen Energy, 37 (21), (2012) 16287-16301. (7) Z. Wang, “Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies,” International Journal of Hydrogen Energy, 37 (21), (2012) 16287-16301.
(8) R. Fernández-Saavedra, “Revisión bibliográfica sobre la producción de hidrógeno solar mediante ciclos termoquímicos” Informes Técnicos CIEMAT, (2007) 1-16. (8) R. Fernández-Saavedra, "Bibliographic review on the production of solar hydrogen by thermochemical cycles" CIEMAT Technical Reports, (2007) 1-16.
(9) D. Yadav, R. Banerjee, “A review of solar thermochemical processes” Renewable and Sustainable Energy Reviews, 54 (2016) 497-532. (9) D. Yadav, R. Banerjee, “A review of solar thermochemical processes,” Renewable and Sustainable Energy Reviews, 54 (2016) 497-532.
(10) A. Steinfeld, “Solar thermochemical production of hydrogen - A review” Solar Energy, 78 (5), (2005) 603-615. (10) A. Steinfeld, “Solar thermochemical production of hydrogen - A review” Solar Energy, 78 (5), (2005) 603-615.
(11) C. Perkins, A. Weimer, “Likely near-term solar-thermal water splitting technologies”, International Journal of Hydrogen Energy, 29(15), (2004) 1587-1599.(11) C. Perkins, A. Weimer, “Likely near-term solar-thermal water splitting technologies”, International Journal of Hydrogen Energy, 29(15), (2004) 1587-1599.
(12) M. Roeb, M. Neises, N. Monnerie, F. Cali, H. Simón, C. Sattler, M. Schmücker, R. Pitz-Paal, “Materials-related aspects of thermochemical water and carbón dioxide splitting: A review”, Materials, 5 (11), (2012) 2015-2054. (12) M. Roeb, M. Neises, N. Monnerie, F. Cali, H. Simón, C. Sattler, M. Schmücker, R. Pitz-Paal, “Materials-related aspects of thermochemical water and carbon dioxide splitting: A review”, Materials, 5 (11), (2012) 2015-2054.
(13) C. Sattler, M. Roeb, “Thermochemical Cycles”, Fuels, (2009) 384-393. (13) C. Sattler, M. Roeb, “Thermochemical Cycles”, Fuels, (2009) 384-393.
(14) F. Fresno, T. Yoshida, N. Gokon, R. Fernández-Saavedra, T. Kodama, “Comparative study of the activity of nickel ferrites for solar hydrogen production by two-step thermochemical cycles” International Journal of Hydrogen Energy, 36 (16) (2010) 8503-8510. (14) F. Fresno, T. Yoshida, N. Gokon, R. Fernández-Saavedra, T. Kodama, “Comparative study of the activity of nickel ferrites for solar hydrogen production by two-step thermochemical cycles” International Journal of Hydrogen Energy, 36 (16) (2010) 8503-8510.
(15) Y. Tamaura, A. Steinfeld, P. Kuhn, K. Ehrensberger, “Production of solar hydrogen by a novel, 2-step, wáter-splitting thermochemical cycle” Energy, 20 (4) (1995) 325- 330. (15) Y. Tamaura, A. Steinfeld, P. Kuhn, K. Ehrensberger, “Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle” Energy, 20 (4) (1995) 325-330 .
(16) S.B. Han, T.B. Kang, O.S. Joo, K.D. Jung, “Water splitting for hydrogen production with ferrites” Solar Energy, 81 (5) (2007) 623-628. (16) S.B. Han, T.B. Kang, O.S. Joo, K.D. Jung, “Water splitting for hydrogen production with ferrites,” Solar Energy, 81 (5) (2007) 623-628.
(17) J.R. Scheffe, D. Weibel, A. Steinfeld, “Lanthanum-Strontium-Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2”, Energy and Fuels, 27 (8) (2013) 4250-4257. (17) J.R. Scheffe, D. Weibel, A. Steinfeld, “Lanthanum-Strontium-Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2”, Energy and Fuels, 27 (8) (2013) 4250-4257.
(18) N.R. Rhodes, M.M. Bobek, K.M. Alien, D.W. Hahn, “Investigaron of long-term reactive stability of ceria for use in solar thermochemical cycles”, Energy, 89 (2015) 924-931. (18) N.R. Rhodes, M. M. Bobek, K.M. Alien, D.W. Hahn, “Investigated of long-term reactive stability of ceria for use in solar thermochemical cycles”, Energy, 89 (2015) 924-931.
(19) S. Abanades, G. Flamant, “Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle base on cerium oxides”, Solar Energy, 80 (12) (2006) 1611-1623. (19) S. Abanades, G. Flamant, “Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle base on cerium oxides”, Solar Energy, 80 (12) (2006) 1611-1623.
(20) J.R. Scheffe, A. Steinfeld, “Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production”, Energy and Fuels, 26 (3) (2012) 1928-1936.(20) J.R. Scheffe, A. Steinfeld, “Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production”, Energy and Fuels, 26 (3) (2012) 1928-1936.
(21) N. Gokon, T. Suda y T. Kodama, “Thermochemical reactivity of 5-15 % mol Fe, Co, Ni, Mn-doped cerium oxides in two-step water-splitting cycle for solar hydrogen production”, Thermochimica Acta, 617 (2015) 179-190. (21) N. Gokon, T. Suda and T. Kodama, “Thermochemical reactivity of 5-15 mol% Fe, Co, Ni, Mn-doped cerium oxides in two-step water-splitting cycle for solar hydrogen production”, Thermochimica Minutes, 617 (2015) 179-190.
(22) D. Marxer, P. Furler, J. Scheffe, H. Geerlings, C. Falter, V. Batteiger, A. Sizmann, A. Steinfeld, “Demosntration of the entire production Chain to renewable kerosene vía solar thermochemical splittign of H2O and CO2” Energy and Fuels, 29 (5) (2015) 3241- 3250. (22) D. Marxer, P. Furler, J. Scheffe, H. Geerlings, C. Falter, V. Batteiger, A. Sizmann, A. Steinfeld, “Demonstration of the entire production Chain to renewable kerosene via solar thermochemical splitting of H2O and CO2” Energy and Fuels, 29 (5) (2015) 3241-3250.
(23) A. Le Gal, S. Abanades, “Catalytic investigation of cera-zirconia solid Solutions for solar hydrogen production”, International Journal of Hydrogen Energy, 36 (8) (2011) 4739-4748. (23) A. Le Gal, S. Abanades, “Catalytic investigation of cera-zirconia solid Solutions for solar hydrogen production”, International Journal of Hydrogen Energy, 36 (8) (2011) 4739-4748.
(24) A. Le Gal, S. Abanades, “Dopant incorporation in Ceria for Enhanced Water- Splitting Activity during Solar Thermochemical Hydrogen Generation”, Journal of Physical Chemistry C, 116 (2012) 13516-13523. (24) A. Le Gal, S. Abanades, “Dopant incorporation in Ceria for Enhanced Water-Splitting Activity during Solar Thermochemical Hydrogen Generation”, Journal of Physical Chemistry C, 116 (2012) 13516-13523.
(25) M. Orfila, M. Linares, R. Molina, J.A. Botas, R. Sanz y J. Marugán, “Perovskite materials for hydrogen production by thermochemical water splitting”, International Journal of Hydrogen Energy, 41 (2016) 19329-19338. (26) M.T. Azcondo, M. Orfila, J. Marugán, R. Sanz, A. Muñoz-Noval, E. Salas, C. Ritter, F. Garcia-Alvarado y U. Amador, “Novel Perovskite Materials for Ther al Water Splitting at Modérate Te perature” ChemSusChem, 12 (2019) 4029-4037. (25) M. Orfila, M. Linares, R. Molina, JA Botas, R. Sanz and J. Marugán, “Perovskite materials for hydrogen production by thermochemical water splitting”, International Journal of Hydrogen Energy, 41 (2016) 19329- 19338. (26) MT Azcondo, M. Orfila, J. Marugán, R. Sanz, A. Muñoz-Noval, E. Salas, C. Ritter, F. Garcia-Alvarado, and U. Amador, “Novel Perovskite Materials for Ther al Water Splitting at Moderate Temperature” ChemSusChem, 12 (2019) 4029-4037.
(27) A. Haussler, S. Abanades, J. Jouannaux, A. Julbe, “Non-stoichio etric redox active perovskite materials for solar thermochemical fuel production: a review”(27) A. Haussler, S. Abanades, J. Jouannaux, A. Julbe, “Non-stoichio etric redox active perovskite materials for solar thermochemical fuel production: a review”
Catalysts, 8 (2018), 611-632. Catalysts, 8 (2018), 611-632.
(28) A. Meier y C. Sattler, “Solar fuels fro concentrated sunlight” SolarPACESJEA SolarPACES i ple enting agree ent, (2009). (28) A. Meier and C. Sattler, “Solar fuels fro concentrated sunlight” SolarPACESJEA SolarPACES i ple enting agree ent, (2009).
(29) G. Centi y S. Perathoner, “Towards solar fuels fro water and CO2” ChemSusChem, 3 (2010) 195-208. (29) G. Centi and S. Perathoner, “Towards solar fuels fro water and CO2” ChemSusChem, 3 (2010) 195-208.
(30) D. Hirsch, M. Epstein, A. Steinfeld, “The solar termal decarbonazation of natural gas” International Journal of Hydrogen Energy, 26 (2001) 1023-1033. (30) D. Hirsch, M. Epstein, A. Steinfeld, “The solar thermal decarbonization of natural gas,” International Journal of Hydrogen Energy, 26 (2001) 1023-1033.
(31) M. Flechsenhar y C. Sasse, “Solar gasification of biomass using oil shale and coal as candidate materials” Energy, 20 (1995) 803-810. (32) W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Fuerler, S.M. Haile, A. Steinfeld,(31) M. Flechsenhar and C. Sasse, “Solar gasification of biomass using oil shale and coal as candidate materials,” Energy, 20 (1995) 803-810. (32) W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Fuerler, S.M. Haile, A. Steinfeld,
“High-Flux Solar-Driven Thermochemical Dissociation of CO2 y H2O using nonstoichiometric ceria”, Science, 330 (2010) 1797-1801. “High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O using nonstoichiometric ceria”, Science, 330 (2010) 1797-1801.
(33) R.H. Mitchell, “Perovskites modern and ancient”. Almaz Press, Thunder Bay, Ontario, (2002). (33) R.H. Mitchell, Perovskites modern and ancient. Almaz Press, Thunder Bay, Ontario, (2002).

Claims

REIVINDICACIONES
1. Método de obtención de H2, CO o gas de síntesis, que comprende las siguientes etapas: i) calentar un óxido metálico de tipo perovskita de fórmula (I) 1. Method for obtaining H2, CO or synthesis gas, comprising the following steps: i) heating a perovskite-type metal oxide of formula (I)
Al-xBxMl-yNy03-Z (I) donde A representa un elemento de la serie de los lantánidos, alcalinos o alcalinotérreos; Al-xBxMl-yNy0 3 - Z (I) where A represents an element of the lanthanide, alkaline or alkaline-earth series;
B representa un elemento de la serie de alcalinos o alcalinotérreos; B represents an element of the alkali or alkaline earth series;
M representa Fe o Co; M represents Fe or Co;
N representa un metal de transición o un elemento seleccionado de los grupos del bloque p de la Tabla Periódica; x e y tienen un valor entre 0 y 1 ; y z tiene un valor entre 0 y 0,75; para la reducción térmica de dicho óxido metálico en una corriente gaseosa que es aire o un gas inerte; y ii) hacer reaccionar el óxido metálico reducido obtenido de la etapa i) con una corriente gaseosa que comprende vapor de agua y/o CO2 para la obtención de H2, CO o gas de síntesis y re-oxidación del óxido metálico para recuperar el óxido metálico de fórmula (I); en el que las etapas i) y ii) se llevan a cabo a una temperatura comprendida entre 300 y 800°C y una presión entre 0,1 MPa y 20 MPa. N represents a transition metal or an element selected from the groups of the p block of the Periodic Table; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75; for thermal reduction of said metal oxide in a gaseous stream that is air or an inert gas; and ii) reacting the reduced metal oxide obtained from step i) with a gaseous stream comprising steam and/or CO2 to obtain H2, CO or synthesis gas and re-oxidation of the metal oxide to recover the oxide metallic of formula (I); in which steps i) and ii) are carried out at a temperature between 300 and 800°C and a pressure between 0.1 MPa and 20 MPa.
2. Método de obtención de acuerdo con la reivindicación 1, en el que en el óxido metálico de tipo perovskita de fórmula (I) 2. Production method according to claim 1, wherein in the metal oxide of the perovskite type of formula (I)
Al-XBxMl-yNy03-Z (I) Al- X B x Ml-yNy03- Z (I)
A representa La o Nd; A represents La or Nd;
B representa Ca o Sr; B represents Ca or Sr;
M representa Fe o Co; M represents Fe or Co;
N representa Fe, Co, Ti, Mo, Sb o Al; x e y tienen un valor entre 0 y 1 ; y z tiene un valor entre 0 y 0,75. N represents Fe, Co, Ti, Mo, Sb or Al; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75.
3. Método de obtención de acuerdo con la reivindicación 1 o 2, en el que la corriente gaseosa de la etapa i) es aire. 3. Production method according to claim 1 or 2, in which the gaseous current of step i) is air.
4. Método de obtención de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que la corriente gaseosa de la etapa ii) adicionalmente comprende aire o un gas inerte. 4. Production method according to any of claims 1 to 3, in which the gaseous stream of step ii) additionally comprises air or an inert gas.
5. Método de obtención de acuerdo con cualquiera de las reivindicaciones 1 a 4, en donde la cantidad de CO2 de la corriente gaseosa de la etapa ii) es del 10-100 % en volumen de la corriente. 5. Production method according to any of claims 1 to 4, wherein the amount of CO2 in the gas stream of stage ii) is 10-100% by volume of the stream.
6. Método de obtención de acuerdo con cualquiera de las reivindicaciones 1 a 4, en donde la cantidad de CO2 de la corriente gaseosa de la etapa ii) es del 30-100 % en volumen de la corriente. 6. Production method according to any of claims 1 to 4, wherein the amount of CO2 in the gas stream of stage ii) is 30-100% by volume of the stream.
7. Método de obtención de acuerdo con cualquiera de las reivindicaciones 1 a 4, en donde la corriente gaseosa de la etapa ii) comprende una mezcla de una corriente de vapor de agua y CO2 con un porcentaje en volumen de CO2 del 10-90%. 7. Production method according to any of claims 1 to 4, wherein the gaseous stream of stage ii) comprises a mixture of a stream of steam and CO2 with a volume percentage of CO2 of 10-90% .
8. Uso de un óxido metálico de tipo perovskita de fórmula (I) 8. Use of a perovskite-type metal oxide of formula (I)
Al-xBxMl-yNy03-Z (I) donde A representa un elemento de la serie de los lantánidos, alcalinos o alcalinotérreos; Al-xBxMl-yNy0 3 - Z (I) where A represents an element of the lanthanide, alkaline or alkaline-earth series;
B representa un elemento de la serie de alcalinos o alcalinotérreos; B represents an element of the alkali or alkaline earth series;
M representa Fe o Co; M represents Fe or Co;
N representa un metal de transición o un elemento seleccionado de los grupos del bloque p de la Tabla Periódica; x e y tiene un valor entre 0 y 1 ; y z tiene un valor entre 0 y 0,75, para la producción de H2, CO o gas de síntesis. N represents a transition metal or an element selected from the groups of the p block of the Periodic Table; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75, for the production of H2, CO or synthesis gas.
9. Uso de acuerdo con la reivindicación 8, en el que en el óxido metálico de tipo perovskita de fórmula (I) 9. Use according to claim 8, wherein in the perovskite-type metal oxide of formula (I)
Al-xBxMl-yNy03-Z (I) Al-xBxMl-yNy0 3 - Z (I)
A representa La o Nd; A represents La or Nd;
B representa Ca o Sr; B represents Ca or Sr;
M representa Fe o Co; M represents Fe or Co;
N representa Fe, Co, Ti, Mo, Sb o Al; x e y tienen un valor entre 0 y 1 ; y z tiene un valor entre 0 y 0,75. N represents Fe, Co, Ti, Mo, Sb or Al; x and y have a value between 0 and 1 ; and z has a value between 0 and 0.75.
PCT/ES2022/070134 2021-03-08 2022-03-08 Method for obtaining h2, co and/or synthesis gas, using perovskita-type materials and use of said materials WO2022189689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202130203 2021-03-08
ES202130203A ES2926393B2 (en) 2021-03-08 2021-03-08 METHOD FOR OBTAINING H2, CO AND/OR SYNTHESIS GAS USING PEROVSKITE TYPE MATERIALS AND USE OF THESE MATERIALS

Publications (1)

Publication Number Publication Date
WO2022189689A1 true WO2022189689A1 (en) 2022-09-15

Family

ID=83227512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070134 WO2022189689A1 (en) 2021-03-08 2022-03-08 Method for obtaining h2, co and/or synthesis gas, using perovskita-type materials and use of said materials

Country Status (2)

Country Link
ES (1) ES2926393B2 (en)
WO (1) WO2022189689A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2958772A1 (en) * 2023-09-06 2024-02-14 Univ Madrid Politecnica Method and device for producing hydrogen by dissociation of water by thermochemical reactions using alternative energy sources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103372446A (en) * 2012-04-13 2013-10-30 中国科学院大连化学物理研究所 Supported perovskite compound as well as preparation and application thereof
CN108609643A (en) * 2016-11-29 2018-10-02 中国科学院大连化学物理研究所 Perovskite oxide and its preparation and the application in solar energy thermochemical study
WO2018222749A1 (en) * 2017-05-30 2018-12-06 University Of South Florida Supported perovskite-oxide composites for enhanced low temperature thermochemical conversion of co2 to co
US10946362B1 (en) * 2017-02-24 2021-03-16 University Of South Florida Perovskite oxides for thermochemical conversion of carbon dioxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435486B2 (en) * 2010-05-24 2013-05-07 Toyota Jidosha Kabushiki Kaisha Redox material for thermochemical water splitting, and method for producing hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103372446A (en) * 2012-04-13 2013-10-30 中国科学院大连化学物理研究所 Supported perovskite compound as well as preparation and application thereof
CN108609643A (en) * 2016-11-29 2018-10-02 中国科学院大连化学物理研究所 Perovskite oxide and its preparation and the application in solar energy thermochemical study
US10946362B1 (en) * 2017-02-24 2021-03-16 University Of South Florida Perovskite oxides for thermochemical conversion of carbon dioxide
WO2018222749A1 (en) * 2017-05-30 2018-12-06 University Of South Florida Supported perovskite-oxide composites for enhanced low temperature thermochemical conversion of co2 to co

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BORK ET AL.: "Perovskite La0.6Sr0.4Cr1-xCoxO3-d solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperatura", J. MATER. CHEM A, vol. 3, no. 15546, 18 June 2015 (2015-06-18), XP055970353, DOI: 10.1039/c5ta02519b *
DAZA ET AL.: "Isothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(l-Y)FeY03perovskite-type oxides..", CATALYSIS TODAY, vol. 258, 20 January 2015 (2015-01-20), pages 691 - 698, XP055562327, Retrieved from the Internet <URL:http://dx.doi.otg/10.1016/j.cattod.2014.12.037> DOI: 10.1016/j.cattod.2014.12.037 *
MCDANIEL A. H., A. AMBROSINI, E. N. COKER, J. E. MILLER, W. C. CHUEH, R. O'HAYE, J. TONG: "Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production..", ENERGY PROCEDIA, vol. 49, 1 January 2014 (2014-01-01), pages 2009 - 2018, XP055969665, DOI: https://doi.org/10.1016/j.egypro. 2014.03.21 3 *

Also Published As

Publication number Publication date
ES2926393A1 (en) 2022-10-25
ES2926393B2 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
Marek et al. The use of strontium ferrite in chemical looping systems
Luo et al. Chemical looping technology: oxygen carrier characteristics
Galinsky et al. CaMn1− xBxO3− δ (B= Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)
Bhosale et al. Nanostructured co-precipitated Ce0. 9Ln0. 1O2 (Ln= La, Pr, Sm, Nd, Gd, Tb, Dy, or Er) for thermochemical conversion of CO2
He et al. The use of La1− xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane
US9675962B2 (en) Perovskite-type strontium titanate
US9873109B2 (en) Catalysts for thermochemical fuel production and method of producing fuel using thermochemical fuel production
ES2945873T3 (en) Mixed metal iron oxides and their uses
CN102441396A (en) Application of double perovskite type oxide oxygen carrier in hydrogen production of chemical chain and preparation method
CN111111674A (en) Ni/La for autothermal reforming of acetic acid to produce hydrogen2X2O7Catalyst and process for preparing same
Gokon et al. Thermochemical reactivity of 5–15 mol% Fe, Co, Ni, Mn-doped cerium oxides in two-step water-splitting cycle for solar hydrogen production
Perez et al. Hydrogen production by thermochemical water splitting with La0. 8Al0. 2MeO3-δ (Me= Fe, Co, Ni and Cu) perovskites prepared under controlled pH
Jiang et al. Properties and reactivity of LaCuxNi1− xO3 perovskites in chemical-looping combustion for mid-temperature solar-thermal energy storage
Klimkowicz et al. Reversible oxygen intercalation in hexagonal Y 0.7 Tb 0.3 MnO 3+ δ: toward oxygen production by temperature-swing absorption in air
TW201718396A (en) Catalyst composition for producing hydrogen and fabrication method and use thereof
WO2022189689A1 (en) Method for obtaining h2, co and/or synthesis gas, using perovskita-type materials and use of said materials
Xiaoping et al. Effect of calcination temperature and reaction conditions on methane partial oxidation using lanthanum-based perovskite as oxygen donor
US20240067527A1 (en) Facile co2 sequestration and fuel production from a hydrocarbon
EP1298089B1 (en) Method for obtaining hydrogen by partial methanol oxidation
Sawaguri et al. Two-Step Thermochemical CO2 Splitting Using Partially-Substituted Perovskite Oxides of La0. 7Sr0. 3Mn0. 9X0. 1O3 for Solar Fuel Production
Li et al. Perovskite as oxygen storage materials for chemical looping partial oxidation and reforming of methane
Murugan Iron-containing perovskite materials for stable hydrogen production by chemical looping water splitting
Bektas et al. Structural and Thermodynamic Assessment of Ba and Ba/Mg Substituted SrFeO3− δ for “Low-Temperature” Chemical Looping Air Separation
Gao Transition Metal Oxides for Sustainable Fuels Production via Solar Chemical Looping Reforming
Yin et al. A Decrease in NiO‐MgO Phase Through Its Solid Solution Equilibrium with Tetragonal (La 1− z Sr z) 2 Ni 1− y Mg y O 4− δ: Effect on Catalytic Partial Oxidation of Methane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766429

Country of ref document: EP

Kind code of ref document: A1