WO2022188881A1 - 无导丝ffr、无导丝imr和无导丝cfr的检测方法 - Google Patents

无导丝ffr、无导丝imr和无导丝cfr的检测方法 Download PDF

Info

Publication number
WO2022188881A1
WO2022188881A1 PCT/CN2022/080454 CN2022080454W WO2022188881A1 WO 2022188881 A1 WO2022188881 A1 WO 2022188881A1 CN 2022080454 W CN2022080454 W CN 2022080454W WO 2022188881 A1 WO2022188881 A1 WO 2022188881A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
pressure
model
coronary
measured
Prior art date
Application number
PCT/CN2022/080454
Other languages
English (en)
French (fr)
Inventor
张超
赵清华
毛益进
岳会强
冯辉
刘伟
Original Assignee
北京阅影科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110269801.8A external-priority patent/CN113040795B/zh
Priority claimed from CN202110615301.5A external-priority patent/CN113180614B/zh
Application filed by 北京阅影科技有限公司 filed Critical 北京阅影科技有限公司
Publication of WO2022188881A1 publication Critical patent/WO2022188881A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the present disclosure relates to the field of coronary physiology, and in particular, to a method, a device, a computer-readable storage medium, and a processor for detecting a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR.
  • the main clinical acquisition method of FFR, IMR and CFR is invasive single-point measurement with a pressure guide wire at a designated position in the target blood vessel.
  • the invasive measurement method has low measurement efficiency and is easy to cause damage to the measured object.
  • At least one embodiment of the present disclosure provides a method for detecting FFR without guide wire, IMR without guide wire, and CFR without guide wire, including: acquiring a 2D coronary DSA image of a blood vessel to be measured; Extract the 2D target blood vessel from the 2D target blood vessel; reconstruct the 3D blood vessel model according to the 2D target blood vessel; calculate the CFR without guide wire according to the 3D blood vessel model; obtain the central arterial pressure of the blood vessel to be measured by non-invasive measurement; Determine the pressure at the inlet of the blood vessel to be measured; build a 3D coronary CFD model of the blood vessel to be measured according to the 3D blood vessel model and the pressure at the inlet of the blood vessel to be measured; according to the 3D coronary CFD model Wireless FFR and wireless IMR were calculated.
  • using a noninvasive measurement method to obtain the central arterial pressure of the blood vessel to be measured includes: using the noninvasive measurement method to obtain brachial artery pressure, radial artery pressure and carotid artery pressure;
  • the central arterial pressure is calculated from at least one of arterial pressure and the carotid pressure.
  • obtaining the central arterial pressure of the blood vessel to be measured by a non-invasive measurement method includes: obtaining a parameter set of the blood vessel to be measured, the parameter set including geometric information, arterial inlet flow, outlet boundary model and blood vessel elasticity model. Determine a one-dimensional fluid mechanics model according to the parameter set; calculate the first pressure waveform at the measuring point according to the one-dimensional fluid mechanics model, the measuring point includes the radial artery and the brachial artery; use the non-invasive measurement method to obtain all the The second pressure waveform at the measuring point, the non-invasive measurement method includes ultrasonic method and nuclear magnetic method; determining a target difference, the target difference is the difference between the first pressure waveform and the second pressure waveform; When the target difference value is greater than or equal to a predetermined value, update each parameter in the parameter set until the target difference value is less than the predetermined value; determine optimization according to the updated parameter set The one-dimensional hydrodynamic model after the optimization; the central arterial pressure is determined based on the optimized one-dimensional hydrodynamic model.
  • the 2D coronary DSA image includes a DSA image in a resting state and a DSA image in a hyperemia state
  • calculating the guidewire-free CFR according to the 3D blood vessel model includes: according to the volume change of the 3D blood vessel model According to the blood flow in the resting state and the blood flow in the congested state, the no-guide wire CFR is calculated.
  • the 2D coronary DSA images include DSA images from different angles
  • reconstructing a 3D blood vessel model according to the 2D target blood vessels includes: reconstructing the 3D blood vessel model according to a plurality of the 2D target blood vessels at different angles.
  • calculating the guidewire-free FFR and the guidewire-free IMR according to the 3D coronary CFD model includes: calculating the pressure value of each point in the blood vessel to be measured according to the 3D coronary CFD model; at least according to the Pressure values were calculated for the wireless FFR and the wireless IMR.
  • extracting the 2D target blood vessel from the 2D coronary DSA image includes: extracting the 2D target blood vessel from the 2D coronary DSA image by using a centerline obtaining algorithm and a level set image segmentation algorithm. .
  • At least one embodiment of the present disclosure provides a detection device for FFR without guidewire, IMR without guidewire, and CFR without guidewire, including: a first acquisition unit configured to acquire a 2D coronary DSA image of a blood vessel to be measured; a unit configured to extract a 2D target blood vessel from the 2D coronary DSA image; a reconstruction unit configured to reconstruct a 3D blood vessel model according to the 2D target blood vessel; a first computing unit configured to reconstruct a 3D blood vessel model according to the 3D blood vessel The model calculates CFR without guide wire; the second acquisition unit is configured to acquire the central arterial pressure of the blood vessel to be measured by non-invasive measurement method; the determination unit is configured to determine the entrance of the blood vessel to be measured according to the central arterial pressure pressure; a first construction unit, configured to construct a 3D coronary artery CFD model of the blood vessel to be measured according to the 3D blood vessel model and the pressure at the inlet of the blood vessel to be measured; a second calculation unit, configured to The 3D coronary CFD model calculate
  • At least one embodiment of the present disclosure provides a method for detecting FFR without guidewire, IMR without guidewire, and CFR without guidewire, including: acquiring a 2D coronary image of a blood vessel to be measured; constructing a 3D blood vessel according to the 2D coronary image model; obtaining the central arterial pressure of the blood vessel to be measured by non-invasive measurement; constructing a 3D coronary CFD model of the blood vessel to be measured at least according to the 3D blood vessel model and the central arterial pressure; according to the 3D coronary artery
  • the CFD model calculates wireless CFR, wireless FFR, and wireless IMR.
  • calculating the CFR without guide wire, the FFR without guide wire, and the IMR without guide wire according to the 3D coronary artery CFD model includes: determining the blood flow in the resting state according to the 3D blood vessel model in the resting state; obtaining congestion blood flow in the state; according to the blood flow in the resting state and the blood flow in the hyperemia state, calculate the CFR without guide wire; apply the 3D coronary artery CFD model, according to the blood flow in the hyperemia state, determine The pressure at the distal end of the blood vessel at the time of maximum hyperemia and the pressure at the proximal end of the blood vessel at the time of maximum hyperemia; according to the pressure at the distal end of the blood vessel at the time of maximum hyperemia and the pressure at the proximal end of the blood vessel at the time of maximum hyperemia, determine the FFR without guide wire; according to the maximum hyperemia The pressure at the distal end of the blood vessel and the maximum congestive blood flow are determined to determine the guidewire-free IMR, wherein the maximum congestive
  • constructing a 3D coronary CFD model of the blood vessel to be measured at least according to the 3D blood vessel model and the central arterial pressure comprising: determining the pressure at the inlet of the blood vessel to be measured according to the central arterial pressure; According to the 3D blood vessel model, the pressure at the inlet of the blood vessel to be measured, and the blood flow in the congested state, a 3D coronary artery CFD model in the congested state of the blood vessel to be measured is constructed.
  • using a noninvasive measurement method to obtain the central arterial pressure of the blood vessel to be measured includes: using the noninvasive measurement method to obtain brachial artery pressure, radial artery pressure and carotid artery pressure;
  • the central arterial pressure is calculated from at least one of arterial pressure and the carotid pressure.
  • obtaining the central arterial pressure of the blood vessel to be measured by a non-invasive measurement method includes: obtaining a parameter set of the blood vessel to be measured, the parameter set including geometric information, arterial inlet flow, outlet boundary model and blood vessel elasticity model. Determine a one-dimensional fluid mechanics model according to the parameter set; calculate the first pressure waveform at the measuring point according to the one-dimensional fluid mechanics model, the measuring point includes the radial artery and the brachial artery; use the non-invasive measurement method to obtain all the The second pressure waveform at the measuring point, the non-invasive measurement method includes ultrasonic method and nuclear magnetic method; determining a target difference, the target difference is the difference between the first pressure waveform and the second pressure waveform; When the target difference value is greater than or equal to a predetermined value, update each parameter in the parameter set until the target difference value is less than the predetermined value; determine optimization according to the updated parameter set The one-dimensional hydrodynamic model after the optimization; the central arterial pressure is determined based on the optimized one-dimensional hydrodynamic model.
  • the 2D coronary image includes 2D coronary images from different angles
  • constructing a 3D blood vessel model according to the 2D coronary images includes: extracting a plurality of vascular models from the 2D coronary images from different angles. 2D target blood vessels; the 3D blood vessel model is constructed according to a plurality of the 2D target blood vessels.
  • extracting the 2D target blood vessel from the 2D coronary image includes: extracting the 2D target blood vessel from the 2D coronary image by using a centerline obtaining algorithm and a level set image segmentation algorithm.
  • At least one embodiment of the present disclosure provides a detection device for guidewireless FFR, guidewireless IMR, and guidewireless CFR, including: a third acquisition unit configured to acquire a 2D coronary image of a blood vessel to be measured; a second a construction unit, configured to construct a 3D blood vessel model according to the 2D coronary image; a fourth acquisition unit, configured to acquire the central arterial pressure of the blood vessel to be measured by a non-invasive measurement method; a third construction unit, configured to at least According to the 3D blood vessel model and the central arterial pressure, a 3D coronary artery CFD model of the blood vessel to be measured is constructed; a third computing unit is configured to calculate a guidewireless CFR, a guidewireless CFR according to the 3D coronary artery CFD model Wire FFR and guidewireless IMR.
  • At least one embodiment of the present disclosure provides a computer-readable storage medium, where the computer-readable storage medium includes a stored program, wherein when the program runs, a device on which the computer-readable storage medium is located is controlled to execute any one of The detection method of the no-guide wire FFR, the no-guide wire IMR and the no-guide wire CFR.
  • At least one embodiment of the present disclosure provides a processor configured to run a program, wherein the program executes any one of the guidewireless FFR, guidewireless IMR, and guidewireless when the program runs.
  • CFR detection method any one of the guidewireless FFR, guidewireless IMR, and guidewireless when the program runs.
  • FIG. 1 shows a flowchart of a detection method for a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of volume change of the same blood vessel 3D model at different times according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of reconstructing a 3D blood vessel model according to two 2D target blood vessels at different angles according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of extracting a 2D target blood vessel from the above-mentioned 2D coronary DSA image according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a 55-segment human arterial network according to an embodiment of the present disclosure
  • Figure 6 illustrates a Tube-Load model according to an embodiment of the present disclosure
  • FIG. 7 shows a graph of inlet pressure versus flow of a vessel model according to an embodiment of the present disclosure
  • FIG. 8 shows a FFR/IMR calculation result display diagram according to an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of a detection device for a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR according to an embodiment of the present disclosure
  • FIG. 10 illustrates a central arterial pressure waveform diagram according to an embodiment of the present disclosure
  • FIG. 11 shows a flowchart of a detection method for a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR according to an embodiment of the present disclosure
  • FIG. 12 shows a schematic diagram of detection devices for guidewireless FFR, guidewireless IMR, and guidewireless CFR according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a method, device, computer-readable storage medium, and processor for detecting a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR.
  • Some embodiments of the present disclosure provide a method for detecting a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR.
  • FIG. 1 is a flowchart of a method for detecting a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR according to an embodiment of the present disclosure. As shown in Figure 1, the method includes the following steps:
  • Step S101 acquiring a 2D coronary DSA image of the blood vessel to be measured
  • Step S102 extracting a 2D target blood vessel from the above-mentioned 2D coronary DSA image
  • Step S103 reconstruct a 3D blood vessel model according to the above-mentioned 2D target blood vessel;
  • Step S104 calculating the CFR without guide wire according to the above-mentioned 3D blood vessel model
  • Step S105 using a non-invasive measurement method to obtain the central arterial pressure of the blood vessel to be measured;
  • Step S106 determining the pressure at the entrance of the blood vessel to be measured according to the central arterial pressure
  • Step S107 according to the above-mentioned 3D blood vessel model and the pressure at the entrance of the above-mentioned blood vessel to be measured, construct a 3D coronary CFD model of the above-mentioned blood vessel to be measured;
  • step S108 the guidewireless FFR and the guidewireless IMR are calculated according to the above-mentioned 3D coronary CFD model.
  • the number of 2D target blood vessels can be diverse, including a single blood vessel, multiple blood vessels, and the entire coronary system;
  • the central arterial pressure of the blood vessel to be measured can be acquired by means of non-invasive measurement such as ultrasonic detection, nuclear magnetic resonance detection, and a blood pressure measuring instrument capable of recording waveforms.
  • the calculation results of CFR without guide wire, FFR without guide wire and IMR without guide wire are displayed in real time to realize visualization. And at least one embodiment of the present disclosure also has good processing capability, efficiency and precision for single or multiple coronary vascular trees.
  • the overall processing time for multiple vessels is less than 1 minute.
  • a 2D coronary DSA image of the blood vessel to be measured is acquired, a 2D target blood vessel is extracted from the 2D coronary DSA image, a 3D blood vessel model is reconstructed according to the 2D target blood vessel, and then the calculation method is calculated according to the 3D blood vessel model.
  • Guidewire-free CFR at least achieves quantitative acquisition of guidewire-free CFR from DSA images; non-invasive measurement is used to obtain the central arterial pressure of the blood vessel to be measured, and then the pressure at the entrance of the blood vessel to be measured is determined according to the central arterial pressure, and then according to 3D
  • the blood vessel model and the pressure at the entrance of the blood vessel to be measured are constructed, and the 3D coronary CFD model of the blood vessel to be measured is constructed.
  • the guidewire-free FFR and guidewire-free IMR are calculated according to the 3D coronary CFD model.
  • FFR and IMR non-invasive detection The embodiments of the present disclosure have high efficiency, good robustness and good accuracy at least for the calculation of the functional indexes FFR/IMR/CFR of blood vessels in coronary DSA images, and can realize real-time 3D blood vessel analysis.
  • obtaining the central arterial pressure of the blood vessel to be measured by using the non-invasive measurement method includes: obtaining the brachial artery pressure, radial artery pressure and carotid artery pressure by using the non-invasive measurement method;
  • the central arterial pressure is calculated from at least one of the arterial pressure and the carotid pressure.
  • the brachial artery pressure waveform, the radial artery pressure waveform, and the carotid artery pressure waveform can be acquired by non-invasive measurement, and then the above-mentioned center is calculated according to at least one of the brachial artery pressure waveform, the radial artery pressure waveform, and the carotid artery pressure waveform.
  • Arterial pressure for accurate central arterial pressure.
  • obtaining the central arterial pressure of the blood vessel to be measured by a non-invasive measurement method includes: obtaining a parameter set of the blood vessel to be measured, where the parameter set includes geometric information, arterial inlet flow, outlet boundary model and blood vessel elasticity model; determine a one-dimensional hydrodynamic model according to the above-mentioned parameter set; calculate the first pressure waveform at the measuring point according to the above-mentioned one-dimensional hydrodynamic model, the above-mentioned measuring point includes the radial artery and the brachial artery; use the above-mentioned non-invasive measurement method to obtain the above-mentioned measuring point.
  • the non-invasive measurement method includes ultrasonic method and nuclear magnetic method; determine the target difference, the target difference is the difference between the first pressure waveform and the second pressure waveform; when the target difference is greater than or equal to In the case of a predetermined value, update each parameter in the above-mentioned parameter set until the above-mentioned target difference is less than the above-mentioned predetermined value; according to the above-mentioned updated parameter set, determine the optimized one-dimensional fluid mechanics model; based on the optimized one-dimensional fluid dynamics model; A dimensional hydrodynamic model determines the aforementioned central arterial pressure.
  • Both the first pressure waveform and the second pressure waveform in this embodiment are pressure waveforms in the time domain, that is, the first pressure waveform and the second pressure waveform include time series information, which is compared with the radial artery pressure or brachial artery pressure in the related art.
  • the arterial pressure is only a solution of a pressure value.
  • the solution of the present disclosure is a time series waveform, so that the determined The central arterial pressure is more accurate; it further ensures the accuracy of the functional indexes of the blood vessels to be measured.
  • acquiring the geometric information of the blood vessel to be measured includes: establishing, for example, a 55-segment human arterial network structure (the 55-segment human arterial network structure is shown in FIG. 5 ), according to the 55-segment human arterial network structure Determine the initial network structure parameters, and the initial network structure parameters include geometric information such as the length and radius of the blood vessel.
  • the geometric information of the 55 segments of human arteries is shown in Table 1.
  • Table 1 55 segments of human arterial geometry information
  • acquiring the arterial inlet flow of the blood vessel to be measured includes: determining the flow-time relationship at the entrance of the arterial tree within a complete heartbeat cycle, and determining the arterial inlet of the blood vessel to be measured according to the flow-time relationship flow.
  • the flow-time relationship can be determined by the fitting relationship of a large amount of data, that is to say, multiple flows at the entrance of the arterial tree are obtained, and the multiple flows are fitted in the time domain to obtain the flow in a complete heartbeat cycle- Time relationship; the flow-time relationship in a complete heartbeat cycle can also be obtained by non-invasive measurement methods such as ultrasonic detection or nuclear magnetic detection.
  • acquiring the outlet boundary model of the blood vessel to be measured includes: estimating parameters such as impedance and capacitive reactance of each truncated blood vessel at the outlet of the arterial tree based on the circuit model, and determining the to-be-measured reactance and other parameters according to the parameters such as impedance and capacitive reactance. Measure the outlet boundary model of the vessel.
  • acquiring the blood vessel elasticity model of the blood vessel to be measured includes: constructing a one-dimensional hemodynamic control equation based on a three-dimensional incompressible flow Navier-Stokes (NS) equation:
  • A is the cross-sectional area of the blood vessel
  • q is the blood flow
  • is the kinematic viscosity
  • is the thickness of the boundary layer
  • r 0 is the radius of the vessel when it is not deformed
  • the pressure p is passed through the elastic model-based equation of state Calculate
  • p 0 , A 0 are the pressure and cross-sectional area of the blood vessel when the vessel is not deformed
  • E is the Young's modulus of the blood vessel wall
  • h is the thickness of the blood vessel wall
  • the blood vessel cross-sectional area is determined according to the radius of the blood vessel
  • the blood vessel cross-sectional area is determined according to the arterial
  • the blood flow is determined by the flow-time relationship over a complete heartbeat cycle at the entrance of the tree.
  • the intravascular arterial pressure is an indispensable parameter in the calculation of the functional index, and the parameters related to the arterial pressure are derived from the cardiac function index.
  • the traditional method is to obtain the mean arterial pressure (MAP) through an empirical formula under statistical significance, and to estimate parameters such as FFR according to the mean arterial pressure (MAP).
  • MAP mean arterial pressure
  • FFR mean arterial pressure
  • the empirical formula is:
  • HR, SBP, DBP represent the patient's heart rate, systolic blood pressure, and diastolic blood pressure, respectively.
  • This empirical formula does not fully reflect patient-specific physiological parameters.
  • the one-dimensional computational fluid dynamics method by establishing the arterial tree of the human body, corrects the patient-related parameters in the one-dimensional computational fluid dynamics model based on the non-invasive measurement of the upper extremity arteries. By continuously adjusting these patient-specific parameters, an optimal model can be obtained for the current patient. Therefore, the central arterial pressure can be calculated from the model, and the pressure-related parameters can be calculated more accurately.
  • this method can obtain the complete central arterial pressure waveform during a heartbeat cycle, as shown in Figure 10, not only high and low pressure, average pressure. This is very beneficial for transient CFD simulations, which provide the full pressure boundary condition for one cycle.
  • the one-dimensional hemodynamic control equation can also be expressed in the following form:
  • is the Coriolis coefficient
  • is the dynamic viscosity
  • ⁇ v is a parameter that defines the radial distribution of velocity.
  • equation of state also has a form based on the viscoelastic model:
  • the 2D coronary DSA image includes a DSA image in a resting state and a DSA image in a hyperemia state
  • calculating the guidewire-free CFR according to the 3D vascular model includes: according to the volume of the 3D vascular model The rate of change was used to calculate the blood flow in the resting state and the blood flow in the hyperemic state; according to the blood flow in the resting state and the blood flow in the hyperemia state, the no-guide wire CFR was calculated.
  • a specific method for calculating the CFR without a guide wire is as follows: constructing a 3D blood vessel model in a resting state according to DSA images in a resting state at different angles; obtaining a temporally continuous set of resting state The 3D model of coronary blood vessels in the state; the blood flow in the resting state is calculated by calculating the volume change rate of the 3D blood vessel model at two consecutive times (for DSA images obtained by continuous shooting, the blood vessel volume (congestion volume) between two adjacent frames is calculated.
  • FIGS. 2A1 and 2A2 are 2D contours corresponding to FIG. 2A
  • FIGS. 2B1 and 2B2 are 2D contours corresponding to FIG. 2B
  • FIGS. 2C1 and 2C2 are 2D contours corresponding to FIG. 2C .
  • the 2D coronary DSA images include DSA images from different angles, and reconstructing a 3D blood vessel model according to the 2D target blood vessels includes: reconstructing the 3D blood vessel model from a plurality of the 2D target blood vessels at different angles.
  • the method of reconstructing 3D blood vessels from 2D blood vessels at different angles includes: 1) performing position correction on the 2D blood vessel segmentation results at different angles relative to the position of the light source, and obtaining a projection image after light source correction; 2) constructing a space curved surface area according to the number of light sources ; 3) Intersect multiple surface areas in 3D space, and obtain the space convex hull is the initial three-dimensional blood vessel model; 4) Obtain the initial three-dimensional blood vessel center line, and calculate the radius of all points on the center line; 5) Take the center line Perform centerline expansion at a given radius of each point on the line to obtain an intermediate state blood vessel model; 6) use a smoothing algorithm to smooth the contour of the blood vessel to obtain the final reconstructed 3D blood vessel model.
  • the 3D reconstruction method for 2D target blood vessels at two different angles is shown in Figure 3.
  • the position correction relative to the position of the light source is performed on the 2D blood vessel segmentation results C2' at different angles, and the projection image C2 after the light source correction is obtained.
  • the space surface area (shaded part in Figure 3) is constructed. Intersect multiple surface regions in 3D space to obtain the spatial convex hull (vessel in the figure).
  • the initial vessel model is obtained by centerline expansion with a given radius of each point on the centerline.
  • the contour of the blood vessel is smoothed by a smoothing algorithm, and the reconstructed 3D blood vessel model is obtained.
  • Figures 3B1 and 3B2 show the 2D blood vessel contours at different angles, and the final reconstruction result is shown in Figure 3B3.
  • calculating the guidewire-free FFR and the guidewire-free IMR according to the 3D coronary CFD model includes: calculating the pressure value of each point in the blood vessel to be measured according to the 3D coronary CFD model; at least according to the above The pressure values are calculated for the wireless FFR described above and the wireless IMR described above.
  • the specific method for calculating the guidewireless FFR and the above-mentioned guidewireless IMR is: combining the 3D blood vessel model, the blood flow in the hyperemia state and the blood vessel inlet pressure, the 3D coronary artery CFD model is calculated.
  • FIG. 7 shows the inlet pressure boundary and outlet flow boundary of the CFD model.
  • Both FFR and IMR calculations are based on the pressure value Pd at each point in the blood vessel obtained by CFD in the hyperemia state.
  • Figure 8 shows the CFD results of a 3D model with a bifurcation point and two sub-vessel.
  • FFR/IMR display The calculated FFR/IMR is displayed on the 3D model in Figure 8. As shown in the figure, FIG. 8 shows the FFR and IMR values corresponding to each point in the target blood vessel, respectively.
  • the results of the present disclosure can display the parameter values of all positions in the blood vessel.
  • extracting the 2D target blood vessel from the 2D coronary DSA image includes: extracting the 2D target from the 2D coronary DSA image by using a centerline obtaining algorithm and a level set image segmentation algorithm Blood vessel.
  • Figure 4 shows the process of 2D vessel extraction from DSA images. Using the level set algorithm to segment the image in FIG. 4A to obtain a full-image segmentation result as shown in FIG. 4B .
  • the centerline of the target blood vessel is obtained by using the fast marching algorithm, as shown in FIG. 4C .
  • the centerline is expanded to obtain the final target blood vessel as shown in Figure 4D.
  • the main steps of obtaining the segmentation result of the target 2D coronary artery target vessel are: 1) preprocessing the original image to generate a binarized image; 2) in the binarized image Automatically (such as position selection) or interactive selection to determine at least two endpoints of each vessel in the target vessel/vessel tree, including the first endpoint and the second endpoint; 3) Use the fast marching algorithm to extract in the binarized image The centerline of the target blood vessel from the first end point to the second end point; 4) Use the level set segmentation algorithm to segment the binarized image; 5) Standardize the segmented image, and obtain its corresponding distance image from the obtained image 6) Calculate the shortest distance from the point on the center line to the contour of the blood vessel by the distance image; 7) Carry out the expansion and expansion operation with the shortest distance corresponding to each point on the center line of the blood vessel, and obtain the target blood vessel shape model; 8) Compare the segmentation result with the blood vessel.
  • the shape model is summed with specific weights to obtain the
  • calculating the central arterial pressure according to at least one of the brachial artery pressure, the radial artery pressure, and the carotid artery pressure includes: according to the brachial artery pressure, the radial artery pressure, and the carotid artery pressure At least one of the pressures is calculated using the transfer function method, the one-dimensional hemodynamic method or the Tube-Load method to calculate the above-mentioned central arterial pressure.
  • the specific steps of the Tube-Load method include: 1) Establish a Tube-Load model as shown in Figure 6, where p c (t) is the pressure of the central arterial pressure changing with time, and T d is the pulse wave from the central arterial pressure.
  • the embodiment of the present disclosure also provides a detection device for a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR.
  • a detection device for a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR may be configured to perform the detection methods provided by embodiments of the present disclosure configured as guidewireless FFR, guidewireless IMR, and guidewireless CFR.
  • the detection devices for the guidewireless FFR, the guidewireless IMR, and the guidewireless CFR provided by the embodiments of the present disclosure are introduced below.
  • FIG. 9 is a schematic diagram of a detection device for a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR according to an embodiment of the present disclosure. As shown in Figure 9, the device includes:
  • the first acquisition unit 10 is configured to acquire a 2D coronary DSA image of the blood vessel to be measured
  • the extraction unit 20 is configured to extract a 2D target blood vessel from the above-mentioned 2D coronary DSA image;
  • the reconstruction unit 30 is configured to reconstruct a 3D blood vessel model according to the above-mentioned 2D target blood vessel;
  • the first calculation unit 40 is configured to calculate the guidewireless CFR according to the above-mentioned 3D blood vessel model
  • the second acquiring unit 50 is configured to acquire the central arterial pressure of the blood vessel to be measured by using a non-invasive measurement method
  • a determining unit 60 configured to determine the pressure at the entrance of the blood vessel to be measured according to the central arterial pressure
  • the first construction unit 70 is configured to construct the 3D coronary CFD model of the blood vessel to be measured according to the above-mentioned 3D blood vessel model and the pressure at the entrance of the above-mentioned blood vessel to be measured;
  • the second calculation unit 80 is configured to calculate the wire-free FFR and the wire-free IMR according to the above-mentioned 3D coronary CFD model.
  • the number of 2D target blood vessels can be diverse, including a single blood vessel, multiple blood vessels, and the entire coronary system;
  • the central arterial pressure of the blood vessel to be measured can be acquired by means of non-invasive measurement such as ultrasonic detection, nuclear magnetic resonance detection, and a blood pressure measuring instrument capable of recording waveforms.
  • the first acquisition unit acquires the 2D coronary DSA image of the blood vessel to be measured
  • the extraction unit extracts the 2D target blood vessel from the 2D coronary DSA image
  • the reconstruction unit reconstructs the 3D blood vessel model according to the 2D target blood vessel
  • the first calculation unit according to The 3D vessel model calculates the guidewire-free CFR, and realizes the quantitative acquisition of the guidewire-free CFR from the DSA image
  • the second acquisition unit uses the non-invasive measurement method to obtain the central arterial pressure of the blood vessel to be measured, and the determination unit determines the blood vessel to be measured according to the central arterial pressure.
  • the first construction unit constructs the 3D coronary CFD model of the blood vessel to be measured according to the 3D blood vessel model and the inlet pressure of the blood vessel to be measured, and the second calculation unit calculates the FFR without guide wire and the FFR without guide wire according to the 3D coronary CFD model.
  • Guide wire IMR at least realizes non-invasive detection of CFR, FFR and IMR using DSA image-assisted technology.
  • the second acquisition unit includes a first acquisition module and a first calculation module, where the first acquisition module is configured to acquire brachial artery pressure, radial artery pressure, and carotid artery pressure by using the above-mentioned non-invasive measurement method; the first The calculation module is configured to calculate the central arterial pressure based on at least one of the brachial artery pressure, the radial artery pressure, and the carotid artery pressure.
  • the brachial artery pressure waveform, the radial artery pressure waveform, and the carotid artery pressure waveform can be acquired by non-invasive measurement, and then the above-mentioned center is calculated according to at least one of the brachial artery pressure waveform, the radial artery pressure waveform, and the carotid artery pressure waveform.
  • the second acquisition unit includes a second acquisition module, a first determination module, a second calculation module, a third acquisition module, a second determination module, a first update module, a third determination module, and a fourth a determination module
  • the second acquisition module is configured to acquire the parameter set of the blood vessel to be measured, the parameter set includes geometric information, arterial inlet flow, outlet boundary model and blood vessel elasticity model
  • the first determination module is configured to determine according to the above parameter set One-dimensional fluid dynamics model
  • the second calculation module is configured to calculate the first pressure waveform at the measuring point according to the one-dimensional fluid dynamics model, the measuring point includes the radial artery and the brachial artery
  • the third acquisition module is configured to use the non-invasive method described above
  • the measurement method obtains the second pressure waveform at the above-mentioned measuring point, and the above-mentioned non-invasive measurement method includes ultrasonic method and nuclear magnetic method
  • the second determination module is configured to determine a target difference value, and the above-mentioned target difference
  • Both the first pressure waveform and the second pressure waveform in this embodiment are pressure waveforms in the time domain, that is, the first pressure waveform and the second pressure waveform include time series information, which is compared with the radial artery pressure or brachial artery pressure in the related art.
  • the arterial pressure is only a solution of a pressure value.
  • the solution of the present disclosure is a time series waveform, so that the determined The central arterial pressure is more accurate; it further ensures the accuracy of the functional indexes of the blood vessels to be measured.
  • the one-dimensional hydrodynamic model at this time is closer to the real vascular hydrodynamic model when the target difference is small. Therefore, it is more accurate to determine the above-mentioned central arterial pressure based on the above-mentioned optimized one-dimensional hydrodynamic model.
  • the above-mentioned 2D coronary DSA image includes a DSA image in a resting state and a DSA image in a hyperemia state
  • the first calculation unit is further configured to calculate the resting state according to the volume change rate of the above-mentioned 3D blood vessel model.
  • the blood flow in the state and the blood flow in the hyperemia state; according to the blood flow in the resting state and the blood flow in the hyperemia state, the no-guide wire CFR is calculated.
  • the 2D coronary DSA images include DSA images at different angles
  • the reconstruction unit is further configured to reconstruct the 3D blood vessel model according to a plurality of the 2D target blood vessels at different angles.
  • the method of reconstructing 3D blood vessels from 2D blood vessels at different angles includes: 1) performing position correction on the 2D blood vessel segmentation results at different angles relative to the position of the light source, and obtaining a projection image after light source correction; 2) constructing a space curved surface area according to the number of light sources ; 3) Intersect multiple surface areas in 3D space, and obtain the space convex hull is the initial three-dimensional blood vessel model; 4) Obtain the initial three-dimensional blood vessel center line, and calculate the radius of all points on the center line; 5) Take the center line Perform centerline expansion at a given radius of each point on the line to obtain an intermediate state blood vessel model; 6) use a smoothing algorithm to smooth the contour of the blood vessel to obtain the final reconstructed 3D blood vessel model.
  • the second calculation unit is further configured to calculate the pressure value of each point in the blood vessel to be measured according to the 3D coronary CFD model; at least calculate the guide wire-free FFR and the guide-free FFR according to the pressure value. Wire IMR.
  • the extraction unit is further configured to extract the above-mentioned 2D target blood vessel from the above-mentioned 2D coronary artery DSA image by using a centerline obtaining algorithm and a level set image segmentation algorithm.
  • the main steps of obtaining the segmentation result of the target 2D coronary artery target vessel are: 1) preprocessing the original image to generate a binarized image; 2) in the binarized image Automatically (such as position selection) or interactive selection to determine at least two endpoints of each vessel in the target vessel/vessel tree, including the first endpoint and the second endpoint; 3) Use the fast marching algorithm to extract in the binarized image The centerline of the target blood vessel from the first end point to the second end point; 4) Use the level set segmentation algorithm to segment the binarized image; 5) Standardize the segmented image, and obtain its corresponding distance image from the obtained image 6) Calculate the shortest distance from the point on the center line to the contour of the blood vessel by the distance image; 7) Carry out the expansion and expansion operation with the shortest distance corresponding to each point on the center line of the blood vessel, and obtain the target blood vessel shape model; 8) Compare the segmentation result with the blood vessel.
  • the shape model is summed with specific weights to obtain the
  • a method for detecting a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR is provided.
  • FIG. 11 is a flowchart of a method for detecting a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR according to an embodiment of the present disclosure. As shown in Figure 11, the method includes the following steps:
  • Step S1101 acquiring a 2D coronary image of the blood vessel to be measured
  • Step S1102 constructing a 3D blood vessel model according to the above-mentioned 2D coronary image
  • Step S1103 using a non-invasive measurement method to obtain the central arterial pressure of the blood vessel to be measured;
  • Step S1104 constructing the 3D coronary CFD model of the blood vessel to be measured at least according to the above-mentioned 3D blood vessel model and the above-mentioned central arterial pressure;
  • step S1105 the guidewireless CFR, the guidewireless FFR, and the guidewireless IMR are calculated according to the above-mentioned 3D coronary CFD model.
  • the above-mentioned 2D coronary image may be a 2D coronary DSA image, and of course, may also be other types of 2D coronary images other than the 2D coronary DSA image.
  • the present disclosure has high efficiency, good robustness and good accuracy for the calculation of the functional indexes FFR/IMR/CFR of blood vessels in coronary DSA images, and can realize real-time 3D blood vessel analysis.
  • the central arterial pressure of the blood vessel to be measured can be acquired by means of non-invasive measurement such as ultrasonic detection, nuclear magnetic resonance detection, and a blood pressure measuring instrument capable of recording waveforms.
  • non-invasive measurement such as ultrasonic detection, nuclear magnetic resonance detection, and a blood pressure measuring instrument capable of recording waveforms.
  • the calculation results of CFR without guide wire, FFR without guide wire and IMR without guide wire are displayed in real time to realize visualization.
  • the present disclosure also has good processing capability, efficiency and precision for single or multiple coronary vascular trees.
  • the overall processing time for multiple vessels is less than 1 minute.
  • a 2D coronary image of the blood vessel to be measured is obtained, then a 3D blood vessel model is constructed according to the 2D coronary image, and the central arterial pressure of the blood vessel to be measured is obtained by a non-invasive measurement method, at least according to the 3D blood vessel model and the central arterial pressure.
  • 3D coronary CFD model and finally calculate the no-guide CFR, no-guide FFR and no-guide IMR according to the 3D coronary CFD model.
  • calculating the guidewireless CFR, the guidewireless FFR, and the guidewireless IMR according to the above-mentioned 3D coronary CFD model includes: determining the blood flow in the resting state according to the 3D blood vessel model in the resting state ; Obtain the blood flow in the hyperemic state; Calculate the above-mentioned CFR without guide wire according to the above-mentioned blood flow in the resting state and the above-mentioned blood flow in the hyperemic state; Apply the above-mentioned 3D coronary CFD model, according to the above-mentioned blood flow in the hyperemic state, determine the maximum congestion The pressure at the distal end of the vessel and the pressure at the proximal end of the vessel at the time of maximum hyperemia; according to the pressure at the distal end of the vessel at the time of maximum hyperemia and the pressure at the proximal end of the vessel at the time of maximum hyperemia, determine the above FFR without guide wire; according to the pressure at the pressure at the pressure at the 3
  • the blood flow in the hyperemia state is determined, and the theoretical model is expressed as:
  • Q_hyper A ⁇ Q_rest+B, wherein Q_hyper represents the blood flow in the hyperemic state, Q_rest represents the blood flow in the resting state, wherein A and B are parameters related to the performance of the object to be detected.
  • a and B are parameters related to the performance of the object to be detected.
  • the blood flow in the hyperemic state cannot be obtained from the 3D vascular model in the hyperemic state, which will affect the measurement of no-guidewire CFR, no-guidewire FFR, and no-guidewire IMR.
  • the blood flow in the resting state the blood flow in the hyperemic state can be determined, and then the measurement of CFR without guide wire, FFR without guide wire and IMR without guide wire can be realized.
  • a flow sensor can be used directly to measure the blood flow in a hyperemic state.
  • the third method is to use an empirical formula to determine blood flow in a hyperemia state, wherein the empirical formula includes parameters such as the heart rate, diastolic blood pressure, whole myocardial mass, and 3D blood vessel model of the blood vessel to be measured.
  • the methods for obtaining the blood flow in the hyperemia state are not limited to the above-mentioned ones, and those skilled in the art can select an appropriate way to obtain the blood flow in the hyperemia state according to the actual situation.
  • constructing the 3D coronary CFD model of the blood vessel to be measured according to at least the above-mentioned 3D blood vessel model and the above-mentioned central arterial pressure includes: determining the pressure at the entrance of the above-mentioned blood vessel to be measured according to the above-mentioned central arterial pressure; The 3D blood vessel model, the pressure at the inlet of the blood vessel to be measured, and the blood flow in the blood vessel to be measured, construct the 3D coronary CFD model of the blood vessel to be measured in the congested state.
  • the 3D blood vessel model is obtained according to the 2D coronary image obtained in the resting state, the pressure at the entrance of the blood vessel to be measured is detected in the hyperemia state, and the constructed 3D coronary CFD model is the hyperemia state.
  • the guidewireless FFR and guidewireless IMR of the blood vessel were obtained from the 3D coronary CFD model in the hyperemic state.
  • the 3D coronary CFD model in the hyperemia state was used to determine the distal pressure of the blood vessel at the time of maximum hyperemia and the proximal pressure of the blood vessel at the time of maximum hyperemia.
  • Wire FFR according to the pressure at the distal end of the vessel at the time of maximum hyperemia and the maximum hyperemia flow, determine the above IMR without guide wire.
  • obtaining the central arterial pressure of the blood vessel to be measured by using the non-invasive measurement method includes: obtaining the brachial artery pressure, radial artery pressure and carotid artery pressure by using the non-invasive measurement method;
  • the central arterial pressure is calculated from at least one of the arterial pressure and the carotid pressure.
  • the brachial artery pressure waveform, the radial artery pressure waveform, and the carotid artery pressure waveform can be acquired by non-invasive measurement, and then the above-mentioned center is calculated according to at least one of the brachial artery pressure waveform, the radial artery pressure waveform, and the carotid artery pressure waveform.
  • Arterial pressure for accurate central arterial pressure.
  • obtaining the central arterial pressure of the blood vessel to be measured by a non-invasive measurement method includes: obtaining a parameter set of the blood vessel to be measured, where the parameter set includes geometric information, arterial inlet flow, outlet boundary model and blood vessel elasticity model; determine a one-dimensional hydrodynamic model according to the above-mentioned parameter set; calculate the first pressure waveform at the measuring point according to the above-mentioned one-dimensional hydrodynamic model, the above-mentioned measuring point includes the radial artery and the brachial artery; use the above-mentioned non-invasive measurement method to obtain the above-mentioned measuring point.
  • the non-invasive measurement method includes ultrasonic method and nuclear magnetic method; determine the target difference, the target difference is the difference between the first pressure waveform and the second pressure waveform; when the target difference is greater than or equal to In the case of a predetermined value, update each parameter in the above-mentioned parameter set until the above-mentioned target difference is less than the above-mentioned predetermined value; according to the above-mentioned updated parameter set, determine the optimized one-dimensional fluid mechanics model; based on the optimized one-dimensional fluid dynamics model; A dimensional hydrodynamic model determines the aforementioned central arterial pressure.
  • Both the first pressure waveform and the second pressure waveform in this embodiment are pressure waveforms in the time domain, that is, the first pressure waveform and the second pressure waveform include time series information, which is compared with the radial artery pressure or brachial artery pressure in the related art.
  • the arterial pressure is only a solution of a pressure value.
  • the solution of the present disclosure is a time series waveform, so that the determined The central arterial pressure is more accurate; it further ensures the accuracy of the functional indexes of the blood vessels to be measured.
  • acquiring the arterial inlet flow of the blood vessel to be measured includes: determining the flow-time relationship at the entrance of the arterial tree within a complete heartbeat cycle, and determining the arterial inlet of the blood vessel to be measured according to the flow-time relationship flow.
  • the flow-time relationship can be determined by the fitting relationship of a large amount of data, that is to say, multiple flows at the entrance of the arterial tree are obtained, and the multiple flows are fitted in the time domain to obtain the flow in a complete heartbeat cycle- Time relationship; the flow-time relationship in a complete heartbeat cycle can also be obtained by non-invasive measurement methods such as ultrasonic detection or nuclear magnetic detection.
  • acquiring the outlet boundary model of the blood vessel to be measured includes: estimating parameters such as impedance and capacitive reactance of each truncated blood vessel at the outlet of the arterial tree based on the circuit model, and determining the to-be-measured reactance and other parameters according to the parameters such as impedance and capacitive reactance. Measure the outlet boundary model of the vessel.
  • the 2D coronary images include 2D coronary images from different angles, and constructing a 3D blood vessel model according to the 2D coronary images includes: extracting multiple images from the 2D coronary images from different angles. 2D target blood vessels; construct the above 3D blood vessel model according to the plurality of above 2D target blood vessels.
  • the number of 2D target blood vessels can be diverse, including a single blood vessel, multiple blood vessels, and the entire coronary system.
  • extracting the 2D target blood vessel from the 2D coronary image includes: extracting the 2D target blood vessel from the 2D coronary image by using a centerline obtaining algorithm and a level set image segmentation algorithm.
  • the specific method for calculating the CFR without a guide wire is: constructing a 3D blood vessel model in a resting state according to DSA images in a resting state at different angles; The resting state of the coronary vascular 3D model of the group; the blood flow in the resting state is calculated by calculating the volume change rate of the 3D vascular model at two consecutive times (for DSA images obtained by continuous shooting, the blood vessel volume between adjacent two frames The change amount of (congestion volume) divided by the time interval between two frames is the blood flow in this time period); and then the blood flow in the hyperemia state is determined.
  • No-wire CFR is the ratio of blood flow at maximal hyperemia to resting blood flow.
  • Figures 2A, 2B, and 2C are 3D models of a blood vessel obtained at different times. Calculate the volume change of the model in the figure and divide it by the interval time between the two figures to obtain the blood flow of the blood vessel at that moment.
  • 2A1 and 2A2 are 2D contours corresponding to FIG. 2A
  • FIGS. 2B1 and 2B2 are 2D contours corresponding to FIG. 2B
  • FIGS. 2C1 and 2C2 are 2D contours corresponding to FIG. 2C .
  • FIG. 12 is a schematic diagram of a detection device for a guidewireless FFR, a guidewireless IMR, and a guidewireless CFR according to an embodiment of the present disclosure. As shown in Figure 12, the device includes:
  • the third acquiring unit 1210 is configured to acquire a 2D coronary image of the blood vessel to be measured
  • the second construction unit 1220 is configured to construct a 3D blood vessel model according to the above-mentioned 2D coronary image
  • the fourth acquiring unit 1230 is configured to acquire the central arterial pressure of the blood vessel to be measured by using a non-invasive measurement method
  • the third construction unit 1240 is configured to construct the 3D coronary CFD model of the blood vessel to be measured at least according to the above-mentioned 3D blood vessel model and the above-mentioned central arterial pressure;
  • the third calculation unit 1250 is configured to calculate the wire-free CFR, the wire-free FFR and the wire-free IMR according to the above-mentioned 3D coronary artery CFD model.
  • the above-mentioned 2D coronary image may be a 2D coronary DSA image, and of course, may also be other types of 2D coronary images other than the 2D coronary DSA image.
  • the present disclosure has high efficiency, good robustness and good accuracy for the calculation of the functional indexes FFR/IMR/CFR of blood vessels in coronary DSA images, and can realize real-time 3D blood vessel analysis.
  • the central arterial pressure of the blood vessel to be measured can be acquired by means of non-invasive measurement such as ultrasonic detection, nuclear magnetic resonance detection, and a blood pressure measuring instrument capable of recording waveforms.
  • non-invasive measurement such as ultrasonic detection, nuclear magnetic resonance detection, and a blood pressure measuring instrument capable of recording waveforms.
  • the calculation results of CFR without guide wire, FFR without guide wire and IMR without guide wire are displayed in real time to realize visualization.
  • the present disclosure also has good processing capability, efficiency and precision for single or multiple coronary vascular trees.
  • the overall processing time for multiple vessels is less than 1 minute.
  • the third acquisition unit acquires a 2D coronary image of the blood vessel to be measured
  • the second construction unit constructs a 3D blood vessel model according to the 2D coronary image
  • the fourth acquisition unit acquires the central arterial pressure of the blood vessel to be measured by a non-invasive measurement method
  • the third The third construction unit constructs a 3D coronary CFD model according to at least the 3D blood vessel model and the central arterial pressure
  • the third calculation unit calculates the guidewireless CFR, the guidewireless FFR and the guidewireless IMR according to the 3D coronary artery CFD model.
  • the third calculation unit includes a fifth determination module, a third acquisition module, a third calculation module, a sixth determination module, a seventh determination module, and an eighth determination module
  • the fifth determination module is configured as According to the 3D blood vessel model in the resting state, the blood flow in the resting state is determined;
  • the third acquisition module is configured to obtain the blood flow in the hyperemia state;
  • the third calculation module is configured to obtain the blood flow in the resting state The blood flow in the above state is calculated, and the above-mentioned CFR without guide wire is calculated;
  • the sixth determination module is configured to apply the above-mentioned 3D coronary CFD model, and according to the blood flow in the above-mentioned hyperemia state, determine the pressure at the distal end of the blood vessel at the time of maximum hyperemia and the proximal end of the blood vessel at the time of maximum hyperemia.
  • the seventh determination module is configured to determine the FFR without the guide wire according to the pressure at the distal end of the blood vessel at the time of maximum hyperemia and the pressure at the proximal end of the blood vessel at the time of maximum hyperemia; the eighth determination module is configured to determine the FFR at the distal end of the blood vessel according to the above-mentioned maximum hyperemia
  • the pressure and the maximum congestive blood flow are used to determine the above-mentioned non-guide wire IMR, wherein the above-mentioned maximum congestive blood flow is the maximum value of the blood flow in the above-mentioned congested state.
  • the third construction unit includes a ninth determination module and a first construction module, the ninth determination module is configured to determine the pressure at the inlet of the blood vessel to be measured according to the central arterial pressure; the first construction module is It is configured to construct the 3D coronary artery CFD model in the hyperemia state of the blood vessel to be measured according to the 3D blood vessel model, the pressure at the entrance of the blood vessel to be measured, and the blood flow in the hyperemia state.
  • the 3D blood vessel model is obtained according to the 2D coronary image obtained in the resting state, the pressure at the entrance of the blood vessel to be measured is detected in the hyperemia state, and the constructed 3D coronary CFD model is the hyperemia state.
  • the guidewireless FFR and guidewireless IMR of the blood vessel were obtained from the 3D coronary CFD model in the hyperemic state.
  • the 3D coronary CFD model in the hyperemia state was used to determine the distal pressure of the blood vessel at the time of maximum hyperemia and the proximal pressure of the blood vessel at the time of maximum hyperemia.
  • the fourth acquisition unit includes a fourth acquisition module and a fourth calculation module, the fourth acquisition module is configured to acquire brachial artery pressure, radial artery pressure and carotid artery pressure by using the above-mentioned non-invasive measurement method; fourth The calculation module is configured to calculate the central arterial pressure based on at least one of the brachial artery pressure, the radial artery pressure, and the carotid artery pressure.
  • the brachial artery pressure waveform, the radial artery pressure waveform, and the carotid artery pressure waveform can be acquired by non-invasive measurement, and then the above-mentioned center is calculated according to at least one of the brachial artery pressure waveform, the radial artery pressure waveform, and the carotid artery pressure waveform.
  • the fourth acquisition unit includes a fifth acquisition module, a tenth determination module, a fifth calculation module, a sixth acquisition module, an eleventh determination module, a second update module, a twelfth determination module, and The thirteenth determination module
  • the fifth acquisition module is configured to acquire the parameter set of the blood vessel to be measured, the parameter set includes geometric information, arterial inlet flow, outlet boundary model and blood vessel elasticity model
  • the tenth determination module is configured to be based on the above The parameter set determines a one-dimensional fluid dynamics model
  • the fifth calculation module is configured to calculate the first pressure waveform at the measuring point according to the one-dimensional fluid dynamics model, and the measuring point includes the radial artery and the brachial artery
  • the sixth acquisition module is configured to The second pressure waveform at the measuring point is obtained by the above-mentioned non-invasive measurement method, and the above-mentioned non-invasive measurement method includes ultrasonic method and nuclear magnetic method
  • the eleventh determination module is configured to determine a target difference value
  • Both the first pressure waveform and the second pressure waveform in this embodiment are pressure waveforms in the time domain, that is, the first pressure waveform and the second pressure waveform include time series information, which is compared with the radial artery pressure or brachial artery pressure in the related art.
  • the arterial pressure is only a solution of a pressure value.
  • the solution of the present disclosure is a time series waveform, so that the determined The central arterial pressure is more accurate; it further ensures the accuracy of the functional indexes of the blood vessels to be measured.
  • the aforementioned 2D coronary images include 2D coronary images from different angles
  • the second construction unit includes an extraction module and a second construction module
  • the extraction module is configured to view the aforementioned 2D coronary images from different angles
  • a plurality of 2D target blood vessels are extracted from the image;
  • the second building module is configured to construct the above-mentioned 3D blood vessel model according to the plurality of above-mentioned 2D target blood vessels.
  • the number of 2D target blood vessels can be diverse, including a single blood vessel, multiple blood vessels, and the entire coronary system.
  • Reconstructing 3D blood vessel models according to 2D target blood vessels at different angles includes: 1) correcting the position of the 2D target blood vessel segmentation results at different angles relative to the position of the light source to obtain a projection image after light source correction; 2) constructing a space according to the number of light sources Surface area; 3) Intersecting multiple surface areas in 3D space, and obtaining the space convex hull is the initial 3D vessel model; 4) Obtaining the initial 3D vessel centerline, and calculating the radius of all points on the centerline; 5) Perform centerline expansion with a given radius of each point on the centerline to obtain an intermediate state blood vessel model; 6) use a smoothing algorithm to smooth the contour of the blood vessel to obtain the final reconstructed 3D blood vessel model.
  • the extraction module is further configured to extract the above-mentioned 2D target blood vessel from the above-mentioned 2D coronary image by adopting a centerline obtaining algorithm and a level set image segmentation algorithm.
  • the main steps of obtaining the segmentation result of the target 2D coronary artery target vessel are: 1) preprocessing the original image to generate a binarized image; 2) in the binarized image Automatically (such as position selection) or interactive selection to determine at least two endpoints of each vessel in the target vessel/vessel tree, including the first endpoint and the second endpoint; 3) Use the fast marching algorithm to extract in the binarized image The centerline of the target blood vessel from the first end point to the second end point; 4) Use the level set segmentation algorithm to segment the binarized image; 5) Standardize the segmented image, and obtain its corresponding distance image from the obtained image 6) Calculate the shortest distance from the point on the center line to the contour of the blood vessel by the distance image; 7) Carry out
  • the detection devices for the FFR without guide wire, IMR without guide wire and CFR without guide wire include a processor and a memory, the above-mentioned first acquisition unit, extraction unit, reconstruction unit, first calculation unit, second acquisition unit, determination unit, The first construction unit and the second calculation unit are stored in the memory as program units, and the processor executes the above program units stored in the memory to implement corresponding functions.
  • the processor includes a kernel, and the kernel calls the corresponding program unit from the memory.
  • the kernel can be set to one or more, and the non-invasive detection of CFR, FFR and IMR by DSA image-assisted technology can be realized by adjusting the kernel parameters.
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM), the memory including at least one memory chip.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • An embodiment of the present disclosure provides a computer-readable storage medium, where the computer-readable storage medium includes a stored program, wherein when the program runs, the device where the computer-readable storage medium is located is controlled to execute the guide wire-free Detection methods for FFR, wireless IMR, and wireless CFR.
  • An embodiment of the present disclosure provides a processor configured to run a program, wherein when the program runs, the detection method of the guidewireless FFR, the guidewireless IMR, and the guidewireless CFR is performed.
  • An embodiment of the present disclosure provides a device.
  • the device includes a processor, a memory, and a program stored in the memory and executable on the processor.
  • the processor executes the program, the processor implements at least the following steps: Step S101 , acquiring a 2D image of a blood vessel to be measured.
  • step S102 extracting 2D target blood vessels from the above 2D coronary DSA image; step S103, reconstructing a 3D blood vessel model according to the above 2D target blood vessel; step S104, calculating the CFR without guide wire according to the above 3D blood vessel model; step S105, using a non-invasive measurement method to obtain the central arterial pressure of the blood vessel to be measured; step S106, determining the pressure at the entrance of the blood vessel to be measured according to the central arterial pressure; step S107, according to the 3D blood vessel model and the entrance of the blood vessel to be measured. pressure, and construct the above-mentioned 3D coronary CFD model of the blood vessel to be measured; step S108, calculate the guidewire-free FFR and the guidewire-free IMR according to the above-mentioned 3D coronary CFD model.
  • the devices in this article can be servers, PCs, PADs, mobile phones, and so on.
  • the present disclosure also provides a computer program product, which, when executed on a data processing device, is suitable for executing a program initialized with at least the following method steps: step S101, acquiring a 2D coronary DSA image of the blood vessel to be measured; step S102, from A 2D target blood vessel is extracted from the above 2D coronary DSA image; step S103, a 3D blood vessel model is reconstructed according to the above 2D target blood vessel; step S104, a guidewire-free CFR is calculated according to the above 3D blood vessel model; step S105, a non-invasive measurement method is used to obtain the above Measure the central arterial pressure of the blood vessel; Step S106, determine the pressure at the entrance of the blood vessel to be measured according to the central arterial pressure; Step S107, construct the 3D image of the blood vessel to be measured according to the 3D blood vessel model and the pressure at the entrance of the blood vessel to be measured. Coronary artery CFD model; Step S108, calculate the guidewire-free FFR and the guidewire-free IMR according to
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps configured to implement the functions specified in a flow or flows of the flowcharts and/or a block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • the method for detecting FFR without guide wire, IMR without guide wire and CFR without guide wire of the present disclosure realizes the quantitative acquisition of CFR without guide wire from DSA images; the central arterial pressure of the blood vessel to be measured is obtained by non-invasive measurement , and then determine the pressure at the entrance of the blood vessel to be measured according to the central arterial pressure, and then construct the 3D coronary CFD model of the blood vessel to be measured according to the 3D blood vessel model and the pressure at the entrance of the blood vessel to be measured, and finally calculate the non-conductive CFD model according to the 3D coronary CFD model.
  • Wire FFR and wire-free IMR realize the non-invasive detection of CFR, FFR and IMR using DSA image-assisted technology.
  • the present disclosure has high efficiency, good robustness and good accuracy for the calculation of the functional indexes FFR/IMR/CFR of blood vessels in coronary DSA images, and can realize real-time 3D blood vessel analysis.
  • the detection device for FFR without guide wire, IMR without guide wire and CFR without guide wire of the present disclosure realizes the non-invasive detection of CFR, FFR and IMR using DSA image-assisted technology.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Hematology (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法,包括:获取待测量血管的2D冠脉DSA影像(S101);从2D冠脉DSA影像中提取出2D目标血管(S102);根据2D目标血管重建3D血管模型(S103);根据3D血管模型计算无导丝CFR(S104);利用无创测量法获取待测量血管的中心动脉压(S105);根据中心动脉压确定待测量血管的入口处压力(S106);根据3D血管模型和待测量血管的入口处压力,构建待测量血管的3D冠脉CFD模型(S107);根据3D冠脉CFD模型计算无导丝FFR和无导丝IMR(S108)。该方法实现了采用DSA影像辅助技术对CFR、FFR和IMR的无创检测。

Description

无导丝FFR、无导丝IMR和无导丝CFR的检测方法
本公开要求于2021年03月12日提交中国专利局、申请号为202110269801.8、申请名称“无导丝FFR、无导丝IMR和无导丝CFR的检测方法”的中国专利申请的优先权,以及要求于2021年06月02日提交中国专利局、申请号为202110615301.5,申请名称“无导丝FFR、无导丝IMR和无导丝CFR的检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及冠状动脉生理学领域,具体而言,涉及一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法、装置、计算机可读存储介质与处理器。
背景技术
目前FFR、IMR和CFR的主要临床获取手段为有创的用压力导丝在目标血管内指定位置进行单点测量。有创测量的方法测量的效率较低且容易对被测对象造成伤害。
公开内容
本公开至少一个实施例,提供了一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法,包括:获取待测量血管的2D冠脉DSA影像;从所述2D冠脉DSA影像中提取出2D目标血管;根据所述2D目标血管重建3D血管模型;根据所述3D血管模型计算无导丝CFR;利用无创测量法获取所述待测量血管的中心动脉压;根据所述中心动脉压确定所述待测量血管的入口处压力;根据所述3D血管模型和所述待测量血管的入口处压力,构建所述待测量血管的3D冠脉CFD模型;根据所述3D冠脉CFD模型计算无导丝FFR和无导丝IMR。
可选地,利用无创测量法获取所述待测量血管的中心动脉压,包括:利用所述无创测量法获取肱动脉压力、桡动脉压力和颈动脉压力;根据所述肱动脉压力、所述桡动脉压力和所述颈动脉压力中的至少一个,计算出所述中心动脉压。
可选地,利用无创测量法获取所述待测量血管的中心动脉压,包括:获取所述待测量血管的参数集合,所述参数集合包括几何信息、动脉入口流量、出口边界模型和血管弹性模型;根据所述参数集合确定一维流体力学模型;根据所述一维流体力学模型计算测点处的第一压力波形,所述测点包括桡动脉和肱动脉;利用所述无创测量法获取所述测点处的第二压力波形,所述无创测量法包括超声波法和核磁法;确定目标差值,所述目标差值为所述第一压力波形与所述第二压力波形的差值;在所述目标差值大于或者等于预定值的情况下,对所述参数集合中的各参数进行更新,直到所述目标差值小于所述预定值;根据更新后的所述参数集合,确定优化后的一维流体力学模型;基于优化后的一维流体力学模型确定所述中心动脉压。
可选地,所述2D冠脉DSA影像包括静息状态下的DSA影像和充血状态下的DSA影像,根据所述3D血管模型计算无导丝CFR,包括:根据所述3D血管模型的体积变化率计算静息状态下血流量和充血状态下血流量;根据所述静息状态下血流量和所述充血状态下血流量,计算无导丝CFR。
可选地,所述2D冠脉DSA影像包括不同角度下的DSA影像,根据所述2D目标血管重建3D血管模型包括:根据不同角度下的多个所述2D目标血管重建所述3D血管模型。
可选地,根据所述3D冠脉CFD模型计算无导丝FFR和无导丝IMR,包括:根据所述3D冠脉CFD模型计算所述待测量血管内各点的压力值;至少根据所述压力值计算所述无导丝FFR和所述无导丝IMR。
可选地,从所述2D冠脉DSA影像中提取出2D目标血管,包括:采用中心线求取算法和水平集图像分割算法,从所述2D冠脉DSA影像中提取出所述2D目标血管。
本公开至少一个实施例提供了一种无导丝FFR、无导丝IMR和无导丝CFR的检测装置,包括:第一获取单元,被配置为获取待测量血管的2D冠脉DSA影像;提取单元,被配置为从所述2D冠脉DSA影像中提取出2D目标血管;重建单元,被配置为根据所述2D目标血管重建3D血管模型;第一计算单元,被配置为根据所述3D血管模型计算无导丝CFR;第二获取单元,被配置为利用无创测量法获取所述待测量血管的中心动脉压;确定单元,被配置为根据所述中心动脉压确定所述待测量血管的入口处压力;第一构建单元,被配置为根据所述3D血管模型和所述待测量血管的入口处压力,构建所述待测量血管的3D冠脉CFD模型;第二计算单元,被配置为根据所述3D冠脉CFD模型计算无导丝FFR和无导丝IMR。
本公开至少一个实施例提供了一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法,包括:获取待测量血管的2D冠脉影像;根据所述2D冠脉影像构建3D血管模型;利用无创测量法获取所述待测量血管的中心动脉压;至少根据所述3D血管模型和所述中心动脉压,构建所述待测量血管的3D冠脉CFD模型;根据所述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR。
可选地,根据所述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR,包括:根据静息状态下的3D血管模型,确定静息状态下血流量;获取充血状态下血流量;根据所述静息状态下血流量和所述充血状态下血流量,计算所述无导丝CFR;应用所述3D冠脉CFD模型,根据所述充血状态下血流量,确定最大充血时血管远端压力和最大充血时血管近端压力;根据所述最大充血时血管远端压力和所述最大充血时血管近端压力,确定所述无导丝FFR;根据所述最大充血时血管远端压力和最大充血血流量,确定所述无导丝IMR,其中,所述最大充血血流量为所述充血状态下血流量的最大值。
可选地,至少根据所述3D血管模型和所述中心动脉压,构建所述待测量血管的3D冠脉CFD模型,包括:根据所述中心动脉压确定所述待测量血管的入口处压力;根据所述3D血管模型、所述待测量血管的入口处压力和所述充血状态下血流量,构建所述待测量血管充血状态下的3D冠脉CFD模型。
可选地,利用无创测量法获取所述待测量血管的中心动脉压,包括:利用所述无创测量法获取肱动脉压力、桡动脉压力和颈动脉压力;根据所述肱动脉压力、所述桡动脉压力和所述颈动脉压力中的至少一个,计算出所述中心动脉压。
可选地,利用无创测量法获取所述待测量血管的中心动脉压,包括:获取所述待测量血管的参数集合,所述参数集合包括几何信息、动脉入口流量、出口边界模型和血管弹性模型;根据所述参数集合确定一维流体力学模型;根据所述一维流体力学模型计算测点处的第一压力波形,所述测点包括桡动脉和肱动脉;利用所述无创测量法获取所述测点处的第二压力波形,所述无创测量法包括超声波法和核磁法;确定目标差值,所述目标差值为所述第一压力波形与所述第二压力波形的差值;在所述目标差值大于或者等于预定值的情况下,对所述参数集合中的各参数进行更新,直到所述目标差值小于所述预定值;根据更新后的所述参数集合,确定优化后的一维流体力学模型;基于优化后的一维流体力学模型确定所述中心动脉压。
可选地,所述2D冠脉影像包括不同角度下的2D冠脉影像,根据所述2D冠脉影像构建3D血管模型,包括:从不同角度下的所述2D冠脉影像中提取出多个2D目标血管;根据多个所述2D目标血管构建所述3D血管模型。
可选地,从所述2D冠脉影像中提取出2D目标血管,包括:采用中心线求取算法和水平集图像分割算法,从所述2D冠脉影像中提取出所述2D目标血管。
本公开至少一个实施例提供了一种无导丝FFR、无导丝IMR和无导丝CFR的检测装置,包括:第三获取单元,被配置为获取待测量血管的2D冠脉影像;第二构建单元,被配置为根据所述2D冠脉影像构建3D血管模型;第四获取单元,被配置为利用无创测量法获取所述待测量血管的中心动脉压;第三构建单元,被配置为至少根据所述3D血管模型和所述中心动脉压,构建所述待测量血管的3D冠脉CFD模型;第三计算单元,被配置为根据所述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR。
本公开至少一个实施例提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机可读存储介质所在设备执行任意一种所述的无导丝FFR、无导丝IMR和无导丝CFR的检测方法。
本公开至少一个实施例提供了一种处理器,所述处理器被配置为运行程序,其中,所述程序运行时执行任意一种所述的无导丝FFR、无导丝IMR和无导丝CFR的检测方法。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明被配置为解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测方法流程图;
图2示出了根据本公开的实施例的不同时刻同一血管3D模型的体积变化示意图;
图3示出了根据本公开的实施例的根据不同角度下的两个2D目标血管重建3D血管模型的原理图;
图4示出了根据本公开的实施例的从上述2D冠脉DSA影像中提取出2D目标血管的原理图;
图5示出了根据本公开的实施例的55段人体动脉网络示意图;
图6示出了根据本公开的实施例的Tube-Load模型;
图7示出了根据本公开的实施例的血管模型入口压力与流量曲线图;
图8示出了根据本公开的实施例的FFR/IMR计算结果显示图;
图9示出了根据本公开的实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测装置示意图;
图10示出了根据本公开的实施例的中心动脉压波形图;
图11示出了根据本公开的实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测方法流程图;
图12示出了根据本公开的实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测装置示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是被配置为区别类似的对象,而不必被配置为描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。而且,在说明书以及权利要求书中,当描述有元件“连接”至另一元件时,该元件可“直接连接”至该另一元件,或者通过第三元件“连接”至该另一元件。
正如背景技术中所介绍的,相关技术中无法采用DSA影像辅助技术实现对FFR/IMR/CFR的无创检测,为解决如上无法采用DSA影像辅助技术实现对FFR/IMR/CFR的无创检测的问题,本公开的实施例提供了一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法、装置、计算机可读存储介质与处理器。
本公开的一些实施例,提供了一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法。
图1是根据本公开实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测方法的流程图。如图1所示,该方法包括以下步骤:
步骤S101,获取待测量血管的2D冠脉DSA影像;
步骤S102,从上述2D冠脉DSA影像中提取出2D目标血管;
步骤S103,根据上述2D目标血管重建3D血管模型;
步骤S104,根据上述3D血管模型计算无导丝CFR;
步骤S105,利用无创测量法获取上述待测量血管的中心动脉压;
步骤S106,根据上述中心动脉压确定上述待测量血管的入口处压力;
步骤S107,根据上述3D血管模型和上述待测量血管的入口处压力,构建上述待测量血管的3D冠脉CFD模型;
步骤S108,根据上述3D冠脉CFD模型计算无导丝FFR和无导丝IMR。
具体地,2D目标血管的数量可以是多样的,包括单根血管、多根血管以及整个冠脉系统;
具体地,可以通过超声波检测、核磁检测以及能记录波形的血压测量仪器等无创测量的方式获取待测量血管的中心动脉压。
具体地,对无导丝CFR、无导丝FFR和无导丝IMR的计算结果进行实时显示,实现可视化。且本公开至少一个实施例对于单根或多根的冠脉血管树同样有很好的处理能力、效率以及精度。对于多根血管整体处理时间小于1分钟。
本公开至少一个实施例中,通过获取待测量血管的2D冠脉DSA影像,再从2D冠脉DSA影像中提取出2D目标血管,再根据2D目标血管重建3D血管模型,进而根据3D血管模型计算无导丝CFR,至少实现了根据从DSA影像中定量获取无导丝CFR;利用无创测量法获取待测量血管的中心动脉压,进而根据中心动脉压确定待测量血管的入口处压力,再根据3D血管模型和待测量血管的入口处压力,构建待测量血管的3D冠脉CFD模型,最后根据3D冠脉CFD模型计算无导丝FFR和无导丝IMR,至少实现了采用DSA影像辅助技术对CFR、FFR和IMR的无创检测。本公开的实施例至少对于冠脉DSA影像中血管的功能性指标FFR/IMR/CFR的计算具有很高的效率,很好的鲁棒性以及很好的准确度,可实现即时3D血管分析。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本公开的一些实施例中,利用无创测量法获取上述待测量血管的中心动脉压,包括:利用上述无创测量法获取肱动脉压力、桡动脉压力和颈动脉压力;根据上述肱动脉压力、上述桡动脉压力和上述颈动脉压力中的至少一个,计算出上述中心动脉压。具体地,可以采用无创测量的方式获取肱动脉压力波形、桡动脉压力波形和颈动脉压力波形,进而根据肱动脉压力波形、桡动脉压力波形和颈动脉压力波形中的至少一个,计算出上述中心动脉压,以获取精确的中心动脉压。
本公开的一些实施例中,利用无创测量法获取上述待测量血管的中心动脉压,包括:获取上述待测量血管的参数集合,上述参数集合包括几何信息、动脉入口流量、出口边界模型和血管弹性模型;根据上述参数集合确定一维流体力学模型;根据上述一维流体力学模型计算测点处的第一压力波形,上述测点包括桡动脉和肱动脉;利用上述无创测量法获取上述测点处的第二压力波形,上述无创测量法包括超声波法和核磁法;确定目标差值,上述目标差值为上述第一压力波形与上述第二压力波形的差值;在上述目标差值大于或者等于预定值的情况下,对上述参数集合中的各参数进行更新,直到上述目标差值小于上述预定值;根据更新后的上述参数集合,确定优化后的一维流体力学模型;基于优化后的一维流体力学模型确定上述中心动脉压。本实施例中的第一压力波形和第二压力波形均是在时域内的压力波形,即第一压力波形和第二压力波形包含了时序信息,相较于相关技术中的桡动脉压力或者肱动脉压力仅仅是一个压力值的方案,相较于相关技术中的采用常用的经验公式得到一个平均动脉压的方式(准确度与时序无关),本公开的方案由于是时序的波形,使得所确定的中心动脉压更为准确;进一步地保证了待测量血管的功能学指标的准确。另外,通过不断地调整参数集合中的各参数,直到目标差值小于上述预定值,在目标差值较小的情况下确定此时的一维流体力学模型更接近与真实的血管流体力学模型,所以基于上述优化后的一维流体力学模型确定上述中心动脉压更为准确。
本公开的一种可选的实施例中,获取待测量血管的几何信息包括:建立例如55段人体动 脉网络结构(55段人体动脉网络结构如图5所示),根据55段人体动脉网络结构确定初始的网络结构参数,初始的网络结构参数包括血管的长度,半径等几何信息。55段人体动脉几何信息如表1所示。
表1 55段人体动脉几何信息
编号 动脉名称 长度(cm) 近端半径(cm) 远端半径(cm)
1 Ascending aorta 4 1.525 1.42
2 Aortic arch 3 1.42 1.342
3 Brachiocephalic 4 0.95 0.7
4,15 R+L Subclavian 4 0.425 0.407
5,11 R+L Com.carotid 17 0.525 0.4
6,16 R+L Vertebral 14 0.2 0.2
7,17 R+L Brachial 40 0.407 0.25
8,19 R+L Radial 22 0.175 0.175
9,18 R+L Ulnar 22 0.175 0.175
10 Aortic arch 4 1.342 1.246
12 Thoracic aorta 6 1.246 1.124
13 Thoracic aorta 11 1.124 0.924
14 Intercostals 7 0.63 0.5
20 Celiac axis 2 0.35 0.3
21 Hepatic 2 0.3 0.25
22 Hepatic 7 0.275 0.25
23 Gastric 6 0.175 0.15
24 Splenic 6 0.2 0.2
25 Abdominal aorta 5 0.924 0.838
26 Superior mesenteric 5 0.4 0.35
27 Abdominal aorta 2 0.838 0.814
28,30 R+L Renal 3 0.275 0.275
29 Abdominal aorta 2 0.814 0.792
31 Abdominal aorta 13 0.792 0.627
32 Inferior mesenteric 4 0.2 0.175
33 Abdominal aorta 8 0.627 0.55
34,47 R+L External iliac 6 0.4 0.37
35,48 R+L Femoral 15 0.37 0.314
36,49 R+L Internal iliac 5 0.2 0.2
37,50 R+L Deep femoral 11 0.2 0.2
38,51 R+L Femoral 44 0.314 0.2
39,40,52,53 R+L Ext.+Int.carotid 16 0.275 0.2
41,54 R+L Post.tibial 32 0.125 0.125
42,55 R+L Ant.tibial 32 0.125 0.125
43,46 R+L Interosseous 7 0.1 0.1
44,45 R+L Ulnar 17 0.2 0.2
本公开的一种可选的实施例中,获取待测量血管的动脉入口流量包括:确定动脉树入口处一个完整心跳周期内的流量-时间关系,根据流量-时间关系确定待测量血管的动脉入口流量。其中,可以通过大量数据的拟合关系确定流量-时间关系,也就是说获取动脉树入口处的多个流量,在时间域上对多个流量进行拟合,得到一个完整心跳周期内的流量-时间关系;也可以通过超声波检测或者核磁检测等无创测量的方式获取一个完整心跳周期内的流量-时间关系。
本公开的一种可选的实施例中,获取待测量血管的出口边界模型包括:估算动脉树出口处各截断血管基于电路模型的阻抗、容抗等参数,根据阻抗、容抗等参数确定待测量血管的出口边界模型。
本公开的一种可选的实施例中,获取待测量血管的血管弹性模型包括:基于三维不可压流纳维-斯托克斯(NS)方程构造一维血流动力学控制方程:
Figure PCTCN2022080454-appb-000001
Figure PCTCN2022080454-appb-000002
其中,A是血管横截面积,q是血液流量,ν是运动粘性,δ为边界层厚度,r 0为血管未变形时的半径,压力p通过基于弹性模型的状态方程
Figure PCTCN2022080454-appb-000003
计算,p 0,A 0分别是血管未变形时的压力和横截面积,E表示血管壁的杨氏模量,h表示血管壁厚度,其中,根据血管的半径确定血管横截面积,根据动脉树入口处一个完整心跳周期内的流量-时间关系确定血液流量。
具体地,功能学指标的计算中,血管内动脉压力是必不可少的参数,而动脉压力相关参数来源于心脏功能指标。传统的做法是通过统计学意义下的经验公式,得到平均动脉压(MAP),根据平均动脉压(MAP)估算FFR等参数,例如,经验公式为:
Figure PCTCN2022080454-appb-000004
其中,HR、SBP、DBP分别表示患者的心率、心脏收缩血压、心脏舒张血压。而该经验公式并不能完全反映患者特异化的生理参数。而一维计算流体力学的方法,通过建立人体的动脉树,基于无创测量的上肢动脉校正一维计算流体力学模型中与患者相关的参数。如此往复不断调整这些患者特异化参数,对当前患者能得到一个最优的模型。从而从该模型出发计算出中心动脉压,能更准确计算出压力相关参数。另一方面,这种方法能获得一个心跳周期内完整的中心动脉压力波形,如图10所示,而不仅是高低压、平均压。这对瞬态的CFD仿真非常有利,能提供一个周期内的完整压力边界条件。
本公开至少一个实施例中,一维血流动力学控制方程,还可以表示为如下形式:
Figure PCTCN2022080454-appb-000005
Figure PCTCN2022080454-appb-000006
其中α是Coriolis系数,μ是是动力粘性,γ v是定义速度径向分布的参数。在α=1时,
方程还可以写为A,u的形式:
Figure PCTCN2022080454-appb-000007
其中,u是轴向速度。
基于弹性模型的状态方程还可以写为:
Figure PCTCN2022080454-appb-000008
其中v是泊松比。
另外状态方程还有基于黏弹性模型的形式:
Figure PCTCN2022080454-appb-000009
其中γ s是黏弹性系数。
当然,一维血流动力学控制方程和状态方程还有其他一些形式,不局限于这里列举的情形。
本公开的一些实施例中,上述2D冠脉DSA影像包括静息状态下的DSA影像和充血状态下的DSA影像,根据上述3D血管模型计算无导丝CFR,包括:根据上述3D血管模型的体积变化率计算静息状态下血流量和充血状态下血流量;根据上述静息状态下血流量和上述充血状态下血流量,计算无导丝CFR。
本公开至少一个实施例中,计算无导丝CFR的具体方式是:根据不同角度下的静息状态下的DSA影像,构建静息状态下的3D血管模型;获取时间上连续的一组静息状态下的冠脉血管3D模型;通过计算连续两个时刻3D血管模型的体积变化率来计算静息状态下血流量(对于连续拍摄所得DSA影像,相邻两帧之间的血管体积(充血量)的变化量除以两帧间时间间隔即为该时间段内的血流量);根据不同角度下的充血状态下的DSA影像,构建充血状态下的3D血管模型;获取时间上连续的一组充血状态下的冠脉血管3D模型;通过计算连续两个时刻3D血管模型的体积变化率来计算充血状态下血流量;无导丝CFR为最大充血状态下血流量与静息状态下血流量的比值。如图2所示,图2A、图2B、图2C为一根血管在不同时刻所得3D模型,对图中模型求体积变化量,除以两张图间隔时间得到该血管在该时刻的血流量,图2A1和图2A2是图2A对应的2D轮廓,图2B1和图2B2是图2B对应的2D轮廓,图2C1和图2C2是图2C对应的2D轮廓。
本公开的一些实施例中,上述2D冠脉DSA影像包括不同角度下的DSA影像,根据上述2D目标血管重建3D血管模型包括:根据不同角度下的多个上述2D目标血管重建上述3D血管模型。从不同角度下的2D血管重建3D血管的方法包括:1)对不同角度下的2D血管分割结果相对光源位置进行位置校正,获取光源矫正后的投影图像;2)根据光源个数构造空间曲面区域;3)将多个曲面区域在3D空间内相交,得到空间凸包即为初始三维血管模型;4)获取初始三维血管中心线,并计算中心线上全部点处的半径大小;5)以中心线上每个点的给定半径进行中心线扩张得到中间状态血管模型;6)使用平滑算法平滑血管轮廓,得到重构出的最终3D血管模型。对于两个不同角度下的2D目标血管进行三维重构方法如图3所示。对不同角度下的2D血管分割结果C2’进行相对光源位置的位置校正,获取光源矫正后的投影图像C2。根据光源个数构造空间曲面区域(图3中阴影部分)。将多个曲面区域在3D空间内相交,得到空间凸包(图中vessel)。获取三维血管中心线,并计算中心线上全部点处的半径大小。以中心线上每个点的给定半径进行中心线扩张得到初始血管模型。使用平滑算法平滑血管轮廓,得到重构出的3D血管模型。不同角度下2D血管轮廓如图3B1、图3B2所示,最终重建结果如图3B3。
本公开的一些实施例中,根据上述3D冠脉CFD模型计算无导丝FFR和无导丝IMR,包括:根据上述3D冠脉CFD模型计算上述待测量血管内各点的压力值;至少根据上述压力值计算上述无导丝FFR和上述无导丝IMR。
本公开的一种具体的实施方式中,计算无导丝FFR和上述无导丝IMR的具体的方式是:结合3D血管模型、充血状态下的血流量以及血管入口压力,对3D冠脉CFD模型进行数值求解以获取血管内各点在血管充血状态下的压力值;根据定义FFR=最大充血时血管远端压力Pd/最大充血时血管近端压力Pa以及IMR=最大充血时血管远端压力Pd/最大充血血流量,计算冠脉各点FFR/IMR值。具体地,对FFR与IMR求解采用同一个稳态求解器,冠脉血管的边界条件为入口压力给定、出口流量给定和血管壁用无滑移壁面。CFD模型的入口压力边界以及出口流量边界如图7所示。FFR与IMR计算均基于充血状态下CFD求解所得血管内各点压力值Pd。图8为含有一个分叉点以及两根子血管的3D模型CFD结果。FFR/IMR显示:计算所得FFR/IMR显示在图8的3D模型上。如图所示,图8中分别展示目标血管内各点对应的FFR与IMR值。相对于有创测量时测量点数量的局限性,本公开的结果可以显示血管内所有位置的参数值。
本公开的一些实施例中,从上述2D冠脉DSA影像中提取出2D目标血管,包括:采用中心线求取算法和水平集图像分割算法,从上述2D冠脉DSA影像中提取出上述2D目标血管。图4展示DSA影像2D血管提取的过程。对图4A利用水平集算法进行图像分割得到全图分割结果如图4B所示。在图4A原图基础上利用快速行进算法得到目标血管中心线如图4C所示。结合全图分割结果与目标血管中心线,对中心线进行扩张得到最终目标血管如图4D所示。结合血管中心线求取和水平集图像分割算法,获取目标2D冠脉目标血管的分割结果的主要步骤包括:1)对原始图像进行预处理,生成二值化图像;2)在二值化图像上自动(如位置选择)或者交互式选取确定目标血管/血管树中每根血管的至少两个端点,包括第一端点和第二端点;3)利用快速行进算法在二值化图像中提取从第一端点到第二端点的目标血管中心线;4)利用水平集分割算法对二值化图像进行分割;5)对分割图像进行标准化处理,并对所得图像求取其对应的距离图像;6)通过距离图像计算中心线上点到血管轮廓的最短距离;7)对血管中心线进行以各点对应的最短距离的膨胀扩张操作,得到目标血管形状模型;8)对分割结果与血管形状模型以特定权重进行求和获取最终目标血管。
本公开的一些实施例中,根据上述肱动脉压力、上述桡动脉压力和上述颈动脉压力中的至少一个,计算出中心动脉压,包括:根据上述肱动脉压力、上述桡动脉压力和上述颈动脉压力中的至少一个,采用传递函数方法、一维血流动力学方法或者Tube-Load方法,计算出上述中心动脉压。
具体地,采用传递函数方法的具体步骤包括:1)采集颈动脉压力波形和肱(桡)动脉压力波形集合;2)基于自回归外生模型构造从桡动脉至颈动脉个人传递函数y(t)+a 1y(t-1)+…+a nay(t-na)=b 1u(t-nk)+…+b nbu(t-nb-nk+1)+e(t),其中na,nb是模型的阶次,nk是模型的时延,e(t)是白噪声扰动,u(t)是输入的桡动脉压力,y(t)是输出的颈动脉压力;3)在所有测量的数据集中对个人传递函数求平均,最终得到通用传递函数(广义传递函数),将该通用传递函数作用于临床测量的肱动脉血压波形即可得到中心动脉压波形。
具体地,Tube-Load方法的具体步骤包括:1)建立如图6所示的Tube-Load模型,其中p c(t)是中心动脉压随时间变化的压力,T d是脉搏波从中心动脉入口处传播到测量点(桡动脉)的传播时间,Z c是动脉的特征阻抗,R是外周阻力;2)根据公式
Figure PCTCN2022080454-appb-000010
计算脉搏 波反射系数;3)依据T d,Γ的生理范围,也就是T d∈[0,0.15](单位:秒),Γ∈[0,1],以间隔ΔT d=5×10 -3,ΔΓ=5×10 -2生成(T d,Γ)对;4)测量肱动脉或桡动脉处随时间变化的压力波形p r(t);5)通过公式T-0.4(1-e -2T)计算中心动脉压波形对应的舒张期区间,其中T=60/HR,HR是每分钟心跳次数;6)每一个(T d,Γ)对,根据公式
Figure PCTCN2022080454-appb-000011
计算对应的中心动脉压波形,并通过低通滤波器平滑;7)对每对(T d,Γ)所计算平滑后的中心动脉压波形,舒张期区间对应的压力进行对数变换,并通过线性回归拟合直线,记录所有(T d,Γ)对的拟合误差;8)拟合误差最小的中心动脉压波形即为最终所求波形。
本公开实施例还提供了一种无导丝FFR、无导丝IMR和无导丝CFR的检测装置,需要说明的是,本公开实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测装置可以被配置为执行本公开实施例所提供的被配置为无导丝FFR、无导丝IMR和无导丝CFR的检测方法。以下对本公开实施例提供的无导丝FFR、无导丝IMR和无导丝CFR的检测装置进行介绍。
图9是根据本公开实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测装置的示意图。如图9所示,该装置包括:
第一获取单元10,被配置为获取待测量血管的2D冠脉DSA影像;
提取单元20,被配置为从上述2D冠脉DSA影像中提取出2D目标血管;
重建单元30,被配置为根据上述2D目标血管重建3D血管模型;
第一计算单元40,被配置为根据上述3D血管模型计算无导丝CFR;
第二获取单元50,被配置为利用无创测量法获取上述待测量血管的中心动脉压;
确定单元60,被配置为根据上述中心动脉压确定上述待测量血管的入口处压力;
第一构建单元70,被配置为根据上述3D血管模型和上述待测量血管的入口处压力,构建上述待测量血管的3D冠脉CFD模型;
第二计算单元80,被配置为根据上述3D冠脉CFD模型计算无导丝FFR和无导丝IMR。
具体地,2D目标血管的数量可以是多样的,包括单根血管、多根血管以及整个冠脉系统;
具体地,可以通过超声波检测、核磁检测以及能记录波形的血压测量仪器等无创测量的方式获取待测量血管的中心动脉压。
上述方案中,第一获取单元获取待测量血管的2D冠脉DSA影像,提取单元从2D冠脉DSA影像中提取出2D目标血管,重建单元根据2D目标血管重建3D血管模型,第一计算单元根据3D血管模型计算无导丝CFR,实现了根据从DSA影像中定量获取无导丝CFR;第二获取单元利用无创测量法获取待测量血管的中心动脉压,确定单元根据中心动脉压确定待测量血管的入口处压力,第一构建单元根据3D血管模型和待测量血管的入口处压力,构建待测量血管的3D冠脉CFD模型,第二计算单元根据3D冠脉CFD模型计算无导丝FFR和无导丝IMR,至少实现了采用DSA影像辅助技术对CFR、FFR和IMR的无创检测。
本公开的一些实施例中,第二获取单元包括第一获取模块和第一计算模块,第一获取模块被配置为利用上述无创测量法获取肱动脉压力、桡动脉压力和颈动脉压力;第一计算模块被配置为据上述肱动脉压力、上述桡动脉压力和上述颈动脉压力中的至少一个,计算出上述中心动脉压。具体地,可以采用无创测量的方式获取肱动脉压力波形、桡动脉压力波形和颈动脉压力波形,进而根据肱动脉压力波形、桡动脉压力波形和颈动脉压力波形中的至少一个,计算出上述中心动脉压,以获取精确的中心动脉压。
本公开的一些实施例中,第二获取单元包括第二获取模块、第一确定模块、第二计算模块、第三获取模块、第二确定模块、第一更新模块、第三确定模块和第四确定模块,第二获取模块被配置为获取上述待测量血管的参数集合,上述参数集合包括几何信息、动脉入口流量、出口边界模型和血管弹性模型;第一确定模块被配置为根据上述参数集合确定一维流体力学模型;第二计算模块被配置为根据上述一维流体力学模型计算测点处的第一压力波形,上述测点包括桡动脉和肱动脉;第三获取模块被配置为利用上述无创测量法获取上述测点处的第二压力波形,上述无创测量法包括超声波法和核磁法;第二确定模块被配置为确定目标差值,上述目标差值为上述第一压力波形与上述第二压力波形的差值;第一更新模块被配置为在上述目标差值大于或者等于预定值的情况下,对上述参数集合中的各参数进行更新,直到上述目标差值小于上述预定值;第三确定模块被配置为根据更新后的上述参数集合,确定优化后的一维流体力学模型;第四确定模块被配置为基于优化后的一维流体力学模型确定上述中心动脉压。本实施例中的第一压力波形和第二压力波形均是在时域内的压力波形,即第一压力波形和第二压力波形包含了时序信息,相较于相关技术中的桡动脉压力或者肱动脉压力仅仅是一个压力值的方案,相较于相关技术中的采用常用的经验公式得到一个平均动脉压的方式(准确度与时序无关),本公开的方案由于是时序的波形,使得所确定的中心动脉压更为准确;进一步地保证了待测量血管的功能学指标的准确。另外,通过不断地调整参数集合中的各参数,直到目标差值小于上述预定值,在目标差值较小的情况下确定此时的一维流体力学模型更接近与真实的血管流体力学模型,所以基于上述优化后的一维流体力学模型确定上述中心动脉压更为准确。
本公开的一些实施例中,上述2D冠脉DSA影像包括静息状态下的DSA影像和充血状态下的DSA影像,第一计算单元还被配置为根据上述3D血管模型的体积变化率计算静息状态下血流量和充血状态下血流量;根据上述静息状态下血流量和上述充血状态下血流量,计算无导丝CFR。
本公开的一些实施例中,上述2D冠脉DSA影像包括不同角度下的DSA影像,重建单元还被配置为根据不同角度下的多个上述2D目标血管重建上述3D血管模型。从不同角度下的2D血管重建3D血管的方法包括:1)对不同角度下的2D血管分割结果相对光源位置进行位置校正,获取光源矫正后的投影图像;2)根据光源个数构造空间曲面区域;3)将多个曲面区域在3D空间内相交,得到空间凸包即为初始三维血管模型;4)获取初始三维血管中心线,并计算中心线上全部点处的半径大小;5)以中心线上每个点的给定半径进行中心线扩张得到中间状态血管模型;6)使用平滑算法平滑血管轮廓,得到重构出的最终3D血管模型。
本公开的一些实施例中,第二计算单元还被配置为根据上述3D冠脉CFD模型计算上述待测量血管内各点的压力值;至少根据上述压力值计算上述无导丝FFR和上述无导丝IMR。
本公开的一些实施例中,提取单元还被配置为采用中心线求取算法和水平集图像分割算法,从上述2D冠脉DSA影像中提取出上述2D目标血管。结合血管中心线求取和水平集图像分割算法,获取目标2D冠脉目标血管的分割结果的主要步骤包括:1)对原始图像进行预处理,生成二值化图像;2)在二值化图像上自动(如位置选择)或者交互式选取确定目标血管/血管树中每根血管的至少两个端点,包括第一端点和第二端点;3)利用快速行进算法在二值 化图像中提取从第一端点到第二端点的目标血管中心线;4)利用水平集分割算法对二值化图像进行分割;5)对分割图像进行标准化处理,并对所得图像求取其对应的距离图像;6)通过距离图像计算中心线上点到血管轮廓的最短距离;7)对血管中心线进行以各点对应的最短距离的膨胀扩张操作,得到目标血管形状模型;8)对分割结果与血管形状模型以特定权重进行求和获取最终目标血管。
根据本公开的实施例,提供了一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法。
图11是根据本公开实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测方法的流程图。如图11所示,该方法包括以下步骤:
步骤S1101,获取待测量血管的2D冠脉影像;
步骤S1102,根据上述2D冠脉影像构建3D血管模型;
步骤S1103,利用无创测量法获取上述待测量血管的中心动脉压;
步骤S1104,至少根据上述3D血管模型和上述中心动脉压,构建上述待测量血管的3D冠脉CFD模型;
步骤S1105,根据上述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR。
具体地,上述2D冠脉影像可以为2D冠脉DSA影像,当然,也可以为除2D冠脉DSA影像以外的其他类型的2D冠脉影像。本公开对于冠脉DSA影像中血管的功能性指标FFR/IMR/CFR的计算具有很高的效率,很好的鲁棒性以及很好的准确度,可实现即时3D血管分析。
可选地,可以通过超声波检测、核磁检测以及能记录波形的血压测量仪器等无创测量的方式获取待测量血管的中心动脉压。
具体地,对无导丝CFR、无导丝FFR和无导丝IMR的计算结果进行实时显示,实现可视化。且本公开对于单根或多根的冠脉血管树同样有很好的处理能力、效率以及精度。对于多根血管整体处理时间小于1分钟。
上述方案中,通过获取待测量血管的2D冠脉影像,然后根据2D冠脉影像构建3D血管模型,通过无创测量法获取待测量血管的中心动脉压,至少根据3D血管模型和中心动脉压,构建3D冠脉CFD模型,最后根据3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR。整个方案中不涉及有创的测量方法,采用图像辅助技术实现了对CFR、FFR以及IMR的无创检测。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本公开的一些实施例中,根据上述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR,包括:根据静息状态下的3D血管模型,确定静息状态下血流量;获取充血状态下血流量;根据上述静息状态下血流量和上述充血状态下血流量,计算上述无导丝CFR;应用上述3D冠脉CFD模型,根据上述充血状态下血流量,确定最大充血时血管远端压力和最大充血时血管近端压力;根据上述最大充血时血管远端压力和上述最大充血时血管近端压力,确定上述无导丝FFR;根据上述最大充血时血管远端压力和最大充血血流量,确定上述无导丝IMR,其中,上述最大充血血流量为上述充血状态下血流量的最大值。
实际应用中,容易获得待测量血管静息状态下的2D冠脉DSA影像,但是,待测量血管充血状态下的2D冠脉DSA影像无法获得,也就无法得到待测量血管充血状态下的3D血管模型,进而无法根据充血状态下的3D血管模型求得充血状态下血流量,就会影响对无导丝CFR、无导丝FFR和无导丝IMR的测量。本实施例无需获取充血状态下的2D冠脉DSA影像,根据静息状态下血流量就可以确定充血状态下血流量,进而实现对无导丝CFR、无导丝FFR和无导丝IMR的测量。
可选地,获取充血状态下血流量的方式至少有以下几种:
第一种:根据所述静息状态下血流量,确定充血状态下血流量,构建理论模型;
根据所述理论模型,确定所述充血状态下血流量,所述理论模型表示为:
Q_hyper=A×Q_rest+B,其中,Q_hyper表示所述充血状态下血流量,Q_rest表示静息状态下血流量,其中,A和B是与待检测的对象的性能有关的参数。实际应用中,容易获得待测量血管静息状态下的2D冠脉DSA影像,但是,待测量血管充血状态下的2D冠脉DSA影像无法获得,也就无法得到待测量血管充血状态下的3D血管模型,进而无法根据充血状态下的3D血管模型求得充血状态下血流量,就会影响对无导丝CFR、无导丝FFR和无导丝IMR的测量。根据静息状态下血流量就可以确定充血状态下血流量,进而实现对无导丝CFR、无导丝FFR和无导丝IMR的测量。
第二种,可以直接采用流量传感器,测得充血状态下血流量。
第三种,采用经验公式确定充血状态下血流量,其中,所述经验公式中包括待检测对象的心率、舒张压、全心肌质量以及待测量血管的3D血管模型等参数。
当然,获取充血状态下血流量的方式不限于上述几种,本领域技术人员可以根据实际情况选择合适的方式获取充血状态下血流量。
本公开的一些实施例中,至少根据上述3D血管模型和上述中心动脉压,构建上述待测量血管的3D冠脉CFD模型,包括:根据上述中心动脉压确定上述待测量血管的入口处压力;根据上述3D血管模型、上述待测量血管的入口处压力和上述充血状态下血流量,构建上述待测量血管充血状态下的3D冠脉CFD模型。其中,3D血管模型是根据静息状态下得到的2D冠脉影像得到的,待测量血管的入口处压力是在充血状态下检测得到的,构建出的为充血状态下的3D冠脉CFD模型。根据充血状态下的3D冠脉CFD模型求得血管的无导丝FFR和无导丝IMR。应用充血状态下的3D冠脉CFD模型确定最大充血时血管远端压力和最大充血时血管近端压力,根据上述最大充血时血管远端压力和上述最大充血时血管近端压力,确定上述无导丝FFR;根据上述最大充血时血管远端压力和最大充血血流量,确定上述无导丝IMR。
本公开的一些实施例中,利用无创测量法获取上述待测量血管的中心动脉压,包括:利用上述无创测量法获取肱动脉压力、桡动脉压力和颈动脉压力;根据上述肱动脉压力、上述桡动脉压力和上述颈动脉压力中的至少一个,计算出上述中心动脉压。具体地,可以采用无创测量的方式获取肱动脉压力波形、桡动脉压力波形和颈动脉压力波形,进而根据肱动脉压力波形、桡动脉压力波形和颈动脉压力波形中的至少一个,计算出上述中心动脉压,以获取精确的中心动脉压。
本公开的一些实施例中,利用无创测量法获取上述待测量血管的中心动脉压,包括:获取上述待测量血管的参数集合,上述参数集合包括几何信息、动脉入口流量、出口边界模型和血管弹性模型;根据上述参数集合确定一维流体力学模型;根据上述一维流体力学模型计算测点处的第一压力波形,上述测点包括桡动脉和肱动脉;利用上述无创测量法获取上述测 点处的第二压力波形,上述无创测量法包括超声波法和核磁法;确定目标差值,上述目标差值为上述第一压力波形与上述第二压力波形的差值;在上述目标差值大于或者等于预定值的情况下,对上述参数集合中的各参数进行更新,直到上述目标差值小于上述预定值;根据更新后的上述参数集合,确定优化后的一维流体力学模型;基于优化后的一维流体力学模型确定上述中心动脉压。本实施例中的第一压力波形和第二压力波形均是在时域内的压力波形,即第一压力波形和第二压力波形包含了时序信息,相较于相关技术中的桡动脉压力或者肱动脉压力仅仅是一个压力值的方案,相较于相关技术中的采用常用的经验公式得到一个平均动脉压的方式(准确度与时序无关),本公开的方案由于是时序的波形,使得所确定的中心动脉压更为准确;进一步地保证了待测量血管的功能学指标的准确。另外,通过不断地调整参数集合中的各参数,直到目标差值小于上述预定值,在目标差值较小的情况下确定此时的一维流体力学模型更接近与真实的血管流体力学模型,所以基于上述优化后的一维流体力学模型确定上述中心动脉压更为准确。
本公开的一种可选的实施例中,获取待测量血管的动脉入口流量包括:确定动脉树入口处一个完整心跳周期内的流量-时间关系,根据流量-时间关系确定待测量血管的动脉入口流量。其中,可以通过大量数据的拟合关系确定流量-时间关系,也就是说获取动脉树入口处的多个流量,在时间域上对多个流量进行拟合,得到一个完整心跳周期内的流量-时间关系;也可以通过超声波检测或者核磁检测等无创测量的方式获取一个完整心跳周期内的流量-时间关系。
本公开的一种可选的实施例中,获取待测量血管的出口边界模型包括:估算动脉树出口处各截断血管基于电路模型的阻抗、容抗等参数,根据阻抗、容抗等参数确定待测量血管的出口边界模型。
本公开的一些实施例中,上述2D冠脉影像包括不同角度下的2D冠脉影像,根据上述2D冠脉影像构建3D血管模型,包括:从不同角度下的上述2D冠脉影像中提取出多个2D目标血管;根据多个上述2D目标血管构建上述3D血管模型。具体地,2D目标血管的数量可以是多样的,包括单根血管、多根血管以及整个冠脉系统。
本公开的一些实施例中,从上述2D冠脉影像中提取出2D目标血管,包括:采用中心线求取算法和水平集图像分割算法,从上述2D冠脉影像中提取出上述2D目标血管。
本公开的一种具体的实施方式中,计算无导丝CFR的具体方式是:根据不同角度下的静息状态下的DSA影像,构建静息状态下的3D血管模型;获取时间上连续的一组静息状态下的冠脉血管3D模型;通过计算连续两个时刻3D血管模型的体积变化率来计算静息状态下血流量(对于连续拍摄所得DSA影像,相邻两帧之间的血管体积(充血量)的变化量除以两帧间时间间隔即为该时间段内的血流量);再确定充血状态下血流量。无导丝CFR为最大充血状态下血流量与静息状态下血流量的比值。如图2所示,图2A、图2B、图2C为一根血管在不同时刻所得3D模型,对图中模型求体积变化量,除以两张图间隔时间得到该血管在该时刻的血流量,图2A1和图2A2是图2A对应的2D轮廓,图2B1和图2B2是图2B对应的2D轮廓,图2C1和图2C2是图2C对应的2D轮廓。
图12是根据本公开实施例的无导丝FFR、无导丝IMR和无导丝CFR的检测装置的示意图。如图12所示,该装置包括:
第三获取单元1210,被配置为获取待测量血管的2D冠脉影像;
第二构建单元1220,被配置为根据上述2D冠脉影像构建3D血管模型;
第四获取单元1230,被配置为利用无创测量法获取上述待测量血管的中心动脉压;
第三构建单元1240,被配置为至少根据上述3D血管模型和上述中心动脉压,构建上述待测量血管的3D冠脉CFD模型;
第三计算单元1250,被配置为根据上述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR。
具体地,上述2D冠脉影像可以为2D冠脉DSA影像,当然,也可以为除2D冠脉DSA影像以外的其他类型的2D冠脉影像。本公开对于冠脉DSA影像中血管的功能性指标FFR/IMR/CFR的计算具有很高的效率,很好的鲁棒性以及很好的准确度,可实现即时3D血管分析。
可选地,可以通过超声波检测、核磁检测以及能记录波形的血压测量仪器等无创测量的方式获取待测量血管的中心动脉压。
具体地,对无导丝CFR、无导丝FFR和无导丝IMR的计算结果进行实时显示,实现可视化。且本公开对于单根或多根的冠脉血管树同样有很好的处理能力、效率以及精度。对于多根血管整体处理时间小于1分钟。
上述方案中,第三获取单元获取待测量血管的2D冠脉影像,第二构建单元根据2D冠脉影像构建3D血管模型,第四获取单元通过无创测量法获取待测量血管的中心动脉压,第三构建单元至少根据3D血管模型和中心动脉压,构建3D冠脉CFD模型,第三计算单元根据3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR。整个方案中不涉及有创的测量方法,采用图像辅助技术实现了对CFR、FFR以及IMR的无创检测。
本公开的一些实施例中,第三计算单元包括第五确定模块、第三获取模块、第三计算模块、第六确定模块、第七确定模块和第八确定模块,第五确定模块被配置为根据静息状态下的3D血管模型,确定静息状态下血流量;第三获取模块被配置为获取充血状态下血流量;第三计算模块被配置为根据上述静息状态下血流量和上述充血状态下血流量,计算上述无导丝CFR;第六确定模块被配置为应用上述3D冠脉CFD模型,根据上述充血状态下血流量,确定最大充血时血管远端压力和最大充血时血管近端压力;第七确定模块被配置为根据上述最大充血时血管远端压力和上述最大充血时血管近端压力,确定上述无导丝FFR;第八确定模块被配置为根据上述最大充血时血管远端压力和最大充血血流量,确定上述无导丝IMR,其中,上述最大充血血流量为上述充血状态下血流量的最大值。
本公开的一些实施例中,第三构建单元包括第九确定模块和第一构建模块,第九确定模块被配置为根据上述中心动脉压确定上述待测量血管的入口处压力;第一构建模块被配置为根据上述3D血管模型、上述待测量血管的入口处压力和上述充血状态下血流量,构建上述待测量血管充血状态下的3D冠脉CFD模型。其中,3D血管模型是根据静息状态下得到的2D冠脉影像得到的,待测量血管的入口处压力是在充血状态下检测得到的,构建出的为充血状态下的3D冠脉CFD模型。根据充血状态下的3D冠脉CFD模型求得血管的无导丝FFR和无导丝IMR。应用充血状态下的3D冠脉CFD模型确定最大充血时血管远端压力和最大充血时血管近端压力,根据上述最大充血时血管远端压力和上述最大充血时血管近端压力,确定上述无导丝FFR;根据上述最大充血时血管远端压力和最大充血血流量,确定上述无导丝IMR。
本公开的一些实施例中,第四获取单元包括第四获取模块和第四计算模块,第四获取模块被配置为利用上述无创测量法获取肱动脉压力、桡动脉压力和颈动脉压力;第四计算模块被配置为根据上述肱动脉压力、上述桡动脉压力和上述颈动脉压力中的至少一个,计算出上述中心动脉压。具体地,可以采用无创测量的方式获取肱动脉压力波形、桡动脉压力波形和颈动脉压力波形,进而根据肱动脉压力波形、桡动脉压力波形和颈动脉压力波形中的至少一 个,计算出上述中心动脉压,以获取精确的中心动脉压。
本公开的一些实施例中,第四获取单元包括第五获取模块、第十确定模块、第五计算模块、第六获取模块、第十一确定模块、第二更新模块、第十二确定模块和第十三确定模块,第五获取模块被配置为获取上述待测量血管的参数集合,上述参数集合包括几何信息、动脉入口流量、出口边界模型和血管弹性模型;第十确定模块被配置为根据上述参数集合确定一维流体力学模型;第五计算模块被配置为根据上述一维流体力学模型计算测点处的第一压力波形,上述测点包括桡动脉和肱动脉;第六获取模块被配置为利用上述无创测量法获取上述测点处的第二压力波形,上述无创测量法包括超声波法和核磁法;第十一确定模块被配置为确定目标差值,上述目标差值为上述第一压力波形与上述第二压力波形的差值;第二更新模块被配置为在上述目标差值大于或者等于预定值的情况下,对上述参数集合中的各参数进行更新,直到上述目标差值小于上述预定值;第十二确定模块被配置为根据更新后的上述参数集合,确定优化后的一维流体力学模型;第十三确定模块被配置为基于优化后的一维流体力学模型确定上述中心动脉压。本实施例中的第一压力波形和第二压力波形均是在时域内的压力波形,即第一压力波形和第二压力波形包含了时序信息,相较于相关技术中的桡动脉压力或者肱动脉压力仅仅是一个压力值的方案,相较于相关技术中的采用常用的经验公式得到一个平均动脉压的方式(准确度与时序无关),本公开的方案由于是时序的波形,使得所确定的中心动脉压更为准确;进一步地保证了待测量血管的功能学指标的准确。另外,通过不断地调整参数集合中的各参数,直到目标差值小于上述预定值,在目标差值较小的情况下确定此时的一维流体力学模型更接近与真实的血管流体力学模型,所以基于上述优化后的一维流体力学模型确定上述中心动脉压更为准确。
本公开的一些实施例中,上述2D冠脉影像包括不同角度下的2D冠脉影像,第二构建单元包括提取模块和第二构建模块,提取模块被配置为从不同角度下的上述2D冠脉影像中提取出多个2D目标血管;第二构建模块被配置为根据多个上述2D目标血管构建上述3D血管模型。具体地,2D目标血管的数量可以是多样的,包括单根血管、多根血管以及整个冠脉系统。根据不同角度下的2D目标血管重建3D血管模型的包括:1)对不同角度下的2D目标血管分割结果相对光源位置进行位置校正,获取光源矫正后的投影图像;2)根据光源个数构造空间曲面区域;3)将多个曲面区域在3D空间内相交,得到空间凸包即为初始三维血管模型;4)获取初始三维血管中心线,并计算中心线上全部点处的半径大小;5)以中心线上每个点的给定半径进行中心线扩张得到中间状态血管模型;6)使用平滑算法平滑血管轮廓,得到重构出的最终3D血管模型。
本公开的一些实施例中,提取模块还被配置为采用中心线求取算法和水平集图像分割算法,从上述2D冠脉影像中提取出上述2D目标血管。结合血管中心线求取和水平集图像分割算法,获取目标2D冠脉目标血管的分割结果的主要步骤包括:1)对原始图像进行预处理,生成二值化图像;2)在二值化图像上自动(如位置选择)或者交互式选取确定目标血管/血管树中每根血管的至少两个端点,包括第一端点和第二端点;3)利用快速行进算法在二值化图像中提取从第一端点到第二端点的目标血管中心线;4)利用水平集分割算法对二值化图像进行分割;5)对分割图像进行标准化处理,并对所得图像求取其对应的距离图像;6)通过距离图像计算中心线上点到血管轮廓的最短距离;7)对血管中心线进行以各点对应的最短距离的膨胀扩张操作,得到目标血管形状模型;8)对分割结果与血管形状模型以特定权重进行求和获取最终目标血管。
所述无导丝FFR、无导丝IMR和无导丝CFR的检测装置包括处理器和存储器,上述第一获取单元、提取单元、重建单元、第一计算单元、第二获取单元、确定单元、第一构建单元和第二计算单元等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程 序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来实现采用DSA影像辅助技术对CFR、FFR和IMR的无创检测。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机可读存储介质所在设备执行所述无导丝FFR、无导丝IMR和无导丝CFR的检测方法。
本公开实施例提供了一种处理器,所述处理器被配置为运行程序,其中,所述程序运行时执行所述无导丝FFR、无导丝IMR和无导丝CFR的检测方法。
本公开实施例提供了一种设备,设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序,处理器执行程序时实现至少以下步骤:步骤S101,获取待测量血管的2D冠脉DSA影像;步骤S102,从上述2D冠脉DSA影像中提取出2D目标血管;步骤S103,根据上述2D目标血管重建3D血管模型;步骤S104,根据上述3D血管模型计算无导丝CFR;步骤S105,利用无创测量法获取上述待测量血管的中心动脉压;步骤S106,根据上述中心动脉压确定上述待测量血管的入口处压力;步骤S107,根据上述3D血管模型和上述待测量血管的入口处压力,构建上述待测量血管的3D冠脉CFD模型;步骤S108,根据上述3D冠脉CFD模型计算无导丝FFR和无导丝IMR。
本文中的设备可以是服务器、PC、PAD、手机等。
本公开还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有至少如下方法步骤的程序:步骤S101,获取待测量血管的2D冠脉DSA影像;步骤S102,从上述2D冠脉DSA影像中提取出2D目标血管;步骤S103,根据上述2D目标血管重建3D血管模型;步骤S104,根据上述3D血管模型计算无导丝CFR;步骤S105,利用无创测量法获取上述待测量血管的中心动脉压;步骤S106,根据上述中心动脉压确定上述待测量血管的入口处压力;步骤S107,根据上述3D血管模型和上述待测量血管的入口处压力,构建上述待测量血管的3D冠脉CFD模型;步骤S108,根据上述3D冠脉CFD模型计算无导丝FFR和无导丝IMR。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制 造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
1)、本公开的无导丝FFR、无导丝IMR和无导丝CFR的检测方法,实现了根据从DSA影像中定量获取无导丝CFR;利用无创测量法获取待测量血管的中心动脉压,进而根据中心动脉压确定待测量血管的入口处压力,再根据3D血管模型和待测量血管的入口处压力,构建待测量血管的3D冠脉CFD模型,最后根据3D冠脉CFD模型计算无导丝FFR和无导丝IMR,实现了采用DSA影像辅助技术对CFR、FFR和IMR的无创检测。本公开对于冠脉DSA影像中血管的功能性指标FFR/IMR/CFR的计算具有很高的效率,很好的鲁棒性以及很好的准确度,可实现即时3D血管分析。
2)、本公开的无导丝FFR、无导丝IMR和无导丝CFR的检测装置,实现了采用DSA影像辅助技术对CFR、FFR和IMR的无创检测。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法,其中,包括:
    获取待测量血管的2D冠脉DSA影像;
    从所述2D冠脉DSA影像中提取出2D目标血管;
    根据所述2D目标血管重建3D血管模型;
    根据所述3D血管模型计算无导丝CFR;
    利用无创测量法获取所述待测量血管的中心动脉压;
    根据所述中心动脉压确定所述待测量血管的入口处压力;
    根据所述3D血管模型和所述待测量血管的入口处压力,构建所述待测量血管的3D冠脉CFD模型;
    根据所述3D冠脉CFD模型计算无导丝FFR和无导丝IMR。
  2. 根据权利要求1所述的检测方法,其中,利用无创测量法获取所述待测量血管的中心动脉压,包括:
    利用所述无创测量法获取肱动脉压力、桡动脉压力和颈动脉压力;
    根据所述肱动脉压力、所述桡动脉压力和所述颈动脉压力中的至少一个,计算出所述中心动脉压。
  3. 根据权利要求1所述的检测方法,其中,利用无创测量法获取所述待测量血管的中心动脉压,包括:
    获取所述待测量血管的参数集合,所述参数集合包括几何信息、动脉入口流量、出口边界模型和血管弹性模型;
    根据所述参数集合确定一维流体力学模型;
    根据所述一维流体力学模型计算测点处的第一压力波形,所述测点包括桡动脉和肱动脉;
    利用所述无创测量法获取所述测点处的第二压力波形,所述无创测量法包括超声波法和核磁法;
    确定目标差值,所述目标差值为所述第一压力波形与所述第二压力波形的差值;
    在所述目标差值大于或者等于预定值的情况下,对所述参数集合中的各参数进行更新,直到所述目标差值小于所述预定值;
    根据更新后的所述参数集合,确定优化后的一维流体力学模型;
    基于优化后的一维流体力学模型确定所述中心动脉压。
  4. 根据权利要求1所述的检测方法,其中,所述2D冠脉DSA影像包括静息状态下的DSA影像和充血状态下的DSA影像,根据所述3D血管模型计算无导丝CFR,包括:
    根据所述3D血管模型的体积变化率计算静息状态下血流量和充血状态下血流量;
    根据所述静息状态下血流量和所述充血状态下血流量,计算无导丝CFR。
  5. 根据权利要求1所述的检测方法,其中,所述2D冠脉DSA影像包括不同角度下的DSA影像,根据所述2D目标血管重建3D血管模型包括:
    根据不同角度下的多个所述2D目标血管重建所述3D血管模型。
  6. 根据权利要求1所述的检测方法,其中,根据所述3D冠脉CFD模型计算无导丝FFR和无导丝IMR,包括:
    根据所述3D冠脉CFD模型计算所述待测量血管内各点的压力值;
    至少根据所述压力值计算所述无导丝FFR和所述无导丝IMR。
  7. 根据权利要求1所述的检测方法,其中,从所述2D冠脉DSA影像中提取出2D目标血管,包括:
    采用中心线求取算法和水平集图像分割算法,从所述2D冠脉DSA影像中提取出所述2D目标血管。
  8. 一种无导丝FFR、无导丝IMR和无导丝CFR的检测方法,其中,包括:
    获取待测量血管的2D冠脉影像;
    根据所述2D冠脉影像构建3D血管模型;
    利用无创测量法获取所述待测量血管的中心动脉压;
    至少根据所述3D血管模型和所述中心动脉压,构建所述待测量血管的3D冠脉CFD模型;
    根据所述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR。
  9. 根据权利要求8所述的检测方法,其中,根据所述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR,包括:
    根据静息状态下的3D血管模型,确定静息状态下血流量;
    获取充血状态下血流量;
    根据所述静息状态下血流量和所述充血状态下血流量,计算所述无导丝CFR;
    应用所述3D冠脉CFD模型,根据所述充血状态下血流量,确定最大充血时血管远端压力和最大充血时血管近端压力;
    根据所述最大充血时血管远端压力和所述最大充血时血管近端压力,确定所述无导丝FFR;
    根据所述最大充血时血管远端压力和最大充血血流量,确定所述无导丝IMR,其中,所述最大充血血流量为所述充血状态下血流量的最大值。
  10. 根据权利要求9所述的检测方法,其中,至少根据所述3D血管模型和所述中心动脉压,构建所述待测量血管的3D冠脉CFD模型,包括:
    根据所述中心动脉压确定所述待测量血管的入口处压力;
    根据所述3D血管模型、所述待测量血管的入口处压力和所述充血状态下血流量,构建所述待测量血管充血状态下的3D冠脉CFD模型。
  11. 根据权利要求8所述的检测方法,其中,利用无创测量法获取所述待测量血管的中心动脉压,包括:
    利用所述无创测量法获取肱动脉压力、桡动脉压力和颈动脉压力;
    根据所述肱动脉压力、所述桡动脉压力和所述颈动脉压力中的至少一个,计算出所述中心动脉压。
  12. 根据权利要求8所述的检测方法,其中,利用无创测量法获取所述待测量血管的中心动脉压,包括:
    获取所述待测量血管的参数集合,所述参数集合包括几何信息、动脉入口流量、出口边界模型和血管弹性模型;
    根据所述参数集合确定一维流体力学模型;
    根据所述一维流体力学模型计算测点处的第一压力波形,所述测点包括桡动脉和肱动脉;
    利用所述无创测量法获取所述测点处的第二压力波形,所述无创测量法包括超声波法和核磁法;
    确定目标差值,所述目标差值为所述第一压力波形与所述第二压力波形的差值;
    在所述目标差值大于或者等于预定值的情况下,对所述参数集合中的各参数进行更新,直到所述目标差值小于所述预定值;
    根据更新后的所述参数集合,确定优化后的一维流体力学模型;
    基于优化后的一维流体力学模型确定所述中心动脉压。
  13. 根据权利要求8所述的检测方法,其中,所述2D冠脉影像包括不同角度下的2D冠脉影像,根据所述2D冠脉影像构建3D血管模型,包括:
    从不同角度下的所述2D冠脉影像中提取出多个2D目标血管;
    根据多个所述2D目标血管构建所述3D血管模型。
  14. 根据权利要求13所述的检测方法,其中,从所述2D冠脉影像中提取出2D目标血管,包括:
    采用中心线求取算法和水平集图像分割算法,从所述2D冠脉影像中提取出所述2D目标血管。
  15. 一种无导丝FFR、无导丝IMR和无导丝CFR的检测装置,其中,包括:
    第一获取单元,被配置为获取待测量血管的2D冠脉DSA影像;
    提取单元,被配置为从所述2D冠脉DSA影像中提取出2D目标血管;
    重建单元,被配置为根据所述2D目标血管重建3D血管模型;
    第一计算单元,被配置为根据所述3D血管模型计算无导丝CFR;
    第二获取单元,被配置为利用无创测量法获取所述待测量血管的中心动脉压;
    确定单元,被配置为根据所述中心动脉压确定所述待测量血管的入口处压力;
    第一构建单元,被配置为根据所述3D血管模型和所述待测量血管的入口处压力,构建所述待测量血管的3D冠脉CFD模型;
    第二计算单元,被配置为根据所述3D冠脉CFD模型计算无导丝FFR和无导丝IMR。
  16. 一种无导丝FFR、无导丝IMR和无导丝CFR的检测装置,其中,包括:
    第三获取单元,被配置为获取待测量血管的2D冠脉影像;
    第二构建单元,被配置为根据所述2D冠脉影像构建3D血管模型;
    第四获取单元,被配置为利用无创测量法获取所述待测量血管的中心动脉压;
    第三构建单元,被配置为至少根据所述3D血管模型和所述中心动脉压,构建所述待测量血管的3D冠脉CFD模型;
    第三计算单元,被配置为根据所述3D冠脉CFD模型计算无导丝CFR、无导丝FFR和无导丝IMR。
  17. 一种计算机可读存储介质,其中,所述计算机可读存储介质包括存储的程序,其中,在所述程序运行时控制所述计算机可读存储介质所在设备执行权利要求1至14中任意一项所述的无导丝FFR、无导丝IMR和无导丝CFR的检测方法。
  18. 一种处理器,其中,所述处理器被配置为运行程序,其中,所述程序运行时执行权利要求1至14中任意一项所述的无导丝FFR、无导丝IMR和无导丝CFR的检测方法。
PCT/CN2022/080454 2021-03-12 2022-03-11 无导丝ffr、无导丝imr和无导丝cfr的检测方法 WO2022188881A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110269801.8 2021-03-12
CN202110269801.8A CN113040795B (zh) 2021-03-12 2021-03-12 无导丝ffr、无导丝imr和无导丝cfr的检测方法
CN202110615301.5 2021-06-02
CN202110615301.5A CN113180614B (zh) 2021-06-02 2021-06-02 无导丝ffr、无导丝imr和无导丝cfr的检测方法

Publications (1)

Publication Number Publication Date
WO2022188881A1 true WO2022188881A1 (zh) 2022-09-15

Family

ID=83226304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080454 WO2022188881A1 (zh) 2021-03-12 2022-03-11 无导丝ffr、无导丝imr和无导丝cfr的检测方法

Country Status (1)

Country Link
WO (1) WO2022188881A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118217012A (zh) * 2024-05-24 2024-06-21 华中科技大学同济医学院附属协和医院 基于机器人导丝的磁控介入控制方法、系统及存储介质
CN118662230A (zh) * 2024-08-23 2024-09-20 北京大学第三医院(北京大学第三临床医学院) 一种用于冠脉介入手术路径的三维建模智能规划方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262346A1 (en) * 2004-12-08 2008-10-23 Tsuriel Assis Method And Apparatus For Blood Vessel Parameter Determinations
CN105078440A (zh) * 2014-05-09 2015-11-25 西门子公司 无创计算冠状动脉狭窄的血液动力学指标的方法和系统
CN105095534A (zh) * 2014-04-23 2015-11-25 北京冠生云医疗技术有限公司 对血管中血流进行模拟的方法和系统
CN107978371A (zh) * 2017-11-30 2018-05-01 博动医学影像科技(上海)有限公司 快速计算微循环阻力的方法及系统
CN109620187A (zh) * 2018-12-14 2019-04-16 深圳先进技术研究院 一种中心动脉压推算方法及装置
US20190355118A1 (en) * 2017-01-24 2019-11-21 Spectrum Dynamics Medical Limited Systems and methods for computation of functional index parameter values for blood vessels
CN113040796A (zh) * 2021-03-12 2021-06-29 北京阅影科技有限公司 获取冠状动脉功能学指标的方法与装置
CN113040795A (zh) * 2021-03-12 2021-06-29 北京阅影科技有限公司 无导丝ffr、无导丝imr和无导丝cfr的检测方法
CN113180614A (zh) * 2021-06-02 2021-07-30 北京阅影科技有限公司 无导丝ffr、无导丝imr和无导丝cfr的检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080262346A1 (en) * 2004-12-08 2008-10-23 Tsuriel Assis Method And Apparatus For Blood Vessel Parameter Determinations
CN105095534A (zh) * 2014-04-23 2015-11-25 北京冠生云医疗技术有限公司 对血管中血流进行模拟的方法和系统
CN105078440A (zh) * 2014-05-09 2015-11-25 西门子公司 无创计算冠状动脉狭窄的血液动力学指标的方法和系统
US20190355118A1 (en) * 2017-01-24 2019-11-21 Spectrum Dynamics Medical Limited Systems and methods for computation of functional index parameter values for blood vessels
CN107978371A (zh) * 2017-11-30 2018-05-01 博动医学影像科技(上海)有限公司 快速计算微循环阻力的方法及系统
CN109620187A (zh) * 2018-12-14 2019-04-16 深圳先进技术研究院 一种中心动脉压推算方法及装置
CN113040796A (zh) * 2021-03-12 2021-06-29 北京阅影科技有限公司 获取冠状动脉功能学指标的方法与装置
CN113040795A (zh) * 2021-03-12 2021-06-29 北京阅影科技有限公司 无导丝ffr、无导丝imr和无导丝cfr的检测方法
CN113180614A (zh) * 2021-06-02 2021-07-30 北京阅影科技有限公司 无导丝ffr、无导丝imr和无导丝cfr的检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118217012A (zh) * 2024-05-24 2024-06-21 华中科技大学同济医学院附属协和医院 基于机器人导丝的磁控介入控制方法、系统及存储介质
CN118217012B (zh) * 2024-05-24 2024-08-20 华中科技大学同济医学院附属协和医院 基于机器人导丝的磁控介入控制方法、系统及存储介质
CN118662230A (zh) * 2024-08-23 2024-09-20 北京大学第三医院(北京大学第三临床医学院) 一种用于冠脉介入手术路径的三维建模智能规划方法

Similar Documents

Publication Publication Date Title
WO2022188870A1 (zh) 获取冠状动脉功能学指标的方法与装置
WO2022188881A1 (zh) 无导丝ffr、无导丝imr和无导丝cfr的检测方法
CN113040795B (zh) 无导丝ffr、无导丝imr和无导丝cfr的检测方法
Lang et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology
KR101818645B1 (ko) 혈류 특성 모델링 감도 분석 방법 및 시스템
Vardoulis et al. Validation of a novel and existing algorithms for the estimation of pulse transit time: advancing the accuracy in pulse wave velocity measurement
US11957438B2 (en) Method and apparatus for left ventricular end diastolic pressure measurement
Bensalah et al. Geometry is a major determinant of flow reversal in proximal aorta
CN104244813A (zh) 用于静息和充血期间冠状动脉血流计算的个性化的框架
JP5600728B2 (ja) カフ圧脈波振動信号を用いて中央動脈の脈圧を推定する方法及びそのデバイス
WO2022237161A1 (zh) 脑动脉波强度和波功率的测量方法、终端设备及存储介质
JP2022554298A (ja) 微小血管抵抗指数に基づき最大充血状態流速を調節する方法及び装置
CN113180614B (zh) 无导丝ffr、无导丝imr和无导丝cfr的检测方法
JP2022554297A (ja) 生理パラメータに基づき血管評定パラメータを取得する方法、装置及び記憶媒体
Wang et al. Simultaneous beat-by-beat investigation of the effects of the Valsalva maneuver on left and right ventricular filling and the possible mechanism
CN112384138B (zh) 获取心表大动脉的血流量的方法、装置、系统及存储介质
CN109686450A (zh) 一种基于超声和ct成像技术的冠脉血流储备分数计算方法
EP4090233A1 (en) Noninvasive diagnostics of proximal heart health biomarkers
Yan et al. A multi-dimensional CFD framework for fast patient-specific fractional flow reserve prediction
Chahour et al. Numerical simulation of the fractional flow reserve (FFR)
Bikia Non-invasive monitoring of key hemodynamical and cardiac parameters using physics-based modelling and artificial intelligence
CN114587309B (zh) 一种血压测量方法及系统
CN113907720B (zh) 测量血管功能学指标的方法、装置与处理器
Meyers Methods for Echocardiographic Biomechanical Measurements
Jaffe et al. Central venous pressure estimation with force-coupled ultrasound of the internal jugular vein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766403

Country of ref document: EP

Kind code of ref document: A1