WO2022188673A1 - 光学系统及其设计方法 - Google Patents

光学系统及其设计方法 Download PDF

Info

Publication number
WO2022188673A1
WO2022188673A1 PCT/CN2022/078784 CN2022078784W WO2022188673A1 WO 2022188673 A1 WO2022188673 A1 WO 2022188673A1 CN 2022078784 W CN2022078784 W CN 2022078784W WO 2022188673 A1 WO2022188673 A1 WO 2022188673A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
optical
spectrum chip
chip
Prior art date
Application number
PCT/CN2022/078784
Other languages
English (en)
French (fr)
Inventor
张鸿
王宇
黄志雷
Original Assignee
上海与光彩芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海与光彩芯科技有限公司 filed Critical 上海与光彩芯科技有限公司
Publication of WO2022188673A1 publication Critical patent/WO2022188673A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Definitions

  • the present application relates to spectrum chips, and more particularly, to an optical system including a spectrum chip and a design method thereof.
  • spectral information can be said to be the "fingerprint" of all things.
  • the spectrometer can directly detect the spectral information of the substance, and obtain the existence status and substance composition of the measured target. It is one of the important testing instruments in the fields of material characterization and chemical analysis. From the perspective of technological development, miniature spectrometers can be divided into four categories: dispersion type, narrowband filtering type, Fourier transform type and computational reconstruction type.
  • a dispersive spectrometer generally consists of one or more diffraction gratings, an optical path, and an array of photodetectors, in which the optical signal from the measured object is collimated and irradiated on the diffraction grating through the incident slit, and the diffraction grating converts the spectral
  • the components are dispersed in different directions, and finally the concave mirror focuses the dispersed spectral components onto the photodetector array to obtain the spectral distribution.
  • This spectrometer has ultra-high resolution, wide spectral range and mature technology, but the dispersive spectrometer relies on its bulky dispersive element, long optical path, etc., and it is difficult to achieve size compression.
  • the narrow-band filtering spectrometer can selectively transmit light of a specific wavelength to realize the detection of the spectrum.
  • the device is flat and does not require a long optical path, which has some advantages in system miniaturization.
  • the filter used for wavelength selection is a bandpass filter. The higher the spectral resolution, the narrower the passband and the more filters must be used, which increases the size and complexity of the overall system. At the same time, when the spectral response curve is narrowed, the luminous flux decreases, resulting in a lower signal-to-noise ratio.
  • Fourier transform spectrometers are usually used for the measurement of infrared absorption or emission spectra.
  • the spectrum to be measured is obtained by Fourier transform of the interferogram obtained by the detector, which has the advantages of high signal-to-noise ratio, small size and low cost.
  • Fourier transform spectrometers need to rely on an external camera to image the interferogram scattering, which is not conducive to further miniaturization.
  • computational reconstruction spectrometer which approximates and even reconstructs the spectrum of incident light by calculation.
  • Computationally reconstructed spectrometers can relatively well solve the problem of reduced detection performance due to miniaturization.
  • the computationally reconstructed spectrometer or the computationally reconstructed spectral imaging device is an emerging technology, in practical applications, the computationally reconstructed light source instrument or the computationally reconstructed spectral imaging device encounters many technical problems. Finding and solving these technical problems is the only way to promote the maturity of computationally reconfigurable spectrometers and spectral imaging devices.
  • An advantage of the present application is to provide an optical system and a design method thereof, wherein the optical system includes a spectrum chip and an optical assembly held on a sensing path of the spectrum chip, wherein the optical assembly has a
  • the optical signal guided to each position of the spectroscopic chip has a fixed value of the chief light angle and the light received cone angle of each position is a structural configuration of a predetermined value, so that through the optical signal having a specific structural configuration component, controlling the light-receiving cone angle of each pixel of the spectrum chip to be a predetermined value and within a preset range and/or the chief light angle of each pixel to be a fixed value, so as to reduce the light-emitting angle of the spectrum chip Spectral recovery error.
  • an optical system which includes:
  • a spectroscopic chip comprising a photodetection layer and a light modulation layer on a sensing path of the photodetection layer, the photodetection layer configured to obtain an optical signal modulated by the light modulation layer from an incident optical signal;
  • an optical assembly held on the sensing path of the spectroscopic chip the optical assembly configured to receive an optical signal from a photographed object and direct the optical signal to the spectroscopic chip;
  • the optical assembly is configured such that the chief light angle of the optical signal guided to each position of the spectrum chip is a fixed value and the light receiving cone angle of each position is a predetermined value.
  • the predetermined value is 45° or less.
  • the predetermined value is 35° or less.
  • the predetermined value is 10° or less.
  • the optical component includes a lens group, and the F-number of the lens group is greater than or equal to 1.8.
  • the F-number of the lens group is 2.5 or more.
  • the optical assembly further includes a diaphragm for adjusting the F-number of the lens group.
  • the lens group has a field angle ⁇ and an image height h, wherein the optical system satisfies the following relation:
  • L/h*tan( ⁇ /2) (X/2)/Y, where X represents the side length of the detection range of the optical system, Y represents the distance between the optical system and the subject, L is the side length of the effective sensing area of the spectrum chip.
  • X is less than or equal to 6 cm
  • Y is less than or equal to 10 cm
  • the spectrum chip is adapted to be configured to collect light signals from the photographed object optical frequency information in .
  • the optical assembly includes a dodging module and a collimating unit located on a light exit path of the dodging module, and the dodging module is configured to homogenize the light signal from the photographed target , the collimation unit is configured to collimate the homogenized optical signal.
  • the uniform light module includes a light scattering element and a diaphragm located on a light exit path of the light scattering element, the diaphragm has a light-passing hole, and the size of the light-passing hole is 1 mm to 10mm.
  • the uniform light module includes an integrating sphere, the integrating sphere has a light entrance port and a light exit port, and the size of the light exit port is smaller than that of the light entrance port.
  • the homogenizing module includes a diaphragm, a scattering element located on the light exit path of the diaphragm, and a homogenizing rod located on the light exit path of the scattering element.
  • the uniform light module further includes at least one optical lens located on the light incident path of the diaphragm.
  • the optical assembly includes a telecentric lens.
  • a method for designing an optical system comprising:
  • the photodetection layer obtaining a detected optical signal from an incident optical signal based on the transformation matrix
  • the spectroscopic chip further comprises a sensor located in the photodetection layer a light modulation layer on the path;
  • the structural configuration of the optical assembly is determined based on the numerical change of the transformation matrix, the structural configuration is used to make the chief light angle of the optical signal guided to each position of the spectrum chip a fixed value and the receiving angle of each position
  • the light cone angle is a predetermined value, wherein the optical component is maintained on the sensing path of the spectrum chip for receiving the light signal from the subject and guiding the light signal to the spectrum chip .
  • the predetermined value is 45° or less.
  • the predetermined value is 35° or less.
  • the predetermined value is 10° or less.
  • the optical component includes a lens group, and the F-number of the lens group is greater than or equal to 1.8.
  • the F-number of the lens group is greater than or equal to 2.5.
  • the lens group has a field angle ⁇ and an image height h, wherein the optical system satisfies the following relation:
  • L/h*tan( ⁇ /2) (X/2)/Y, where X represents the side length of the detection range of the optical system, Y represents the distance between the optical system and the subject, L is the side length of the effective sensing area of the spectrum chip.
  • FIG. 1 illustrates a schematic diagram of a spectrometer chip for a computationally reconfigurable spectrometer according to an embodiment of the present application.
  • FIG. 2A illustrates one of the schematic diagrams of the performance curves of the spectrometer chip according to an embodiment of the present application.
  • FIG. 2B illustrates the second schematic diagram of the performance curve of the spectrum chip according to the embodiment of the present application.
  • FIG. 2C illustrates the third schematic diagram of the performance curve of the spectrum chip according to the embodiment of the present application.
  • FIG. 2D illustrates the fourth schematic diagram of the performance curve of the spectrum chip according to the embodiment of the present application.
  • FIG. 2E illustrates the fifth schematic diagram of the performance curve of the spectrum chip according to the embodiment of the present application.
  • FIG. 2F illustrates the sixth schematic diagram of the performance curve of the spectrum chip according to the embodiment of the present application.
  • FIG. 2G illustrates the seventh schematic diagram of the performance curve of the spectrum chip according to the embodiment of the present application.
  • FIG. 2H illustrates the eighth schematic diagram of the performance curve of the spectrum chip according to the embodiment of the present application.
  • FIG. 2I illustrates the ninth schematic diagram of the performance curve of the spectrum chip according to the embodiment of the present application.
  • FIG. 3 illustrates a schematic diagram of an optical system according to an embodiment of the present application.
  • FIG. 4 illustrates a schematic diagram of an optical component of the optical system implemented as a lens group according to an embodiment of the present application.
  • FIG. 5 illustrates a schematic diagram of an optical component of the optical system implemented as a dodging component according to an embodiment of the present application.
  • FIG. 6 illustrates another schematic diagram in which the optical component of the optical system is implemented as a dodging component according to an embodiment of the present application.
  • FIG. 7 illustrates yet another schematic diagram in which the optical component of the optical system is implemented as a dodging component according to an embodiment of the present application.
  • FIG. 8A illustrates a schematic diagram of an optical component of the optical system implemented as a telecentric lens according to an embodiment of the present application.
  • FIG. 8B illustrates another schematic diagram of an optical component of the optical system implemented as a telecentric lens according to an embodiment of the present application.
  • 8C illustrates yet another schematic diagram of an optical component of the optical system implemented as a telecentric lens according to an embodiment of the present application.
  • the spectrometer can directly detect the spectral information of the substance, and obtain the existence status and substance composition of the measured target. It is one of the important testing instruments in the fields of material characterization and chemical analysis. From the perspective of technological development, miniature spectrometers can be divided into four categories: dispersion type, narrowband filtering type, Fourier transform type and computational reconstruction type.
  • Computational reconstruction type spectrometer (hereinafter referred to as computational spectrometer) or computational reconstruction type spectral imaging device is a new type of spectrometer or spectral imaging device that has appeared with the development of computer technology in recent years. Most of the following embodiments take a spectrometer as an example for description, and a computationally reconstructed spectrometer can relatively well solve the problem of reduced detection performance due to miniaturization.
  • the existing computational spectrometers usually work in the following way: first, a spectrum chip is used to obtain the optical signal from the measured target, and then data processing is performed on the obtained optical information based on a specific algorithm to obtain the measured target's optical signal. Spectral information.
  • the spectrum chip can capture the information in the optical frequency domain of the optical signal to be measured in the optical signal of the measured target.
  • the filter element array is combined with the photodetector array, wherein the filter element array can perform broadband filtering processing on the optical information in the frequency domain or the wavelength domain.
  • At least one filter element in the computational spectrometer adopts a broad-spectrum filter, which makes the data detected by the computational spectrometer system look completely different from the original spectrum.
  • the original spectrum can be recovered computationally. Because broadband filters allow more light to pass through than narrowband filters, computational spectrometers can detect spectra from darker scenes, such as night scenes.
  • the spectral curve of filter elements can be properly designed to restore sparse spectra with high probability, and the number of filter elements is much smaller than the desired number of spectral channels (recovering higher-dimensional vectors from lower-dimensional vectors) , which is undoubtedly very conducive to miniaturization.
  • a regularization algorithm a denoised lower-dimensional vector obtained from a higher-dimensional vector
  • can be used to reduce noise which increases the signal-to-noise ratio and makes the overall system more efficient higher robustness.
  • traditional spectrometers need to design filters according to the required wavelengths (the effect is also equivalent to the light modulation structure of the spectrum chip), so that light of specific wavelengths can pass through (generally, it is designed to enhance specific wavelengths).
  • the resonance conditions can be controlled, and the central wavelength of the incident light that can enhance the projection can be changed to achieve filtering characteristics). That is, the traditional spectrometer needs to focus on controlling the size and positional accuracy of the light modulation structure in the design process, and at the same time, it is necessary to find a way to improve its transmittance of specific wavelengths.
  • For computational spectrometers it is required to receive light in a wide range of wavelengths (eg, 350 nm to 900 nm), so it is necessary to focus more on the refractive index when designing.
  • FIG. 1 illustrates a schematic diagram of a spectrometer chip for a computationally reconfigurable spectrometer according to an embodiment of the present application.
  • the spectrum chip shown in FIG. 1 is a spectrum chip disclosed by the inventor of the present application in Chinese patent CN 201921223201.2. Based on the content of the Chinese patent CN 201921223201.2, it can be known that the spectrum chip 100 includes a photodetection layer 110 and a The light modulation layer 120 on the sensing path of the photodetection layer 110 .
  • the light modulation layer 120 includes at least one modulation unit 121, and each modulation unit 121 corresponds to at least one sensing unit 111 of the photodetection layer 110, wherein the spectrum chip 100 uses the light modulation layer
  • the modulation unit 121 of 120 modulates the optical signal from the object under test to obtain a modulated optical frequency signal, and uses the photodetection layer 110 to receive the modulated optical frequency signal and provide a differential response to it, and then use the The signal circuit processing layer of the spectrum chip 100 reconstructs the differential response to obtain the original spectral information of the measured target.
  • the light modulation layer 120 includes at least one modulation unit 121 and at least one non-modulation unit, each of the modulation units 121 and each of the non-modulation units respectively corresponds to at least one of the photodetection layer 110
  • One sensing unit 111 that is, the modulation unit 121 and the sensing unit 111 may be set in one-to-one correspondence, one-to-many, or even many-to-one, and the non-modulation unit and the The sensing units 111 may be set in one-to-one correspondence, one-to-many, or even many-to-one.
  • the transformation matrix D is determined by the light modulation layer
  • the vector W is noise.
  • the known transformation matrix D and the vector Y obtained by the sensing unit are used to solve the spectral signal X of the measured target.
  • the inventors of the present application found that in practical applications, the computing spectrum chip is sensitive to the chief light angle of the incident optical signal, and the change of the chief light angle of the incident light signal in actual use will greatly affect the accuracy of spectral recovery.
  • the chief ray angle of any specific position of the spectrum chip refers to the angle between the chief ray of the optical signal guided to the spectrum chip and the normal line, wherein the chief ray refers to the emitted light from the object to be photographed.
  • the connection line between the point of the light signal and the point reaching the corresponding photosensitive unit of the spectrum chip, the normal line represents the line perpendicular to the photosensitive surface of the spectrum chip.
  • the principal light angles of different sensing units are allowed to have a large difference, but the light incident to the same sensing unit needs to maintain a small angle difference.
  • the inventors of the present application also found that in practical applications, the calculation spectrum chip is also sensitive to the light-receiving cone angles of incident light signals reaching various positions of the spectrum chip. In practical applications, if the light-receiving cone angle of the incident light signal changes greatly, the accuracy of spectral recovery will be greatly affected.
  • the incident angle of the optical signal to the sensing unit of the spectrum chip (for the sensing unit, the incident angle can also be defined If the light-receiving light cone angle of the sensing unit changes, the parameter value of the corresponding position in the transformation matrix D will also change correspondingly, thereby affecting the accuracy of spectral recovery.
  • the transformation matrix D will be affected by the chief light angle and/or the received light cone angle of the incident light signal .
  • the distribution of the light to be measured in space and the angle distribution of the light are uncertain, so the chief light angle and the light-receiving light cone angle incident on different sensing units of the spectrum chip There are also uncertainties, resulting in large errors in spectral measurements.
  • the inventors of the present application found that: in the actual application process, the transformation matrix D of the spectrum chip is not constant, and it is affected by the chief light angle and the light-receiving light cone angle. . Further, when the light-receiving light cone angle of the incident light signal is large, it is equivalent to the superposition of the transmission spectra of the incident collimated light at multiple angles, and the randomness and complexity of the spectrum transmitted by the light modulation layer are reduced to some extent. , the correlation between different light modulation units is improved, thereby reducing the spectral recovery effect; on the contrary, the smaller the light-receiving light cone angle, the better the spectral recovery effect.
  • the information collected at different positions of the spectrum chip (such as different sensing units on the photodetector layer) is assumed to originate from a certain point of the target to be measured, and then data processing is performed to obtain the Spectral information of the measured object.
  • the complexity of the environment and the object to be measured may cause the above assumptions to deviate, which in turn causes a large error in the spectral measurement effect.
  • the inventor of the present application proposes a solution. Specifically, when using and calibrating the spectrum chip, it is ensured that the angle of the incident light signal to the chief light angle of each sensing unit of the spectrum chip is consistent, that is, the angle of the light that is guided to the spectrum chip
  • the chief light angle of the optical signal at each position is a fixed value.
  • the angle value of the chief beam angle is a fixed value, which does not mean that the value of the chief beam angle of each photosensitive unit is completely equal in different working processes, but means that the value of the chief beam angle is different in different working processes. is kept within a predetermined range, eg, within a range of ⁇ 5°.
  • the light-receiving cone angle of the incident optical signal guided to each position of the spectrum chip is a predetermined value, and the The predetermined value is less than or equal to 45°.
  • the light-receiving light cone angle of the incident optical signal guided to each position of the spectrum chip is a predetermined value does not mean that the light-receiving light cone angle of each photosensitive unit varies in different working processes.
  • the values are exactly the same, but it means that the value of the light-receiving cone angle for each position is kept within a predetermined range, eg, within a range of ⁇ 5°, in different working processes.
  • the imaging system has a focus, zoom or virtual focus function
  • the chief beam angle and the light receiving cone angle will change to a certain extent
  • the variation will be within a predetermined range and will not affect the performance of the system. Therefore, it can also be understood that the main beam angle corresponding to the system is a fixed value and the light-receiving cone angle is a predetermined value.
  • the optical assembly has a special structural configuration so that the optical signal guided to the spectrum chip has a fixed chief light angle and a light-receiving light cone of a predetermined angle. horn.
  • the range of the preset angle is less than or equal to 45°, preferably less than or equal to 35°, preferably in some scenes with long back focal lengths, the preset angle is preferably 10°-15°; In a large scene, the preset angle may also be 35°-40°.
  • the light-receiving light cone angle has a certain degree of tolerance, but generally it should be controlled within ⁇ 5°.
  • the chief light angle and the light-received light cone angle of each sensing unit of the spectrum chip are controlled by the optical assembly with a specific structural configuration.
  • the light cone angle is a predetermined angle, and the predetermined angle is less than or equal to 45°. In order to reduce the spectral recovery error of the spectral chip.
  • only the main light angle or only the light receiving cone angle may be individually controlled, that is, one of the two is a predetermined value, which is not limited by the present application.
  • the inventors of the present application found that in the process of spectrum recovery through the spectrum chip, in order to achieve a better effect, it is necessary to ensure the randomness and complexity of the transmission spectrum of the light modulation layer, and , the correlation of transmission spectra between different modulation units is low, where randomness and complexity can be characterized as the degree of rapid change of the spectrum in a specific frequency domain range.
  • the corresponding incident angles of the spectrum chip are respectively 20°, 15°, 10°, 5°, 0°, -5°, -10°, -15°, -20° projection performance curve test chart, where the horizontal axis is the wavelength in microns, and the vertical axis is the absolute value of the light intensity. It is noted that due to the angular sensitivity of the spectral chip, that is, the transmission spectrum of the light modulation layer changes greatly when the light signals of different angles are incident.
  • the inventors of the present application found that when the light-receiving cone angle of each sensing unit of the spectrum chip is less than or equal to 45°, the spectrum recovery effect is better, that is, it has a relatively high projected spectrum randomness and complexity and lower correlation between different modulation units. According to experimental tests, it can be known that the smaller the light-receiving light cone angle is, the better the effect will be. Preferably, the angle of the light-receiving light cone angle is less than or equal to 10°.
  • the present application provides an optical system comprising: a spectrum chip and an optical component held on a sensing path of the spectrum chip.
  • the spectrum chip includes a photodetection layer and a light modulation layer located on a sensing path of the photodetection layer.
  • the optical assembly is configured to receive an optical signal from a subject and direct the optical signal to the spectroscopic chip, wherein the optical assembly is configured to be directed to each of the spectroscopic chips
  • the chief light angle of the optical signal at the position is a fixed value, and the light receiving cone angle of each position is a predetermined value, and the predetermined value is less than or equal to 45°.
  • the light-receiving cone angle of each pixel of the spectrum chip is controlled to be a predetermined value and the predetermined value is within a predetermined range, and the corresponding value of each pixel is controlled.
  • the chief light angle of the optical signal is a fixed value to reduce the spectral recovery error of the spectral chip.
  • an optical system As shown in FIG. 3 , an optical system according to an embodiment of the present application is illustrated, which includes a spectrum chip 100 and an optical assembly 200 held on a sensing path of the spectrum chip 100 .
  • the spectrum chip 100 includes a photodetection layer 110 and a light modulation layer 120 located on a sensing path of the photodetection layer 110 , and the light modulation layer 120 includes at least one modulation unit 121 and at least one non-modulation unit, the modulation unit 121 is used to modulate the optical signal from the measured object.
  • the light modulation layer 120 may be a structure or material with light filtering properties, such as metasurface, photonic crystal, nanopillar, multilayer film, dye, quantum dot, MEMS, FP etalon, cavity layer, waveguide layer, diffraction element, etc.
  • the optical assembly 200 is configured such that the optical signal guided to each position of the spectrum chip 100 has a
  • the chief light angle is a fixed value and the light-receiving light cone angle at each position is a predetermined value, and the predetermined value is less than or equal to 45°. That is, in the embodiment of the present application, the optical component 200 has a fixed value for the chief light angle of the optical signal guided to each position of the spectrum chip 100 and a light-receiving cone angle for each position It is a structural configuration of a predetermined value, wherein the predetermined value is less than or equal to 45°.
  • the light-receiving cone angle of each pixel of the spectrum chip 100 is controlled to be a predetermined value and within a preset range and/or the chief light angle of each pixel of the spectrum chip 100 is controlled to be a fixed value, In order to reduce the spectral recovery error of the spectral chip 100 .
  • the predetermined value of the light-receiving cone angle the better the spectral recovery effect of the spectrum chip 100 is.
  • the predetermined value is less than or equal to 35°, and more preferably, the predetermined value is less than or equal to 10°.
  • the angular sensitivity of the spectrum chip 100 can be represented by the change of the chief light angle and the change of the received light cone angle.
  • the change of the chief light angle is less than or equal to 5°, that is, for each pixel of the spectrum chip 100, the corresponding
  • the change in the value of the chief light angle in different working processes is less than or equal to 5°, preferably, less than or equal to 1°.
  • the change of the light-receiving cone angle is less than or equal to 1°, that is, for each pixel of the spectrum chip 100, the corresponding value of the light-receiving cone angle in different working processes The change is less than or equal to 1°.
  • the light modulation layer 120 of the spectrum chip 100 has a relatively good modulation effect, so as to obtain a relatively better spectral recovery effect.
  • the light-receiving cone angle of each pixel of the spectrum chip 100 needs to be kept at a predetermined value, and the smaller the predetermined value is, the better the spectrum recovery of the spectrum chip 100 is.
  • the optical system according to the embodiments of the present application may be applied as a spectrometer or a spectral imaging device, or other image sensing devices.
  • the optical assembly 200 is implemented as a lens group 210A, and the lens group 210A includes at least one optical lens for The optical signals are converged, as shown in Figure 4.
  • the size of the target to be measured is defined as Xcm*Xcm, and the test distance is Y, wherein, preferably, X is less than or equal to 6 cm, and Y is less than or equal to 10 cm. That is, when X is less than or equal to 6 cm and Y is less than or equal to 10 cm, the spectrum chip 100 is adapted to be configured to collect optical frequency information in the optical signal from the photographed object.
  • the side length of the effective sensing area of the spectrum chip 100 is 1.2 mm
  • the field angle ⁇ of the lens group 210A is 23.5°
  • the image height h is 10 mm
  • the working distance is 60 mm
  • the size of the measured target is 3mm*3mm.
  • the F-number of the lens group 210A is greater than or equal to 1.8, preferably greater than or equal to 2.5. It is also worth mentioning that, in some modified embodiments of this example, in order to control the F-number, the lens group 210A further includes a diaphragm for adjusting the F-number of the lens group 210A.
  • the optical system provided in this example will be applied to other terminal devices, such as smart phones, etc.
  • the size of the optical system will also be required, especially in the height direction .
  • the height dimension of the optical system can be designed to be less than or equal to 10 mm, for example, the optical system is configured as a periscope optical system, that is, the optical system further includes A light turning element (not shown), the light turning element is used for turning the incident optical signal, for example, turning 90°, so as to reduce the overall height dimension of the optical system.
  • the optical system as illustrated in FIG. 4 can also be applied as a spectral imaging device, that is, when the optical assembly 200 is implemented as a lens group 210A, the optical system can also be applied as a spectral imaging device.
  • the lens group 210A forms a conjugate plane between the object to be measured and the spectrum chip 100 , which significantly reduces the influence of different light-emitting positions reaching the same pixel point of the spectrum chip 100 .
  • the optical assembly 200 can also be implemented as other optical structures.
  • the optical assembly 200 of the optical system is implemented as a homogenizing assembly 210B, wherein the homogenizing assembly 210B is used for homogenizing and collimating optical signals at different angles , so that the light-receiving cone angle of the optical signal finally reaching each position of the spectrum chip 100 is a predetermined value and is within a predetermined angle range (for example, less than or equal to 45°) and the optical signal at each position has a
  • the light-receiving cone angle is a fixed value.
  • the light receiving cone angle and the chief light angle of the collimated optical signal reaching the spectrum chip 100 are 0°, but in fact, since there is no perfect collimation system, Therefore, there is a certain angle between the optical signal and the normal, but regardless of the existence of the angle, the chief light angle and the light receiving light cone angle of the incident light in the optical system can be understood to meet the above parameter design requirements, that is, the chief light
  • the angle is a fixed angle
  • the light-receiving cone angle is a predetermined value and is within a predetermined range.
  • the homogenizing assembly 210B includes a homogenizing module 211B and a collimating unit 212B located on the light exit path of the homogenizing module 211B, and the homogenizing module 211B is configured to homogenize the light from the subject.
  • the optical signal, the collimation unit 212B is configured to collimate the homogenized optical signal.
  • the homogenizing module 211B includes a homogenizing element 2111B and a diaphragm 2112B located on the light exit path of the homogenizing element 2111B.
  • the diaphragm 2112B has a light-passing hole, and the size of the light-passing hole is 1mm-10mm, preferably 2mm-5mm, that is, the diaphragm 2112B has a relatively small-sized light-passing hole, so as to Intercepts a small portion of incident light.
  • the incident light signal After passing through the collimating unit 212B, the incident light signal becomes approximately parallel light, so that the light-receiving cone angle of the spectrum chip 100 is close to 0°.
  • FIG. 6 illustrates another schematic diagram in which the optical assembly 200 of the optical system according to an embodiment of the present application is implemented as a dodging assembly 210B.
  • the homogenizing component 210B includes a homogenizing module 211B and a collimating unit 212B located on the light exit path of the homogenizing module 211B.
  • the homogenizing module 211B is configured as To homogenize the optical signal from the subject, the collimating unit 212B is configured to collimate the homogenized optical signal.
  • the homogenizing module 211B includes an integrating sphere 2113B, the integrating sphere 2113B has a light entrance port and a light exit port, and the size of the light exit port is smaller than the size of the light entrance port.
  • FIG. 7 illustrates yet another schematic diagram in which the optical component 200 of the optical system is implemented as a dodging component 210B according to an embodiment of the present application.
  • the homogenizing component 210B includes a homogenizing module 211B and a collimating unit 212B located on the light exit path of the homogenizing module 211B.
  • the homogenizing module 211B is configured as To homogenize the optical signal from the subject, the collimating unit 212B is configured to collimate the homogenized optical signal.
  • the uniform light module 211B includes a diaphragm 2112B, a scattering element 2114B located on the light exit path of the diaphragm 2112B, and a uniform light rod 2115B located on the light exit path of the scattering element 2114B (in some examples,
  • the homogenizing rod 2115B can be replaced by an optical fiber), wherein one end of the homogenizing rod 2115B is located near the focal plane of the collimating unit 212B.
  • the diaphragm 2112 has an inclined inner surface, the inner surface extends away from the optical axis from the object side to the image side, and further in order to improve the light intensity at least a part of the inner surface It is a reflective surface, thereby reflecting part of the light beam, so that the light beam can enter the collimating unit 212B, thereby improving the light intensity entering the spectrum chip 100 and further improving the accuracy.
  • the homogenizing module 211B further includes at least one optical lens 2116B, such as a convex lens, located on the light incident path of the diaphragm 2112B.
  • at least one optical lens 2116B such as a convex lens
  • the optical assembly 200 is implemented as a telecentric lens 210C. That is, in some embodiments, using the telecentric lens 210C as the optical component 200 has significant advantages in certain application scenarios.
  • the telecentric lens 210C as a special lens system, is characterized by placing a diaphragm with a small clear aperture on the focal plane of the image side (or object side) of the lens, so that only through The light at the focal point is propagated. At this time, the incident (or outgoing) light on the object side (or the image side) is approximately parallel light parallel to the main optical axis.
  • the object-side telecentric lens 210C it is shown as the object-side telecentric lens 210C, the image-side telecentric lens 210C and the two-side telecentric lens 210C.
  • the aperture corresponding to the object-side (image-side) telecentric lens 210C is located on the image-side (object-side) focal plane, and the incident (outgoing) light rays on the object-side (image side) are approximately parallel rays parallel to the main optical axis.
  • the telecentric lens 210C on both sides can be formed, and the effects of the telecentric lens 210C on the object side and the image side are superimposed.
  • the use of the image-side telecentric lens 210C can ensure that the chief light angle incident on any specific position on the spectrum chip 100 is fixed, and the light-receiving cone angle is a smaller predetermined value. If the object-side telecentric lens 210C is used, the requirements for the type of light source to be measured can be reduced. If the double telecentric lens 210C is used, the above two advantages are combined. In practical applications, it is necessary to comprehensively consider factors such as the aperture size and length of the optical system.
  • the optical system includes the spectrum chip 100 and the optical assembly 200 held on the sensing path of the spectrum chip 100 , wherein the optical assembly 200
  • the optical assembly 200 There is a structural configuration such that the chief light angle of the optical signal guided to each position of the spectrum chip 100 is a fixed value and the light receiving cone angle of each position is a predetermined value.
  • the optical assembly 200 controls the light-receiving light cone angle of each pixel of the spectrum chip 100 to be a predetermined value and within a predetermined range and/or the chief light angle of each pixel is a fixed value, so as to reduce the Spectral recovery error of the spectrum chip 100
  • a method for designing an optical system includes: S110 , acquiring a conversion matrix of a photodetection layer of a spectrum chip, where the photodetection layer changes from the incident light based on the conversion matrix The detected optical signal is obtained from the optical signal, wherein the spectrum chip further includes a light modulation layer located on the sensing path of the photodetection layer; and S120, determining the structure of the optical component based on the numerical change of the transformation matrix configuration, the structure is configured so that the chief light angle of the optical signal directed to each position of the spectrum chip is a fixed value and the light receiving light cone angle of each position is a predetermined value, wherein the optical An assembly is held on the sensing path of the spectroscopic chip for receiving optical signals from the subject and directing the optical signals to the spectroscopic chip.
  • the spectrum chip is sensitive to the angle of the incident optical signal, and the sensitivity can be quantitatively characterized by the principal beam angle and the light-receiving cone angle of the incident optical signal.
  • the incident optical signal reaches a certain sensing unit of the spectrum chip
  • the incident angle of the optical signal to the sensing unit of the spectrum chip for the sensing unit, the incident angle can also be defined
  • the receiving light cone angle and the chief light angle of the sensing unit change, the parameter value of the corresponding position in the transformation matrix D will also change correspondingly, thereby affecting the accuracy of spectral recovery.
  • the transformation matrix of the photodetection layer of the spectroscopic chip can be obtained by a computing device. Further, by adjusting the values of the chief light angle and the light-receiving light cone angle, and observing the change of the value of each position in the transformation matrix and the final spectral recovery effect of the spectrum chip. In this way, the parameter selection of the chief light angle and the light-receiving light cone angle can be determined by simulating experiments and practical application requirements.
  • the structural configuration of the optical component may be further determined, which is also the content of step S120.
  • the predetermined value is 45° or less.
  • the predetermined value is less than or equal to 35°.
  • the predetermined value is less than or equal to 10°.
  • the optical component includes a lens group, and the F-number of the lens group is greater than or equal to 1.8.
  • the F-number of the lens group is greater than or equal to 2.5.
  • the lens group has a field angle ⁇ and an image height h, wherein the optical system satisfies the following relationship:
  • L/h*tan( ⁇ /2) (X/2)/Y, where X represents the side length of the detection range of the optical system, Y represents the distance between the optical system and the subject, L is the side length of the effective sensing area of the spectrum chip.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种光学系统及其设计方法,包括:光谱芯片(100)和被保持于光谱芯片(100)的感测路径上的光学组件(200)。光谱芯片(100),包括光电探测层(110)和位于光电探测层(110)的感测路径上的光调制层(120),光电探测层(110)从入射的光信号获得经过调制层调制的光信号。光学组件(200)被配置为接收来自被摄目标的光信号并将光信号导引至光谱芯片(100),其中,光学组件(200)使得被导引至光谱芯片(100)各个位置的光信号具有固定角度的主光线夹角以及预定角度的收光光锥角,预定角度小于等于45°。通过具有特定结构配置的光学组件(200),控制光谱芯片(100)的每个像素点的主光角固定及收光光锥角固定且在预设范围内,以减小光谱芯片(100)的光谱恢复误差。

Description

光学系统及其设计方法 技术领域
本申请涉及光谱芯片,尤其涉及包括光谱芯片的光学系统及其设计方法。
背景技术
光与物质发生相互作用,如吸收、散射、荧光、拉曼等,会产生特定光谱,而每种物质的光谱,都是独一无二的。因此,光谱信息可以说是万物的“指纹”。
光谱仪能够直接检测物质的光谱信息,得到被测目标的存在状况与物质成分,是材料表征、化学分析等领域重要的测试仪器之一。从技术发展来看,微型光谱仪可分为四类:色散型、窄带滤波型、傅里叶变换型和计算重建型。
色散光谱仪一般由一个或多个衍射光栅、一段光程以及一个光探测器阵列组成,其中,来自被测目标的光信号在通过入射狭缝被准直照射在该衍射光栅上,衍射光栅将光谱成分分散到不同的方向,最后凹面镜将分散的光谱成分聚焦到光探测器阵列上以得到光谱分布。这种光谱仪拥有超高分辨率、宽光谱范围和成熟的技术,但色散型光谱仪依赖于其笨重的色散元件、长光程等,难以实现尺寸的压缩。
窄带滤波型光谱仪能够选择性地传输特定波长的光,实现对光谱的检测,其器件平面化且不需要长光程,在系统小型化方面具有一些优势。在窄带滤波型光谱仪中,用于进行波长选择的滤光片为带通滤光片。光谱分辨率越高,就必须使用通带越窄和越多的滤光片,这增加了整个系统的体积和复杂度。同时,当光谱响应曲线变窄时,光通量下降,导致信噪比降低。
傅里叶变换型光谱仪通常用于红外吸收或发射光谱的测量,通过对探测器得到的干涉图进行傅里叶变换得到待测光谱,具有信噪比高、尺寸小、成本低的优势。但是,傅里叶变化型光谱仪需要依赖外部摄像机来对干涉图进行散射成像,不利于进一步小型化。
随着计算机技术的发展,最近几年出现了一种新的光谱仪类型:计算重建型光谱仪,其通过计算来近似甚至重构入射光的光谱。计算重构型光谱仪可以相对较佳地解决因小型化而导致检测性能下降的问题。
由于计算重构型光谱仪或计算重构型光谱成像装置属于新兴技术,在实际应用中,计算重构型光源仪或计算重构型光谱成像装置遇到诸多技术问题。发现并解决这些技术问题,是推进计算重构型光谱仪和光谱成像装置成熟化的必经之路。
发明内容
本申请的一优势在于提供一种光学系统及其设计方法,其中,所述光学系统包括光谱芯片和被保持于所述光谱芯片的感测路径上的光学组件,其中,所述光学组件具有使 得被导引至所述光谱芯片的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值的结构配置,这样,通过具有特定结构配置的所述光学组件,控制所述光谱芯片的每个像素点的收光光锥角为预定值且在预设范围内和/或每个像素点的主光角为固定值,以减小所述光谱芯片的光谱恢复误差。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一优势,本申请提供一种光学系统,其包括:
光谱芯片,包括光电探测层和位于所述光电探测层的感测路径上的光调制层,所述光电探测层被配置为从入射的光信号获得经过所述光调制层调制的光信号;以及
被保持于所述光谱芯片的感测路径上的光学组件,所述光学组件被配置为接收来自被摄目标的光信号并将所述光信号导引至所述光谱芯片;
其中,所述光学组件被配置为使得被导引至所述光谱芯片的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值。
在根据本申请的光学系统中,所述预定值小于等于45°。
在根据本申请的光学系统中,所述预定值小于等于35°。
在根据本申请的光学系统中,所述预定值小于等于10°。
在根据本申请的光学系统中,所述光学组件包括透镜组,所述透镜组的F数大于等于1.8。
在根据本申请的光学系统中,所述透镜组的F数大于等于2.5。
在根据本申请的光学系统中,所述光学组件进一步包括用于调整所述透镜组的F数的光阑。
在根据本申请的光学系统中,所述透镜组具有视场角θ,像高h,其中,所述光学系统满足如下关系式:
L/h*tan(θ/2)=(X/2)/Y,其中,X表示所述光学系统的探测范围的边长,Y表示所述光学系统与被摄目标之间的距离,L为所述光谱芯片的感测有效区的边长。
在根据本申请的光学系统中,X小于等于6cm,Y小于等于10cm,其中,当X小于等于6cm,Y小于等于10cm时,所述光谱芯片适于被配置为采集来自被摄目标的光信号中的光频信息。
在根据本申请的光学系统中,所述光学组件包括匀光模块和位于所述匀光模块的出光路径上的准直单元,所述匀光模块被配置为均匀化来自被摄目标的光信号,所述准直单元被配置为对经均匀化后的光信号进行准直。
在根据本申请的光学系统中,所述匀光模块包括散光元件和位于所述散光元件的出光路径上的光阑,所述光阑具有通光孔,所述通光孔的尺寸为1mm至10mm。
在根据本申请的光学系统中,所述匀光模块包括积分球,所述积分球具有入光口和出光口,所述出光口的尺寸小于所述入光口的尺寸。
在根据本申请的光学系统中,所述匀光模块包括光阑、位于所述光阑的出光路径上的散射元件、位于所述散射元件的出光路径上的匀光棒。
在根据本申请的光学系统中,所述匀光模块进一步包括位于所述光阑的入光路径上的至少一光学透镜。
在根据本申请的光学系统中,所述光学组件包括远心镜头。
根据本申请的另一方面,还提供了一种光学系统的设计方法,其包括:
获取光谱芯片的光电探测层的转化矩阵,所述光电探测层基于所述转化矩阵从入射的光信号获得探测到的光信号,其中,所述光谱芯片进一步包括位于所述光电探测层的感测路径上的光调制层;以及
基于所述转化矩阵的数值变化确定光学组件的结构配置,所述结构配置用于使得被导引至所述光谱芯片的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值,其中,所述光学组件被保持于所述光谱芯片的感测路径上,用于接收来自被摄目标的光信号并将所述光信号导引至所述光谱芯片。
在根据本申请的光学系统的设计方法中,所述预定值小于等于45°。
在根据本申请的光学系统的设计方法中,所述预定值小于等于35°。
在根据本申请的光学系统的设计方法中,所述预定值小于等于10°。
在根据本申请的光学系统的设计方法中,所述光学组件包括透镜组,所述透镜组的F数大于等于1.8。
在根据本申请的光学系统的设计方法中,所述透镜组的F数大于等于2.5。
在根据本申请的光学系统的设计方法中,所述透镜组具有视场角θ,像高h,其中,所述光学系统满足如下关系式:
L/h*tan(θ/2)=(X/2)/Y,其中,X表示所述光学系统的探测范围的边长,Y表示所述光学系统与被摄目标之间的距离,L为所述光谱芯片的感测有效区的边长。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了根据本申请实施例的用于计算重构型光谱仪的光谱芯片的示意图。
图2A图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之一。
图2B图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之二。
图2C图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之三。
图2D图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之四。
图2E图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之五。
图2F图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之六。
图2G图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之七。
图2H图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之八。
图2I图示了根据本申请实施例的所述光谱芯片的性能曲线示意图之九。
图3图示了根据本申请实施例的光学系统的示意图。
图4图示了根据本申请实施例的所述光学系统的光学组件被实施为透镜组的示意图。
图5图示了根据本申请实施例的所述光学系统的光学组件被实施为匀光组件的示意图。
图6图示了根据本申请实施例的所述光学系统的光学组件被实施为匀光组件的另一示意图。
图7图示了根据本申请实施例的所述光学系统的光学组件被实施为匀光组件的又一示意图。
图8A图示了根据本申请实施例的所述光学系统的光学组件被实施为远心镜头的示意图。
图8B图示了根据本申请实施例的所述光学系统的光学组件被实施为远心镜头的另一示意图。
图8C图示了根据本申请实施例的所述光学系统的光学组件被实施为远心镜头的又一示意图。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
申请概述
如前所述,光谱仪能够直接检测物质的光谱信息,得到被测目标的存在状况与物质成分,是材料表征、化学分析等领域重要的测试仪器之一。从技术发展来看,微型光谱仪可分为四类:色散型、窄带滤波型、傅里叶变换型和计算重建型。
计算重构型光谱仪(以下简称计算光谱仪)或计算重构型光谱成像装置是近年来随着计算机技术的发展而出现的一种新型的光谱仪或光谱成像装置。下文大多数实施例以光谱仪为例进行说明,计算重构型光谱仪可以相对较佳地解决因小型化而导致检测性能下降的问题。
但是,由于计算重构型光谱仪属于新兴技术,在实际应用中,计算重构型光源仪遇到诸多技术问题。发现并解决这些技术问题,是推进计算重构型光谱仪成熟化的必经之路。
更具体地,现有的计算光谱仪,通常以如下方式进行工作:首先采用光谱芯片获取来自被测目标的光信号,然后基于特定算法对所获取的光信息进行数据处理,以获得被测目标的光谱信息。举例但不构成限定,在此过程中,该光谱芯片能够捕捉到被测目标的光信号中在待测光频域上的信息,其实现方式包括:使用具有光调制结构的光探测器阵列,或者,将滤光元件阵列与光探测器阵列结合,其中,该滤光元件阵列能够对光信息进行在频域上或者波长域上宽带滤波处理。
相较于传统的光谱仪(例如,窄带滤波型光谱仪),计算光谱仪中至少一个滤光元件均采用宽谱滤光片,这使得计算光谱仪系统探测到的数据看起来与原始光谱完全不同。然而,通过应用计算重建算法,原始光谱可以通过计算恢复。由于宽带滤光片比窄带滤光片有更多的光通过,因此,计算光谱仪可以从较暗的场景中检测光谱,例如拍夜景等。此外,根据压缩感知理论,可以适当地设计滤光元件的光谱曲线来高概率地恢复稀疏光谱,且滤光元件的数量远小于期望的光谱通道数(从较低维向量恢复较高维向量),这无疑是非常有利于小型化的。另一方面,通过使用更多数量的滤光元件,可以使用正则化算法(由更高维向量获得降噪后的较低维向量)来降低噪声,这增加了信噪比并使得整个系统有更高的鲁棒性。
相对来讲,传统的光谱仪在设计的时候需要根据需要的波长去设计滤波器(其效果也等同于光谱芯片的光调制结构),使得特定波长的光可以透过(一般其设计为增强特定波长的入射光投射,而非特定波长波段的入射光无法投射,通过改变纳米盘等结构周期和直径可以控制共振条件,改变可增强投射的入射光中心波长,从而实现滤光特性)。也就是,传统的光谱仪在设计过程中需要重点控制光调制结构的尺寸和位置精度,同时需要想办法提高其特定波长的透过率。而对于计算光谱仪,需要的是可以接收较大范围的波段(例如,350nm至900nm)的光,因此,需要在设计的时候更加专注于折射率。
图1图示了根据本申请实施例的用于计算重构型光谱仪的光谱芯片的示意图。如图1所示意的光谱芯片为本申请发明人在中国专利CN 201921223201.2所揭露的一种光谱芯片,基于所述中国专利CN 201921223201.2的内容可知,所述光谱芯片100包括光电探测层110和被保持于所述光电探测层110的感测路径上的光调制层120。特别地,所述光调制层120包括至少一个调制单元121,每一所述调制单元121对应所述光电探测层110的至少一个感应单元111,其中,所述光谱芯片100利用所述光调制层120的所述调制单元121对来自被测目标的光信号进行调制,以得到调制后的光频信号,并利用光电探测层110接收被调制后的光频信号并对其提供差分响应,接着利用所述光谱芯片100信号电路处理层将所述差分响应进行重构以得到被测目标的原光谱信息。在一些具体示例中,所述光调制层120包括至少一个调制单元121和至少一非调制单元,每一所述调制单元121和每一所述非调制单元分别对应所述光电探测层110的至少一个感应单元111,即,所述调制单元121和所述感应单元111可以是一对一对应设置,也可以是一对多设置,甚至可以是多对一设置,所述非调制单元和所述感应单元111可以是一对一对应设置,也可以是一对多设置,甚至可以是多对一设置。
该工作原理可以理解为:设定入射的光信号为向量X=[X1,X2,……XN]T,而所述光电 探测层的感应单元接收的信号为向量Y=[Y1,Y2,……YM]T,相应地,Y=DX+W,其中,所述转化矩阵D由所述光调制层决定,而向量W则为噪声。在所述光谱芯片的实际应用中,需先对所述光谱芯片进行标定以获得所述转化矩阵D,再以标定完成的所述光谱芯片去测量被测目标的光谱信息,也就是,利用已知的转化矩阵D和所述感应单元获取的向量Y,求解被测目标的光谱信号X。
然而,本申请发明人发现:基于此原理工作的计算光谱芯片在实际应用中存在一些问题,这些问题会影响所述光谱芯片的光谱探测性能。
第一,本申请发明人发现在实际应用中,计算光谱芯片对于入射的光信号的主光角比较敏感,实际使用情况下入射光信号的主光角的变化将大幅影响光谱恢复的准确性。这里,所述光谱芯片的任意一个特定位置的主光角表示被导引至所述光谱芯片的光信号的主光线和法线之间的夹角,其中,主光线表示来自被摄目标的发出光信号的点与抵达所述光谱芯片的对应感光单元的点之间的连线,法线表示与所述光谱芯片的感光面垂直的线。具体地,对于所述光谱芯片而言,不同感应单元的所述主光角的角度允许较大差别,但入射到同一感应单元的光线需要保持较小的角度差异。
其次,本申请发明人还发现在实际应用中,计算光谱芯片对于入射的光信号抵达所述光谱芯片的各个位置的收光光锥角也比较敏感。在实际应用中,如果入射光信号的收光光锥角发生较大的变化,将大幅影响光谱恢复的准确性。
具体地,当入射的光信号抵达所述光谱芯片的某个感应单元时,所述光信号到所述光谱芯片的该感应单元的入射角度(对于该感应单元而言,该入射角度也可以定义为该感应单元的收光光锥角)如果发生变化,所述转化矩阵D中对应位置的参数值也会产生对应的变化,进而影响到光谱恢复的准确性。
也就是,由于所述光调制层的角度敏感性,在进行计算重构的过程中,转化矩阵D会受入射的光信号的所述主光角和/或所述收光光锥角的影响。在实际使用环境下,待测光在空间中的分布情况以及光线的角度分布具有不确定性,因此入射到所述光谱芯片的不同感应单元的所述主光角和所述收光光锥角也存在不确定性,从而造成光谱测量的较大误差。
经试验数据验证,本申请发明人发现:在实际应用过程中,所述光谱芯片的所述转化矩阵D并不是不变的,其受到所述主光角和所述收光光锥角的影响。进一步,当入射光信号的收光光锥角较大时,相当于多个角度入射准直光透射谱的叠加,此时所述光调制层所透射的频谱的随机性、复杂度有所下降,不同光调制单元之间的相关性有所提升,从而造成光谱恢复效果下降;相反地,所述收光光锥角角度越小,所述光谱的恢复效果越好。
第二,在上述技术中,所述光谱芯片的不同位置(如光电探测器层上不同感应单元)所收集的信息被假定来源于待测目标的某一点,进而进行数据处理,得出该待测物体的光谱信息。而在实际应用场景中,环境与待测物体的复杂性可能导致上述假定有所偏差,进而造成光谱测量效果的较大误差。
针对第一个问题,本申请发明人提出一种解决方案。具体地,在使用和标定所述光 谱芯片时,确保入射的光信号到所述光谱芯片的每个感应单元的所述主光角的角度保持一致,即,被导引至所述光谱芯片的每一位置的光信号的主光角为固定值。这里,所述主光角的角度值为固定值并非表示每一所述感光单元的主光角在不同工作过程中的值完全相等,而是说所述主光角的值在不同工作过程中被保持在预定范围内,例如,±5°的范围内。进一步地,为了优化所述光谱芯片的光谱恢复性能,还需要确保被导引至所述光谱芯片的每一位置的入射的光信号的所述收光光锥角为预定值,并且,所述预定值小于等于45°。这里,被导引至所述光谱芯片的每一位置的入射的光信号的所述收光光锥角为预定值并非表示每一所述感光单元的收光光锥角在不同工作过程中的值完全相等,而是说每一位置的所述收光光锥角的值在不同工作过程中被保持在预定范围内,例如,±5°的范围内。例如,该成像系统为一具有对焦、变焦或虚焦功能时,由于光学系统的焦点或焦距产生一定的变动,此时所述主光角和所述收光光锥角会发生一定的变动,但是该变动会在预定范围内,并不会对系统性能造成影响,因此也可以理解为该系统对应的主光角为固定值及收光光锥角为预定值。
进一步地,当所述光谱芯片配合光学组件使用时,所述光学组件具有特殊的结构配置以使得被导引至所述光谱芯片的光信号具有固定的主光角和预定角度的收光光锥角。经测试,该预设角度的范围小于等于45°,优选地小于等于35°,优选地在一些后焦距较长的场景所述预设角度优选为10°-15°;在一些视场角较大的场景所述预设角度也可以是35°-40°。值得一提的是,所述收光光锥角具有一定的容忍程度,但一般要控制在±5°之内。也就是,通过具有特定结构配置的所述光学组件,控制所述光谱芯片的每个感应单元的主光角和收光光锥角,一般来讲主光角要取一固定值,所述收光光锥角为一预定角度,并且,所述预定角度小于等于45°。以减小所述光谱芯片的光谱恢复误差。
在一些示例中,也可以仅对所述主光角或仅对所述收光光锥角进行单独控制,即两者之一为预定值,对此,并不为本申请所局限。
针对第二个问题,本申请发明人发现:在通过所述光谱芯片进行光谱恢复的过程中,为达到较好的效果,需保证所述光调制层的透射谱的随机性和复杂性,以及,不同调制单元之间的透射谱的相关度较低,其中,随机性和复杂度可以表征为在特定频域范围内频谱快速变化的程度。
经试验测试,如图2A至图2I所示分别表示所述光谱芯片对应的入射角度为20°、15°、10°、5°、0°、-5°、-10°、-15°,-20°的投射性能曲线测试图,其中,横轴为波长,单位是微米,纵轴为光强的绝对值。注意到,由于所述光谱芯片的角度敏感性,即,不同角度的光信号入射时所述光调制层的透射频谱有较大变化。由此可推断,当收光光锥角较大时,所述光调制层的透射频谱的随机性和复杂性有所下降,不同调制单元之间的相关性有所提高,从而造成光谱恢复效果的下降;而当收光光锥角较小时,所述光调制层的透射频谱的随机性和复杂性有所提升,不同调制单元之间的相关性有所下降,从而提高了光谱恢复的效果。
经进一步实验,本申请发明人发现:当所述光谱芯片的每一感应单元的收光光锥角小于等于45°时,其光谱恢复效果较佳,也就是,其具有相对较高的投射频谱的随机性 和复杂性和较低不同调制单元之间的相关性。根据实验的测试可知,收光光锥角越小,其效果会越好,优选地,所述收光光锥角的角度小于等于10°。
基于此,本申请提供了一种光学系统,其包括:光谱芯片和被保持于所述光谱芯片的感测路径上的光学组件。所述光谱芯片,包括光电探测层和位于所述光电探测层的感测路径上的光调制层。所述光学组件被配置为接收来自被摄目标的光信号并将所述光信号导引至所述光谱芯片,其中,所述光学组件被配置为使得被导引至所述光谱芯片的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值,所述预定值小于等于45°。也就是,通过具有特定结构配置的所述光学组件,控制所述光谱芯片的每个像素点的收光光锥角为预定值且该预定值在预定范围内,以及,每个像素点对应的光信号的主光角为固定值,以减小所述光谱芯片的光谱恢复误差。
在介绍了本申请的基本原理之后,下面将参考附图来具体介绍本申请功能的各种非限制性实施例。
示例性光学系统
如图3所示,根据本申请实施例的光学系统被阐明,其包括:光谱芯片100和被保持于所述光谱芯片100的感测路径上的光学组件200。
在本申请一个具体的示例中,所述光谱芯片100包括光电探测层110和位于所述光电探测层110的感测路径上的光调制层120,所述光调制层120包括至少一个调制单元121和至少一个非调制单元,所述调制单元121用于对来自被测目标的光信号进行调制。所述光调制层120可以是超表面、光子晶体、纳米柱、多层膜、染料、量子点、MEMS、FP etalon、cavity layer、waveguide layer、diffraction元件等具有滤光特性的结构或者材料。
为了解决在申请概述部分所发现的两个技术问题,特别地,在本申请实施例中,所述光学组件200被配置为使得被导引至所述光谱芯片100的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值,所述预定值小于等于45°。也就是,在本申请实施例中,所述光学组件200具有使得被导引至所述光谱芯片100的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值的结构配置,其中,所述预定值小于等于45°。这样,控制所述光谱芯片100的每个像素点的收光光锥角为预定值且在预设范围内和/或控制所述光谱芯片100的每个像素点的主光角为固定值,以减小所述光谱芯片100的光谱恢复误差。
应特别注意,在本申请实施例中,所述收光光锥角的预定值越小,所述光谱芯片100的光谱恢复的效果越佳。优选地,在本申请实施例中,所述预定值小于等于35°,更优选地,所述预定值小于等于10°。
在本申请实施例中,所述光谱芯片100的角度敏感性可以体现为所述主光角的变化和所述接收光锥角的变化来表示。为了确保上述技术效果,经试验可知,在本申请实施例中,所述主光角的变化小于等于5°,也就是,对于所述光谱芯片100的每个像素点而言,其所对应的主光角在不同工作过程中的值的变化小于等于5°,优选地,小于等于 1°。并且,所述收光光锥角的变化小于等于1°,也就是,对于所述光谱芯片100的每个像素点而言,其所对应的收光光锥角在不同工作过程中的值的变化小于等于1°。这样,所述光谱芯片100的光调制层120具有相对较佳的调制效果,以获得相对更加的光谱恢复效果。并且,在工作过程中,所述光谱芯片100的每一像素点的收光光锥角需保持于预定值且所述预定值越小越有利于所述光谱芯片100的光谱恢复。
基于不同的应用场景和应用需求,根据本申请实施例的所述光学系统可被应用为光谱仪或者光谱成像设备亦或者是其它图像传感设备。
具体地,当所述光学系统被应用为光谱仪时,在本申请一个具体的示例中,所述光学组件200被实施为透镜组210A,所述透镜组210A包括至少一个光学透镜,用于对入射的光信号进行汇聚,如图4所示。
为了便于说明,在本申请中,限定被测目标的大小为Xcm*Xcm,测试距离为Y,其中,优选地,X小于等于6cm,Y小于等于10cm。也就是,当X小于等于6cm,Y小于等于10cm时,所述光谱芯片100适于被配置为采集来自被摄目标的光信号中的光频信息。
进一步地,设定所述透镜组210A具有视场角θ,像高h,则被应用为光谱仪的所述光学系统满足如下关系式:L/h*tan(θ/2)=(X/2)/Y,其中,X表示所述光学系统的探测范围的边长,Y表示所述光学系统与被摄目标之间的距离,L为所述光谱芯片100的感测有效区的边长。
在该示例的一个具体例子中,所述光谱芯片100的感测有效区的边长为1.2mm,所述透镜组210A的视场角θ为23.5°,像高h为10mm,工作距离为60mm,被测目标的大小为3mm*3mm。
值得一提的是,在该示例中,为了匹配被测目标的尺寸和范围,另一方面也为了提高测量精度,所述透镜组210A的F数大于等于1.8,优选地大于等于2.5。还值得一提的是,在该示例的一些变形实施例中,为了控制所述F数,所述透镜组210A进一步包括用于调整所述透镜组210A的F数的光阑。
也值得一提的是,该示例所提供的所述光学系统会被应用于其他终端设备,例如,智能手机等,此时,对所述光学系统的尺寸也会有所要求,尤其是高度方向。例如,以对高度方向有需求为例,可选择将所述光学系统的高度尺寸设计为小于等于10mm,例如,将所述光学系统配置为潜望式光学系统,即,所述光学系统进一步包括一光转折元件(未有图示意),所述光转折元件用于对入射的光信号进行转折,例如转折90°,以降低所述光学系统的整体高度尺寸。
进一步地,如图4所示意的光学系统也可以被应用为光谱成像设备,也就是,当所述光学组件200被实施为透镜组210A时,所述光学系统也可以被应用为光谱成像设备。
与上述用于光谱仪不同的是,当所述光学系统被应用为光谱成像设备时,无需设置拍摄范围,也就是,被测目标的拍摄范围无需限制。此外,所述透镜组210A将被测目标与所述光谱芯片100形成了共轭面,显著减少了不同发光位置到达所述光谱芯片100同一像素点的影响。
进一步地,当所述光学系统被应用为光谱仪时,所述光学组件200还可以被实施为 其他光学结构。
如图5所示,在该示例中,所述光学系统的光学组件200被实施为匀光组件210B,其中,所述匀光组件210B用于对不同角度的光信号进行匀化再进行准直,以使得最终抵至所述光谱芯片100的每一位置的光信号的收光光锥角为预定值且在预设角度范围内(例如,小于等于45°)且每一位置的光信号的收光光锥角为固定值。值得一提的是,理想情况下,准直后的光信号抵至所述光谱芯片100的收光光锥角和主光角为0°,但实际上由于不存在非常完美的准直系统,因此光信号与法线存在一定角度,但是不管所述角度是否存在,在所述光学系统中所述入射光的主光角和收光光锥角都可理解符合上述参数设计要求,即主光角为固定角度,收光光锥角为预定值且在预设范围内。
在该示例中,所述匀光组件210B包括匀光模块211B和位于所述匀光模块211B的出光路径上的准直单元212B,所述匀光模块211B被配置为均匀化来自被摄目标的光信号,所述准直单元212B被配置为对经均匀化后的光信号进行准直。在如图5所示意的示例中,所述匀光模块211B包括匀光元件2111B和位于所述匀光元件2111B的出光路径上的光阑2112B。特别地,所述光阑2112B具有通光孔,所述通光孔的尺寸为1mm-10mm,优选为2mm-5mm,也就是,所述光阑2112B具有相对较小尺寸的通光孔,以截取小部分入射光。在经过所述准直单元212B后,入射的光信号近似地变为平行光,以使得所述光谱芯片100的收光光锥角接近于0°。
图6图示了根据本申请实施例的所述光学系统的光学组件200被实施为匀光组件210B的另一示意图。如图6所示,在该变形实施中,所述匀光组件210B包括匀光模块211B和位于所述匀光模块211B的出光路径上的准直单元212B,所述匀光模块211B被配置为均匀化来自被摄目标的光信号,所述准直单元212B被配置为对经均匀化后的光信号进行准直。特别地,所述匀光模块211B包括积分球2113B,所述积分球2113B具有入光口和出光口,所述出光口的尺寸小于所述入光口的尺寸。
图7图示了根据本申请实施例的所述光学系统的光学组件200被实施为匀光组件210B的又一示意图。如图7所示,在该变形实施中,所述匀光组件210B包括匀光模块211B和位于所述匀光模块211B的出光路径上的准直单元212B,所述匀光模块211B被配置为均匀化来自被摄目标的光信号,所述准直单元212B被配置为对经均匀化后的光信号进行准直。特别地,所述匀光模块211B包括光阑2112B、位于所述光阑2112B的出光路径上的散射元件2114B、位于所述散射元件2114B的出光路径上的匀光棒2115B(在一些示例中,所述匀光棒2115B可以用光纤替代),其中,所述匀光棒2115B的一端位于所述准直单元212B的焦平面附近。值得注意的是,在本发明所述光阑2112的具有一倾斜的内表面,所述内表面从物侧到像侧远离光轴向外延伸,进一步为了提高光强度所述内表面的至少一部分为反射面,从而对部分光束进行反射,使得光束可以进入所述准直单元212B,从而提高了进入到所述光谱芯片100的光强度,进一步提升了精度。
可选地,在如图7所示意的示例中,可选地,所述匀光模块211B进一步包括位于所述光阑2112B的入光路径上的至少一光学透镜2116B,例如凸透镜。
特别地,在本申请另一实施例中,所述光学组件200被实施为远心镜头210C。也就 是,在一些实施例中,以远心镜头210C作为光学组件200,其在特定应用场景有较为显著的优势。本领域普通技术人员应知晓,远心镜头210C作为一种特殊的透镜系统,其特征为在透镜的像方(或物方)焦平面上放置一个通光孔径较小的光阑,使得只有通过焦点的光线得以传播,此时,物方(或像方)入射(或出射)的光线近似为平行于主光轴的平行光。如图8A-8C,表示为物方远心镜头210C,像方远心镜头210C与双方远心镜头210C。物方(像方)远心镜头210C对应的光阑位于像方(物方)焦平面,其物方(像方)的入射(出射)光线近似为平行于主光轴的平行光。将两者结合,可以组成双方远心镜头210C,将物方于像方远心镜头210C的效果叠加。
在所述光学系统中,采用像方远心镜头210C,可以保证入射到所述光谱芯片100上任意一个特定位置的主光角固定,且收光光锥角为较小的预定值。若采用物方远心镜头210C,则可以降低待测光源类型的要求。若采用双方远心镜头210C,则兼具以上两种优点。在实际应用当中,需要综合考虑光学系统孔径大小、长度等因素进行综合考虑。
综上,根据本申请实施例的光学系统被阐明,其中,所述光学系统包括光谱芯片100和被保持于所述光谱芯片100的感测路径上的光学组件200,其中,所述光学组件200具有使得被导引至所述光谱芯片100的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值的结构配置,这样,通过具有特定结构配置的所述光学组件200,控制所述光谱芯片100的每个像素点的收光光锥角为预定值且在预设范围内和/或每个像素点的主光角为固定值,以减小所述光谱芯片100的光谱恢复误差
示例性光学系统的设计方法
相应地,根据本申请的另一方面,还提供了一种光学系统的设计方法,其包括:S110,获取光谱芯片的光电探测层的转化矩阵,所述光电探测层基于所述转化矩阵从入射的光信号获得探测到的光信号,其中,所述光谱芯片进一步包括位于所述光电探测层的感测路径上的光调制层;以及S120,基于所述转化矩阵的数值变化确定光学组件的结构配置,所述结构配置用于使得被导引至所述光谱芯片的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值,其中,所述光学组件被保持于所述光谱芯片的感测路径上,用于接收来自被摄目标的光信号并将所述光信号导引至所述光谱芯片。
在步骤S110中,如前所述,所述光谱芯片对入射的光信号的角度敏感,该敏感性可用入射的光信号的主光角和收光光锥角来进行量化表征。具体地,当入射的光信号抵达所述光谱芯片的某个感应单元时,所述光信号到所述光谱芯片的该感应单元的入射角度(对于该感应单元而言,该入射角度也可以定义为该感应单元的收光光锥角)和主光角如果发生变化,所述转化矩阵D中对应位置的参数值也会产生对应的变化,进而影响到光谱恢复的准确性。
相应地,可通过计算设备获取所述光谱芯片的光电探测层的转化矩阵。进一步地通过调整所述主光角和所述收光光锥角的取值,并观察所述转化矩阵中各个位置的值的变化和所述光谱芯片的最终的光谱恢复的效果。这样通过模拟实验和实际应用需求,便可以确定所述主光角和所述收光光锥角的参数选择。
在确定所述主光角和所述收光光锥角的参数选择后,可进一步地确定光学组件的结构配置,这也是步骤S120中的内容。
在根据本申请的光学系统的设计方法中,在一个示例中,所述预定值小于等于45°。
在根据本申请的光学系统的设计方法中,在一个示例中,所述预定值小于等于35°。
在根据本申请的光学系统的设计方法中,在一个示例中,所述预定值小于等于10°。
在根据本申请的光学系统的设计方法中,在一个示例中,所述光学组件包括透镜组,所述透镜组的F数大于等于1.8。
在根据本申请的光学系统的设计方法中,在一个示例中,所述透镜组的F数大于等于2.5。
在根据本申请的光学系统的设计方法中,在一个示例中,所述透镜组具有视场角θ,像高h,其中,所述光学系统满足如下关系式:
L/h*tan(θ/2)=(X/2)/Y,其中,X表示所述光学系统的探测范围的边长,Y表示所述光学系统与被摄目标之间的距离,L为所述光谱芯片的感测有效区的边长。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (22)

  1. 一种光学系统,其特征在于,包括:
    光谱芯片,包括光电探测层和位于所述光电探测层的感测路径上的光调制层,所述光电探测层被配置为获得经过所述光调制层调制的光信号;以及
    被保持于所述光谱芯片的感测路径上的光学组件,所述光学组件被配置为接收来自被摄目标的光信号并将所述光信号导引至所述光谱芯片;
    其中,所述光学组件被配置为使得被导引至所述光谱芯片的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值。
  2. 根据权利要求1所述的光学系统,其中,所述预定值小于等于45°。
  3. 根据权利要求2所述的光学系统,其中,所述预定值小于等于35°。
  4. 根据权利要求3所述的光学系统,其中,所述预定值小于等于10°。
  5. 根据权利要求2所述的光学系统,其中,所述光学组件包括透镜组,所述透镜组的F数大于等于1.8。
  6. 根据权利要求5所述的光学系统,其中,所述透镜组的F数大于等于2.5。
  7. 根据权利要求5所述的光学系统,其中,所述光学组件进一步包括用于调整所述透镜组的F数的光阑。
  8. 根据权利要求5所述的光学系统,其中,所述透镜组具有视场角θ,像高h,其中,所述光学系统满足如下关系式:
    L/h*tan(θ/2)=(X/2)/Y,其中,X表示所述光学系统的探测范围的边长,Y表示所述光学系统与被摄目标之间的距离,L为所述光谱芯片的感测有效区的边长。
  9. 根据权利要求8所述的光学系统,其中,X小于等于6cm,Y小于等于10cm,其中,当X小于等于6cm,Y小于等于10cm时,所述光谱芯片适于被配置为采集来自被摄目标的光信号中的光频信息。
  10. 根据权利要求4所述的光学系统,其中,所述光学组件包括匀光模块和位于所述匀光模块的出光路径上的准直单元,所述匀光模块被配置为均匀化来自被摄目标的光信号,所述准直单元被配置为对经均匀化后的光信号进行准直。
  11. 根据权利要求10所述的光学系统,其中,所述匀光模块包括散光元件和位于所述散光元件的出光路径上的光阑,所述光阑具有通光孔,所述通光孔的尺寸为1mm至10mm。
  12. 根据权利要求10所述的光学系统,其中,所述匀光模块包括积分球,所述积分球具有入光口和出光口,所述出光口的尺寸小于所述入光口的尺寸。
  13. 根据权利要求10所述的光学系统,其中,所述匀光模块包括光阑、位于所述光阑的出光路径上的散射元件、位于所述散射元件的出光路径上的匀光棒。
  14. 根据权利要求13所述的光学系统,其中,所述匀光模块进一步包括位于所述光阑的入光路径上的至少一光学透镜。
  15. 根据权利要求2所述的光学系统,其中,所述光学组件包括远心镜头。
  16. 一种光学系统的设计方法,其特征在于,包括:
    获取光谱芯片的光电探测层的转化矩阵,所述光电探测层基于所述转化矩阵从入射的光信号获得探测到的光信号,其中,所述光谱芯片进一步包括位于所述光电探测层的感测路径上的光调制层;以及
    基于所述转化矩阵的数值变化确定光学组件的结构配置,所述结构配置用于使得被导引至所述光谱芯片的每一位置的光信号的主光角为固定值和每一位置的收光光锥角为预定值,其中,所述光学组件被保持于所述光谱芯片的感测路径上,用于接收来自被摄目标的光信号并将所述光信号导引至所述光谱芯片。
  17. 根据权利要求16所述的光学系统的设计方法,其中,所述预定值小于等于45°。
  18. 根据权利要求17所述的光学系统的设计方法,其中,所述预定值小于等于35°。
  19. 根据权利要求18所述的光学系统的设计方法,其中,所述预定值小于等于10°。
  20. 根据权利要求16所述的光学系统的设计方法,其中,所述光学组件包括透镜组,所述透镜组的F数大于等于1.8。
  21. 根据权利要求20所述的光学系统的设计方法,其中,所述透镜组的F数大于等于2.5。
  22. 根据权利要求21所述的光学系统的设计方法,其中,所述透镜组具有视场角θ,像高h,其中,所述光学系统满足如下关系式:
    L/h*tan(θ/2)=(X/2)/Y,其中,X表示所述光学系统的探测范围的边长,Y表示所述光学系统与被摄目标之间的距离,L为所述光谱芯片的感测有效区的边长。
PCT/CN2022/078784 2021-03-11 2022-03-02 光学系统及其设计方法 WO2022188673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110264246.XA CN115078266A (zh) 2021-03-11 2021-03-11 光学系统及其设计方法
CN202110264246.X 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022188673A1 true WO2022188673A1 (zh) 2022-09-15

Family

ID=83226347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078784 WO2022188673A1 (zh) 2021-03-11 2022-03-02 光学系统及其设计方法

Country Status (2)

Country Link
CN (1) CN115078266A (zh)
WO (1) WO2022188673A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116026463B (zh) * 2023-03-28 2023-08-11 加维纳米(北京)科技有限公司 一种光谱仪

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237453A1 (en) * 2007-03-29 2008-10-02 Farn Hin Chen Color sensor with infrared correction having a filter layer blocking a portion of light of visible spectrum(as amnended)
CN103913226A (zh) * 2014-03-25 2014-07-09 南京邮电大学 一种光谱测量装置及测量方法
KR20170011536A (ko) * 2015-07-23 2017-02-02 한국과학기술연구원 분광 센서, 이를 이용한 분광 장치 및 분광 방법
CN109642822A (zh) * 2016-08-22 2019-04-16 三星电子株式会社 光谱仪和利用其的光谱测量方法
CN111025528A (zh) * 2019-11-29 2020-04-17 华为机器有限公司 一种成像系统、摄像模组及移动终端
CN210376122U (zh) * 2019-07-31 2020-04-21 清华大学 一种光调制微纳结构及微集成光谱仪
CN111490060A (zh) * 2020-05-06 2020-08-04 清华大学 光谱成像芯片及光谱识别设备
CN111505820A (zh) * 2020-03-17 2020-08-07 清华大学 单片集成的图像传感芯片及光谱识别设备
CN111811651A (zh) * 2020-07-23 2020-10-23 清华大学 光谱芯片、光谱仪及光谱芯片制备方法
CN111947780A (zh) * 2020-07-30 2020-11-17 上海交通大学 硅基片上傅里叶变换光谱仪及获得光源重构光谱的方法
CN215069988U (zh) * 2021-02-01 2021-12-07 北京与光科技有限公司 光谱芯片和光谱分析装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237453A1 (en) * 2007-03-29 2008-10-02 Farn Hin Chen Color sensor with infrared correction having a filter layer blocking a portion of light of visible spectrum(as amnended)
CN103913226A (zh) * 2014-03-25 2014-07-09 南京邮电大学 一种光谱测量装置及测量方法
KR20170011536A (ko) * 2015-07-23 2017-02-02 한국과학기술연구원 분광 센서, 이를 이용한 분광 장치 및 분광 방법
CN109642822A (zh) * 2016-08-22 2019-04-16 三星电子株式会社 光谱仪和利用其的光谱测量方法
CN210376122U (zh) * 2019-07-31 2020-04-21 清华大学 一种光调制微纳结构及微集成光谱仪
CN111025528A (zh) * 2019-11-29 2020-04-17 华为机器有限公司 一种成像系统、摄像模组及移动终端
CN111505820A (zh) * 2020-03-17 2020-08-07 清华大学 单片集成的图像传感芯片及光谱识别设备
CN111490060A (zh) * 2020-05-06 2020-08-04 清华大学 光谱成像芯片及光谱识别设备
CN111811651A (zh) * 2020-07-23 2020-10-23 清华大学 光谱芯片、光谱仪及光谱芯片制备方法
CN111947780A (zh) * 2020-07-30 2020-11-17 上海交通大学 硅基片上傅里叶变换光谱仪及获得光源重构光谱的方法
CN215069988U (zh) * 2021-02-01 2021-12-07 北京与光科技有限公司 光谱芯片和光谱分析装置

Also Published As

Publication number Publication date
CN115078266A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US8368889B2 (en) Compact snapshot polarimetry camera
US5581350A (en) Method and system for calibrating an ellipsometer
US9316539B1 (en) Compact spectrometer
US10393579B2 (en) Miniature spectrometer and a spectroscopic method
US7495762B2 (en) High-density channels detecting device
US9316540B1 (en) Compact spectrometer
US6674532B2 (en) Interferometric polarization interrogating filter assembly and method
WO2023045415A1 (zh) 光谱测量装置和方法
CN108007574B (zh) 分辨率可调型快照式图像光谱线偏振探测装置及方法
US20230204418A1 (en) High-speed and high-precision spectral video system and method for flame shooting
CN108593108A (zh) 光谱仪
JP2004514899A (ja) 2−d空間分析光放射並びに光吸収分光のための方法並びに装置
WO2022188673A1 (zh) 光学系统及其设计方法
CN109856058A (zh) 一种高分辨率实时偏振光谱分析装置及方法
Zeng et al. Optical design of a high-resolution spectrometer with a wide field of view
US11530953B2 (en) Snapshot Mueller matrix polarimeter
CN112067128A (zh) 一种高速静态色散成像光谱装置及其使用方法
JP5917572B2 (ja) 分光測定装置及び画像部分抽出装置
CN116972969A (zh) 一种基于二维色散光谱重构的光谱探测方法及装置
CN113108908B (zh) 一种宽波段成像传感器的相对光谱响应测量装置及方法
JP2011064686A (ja) アレイ検出器用の量子効率向上デバイス
Dittrich et al. Measurement principle and arrangement for the determination of spectral channel-specific angle dependencies for multispectral resolving filter-on-chip CMOS cameras
JP2023515226A (ja) 有限領域の光源の角度放出パターンを迅速に測定することを可能にする光学装置
CN105865626A (zh) 一种基于旋转滤光片单色器的高光谱成像仪
Lévesque et al. Measurement of the spatial distribution of the spectral response variation in the field of view of the ASD spectrometer input optics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766199

Country of ref document: EP

Kind code of ref document: A1