WO2022188092A1 - Ue optimization of 5g standalone connection and failure control - Google Patents

Ue optimization of 5g standalone connection and failure control Download PDF

Info

Publication number
WO2022188092A1
WO2022188092A1 PCT/CN2021/080204 CN2021080204W WO2022188092A1 WO 2022188092 A1 WO2022188092 A1 WO 2022188092A1 CN 2021080204 W CN2021080204 W CN 2021080204W WO 2022188092 A1 WO2022188092 A1 WO 2022188092A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
rat
offset value
network configured
detecting
Prior art date
Application number
PCT/CN2021/080204
Other languages
French (fr)
Inventor
Dunfa SHI
Sharda RANJAN
Naga Chandan Babu Gudivada
Tom Chin
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/080204 priority Critical patent/WO2022188092A1/en
Priority to CN202180095173.4A priority patent/CN116941207A/en
Publication of WO2022188092A1 publication Critical patent/WO2022188092A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for user equipment (UE) optimization of 5G standalone connection and failure control.
  • UE user equipment
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a UE may communicate with a BS via the downlink and uplink.
  • Downlink (or “forward link” ) refers to the communication link from the BS to the UE
  • uplink (or “reverse link” ) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, or the like.
  • NR which may also be referred to as 5G
  • 5G is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a user equipment includes detecting a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT) ; adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  • RAT radio access technology
  • a UE for wireless communication includes a memory and one or more processors, coupled to the memory, configured to: detect a trigger associated with failure to connect to a first cell associated with a first RAT; adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection in connection with detecting the trigger; and connect to a second cell associated with a second RAT in connection with adjusting the at least one network configured parameter.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: detect a trigger associated with failure to connect to a first cell associated with a first RAT; adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  • an apparatus for wireless communication includes means for detecting a trigger associated with failure to connect to a first cell associated with a first RAT; means for adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and means for connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, or artificial intelligence-enabled devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include a number of components for analog and digital purposes (e.g., hardware components including antenna, radio frequency (RF) chains, power amplifiers, modulators, buffer, processor (s) , interleavers, adders/summers, etc. ) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, or end-user devices of varying size, shape, and constitution.
  • RF radio frequency
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example associated with UE optimization of 5G standalone connection and failure control, in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example process associated with UE optimization of 5G standalone connection and failure control, in accordance with the present disclosure.
  • Fig. 5 is a block diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network and/or an LTE network, among other examples.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, such as macro BSs, pico BSs, femto BSs, relay BSs, or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts)
  • pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, and/or location tags, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol or a vehicle-to-infrastructure (V2I) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • CQIs channel quality indicators
  • Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • a respective output symbol stream e.g., for OFDM
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSQ reference signal received quality
  • CQI parameter CQI parameter
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • Antennas may include, or may be included within, one or more antenna panels, antenna groups, sets of antenna elements, and/or antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include a set of coplanar antenna elements and/or a set of non-coplanar antenna elements.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include antenna elements within a single housing and/or antenna elements within multiple housings.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM) and transmitted to base station 110.
  • control information e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI
  • Transmit processor 264 may also generate reference symbols for one or more reference signals.
  • the symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM
  • a modulator and a demodulator (e.g., MOD/DEMOD 254) of the UE 120 may be included in a modem of the UE 120.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein (for example, as described with reference to Figs. 3-4) .
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • a modulator and a demodulator (e.g., MOD/DEMOD 232) of the base station 110 may be included in a modem of the base station 110.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-4.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with UE optimization of 5G standalone connection and failure control, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 400 of Fig. 4, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • the UE 120 includes means for detecting a trigger associated with failure to connect to a first cell associated with a first RAT; means for adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and/or means for connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  • the means for the UE 120 to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
  • the UE 120 includes means for detecting that a timer associated with a radio resource control (RRC) connection request expires for at least a threshold number of repeated RRC connection requests transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  • RRC radio resource control
  • the UE 120 includes means for detecting expiration of a first timer that initiates a connection re-establishment procedure followed by expiration of a second timer associated with an RRC connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  • the UE 120 includes means for detecting at least a threshold number of random access channel failures within a time duration.
  • the UE 120 includes means for detecting initiation of a random access channel procedure at least a threshold number times within a time duration.
  • the UE 120 includes means for detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT.
  • the UE 120 includes means for detecting at least a threshold number of repeated out-of-service indications.
  • the UE 120 includes means for adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
  • the UE 120 includes means for reducing at least one of an RSRP measurement for the first cell or an RSRQ measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell; or means for reducing the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, wherein the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
  • the UE 120 includes means for determining an increased offset value, as compared with the network configured offset value, based at least in part on at least one of an RSRP measurement for the first cell, an RSRQ measurement for the first cell, or a signal-to-noise ratio (SNR) measurement for the first cell; and/or means for reducing the RSRP measurement for the first cell by the increased offset value.
  • an RSRP measurement for the first cell an RSRQ measurement for the first cell, or a signal-to-noise ratio (SNR) measurement for the first cell
  • SNR signal-to-noise ratio
  • the UE 120 includes means for determining the increased offset value using a trained machine learning model.
  • the UE 120 includes means for increasing the network configured offset value by an amount that is based at least in part on a number of successive random access channel failures.
  • the UE 120 includes means for lowering a priority for the first cell associated with the first RAT.
  • the UE 120 includes means for increasing a priority for the second cell associated with the second RAT.
  • the UE 120 includes means for barring the first cell from a set of available cells with which to establish a radio resource control connection.
  • the UE 120 includes means for adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell; and/or means for adjusting at least one of a priority for the first cell associated with the first RAT or a priority for the second cell associated with the second RAT.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • 5G/NR networks may be deployed in a non-standalone mode or a standalone mode.
  • a 5G/NR network may depend on a control plane of an existing 4G/LTE network.
  • a UE operating in the non-standalone mode may connect to a 4G/LTE base station and a 5G/NR base station.
  • the 5G/NR network may use 5G cells for both control signaling and data/information transmission.
  • a UE operating in the 5G/NR standalone mode may connect only to a 5G/NR base station.
  • 5G/NR standalone mode commercial deployment has begun with FR1, including sub-6 GHz frequency bands with the 5G core network.
  • a 5G/NE network in the standalone mode may result in issues with connection control, failure control, and/or cell reselection for UEs, for example due to a lack of maturity and/or longevity of the 5G core network.
  • a UE operating in the 5G standalone mode may attempt to transmit an RRC registration request to establish a connection on a 5G cell and may fail, for example, due to random access channel (RACH) failure as a result of a weak channel condition.
  • RACH random access channel
  • the UE may attempt to transmit the registration request due to default data service (DDS) activity after exiting airplane mode.
  • DDS default data service
  • the UE may be able to detect a 4G/LTE cell with better quality, but the DDS may keep trying the RRC registration and/or RACH procedure multiple times in the poor quality 5G cell even after expiration of a T300 timer, for example due to the 5G cell being associated with a higher priority RAT (e.g., 5G/NR) than the 4G/LTE cell.
  • the UE may apply network configured parameters (e.g., connEstFailureControl parameters configured in a system information block (SIB) ) associated with failure to establish a connection and/or cell reselection, which may cause RRC deprioritization of the 5G cell.
  • SIB system information block
  • the deprioritization caused by the network configured parameters may not be enough to overcome (or may require a large number of repetitions to overcome) the relative priorities of the 5G RAT and the 4G RAT and/or reselection criteria for switching from the 5G cell to the 4G cell.
  • the UE may remain stuck attempting to establish a connection on the poor quality 5G cell, without being able to move to a higher quality 4G cell, for a long duration. This may result in reduced network speed or throughput, and/or an inability for the UE to transmit and/or receive data. This may also result in increased power consumption for the UE, for example, due to the UE repeatedly performing the RACH procedure to attempt to establish a connection on the 5G cell.
  • Some techniques and apparatuses described herein enable a UE to detect a trigger associated with failure to connect to a first cell associated with a first RAT.
  • the UE may adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger.
  • the UE may connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  • the first RAT may be a 5G RAT, such as a 5G standalone RAT
  • the second RAT may be another technology, such as a 4G LTE RAT.
  • the UE may adjust the network configured parameters to deprioritize the first cell to cause the UE to quickly perform cell reselection and reselect the second cell. This may reduce the time duration for the UE to move from a weaker cell (e.g., a weaker 5G cell) to a stronger cell (e.g., a strong 4G cell) , as compared with repeatedly applying the network configured parameters.
  • the UE may increase network speed and throughput and reduce an amount of time during which the UE cannot transmit and/or receive data.
  • the UE may reduce repetitions of a RACH procedure to attempt to establish a connection on a weak cell, thus resulting in reduced power consumption by the UE.
  • Fig. 3 is a diagram illustrating an example 300 associated with UE optimization of 5G standalone connection and failure control, in accordance with the present disclosure.
  • example 300 includes communication between a UE 120, a first base station 110-1, and a second base station 110-2.
  • UE 120, the first base station 110-1, and the second base station 110-2 may be included in one or more wireless networks, such as wireless network 100.
  • the UE 120 may communicate with the first base station 110-1 and the second base station 110-2 via respective wireless access links, which may include uplinks and downlinks.
  • the first base station 110-1 may be associated with a first RAT
  • the second base station 110-2 may be associated with a second RAT.
  • the first RAT may be a 5G/NR RAT
  • the first base station 110-1 may be a 5G/NR base station (e.g., gNB) .
  • the first RAT may be a 5G RAT deployed in a standalone mode, referred to herein as a 5G standalone RAT.
  • the UE 120 may communicate with the first RAT while operating in a 5G standalone mode.
  • the second RAT may be a 4G/LTE RAT and the second base station 110-2 may be a 4G/LTE base station (e.g., eNB) .
  • the first and/or second RATs may be any type of RAT.
  • the first RAT and second RAT may be any combination of RATs, such as a 3G RAT, a 4G RAT, a 5G RAT (FR1 and/or FR2) , and/or a RAT subsequent to 5G (e.g., 6G) .
  • the UE 120 may receive, from the first base station 110-1, network configured parameters relating to connection failure in the first RAT and/or cell reselection.
  • a first cell associated with the first RAT e.g., a cell associated with the first base station 110-1
  • a second cell associated with the second RAT e.g., a cell associated with the second base station 110-2
  • the network configured parameters may be included one or more SIBs transmitted (e.g., broadcast) from the first UE 120-1.
  • the UE 120 may receive the network configured parameters in a type 1 SIB (SIB1) transmission from the first base station 110-1 and/or a type 5 SIB (SIB5) transmission from the first base station 110-1.
  • SIB1 SIB SIB1
  • SIB5 SIB SIB5
  • the network configured parameters may include one or more network configured parameters relating to connection failure in the SIB1 transmission.
  • the network configured parameters may include parameters associated with a connEstFailureControl configuration in the SIB1 transmission.
  • the network configured parameters may include a failure count parameter (e.g., connEstFailCount) , an offset duration parameter (e.g., connEstFailOffsetValidity) , and/or an offset parameter (e.g., connEstFailOffset) .
  • the failure count parameter may indicate a number of failures (e.g., a number of times that the UE 120 detects expiration of a T300 timer) on the same cell before applying the offset parameter.
  • the offset parameter may indicate an offset (e.g., in decibels (dB) ) to be temporarily applied to an RSRP measurement for the first cell and/or an RSRQ measurement for the first cell to penalize/reduce the RSRP and/or RSRQ measurements.
  • the offset duration parameter may indicate a duration for which the offset parameter is to be temporarily applied.
  • the network configured parameters may include one or more network configured parameters relating to cell reselection in the SIB5 transmission.
  • the SIB5 transmission may include an evolved universal mobile telecommunications system (UMTS) terrestrial radio access (E-UTRA) /LTE neighbor cell list and reselection criteria.
  • the system information in the SIB5 transmission may include information that indicates a list of carrier frequencies for one or more neighboring 4G/LTE RATs (e.g., the second RAT) .
  • the list of carrier frequencies may include an indication of an E-UTRA absolute radio frequency channel number (EARFCN) for each of the carrier frequencies for the one or more neighboring 4G/LTE RATs.
  • E-UTRA absolute radio frequency channel number E-UTRA absolute radio frequency channel number
  • the second RAT may be a neighboring RAT with a high-powered carrier frequency (e.g., EARFCN) .
  • the network configured parameters included in the SIB5 transmission may include a network configured priority (e.g., reselection priority) associated with the second RAT, a network configured priority (e.g., reselection priority) associated with the second cell, and/or a network configured priority (e.g., reselection priority) associated with a carrier frequency for the second cell.
  • the network configured parameters may include one or more network configured parameters relating to cell reselection in a type 2 SIB (SIB2) transmission from the first base station 110-1.
  • the network configured parameters included in the SIB2 transmission may include a priority (e.g., reselection priority) associated with the first RAT and/or the first cell and one or more reselection thresholds (e.g., s-NonIntraSearchP, S-NonIntraSearchQ, threshServingLowP, and/or threshServingLowQ) .
  • the network configured parameters may include any other network configured parameters that relate to failure to establish a connection with the first network and/or performing cell reselection.
  • one or more network configured parameters may be received by the UE 120 in one or more SIBs other than SIB1, SIB2, and/or SIB5.
  • the UE 120 may attempt to connect to the first cell associated with the first RAT. In some aspects, the UE 120 may attempt to connect to the first cell upon the UE 120 powering on, or the UE 120 exiting airplane mode, among other examples. In some aspects, the UE 120 may transmit, to the first base station 110-1, one or more requests (e.g., one or more RRC registration requests) to establish an RRC connection with the first cell associated with the first RAT (e.g., an RRC connection with the first base station 110-1. In some cases, a request to establish the RRC connection with the first cell may be unsuccessful, and the UE 120 may repeat transmission of the request to establish the RRC connection multiple times. The UE 120 may perform a RACH procedure to access a RACH resource for transmitting each RRC connection request to the first base station 110-1. In some cases, the RACH procedure may fail, and the UE 120 may repeat the RACH procedure multiple times.
  • requests e.g., one or more RRC registration requests
  • RRC connection with the first cell
  • the UE 120 may apply one or more network configured parameters, such as the offset parameter (e.g., connEstFailOffset) , based at least in part on one or more failures to connect with the first cell.
  • the UE 120 may apply the network configured offset parameter (e.g., to an RSRP measurement and/or an RSRQ measurement for the first cell) for a duration indicated by the network configured offset duration parameter (e.g., connEstFailOffsetValidity) , based in part on the number of failures detected by the UE 120 satisfying the network configured failure count parameter (e.g., connEstFailCount) .
  • the UE 120 may determine not to perform cell reselection when applying the network configured parameters. In this case, the UE 120 may continue to attempt to connect to the first cell.
  • the UE 120 may detect a trigger associated with failure to connect to the first cell associated with the first RAT.
  • the trigger may be associated with a number of connection failures detected by the UE 120 and/or a time duration associated with failure of the UE 120 to connect to the first cell.
  • the UE 120 may detect the trigger based at least in part on detecting that a timer associated with an RRC connection request (e.g., the T300 timer) expires for at least a threshold number of repeated RRC connection requests transmitted by the UE 120 to request an RRC connection with the first cell.
  • a timer associated with an RRC connection request e.g., the T300 timer
  • the trigger may be associated with detection, by the UE 120, of the threshold number of consecutive repeated expirations of the T300 timer and/or detection, by the UE 120 of the threshold number of expirations of the T300 time within a certain time duration.
  • the network configured failure count parameter (e.g., connEstFailCount) may indicate a first number of expirations of the T300 timer, and the UE 120 may detect the trigger based at least in part on detecting a second number of expirations of the T300 timer. In this case, the second number may be greater than the first number.
  • the UE 120 may detect the trigger based at least in part on detecting expiration of a first timer (e.g., a T310 timer) that initiates a connection re-establishment procedure followed by expiration of a second timer (e.g., the T300 timer) associated with an RRC connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  • a first timer e.g., a T310 timer
  • a second timer e.g., the T300 timer
  • the UE 120 may detect the trigger based at least in part on detecting repeated frequent RACH triggers and failures. For example, the UE 120 may detect the trigger in connection with detecting at least a threshold number of RACH failures within a time duration. Additionally, or alternatively, the UE 120 may detect the trigger in connection with detecting at least a threshold number of consecutive RACH failures.
  • the UE 120 may detect the trigger based at least in part on detecting repeated frequent RACH triggers, even in cases in which some or all of the RACH procedures are successful. For example, frequent repeated RACH triggers that are successful may be a result of the UE 120 not being able to transmit a scheduling request (SR) to the first base station 110-1 due to weak channel conditions, and the UE 120 using RACH to synchronize with the first base station 110-1. In this case, the UE 120 may detect the trigger in connection with detecting initiation of a RACH procedure at least a threshold number times within a time duration.
  • SR scheduling request
  • the UE 120 may detect the trigger based at least in part on detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT.
  • the trigger may be associated with detection, by the UE 120, of the threshold number of radio link failures within a certain time duration and/or detection, by the UE 120 of the threshold number of consecutive radio link failures.
  • the UE 120 may detect the trigger based at least in part on detecting at least a threshold number of repeated out-of-service indications.
  • the trigger may be associated with detection, by the UE 120, of the threshold number of out-of-service indications within a certain time duration and/or detection, by the UE 120 of the threshold number of consecutive out-of-service indications.
  • the UE 120 may detect the trigger in connection with detection of any of multiple triggers associated with failure to connect to the first cell. For example, the UE 120 may detect the trigger in connection with detecting any of the triggers described above and/or any combination of the triggers described above.
  • the UE 120 may adjust at least one network configured parameter relating to connection failure in the first RAT and/or cell reselection based at least in part on detecting the trigger. In some aspects, the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to perform cell reselection and/or to cause the UE 120 to select (e.g., move to) the second cell associated with the second RAT during cell reselection. In some aspects, the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to perform cell reselection and select another cell (e.g., the second cell) immediately.
  • the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to perform cell reselection and select another cell (e.g., the second cell) immediately.
  • the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to select another cell (e.g., the second cell) more quickly than by applying the at least one network configured parameter. In some aspects, the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to determine that the UE 120 is out-of-service for the first cell and select another cell (e.g., the second cell) .
  • the UE 120 may adjust a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
  • the UE 120 may adjust the network configured offset value (e.g., connEstFailOffset) indicated in SIB1.
  • the UE 120 may increase the offset value applied as compared to the network configured offset value.
  • the UE 120 may apply the adjusted offset value (e.g., the increased offset value) to a power measurement (e.g., RSRP measurement) for the first cell and/or a quality measurement (e.g., RSRQ measurement) for the first cell, instead of applying the network configured offset value.
  • the adjusted offset value e.g., the increased offset value
  • the UE 120 may increase the deprioritization of the first cell associated, as compared with applying the network configured offset value.
  • the UE 120 may apply the network configured offset value based at leased in part of detecting a first number of failures to connect to the first cell (e.g., a first number of T300 time expirations) .
  • the first number of failures may be indicated by the network configured failure count parameter (e.g., connEstFailCount) .
  • the UE 120 may adjust the network configured offset value and apply the adjusted offset value in connection with detecting the trigger, which may be associated with a second number of failures to connect to the first cell (e.g., a second number of T300 time expirations) . In this case, the second number may be greater than the first number.
  • the UE 120 may initially reduce the RSRP measurement for the first cell and/or the RSRQ measurement for the first cell by the network configured offset value based in part on the first number of failures to connect to the first cell (e.g., prior to detecting the trigger) .
  • the UE 120 may then reduce the RSRP measurement for the first cell and/or the RSRQ measurement for the first cell by the adjusted offset value (e.g., increased offset value) based at least in part on detecting the trigger (e.g., detecting the second number of failures to connect to the first cell) .
  • the adjusted offset value e.g., increased offset value
  • the adjusted offset value, applied by the UE 120 may be a fixed offset value configured for the UE 120.
  • the fixed offset value may be configured for the UE 120 by an original equipment manufacturer (OEM) of the UE 120 or set by a wireless communication standard, among other examples.
  • OEM original equipment manufacturer
  • the fixed offset value may be determined based at least in part on a system simulation and/or evaluation.
  • the fixed offset value may be a value large enough to be blindly applied by the UE 120 (e.g., without measuring a current RSRP measurement or RSRQ measurement) to ensure that the UE 120 will move out of the first cell.
  • the UE 120 may dynamically determine the adjusted offset value based on current conditions in the first cell and/or cell reselection criteria associated with selecting a cell (e.g., the second cell) other than the first cell. For example, the UE 120 may dynamically determine the adjusted offset value (e.g., the increased offset value) based at least in part on an RSRP measurement for the first cell, an RSRQ measurement for the first cell, and/or an SNR measurement for the first cell.
  • the adjusted offset value e.g., the increased offset value
  • the UE 120 may dynamically determine the adjusted offset value based at least in part on a comparison between the RSRP measurement and an RSRP threshold associated with selecting another cell (e.g., an NR-to-LTE (NR2L) cell reselection RSRP threshold) and/or a comparison between the RSRQ measurement and an RSRQ threshold associated with selecting another cell (e.g., an NR2L cell reselection RSRQ threshold) .
  • the UE 120 may select an adjusted offset value that, when applied to the RSRP measurement, satisfies the RSRP threshold, and/or when applied to the RSRQ measurement, satisfies the RSRQ threshold.
  • the UE 120 may determine the adjusted offset value (e.g., the increased offset value) using a trained machine learning model.
  • the UE 120 may input, to the trained machine learning model, information including one or more of the RSRP measurement for the first cell, the RSRQ measurement for the first cell, and/or the SNR measurement for the first cell, and the trained machine learning model may determine the adjusted offset value based on the input information.
  • the input information for the trained machine learning model may also include one or more thresholds associated with cell reselection (e.g., the NR2L cell reselection RSRP threshold, the NR2L cell reselection RSRQ threshold, and/or other thresholds related to cell reselection) .
  • the trained machine learning model may be trained to learn a mapping between the input information and the adjusted offset value (and/or one or more other adjusted network configured parameters) to optimize the offset value (and/or one or more other network configured parameters) for the UE 120.
  • the trained machine learning model may be any type of machine learning model.
  • the UE 120 may adjust the network configured offset value by increasing the network configured offset value by an amount that is based at least in part on a number of successive RACH failures. For example, once the UE 120 detects the trigger, the UE 120 may increase the network configured offset value by a larger amount with each successive RACH failure (e.g., until the UE 120 switches to a different cell) . In some aspects, the UE 120 may be configured with a mapping that maps different numbers (or ranges of numbers) of RACH failures to different offset adjustments for the UE 120 to apply.
  • the number of RACH failures may be included in the input information to the trained machine learning model, and the trained machine learning model may determine the adjustment for the offset value based at least in part on the number of RACH failures and based at least in part on the other input information.
  • the UE 120 may adjust a network configured priority (e.g., reselection priority) for the first cell associated with the first RAT, and/or the UE 120 may adjust a network configured priority for a second cell associated with the second RAT. In some aspects, the UE 120 may adjust the priority of the first cell and/or the priority of the second cell in combination with adjusting the network configured offset parameter. In some aspects, the UE 120 may adjust the priority of the first cell and/or the priority of the second cell instead of adjusting the network configured offset parameter.
  • a network configured priority e.g., reselection priority
  • the UE 120 may lower the priority of the first cell associated with the first RAT. For example, the UE 120 may lower the network configured priority (e.g., reselection priority) for the first cell indicated in SIB2. Additionally, and/or alternatively, the UE 120 may increase the priority of the second cell associated with the second RAT. For example, the UE 120 may increase the network configured priority (e.g., reselection priority) for the second cell (and/or a certain carrier frequency of the second cell) indicated in SIB5.
  • the network configured priority e.g., reselection priority
  • the UE 120 may determine, after the deprioritization of the first cell (e.g., by applying the network configured offset value or the adjusted offset value) , whether the network configured priority for the first cell (e.g., NR cell) is greater than the network configured priority for the second cell (e.g., LTE cell) . In this case, the UE 120 may skip consideration of lower priority cell candidates, such as the second cell. In some aspects, the UE 120 may increase the priority for the second cell and/or decrease the priority for the first cell such that the first cell and the second cell have the same priority. In some aspects, the UE 120 may increase the priority for the second cell and/or decrease the priority for the first cell such that the second cell has a greater priority than the first cell.
  • the network configured priority for the first cell e.g., NR cell
  • the second cell e.g., LTE cell
  • the UE 120 may skip consideration of lower priority cell candidates, such as the second cell.
  • the UE 120 may increase the priority for the second cell and
  • the UE 120 may perform cell reselection based at least in part on adjusting the at least one network configured parameter. For example, the UE 120 may apply the adjusted offset, the adjusted priority for the first cell, and/or the adjusted priority for the second cell during cell reselection.
  • the UE 120 may perform cell reselection measurements (e.g., RSRP and/or RSRQ measurements of the second cell) based at least in part adjusting the at least one network configured parameter. For example, in some aspects, the UE 120 may perform the cell reselection measurements in connection with adjusting the priority for the first cell and/or the priority for the second cell such that the priority for the second cell is greater than the priority for the first cell.
  • cell reselection measurements e.g., RSRP and/or RSRQ measurements of the second cell
  • the UE 120 may perform the cell reselection measurements in connection with adjusting the priority for the first cell and/or the priority for the second cell such that the priority for the second cell is greater than the priority for the first cell.
  • the UE 120 may perform the cell reselection measurements in connection with a determination that a cell selection receive (Rx) level value (Srxlev) , resulting from applying the adjusted offset to the RSRP measurement for the first cell, satisfies (e.g., is less than or equal to) an RSRP threshold associated with performing cell selection measurements (e.g., s-NonIntraSearchP) and a determination that cell selection quality value (Squal) , resulting from applying the adjusted offset to the RSRQ measurement for the first cell, satisfies (e.g., is less than or equal to) an RSRQ threshold associated with performing cell selection measurements (e.g., s-NonIntraSearchQ) .
  • Rx cell selection receive
  • Srxlev cell selection receive
  • Squal cell selection quality value
  • the UE 120 may select the second cell during cell reselection based at least in part on adjusting the at least one network configured parameter. For example, the UE 120 may determine Srxlev by applying the adjusted offset value to the RSRP measurement for the first cell (e.g., subtracting the adjusted offset value from the RSRP measurement) , and/or the UE 120 may determine Squal by applying the adjusted offset parameter to the RSRQ measurement for the first cell (e.g., subtracting the adjusted offset value from the RSRQ measurement) .
  • the UE 120 may perform cell reselection to the second cell associated with the second RAT in connection with a determination that Srxlev is less than an RSRP cell reselection threshold (e.g., threshServingLowP) , and an RSRP measurement for the second cell is greater than the RSRP cell reselection threshold, and/or a determination that Squal is less than an RSRQ cell reselection threshold (e.g., threshServingLowQ) and an RSRQ measurement for the second cell is greater than the RSRQ cell reselection threshold.
  • an RSRP cell reselection threshold e.g., threshServingLowP
  • the UE 120 may connect to the second cell associated with the second RAT.
  • the UE 120 may connect to the second cell based at least in part on the cell reselection performed in connection with adjusting the at least one network configured parameter. Accordingly, the UE 120 may connect to the second cell based at least in part on adjusting the at least one network configured parameter.
  • the UE 120 may transmit, to the second base station 110-2, an RRC connection request to establish an RRC connection with the second cell associated with the second RAT (e.g., an RRC connection with the second base station 110-2) .
  • the UE 120 may detect a trigger associated with failure to connect to a first cell associated with a first RAT.
  • the UE 120 may adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger.
  • the UE 120 may connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  • the first RAT may be a 5G RAT, such as a 5G standalone RAT
  • the second RAT may be a 4G LTE RAT.
  • the UE 120 may adjust the network configured parameters to deprioritize the first cell to cause the UE 120 to quickly perform cell reselection and reselect the second cell. This may reduce the time duration for the UE 120 to move from a weaker cell (e.g., a weaker 5G cell) to a stronger cell (e.g., a strong 4G cell) , as compared with repeatedly applying the network configured parameters.
  • the UE 120 may increase network speed and throughput and reduce an amount of time for which the UE 120 cannot transmit and/or receive data.
  • the UE 120 may reduce repetitions of a RACH procedure to attempt to establish a connection on a weak cell, thus resulting in reduced power consumption by the UE 120.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 400 is an example where the UE (e.g., UE 120) performs operations associated with UE optimization of 5G standalone connection and failure control.
  • process 400 may include detecting a trigger associated with failure to connect to a first cell associated with a first RAT (block 410) .
  • the UE e.g., using detection component 508, depicted in Fig. 5
  • process 400 may include adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger (block 420) .
  • the UE e.g., using adjustment component 510, depicted in Fig. 5
  • process 400 may include connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter (block 430) .
  • the UE e.g., using connection component 512, depicted in Fig. 5
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the first RAT is a 5G standalone RAT
  • the second RAT is a 4G LTE RAT.
  • detecting the trigger includes detecting that a timer associated with an RRC connection request expires for at least a threshold number of repeated RRC connection requests transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  • detecting the trigger includes detecting expiration of a first timer that initiates a connection re-establishment procedure followed by expiration of a second timer associated with an RRC connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  • detecting the trigger includes detecting at least a threshold number of random access channel failures within a time duration.
  • detecting the trigger includes detecting initiation of a random access channel procedure at least a threshold number times within a time duration.
  • detecting the trigger includes detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT.
  • detecting the trigger includes detecting at least a threshold number of repeated out-of-service indications.
  • adjusting the at least one network configured parameter includes adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
  • process 400 includes reducing at least one of an RSRP measurement for the first cell or an RSRQ measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell, and reducing the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, and the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
  • the adjusted offset value is a fixed offset value configured for the UE.
  • adjusting the network configured offset value includes determining an increased offset value, as compared with the network configured offset value, based at least in part on at least one of an RSRP measurement for the first cell, an RSRQ measurement for the first cell, or an SNR measurement for the first cell, and reducing the RSRP measurement for the first cell by the increased offset value.
  • determining the increased offset value includes determining the increased offset value using a trained machine learning model.
  • adjusting the network configured offset value includes increasing the network configured offset value by an amount that is based at least in part on a number of successive random access channel failures.
  • adjusting the at least one network configured parameter includes lowering a priority for the first cell associated with the first RAT.
  • adjusting the at least one network configured parameter further includes increasing a priority for the second cell associated with the second RAT.
  • adjusting the at least one network configured parameter relating to connection failure includes barring the first cell from a set of available cells with which to establish a radio resource control connection.
  • adjusting the at least one network configured parameter includes adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, and adjusting at least one of a priority for the first cell associated with the first RAT or a priority for the second cell associated with the second RAT.
  • process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
  • Fig. 5 is a block diagram of an example apparatus 500 for wireless communication, in accordance with the present disclosure.
  • the apparatus 500 may be a UE, or a UE may include the apparatus 500.
  • the apparatus 500 includes a reception component 502 and a transmission component 504, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 500 may communicate with another apparatus 506 (such as a UE, a base station, or another wireless communication device) using the reception component 502 and the transmission component 504.
  • the apparatus 500 may include one or more of a detection component 508, an adjustment component 510, or a connection component 512, among other examples.
  • the apparatus 500 may be configured to perform one or more operations described herein in connection with Fig. 3. Additionally, or alternatively, the apparatus 500 may be configured to perform one or more processes described herein, such as process 400 of Fig. 4, or a combination thereof.
  • the apparatus 500 and/or one or more components shown in Fig. 5 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 5 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 502 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 506.
  • the reception component 502 may provide received communications to one or more other components of the apparatus 500.
  • the reception component 502 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 506.
  • the reception component 502 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the transmission component 504 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 506.
  • one or more other components of the apparatus 506 may generate communications and may provide the generated communications to the transmission component 504 for transmission to the apparatus 506.
  • the transmission component 504 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 506.
  • the transmission component 504 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 504 may be co-located with the reception component 502 in a transceiver.
  • the detection component 508 may detect a trigger associated with failure to connect to a first cell associated with a first RAT.
  • the adjustment component 510 may adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger.
  • the connection component 512 may connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  • the adjustment component 510 may reduce at least one of an RSRP measurement for the first cell or an RSRQ measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell.
  • the adjustment component 510 may reduce the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, wherein the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
  • Fig. 5 The number and arrangement of components shown in Fig. 5 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 5. Furthermore, two or more components shown in Fig. 5 may be implemented within a single component, or a single component shown in Fig. 5 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 5 may perform one or more functions described as being performed by another set of components shown in Fig. 5.
  • a method of wireless communication performed by a user equipment (UE) comprising: detecting a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT) ; adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  • RAT radio access technology
  • Aspect 2 The method of Aspect 1, wherein the first RAT is a 5G standalone RAT, and the second RAT is a 4G long term evolution (LTE) RAT.
  • LTE long term evolution
  • Aspect 3 The method of any of Aspects 1-2, wherein detecting the trigger comprises: detecting that a timer associated with a radio resource control (RRC) connection request expires for at least a threshold number of repeated RRC connection requests transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  • RRC radio resource control
  • Aspect 4 The method of any of Aspects 1-3, wherein detecting the trigger comprises: detecting expiration of a first timer that initiates a connection re-establishment procedure followed by expiration of a second timer associated with a radio resource control (RRC) connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  • RRC radio resource control
  • Aspect 5 The method of any of Aspects 1-4, wherein detecting the trigger comprises: detecting at least a threshold number of random access channel failures within a time duration.
  • Aspect 6 The method of any of Aspects 1-5, wherein detecting the trigger comprises: detecting initiation of a random access channel procedure at least a threshold number times within a time duration.
  • Aspect 7 The method of any of Aspects 1-6, wherein detecting the trigger comprises: detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT.
  • Aspect 8 The method of any of Aspects 1-7, wherein detecting the trigger comprises: detecting at least a threshold number of repeated out-of-service indications.
  • Aspect 9 The method of any of Aspects 1-8, wherein adjusting the at least one network configured parameter comprises: adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
  • Aspect 10 The method of Aspect 9, further comprising: reducing at least one of a reference signal received power (RSRP) measurement for the first cell or a reference signal received quality (RSRQ) measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell; and reducing the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, wherein the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • Aspect 11 The method of any of Aspects 9-10, wherein the adjusted offset value is a fixed offset value configured for the UE.
  • Aspect 12 The method of any of Aspects 9-10, wherein adjusting the network configured offset value comprises: determining an increased offset value, as compared with the network configured offset value, based at least in part on at least one of a reference signal received power (RSRP) measurement for the first cell, a reference signal received quality (RSRQ) measurement for the first cell, or a signal-to-noise ratio (SNR) measurement for the first cell; and reducing the RSRP measurement for the first cell by the increased offset value.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SNR signal-to-noise ratio
  • Aspect 13 The method of Aspect 12, wherein determining the increased offset value comprises: determining the increased offset value using a trained machine learning model.
  • Aspect 14 The method of any of Aspects 9-13, wherein adjusting the network configured offset value comprises: increasing the network configured offset value by an amount that is based at least in part on a number of successive random access channel failures.
  • Aspect 15 The method of any of Aspects 1-14, wherein adjusting the at least one network configured parameter comprises: lowering a priority for the first cell associated with the first RAT.
  • Aspect 16 The method of Aspect 15, wherein adjusting the at least one network configured parameter further compromises: increasing a priority for the second cell associated with the second RAT.
  • Aspect 17 The method of any of Aspects 1-16, wherein adjusting the at least one network configured parameter relating to connection failure comprises: barring the first cell from a set of available cells with which to establish a radio resource control connection.
  • Aspect 18 The method of any of Aspects 1-17, wherein adjusting the at least one network configured parameter comprises: adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell; and adjusting at least one of a priority for the first cell associated with the first RAT or a priority for the second cell associated with the second RAT.
  • Aspect 19 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more Aspects of Aspects 1-18.
  • Aspect 20 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more Aspects of Aspects 1-18.
  • Aspect 21 An apparatus for wireless communication, comprising at least one means for performing the method of one or more Aspects of Aspects 1-18.
  • Aspect 22 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more Aspects of Aspects 1-18.
  • Aspect 23 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more Aspects of Aspects 1-18.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a processor is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may detect a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT). The UE may adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger. The UE may connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter. Numerous other aspects are described.

Description

UE OPTIMIZATION OF 5G STANDALONE CONNECTION AND FAILURE CONTROL
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for user equipment (UE) optimization of 5G standalone connection and failure control.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A UE may communicate with a BS via the downlink and uplink. “Downlink” (or “forward link” ) refers to the communication link from the BS to the UE, and “uplink” (or “reverse link” ) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level.  NR, which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a user equipment (UE) includes detecting a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT) ; adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
In some aspects, a UE for wireless communication includes a memory and one or more processors, coupled to the memory, configured to: detect a trigger associated with failure to connect to a first cell associated with a first RAT; adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection in connection with detecting the trigger; and connect to a second cell associated with a second RAT in connection with adjusting the at least one network configured parameter.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: detect a trigger associated with failure to connect to a first cell associated with a first RAT; adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and connect to a second cell  associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
In some aspects, an apparatus for wireless communication includes means for detecting a trigger associated with failure to connect to a first cell associated with a first RAT; means for adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and means for connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, or artificial intelligence-enabled devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, or system-level components. Devices incorporating described aspects and features may  include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include a number of components for analog and digital purposes (e.g., hardware components including antenna, radio frequency (RF) chains, power amplifiers, modulators, buffer, processor (s) , interleavers, adders/summers, etc. ) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example associated with UE optimization of 5G standalone connection and failure control, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating an example process associated with UE optimization of 5G standalone connection and failure control, in accordance with the present disclosure.
Fig. 5 is a block diagram of an example apparatus for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied  in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network and/or an LTE network, among other examples. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a  BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, such as macro BSs, pico BSs, femto BSs, relay BSs, or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example,  macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, and/or location tags, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components and/or memory components. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, or the like. A frequency may also be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol or a vehicle-to-infrastructure (V2I) protocol) , and/or a mesh network. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included  in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for  OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
Antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, antenna groups, sets of antenna elements, and/or antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include a set of coplanar antenna elements and/or a set of non-coplanar antenna elements. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include antenna elements within a single housing and/or antenna elements within multiple housings. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM or CP-OFDM) and transmitted to base station 110. In some aspects, a modulator and a  demodulator (e.g., MOD/DEMOD 254) of the UE 120 may be included in a modem of the UE 120. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein (for example, as described with reference to Figs. 3-4) .
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, a modulator and a demodulator (e.g., MOD/DEMOD 232) of the base station 110 may be included in a modem of the base station 110. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-4.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with UE optimization of 5G standalone connection and failure control, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g.,  directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 400 of Fig. 4, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, the UE 120 includes means for detecting a trigger associated with failure to connect to a first cell associated with a first RAT; means for adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and/or means for connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter. The means for the UE 120 to perform operations described herein may include, for example, one or more of antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, or memory 282.
In some aspects, the UE 120 includes means for detecting that a timer associated with a radio resource control (RRC) connection request expires for at least a threshold number of repeated RRC connection requests transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
In some aspects, the UE 120 includes means for detecting expiration of a first timer that initiates a connection re-establishment procedure followed by expiration of a second timer associated with an RRC connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
In some aspects, the UE 120 includes means for detecting at least a threshold number of random access channel failures within a time duration.
In some aspects, the UE 120 includes means for detecting initiation of a random access channel procedure at least a threshold number times within a time duration.
In some aspects, the UE 120 includes means for detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT.
In some aspects, the UE 120 includes means for detecting at least a threshold number of repeated out-of-service indications.
In some aspects, the UE 120 includes means for adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
In some aspects, the UE 120 includes means for reducing at least one of an RSRP measurement for the first cell or an RSRQ measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell; or means for reducing the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, wherein the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
In some aspects, the UE 120 includes means for determining an increased offset value, as compared with the network configured offset value, based at least in part on at least one of an RSRP measurement for the first cell, an RSRQ measurement for the first cell, or a signal-to-noise ratio (SNR) measurement for the first cell; and/or means for reducing the RSRP measurement for the first cell by the increased offset value.
In some aspects, the UE 120 includes means for determining the increased offset value using a trained machine learning model.
In some aspects, the UE 120 includes means for increasing the network configured offset value by an amount that is based at least in part on a number of successive random access channel failures.
In some aspects, the UE 120 includes means for lowering a priority for the first cell associated with the first RAT.
In some aspects, the UE 120 includes means for increasing a priority for the second cell associated with the second RAT.
In some aspects, the UE 120 includes means for barring the first cell from a set of available cells with which to establish a radio resource control connection.
In some aspects, the UE 120 includes means for adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell; and/or means for adjusting at least one of a priority for the first cell associated with the first RAT or a priority for the second cell associated with the second RAT.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware,  software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
5G/NR networks may be deployed in a non-standalone mode or a standalone mode. In the non-standalone mode, a 5G/NR network may depend on a control plane of an existing 4G/LTE network. In this case, a UE operating in the non-standalone mode may connect to a 4G/LTE base station and a 5G/NR base station. In the standalone mode of 5G/NR, the 5G/NR network may use 5G cells for both control signaling and data/information transmission. In this case, a UE operating in the 5G/NR standalone mode may connect only to a 5G/NR base station. In some examples, 5G/NR standalone mode commercial deployment has begun with FR1, including sub-6 GHz frequency bands with the 5G core network.
In some cases, deployment of a 5G/NE network in the standalone mode may result in issues with connection control, failure control, and/or cell reselection for UEs, for example due to a lack of maturity and/or longevity of the 5G core network. In some examples, a UE operating in the 5G standalone mode may attempt to transmit an RRC registration request to establish a connection on a 5G cell and may fail, for example, due to random access channel (RACH) failure as a result of a weak channel condition. For example, the UE may attempt to transmit the registration request due to default data service (DDS) activity after exiting airplane mode. The UE may be able to detect a 4G/LTE cell with better quality, but the DDS may keep trying the RRC registration and/or RACH procedure multiple times in the poor quality 5G cell even after expiration of a T300 timer, for example due to the 5G cell being associated with a higher priority RAT (e.g., 5G/NR) than the 4G/LTE cell. The UE may apply network configured parameters (e.g., connEstFailureControl parameters configured in a system information block (SIB) ) associated with failure to establish a connection and/or cell reselection, which may cause RRC deprioritization of the 5G cell. However, the deprioritization caused by the network configured parameters may not be enough to overcome (or may require a large number of repetitions to overcome) the relative priorities of the 5G RAT and the 4G RAT and/or reselection criteria for switching from the 5G cell to the 4G cell. In this case, the UE may remain stuck attempting to establish a connection on the poor  quality 5G cell, without being able to move to a higher quality 4G cell, for a long duration. This may result in reduced network speed or throughput, and/or an inability for the UE to transmit and/or receive data. This may also result in increased power consumption for the UE, for example, due to the UE repeatedly performing the RACH procedure to attempt to establish a connection on the 5G cell.
Some techniques and apparatuses described herein enable a UE to detect a trigger associated with failure to connect to a first cell associated with a first RAT. The UE may adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger. The UE may connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter. In some aspects, the first RAT may be a 5G RAT, such as a 5G standalone RAT, and the second RAT may be another technology, such as a 4G LTE RAT. As a result, the UE may adjust the network configured parameters to deprioritize the first cell to cause the UE to quickly perform cell reselection and reselect the second cell. This may reduce the time duration for the UE to move from a weaker cell (e.g., a weaker 5G cell) to a stronger cell (e.g., a strong 4G cell) , as compared with repeatedly applying the network configured parameters. Thus, the UE may increase network speed and throughput and reduce an amount of time during which the UE cannot transmit and/or receive data. Furthermore, the UE may reduce repetitions of a RACH procedure to attempt to establish a connection on a weak cell, thus resulting in reduced power consumption by the UE.
Fig. 3 is a diagram illustrating an example 300 associated with UE optimization of 5G standalone connection and failure control, in accordance with the present disclosure. As shown in Fig. 3, example 300 includes communication between a UE 120, a first base station 110-1, and a second base station 110-2. In some aspects, UE 120, the first base station 110-1, and the second base station 110-2 may be included in one or more wireless networks, such as wireless network 100. The UE 120 may communicate with the first base station 110-1 and the second base station 110-2 via respective wireless access links, which may include uplinks and downlinks.
The first base station 110-1 may be associated with a first RAT, and the second base station 110-2 may be associated with a second RAT. In some aspects, the first RAT may be a 5G/NR RAT, and the first base station 110-1 may be a 5G/NR base station (e.g., gNB) . For example, the first RAT may be a 5G RAT deployed in a standalone mode, referred to herein as a 5G standalone RAT. In this case, the UE 120  may communicate with the first RAT while operating in a 5G standalone mode. In some aspects, the second RAT may be a 4G/LTE RAT and the second base station 110-2 may be a 4G/LTE base station (e.g., eNB) . While some aspects may be described herein in which the first RAT is a 5G RAT and the second RAT is a 4G RAT, in some aspects the first and/or second RATs may be any type of RAT. For example, the first RAT and second RAT may be any combination of RATs, such as a 3G RAT, a 4G RAT, a 5G RAT (FR1 and/or FR2) , and/or a RAT subsequent to 5G (e.g., 6G) .
As shown in Fig. 3, and by reference number 305, the UE 120 may receive, from the first base station 110-1, network configured parameters relating to connection failure in the first RAT and/or cell reselection. In some aspects, a first cell associated with the first RAT (e.g., a cell associated with the first base station 110-1) may be a serving cell for the UE 120, and a second cell associated with the second RAT (e.g., a cell associated with the second base station 110-2) may be a neighbor cell to the serving cell (e.g., the first cell) . In some aspects, the network configured parameters may be included one or more SIBs transmitted (e.g., broadcast) from the first UE 120-1. For example, the UE 120 may receive the network configured parameters in a type 1 SIB (SIB1) transmission from the first base station 110-1 and/or a type 5 SIB (SIB5) transmission from the first base station 110-1.
In some aspects, the network configured parameters may include one or more network configured parameters relating to connection failure in the SIB1 transmission. For example, the network configured parameters may include parameters associated with a connEstFailureControl configuration in the SIB1 transmission. In this case, the network configured parameters may include a failure count parameter (e.g., connEstFailCount) , an offset duration parameter (e.g., connEstFailOffsetValidity) , and/or an offset parameter (e.g., connEstFailOffset) . The failure count parameter may indicate a number of failures (e.g., a number of times that the UE 120 detects expiration of a T300 timer) on the same cell before applying the offset parameter. The offset parameter may indicate an offset (e.g., in decibels (dB) ) to be temporarily applied to an RSRP measurement for the first cell and/or an RSRQ measurement for the first cell to penalize/reduce the RSRP and/or RSRQ measurements. The offset duration parameter may indicate a duration for which the offset parameter is to be temporarily applied.
Additionally, or alternatively, in some aspects, the network configured parameters may include one or more network configured parameters relating to cell reselection in the SIB5 transmission. The SIB5 transmission may include an evolved  universal mobile telecommunications system (UMTS) terrestrial radio access (E-UTRA) /LTE neighbor cell list and reselection criteria. The system information in the SIB5 transmission may include information that indicates a list of carrier frequencies for one or more neighboring 4G/LTE RATs (e.g., the second RAT) . For example, the list of carrier frequencies may include an indication of an E-UTRA absolute radio frequency channel number (EARFCN) for each of the carrier frequencies for the one or more neighboring 4G/LTE RATs. In some aspects, the second RAT may be a neighboring RAT with a high-powered carrier frequency (e.g., EARFCN) . In some aspects, the network configured parameters included in the SIB5 transmission may include a network configured priority (e.g., reselection priority) associated with the second RAT, a network configured priority (e.g., reselection priority) associated with the second cell, and/or a network configured priority (e.g., reselection priority) associated with a carrier frequency for the second cell.
In some aspects, the network configured parameters may include one or more network configured parameters relating to cell reselection in a type 2 SIB (SIB2) transmission from the first base station 110-1. For example, the network configured parameters included in the SIB2 transmission may include a priority (e.g., reselection priority) associated with the first RAT and/or the first cell and one or more reselection thresholds (e.g., s-NonIntraSearchP, S-NonIntraSearchQ, threshServingLowP, and/or threshServingLowQ) . In some aspects, the network configured parameters may include any other network configured parameters that relate to failure to establish a connection with the first network and/or performing cell reselection. In some aspects, one or more network configured parameters may be received by the UE 120 in one or more SIBs other than SIB1, SIB2, and/or SIB5.
As further shown in Fig. 3, and by reference number 310, the UE 120 may attempt to connect to the first cell associated with the first RAT. In some aspects, the UE 120 may attempt to connect to the first cell upon the UE 120 powering on, or the UE 120 exiting airplane mode, among other examples. In some aspects, the UE 120 may transmit, to the first base station 110-1, one or more requests (e.g., one or more RRC registration requests) to establish an RRC connection with the first cell associated with the first RAT (e.g., an RRC connection with the first base station 110-1. In some cases, a request to establish the RRC connection with the first cell may be unsuccessful, and the UE 120 may repeat transmission of the request to establish the RRC connection multiple times. The UE 120 may perform a RACH procedure to access a RACH  resource for transmitting each RRC connection request to the first base station 110-1. In some cases, the RACH procedure may fail, and the UE 120 may repeat the RACH procedure multiple times.
In some aspects, the UE 120 may apply one or more network configured parameters, such as the offset parameter (e.g., connEstFailOffset) , based at least in part on one or more failures to connect with the first cell. For example, the UE 120 may apply the network configured offset parameter (e.g., to an RSRP measurement and/or an RSRQ measurement for the first cell) for a duration indicated by the network configured offset duration parameter (e.g., connEstFailOffsetValidity) , based in part on the number of failures detected by the UE 120 satisfying the network configured failure count parameter (e.g., connEstFailCount) . In some aspects, the UE 120 may determine not to perform cell reselection when applying the network configured parameters. In this case, the UE 120 may continue to attempt to connect to the first cell.
As further shown in Fig. 3, and by reference number 315, the UE 120 may detect a trigger associated with failure to connect to the first cell associated with the first RAT. In some aspects, the trigger may be associated with a number of connection failures detected by the UE 120 and/or a time duration associated with failure of the UE 120 to connect to the first cell.
In some aspects, the UE 120 may detect the trigger based at least in part on detecting that a timer associated with an RRC connection request (e.g., the T300 timer) expires for at least a threshold number of repeated RRC connection requests transmitted by the UE 120 to request an RRC connection with the first cell. For example, the trigger may be associated with detection, by the UE 120, of the threshold number of consecutive repeated expirations of the T300 timer and/or detection, by the UE 120 of the threshold number of expirations of the T300 time within a certain time duration. In some aspects, the network configured failure count parameter (e.g., connEstFailCount) may indicate a first number of expirations of the T300 timer, and the UE 120 may detect the trigger based at least in part on detecting a second number of expirations of the T300 timer. In this case, the second number may be greater than the first number.
In some aspects, the UE 120 may detect the trigger based at least in part on detecting expiration of a first timer (e.g., a T310 timer) that initiates a connection re-establishment procedure followed by expiration of a second timer (e.g., the T300 timer) associated with an RRC connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT. For example, the UE 120  may detect the trigger in connection with expiration of the T310 timer, followed by expiration of the T300 timer.
In some aspects, the UE 120 may detect the trigger based at least in part on detecting repeated frequent RACH triggers and failures. For example, the UE 120 may detect the trigger in connection with detecting at least a threshold number of RACH failures within a time duration. Additionally, or alternatively, the UE 120 may detect the trigger in connection with detecting at least a threshold number of consecutive RACH failures.
In some aspects, the UE 120 may detect the trigger based at least in part on detecting repeated frequent RACH triggers, even in cases in which some or all of the RACH procedures are successful. For example, frequent repeated RACH triggers that are successful may be a result of the UE 120 not being able to transmit a scheduling request (SR) to the first base station 110-1 due to weak channel conditions, and the UE 120 using RACH to synchronize with the first base station 110-1. In this case, the UE 120 may detect the trigger in connection with detecting initiation of a RACH procedure at least a threshold number times within a time duration.
In some aspects, the UE 120 may detect the trigger based at least in part on detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT. For example, the trigger may be associated with detection, by the UE 120, of the threshold number of radio link failures within a certain time duration and/or detection, by the UE 120 of the threshold number of consecutive radio link failures.
In some aspects, the UE 120 may detect the trigger based at least in part on detecting at least a threshold number of repeated out-of-service indications. For example, the trigger may be associated with detection, by the UE 120, of the threshold number of out-of-service indications within a certain time duration and/or detection, by the UE 120 of the threshold number of consecutive out-of-service indications.
In some aspects, the UE 120 may detect the trigger in connection with detection of any of multiple triggers associated with failure to connect to the first cell. For example, the UE 120 may detect the trigger in connection with detecting any of the triggers described above and/or any combination of the triggers described above.
As further shown in Fig. 3, and by reference number 320, the UE 120 may adjust at least one network configured parameter relating to connection failure in the first RAT and/or cell reselection based at least in part on detecting the trigger. In some  aspects, the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to perform cell reselection and/or to cause the UE 120 to select (e.g., move to) the second cell associated with the second RAT during cell reselection. In some aspects, the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to perform cell reselection and select another cell (e.g., the second cell) immediately. In some aspects, the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to select another cell (e.g., the second cell) more quickly than by applying the at least one network configured parameter. In some aspects, the UE 120 may adjust the at least one network configured parameter to cause the UE 120 to determine that the UE 120 is out-of-service for the first cell and select another cell (e.g., the second cell) .
In some aspects, the UE 120 may adjust a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value. For example, the UE 120 may adjust the network configured offset value (e.g., connEstFailOffset) indicated in SIB1. The UE 120 may increase the offset value applied as compared to the network configured offset value. In this case, the UE 120 may apply the adjusted offset value (e.g., the increased offset value) to a power measurement (e.g., RSRP measurement) for the first cell and/or a quality measurement (e.g., RSRQ measurement) for the first cell, instead of applying the network configured offset value. By applying the adjusted offset value (e.g., the increased offset value) , the UE 120 may increase the deprioritization of the first cell associated, as compared with applying the network configured offset value.
As described above, the UE 120 may apply the network configured offset value based at leased in part of detecting a first number of failures to connect to the first cell (e.g., a first number of T300 time expirations) . For example, the first number of failures may be indicated by the network configured failure count parameter (e.g., connEstFailCount) . In some aspects, the UE 120 may adjust the network configured offset value and apply the adjusted offset value in connection with detecting the trigger, which may be associated with a second number of failures to connect to the first cell (e.g., a second number of T300 time expirations) . In this case, the second number may be greater than the first number. Accordingly, the UE 120 may initially reduce the RSRP measurement for the first cell and/or the RSRQ measurement for the first cell by the network configured offset value based in part on the first number of failures to connect to the first cell (e.g., prior to detecting the trigger) . The UE 120 may then  reduce the RSRP measurement for the first cell and/or the RSRQ measurement for the first cell by the adjusted offset value (e.g., increased offset value) based at least in part on detecting the trigger (e.g., detecting the second number of failures to connect to the first cell) .
In some aspects, the adjusted offset value, applied by the UE 120, may be a fixed offset value configured for the UE 120. For example, the fixed offset value may be configured for the UE 120 by an original equipment manufacturer (OEM) of the UE 120 or set by a wireless communication standard, among other examples. In some aspects, the fixed offset value may be determined based at least in part on a system simulation and/or evaluation. In some aspects, the fixed offset value may be a value large enough to be blindly applied by the UE 120 (e.g., without measuring a current RSRP measurement or RSRQ measurement) to ensure that the UE 120 will move out of the first cell.
In some aspects, the UE 120 may dynamically determine the adjusted offset value based on current conditions in the first cell and/or cell reselection criteria associated with selecting a cell (e.g., the second cell) other than the first cell. For example, the UE 120 may dynamically determine the adjusted offset value (e.g., the increased offset value) based at least in part on an RSRP measurement for the first cell, an RSRQ measurement for the first cell, and/or an SNR measurement for the first cell. In some applications, the UE 120 may dynamically determine the adjusted offset value based at least in part on a comparison between the RSRP measurement and an RSRP threshold associated with selecting another cell (e.g., an NR-to-LTE (NR2L) cell reselection RSRP threshold) and/or a comparison between the RSRQ measurement and an RSRQ threshold associated with selecting another cell (e.g., an NR2L cell reselection RSRQ threshold) . For example, the UE 120 may select an adjusted offset value that, when applied to the RSRP measurement, satisfies the RSRP threshold, and/or when applied to the RSRQ measurement, satisfies the RSRQ threshold.
In some aspects, the UE 120 may determine the adjusted offset value (e.g., the increased offset value) using a trained machine learning model. In this case, the UE 120 may input, to the trained machine learning model, information including one or more of the RSRP measurement for the first cell, the RSRQ measurement for the first cell, and/or the SNR measurement for the first cell, and the trained machine learning model may determine the adjusted offset value based on the input information. In some aspects, the input information for the trained machine learning model may also include  one or more thresholds associated with cell reselection (e.g., the NR2L cell reselection RSRP threshold, the NR2L cell reselection RSRQ threshold, and/or other thresholds related to cell reselection) . The trained machine learning model may be trained to learn a mapping between the input information and the adjusted offset value (and/or one or more other adjusted network configured parameters) to optimize the offset value (and/or one or more other network configured parameters) for the UE 120. For example, the trained machine learning model may be any type of machine learning model.
In some aspects, the UE 120 may adjust the network configured offset value by increasing the network configured offset value by an amount that is based at least in part on a number of successive RACH failures. For example, once the UE 120 detects the trigger, the UE 120 may increase the network configured offset value by a larger amount with each successive RACH failure (e.g., until the UE 120 switches to a different cell) . In some aspects, the UE 120 may be configured with a mapping that maps different numbers (or ranges of numbers) of RACH failures to different offset adjustments for the UE 120 to apply. In some aspects, the number of RACH failures may be included in the input information to the trained machine learning model, and the trained machine learning model may determine the adjustment for the offset value based at least in part on the number of RACH failures and based at least in part on the other input information.
In some aspects, the UE 120 may adjust a network configured priority (e.g., reselection priority) for the first cell associated with the first RAT, and/or the UE 120 may adjust a network configured priority for a second cell associated with the second RAT. In some aspects, the UE 120 may adjust the priority of the first cell and/or the priority of the second cell in combination with adjusting the network configured offset parameter. In some aspects, the UE 120 may adjust the priority of the first cell and/or the priority of the second cell instead of adjusting the network configured offset parameter.
In some aspects, the UE 120 may lower the priority of the first cell associated with the first RAT. For example, the UE 120 may lower the network configured priority (e.g., reselection priority) for the first cell indicated in SIB2. Additionally, and/or alternatively, the UE 120 may increase the priority of the second cell associated with the second RAT. For example, the UE 120 may increase the network configured priority (e.g., reselection priority) for the second cell (and/or a certain carrier frequency of the second cell) indicated in SIB5.
In some aspects, the UE 120 may determine, after the deprioritization of the first cell (e.g., by applying the network configured offset value or the adjusted offset value) , whether the network configured priority for the first cell (e.g., NR cell) is greater than the network configured priority for the second cell (e.g., LTE cell) . In this case, the UE 120 may skip consideration of lower priority cell candidates, such as the second cell. In some aspects, the UE 120 may increase the priority for the second cell and/or decrease the priority for the first cell such that the first cell and the second cell have the same priority. In some aspects, the UE 120 may increase the priority for the second cell and/or decrease the priority for the first cell such that the second cell has a greater priority than the first cell.
As further shown in Fig. 3, and by reference number 325, the UE 120 may perform cell reselection based at least in part on adjusting the at least one network configured parameter. For example, the UE 120 may apply the adjusted offset, the adjusted priority for the first cell, and/or the adjusted priority for the second cell during cell reselection.
In some aspects, the UE 120 may perform cell reselection measurements (e.g., RSRP and/or RSRQ measurements of the second cell) based at least in part adjusting the at least one network configured parameter. For example, in some aspects, the UE 120 may perform the cell reselection measurements in connection with adjusting the priority for the first cell and/or the priority for the second cell such that the priority for the second cell is greater than the priority for the first cell. In some aspects, the UE 120 may perform the cell reselection measurements in connection with a determination that a cell selection receive (Rx) level value (Srxlev) , resulting from applying the adjusted offset to the RSRP measurement for the first cell, satisfies (e.g., is less than or equal to) an RSRP threshold associated with performing cell selection measurements (e.g., s-NonIntraSearchP) and a determination that cell selection quality value (Squal) , resulting from applying the adjusted offset to the RSRQ measurement for the first cell, satisfies (e.g., is less than or equal to) an RSRQ threshold associated with performing cell selection measurements (e.g., s-NonIntraSearchQ) .
In some aspects, the UE 120 may select the second cell during cell reselection based at least in part on adjusting the at least one network configured parameter. For example, the UE 120 may determine Srxlev by applying the adjusted offset value to the RSRP measurement for the first cell (e.g., subtracting the adjusted offset value from the RSRP measurement) , and/or the UE 120 may determine Squal by applying the adjusted  offset parameter to the RSRQ measurement for the first cell (e.g., subtracting the adjusted offset value from the RSRQ measurement) . The UE 120 may perform cell reselection to the second cell associated with the second RAT in connection with a determination that Srxlev is less than an RSRP cell reselection threshold (e.g., threshServingLowP) , and an RSRP measurement for the second cell is greater than the RSRP cell reselection threshold, and/or a determination that Squal is less than an RSRQ cell reselection threshold (e.g., threshServingLowQ) and an RSRQ measurement for the second cell is greater than the RSRQ cell reselection threshold.
As further shown in Fig. 3, and by reference number 330, the UE 120 may connect to the second cell associated with the second RAT. The UE 120 may connect to the second cell based at least in part on the cell reselection performed in connection with adjusting the at least one network configured parameter. Accordingly, the UE 120 may connect to the second cell based at least in part on adjusting the at least one network configured parameter. The UE 120 may transmit, to the second base station 110-2, an RRC connection request to establish an RRC connection with the second cell associated with the second RAT (e.g., an RRC connection with the second base station 110-2) .
As described above in connection with Fig. 3, the UE 120 may detect a trigger associated with failure to connect to a first cell associated with a first RAT. The UE 120 may adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger. The UE 120 may connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter. In some aspects, the first RAT may be a 5G RAT, such as a 5G standalone RAT, and the second RAT may be a 4G LTE RAT. As a result, the UE 120 may adjust the network configured parameters to deprioritize the first cell to cause the UE 120 to quickly perform cell reselection and reselect the second cell. This may reduce the time duration for the UE 120 to move from a weaker cell (e.g., a weaker 5G cell) to a stronger cell (e.g., a strong 4G cell) , as compared with repeatedly applying the network configured parameters. Thus, the UE 120 may increase network speed and throughput and reduce an amount of time for which the UE 120 cannot transmit and/or receive data. Furthermore, the UE 120 may reduce repetitions of a RACH procedure to attempt to establish a connection on a weak cell, thus resulting in reduced power consumption by the UE 120.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with the present disclosure. Example process 400 is an example where the UE (e.g., UE 120) performs operations associated with UE optimization of 5G standalone connection and failure control.
As shown in Fig. 4, in some aspects, process 400 may include detecting a trigger associated with failure to connect to a first cell associated with a first RAT (block 410) . For example, the UE (e.g., using detection component 508, depicted in Fig. 5) may detect a trigger associated with failure to connect to a first cell associated with a first RAT, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger (block 420) . For example, the UE (e.g., using adjustment component 510, depicted in Fig. 5) may adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter (block 430) . For example, the UE (e.g., using connection component 512, depicted in Fig. 5) may connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter, as described above.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the first RAT is a 5G standalone RAT, and the second RAT is a 4G LTE RAT.
In a second aspect, alone or in combination with the first aspect, detecting the trigger includes detecting that a timer associated with an RRC connection request expires for at least a threshold number of repeated RRC connection requests transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
In a third aspect, alone or in combination with one or more of the first and second aspects, detecting the trigger includes detecting expiration of a first timer that initiates a connection re-establishment procedure followed by expiration of a second timer associated with an RRC connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, detecting the trigger includes detecting at least a threshold number of random access channel failures within a time duration.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, detecting the trigger includes detecting initiation of a random access channel procedure at least a threshold number times within a time duration.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, detecting the trigger includes detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, detecting the trigger includes detecting at least a threshold number of repeated out-of-service indications.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, adjusting the at least one network configured parameter includes adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 400 includes reducing at least one of an RSRP measurement for the first cell or an RSRQ measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell, and reducing the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, and the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
In a tenth aspect, alone or in combination with one or more of the first through ninth aspects, the adjusted offset value is a fixed offset value configured for the UE.
In an eleventh aspect, alone or in combination with one or more of the first through ninth aspects, adjusting the network configured offset value includes determining an increased offset value, as compared with the network configured offset  value, based at least in part on at least one of an RSRP measurement for the first cell, an RSRQ measurement for the first cell, or an SNR measurement for the first cell, and reducing the RSRP measurement for the first cell by the increased offset value.
In a twelfth aspect, alone or in combination with the eleventh aspect, determining the increased offset value includes determining the increased offset value using a trained machine learning model.
In a thirteenth aspect, alone or in combination with one or more of the first through twelfth aspects, adjusting the network configured offset value includes increasing the network configured offset value by an amount that is based at least in part on a number of successive random access channel failures.
In a fourteenth aspect, alone or in combination with one or more of the first through thirteenth aspects, adjusting the at least one network configured parameter includes lowering a priority for the first cell associated with the first RAT.
In a fifteenth aspect, alone or in combination with one or more of the first through fourteenth aspects, adjusting the at least one network configured parameter further includes increasing a priority for the second cell associated with the second RAT.
In a sixteenth aspect, alone or in combination with one or more of the first through fifteenth aspects, adjusting the at least one network configured parameter relating to connection failure includes barring the first cell from a set of available cells with which to establish a radio resource control connection.
In a seventeenth aspect, alone or in combination with one or more of the first through sixteenth aspects, adjusting the at least one network configured parameter includes adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, and adjusting at least one of a priority for the first cell associated with the first RAT or a priority for the second cell associated with the second RAT.
Although Fig. 4 shows example blocks of process 400, in some aspects, process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
Fig. 5 is a block diagram of an example apparatus 500 for wireless communication, in accordance with the present disclosure. The apparatus 500 may be a UE, or a UE may include the apparatus 500. In some aspects, the apparatus 500  includes a reception component 502 and a transmission component 504, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 500 may communicate with another apparatus 506 (such as a UE, a base station, or another wireless communication device) using the reception component 502 and the transmission component 504. As further shown, the apparatus 500 may include one or more of a detection component 508, an adjustment component 510, or a connection component 512, among other examples.
In some aspects, the apparatus 500 may be configured to perform one or more operations described herein in connection with Fig. 3. Additionally, or alternatively, the apparatus 500 may be configured to perform one or more processes described herein, such as process 400 of Fig. 4, or a combination thereof. In some aspects, the apparatus 500 and/or one or more components shown in Fig. 5 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 5 may be implemented within one or more components described above in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 502 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 506. The reception component 502 may provide received communications to one or more other components of the apparatus 500. In some aspects, the reception component 502 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 506. In some aspects, the reception component 502 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
The transmission component 504 may transmit communications, such as reference signals, control information, data communications, or a combination thereof,  to the apparatus 506. In some aspects, one or more other components of the apparatus 506 may generate communications and may provide the generated communications to the transmission component 504 for transmission to the apparatus 506. In some aspects, the transmission component 504 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 506. In some aspects, the transmission component 504 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 504 may be co-located with the reception component 502 in a transceiver.
The detection component 508 may detect a trigger associated with failure to connect to a first cell associated with a first RAT. The adjustment component 510 may adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger. The connection component 512 may connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
The adjustment component 510 may reduce at least one of an RSRP measurement for the first cell or an RSRQ measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell.
The adjustment component 510 may reduce the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, wherein the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
The number and arrangement of components shown in Fig. 5 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 5. Furthermore, two or more components shown in Fig. 5 may be implemented within a single component, or a single component shown in Fig. 5 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more)  components shown in Fig. 5 may perform one or more functions described as being performed by another set of components shown in Fig. 5.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: detecting a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT) ; adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
Aspect 2: The method of Aspect 1, wherein the first RAT is a 5G standalone RAT, and the second RAT is a 4G long term evolution (LTE) RAT.
Aspect 3: The method of any of Aspects 1-2, wherein detecting the trigger comprises: detecting that a timer associated with a radio resource control (RRC) connection request expires for at least a threshold number of repeated RRC connection requests transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
Aspect 4: The method of any of Aspects 1-3, wherein detecting the trigger comprises: detecting expiration of a first timer that initiates a connection re-establishment procedure followed by expiration of a second timer associated with a radio resource control (RRC) connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
Aspect 5: The method of any of Aspects 1-4, wherein detecting the trigger comprises: detecting at least a threshold number of random access channel failures within a time duration.
Aspect 6: The method of any of Aspects 1-5, wherein detecting the trigger comprises: detecting initiation of a random access channel procedure at least a threshold number times within a time duration.
Aspect 7: The method of any of Aspects 1-6, wherein detecting the trigger comprises: detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT.
Aspect 8: The method of any of Aspects 1-7, wherein detecting the trigger comprises: detecting at least a threshold number of repeated out-of-service indications.
Aspect 9: The method of any of Aspects 1-8, wherein adjusting the at least one network configured parameter comprises: adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
Aspect 10: The method of Aspect 9, further comprising: reducing at least one of a reference signal received power (RSRP) measurement for the first cell or a reference signal received quality (RSRQ) measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell; and reducing the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, wherein the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
Aspect 11: The method of any of Aspects 9-10, wherein the adjusted offset value is a fixed offset value configured for the UE.
Aspect 12: The method of any of Aspects 9-10, wherein adjusting the network configured offset value comprises: determining an increased offset value, as compared with the network configured offset value, based at least in part on at least one of a reference signal received power (RSRP) measurement for the first cell, a reference signal received quality (RSRQ) measurement for the first cell, or a signal-to-noise ratio (SNR) measurement for the first cell; and reducing the RSRP measurement for the first cell by the increased offset value.
Aspect 13: The method of Aspect 12, wherein determining the increased offset value comprises: determining the increased offset value using a trained machine learning model.
Aspect 14: The method of any of Aspects 9-13, wherein adjusting the network configured offset value comprises: increasing the network configured offset value by an amount that is based at least in part on a number of successive random access channel failures.
Aspect 15: The method of any of Aspects 1-14, wherein adjusting the at least one network configured parameter comprises: lowering a priority for the first cell associated with the first RAT.
Aspect 16: The method of Aspect 15, wherein adjusting the at least one network configured parameter further compromises: increasing a priority for the second cell associated with the second RAT.
Aspect 17: The method of any of Aspects 1-16, wherein adjusting the at least one network configured parameter relating to connection failure comprises: barring the first cell from a set of available cells with which to establish a radio resource control connection.
Aspect 18: The method of any of Aspects 1-17, wherein adjusting the at least one network configured parameter comprises: adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell; and adjusting at least one of a priority for the first cell associated with the first RAT or a priority for the second cell associated with the second RAT.
Aspect 19: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more Aspects of Aspects 1-18.
Aspect 20: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the memory and the one or more processors configured to perform the method of one or more Aspects of Aspects 1-18.
Aspect 21: An apparatus for wireless communication, comprising at least one means for performing the method of one or more Aspects of Aspects 1-18.
Aspect 22: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more Aspects of Aspects 1-18.
Aspect 23: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more Aspects of Aspects 1-18.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be  construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a processor is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used  interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, or a combination of related and unrelated items) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms. Further, the phrase “based on”is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    detecting a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT) ;
    adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and
    connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  2. The method of claim 1, wherein the first RAT is a 5G standalone RAT, and the second RAT is a 4G long term evolution (LTE) RAT.
  3. The method of claim 1, wherein detecting the trigger comprises:
    detecting that a timer associated with a radio resource control (RRC) connection request expires for at least a threshold number of repeated RRC connection requests transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  4. The method of claim 1, wherein detecting the trigger comprises:
    detecting expiration of a first timer that initiates a connection re-establishment procedure followed by expiration of a second timer associated with a radio resource control (RRC) connection request transmitted by the UE to request an RRC connection with the first cell associated with the first RAT.
  5. The method of claim 1, wherein detecting the trigger comprises:
    detecting at least a threshold number of random access channel failures within a time duration.
  6. The method of claim 1, wherein detecting the trigger comprises:
    detecting initiation of a random access channel procedure at least a threshold number times within a time duration.
  7. The method of claim 1, wherein detecting the trigger comprises:
    detecting at least a threshold number of repeated radio link failures on the first cell associated with the first RAT.
  8. The method of claim 1, wherein detecting the trigger comprises:
    detecting at least a threshold number of repeated out-of-service indications.
  9. The method of claim 1, wherein adjusting the at least one network configured parameter comprises:
    adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
  10. The method of claim 9, further comprising:
    reducing at least one of a reference signal received power (RSRP) measurement for the first cell or a reference signal received quality (RSRQ) measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell; and
    reducing the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, wherein the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
  11. The method of claim 9, wherein the adjusted offset value is a fixed offset value configured for the UE.
  12. The method of claim 9, wherein adjusting the network configured offset value comprises:
    determining an increased offset value, as compared with the network configured offset value, based at least in part on at least one of a reference signal received power (RSRP) measurement for the first cell, a reference signal received quality (RSRQ) measurement for the first cell, or a signal-to-noise ratio (SNR) measurement for the first cell; and
    reducing the RSRP measurement for the first cell by the increased offset value.
  13. The method of claim 12, wherein determining the increased offset value comprises:
    determining the increased offset value using a trained machine learning model.
  14. The method of claim 9, wherein adjusting the network configured offset value comprises:
    increasing the network configured offset value by an amount that is based at least in part on a number of successive random access channel failures.
  15. The method of claim 1, wherein adjusting the at least one network configured parameter comprises:
    lowering a priority for the first cell associated with the first RAT.
  16. The method of claim 15, wherein adjusting the at least one network configured parameter further compromises:
    increasing a priority for the second cell associated with the second RAT.
  17. The method of claim 1, wherein adjusting the at least one network configured parameter relating to connection failure comprises:
    barring the first cell from a set of available cells with which to establish a radio resource control connection.
  18. The method of claim 1, wherein adjusting the at least one network configured parameter comprises:
    adjusting a network configured offset value associated with failure to establish an RRC connection with the first cell; and
    adjusting at least one of a priority for the first cell associated with the first RAT or a priority for the second cell associated with the second RAT.
  19. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    detect a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT) ;
    adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection in connection with detecting the trigger; and
    connect to a second cell associated with a second RAT in connection with adjusting the at least one network configured parameter.
  20. The UE of claim 19, wherein the first RAT is a 5G standalone RAT, and the second RAT is a 4G long term evolution (LTE) RAT.
  21. The UE of claim 19, wherein the one or more processors, to adjust the at least one network configured parameter, are configured to:
    adjust a network configured offset value associated with failure to establish an RRC connection with the first cell, resulting in an adjusted offset value.
  22. The UE of claim 21, wherein the one or more processors are further configured to:
    reduce at least one of a reference signal received power (RSRP) measurement for the first cell or a reference signal received quality (RSRQ) measurement for the first cell by the network configured offset value based at least in part on a first number of failures to connect to the first cell; and
    reduce the at least one of the RSRP for the first cell or the RSRQ measurement for the first cell by the adjusted offset value based at least in part based at least in part on detecting the trigger, wherein the trigger is associated with a second number of failures to connect to the first cell and the second number is greater than the first number.
  23. The UE of claim 21, wherein the adjusted offset value is a fixed offset value configured for the UE.
  24. The UE of claim 21, wherein the one or more processors, to adjust the network configured offset value, are configured to:
    determine an increased offset value, as compared with the network configured offset value, based at least in part on at least one of a reference signal received power (RSRP) measurement for the first cell, a reference signal received quality (RSRQ) measurement for the first cell, or a signal-to-noise ratio (SNR) measurement for the first cell; and
    reduce the RSRP measurement for the first cell by the increased offset value.
  25. The UE of claim 24, wherein the one or more processors, to determine the increased offset value, are configured to:
    determine the increased offset value using a trained machine learning model.
  26. The UE of claim 21, wherein the one or more processors, to adjust the network configured offset value, are configured to:
    increase the network configured offset value by an amount that is based at least in part on a number of successive random access channel failures.
  27. The UE of claim 19, wherein, the one or more processors, to adjust the at least one network configured parameter, are configured to:
    lower a priority for the first cell associated with the first RAT.
  28. The UE of claim 27, wherein the one or more processors, to adjust the at least one network configured parameter, are further configured to:
    increase a priority for the second cell associated with the second RAT.
  29. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    detect a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT) ;
    adjust at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and
    connect to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
  30. An apparatus for wireless communication, comprising:
    means for detecting a trigger associated with failure to connect to a first cell associated with a first radio access technology (RAT) ;
    means for adjusting at least one network configured parameter relating to connection failure in the first RAT or cell reselection based at least in part on detecting the trigger; and
    means for connecting to a second cell associated with a second RAT based at least in part on adjusting the at least one network configured parameter.
PCT/CN2021/080204 2021-03-11 2021-03-11 Ue optimization of 5g standalone connection and failure control WO2022188092A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/080204 WO2022188092A1 (en) 2021-03-11 2021-03-11 Ue optimization of 5g standalone connection and failure control
CN202180095173.4A CN116941207A (en) 2021-03-11 2021-03-11 UE optimization for 5G independent networking connection and fault control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080204 WO2022188092A1 (en) 2021-03-11 2021-03-11 Ue optimization of 5g standalone connection and failure control

Publications (1)

Publication Number Publication Date
WO2022188092A1 true WO2022188092A1 (en) 2022-09-15

Family

ID=83226156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080204 WO2022188092A1 (en) 2021-03-11 2021-03-11 Ue optimization of 5g standalone connection and failure control

Country Status (2)

Country Link
CN (1) CN116941207A (en)
WO (1) WO2022188092A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170359782A1 (en) * 2016-06-09 2017-12-14 Apple Inc. Device-Based Solutions to Power Drain Caused by Continuous Switching Between Different Radio Access Technology Networks
US20180098258A1 (en) * 2016-10-03 2018-04-05 Qualcomm Incorporated Inter-rat mobility measurements and operations to support ue connectivity
CN109496451A (en) * 2018-10-24 2019-03-19 北京小米移动软件有限公司 Network parameter configuration method, device and computer readable storage medium
WO2020067965A1 (en) * 2018-09-25 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) A radio network node, a wireless device and methods therein for re-establishing a radio connection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170359782A1 (en) * 2016-06-09 2017-12-14 Apple Inc. Device-Based Solutions to Power Drain Caused by Continuous Switching Between Different Radio Access Technology Networks
US20180098258A1 (en) * 2016-10-03 2018-04-05 Qualcomm Incorporated Inter-rat mobility measurements and operations to support ue connectivity
WO2020067965A1 (en) * 2018-09-25 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) A radio network node, a wireless device and methods therein for re-establishing a radio connection
CN109496451A (en) * 2018-10-24 2019-03-19 北京小米移动软件有限公司 Network parameter configuration method, device and computer readable storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Mobility parameter exchange for automatic inter-RAT parameter adjustement", 3GPP DRAFT; R3-122636 INTER-RAT MOBILITY CHANGE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. New Orleans, USA; 20121112 - 20121116, 3 November 2012 (2012-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050670511 *

Also Published As

Publication number Publication date
CN116941207A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
US11706834B2 (en) User equipment communications while operating in a secondary cell group deactivated state
US11589414B2 (en) Layer 2 user equipment relay procedure
WO2022006573A1 (en) Secondary cell group activation by bandwidth part for dual connectivity with multiple radio access technologies
US20240049335A1 (en) Management of antenna switching according to a sounding reference symbol antenna switching configuration
US11831586B2 (en) Transmit receive point pairing indication
EP4226678A2 (en) Techniques for improvement of voice over wi-fi to voice over cellular handovers
US11812315B2 (en) Handovers using dual active protocol stack and full-duplex operation
US11546032B2 (en) Beam direction selection for transmission and reception in full duplex operation
WO2022077159A1 (en) Techniques for adding new radio cell for multi-subscription user equipment
WO2022192828A1 (en) Transmission configuration indicator state group indication
EP4226737A1 (en) Techniques for exposure-based suspensions of communication attempts
EP4186268A1 (en) Sharing measurement gaps for multiple functions
WO2022188092A1 (en) Ue optimization of 5g standalone connection and failure control
WO2022061579A1 (en) Performance of secondary cell group adding procedures or handover or redirection procedures
US11863488B2 (en) Single reference signal timing information for measurements of multiple reference signals of multiple cells
WO2022205274A1 (en) Network-to-network redirection and ping-pong improvements
WO2022032623A1 (en) Techniques for band priority utilization for cell scanning
US20220046431A1 (en) Cell and full duplex beam pair updating
WO2022126405A1 (en) Techniques for measuring neighbor cells using prioritization of the neighbor cells that is based at least in part on associations of the neighbor cells with network operators
WO2022217453A1 (en) Avoiding collisions with measurement gaps
WO2022150256A1 (en) User equipment communications while operating in a secondary cell group deactivated state
WO2022198158A1 (en) Application time for non-serving cell reference signal update
WO2022006592A1 (en) Association of multiple subscriber identity modules
EP4140231A1 (en) Sidelink and uu link buffer status report

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095173.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929570

Country of ref document: EP

Kind code of ref document: A1