WO2022187849A1 - Dérivés de la salinomycine et leurs utilisations - Google Patents

Dérivés de la salinomycine et leurs utilisations Download PDF

Info

Publication number
WO2022187849A1
WO2022187849A1 PCT/US2022/070958 US2022070958W WO2022187849A1 WO 2022187849 A1 WO2022187849 A1 WO 2022187849A1 US 2022070958 W US2022070958 W US 2022070958W WO 2022187849 A1 WO2022187849 A1 WO 2022187849A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
compound
carcinoma
compounds
ring
Prior art date
Application number
PCT/US2022/070958
Other languages
English (en)
Inventor
Pathi SUMAN
Subash C. Jonnalagadda
Kandalam Ramanujachary
Manoj Pandey
Original Assignee
Hillstream Biopharma, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hillstream Biopharma, Inc. filed Critical Hillstream Biopharma, Inc.
Priority to CA3212520A priority Critical patent/CA3212520A1/fr
Publication of WO2022187849A1 publication Critical patent/WO2022187849A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/20Spiro-condensed systems

Definitions

  • the present invention relates to salinomycin compounds and methods of using said compounds in the treatment of various disorders.
  • the invention also provides pharmaceutically acceptable compositions comprising the salinomycin derivatives of the present invention and methods of using said compositions in the treatment of various disorders.
  • Salinomycin is a polyether antibiotic used in the animal farming as an anti- coccidiostat and is produced by Streptomyces albus. Recently, salinomycin was identified as a potent inhibitor of breast cancer stem cells based on a high-throughput screening of compounds with several fold higher potency than the anti-cancer drug Paclitaxel. Salinomycin has also been shown to induce apoptosis in many human cancer cells, however the mechanism of action is still not fully understood (Zhao, Y. et al., Oncol. Rep. 2018, 40, 877-886). Reports also indicate that salinomycin inhibits vascular endothelial growth factor receptor 2 (VEGFR2) mediated angiogenesis, which is an attractive strategy for cancer chemotherapy.
  • VAGFR2 vascular endothelial growth factor receptor 2
  • WNT/D-catenin pathway is a critical process responsible for the cancer stem cell survival and salinomycin is also known to inhibit cell growth in several WNT dependent cancer cells in vitro. Salinomycin inhibits WNT-induced phosphorylation of the co-receptor LRP6, thereby inducing its degradation.
  • the present invention relates to salinomycin derivatives, methods of preparation of the salinomycin derivatives, pharmaceutical compositions comprising the salinomycin derivatives, and their use in medical therapy.
  • the present invention provides salinomycin derivatives which find utility in treating cancer.
  • An advantage of the compounds provided herein is that a broad range of pharmacological activities are possible, consistent with the inhibition of (i) beta catenin mediated signaling; (ii) angiogenesis, invasion, and metastasis; and (iii) anti-apoptotic proteins.
  • the description provides methods of using an effective amount of the compounds as described herein for the treatment or amelioration of a disease condition, such as cancer, e.g., breast cancer.
  • Such diseases, disorders, or conditions include cellular proliferative disorders (e.g., cancer as described herein).
  • FIG. 1 is an HPLC chromatogram showing the purity of 1-17.
  • FIG. 2 shows the effects of salinomycin, 1-17, and 1-18 on beta-catenin in MDA-MB- 231 breast cancer cells.
  • FIG. 3 shows the effects of salinomycin, 1-17, and 1-18 on angiogenesis and metastasis in MDA-MB-231 breast cancer cells.
  • FIG. 4 shows the effects of salinomycin and 1-17 on in-vitro HUVEC tube formation.
  • FIG. 5 shows the effects of salinomycin, 1-17, and 1-18 on cell death in MDA-MB- 231 breast cancer cells.
  • DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS 1. General Description of Certain Embodiments of the Invention
  • Compounds of the present invention, and pharmaceutical salts and compositions thereof are useful inhibitors of (i) beta catenin mediated signaling; (ii) angiogenesis, invasion, and metastasis; and (iii) anti-apoptotic proteins.
  • compounds of the present invention, and pharmaceutical compositions thereof have the aforementioned activities and thus treat diseases, disorders, or conditions associated with them, such as cancer.
  • the present invention provides a compound formula I: I or a pharmaceutically acceptable salt thereof, wherein:
  • X is a bivalent group selected from -NR-NR-, -NR-NR-CO-, -NR-NR-CONR-, -NR-NR- S0 2 -, -NR-NR-SO2NR-, -NR-(CR 2 ) n -CO-, -NR-(CR 2 ) n -CONR-, -NR-(CR 2 ) n -S0 2 -, and -NR-(CR 2 ) n -S0 2 NR-; each R is independently hydrogen, or an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 3-7 membered saturated or partially unsaturated heterocyclic having 1- 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or: two R groups on the same atom
  • L is a covalent bond or an optionally substituted Ci-io bivalent straight or branched saturated or unsaturated hydrocarbon chain wherein 1-2 methylene units of the chain are independently and optionally replaced with -0-, -S-, -NR-, -C(O)-, or -SO2-;
  • Ring A is phenyl, a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, an 8-10 membered bicyclic aromatic carbocyclic ring, or an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; each R 2 is independently R A , halogen, -CN, -NO 2 , -OR, -SR, -NR 2 , -SO 2 R, -SO 2 NR 2, -SOR, - CFR 2 , -CF 2 R, -CF3, -CR2OR, -CR2NR2, -COR, -CO2R, -COMO, -CSNFO, -COMfOR, -OCOR, -OCONR 2 , -NRCO 2 R, -MIC OR, -NRCONR 2 , -NRSO 2 R, - OP(0)R 2 , -0P0(0R)
  • aliphatic or “aliphatic group”, as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic hydrocarbon or bicyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle,” “cycloaliphatic” or “cycloalkyl”), that has a single point of attachment to the rest of the molecule.
  • aliphatic groups contain 1 to 6 aliphatic carbon atoms.
  • aliphatic groups contain lto 5 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1 to 4 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1 to 3 aliphatic carbon atoms, and in yet other embodiments, aliphatic groups contain 1 to 2 aliphatic carbon atoms.
  • “cycloaliphatic” (or “carbocycle” or “cycloalkyl”) refers to a monocyclic C3-C6 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, that has a single point of attachment to the rest of the molecule.
  • Suitable aliphatic groups include, but are not limited to, linear or branched, substituted or unsubstituted alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl.
  • bridged bicyclic refers to any bicyclic ring system, i.e., carbocyclic or heterocyclic, saturated or partially unsaturated, having at least one bridge.
  • a “bridge” is an unbranched chain of atoms or an atom or a valence bond connecting two bridgeheads, where a “bridgehead” is any skeletal atom of the ring system which is bonded to three or more skeletal atoms (excluding hydrogen).
  • a bridged bicyclic group has 7 to 12 ring members and 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Such bridged bicyclic groups are well known in the art and include those groups set forth below where each group is attached to the rest of the molecule at any substitutable carbon or nitrogen atom.
  • a bridged bicyclic group is optionally substituted with one or more substituents as set forth for aliphatic groups. Additionally or alternatively, any substitutable nitrogen of a bridged bicyclic group is optionally substituted.
  • Exemplary bridged bicyclics include:
  • lower alkyl refers to a Ci-4 straight or branched alkyl group.
  • exemplary lower alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and tert-butyl.
  • lower haloalkyl refers to a Ci-4 straight or branched alkyl group that is substituted with one or more halogen atoms.
  • heteroatom means one or more of oxygen, sulfur, nitrogen, phosphorus, or silicon (including, any oxidized form of nitrogen, sulfur, phosphorus, or silicon; the quatemized form of any basic nitrogen; or an oxygen, sulfur, nitrogen, phosphorus, or silicon atom in a heterocyclic ring.
  • Ci-s (or Ci- 6 ) saturated or unsaturated, straight or branched, hydrocarbon chain
  • bivalent alkylene, alkenylene, and alkynylene chains that are straight or branched as defined herein.
  • alkylene refers to a bivalent alkyl group.
  • An “alkylene chain” is a polymethylene group, i.e., -(CH2) n- , wherein n is a positive integer, preferably from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3.
  • a substituted alkylene chain is a polymethylene group in which one or more methylene hydrogen atoms are replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.
  • alkenylene refers to a bivalent alkenyl group.
  • a substituted alkenylene chain is a polymethylene group containing at least one double bond in which one or more hydrogen atoms are replaced with a substituent. Suitable substituents include those described below for a substituted aliphatic group.
  • cyclopropylenyl refers to a bivalent cyclopropyl group of the following structure:
  • halogen means F, Cl, Br, or I.
  • aryl used alone or as part of a larger moiety as in “aralkyl,” “aralkoxy,” or “aryloxyalkyl,” refers to monocyclic or bicyclic ring systems having a total of 4 to 14 ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members.
  • aryl may be used interchangeably with the term “aryl ring.”
  • aryl refers to an aromatic ring system which includes, but not limited to, phenyl, biphenyl, naphthyl, anthracyl and the like, which may bear one or more substituents.
  • aryl is a group in which an aromatic ring is fused to one or more non-aromatic rings, such as indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, and the like.
  • heteroaryl and “heteroar-,” used alone or as part of a larger moiety, e.g., “heteroaralkyl,” or “heteroaralkoxy,” refer to groups having 5 to 10 ring atoms, preferably 5, 6, or 9 ring atoms; having 6, 10, or 14 ⁇ electrons shared in a cyclic array; and having, in addition to carbon atoms, from 1 to 5 heteroatoms.
  • heteroatom in the context of “heteroaryl” particularly includes, but is not limited to, nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen.
  • Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl.
  • heteroaryl and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring.
  • Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, AH quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[2,3- b]-l,4-oxazin-3(4H)-one.
  • a heteroaryl group may be monocyclic or bicyclic.
  • the term “heteroaryl” may be used interchangeably with the terms “heteroaryl ring,” “heteroaryl group,” or “heteroaromatic,” any of which terms include rings that are optionally substituted.
  • the term “heteroaralkyl” refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
  • heterocycle As used herein, the terms “heterocycle,” “heterocyclyl,” “heterocyclic radical,” and “heterocyclic ring” are used interchangeably and refer to a stable 5- to 7-membered monocyclic or 7- to 10-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably 1 to 4, heteroatoms, as defined above.
  • nitrogen includes a substituted nitrogen.
  • a saturated or partially unsaturated ring may have 0 to 3 heteroatoms selected from oxygen, sulfur or nitrogen.
  • a heterocyclic ring can be attached to a provided compound at any heteroatom or carbon atom that results in a stable structure and any of the ring atoms can be optionally substituted.
  • saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothiophenyl pyrrolidinyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl.
  • heterocycle used interchangeably herein, and also include groups in which a heterocyclyl ring is fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3// indolyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl.
  • a heterocyclyl group may be monocyclic, bicyclic, bridged bicyclic, or spirocyclic.
  • heterocyclylalkyl refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
  • partially unsaturated refers to a ring moiety that includes at least one double or triple bond.
  • partially unsaturated is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.
  • compounds of the invention may contain “substituted” moieties.
  • substituted means that one or more hydrogens of the designated moiety are replaced with a suitable substituent.
  • an “optionally substituted” group may have a suitable substituent at one or more substitutable position of the group, and when more than one position in any given structure is substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position.
  • Combinations of substituents envisioned by this disclosure are preferably those that result in the formation of stable or chemically feasible compounds.
  • stable refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.
  • Suitable monovalent substituents on R° are independently halogen, - (CH 2 ) O-2 R ⁇ , -(haloR*), -(CH 2 ) 0-2 OH, -(CH 2 ) O-2 OR ⁇ , -(CH 2 ) 0-2 CH(OR*) 2 ; -0(haloR*), -CN, -Ns, -(CH 2 ) O-2 C(0)R ⁇ , -(CH 2 ) O-2 C(0)OH, -(CH 2 ) O-2 C(0)OR ⁇ , -(CH 2 )o- 2 SR e , -(CH 2 ) 0-2 SH, -(CH 2 ) O-2 NH 2 , -(CH 2 ) O-2 NHR ⁇ , -(CH 2 ) O-2 NR* 2 , - b, -SiR's, -OSiR
  • Suitable divalent substituents that are bound to vicinal substitutable carbons of an “optionally substituted” group include: -0(CR * 2 ) 2-3 0-, wherein each independent occurrence of R * is selected from hydrogen, Ci- 6 aliphatic which may be substituted as defined below, or an unsubstituted 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Suitable substituents on the aliphatic group of R * include halogen, -R*, -(haloR*), - OH, -OR*, -0(haloR*), -CN, -C(0)OH, -C(0)OR*, -NH 2 , NHR*, -NR* 2 , or -N0 2 , wherein each R* is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently Ci- 4 aliphatic, -CH 2 Ph, -0(CH 2 )o-iPh, or a 5- to6- membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Suitable substituents on a substitutable nitrogen of an “optionally substituted” group include -R ⁇ , -NR ⁇ 2 , -C(0)R ⁇ , -C(0)OR ⁇ , -C(0)C(0)R ⁇ , -C(0)CH 2 C(0)R ⁇ , -S(0) 2 R ⁇ , - S(0) 2 NR ⁇ 2 , -C(S)NR ⁇ , -C(NH)NR ⁇ , or -N(R ⁇ )S(0) 2 R ⁇ ; wherein each R' is independently hydrogen, Ci- 6 aliphatic which may be substituted as defined below, unsubstituted -OPh, or an unsubstituted 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of R ⁇ , taken together with their intervening atom(s
  • Suitable substituents on the aliphatic group of R' are independently halogen, -R", - (haloR*), -OH, -OR*, -0(haloR*), -CN, -C(0)OH, -C(0)OR*, -NH 2 , -NHR*, -NR* 2 , or - N0 2 , wherein each R* is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently Ci- 4 aliphatic, -CH 2 Ph, -0(CH 2 )o-iPh, or a 5- to 6-membered saturated, partially unsaturated, or aryl ring having 0 to 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • the term “provided compound” refers to any genus, subgenus, and/or species set forth herein.
  • the term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et ah, describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, which is incorporated herein by reference.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases.
  • Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
  • organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecyl sulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pect
  • Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (Ci-4alkyl)4 salts.
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
  • Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate, and aryl sulfonate.
  • structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational)) forms of the structure; for example, the R and S configurations for each asymmetric center, Z and E double bond isomers, and Z and E conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the present compounds are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds of the invention are within the scope of the invention.
  • structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the present structures including the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention.
  • Such compounds are useful, for example, as analytical tools, as probes in biological assays, or as therapeutic agents in accordance with the present invention.
  • X is a bivalent group selected from -NR-NR-, -NR-NR-CO-, -NR-NR-CONR-, -NR-NR- S0 2 -, -NR-NR-SO2NR-, -NR-(CR 2 ) n -CO-, -NR-(CR 2 ) n -CONR-, -NR-(CR 2 ) n -S0 2 -, and -NR-(CR 2 ) n -S0 2 NR-; each R is independently hydrogen, or an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 3-7 membered saturated or partially unsaturated heterocyclic having 1- 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or: two R groups on the same atom
  • Ring A is phenyl, a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, an 8-10 membered bicyclic aromatic carbocyclic ring, or an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur; each R 2 is independently R A , halogen, -CN, -NO 2 , -OR, -SR, -NR 2 , -SO 2 R, -SO 2 NR 2, -SOR, - CFR 2 , -CF 2 R, -CF3, -CR2OR, -CR2NR2, -COR, -CO2R, -COMO, -CSNFO, -COMfOR, -OCOR, -OCONR 2 , -NRCO 2 R, - IC OR, -NRCONR 2 , -NRSO 2 R, - OP(0)R 2 , -0P0(0R
  • X is a bivalent group selected from -Mt-Mt-, -NR-NR- CO-, -MCMCCOMC, -NR-NR-SO2-, -NR-NR-SO2NR-, -NR-(CR 2 ) n -CO-, -NR-(CR?) n - COMC, -NR-(CR 2 ) n -S0 2 -, and -NR-(CR 2 ) n -S0 2 NR-.
  • X is -NR-NR-. In some embodiments, X is -NR-NR-CO-. In some embodiments, X is -NR-NR-CONR- In some embodiments, X is -NR-NR-SO 2 -. In some embodiments, X is -Mt-Mt- SO 2 NR-. In some embodiments, X is -NR-(CR 2 ) n -CO-. In some embodiments, X is -NR-(CR 2 ) n -CONR- In some embodiments, X is -NR-(CR 2 ) n -S0 2 -. In some embodiments, X is -NR-(CR 2 ) n -S0 2 NR-
  • X is -MI-MI-. In some embodiments, X is -MI-NH-CO-. In some embodiments, X is -MI-MI-COMI-. In some embodiments, X is -Md-CFh-COMI-. [0048] In some embodiments, X is selected from those depicted in Table 1, below.
  • each R is independently hydrogen, or an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 3-7 membered saturated or partially unsaturated heterocyclic having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or two R groups on the same atom or different atoms in close proximity are optionally taken together with their intervening atoms to form a 4-7 membered saturated, partially unsaturated, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • R is hydrogen. In some embodiments, R is an optionally substituted group selected from Ci- 6 aliphatic. In some embodiments, R is a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring. In some embodiments, R is an optionally substituted phenyl. In some embodiments, R is an optionally substituted 4-7 membered saturated or partially unsaturated heterocyclic having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • two R groups on the same atom or different atoms in close proximity are optionally taken together with their intervening atoms to form a 4-7 membered saturated, partially unsaturated, or heteroaryl ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • n is 0. In some embodiments, n is 1. In some embodiments, n is 2. In some embodiments, n is 3. In some embodiments, n is 4. In some embodiments, n is 5. In some embodiments, n is 6. In some embodiments, n is 7. In some embodiments, n is 8. In some embodiments, n is 9. In some embodiments, n is 10.
  • n is selected from those depicted in Table 1, below.
  • R 1 is
  • R 1 is selected from those depicted in Table 1, below.
  • L is a covalent bond or an optionally substituted Ci-io bivalent straight or branched saturated or unsaturated hydrocarbon chain wherein 1-2 methylene units of the chain are independently and optionally replaced with -0-, -S-, -NR-, - C(O)-, or -SO2-.
  • L is a covalent bond.
  • L is an optionally substituted Ci-io bivalent straight or branched saturated or unsaturated hydrocarbon chain wherein 1-2 methylene units of the chain are independently and optionally replaced with -0-, -S-, -NR-, -C(O)-, or -SO2-.
  • L is selected from those depicted in Table 1, below.
  • Ring A is phenyl, a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, an 8-10 membered bicyclic aromatic carbocyclic ring, or an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • Ring A is phenyl. In some embodiments, Ring A is a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, Ring A is an 8-10 membered bicyclic aromatic carbocyclic ring. In some embodiments, Ring A is an 8-10 membered bicyclic heteroaromatic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • Ring A is 2-pyridyl. In some embodiments, Ring A is 3- pyridyl. In some embodiments, Ring A is 4-pyridyl. In some embodiments, Ring A is imidazolyl. In some embodiments, Ring A is N-imidazolyl. In some embodiments, Ring A is furanyl. In some embodiments, Ring A is 1,3,4-thiadizolyl. In some embodiments, Ring A is 1,2,4-thiadizolyl. In some embodiments, Ring A is quinolinyl.
  • Ring A is selected from those depicted in Table 1, below.
  • each R 2 is independently R A , halogen, -CN, -NO2, -OR, -SR, -NR 2 , -SO2R, -SO2NR2, -SOR, -CFR 2 , -CF 2 R, -CF J -CR2OR, -CR2NR2, -COR, -CO2R, - COMO, -CSNR.2, -CONROR, -OCOR, -OCONR2, -NRCO2R, -NRCOR, -NRCONR2, - NRSO2R, -OP(0)R 2 , -0P0(0R) 2 , -OPO(OR)NR 2 , -0P0(NR 2 )2, -S1R3, or -SF 5 .
  • R 2 is R A . In some embodiments, R 2 is halogen. In some embodiments, R 2 is -CN. In some embodiments, R 2 is -NO2. In some embodiments, R 2 is - OR. In some embodiments, R 2 is -SR. In some embodiments, R 2 is -MO. In some embodiments, R 2 is -SO2R. In some embodiments, R 2 is -SO2MO. In some embodiments, R 2 is -SOR. In some embodiments, R 2 is -CFR2. In some embodiments, R 2 is -CF2R. In some embodiments, R 2 is -CF3. In some embodiments, R 2 is -CR2OR.
  • R 2 is -CR2NR2. In some embodiments, R 2 is -COR. In some embodiments, R 2 is -CO2R. In some embodiments, R 2 is -CONR2. In some embodiments, R 2 is -CSNR2. In some embodiments, R 2 is -CONROR. In some embodiments, R 2 is -OCOR. In some embodiments, R 2 is -OCONR2. In some embodiments, R 2 is -NRCO2R. In some embodiments, R 2 is -NRCOR. In some embodiments, R 2 is -NRCONR2. In some embodiments, R 2 is -NRSO2R. In some embodiments, R 2 is -OP(0)R 2 .
  • R 2 is -OPO(OR)2. In some embodiments, R 2 is -OPO(OR)NR2. In some embodiments, R 2 is -OPO(NR2)2. In some embodiments, R 2 is -SiR3. In some embodiments, R 2 is -SFs.
  • R 2 is methyl. In some embodiments, R 2 is chloro. In some In some embodiments, In some embodiments, R 2 is -OH.
  • R 2 is selected from those depicted in Table 1, below.
  • each R A is independently an optionally substituted group selected from Ci- 6 aliphatic, a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring, phenyl, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur, and a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • R A is a Ci- 6 aliphatic. In some embodiments, R A is a 3-8 membered saturated or partially unsaturated monocyclic carbocyclic ring. In some embodiments, R A is phenyl. In some embodiments, R A is a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R A is a 5-6 membered heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.
  • R A is selected from those depicted in Table 1, below.
  • m is 0, 1, 2, 3, or 4.
  • m is 0. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3. In some embodiments, m is 4.
  • m is selected from those depicted in Table 1, below.
  • the present invention provides a compound of formula I, wherein X is -NH-NH- as shown, to provide a compound of formula I-a: or a pharmaceutically acceptable salt thereof, wherein R 1 is as defined above and described in embodiments herein.
  • the present invention provides a compound of formula I, wherein X is -NH-NH-CO- as shown, to provide a compound of formula I-b: or a pharmaceutically acceptable salt thereof, wherein R 1 is as defined above and described in embodiments herein.
  • the present invention provides a compound of formula I, wherein X is -NH-NH-CONH- as shown, to provide a compound of formula I-c: I-c or a pharmaceutically acceptable salt thereof, wherein R 1 is as defined above and described in embodiments herein.
  • the present invention provides a compound of formula I, wherein X is -NH-CH2-CONH- as shown, to provide a compound of formula I-d: or a pharmaceutically acceptable salt thereof, wherein R 1 is as defined above and described in embodiments herein.
  • exemplary compounds of the invention are set forth in Table 1, below.
  • the present invention provides a compound as depicted in Table 1, above, or a pharmaceutically acceptable salt thereof.
  • the compounds of this invention can be prepared or isolated in general by synthetic and/or semi-synthetic methods known to those skilled in the art for analogous compounds and by methods described in detail in the Examples, herein.
  • the present invention provides an intermediate compound described in the Examples, or a salt thereof.
  • the invention provides a composition comprising a provided compound or a pharmaceutically acceptable derivative thereof and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
  • the compounds and compositions thereof can be administered using any amount and any route of administration effective for treating or lessening the severity of a disease (e.g., cancer).
  • the exact amount required varies from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease or condition, the particular agent, its mode of administration, and the like.
  • Compounds of the invention are preferably formulated in dosage unit form for ease of administration and uniformity of dosage.
  • dose unit form refers to a physically discrete unit of agent appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention is decided by the attending physician within the scope of sound medical judgment.
  • the specific effective dose level for any particular patient or organism will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed, and like factors well known in the medical arts.
  • patient or “subject,” as used herein, means an animal, preferably a mammal, and most preferably a human.
  • compositions of this invention can be administered to humans and other animals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments, or drops), buccally, as an oral or nasal spray, or the like, depending on the severity of the disease or disorder being treated.
  • the compounds of the invention can be administered orally or parenterally at dosage levels of about 0.01 mg/kg to about 50 mg/kg and preferably from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic effect.
  • Liquid dosage forms for oral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • the oral compositions can also include
  • Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • the acceptable vehicles and solvents that may be employed are water, Ringer’s solution, U.S.P. and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil can be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid are used in the preparation of injectables.
  • Injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
  • a compound of the present invention In order to prolong the effect of a compound of the present invention, it is often desirable to slow the absorption of the compound from subcutaneous or intramuscular injection. This may be accomplished using a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the compound then depends upon its rate of dissolution that, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered compound form is accomplished by dissolving or suspending the compound in an oil vehicle. Injectable depot forms are made by forming microencapsulate matrices of the compound in biodegradable polymers such as polylactide-polyglycolide.
  • the rate of compound release can be controlled.
  • biodegradable polymers include poly(orthoesters) and poly(anhydrides).
  • Depot injectable formulations are also prepared by entrapping the compound in liposomes or microemulsions that are compatible with body tissues.
  • compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
  • the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol
  • Solid compositions of a similar type can also be employed as fillers in soft and hard- filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They can optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
  • Solid compositions of a similar type can also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the active compounds can also be in micro-encapsulated form with one or more excipients as noted above.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings and other coatings well known in the pharmaceutical formulating art.
  • the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch.
  • Such dosage forms may also comprise, as is normal practice, additional substances other than inert diluents, e.g ., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose.
  • the dosage forms may also comprise buffering agents. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
  • buffering agents include polymeric substances and waxes.
  • Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, or patches.
  • the active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
  • Ophthalmic formulation, ear drops, and eye drops are also contemplated as being within the scope of this invention.
  • the present invention contemplates the use of transdermal patches, which have the added advantage of providing controlled delivery of a compound to the body.
  • Such dosage forms can be made by dissolving or dispensing the compound in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
  • a therapeutically effective amount of the agent will depend upon a number of factors including, for example, the age and weight of the subject, the precise condition requiring treatment and its severity, the nature of the formulation, and the route of administration, and will ultimately be at the discretion of the attendant physician or veterinarian.
  • the subject to be treated is a mammal, particularly a human.
  • the agent may be administered in a daily dose. This amount may be given in a single dose per day or more usually in a number (e.g., two, three, four, five, or six) of sub-doses per day such that the total daily dose is the same.
  • the amount of the compound of the present invention administered may be an amount selected from 0.01 mg to 10 g per day (calculated as the free or unsalted compound).
  • a provided compound or a pharmaceutically acceptable salt thereof may be employed alone or in combination with other therapeutic agents.
  • a provided compound or a pharmaceutically acceptable salt thereof and the other pharmaceutically active agent(s) may be administered together or separately and, when administered separately, administration may occur simultaneously or sequentially, in any order, by any convenient route in separate or combined pharmaceutical compositions.
  • the amounts of a provided compound or a pharmaceutically acceptable salt thereof and the other pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect.
  • a provided compound or a pharmaceutically acceptable salt thereof and further therapeutic agent(s) may be employed in combination by administration simultaneously in a unitary pharmaceutical composition including both compounds.
  • the combination may be administered separately in separate pharmaceutical compositions, each including one of the compounds in a sequential manner wherein, for example, the compound of the present invention is administered first and the other second and vice versa.
  • Such sequential administration may be close in time (e.g., simultaneously) or remote in time.
  • the compounds are administered in the same dosage form, e.g., one compound may be administered topically and the other compound may be administered orally.
  • both compounds are administered orally.
  • kits or kit of parts as used herein is meant the pharmaceutical composition or compositions that are used to administer the combination according to the present invention.
  • the combination kit can contain both compounds in a single pharmaceutical composition, such as a tablet, or in separate pharmaceutical compositions.
  • the combination kit will contain each compound in separate pharmaceutical compositions either in a single package or in separate pharmaceutical compositions in separate packages.
  • the combination kit can also be provided by instruction, such as dosage and administration instructions.
  • dosage and administration instructions can be of the kind that are provided to a doctor, for example by a drug product label, or they can be of the kind that are provided by a doctor, such as instructions to a patient.
  • sequential administration may be close in time or remote in time.
  • administration of the other agent several minutes to several dozen minutes after the administration of the first agent, and administration of the other agent several hours to several days after the administration of the first agent are included, wherein the lapse of time is not limited.
  • one agent may be administered once a day, and the other agent may be administered 2 or 3 times a day, or one agent may be administered once a week, and the other agent may be administered once a day and the like.
  • the other therapeutic ingredients(s) may be used in the form of salts, for example as alkali metal or amine salts or as acid addition salts, or prodrugs, or as esters, for example lower alkyl esters, or as solvates, for example hydrates, to optimize the activity and/or stability and/or physical characteristics, such as solubility, of the therapeutic ingredient.
  • the therapeutic ingredients may be used in optically pure form.
  • each compound may differ from that when the compound is used alone. Appropriate doses will be readily appreciated by those skilled in the art.
  • a “pharmaceutically acceptable derivative” means any non-toxic salt, ester, salt of an ester or other derivative of a compound of this invention that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention or an inhibitorily active metabolite or residue thereof.
  • inhibitorily active metabolite or residue thereof means that a metabolite or residue thereof of the provided compounds is also active in the present methods and uses.
  • treatment refers to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein.
  • treatment may be administered after one or more symptoms have developed.
  • treatment may be administered in the absence of symptoms.
  • treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example to prevent or delay their recurrence.
  • the cancer or proliferative disorder or tumor to be treated using the compounds and methods and uses described herein include, but are not limited to, a hematological cancer, a lymphoma, a myeloma, a leukemia, a neurological cancer, skin cancer, breast cancer, a prostate cancer, a colorectal cancer, lung cancer, head and neck cancer, a gastrointestinal cancer, a liver cancer, a pancreatic cancer, a genitourinary cancer, a bone cancer, renal cancer, and a vascular cancer.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of diseases and conditions in which inhibiting the phosphorylation of beta catenin is beneficial.
  • the present invention provides a method of inhibiting the phosphorylation of beta catenin in a patient or biological sample comprising administering to the patient or contacting the biological sample with a provided compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof.
  • the method of inhibiting the phosphorylation of beta catenin in the patient is beneficial for treating cancer (e.g., breast cancer).
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of diseases and conditions in which inhibiting a regulator of angiogenesis, invasion, or metastasis is beneficial.
  • the regulator of angiogenesis, invasion, or metastasis is selected from vascular endothelial growth factor (VEGF), c-myc, and MMP-9.
  • VEGF vascular endothelial growth factor
  • the present invention provides a method of inhibiting a regulator of angiogenesis, invasion, or metastasis in a patient or biological sample comprising administering to the patient or contacting the biological sample with a provided compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof.
  • the provided compounds or pharmaceutically acceptable salts thereof are used to inhibit VEGF to prevent differentiating endothelial cells from forming tube-like structures in a supporting matrix.
  • the method of inhibiting a regulator of angiogenesis, invasion, or metastasis in the patient is beneficial for treating cancer (e.g., breast cancer).
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of diseases and conditions in which inhibiting the expression of anti-apoptotic proteins, such as one or more of Bcl-xL, Bcl-2, Mcl-1, survivin, caspase 3, and poly (ADP-ribose) polymerase (PARP), is beneficial.
  • anti-apoptotic proteins such as one or more of Bcl-xL, Bcl-2, Mcl-1, survivin, caspase 3, and poly (ADP-ribose) polymerase (PARP)
  • the present invention provides a method of inhibiting the expression of anti-apoptotic proteins, such as one or more of Bcl-xL, Bcl-2, Mcl-1, survivin, caspase 3, and poly (ADP- ribose) polymerase (PARP), in a patient or biological sample comprising administering to the patient or contacting the biological sample with a provided compound, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition thereof.
  • anti-apoptotic proteins such as one or more of Bcl-xL, Bcl-2, Mcl-1, survivin, caspase 3, and poly (ADP- ribose) polymerase (PARP)
  • the provided compounds or pharmaceutically acceptable salts thereof are potent cytotoxic agents and are effective at killing cancer cell lines, such as breast cancer cell lines (e.g., MDA-MB- 231, MDA-MB-468, MDA-MB-431, Hs578T, ZR75, MCF-7, etc.).
  • cancer cell lines such as breast cancer cell lines (e.g., MDA-MB- 231, MDA-MB-468, MDA-MB-431, Hs578T, ZR75, MCF-7, etc.).
  • the method of inhibiting the expression of anti-apoptotic proteins such as one or more of Bel- xL, Bcl-2, Mcl-1, survivin, caspase 3, and poly (ADP-ribose) polymerase (PARP)
  • PARP poly (ADP-ribose) polymerase
  • a cancer is treated by inhibiting or reducing or decreasing or arresting further growth or spread of the cancer or tumor.
  • a cancer is treated by inhibiting or reducing the size (e.g., volume or mass) of the cancer or tumor by at least 5%, at least 10%, at least 25%, at least 50%, at least 75%, at least 90% or at least 99% relative to the size of the cancer or tumor prior to treatment.
  • a cancer is treated by reducing the quantity of the cancers or tumors in the patient by at least 5%, at least 10%, at least 25%, at least 50%, at least 75%, at least 90% or at least 99% relative to the quantity of the cancers or tumors prior to treatment.
  • the cancer is lung cancer, thyroid cancer, ovarian cancer, colorectal cancer, prostate cancer, cancer of the pancreas, cancer of the esophagus, liver cancer, breast cancer, skin cancer, or mesothelioma.
  • the cancer is mesothelioma, such as malignant mesothelioma.
  • cancer includes, without limitation, leukemias (e.g, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute monocytic leukemia, acute erythroleukemia, chronic leukemia, chronic myelocytic leukemia, chronic lymphocytic leukemia), polycythemia vera, lymphoma (e.g, Hodgkin’s disease or non-Hodgkin’s disease), Waldenstrom's macroglobulinemia, multiple myeloma, heavy chain disease, and solid tumors such as sarcomas and carcinomas (e.g, fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endothelio
  • the cancer is breast cancer.
  • the breast cancer is selected from ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), invasive lobular cancer (ILC), inflammatory breast cancer (IBC), triple negative breast cancer (TNBC), and metastatic breast cancer.
  • the cancer is DCIS.
  • the cancer is IDS.
  • the cancer is ILC.
  • the cancer is IBC.
  • the cancer is TNBC.
  • the cancer is metastatic breast cancer.
  • the cancer is glioma, astrocytoma, glioblastoma multiforme (GBM, also known as glioblastoma), medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, schwannoma, neurofibrosarcoma, meningioma, melanoma, neuroblastoma, or retinoblastoma.
  • GBM glioblastoma multiforme
  • medulloblastoma craniopharyngioma
  • ependymoma pinealoma
  • hemangioblastoma acoustic neuroma
  • oligodendroglioma schwannoma
  • neurofibrosarcoma meningioma, melanoma
  • neuroblastoma
  • the cancer is acoustic neuroma, astrocytoma (e.g ., Grade I - Pilocytic Astrocytoma, Grade II - Low-grade Astrocytoma, Grade III - Anaplastic Astrocytoma, or Grade IV - Glioblastoma (GBM)), chordoma, CNS lymphoma, craniopharyngioma, brain stem glioma, ependymoma, mixed glioma, optic nerve glioma, subependymoma, medulloblastoma, meningioma, metastatic brain tumor, oligodendroglioma, pituitary tumors, primitive neuroectodermal (PNET) tumor, or schwannoma.
  • astrocytoma e.g ., Grade I - Pilocytic Astrocytoma, Grade II - Low-grade Astrocytoma, Grade III - Anaplastic Astrocytoma, or Grade
  • the cancer is a type found more commonly in children than adults, such as brain stem glioma, craniopharyngioma, ependymoma, juvenile pilocytic astrocytoma (JPA), medulloblastoma, optic nerve glioma, pineal tumor, primitive neuroectodermal tumors (PNET), or rhabdoid tumor.
  • the patient is an adult human. In some embodiments, the patient is a child or pediatric patient.
  • Cancer includes, in another embodiment, without limitation, mesothelioma, hepatobilliary (hepatic and billiary duct), bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular melanoma, ovarian cancer, colon cancer, rectal cancer, cancer of the anal region, stomach cancer, gastrointestinal (gastric, colorectal, and duodenal), uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin’s Disease, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, prostate cancer, testicular cancer, chronic or acute leukemia, chronic myeloid leukemia, lymph
  • the cancer is selected from hepatocellular carcinoma, ovarian cancer, ovarian epithelial cancer, or fallopian tube cancer; papillary serous cystadenocarcinoma or uterine papillary serous carcinoma (UPSC); prostate cancer; testicular cancer; gallbladder cancer; hepatocholangiocarcinoma; soft tissue and bone synovial sarcoma; rhabdomyosarcoma; osteosarcoma; chondrosarcoma; Ewing sarcoma; anaplastic thyroid cancer; adrenocortical adenoma; pancreatic cancer; pancreatic ductal carcinoma or pancreatic adenocarcinoma; gastrointestinal/stomach (GIST) cancer; lymphoma; squamous cell carcinoma of the head and neck (SCCHN); salivary gland cancer; glioma, or brain cancer; neurofibromatosis- 1 associated malignant peripheral nerve sheath tumors (MP
  • the cancer is selected from hepatocellular carcinoma (HCC), hepatoblastoma, colon cancer, rectal cancer, ovarian cancer, ovarian epithelial cancer, fallopian tube cancer, papillary serous cystadenocarcinoma, uterine papillary serous carcinoma (UPSC), hepatocholangiocarcinoma, soft tissue and bone synovial sarcoma, rhabdomyosarcoma, osteosarcoma, anaplastic thyroid cancer, adrenocortical adenoma, pancreatic cancer, pancreatic ductal carcinoma, pancreatic adenocarcinoma, glioma, neurofibromatosis- 1 associated malignant peripheral nerve sheath tumors (MPNST), Waldenstrom’s macroglobulinemia, or medulloblastoma.
  • HCC hepatocellular carcinoma
  • hepatoblastoma colon cancer
  • rectal cancer ovarian cancer
  • a cancer is a solid tumor, such as a sarcoma, carcinoma, or lymphoma.
  • Solid tumors generally comprise an abnormal mass of tissue that typically does not include cysts or liquid areas.
  • the cancer is selected from renal cell carcinoma, or kidney cancer; hepatocellular carcinoma (HCC) or hepatoblastoma, or liver cancer; melanoma; breast cancer; colorectal carcinoma, or colorectal cancer; colon cancer; rectal cancer; anal cancer; lung cancer, such as non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC); ovarian cancer, ovarian epithelial cancer, ovarian carcinoma, or fallopian tube cancer; papillary serous cystadenocarcinoma or uterine papillary serous carcinoma (UPSC); prostate cancer; testicular cancer; gallbladder cancer; hepatocholangiocarcinoma; soft tissue and bone synovial sarcoma; rhabdomyo
  • HCC hepatocellular
  • the cancer is selected from renal cell carcinoma, hepatocellular carcinoma (HCC), hepatoblastoma, colorectal carcinoma, colorectal cancer, colon cancer, rectal cancer, anal cancer, ovarian cancer, ovarian epithelial cancer, ovarian carcinoma, fallopian tube cancer, papillary serous cystadenocarcinoma, uterine papillary serous carcinoma (UPSC), hepatocholangiocarcinoma, soft tissue and bone synovial sarcoma, rhabdomyosarcoma, osteosarcoma, chondrosarcoma, anaplastic thyroid cancer, adrenocortical carcinoma, pancreatic cancer, pancreatic ductal carcinoma, pancreatic adenocarcinoma, glioma, brain cancer, neurofibromatosis- 1 associated malignant peripheral nerve sheath tumors (MPNST), Waldenstrom’s macroglobulinemia, or medulloblastoma
  • HCC hepato
  • the cancer is hepatocellular carcinoma (HCC). In some embodiments, the cancer is hepatoblastoma. In some embodiments, the cancer is colon cancer. In some embodiments, the cancer is rectal cancer. In some embodiments, the cancer is ovarian cancer, or ovarian carcinoma. In some embodiments, the cancer is ovarian epithelial cancer. In some embodiments, the cancer is fallopian tube cancer. In some embodiments, the cancer is papillary serous cystadenocarcinoma. In some embodiments, the cancer is uterine papillary serous carcinoma (UPSC). In some embodiments, the cancer is hepatocholangiocarcinoma.
  • HCC hepatocellular carcinoma
  • the cancer is hepatoblastoma. In some embodiments, the cancer is colon cancer. In some embodiments, the cancer is rectal cancer. In some embodiments, the cancer is ovarian cancer, or ovarian carcinoma. In some embodiments, the cancer is ovarian epithelial cancer. In some embodiments,
  • the cancer is soft tissue and bone synovial sarcoma. In some embodiments, the cancer is rhabdomyosarcoma. In some embodiments, the cancer is osteosarcoma. In some embodiments, the cancer is anaplastic thyroid cancer. In some embodiments, the cancer is adrenocortical carcinoma. In some embodiments, the cancer is pancreatic cancer, or pancreatic ductal carcinoma. In some embodiments, the cancer is pancreatic adenocarcinoma. In some embodiments, the cancer is glioma. In some embodiments, the cancer is malignant peripheral nerve sheath tumors (MPNST). In some embodiments, the cancer is neurofibromatosis- 1 associated MPNST.
  • MPNST peripheral nerve sheath tumors
  • a cancer is Waldenstrom’s macroglobulinemia. In some embodiments, the cancer is medulloblastoma.
  • a cancer is a viral-associated cancer, including human immunodeficiency virus (HIV) associated solid tumors, human papilloma virus (HPV)-16 positive incurable solid tumors, and adult T-cell leukemia, which is caused by human T-cell leukemia virus type I (HTLV-I) and is a highly aggressive form of CD4+ T-cell leukemia characterized by clonal integration of HTLV-I in leukemic cells (See https://clinicaltrials.gov/ct2/show/study/ NCT02631746); as well as virus-associated tumors in gastric cancer, nasopharyngeal carcinoma, cervical cancer, vaginal cancer, vulvar cancer, squamous cell carcinoma of the head and neck, and Merkel cell carcinoma.
  • HCV human immunodeficiency virus
  • HPV human papilloma virus
  • the present invention provides a method of treating breast cancer in a patient in need thereof, comprising administering a compound of the present invention, or a pharmaceutically acceptable salt thereof.
  • the present invention provides a method of treating triple negative breast cancer (TNBC) in a patient in need thereof, comprising administering a compound of the present invention, or a pharmaceutically acceptable salt thereof.
  • TNBC triple negative breast cancer
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of disorders that involve a microbiological infection or disorders that respond to treatment with an antibiotic agent.
  • the microbiological infection or disorders comprises an infection selected from a bacterial infection, a fungal infection, a yeast infection, a viral infection, and a parasitic infection.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of Gram-positive bacterial infections, including, for example, methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, and Mycobacterium tuberculosis.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of a variety of dermatological disorders, including dermatological pain, dermatological inflammation, acne, acne vulgaris, inflammatory acne, non-inflammatory acne, acne fulminans, nodular papulopustular acne, acne conglobata, dermatitis, bacterial skin infections, fungal skin infections, viral skin infections, parasitic skin infections, skin neoplasia, skin neoplasms, pruritis, cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, rashes, erythrasma, impetigo, eethyma, yeast skin infections, warts, molluscum contagiosum, trauma or injury to
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of a dermatitis including contact dermatitis, atopic dermatitis, seborrheic dermatitis, nummular dermatitis, chronic dermatitis of the hands and feet, generalized exfoliative dermatitis, stasis dermatitis, lichen simplex chronicus, and diaper rash.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of bacterial infections including cellulitis, acute lymphangitis, lymphadenitis, erysipelas, cutaneous abscesses, necrotizing subcutaneous infections, staphylococcal scalded skin syndrome, folliculitis, furuncles, hidradenitis suppurativa, carbuncles, paronychial infections, and erythrasma.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of fungal Infections including dermatophyte infections, yeast Infections; parasitic Infections including scabies, pediculosis, and creeping eruption.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of viral Infections, including, but not limited to herpes genitalis and herpes labialis.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of disorders of hair follicles and sebaceous glands including acne, rosacea, perioral dermatitis, hypertrichosis (hirsutism), alopecia, including male pattern baldness, alopecia greata, alopecia universalis and alopecia totalis; pseudofolliculitis barbae, and keratinous cyst.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of scaling papular diseases including psoriasis, pityriasis rosea, lichen planus, and pityriasis rubra pilaris.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of benign tumors including moles, dysplastic nevi, skin tags, lipomas, angiomas, pyogenic granuloma, seborrheic keratoses, dermatofibroma, keratoacanthoma, and keloid.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of malignant tumors including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, Paget's disease of the nipples, and Kaposi's sarcoma.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of reactions to sunlight including sunburn, chronic effects of sunlight, and photosensitivity.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of bullous diseases including pemphigus, bullous pemphigoid, dermatitis herpetiformis, and linear immunoglobulin A disease.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of pigmentation disorders including hypopigmentation such as vitiligo, albinism and postinflammatory hypopigmentation and hyperpigmentation such as melasma (chloasma), drug-induced hyperpigmentation, and postinflammatory hyperpigmentation; disorders of comification including ichthyosis, keratosis pilaris, calluses and corns, and actinic keratosis.
  • hypopigmentation such as vitiligo, albinism and postinflammatory hypopigmentation and hyperpigmentation
  • hyperpigmentation such as melasma (chloasma)
  • disorders of comification including ichthyosis, keratosis pilaris, calluses and corns, and actinic keratosis.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of pressure sores.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of disorders of sweating.
  • the provided compounds or pharmaceutically acceptable salts thereof are useful in the treatment of inflammatory reactions including drug eruptions, toxic epidermal necrolysis; erythema multiforme, erythema nodosum, and granuloma annulare.
  • Co-Administration with One or More Other Therapeutic Agent(s) including drug eruptions, toxic epidermal necrolysis; erythema multiforme, erythema nodosum, and granuloma annulare.
  • additional therapeutic agents that are normally administered to treat that condition can also be present in the compositions of this invention.
  • additional therapeutic agents that are normally administered to treat a particular disease, or condition are known as “appropriate for the disease, or condition, being treated.”
  • the present invention provides a method of treating a disclosed disease or condition comprising administering to a patient in need thereof an effective amount of a compound disclosed herein or a pharmaceutically acceptable salt thereof and co administering simultaneously or sequentially an effective amount of one or more additional therapeutic agents, such as those described herein.
  • the method includes co-administering one additional therapeutic agent.
  • the method includes co-administering two additional therapeutic agents.
  • the combination of the disclosed compound and the additional therapeutic agent or agents acts synergistically.
  • a compound of the current invention can also be used in combination with known therapeutic processes, for example, the administration of hormones or radiation.
  • a provided compound is used as a radiosensitizer, especially for the treatment of tumors which exhibit poor sensitivity to radiotherapy.
  • a compound of the current invention can be administered alone or in combination with one or more other therapeutic compounds, possible combination therapy taking the form of fixed combinations or the administration of a compound of the invention and one or more other therapeutic compounds being staggered or given independently of one another, or the combined administration of fixed combinations and one or more other therapeutic compounds.
  • a compound of the current invention can besides, or in addition, be administered especially for tumor therapy in combination with chemotherapy, radiotherapy, immunotherapy, phototherapy, surgical intervention, or a combination of these. Long-term therapy is equally possible, as is adjuvant therapy in the context of other treatment strategies, as described above. Other possible treatments are therapy to maintain the patient's status after tumor regression, or even chemopreventive therapy, for example in patients at risk.
  • One or more other therapeutic agent(s) can be administered separately from a compound or composition of the invention, as part of a multiple dosage regimen.
  • one or more other therapeutic agent(s) may be part of a single dosage form, mixed together with a compound of this invention in a single composition.
  • one or more other therapeutic agent(s) and a compound or composition of the invention can be administered simultaneously, sequentially or within a period of time from one another, for example within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 20, 21, 22, 23, or 24 hours from one another.
  • one or more other therapeutic agent(s) and a compound or composition of the invention are administered as a multiple dosage regimen within greater than 24 hours apart.
  • the term “combination,” “combined,” and related terms refers to the simultaneous or sequential administration of therapeutic agents in accordance with this invention.
  • a compound of the present invention can be administered with one or more other therapeutic agent(s) simultaneously or sequentially in separate unit dosage forms or together in a single unit dosage form.
  • the present invention provides a single unit dosage form comprising a compound of the current invention, one or more other therapeutic agent(s), and a pharmaceutically acceptable carrier, adjuvant, or vehicle.
  • compositions of the invention should be formulated so that a dosage of between 0.01 - 100 mg/kg body weight/day of a compound of the invention can be administered.
  • compositions which comprise one or more other therapeutic agent(s) can act synergistically. Therefore, the amount of the one or more other therapeutic agent(s) in such compositions may be less than that required in a monotherapy utilizing only that therapeutic agent. In such compositions a dosage of between 0.01 - 1,000 pg/kg body weight/day of the one or more other therapeutic agent(s) can be administered.
  • the amount of one or more other therapeutic agent(s) present in the compositions of this invention may be no more than the amount that would normally be administered in a composition comprising that therapeutic agent as the only active agent.
  • the amount of one or more other therapeutic agent(s) in the presently disclosed compositions ranges from about 50% to 100% of the amount normally present in a composition comprising that agent as the only therapeutically active agent.
  • one or more other therapeutic agent(s) is administered at a dosage of about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95% of the amount normally administered for that agent.
  • the phrase “normally administered” means the amount an FDA approved therapeutic agent is provided for dosing per the FDA label insert.
  • the compounds of this invention, or pharmaceutical compositions thereof, can also be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents and catheters.
  • an implantable medical device such as prostheses, artificial valves, vascular grafts, stents and catheters.
  • Vascular stents for example, have been used to overcome restenosis (re-narrowing of the vessel wall after injury).
  • patients using stents or other implantable devices risk clot formation or platelet activation. These unwanted effects may be prevented or mitigated by pre-coating the device with a pharmaceutically acceptable composition comprising a kinase inhibitor.
  • Implantable devices coated with a compound of this invention are another embodiment of the present invention.
  • one or more other therapeutic agent is a Poly ADP ribose polymerase (PARP) inhibitor.
  • PARP Poly ADP ribose polymerase
  • a PARP inhibitor is selected from olaparib (LYNPARZA®, AstraZeneca); rucaparib (RUBRACA®, Clovis Oncology); niraparib (ZEJULA®, Tesaro); talazoparib (MDV3800/BMN 673/LT00673, Medivation/Pfizer/Biomarin); veliparib (ABT-888, Abb Vie); and BGB-290 (BeiGene, Inc.).
  • one or more other therapeutic agent is a histone deacetylase (HDAC) inhibitor.
  • HDAC histone deacetylase
  • an HDAC inhibitor is selected from vorinostat (ZOLINZA®, Merck); romidepsin (ISTODAX®, Celgene); panobinostat (FARYDAK®, Novartis); belinostat (BELEODAQ®, Spectrum Pharmaceuticals); entinostat (SNDX-275, Syndax Pharmaceuticals) (NCT00866333); and chidamide (EPIDAZA®, HBI-8000, Chipscreen Biosciences, China).
  • one or more other therapeutic agent is a CDK inhibitor, such as a CDK4/CDK6 inhibitor.
  • a CDK 4/6 inhibitor is selected from palbociclib (IBRANCE®, Pfizer); ribociclib (KISQALI®, Novartis); abemaciclib (Ly2835219, Eli Lilly); and trilaciclib (G1T28, G1 Therapeutics).
  • one or more other therapeutic agent is a phosphatidylinositol 3 kinase (PI3K) inhibitor.
  • PI3K inhibitor is selected from idelalisib (ZYDELIG®, Gilead), alpelisib (BYL719, Novartis), taselisib (GDC-0032, Genentech/Roche); pictilisib (GDC-0941, Genentech/Roche); copanlisib (BAY806946, Bayer); duvelisib (formerly IPI-145, Infinity Pharmaceuticals); PQR309 (Piqur Therapeutics, Switzerland); and TGR1202 (formerly RP5230, TG Therapeutics).
  • one or more other therapeutic agent is a platinum-based therapeutic, also referred to as platins.
  • Platins cause cross-linking of DNA, such that they inhibit DNA repair and/or DNA synthesis, mostly in rapidly reproducing cells, such as cancer cells.
  • a platinum-based therapeutic is selected from cisplatin (PLATINOL®, Bristol-Myers Squibb); carboplatin (PARAPLATIN®, Bristol-Myers Squibb; also, Teva; Pfizer); oxaliplatin (ELOXITIN® Sanofi-Aventis); nedaplatin (AQUPLA®, Shionogi), picoplatin (Poniard Pharmaceuticals); and satraplatin (JM-216, Agennix).
  • one or more other therapeutic agent is a taxane compound, which causes disruption of microtubules, which are essential for cell division.
  • a taxane compound is selected from paclitaxel (TAXOL®, Bristol-Myers Squibb), docetaxel (TAXOTERE®, Sanofi-Aventis; DOCEFREZ®, Sun Pharmaceutical), albumin-bound paclitaxel (ABRAXANE®; Abraxis/Celgene), cabazitaxel (JEVTANA®, Sanofi-Aventis), and SID530 (SK Chemicals, Co.) (NCT00931008).
  • one or more other therapeutic agent is a nucleoside inhibitor, or a therapeutic agent that interferes with normal DNA synthesis, protein synthesis, cell replication, or will otherwise inhibit rapidly proliferating cells.
  • a nucleoside inhibitor is selected from trabectedin (guanidine alkylating agent, YONDELIS®, Janssen Oncology), mechlorethamine (alkylating agent, VALCHLOR®, Aktelion Pharmaceuticals); vincristine (ONCOVIN®, Eli Lilly; VINCASAR®, Teva Pharmaceuticals; MARQIBO®, Talon Therapeutics); temozolomide (prodrug to alkylating agent 5-(3-methyltriazen-l-yl)-imidazole-4-carboxamide (MTIC) TEMODAR®, Merck); cytarabine injection (ara-C, antimetabolic cytidine analog, Pfizer); lomustine (alkylating agent, CEENU®, Bristol-Myers Squibb; GLEOSTINE®, NextSource Biotechnology); azacitidine (pyrimidine nucleoside analog of cytidine, VIDAZA®, Celgene);
  • one or more other therapeutic agent is a kinase inhibitor or VEGF-R antagonist.
  • Approved VEGF inhibitors and kinase inhibitors useful in the present invention include: bevacizumab (AVASTIN®, Genentech/Roche) an anti-VEGF monoclonal antibody; ramucirumab (CYRAMZA®, Eli Lilly), an anti-VEGFR-2 antibody and ziv- aflibercept, also known as VEGF Trap (ZALTRAP®; Regeneron/Sanofi).
  • VEGFR inhibitors such as regorafenib (STIVARGA®, Bayer); vandetanib (CAPRELSA®, AstraZeneca); axitinib (INLYTA®, Pfizer); and lenvatinib (LENVIMA®, Eisai); Raf inhibitors, such as sorafenib (NEXAVAR®, Bayer AG and Onyx); dabrafenib (TAFINLAR®, Novartis); and vemurafenib (ZELBORAF®, Genentech/Roche); MEK inhibitors, such as cobimetanib (COTELLIC®, Exelexis/Genentech/Roche); trametinib (MEKINIST®, Novartis); Bcr-Abl tyrosine kinase inhibitors, such as imatinib (GLEEVEC®, Novartis); nilotinib (TASIGNA®, Novartis); dasatinib (
  • kinase inhibitors and VEGF-R antagonists that are in development and may be used in the present invention include tivozanib (Aveo Pharmaecuticals); vatalanib (Bayer/Novartis); lucitanib (Clovis Oncology); dovitinib (TKI258, Novartis); Chiauanib (Chipscreen Biosciences); CEP-11981 (Cephalon); linifanib (Abbott Laboratories); neratinib (HKI-272, Puma Biotechnology); radotinib (SUPECT®, IY5511, Il-Yang Pharmaceuticals, S.
  • ruxolitinib (JAKAFI®, Incyte Corporation); PTC299 (PTC Therapeutics); CP- 547,632 (Pfizer); foretinib (Exelexis, GlaxoSmithKline); quizartinib (Daiichi Sankyo) and motesanib (Amgen/Takeda).
  • one or more other therapeutic agent is an mTOR inhibitor, which inhibits cell proliferation, angiogenesis and glucose uptake.
  • an mTOR inhibitor is everolimus (AFINITOR®, Novartis); temsirolimus (TORISEL®, Pfizer); and sirolimus (RAPAMUNE®, Pfizer).
  • one or more other therapeutic agent is a proteasome inhibitor.
  • Approved proteasome inhibitors useful in the present invention include bortezomib (VELCADE®, Takeda); carfilzomib (KYPROLIS®, Amgen); and ixazomib (NINLARO®, Takeda).
  • one or more other therapeutic agent is a growth factor antagonist, such as an antagonist of platelet-derived growth factor (PDGF), or epidermal growth factor (EGF) or its receptor (EGFR).
  • PDGF platelet-derived growth factor
  • EGF epidermal growth factor
  • EGFR antagonists which may be used in the present invention include olaratumab (LARTRUVO®; Eli Lilly).
  • Approved EGFR antagonists which may be used in the present invention include cetuximab (ERBITUX®, Eli Lilly); necitumumab (PORTRAZZA®, Eli Lilly), panitumumab (VECTIBIX®, Amgen); and osimertinib (targeting activated EGFR, TAGRISSO®, AstraZeneca).
  • one or more other therapeutic agent is an aromatase inhibitor.
  • an aromatase inhibitor is selected from exemestane (AROMASIN®, Pfizer); anastazole (ARIMIDEX®, AstraZeneca) and letrozole (FEMARA®, Novartis).
  • one or more other therapeutic agent is an antagonist of the hedgehog pathway.
  • Approved hedgehog pathway inhibitors which may be used in the present invention include sonidegib (ODOMZO®, Sun Pharmaceuticals); and vismodegib (ERIVEDGE®, Genentech), both for treatment of basal cell carcinoma.
  • one or more other therapeutic agent is a folic acid inhibitor.
  • Approved folic acid inhibitors useful in the present invention include pemetrexed (ALIMTA®, Eli Lilly).
  • one or more other therapeutic agent is a CC chemokine receptor 4 (CCR4) inhibitor.
  • CCR4 inhibitors being studied that may be useful in the present invention include mogamulizumab (POTELIGEO®, Kyowa Hakko Kirin, Japan).
  • one or more other therapeutic agent is an isocitrate dehydrogenase (IDH) inhibitor. IDH inhibitors being studied which may be used in the present invention include AG120 (Celgene; NCT02677922); AG221 (Celgene,
  • one or more other therapeutic agent is an arginase inhibitor.
  • Arginase inhibitors being studied which may be used in the present invention include AEB1102 (pegylated recombinant arginase, Aeglea Biotherapeutics), which is being studied in Phase 1 clinical trials for acute myeloid leukemia and myelodysplastic syndrome (NCT02732184) and solid tumors (NCT02561234); and CB-1158 (Calithera Biosciences).
  • one or more other therapeutic agent is a glutaminase inhibitor. Glutaminase inhibitors being studied which may be used in the present invention include CB- 839 (Calithera Biosciences).
  • one or more other therapeutic agent is an antibody that binds to tumor antigens, that is, proteins expressed on the cell surface of tumor cells.
  • Approved antibodies that bind to tumor antigens which may be used in the present invention include rituximab (RITUXAN®, Genentech/Biogenldec); ofatumumab (anti-CD20, ARZERRA®, GlaxoSmithKline); obinutuzumab (anti-CD20, GAZYVA®, Genentech), ibritumomab (anti- CD20 and Yttrium-90, ZEVALIN®, Spectrum Pharmaceuticals); daratumumab (anti-CD38, DARZALEX®, Janssen Biotech), dinutuximab (anti-glycolipid GD2, UNITUXIN®, United Therapeutics); trastuzumab (anti-HER2, HERCEPTIN®, Genentech); ado-trastuzumab em
  • one or more other therapeutic agent is a topoisomerase inhibitor.
  • Approved topoisomerase inhibitors useful in the present invention include irinotecan (ONIVYDE®, Merrimack Pharmaceuticals); topotecan (HYCAMTIN®, GlaxoSmithKline).
  • Topoisomerase inhibitors being studied which may be used in the present invention include pixantrone (PIXUVRI®, CTI Biopharma).
  • one or more other therapeutic agent is an inhibitor of anti- apoptotic proteins, such as BCL-2.
  • Approved anti-apoptotics which may be used in the present invention include venetoclax (VENCLEXTA®, AbbVie/Genentech); and blinatumomab (BLINCYTO®, Amgen).
  • Other therapeutic agents targeting apoptotic proteins which have undergone clinical testing and may be used in the present invention include navitoclax (ABT-263, Abbott), a BCL-2 inhibitor (NCT02079740).
  • one or more other therapeutic agent is an androgen receptor inhibitor.
  • Approved androgen receptor inhibitors useful in the present invention include enzalutamide (XTANDI®, Astellas/Medivation); approved inhibitors of androgen synthesis include abiraterone (ZYTIGA®, Centocor/Ortho); approved antagonist of gonadotropin releasing hormone (GnRH) receptor (degaralix, FIRMAGON®, Ferring Pharmaceuticals).
  • one or more other therapeutic agent is a selective estrogen receptor modulator (SERM), which interferes with the synthesis or activity of estrogens.
  • SERM selective estrogen receptor modulator
  • Approved SERMs useful in the present invention include raloxifene (EVISTA®, Eli Lilly).
  • one or more other therapeutic agent is an inhibitor of bone resorption.
  • An approved therapeutic which inhibits bone resorption is Denosumab (XGEVA®, Amgen), an antibody that binds to RANKL, prevents binding to its receptor RANK, found on the surface of osteoclasts, their precursors, and osteoclast-like giant cells, which mediates bone pathology in solid tumors with osseous metastases.
  • Other approved therapeutics that inhibit bone resorption include bisphosphonates, such as zoledronic acid (ZOMETA®, Novartis).
  • one or more other therapeutic agent is an inhibitor of interaction between the two primary p53 suppressor proteins, MDMX and MDM2.
  • Inhibitors of p53 suppression proteins being studied include ALRN-6924 (Aileron), a stapled peptide that equipotently binds to and disrupts the interaction of MDMX and MDM2 with p53.
  • ALRN-6924 is currently being evaluated in clinical trials for the treatment of AML, advanced myelodysplastic syndrome (MDS) and peripheral T-cell lymphoma (PTCL) (NCT02909972; NCT02264613).
  • one or more other therapeutic agent is an inhibitor of transforming growth factor-beta (TGF-beta or TGFB).
  • TGF-beta or TGFB transforming growth factor-beta
  • Inhibitors of TGF-beta proteins being studied which may be used in the present invention include NIS793 (Novartis), an anti-TGF- beta antibody being tested in the clinic for treatment of various cancers, including breast, lung, hepatocellular, colorectal, pancreatic, prostate and renal cancer (NCT 02947165).
  • the inhibitor of TGF-beta proteins is fresolimumab (GC1008; Sanofi- Genzyme), which is being studied for melanoma (NCT00923169); renal cell carcinoma (NCT00356460); and non-small cell lung cancer (NCT02581787).
  • the additional therapeutic agent is a TGF-beta trap, such as described in Connolly et al. (2012) Int’l J. Biological Sciences 8:964-978.
  • M7824 (Merck KgaA - formerly MSB0011459X), which is a bispecific, anti-PD-Ll/TGF-b trap compound (NCT02699515); and (NCT02517398).
  • M7824 is comprised of a fully human IgGl antibody against PD-L1 fused to the extracellular domain of human TGF-beta receptor II, which functions as a TGF- P“trap.”
  • one or more other therapeutic agent is selected from glembatumumab vedotin-monomethyl auristatin E (MMAE) (Celldex), an anti-glycoprotein NMB (gpNMB) antibody (CR011) linked to the cytotoxic MMAE.
  • MMAE glembatumumab vedotin-monomethyl auristatin E
  • gpNMB anti-glycoprotein NMB
  • gpNMB is a protein overexpressed by multiple tumor types associated with cancer cells’ ability to metastasize.
  • one or more other therapeutic agents is an antiproliferative compound.
  • antiproliferative compounds include, but are not limited to aromatase inhibitors; anti estrogens; topoisomerase I inhibitors; topoisomerase II inhibitors; microtubule active compounds; alkylating compounds; histone deacetylase inhibitors; compounds which induce cell differentiation processes; cyclooxygenase inhibitors; MMP inhibitors; mTOR inhibitors; antineoplastic antimetabolites; platin compounds; compounds targeting/decreasing a protein or lipid kinase activity and further anti-angiogenic compounds; compounds which target, decrease or inhibit the activity of a protein or lipid phosphatase; gonadorelin agonists; anti-androgens; methionine aminopeptidase inhibitors; matrix metalloproteinase inhibitors; bisphosphonates; biological response modifiers; antiproliferative antibodies; heparanase inhibitors; inhibitors of Ras oncogenic isoforms; telomerase inhibitors; proteasome inhibitors; compounds used in the treatment
  • aromatase inhibitor as used herein relates to a compound which inhibits estrogen production, for instance, the conversion of the substrates androstenedione and testosterone to estrone and estradiol, respectively.
  • the term includes, but is not limited to steroids, especially atamestane, exemestane and formestane and, in particular, non-steroids, especially aminoglutethimide, roglethimide, pyridoglutethimide, trilostane, testolactone, ketokonazole, vorozole, fadrozole, anastrozole and letrozole.
  • Exemestane is marketed under the trade name AROMASINTM Formestane is marketed under the trade name LENTARONTM.
  • Fadrozole is marketed under the trade name AFEMATM.
  • Anastrozole is marketed under the trade name ARIMIDEXTM.
  • Letrozole is marketed under the trade names FEMARATM or FEMArTM.
  • Aminoglutethimide is marketed under the trade name ORIMETENTM.
  • a combination of the invention comprising a chemotherapeutic agent which is an aromatase inhibitor is particularly useful for the treatment of hormone receptor positive tumors, such as breast tumors.
  • antiestrogen as used herein relates to a compound which antagonizes the effect of estrogens at the estrogen receptor level.
  • the term includes, but is not limited to tamoxifen, fulvestrant, raloxifene and raloxifene hydrochloride.
  • Tamoxifen is marketed under the trade name NOLVADEXTM.
  • Raloxifene hydrochloride is marketed under the trade name EVISTATM.
  • Fulvestrant can be administered under the trade name FASLODEXTM.
  • a combination of the invention comprising a chemotherapeutic agent which is an antiestrogen is particularly useful for the treatment of estrogen receptor positive tumors, such as breast tumors.
  • anti-androgen as used herein relates to any substance which is capable of inhibiting the biological effects of androgenic hormones and includes, but is not limited to, bicalutamide (CASODEXTM).
  • gonadorelin agonist as used herein includes, but is not limited to abarelix, goserelin, and goserelin acetate. Goserelin can be administered under the trade name ZOLADEXTM.
  • topoisom erase I inhibitor includes, but is not limited to topotecan, gimatecan, irinotecan, camptothecian and its analogues, 9-nitrocamptothecin and the macromolecular camptothecin conjugate PNU-166148.
  • Irinotecan can be administered, e.g ., in the form as it is marketed, e.g. , under the trademark CAMPTOSARTM.
  • Topotecan is marketed under the trade name HYCAMPTINTM.
  • topoisom erase II inhibitor includes, but is not limited to the anthracyclines such as doxorubicin (including liposomal formulation, such as CAELYXTM), daunorubicin, epirubicin, idarubicin and nemorubicin, the anthraquinones mitoxantrone and losoxantrone, and the podophillotoxines etoposide and teniposide.
  • Etoposide is marketed under the trade name ETOPOPHOSTM.
  • Teniposide is marketed under the trade name VM 26- Bristol Doxorubicin is marketed under the trade name ACRIBLASTINTM or ADRIAMYCINTM.
  • Epirubicin is marketed under the trade name FARMORUBICINTM.
  • Idarubicin is marketed under the trade name ZAVEDOSTM.
  • Mitoxantrone is marketed under the trade name NOVANTRONTM.
  • microtubule active agent relates to microtubule stabilizing, microtubule destabilizing compounds and microtublin polymerization inhibitors including, but not limited to taxanes, such as paclitaxel and docetaxel; vinca alkaloids, such as vinblastine or vinblastine sulfate, vincristine or vincristine sulfate, and vinorelbine; discodermolides; cochicine and epothilones and derivatives thereof.
  • Paclitaxel is marketed under the trade name TAXOLTM.
  • Docetaxel is marketed under the trade name TAXOTERETM.
  • Vinblastine sulfate is marketed under the trade name VINBLASTIN R.PTM.
  • Vincristine sulfate is marketed under the trade name FARMISTINTM.
  • alkylating agent includes, but is not limited to, cyclophosphamide, ifosfamide, melphalan or nitrosourea (BCNU or Gliadel). Cyclophosphamide is marketed under the trade name CYCLOSTINTM. Ifosfamide is marketed under the trade name HOLOXANTM.
  • histone deacetylase inhibitors or "HDAC inhibitors” relates to compounds which inhibit the histone deacetylase and which possess antiproliferative activity. This includes, but is not limited to, suberoylanilide hydroxamic acid (SAHA).
  • SAHA suberoylanilide hydroxamic acid
  • antimetabolite includes, but is not limited to, 5-fluorouracil or 5-FU, capecitabine, gemcitabine, DNA demethylating compounds, such as 5-azacytidine and decitabine, methotrexate and edatrexate, and folic acid antagonists such as pemetrexed.
  • Capecitabine is marketed under the trade name XELODATM.
  • Gemcitabine is marketed under the trade name GEMZARTM.
  • platinum compound as used herein includes, but is not limited to, carboplatin, cis-platin, cisplatinum and oxaliplatin.
  • Carboplatin can be administered, e.g ., in the form as it is marketed, e.g. , under the trademark CARBOPLATTM.
  • Oxaliplatin can be administered, e.g. , in the form as it is marketed, e.g. under the trademark ELOXATINTM.
  • the term "compounds targeting/decreasing a protein or lipid kinase activity; or a protein or lipid phosphatase activity; or further anti-angiogenic compounds” as used herein includes, but is not limited to, protein tyrosine kinase and/or serine and/or threonine kinase inhibitors or lipid kinase inhibitors, such as a) compounds targeting, decreasing or inhibiting the activity of the platelet-derived growth factor-receptors (PDGFR), such as compounds which target, decrease or inhibit the activity of PDGFR, especially compounds which inhibit the PDGF receptor, such as an N-phenyl-2-pyrimidine-amine derivative, such as imatinib, SU101, SU6668 and GFB-111; b) compounds targeting, decreasing or inhibiting the activity of the fibroblast growth factor-receptors (FGFR); c) compounds targeting, decreasing or inhibiting the activity of the insulin-like growth factor receptor I (I
  • PI3K inhibitor includes, but is not limited to compounds having inhibitory activity against one or more enzymes in the phosphatidylinositol-3 -kinase family, including, but not limited to RI3Ka, RI3Kg, RBKd, RI3Kb, PI3K-C2a, PI3K-C2p, PI3K-C2y, Vps34, pl l0-a, pi 10-b, r110-g, pi 10-d, p85-a, r85-b, r55-g, pl50, plOl, and p87.
  • PI3K inhibitors useful in this invention include but are not limited to ATU-027, SF-1126, DS-7423, PBI-05204, GSK-2126458, ZSTK-474, buparlisib, pictrelisib, PF-4691502, BYL-719, dactolisib, XL-147, XL-765, and idelalisib.
  • Bcl-2 inhibitor includes, but is not limited to compounds having inhibitory activity against B-cell lymphoma 2 protein (Bcl-2), including but not limited to ABT-199, ABT-731, ABT-737, apogossypol, Ascenta’s pan-Bcl-2 inhibitors, curcumin (and analogs thereof), dual Bcl-2/Bcl-xL inhibitors (Infinity Pharmaceuticals/Novartis Pharmaceuticals), Genasense (G3139), HA14-1 (and analogs thereof; see W02008118802), navitoclax (and analogs thereof, see US7390799), NH-1 (Shenayng Pharmaceutical University), obatoclax (and analogs thereof, see W02004106328), S-001 (Gloria Pharmaceuticals), TW series compounds (Univ. of Michigan), and venetoclax.
  • the Bcl-2 inhibitor is a small molecule therapeutic.
  • the Bcl-2 inhibitor is a small molecule therapeutic.
  • BTK inhibitor includes, but is not limited to compounds having inhibitory activity against Bruton’s Tyrosine Kinase (BTK), including, but not limited to AVL-292 and ibrutinib.
  • SYK inhibitor includes, but is not limited to compounds having inhibitory activity against spleen tyrosine kinase (SYK), including but not limited to PRT-062070, R-343, R-333, Excellair, PRT-062607, and fostamatinib.
  • W02007084786, W02007129161, W02006122806, W02005113554, and W02007044729 the entirety of which are incorporated herein by reference.
  • JAK inhibitory compounds and conditions treatable by such compounds in combination with compounds of this invention can be found in
  • Further anti-angiogenic compounds include compounds having another mechanism for their activity, e.g ., unrelated to protein or lipid kinase inhibition e.g. , thalidomide (THALOMIDTM) and TNP-470.
  • TAALOMIDTM thalidomide
  • proteasome inhibitors useful for use in combination with compounds of the invention include, but are not limited to bortezomib, disulfiram, epigallocatechin-3- gallate (EGCG), salinosporamide A, carfilzomib, ONX-0912, CEP-18770, and MLN9708.
  • Compounds which target, decrease or inhibit the activity of a protein or lipid phosphatase are e.g. inhibitors of phosphatase 1, phosphatase 2A, or CDC25, such as okadaic acid or a derivative thereof.
  • Compounds which induce cell differentiation processes include, but are not limited to, retinoic acid, a- g- or d- tocopherol or a- g- or d-tocotrienol.
  • cyclooxygenase inhibitor as used herein includes, but is not limited to, Cox- 2 inhibitors, 5-alkyl substituted 2-arylaminophenylacetic acid and derivatives, such as celecoxib (CELEBREXTM), rofecoxib (VIOXXTM), etoricoxib, valdecoxib or a 5-alkyl-2- arylaminophenylacetic acid, such as 5-methyl-2-(2'-chloro-6'-fluoroanilino)phenyl acetic acid, lumiracoxib.
  • CELEBREXTM celecoxib
  • VIOXXTM rofecoxib
  • etoricoxib etoricoxib
  • valdecoxib or a 5-alkyl-2- arylaminophenylacetic acid, such as 5-methyl-2-(2'-chloro-6'-fluoroanilino)phenyl acetic acid, lumiracoxib.
  • bisphosphonates includes, but is not limited to, etridonic, clodronic, tiludronic, pamidronic, alendronic, ibandronic, risedronic and zoledronic acid.
  • Etridonic acid is marketed under the trade name DIDRONELTM.
  • Clodronic acid is marketed under the trade name BONEFOSTM.
  • Tiludronic acid is marketed under the trade name SkelidTM.
  • Pamidronic acid is marketed under the trade name AREDIATM.
  • Alendronic acid is marketed under the trade name FOSAMAXTM.
  • Ibandronic acid is marketed under the trade name BONDRANATTM.
  • Risedronic acid is marketed under the trade name ACTONELTM.
  • Zoledronic acid is marketed under the trade name ZOMETATM.
  • mTOR inhibitors relates to compounds which inhibit the mammalian target of rapamycin (mTOR) and which possess antiproliferative activity such as sirolimus (RAPAMUNE®), everolimus (CERTICANTM), CCI-779 and ABT578.
  • heparanase inhibitor refers to compounds which target, decrease or inhibit heparin sulfate degradation.
  • the term includes, but is not limited to, PI-88.
  • biological response modifier refers to a lymphokine or interferons.
  • inhibitor of Ras oncogenic isoforms such as H-Ras, K-Ras, or N-Ras, as used herein refers to compounds which target, decrease or inhibit the oncogenic activity of Ras; for example, a "famesyl transferase inhibitor” such as L-744832, DK8G557 or R115777 (ZARNESTRATM).
  • telomerase inhibitor refers to compounds which target, decrease or inhibit the activity of telomerase.
  • Compounds which target, decrease or inhibit the activity of telomerase are especially compounds which inhibit the telomerase receptor, such as telomestatin.
  • methionine aminopeptidase inhibitor refers to compounds which target, decrease or inhibit the activity of methionine aminopeptidase.
  • Compounds which target, decrease or inhibit the activity of methionine aminopeptidase include, but are not limited to, bengamide or a derivative thereof.
  • proteasome inhibitor refers to compounds which target, decrease or inhibit the activity of the proteasome.
  • Compounds which target, decrease or inhibit the activity of the proteasome include, but are not limited to, Bortezomib (VELCADETM) and MLN 341.
  • matrix metalloproteinase inhibitor or (“MMP” inhibitor) as used herein includes, but is not limited to, collagen peptidomimetic and nonpeptidomimetic inhibitors, tetracycline derivatives, e.g ., hydroxamate peptidomimetic inhibitor batimastat and its orally bioavailable analogue marimastat (BB-2516), prinomastat (AG3340), metastat (NSC 683551) BMS-279251, BAY 12-9566, TAA211 , MMI270B or AAJ996.
  • MMP matrix metalloproteinase inhibitor
  • FMS-like tyrosine kinase inhibitors which are compounds targeting, decreasing or inhibiting the activity of FMS-like tyrosine kinase receptors (Flt-3R); interferon, I-b-D-arabinofuransylcytosine (ara-c) and bisulfan; and ALK inhibitors, which are compounds which target, decrease or inhibit anaplastic lymphoma kinase.
  • FMS-like tyrosine kinase receptors are especially compounds, proteins or antibodies which inhibit members of the Flt-3R receptor kinase family, such as PKC412, midostaurin, a staurosporine derivative, SU11248 and MLN518.
  • HSP90 inhibitors includes, but is not limited to, compounds targeting, decreasing or inhibiting the intrinsic ATPase activity of HSP90; degrading, targeting, decreasing or inhibiting the HSP90 client proteins via the ubiquitin proteosome pathway.
  • Compounds targeting, decreasing or inhibiting the intrinsic ATPase activity of HSP90 are especially compounds, proteins or antibodies which inhibit the ATPase activity of HSP90, such as 17-allylamino,17-demethoxygeldanamycin (17AAG), a geldanamycin derivative; other geldanamycin related compounds; radicicol and HD AC inhibitors.
  • antiproliferative antibodies includes, but is not limited to, trastuzumab (HERCEPTINTM), Trastuzumab-DMl, erbitux, bevacizumab (AVASTINTM), rituximab (RITUXAN ® ), PR064553 (anti-CD40) and 2C4 Antibody.
  • HERCEPTINTM trastuzumab
  • Trastuzumab-DMl erbitux
  • bevacizumab AVASTINTM
  • rituximab rituximab
  • PR064553 anti-CD40
  • compounds of the current invention can be used in combination with standard leukemia therapies, especially in combination with therapies used for the treatment of AML.
  • compounds of the current invention can be administered in combination with, for example, farnesyl transferase inhibitors and/or other drugs useful for the treatment of AML, such as Daunorubicin, Adriamycin, Ara-C, VP- 16, Teniposide, Mitoxantrone, Idarubicin, Carboplatinum and PKC412.
  • HDAC histone deacetylase
  • SAHA suberoylanilide hydroxamic acid
  • HDAC inhibitors include MS275, SAHA, FK228 (formerly FR901228), Trichostatin A and compounds disclosed in US 6,552,065 including, but not limited to, N-hydroxy-3-[4-[[[2-(2-methyl-lH-indol-3-yl)- ethyl]- amino]methyl]phenyl]-2E-2-propenamide, or a pharmaceutically acceptable salt thereof and N-hydroxy-3-[4-[(2-hydroxyethyl) ⁇ 2-(lH-indol-3-yl)ethyl]- amino]methyl]phenyl]-2E-2- propenamide, or a pharmaceutically acceptable salt thereof, especially the lactate salt.
  • Somatostatin receptor antagonists as used herein refer to compounds which target, treat or inhibit the somatostatin receptor such as octreotide, and SOM230.
  • Tumor cell damaging approaches refer to approaches such as ionizing radiation.
  • the term "ionizing radiation” referred to above and hereinafter means ionizing radiation that occurs as either electromagnetic rays (such as X-rays and gamma rays) or particles (such as alpha and beta particles). Ionizing radiation is provided in, but not limited to, radiation therapy and is known in the art. See Heilman, Principles of Radiation Therapy, Cancer, in Principles and Practice of Oncology, Devita et ak, Eds., 4 th Edition, Vol. 1 , pp.
  • EDG binders and ribonucleotide reductase inhibitors.
  • EDG binders refers to a class of immunosuppressants that modulates lymphocyte recirculation, such as FTY720.
  • ribonucleotide reductase inhibitors refers to pyrimidine or purine nucleoside analogs including, but not limited to, fludarabine and/or cytosine arabinoside (ara-C), 6-thioguanine, 5-fluorouracil, cladribine, 6- mercaptopurine (especially in combination with ara-C against ALL) and/or pentostatin.
  • Ribonucleotide reductase inhibitors are especially hydroxyurea or 2-hydroxy-lH-isoindole-l ,3-dione derivatives.
  • VEGF vascular endothelial growth factor
  • compounds, proteins or monoclonal antibodies of VEGF such as l-(4-chloroanilino)-4-(4-pyridylmethyl)phthalazine or a pharmaceutically acceptable salt thereof, l-(4-chloroanilino)-4-(4-pyridylmethyl)phthalazine succinate; AN GIO S T ATINTM ; ENDOSTATINTM; anthranilic acid amides; ZD4190; Zd 6 474; SU5416; SU6668; bevacizumab; or anti-VEGF antibodies or anti-VEGF receptor antibodies, such as rhuMAb and RHEIFab, VEGF aptamer such as Macugon; FLT-4 inhibitors, FLT-3 inhibitors, VEGFR-2 IgGI antibody, Angiozyme (RPI 4610) and Bevacizumab (AVASTINTM).
  • VEGF aptamer such as Macu
  • Photodynamic therapy refers to therapy which uses certain chemicals known as photosensitizing compounds to treat or prevent cancers. Examples of photodynamic therapy include treatment with compounds, such as VISEiDYNETM and porfimer sodium.
  • Angiostatic steroids as used herein refers to compounds which block or inhibit angiogenesis, such as, e.g ., anecortave, triamcinolone, hydrocortisone, 11-a-epihydrocotisol, cortexolone, 17a-hydroxyprogesterone, corticosterone, desoxy corticosterone, testosterone, estrone and dexamethasone.
  • Implants containing corticosteroids refers to compounds, such as fluocinolone and dexamethasone.
  • chemotherapeutic compounds include, but are not limited to, plant alkaloids, hormonal compounds and antagonists; biological response modifiers, preferably lymphokines or interferons; antisense oligonucleotides or oligonucleotide derivatives; shRNA or siRNA; or miscellaneous compounds or compounds with other or unknown mechanism of action.
  • biological response modifiers preferably lymphokines or interferons
  • antisense oligonucleotides or oligonucleotide derivatives preferably shRNA or siRNA
  • shRNA or siRNA or miscellaneous compounds or compounds with other or unknown mechanism of action.
  • exemplary l mmuno-0 neology agents include, but are not limited to, plant alkaloids, hormonal compounds and antagonists; biological response modifiers, preferably lymphokines or interferons; antisense oligonucleotides or oligonucleotide derivatives; shRNA or siRNA; or miscellaneous compounds or compounds with other or unknown mechanism of action.
  • one or more other therapeutic agent is an immuno-oncology agent.
  • an immuno-oncology agent refers to an agent which is effective to enhance, stimulate, and/or up-regulate immune responses in a subject.
  • the administration of an immuno-oncology agent with a compound of the invention has a synergic effect in treating a cancer.
  • An immuno-oncology agent can be, for example, a small molecule drug, an antibody, or a biologic or small molecule.
  • biologic immuno-oncology agents include, but are not limited to, cancer vaccines, antibodies, and cytokines.
  • an antibody is a monoclonal antibody.
  • a monoclonal antibody is humanized or human.
  • an immuno-oncology agent is (i) an agonist of a stimulatory (including a co- stimulatory) receptor or (ii) an antagonist of an inhibitory (including a co- inhibitory) signal on T cells, both of which result in amplifying antigen-specific T cell responses.
  • Certain of the stimulatory and inhibitory molecules are members of the immunoglobulin super family (IgSF).
  • IgSF immunoglobulin super family
  • B7 family which includes B7-1, B7-2, B7-H1 (PD-L1), B7-DC (PD-L2), B7-H2 (ICOS-L), B7-H3, B7-H4, B7-H5 (VISTA), and B7-H6.
  • TNF family of molecules that bind to cognate TNF receptor family members which includes CD40 and CD40L, OX-40, OX-40L, CD70, CD27L, CD30, CD30L, 4-1BBL, CD137 (4-1BB), TRAIL/Apo2-L, TRAILR1/DR4, TRAILR2/DR5, TRAILR3, TRAILR4, OPG, RANK, RANKL, TWEAKR/Fnl4, TWEAK, BAFFR, EDAR, XEDAR, TACI, APRIL, BCMA, LTpR, LIGHT, DcR3, HVEM, VEGETL1A, TRAMP/DR3, EDAR, EDA1, XEDAR, EDA2, TNFR1, Lymphotoxin o/TNFp, TNFR2, TNF a, LTpR, Lymphotoxin a1b2, FAS
  • an immuno-oncology agent is a cytokine that inhibits T cell activation (e.g ., IL-6, IL-10, TGF-b, VEGF, and other immunosuppressive cytokines) or a cytokine that stimulates T cell activation, for stimulating an immune response.
  • T cell activation e.g ., IL-6, IL-10, TGF-b, VEGF, and other immunosuppressive cytokines
  • a cytokine that stimulates T cell activation for stimulating an immune response.
  • an immuno- oncology agent is: (i) an antagonist of a protein that inhibits T cell activation (e.g., immune checkpoint inhibitors) such as CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, TIM-3, Galectin 9, CEACAM-1, BTLA, CD69, Galectin-1, TIGIT, CD113, GPR56, VISTA, 2B4, CD48, GARP, PD1H, LAIR1, TIM-1, and TIM-4; or (ii) an agonist of a protein that stimulates T cell activation such as B7-1, B7-2, CD28, 4-1BB (CD137), 4-1BBL, ICOS, ICOS-L, 0X40, OX40L, GITR, GITRL, CD70, CD27, CD40, DR3 and CD28H.
  • an antagonist of a protein that inhibits T cell activation e.g., immune checkpoint inhibitors
  • CTLA-4 e.g., immune
  • an immuno-oncology agent is an antagonist of inhibitory receptors on NK cells or an agonist of activating receptors on NK cells.
  • an immuno-oncology agent is an antagonist of KIR, such as lirilumab.
  • an immuno-oncology agent is an agent that inhibits or depletes macrophages or monocytes, including but not limited to CSF-1R antagonists such as CSF-1R antagonist antibodies including RG7155 (WOl 1/70024, WOl 1/107553, WOl 1/131407, W013/87699, W013/119716, WO13/132044) or FPA-008 (WOl 1/140249; W013169264; WO14/036357).
  • CSF-1R antagonists such as CSF-1R antagonist antibodies including RG7155 (WOl 1/70024, WOl 1/107553, WOl 1/131407, W013/87699, W013/119716, WO13/132044) or FPA-008 (WOl 1/140249; W013169264; WO14/036357).
  • an immuno-oncology agent is selected from agonistic agents that ligate positive costimulatory receptors, blocking agents that attenuate signaling through inhibitory receptors, antagonists, and one or more agents that increase systemically the frequency of anti-tumor T cells, agents that overcome distinct immune suppressive pathways within the tumor microenvironment (e.g ., block inhibitory receptor engagement (e.g., PD- Ll/PD-1 interactions), deplete or inhibit Tregs (e.g.
  • an anti-CD25 monoclonal antibody e.g, daclizumab
  • an anti-CD25 monoclonal antibody e.g, daclizumab
  • ex vivo anti-CD25 bead depletion inhibit metabolic enzymes such as IDO, or reverse/prevent T cell energy or exhaustion
  • agents that trigger innate immune activation and/or inflammation at tumor sites e.g, IDO, or reverse/prevent T cell energy or exhaustion
  • an immuno-oncology agent is a CTLA-4 antagonist.
  • a CTLA-4 antagonist is an antagonistic CTLA-4 antibody.
  • an antagonistic CTLA-4 antibody is YERVOY (ipilimumab) or tremelimumab.
  • an immuno-oncology agent is a PD-1 antagonist.
  • a PD-1 antagonist is administered by infusion.
  • an immuno-oncology agent is an antibody or an antigen-binding portion thereof that binds specifically to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity.
  • a PD-1 antagonist is an antagonistic PD-1 antibody.
  • an antagonistic PD-1 antibody is OPDIVO (nivolumab), KEYTRUDA (pembrolizumab), or MEDI-0680 (AMP-514; WO2012/145493).
  • an immuno-oncology agent may be pidilizumab (CT-011).
  • an immuno-oncology agent is a recombinant protein composed of the extracellular domain of PD-L2 (B7-DC) fused to the Fc portion of IgGl, called AMP-224.
  • an immuno-oncology agent is a PD-L1 antagonist.
  • a PD-L1 antagonist is an antagonistic PD-L1 antibody.
  • a PD-L1 antibody is MPDL3280A (RG7446; WO2010/077634), durvalumab (MEDI4736), BMS-936559 (W02007/005874), and MSB0010718C (WO2013/79174).
  • an immuno-oncology agent is a LAG-3 antagonist.
  • a LAG-3 antagonist is an antagonistic LAG-3 antibody.
  • a LAG3 antibody is BMS-986016 (W010/19570, WO14/08218), or IMP-731 or IMP-321 (W008/132601, WO009/44273).
  • an immuno-oncology agent is a CD137 (4-1BB) agonist.
  • a CD137 (4-1BB) agonist is an agonistic CD137 antibody.
  • a CD137 antibody is urelumab or PF-05082566 (W012/32433).
  • an immuno-oncology agent is a GITR agonist.
  • a GITR agonist is an agonistic GITR antibody.
  • a GITR antibody is BMS-986153, BMS-986156, TRX-518 (WO006/105021, W0009/009116), or MK-4166 (WOl 1/028683).
  • an immuno-oncology agent is an indoleamine (2,3)- dioxygenase (IDO) antagonist.
  • IDO antagonist is selected from epacadostat (INCB024360, Incyte); indoximod (NLG-8189, NewLink Genetics Corporation); capmanitib (INC280, Novartis); GDC-0919 (Genentech/Roche); PF-06840003 (Pfizer); BMS:F001287 (Bristol-Myers Squibb); Phy906/KD108 (Phytoceutica); an enzyme that breaks down kynurenine (Kynase, Ikena Oncology, formerly known as Kyn Therapeutics); and NLG-919 (W009/73620, WO009/1156652, WOl 1/56652, W012/142237).
  • an immuno-oncology agent is an 0X40 agonist.
  • an 0X40 agonist is an agonistic 0X40 antibody.
  • an 0X40 antibody is MEDI-6383 or MEDI-6469.
  • an immuno-oncology agent is an OX40L antagonist.
  • an OX40L antagonist is an antagonistic 0X40 antibody.
  • an OX40L antagonist is RG-7888 (WO06/029879).
  • an immuno-oncology agent is a CD40 agonist.
  • a CD40 agonist is an agonistic CD40 antibody.
  • an immuno-oncology agent is a CD40 antagonist.
  • a CD40 antagonist is an antagonistic CD40 antibody.
  • a CD40 antibody is lucatumumab or dacetuzumab.
  • an immuno-oncology agent is a CD27 agonist.
  • a CD27 agonist is an agonistic CD27 antibody.
  • a CD27 antibody is varlilumab.
  • an immuno-oncology agent is MGA271 (to B7H3) (WO 11/109400).
  • an immuno-oncology agent is abagovomab, adecatumumab, afutuzumab, alemtuzumab, anatumomab mafenatox, apolizumab, atezolimab, avelumab, blinatumomab, BMS-936559, catumaxomab, durvalumab, epacadostat, epratuzumab, indoximod, inotuzumab ozogamicin, intelumumab, ipilimumab, isatuximab, lambrolizumab, MED14736, MPDL3280A, nivolumab, obinutuzumab, ocaratuzumab, ofatumumab, olatatumab, pembrolizumab, pidilizumab, rituximab,
  • an immuno-oncology agent is an immunostimulatory agent.
  • antibodies blocking the PD-1 and PD-L1 inhibitory axis can unleash activated tumor-reactive T cells and have been shown in clinical trials to induce durable anti-tumor responses in increasing numbers of tumor histologies, including some tumor types that conventionally have not been considered immunotherapy sensitive. See, e.g ., Okazaki, T. el al. (2013) Nat. Immunol. 14, 1212-1218; Zou et al. (2016) Sci. Transl. Med. 8.
  • the anti-PD- 1 antibody nivolumab (OPDIVO ® , Bristol-Myers Squibb, also known as ONO-4538, MDXl 106 and BMS-936558), has shown potential to improve the overall survival in patients with RCC who had experienced disease progression during or after prior anti-angiogenic therapy.
  • the immunomodulatory therapeutic specifically induces apoptosis of tumor cells.
  • Approved immunomodulatory therapeutics which may be used in the present invention include pomalidomide (POMALYST®, Celgene); lenalidomide (REVLIMID®, Celgene); ingenol mebutate (PICATO®, LEO Pharma).
  • an immuno-oncology agent is a cancer vaccine.
  • the cancer vaccine is selected from sipuleucel-T (PROVENGE®, Dendreon/Valeant Pharmaceuticals), which has been approved for treatment of asymptomatic, or minimally symptomatic metastatic castrate-resistant (hormone-refractory) prostate cancer; and talimogene laherparepvec (IMLYGIC®, BioVex/ Amgen, previously known as T-VEC), a genetically modified oncolytic viral therapy approved for treatment of unresectable cutaneous, subcutaneous and nodal lesions in melanoma.
  • sipuleucel-T PROVENGE®, Dendreon/Valeant Pharmaceuticals
  • IMLYGIC® BioVex/ Amgen, previously known as T-VEC
  • an immuno-oncology agent is selected from an oncolytic viral therapy such as pexastimogene devacirepvec (PexaVec/JX-594, SillaJen/formerly Jennerex Biotherapeutics), a thymidine kinase- (TK-) deficient vaccinia virus engineered to express GM-CSF, for hepatocellular carcinoma (NCT02562755) and melanoma (NCT00429312); pelareorep (REOLYSIN®, Oncolytics Biotech), a variant of respiratory enteric orphan virus (reovirus) which does not replicate in cells that are not RAS-activated, in numerous cancers, including colorectal cancer (NCT01622543); prostate cancer (NCT01619813); head and neck squamous cell cancer (NCT01166542); pancreatic adenocarcinoma (NCT00998322); and non-small cell lung cancer (NSCLC) (
  • an immuno-oncology agent is selected from JX-929 (SillaJen/formerly Jennerex Biotherapeutics), a TK- and vaccinia growth factor-deficient vaccinia virus engineered to express cytosine deaminase, which is able to convert the prodrug 5-fluorocytosine to the cytotoxic drug 5-fluorouracil; TG01 and TG02 (Targovax/formerly Oncos), peptide-based immunotherapy agents targeted for difficult-to-treat RAS mutations; and TILT-123 (TILT Biotherapeutics), an engineered adenovirus designated: Ad5/3-E2F- delta24-hTNFa-IRES-hIL20; and VSV-GP (ViraTherapeutics) a vesicular stomatitis virus (VSV) engineered to express the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV), which can be further engine
  • an immuno-oncology agent is a T-cell engineered to express a chimeric antigen receptor, or CAR.
  • the T-cells engineered to express such chimeric antigen receptor are referred to as a CAR-T cells.
  • CARs have been constructed that consist of binding domains, which may be derived from natural ligands, single chain variable fragments (scFv) derived from monoclonal antibodies specific for cell-surface antigens, fused to endodomains that are the functional end of the T-cell receptor (TCR), such as the CD3-zeta signaling domain from TCRs, which is capable of generating an activation signal in T lymphocytes.
  • TCR T-cell receptor
  • the CAR-T cell is one of those described in U.S. Patent 8,906,682 (June et al. hereby incorporated by reference in its entirety), which discloses CAR-T cells engineered to comprise an extracellular domain having an antigen binding domain (such as a domain that binds to CD 19), fused to an intracellular signaling domain of the T cell antigen receptor complex zeta chain (such as CD3 zeta).
  • an antigen binding domain such as a domain that binds to CD 19
  • CD3 zeta intracellular signaling domain of the T cell antigen receptor complex zeta chain
  • the CAR When expressed in the T cell, the CAR is able to redirect antigen recognition based on the antigen binding specificity. In the case of CD 19, the antigen is expressed on malignant B cells.
  • an immunostimulatory agent is an activator of retinoic acid receptor-related orphan receptor g (RORyt).
  • RORyt is a transcription factor with key roles in the differentiation and maintenance of Type 17 effector subsets of CD4+ (Thl7) and CD8+ (Tcl7) T cells, as well as the differentiation of IL-17 expressing innate immune cell subpopulations such as NK cells.
  • an activator of RORyt is LYC- 55716 (Lycera), which is currently being evaluated in clinical trials for the treatment of solid tumors (NCT02929862).
  • an immunostimulatory agent is an agonist or activator of a toll like receptor (TLR).
  • TLR toll like receptor
  • Suitable activators of TLRs include an agonist or activator of TLR9 such as SD-101 (Dynavax).
  • SD-101 is an immunostimulatory CpG which is being studied for B-cell, follicular and other lymphomas (NCT02254772).
  • Agonists or activators of TLR8 which may be used in the present invention include motolimod (VTX-2337, VentiRx Pharmaceuticals) which is being studied for squamous cell cancer of the head and neck (NCT02124850) and ovarian cancer (NCT02431559).
  • immuno-oncology agents that can be used in the present invention include urelumab (BMS-663513, Bristol-Myers Squibb), an anti-CD137 monoclonal antibody; varlilumab (CDX-1127, Celldex Therapeutics), an anti-CD27 monoclonal antibody; BMS- 986178 (Bristol-Myers Squibb), an anti-OX40 monoclonal antibody; lirilumab (IPH2102/BMS-986015, Innate Pharma, Bristol-Myers Squibb), an anti-KIR monoclonal antibody; monalizumab (IPH2201, Innate Pharma, AstraZeneca) an anti-NKG2A monoclonal antibody; andecaliximab (GS-5745, Gilead Sciences), an anti-MMP9 antibody; MK-4166 (Merck & Co.), an anti-GITR monoclonal antibody.
  • urelumab BMS-663513, Bristol
  • an immunostimulatory agent is selected from elotuzumab, mifamurtide, an agonist or activator of a toll-like receptor, and an activator of RORyt.
  • an immunostimulatory therapeutic is recombinant human interleukin 15 (rhIL-15).
  • rhIL-15 has been tested in the clinic as a therapy for melanoma and renal cell carcinoma (NCT01021059 and NCT01369888) and leukemias (NCT02689453).
  • an immunostimulatory agent is recombinant human interleukin 12 (rhlL- 12).
  • an IL-15 based immunotherapeutic is heterodimeric IL-15 (hetIL-15, Novartis/ Admune), a fusion complex composed of a synthetic form of endogenous IL-15 complexed to the soluble IL-15 binding protein IL-15 receptor alpha chain (IL15:sIL- 15RA), which has been tested in Phase 1 clinical trials for melanoma, renal cell carcinoma, non-small cell lung cancer and head and neck squamous cell carcinoma (NCT02452268).
  • a recombinant human interleukin 12 (rhIL-12) is NM-IL-12 (Neumedicines, Inc.), NCT02544724, or NCT02542124.
  • an immuno-oncology agent is selected from those descripted in Jerry L. Adams et al ., “Big opportunities for small molecules in immuno-oncology,” Cancer Therapy 2015, Vol. 14, pages 603-622, the content of which is incorporated herein by reference in its entirety.
  • an immuno-oncology agent is selected from the examples described in Table 1 of Jerry L. Adams et al.
  • an immuno-oncology agent is a small molecule targeting an immuno-oncology target selected from those listed in Table 2 of Jerry L. Adams et al.
  • an immuno- oncology agent is a small molecule agent selected from those listed in Table 2 of Jerry L. Adams et al.
  • an immuno-oncology agent is selected from the small molecule immuno-oncology agents described in Peter L. Toogood, “Small molecule immuno- oncology therapeutic agents,” Bioorganic & Medicinal Chemistry Letters 2018, Vol. 28, pages 319-329, the content of which is incorporated herein by reference in its entirety.
  • an immuno-oncology agent is an agent targeting the pathways as described in Peter L. Toogood.
  • an immuno-oncology agent is selected from those described in Sandra L. Ross et al., “Bispecific T cell engager (BITE® ) antibody constructs can mediate bystander tumor cell killing”, PLoS ONE 12(8): e0183390, the content of which is incorporated herein by reference in its entirety.
  • an immuno-oncology agent is a bispecific T cell engager (BITE®) antibody construct.
  • a bispecific T cell engager (BITE®) antibody construct is a CD19/CD3 bispecific antibody construct.
  • a bispecific T cell engager (BITE®) antibody construct is an EGFR/CD3 bispecific antibody construct.
  • a bispecific T cell engager (BITE®) antibody construct activates T cells.
  • a bispecific T cell engager (BITE®) antibody construct activates T cells, which release cytokines inducing upregulation of intercellular adhesion molecule 1 (ICAM-1) and FAS on bystander cells.
  • a bispecific T cell engager (BITE®) antibody construct activates T cells which result in induced bystander cell lysis.
  • the bystander cells are in solid tumors.
  • the bystander cells being lysed are in proximity to the BITE®-activated T cells.
  • the bystander cells comprises tumor- associated antigen (TAA) negative cancer cells.
  • TAA tumor- associated antigen
  • an immuno-oncology agent is an antibody which blocks the PD-L1/PD1 axis and/or CTLA4.
  • an immuno-oncology agent is an ex vivo expanded tumor-infiltrating T cell.
  • an immuno-oncology agent is a bispecific antibody construct or chimeric antigen receptors (CARs) that directly connect T cells with tumor-associated surface antigens (TAAs).
  • an immuno-oncology agent is an immune checkpoint inhibitor as described herein.
  • checkpoint inhibitor as used herein relates to agents useful in preventing cancer cells from avoiding the immune system of the patient.
  • T-cell exhaustion One of the major mechanisms of anti-tumor immunity subversion is known as “T-cell exhaustion,” which results from chronic exposure to antigens that has led to up-regulation of inhibitory receptors. These inhibitory receptors serve as immune checkpoints in order to prevent uncontrolled immune reactions.
  • PD-1 and co-inhibitory receptors such as cytotoxic T-lymphocyte antigen 4 (CTLA-4, B and T Lymphocyte Attenuator (BTLA; CD272), T cell Immunoglobulin and Mucin domain-3 (Tim-3), Lymphocyte Activation Gene-3 (Lag-3; CD223), and others are often referred to as a checkpoint regulators. They act as molecular “gatekeepers” that allow extracellular information to dictate whether cell cycle progression and other intracellular signaling processes should proceed.
  • CTL-4 cytotoxic T-lymphocyte antigen 4
  • BTLA B and T Lymphocyte Attenuator
  • Tim-3 T cell Immunoglobulin and Mucin domain-3
  • Lag-3 Lymphocyte Activation Gene-3
  • an immune checkpoint inhibitor is an antibody to PD-1.
  • PD-1 binds to the programmed cell death 1 receptor (PD-1) to prevent the receptor from binding to the inhibitory ligand PDL-1, thus overriding the ability of tumors to suppress the host anti tumor immune response.
  • PD-1 binds to the programmed cell death 1 receptor (PD-1) to prevent the receptor from binding to the inhibitory ligand PDL-1, thus overriding the ability of tumors to suppress the host anti tumor immune response.
  • the checkpoint inhibitor is a biologic therapeutic or a small molecule.
  • the checkpoint inhibitor is a monoclonal antibody, a humanized antibody, a fully human antibody, a fusion protein or a combination thereof.
  • the checkpoint inhibitor inhibits a checkpoint protein selected from CTLA-4, PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD 160, CGEN- 15049, CHK 1, CHK2, A2aR, B-7 family ligands or a combination thereof.
  • the checkpoint inhibitor interacts with a ligand of a checkpoint protein selected from CTLA-4, PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD160, CGEN-15049, CHK 1, CHK2, A2aR, B-7 family ligands or a combination thereof.
  • the checkpoint inhibitor is an immunostimulatory agent, a T cell growth factor, an interleukin, an antibody, a vaccine or a combination thereof.
  • the interleukin is IL-7 or IL-15.
  • the interleukin is glycosylated IL-7.
  • the vaccine is a dendritic cell (DC) vaccine.
  • DC dendritic cell
  • Checkpoint inhibitors include any agent that blocks or inhibits in a statistically significant manner, the inhibitory pathways of the immune system.
  • Such inhibitors can include small molecule inhibitors or can include antibodies, or antigen binding fragments thereof, that bind to and block or inhibit immune checkpoint receptors or antibodies that bind to and block or inhibit immune checkpoint receptor ligands.
  • Illustrative checkpoint molecules that can be targeted for blocking or inhibition include, but are not limited to, CTLA-4, PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, GAL9, LAG3, TIM3, VISTA, KIR, 2B4 (belongs to the CD2 family of molecules and is expressed on all NK, gd, and memory CD8 + (ab) T cells), CD160 (also referred to as BY55), CGEN-15049, CHK 1 and CHK2 kinases, A2aR, and various B-7 family ligands.
  • CTLA-4 CTLA-4, PDL1, PDL2, PD1, B7-H3, B7-H4, BTLA, HVEM, GAL9, LAG3, TIM3, VISTA, KIR, 2B4 (belongs to the CD2 family of molecules and is expressed on all NK, gd, and memory CD8 + (ab) T cells
  • CD160 also referred to as B
  • B7 family ligands include, but are not limited to, B7- 1, B7-2, B7-DC, B7-H1, B7-H2, B7-H3, B7-H4, B7-H5, B7-H6 and B7-H7.
  • Checkpoint inhibitors include antibodies, or antigen binding fragments thereof, other binding proteins, biologic therapeutics, or small molecules, that bind to and block or inhibit the activity of one or more of CTLA-4, PDL1, PDL2, PD1, BTLA, HVEM, TIM3, GAL9, LAG3, VISTA, KIR, 2B4, CD 160 and CGEN-15049.
  • Illustrative immune checkpoint inhibitors include, but are not limited to, Tremelimumab (CTLA-4 blocking antibody), anti- 0X40, PD-L1 monoclonal Antibody (Anti-B7-Hl; MEDI4736), MK-3475 (PD-1 blocker), Nivolumab (anti-PDl antibody), CT-011 (anti-PDl antibody), BY55 monoclonal antibody, AMP224 (anti-PDLl antibody), BMS- 936559 (anti-PDLl antibody), MPLDL3280A (anti- PDL1 antibody), MSB0010718C (anti-PDLl antibody), and ipilimumab (anti-CTLA-4 checkpoint inhibitor).
  • Checkpoint protein ligands include, but are not limited to PD-L1, PD- L2, B7-H3, B7-H4, CD28, CD86 and TIM-3.
  • the immune checkpoint inhibitor is selected from a PD-1 antagonist, a PD-L1 antagonist, and a CTLA-4 antagonist.
  • the checkpoint inhibitor is selected from the group consisting of nivolumab (OPDIVO®), ipilimumab (YERVOY®), and pembrolizumab (KEYTRUDA®).
  • the checkpoint inhibitor is selected from nivolumab (anti-PD-1 antibody, OPDIVO®, Bristol- Myers Squibb); pembrolizumab (anti-PD-1 antibody, KEYTRUDA®, Merck); ipilimumab (anti-CTLA-4 antibody, YERVOY®, Bristol-Myers Squibb); durvalumab (anti-PD-Ll antibody, IMFINZI®, AstraZeneca); and atezolizumab (anti-PD-Ll antibody, TECENTRIQ®, Genentech).
  • nivolumab anti-PD-1 antibody, OPDIVO®, Bristol- Myers Squibb
  • pembrolizumab anti-PD-1 antibody, KEYTRUDA®, Merck
  • ipilimumab anti-CTLA-4 antibody, YERVOY®, Bristol-Myers Squibb
  • durvalumab anti-PD-Ll antibody, IMFINZI®,
  • the checkpoint inhibitor is selected from the group consisting of lambrolizumab (MK-3475), nivolumab (BMS-936558), pidilizumab (CT-011), AMP -224, MDX-1105, MED 14736, MPDL3280A, BMS-936559, ipilimumab, lirlumab, IPH2101, pembrolizumab (KEYTRUDA®), and tremelimumab.
  • MK-3475 lambrolizumab
  • BMS-936558 nivolumab
  • CT-011 pidilizumab
  • MDX-1105 MED 14736
  • MPDL3280A MPDL3280A
  • BMS-936559 ipilimumab
  • lirlumab IPH2101, pembrolizumab (KEYTRUDA®)
  • tremelimumab is selected from the group consisting of lambrolizumab (MK
  • an immune checkpoint inhibitor is REGN2810 (Regeneron), an anti-PD-1 antibody tested in patients with basal cell carcinoma (NCT03132636); NSCLC (NCT03088540); cutaneous squamous cell carcinoma (NCT02760498); lymphoma (NCT02651662); and melanoma (NCT03002376); pidilizumab (CureTech), also known as CT-011, an antibody that binds to PD-1, in clinical trials for diffuse large B-cell lymphoma and multiple myeloma; avelumab (BAVENCIO®, Pfizer/Merck KGaA), also known as MSB0010718C), a fully human IgGl anti-PD-Ll antibody, in clinical trials for non-small cell lung cancer, Merkel cell carcinoma, mesothelioma, solid tumors, renal cancer, ovarian cancer, bladder cancer, head and neck cancer, and gastric cancer; or PDR001
  • Tremelimumab (CP-675,206; Astrazeneca) is a fully human monoclonal antibody against CTLA-4 that has been in studied in clinical trials for a number of indications, including: mesothelioma, colorectal cancer, kidney cancer, breast cancer, lung cancer and non-small cell lung cancer, pancreatic ductal adenocarcinoma, pancreatic cancer, germ cell cancer, squamous cell cancer of the head and neck, hepatocellular carcinoma, prostate cancer, endometrial cancer, metastatic cancer in the liver, liver cancer, large B-cell lymphoma, ovarian cancer, cervical cancer, metastatic anaplastic thyroid cancer, urothelial cancer, fallopian tube cancer, multiple myeloma, bladder cancer, soft tissue sarcoma, and melanoma.
  • AGEN-1884 (Agenus) is an anti-CTLA4 antibody that is being studied in Phase 1 clinical trials for advanced solid tumors (NCT02694822).
  • a checkpoint inhibitor is an inhibitor of T-cell immunoglobulin mucin containing protein-3 (TIM-3).
  • TIM-3 inhibitors that may be used in the present invention include TSR-022, LY3321367 and MBG453.
  • TSR-022 (Tesaro) is an anti-TIM-3 antibody which is being studied in solid tumors (NCT02817633).
  • LY3321367 (Eli Lilly) is an anti-TIM-3 antibody which is being studied in solid tumors (NCT03099109).
  • MBG453 Novartis
  • a checkpoint inhibitor is an inhibitor of T cell immunoreceptor with Ig and ITIM domains, or TIGIT, an immune receptor on certain T cells and NK cells.
  • TIGIT inhibitors that may be used in the present invention include BMS-986207 (Bristol- Myers Squibb), an anti-TIGIT monoclonal antibody (NCT02913313); OMP-313M32 (Oncomed); and anti-TIGIT monoclonal antibody (NCT03119428).
  • a checkpoint inhibitor is an inhibitor of Lymphocyte Activation Gene-3 (LAG-3).
  • LAG-3 inhibitors that may be used in the present invention include BMS-986016 and REGN3767 and IMP321.
  • BMS-986016 (Bristol-Myers Squibb), an anti-LAG-3 antibody, is being studied in glioblastoma and gliosarcoma (NCT02658981).
  • REGN3767 (Regeneron), is also an anti-LAG-3 antibody, and is being studied in malignancies (NCT03005782).
  • IMP321 is an LAG-3-Ig fusion protein, being studied in melanoma (NCT02676869); adenocarcinoma (NCT02614833); and metastatic breast cancer (NCT00349934).
  • Checkpoint inhibitors that can be used in the present invention include 0X40 agonists.
  • 0X40 agonists that are being studied in clinical trials include PF-04518600/PF- 8600 (Pfizer), an agonistic anti-OX40 antibody, in metastatic kidney cancer (NCT03092856) and advanced cancers and neoplasms (NCT02554812; NCT05082566); GSK3174998 (Merck), an agonistic anti-OX40 antibody, in Phase 1 cancer trials (NCT02528357); MEDI0562 (Medimmune/AstraZeneca), an agonistic anti-OX40 antibody, in advanced solid tumors (NCT02318394 and NCT02705482); MEDI6469, an agonistic anti-OX40 antibody (Medimmune/AstraZeneca), in patients with colorectal cancer (NCT02559024), breast cancer (NCT01862900), head and neck cancer (NCT02274155
  • Checkpoint inhibitors that can be used in the present invention include CD137 (also called 4-1BB) agonists.
  • CD137 agonists that are being studied in clinical trials include utomilumab (PF-05082566, Pfizer) an agonistic anti-CD137 antibody, in diffuse large B-cell lymphoma (NCT02951156) and in advanced cancers and neoplasms (NCT02554812 and NCT05082566); urelumab (BMS-663513, Bristol-Myers Squibb), an agonistic anti-CD137 antibody, in melanoma and skin cancer (NCT02652455) and glioblastoma and gliosarcoma (NCT02658981); and CTX-471 (Compass Therapeutics), an agonistic anti-CD137 antibody in metastatic or locally advanced malignancies (NCT03881488).
  • Checkpoint inhibitors that can be used in the present invention include CD27 agonists.
  • CD27 agonists that are being studied in clinical trials include varlilumab (CDX- 1127, Celldex Therapeutics) an agonistic anti-CD27 antibody, in squamous cell head and neck cancer, ovarian carcinoma, colorectal cancer, renal cell cancer, and glioblastoma (NCT02335918); lymphomas (NCT01460134); and glioma and astrocytoma (NCT02924038).
  • Checkpoint inhibitors that can be used in the present invention include glucocorticoid- induced tumor necrosis factor receptor (GITR) agonists.
  • GITR agonists that are being studied in clinical trials include TRX518 (Leap Therapeutics), an agonistic anti-GITR antibody, in malignant melanoma and other malignant solid tumors (NCT01239134 and NCT02628574); GWN323 (Novartis), an agonistic anti-GITR antibody, in solid tumors and lymphoma (NCT 02740270); INCAGN01876 (Incyte/Agenus), an agonistic anti-GITR antibody, in advanced cancers (NCT02697591 and NCT03126110); MK-4166 (Merck), an agonistic anti-GITR antibody, in solid tumors (NCT02132754) and MEDI1873 (Medimmune/AstraZeneca), an agonistic hexameric GITR-ligand molecule with
  • Checkpoint inhibitors that can be used in the present invention include inducible T- cell co-stimulator (ICOS, also known as CD278) agonists.
  • ICOS agonists that are being studied in clinical trials include MEDI-570 (Medimmune), an agonistic anti-ICOS antibody, in lymphomas (NCT02520791); GSK3359609 (Merck), an agonistic anti-ICOS antibody, in Phase 1 (NCT02723955); JTX-2011 (Jounce Therapeutics), an agonistic anti-ICOS antibody, in Phase 1 (NCT02904226).
  • Checkpoint inhibitors that can be used in the present invention include killer IgG-like receptor (KIR) inhibitors.
  • KIR inhibitors that are being studied in clinical trials include lirilumab (IPH2102/BMS-986015, Innate Pharma/Bristol-Myers Squibb), an anti -KIR antibody, in leukemias (NCT01687387, NCT02399917, NCT02481297, NCT02599649), multiple myeloma (NCT02252263), and lymphoma (NCT01592370); IPH2101 (1-7F9, Innate Pharma) in myeloma (NCT01222286 and NCT01217203); and IPH4102 (Innate Pharma), an anti-KIR antibody that binds to three domains of the long cytoplasmic tail (KIR3DL2), in lymphoma (NCT02593045).
  • KIR3DL2 killer IgG-like receptor
  • Checkpoint inhibitors that can be used in the present invention include CD47 inhibitors of interaction between CD47 and signal regulatory protein alpha (SIRPa).
  • CD47/SIRPa inhibitors that are being studied in clinical trials include ALX-148 (Alexo Therapeutics), an antagonistic variant of (SIRPa) that binds to CD47 and prevents CD47/SIRPa-mediated signaling, in phase 1 (NCT03013218); TTI-621 (SIRPa-Fc, Trillium Therapeutics), a soluble recombinant fusion protein created by linking the N-terminal CD47- binding domain of SIRPa with the Fc domain of human IgGl, acts by binding human CD47, and preventing it from delivering its “do not eat” signal to macrophages, is in clinical trials in Phase 1 (NCT02890368 and NCT02663518); CC-90002 (Celgene), an anti-CD47 antibody, in leukemias (NCT02641002); and Hu5
  • Checkpoint inhibitors that can be used in the present invention include CD73 inhibitors.
  • CD73 inhibitors that are being studied in clinical trials include MEDI9447 (Medimmune), an anti-CD73 antibody, in solid tumors (NCT02503774); and BMS-986179 (Bristol-Myers Squibb), an anti-CD73 antibody, in solid tumors (NCT02754141).
  • Checkpoint inhibitors that can be used in the present invention include agonists of stimulator of interferon genes protein (STING, also known as transmembrane protein 173, or TMEM173).
  • STING stimulator of interferon genes protein
  • Agonists of STING that are being studied in clinical trials include MK-1454 (Merck), an agonistic synthetic cyclic dinucleotide, in lymphoma (NCT03010176); and ADU-S100 (MIW815, Aduro Biotech/Novartis), an agonistic synthetic cyclic dinucleotide, in Phase 1 (NCT02675439 and NCT03172936).
  • Checkpoint inhibitors that can be used in the present invention include CSF1R inhibitors.
  • CSF1R inhibitors that are being studied in clinical trials include pexidartinib (PLX3397, Plexxikon), a CSF1R small molecule inhibitor, in colorectal cancer, pancreatic cancer, metastatic and advanced cancers (NCT02777710) and melanoma, non-small cell lung cancer, squamous cell head and neck cancer, gastrointestinal stromal tumor (GIST) and ovarian cancer (NCT02452424); and IMC-CS4 (LY3022855, Lilly), an anti-CSF-lR antibody, in pancreatic cancer (NCT03153410), melanoma (NCT03101254), and solid tumors (NCT02718911); and BLZ945 (4-[2((lR,2R)-2-hydroxycyclohexylamino)- benzothiazol-6-yloxyl]-pyridine-2-carboxylic
  • Checkpoint inhibitors that can be used in the present invention include NKG2A receptor inhibitors.
  • NKG2A receptor inhibitors that are being studied in clinical trials include monalizumab (IPH2201, Innate Pharma), an anti-NKG2A antibody, in head and neck neoplasms (NCT02643550) and chronic lymphocytic leukemia (NCT02557516).
  • the immune checkpoint inhibitor is selected from nivolumab, pembrolizumab, ipilimumab, avelumab, durvalumab, atezolizumab, or pidilizumab.
  • CDI 1,1’- carbonyldiimidazole
  • DBU is l,8-diazabicyclo[5.4.0]undec-7-ene
  • DCM is dichloromethane
  • DIAD is diisopropyl azodicarboxylate
  • DIPA is diisopropylamine
  • DIPEA is N,N- diisopropylethylamine
  • DMAP is 4-(dimethylamino)pyridine
  • DMF N,N- dimethylformamide
  • DMSO is dimethyl sulfoxide
  • EA is ethyl acetate
  • EDCI is -Ethyl-3-(3- dimethylaminopropyl)carbodiimide
  • Et 2 0 is diethyl ether
  • EtOH is ethanol
  • Example 2 Synthesis of Synthesis of Salinomycin Monoacyl Hydrazine Derivatives
  • the following compound in Table 3 was prepared according to General Method A of Example 1 using the shown hydrazine.
  • Table 3 Salinomycin Monoacyl Hydrazine Derivatives Prepared by General Method A Example 3.
  • General Method B Synthesis of Salinomycin Glycin Derivatives
  • Step 1 To a stirred solution of Boc-glycine (1.0 mmol) in DMF (10.0 mL) at 0 °C was added N,N-diisopropylethylamine (2.0 mmol) followed by TBTU (1.1 mmol) and the reaction mixture was stirred at 0 °C for 30 min. 2-Amino-l,3,4-Thiadiadiazole (1.0 mmol) was then added in one portion and the resulting reaction mixture was stirred at room temperature overnight. Upon completion (as confirmed by TLC), the reaction mixture was then diluted with cold water to precipitate the product. The solid product was then filtered and washed with cold water (3x) to afford desired amide intermediate that was used directly in the next step.
  • Step 2 To a stirred solution of the amide intermediate (1.0 mmol) in dichloromethane (10.0 mL) at 0 °C, 4N HCl/dioxane (6.0 mL) was added drop wise and the reaction mixture was stirred at room temperature for 4 to 5 h. Upon completion (as confirmed by TLC), the reaction mixture was concentrated in vacuo and the resulting slurry was dissolved in toluene and concentrated in vacuo. The resulting solid was dissolved in a minimum amount of methanol and diluted with diethylether to precipitate the product. The resulting solid product was filtered and dried in vacuo to afford the desired ammonium salt.
  • Salinomycin and its derivatives suppress the phosphorylation of beta-catenin [0293]
  • the interaction of salinomycin and its derivatives of the present invention with beta- catenin and whether they inhibit the phosphorylation of beta catenin was investigated. As shown in FIG.2, salinomycin and its derivatives 1-17 and 1-18 inhibit phosphorylation of beta-catenin at Ser675.
  • Salinomycin and its derivatives suppress the protein expression involved in angiogenesis, invasion, and metastasis
  • the tumor microenvironment is highly heterogeneous and is comprised of numerous tissue types including epithelial cancer cells, stromal cells, immune cells and endothelial cells.
  • Endothelial cells in particular, play a vital role in angiogenesis for the supply of nutrients and oxygen throughout the rapidly dividing tumor. Since salinomycin derivatives were found to inhibit expression of VEGF above, which is a marker of angiogenesis, the ability of salinomycin derivatives to inhibit the tube forming ability of endothelial cells was investigated in a widely employed in vitro model of HUVEC cells. The capability of endothelial cells to divide and migrate in response to angiogenic signals was measured. Specifically, in the in vitro HUVEC model, angiogenic factors such as vascular endothelial growth factor (VEGF) are used to induce and differentiate endothelial cells to form tube-like structures on a supporting matrix.
  • VEGF vascular endothelial growth factor
  • salinomycin derivative 1-17 was shown to inhibit tube formation at non-toxic concentrations and may be working through inhibition of angiogenesis and related processes (FIG. 4).
  • Salinomycin and its derivatives inhibit cell proliferation and induce the apoptosis [0296]
  • the cytotoxic potential of salinomycin and its derivatives in various breast cancer cells was examined in a MTT assay. As shown in Table 4, salinomycin and its derivatives I- 17 and 1-18 inhibit the growth of breast cancer cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention concerne des composés, des compositions de ceux-ci, et des méthodes d'utilisation de ceux-ci.
PCT/US2022/070958 2021-03-05 2022-03-04 Dérivés de la salinomycine et leurs utilisations WO2022187849A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3212520A CA3212520A1 (fr) 2021-03-05 2022-03-04 Derives de la salinomycine et leurs utilisations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163157361P 2021-03-05 2021-03-05
US63/157,361 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022187849A1 true WO2022187849A1 (fr) 2022-09-09

Family

ID=83155360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/070958 WO2022187849A1 (fr) 2021-03-05 2022-03-04 Dérivés de la salinomycine et leurs utilisations

Country Status (2)

Country Link
CA (1) CA3212520A1 (fr)
WO (1) WO2022187849A1 (fr)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANTOSZCZAK ET AL.: "Synthesis and antiproliferative activity of new bioconjugates of Salinomycin with amino acid esters", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 25, 2015, pages 3511 - 3514, XP029249467, DOI: 10.1016/j.bmcl.2015.06.086 *
ANTOSZCZAK ET AL.: "Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 24, 2014, pages 1724 - 1729, XP028835174, DOI: 10.1016/j.bmcl.2014.02.042 *
HUANG ET AL.: "Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 127, 2017, pages 900 - 908, XP029907342, DOI: 10.1016/j.ejmech.2016.10.067 *
SHI ET AL.: "Discovery of a 19F MRI sensitive salinomycin derivative with high cytotoxicity towards cancer cells", CHEM COMMUN (CAMB, vol. G2, no. 29, pages 5136 - 5139, XP055696195, DOI: 10.1039/C6CC01508E *

Also Published As

Publication number Publication date
CA3212520A1 (fr) 2022-09-09

Similar Documents

Publication Publication Date Title
US11760728B2 (en) Tead inhibitors and uses thereof
CN109562106B (zh) Cxcr4抑制剂及其用途
JP6994767B2 (ja) Cxcr4阻害剤およびその使用
WO2022120355A1 (fr) Agents de dégradation de tead et leurs utilisations
WO2022120354A1 (fr) Inhibiteurs de tead et utilisations associées
WO2022120353A1 (fr) Inhibiteurs de tead et leurs utilisations
WO2020051424A1 (fr) Inhibiteurs d'eif4e et leurs utilisations
US20240190822A1 (en) Mek inhibitors and uses thereof
KR20230172548A (ko) Mek 억제제 및 이의 용도
WO2022187849A1 (fr) Dérivés de la salinomycine et leurs utilisations
WO2023173057A1 (fr) Inhibiteurs de mek et leurs utilisations
WO2023173053A1 (fr) Inhibiteurs de mek et leurs utilisations
CA3144650A1 (fr) Inhibiteurs de cxcr4 et leurs utilisations
KR20240119141A (ko) 암의 치료 방법
WO2023211889A1 (fr) Composés polymorphes et leurs utilisations
EA047483B1 (ru) Ингибиторы tead и их применения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22764271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3212520

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22764271

Country of ref document: EP

Kind code of ref document: A1