WO2022186283A1 - Temperature detection device, temperature sensor, temperature detection method, and temperature detection program - Google Patents

Temperature detection device, temperature sensor, temperature detection method, and temperature detection program Download PDF

Info

Publication number
WO2022186283A1
WO2022186283A1 PCT/JP2022/008900 JP2022008900W WO2022186283A1 WO 2022186283 A1 WO2022186283 A1 WO 2022186283A1 JP 2022008900 W JP2022008900 W JP 2022008900W WO 2022186283 A1 WO2022186283 A1 WO 2022186283A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
temperature
emitting substance
semiconductor
temperature detection
Prior art date
Application number
PCT/JP2022/008900
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 佐藤
真斗 出来
智朗 西村
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構 filed Critical 国立研究開発法人量子科学技術研究開発機構
Publication of WO2022186283A1 publication Critical patent/WO2022186283A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials

Definitions

  • the present invention relates to a temperature detection device, a temperature sensor, a temperature detection method, and a temperature detection program that measure temperature using the light of an element that emits light upon receiving excitation energy.
  • the above-described temperature measurement device needs to be equipped with a light source for irradiating the temperature sensor with excitation light, which makes it difficult to reduce the size of the device and increases the manufacturing cost.
  • An object of the present invention is to provide a temperature detection device, a temperature sensor, a temperature detection method, and a temperature detection program that can reduce the size and manufacturing cost of the device in view of the above-described problems.
  • the present invention provides a sensor unit that emits light upon receiving excitation energy and that has a light-emitting substance whose light emission changes with temperature, a light detection unit that detects light from the light-emitting substance, and a sensor based on the detected light.
  • a temperature detection unit for detecting temperature wherein the sensor unit has a structure in which the light-emitting substance is introduced into a semiconductor;
  • a detection device, a temperature sensor, a temperature detection method, and a temperature detection program is a temperature detection program.
  • a temperature detection device it is possible to provide a temperature detection device, a temperature sensor, a temperature detection method, and a temperature detection program that can reduce the size and manufacturing cost of the device.
  • FIG. 2 is a block diagram showing the configuration of a temperature detection device; 4 is a diagram showing the configuration of the temperature sensor of Example 1.
  • FIG. Graph showing the emission spectrum of a certain luminescent material. 4 is a graph showing the relationship between the emission intensity ratio and temperature in a certain luminescent substance. 4 is a flowchart showing temperature detection processing;
  • FIG. 10 is a diagram showing the configuration of a temperature sensor according to the second embodiment;
  • FIG. 10 is a diagram showing the configuration of a temperature sensor according to Example 3;
  • FIG. 10 is a diagram showing the configuration of a temperature sensor of Example 4;
  • FIG. 11 is a diagram showing the configuration of a temperature sensor according to Example 5;
  • FIG. 11 is a block diagram showing the configuration of the temperature detection device of Example 6;
  • Graph showing the emission spectrum of a certain luminescent material is shown in FIG.
  • FIG. 1 is a block diagram showing the configuration of a temperature detection device (temperature measurement device) 1.
  • FIG. FIG. 2 is a diagram showing the configuration of the temperature sensor 2 according to the first embodiment.
  • the temperature detection device 1 has a temperature sensor 2 that emits light, a light receiving section 3 that receives light from the temperature sensor 2, and a light guide path 4.
  • the light guide path 4 is composed of an optical fiber or the like, connects the temperature sensor 2 and the light receiving section 3 and guides the light from the temperature sensor 2 to the light receiving section 3 .
  • the temperature sensor 2 has a voltage application section 21 and a sensor section 22 .
  • the voltage application unit 21 is connected to a power supply such as a commercial power supply or a battery, and applies a predetermined voltage (voltage for temperature detection) to the sensor unit 22 .
  • This predetermined voltage is a voltage at which a current (voltage) necessary for the light-emitting substance 24 to emit light flows (is applied) to the light-emitting substance-added semiconductor 23 .
  • the sensor section 22 includes a luminescent substance-doped semiconductor 23, a luminescent substance 24 doped (introduced) from the surface at a predetermined position in the luminescent substance-doped semiconductor 23, and both ends of the surface of the luminescent substance-doped semiconductor 23. It has a pair of electrodes 25 and 26 provided nearby.
  • the base material of the luminescent substance-added semiconductor 23 is a material (semiconductor material) that does not emit light even when a current flows or does not emit light in a predetermined wavelength band including the emission peak in the emission spectrum of the luminescent substance 24 even if it emits light.
  • Examples of the base material of the light-emitting substance-added semiconductor 23 include gallium nitride, gallium arsenide, aluminum gallium arsenide, indium gallium arsenide, indium phosphide, silicon germanium, silicon, silicon carbide, aluminum nitride, aluminum gallium nitride, zinc oxide, Indium nitride, indium gallium nitride, boron nitride, diamond, and the like can be used.
  • the base material of the light-emitting substance-added semiconductor 23 preferably has a thermal conductivity of 0.25 W/(cm K) (300 K) or more, more preferably 0.5 W/(cm K) (300 K) or more. More preferably, it is 1.8 W/(cm K) (300 K) or more.
  • the thickness of the luminescent material-added semiconductor 23 is preferably as thin as possible within the range where current can flow.
  • the thickness of the light-emitting substance-added semiconductor 23 is 500 nm or less, preferably 50 nm or less, and more preferably 1 nm to 10 nm.
  • the light-emitting substance 24 is composed of an element that emits light using electric current as excitation energy and whose light emission changes depending on temperature. That is, the emission spectrum of the luminescent material 24 changes with temperature.
  • the light-emitting substance 24 is excited (indirectly excited) by the recombination energy of electron-hole pairs and the collision of hot carriers when current flows through the light-emitting substance-added semiconductor 23 and emits light. That is, the light-emitting substance 24 is excited by current injected into the light-emitting substance-doped semiconductor 23 and emits light.
  • the luminescent material 24 is a rare earth element, and is one or more selected from praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, and ytterbium. What has been described for the luminescent material 24 here is the same for the luminescent materials 42, 52, 62, and 72, which will be described later.
  • the sensor unit 22 is configured as a vertical pn junction diode.
  • the light-emitting substance-doped semiconductor 23 is sandwiched between a p-type region (p-type semiconductor) 23a, an n-type region (n-type semiconductor) 23b, and the p-type region 23a and the n-type region 23b, and emits light containing a light-emitting substance 24.
  • a p-type region 23a, a light-emitting substance-containing region 23c, and an n-type region 23b are stacked in this order to form a three-layer structure.
  • the light-emitting substance-containing region 23c can be a depletion layer, but is not limited to this. It may be a containing region 23c.
  • the luminescent substance 24 is introduced into the luminescent substance containing region 23c from one surface where the p-type region 23a, the luminescent substance containing region 23c, and the n-type region 23b can be confirmed in layers. That is, it can be said that the light-emitting substance 24 is introduced between the p-type region 23a and the n-type region 23b in the light-emitting substance-doped semiconductor 23.
  • the light-emitting substance-containing region 23c can be said to be a light-emitting substance-containing semiconductor into which the light-emitting substance 24 is introduced (containing the light-emitting substance 24).
  • an ion implantation method or a vapor phase epitaxy method can be used as a method for producing the luminescent substance-containing semiconductor.
  • an ion implantation method ions of a light-emitting element are uniformly implanted in the vicinity of one surface of the light-emitting substance-added semiconductor 23 (for example, gallium nitride) using an accelerator.
  • the light-emitting substance 24 can be scattered at predetermined intervals inside the vicinity of the surface of the light-emitting substance-doped semiconductor 23 .
  • the light-emitting substance 24 is not activated and does not emit light simply by ion-implanting the semiconductor as the base material. C. to 1650.degree. C. to activate (ionize) the luminescent material 24 and eliminate irradiation defects that cause quenching (quenching) of the luminescent material.
  • C. to 1650.degree. C. to activate (ionize) the luminescent material 24 and eliminate irradiation defects that cause quenching (quenching) of the luminescent material.
  • a technology in which gallium nitride is subjected to high temperature (around 1550 ° C) and high pressure in a nitrogen gas atmosphere is described in Reference 1 (S. Porowski et al., J. Phys: Condens. Matter 14 (2002) 11097-11110).
  • the light-emitting substance 24 is introduced into the light-emitting substance-added semiconductor 23 in an ionized state.
  • the luminescent substance-containing region 23c is the same for luminescent substance-containing regions 41b, 51c, and 61, which will be described later.
  • Each of the pair of electrodes 25 and 26 is electrically connected to the voltage application section 21, and one electrode 25 is provided on the surface of the p-type region 23a (one end face in the stacking direction of the light-emitting substance-added semiconductor 23).
  • the other electrode 26 is provided on the surface of the n-type region 23b (the other end face in the stacking direction of the light-emitting substance-added semiconductor 23). That is, it can be said that the luminescent material 24 is arranged at least partly between the pair of electrodes 25 and 26 arranged on the luminescent material-doped semiconductor 23 .
  • FIG. 3 is an emission spectrum of trivalent praseodymium, which is a graph showing an emission spectrum at 22.5°C and an emission spectrum at 50.7°C.
  • FIG. 4 is a graph showing the relationship between the emission intensity ratio and temperature in trivalent praseodymium.
  • Some of the luminescent substances 24 have two wavelength bands (emission peaks) in which the emission intensity is high in the emission spectrum.
  • trivalent praseodymium and the like have two emission peaks.
  • FIG. 3 shows an emission spectrum at room temperature when praseodymium is ion-implanted into a gallium nitride semiconductor and heat treatment is performed. An emission spectrum was obtained by an imaging spectrometer when irradiated with a laser beam having a resonance excitation wavelength. , the emission spectrum of trivalent praseodymium has a first emission peak (first peak) near 650 nm and a second emission peak (second peak) near 652 nm.
  • the wavelength band of 649 nm or more and less than 651 nm was defined as the first peak
  • the wavelength band of 651 nm or more and less than 653 nm was defined as the second peak.
  • Both the first peak and the second peak have a higher emission intensity when the temperature is low (22.5°C) than when the temperature is high (50.7°C).
  • the first peak and the second peak there is a difference in the amount of change (rate of change) in emission intensity due to temperature change. That is, as shown in FIG. 4, the ratio (emission intensity ratio) between the emission intensity at the first peak (first emission intensity) and the emission intensity at the second peak (second emission intensity) varies depending on the temperature Varies depending on
  • the case where the luminescent substance 24 is praseodymium has been described as an example. It is the same with other rare earth elements that the ratio changes and that the emission intensity ratio decreases as the temperature decreases and the emission intensity ratio increases as the temperature increases.
  • the emission spectrum of neodymium has a first peak near 865 nm and a second peak near 885 nm.
  • the emission spectrum of erbium has a first peak near 525 nm and a second peak near 550 nm.
  • the emission spectrum is obtained in advance by experiment or the like, and by setting the first peak and the second peak, the emission intensity ratio of the two peaks and the temperature It is thought that it is possible to clarify the relationship between
  • the light receiving section 3 has a light detecting section 31 and a control section 32 .
  • the light detection section 31 is for detecting light from the sensor section 22 (light emitted from the light-emitting substance 24), and includes a spectroscopic section 33, a first photodetector 34, and a second photodetector 35. have.
  • the spectroscopic unit 33 splits the light from the sensor unit 22 (light-emitting material 24) into light in a first wavelength band corresponding to the first peak and light in a second wavelength band corresponding to the second peak. It is for spectroscopy.
  • the configuration of the spectroscopic section 33 is not particularly limited, and a beam splitter, a dichroic mirror, or the like may be used, or a combination of an optical element such as a mirror, an etalon filter, and a bandpass filter may be used.
  • a beam splitter, a dichroic mirror, or the like may be used, or a combination of an optical element such as a mirror, an etalon filter, and a bandpass filter may be used.
  • an optical element such as a mirror, an etalon filter, and a bandpass filter
  • the first photodetector 34 and the second photodetector 35 output signals to the control unit 32 according to the intensity of the incident light.
  • the configurations of the first photodetector 34 and the second photodetector 35 are not particularly limited, and photodiodes or the like can be used. Also, the first photodetector 34 and the second photodetector 35 may be composed of single photon detectors capable of detecting single photons.
  • the control unit 32 has a CPU (central processing unit) and a storage unit (memory) that stores various data.
  • This control unit 32 executes at least temperature detection processing. That is, the control unit 32 functions as a temperature detection unit that detects light from the light-emitting material 24 of the sensor unit 22 based on the signal output from the light detection unit 31 and detects (measures) temperature based on the detected light. Function.
  • the control unit 32 may function as a main control unit of the temperature detection device 1. In this case, the control unit 32 transmits a control signal to each part of the temperature detection device 1 such as the voltage application unit 21, It causes the temperature detection device 1 to perform various operations.
  • the temperature detection device 1 configured as described above uses the relationship between the light emission intensity ratio of the two peaks of the light-emitting substance 24 and the temperature to execute temperature detection processing for detecting the temperature at the position where the light-emitting substance 24 is installed. do. In executing the temperature detection process, a temperature detection condition is created in advance based on the relationship between the luminescence intensity ratio of the two peaks of the light-emitting substance 24 to be used and the temperature.
  • FIG. 5 is a flowchart showing temperature detection processing executed by the control unit 32.
  • the voltage application unit 21 is controlled to apply a temperature detection voltage to the sensor unit 22 (electrodes 25 and 26) (step S1).
  • a voltage for temperature detection is applied to the sensor section 22
  • the light-emitting substance 24 emits light
  • the light from the light-emitting substance 24 passes through the light guide 4 and enters the light detection section 31 .
  • the emission spectrum of the light from the light-emitting substance 24 at this time is the emission spectrum of the light-emitting substance 24 at the current temperature.
  • the light incident on the photodetector 31 is incident on the first photodetector 34 and the second photodetector 35 by the spectroscopic unit 33. light in the second wavelength band.
  • the first photodetector 34 outputs a signal corresponding to the first emission intensity, which is the intensity of the light in the first wavelength band. is detected (obtained) (step S2). Further, the second photodetector 35 outputs a signal corresponding to the second emission intensity, which is the intensity of the light in the second wavelength band. (step S3).
  • the emission intensity ratio between the first emission intensity and the second emission intensity is calculated (step S4), and the temperature at the installation position of the light-emitting substance 24 is detected from the emission intensity ratio according to the temperature detection conditions (step S5).
  • the temperature at the installation position of the light-emitting substance 24 is detected by causing the light-emitting substance 24 to emit light without providing a light irradiation unit for irradiating the light-emitting substance 24 with excitation light. be able to. Therefore, the size of the device can be reduced, and the manufacturing cost can be reduced.
  • the present embodiment has the advantage that there are fewer restrictions on the material constituting the sensor section 22 than in the above-described prior art.
  • the temperature is detected according to the emission intensity ratio of the two peaks in the emission spectrum of the luminescent substance used, so the temperature at the installation position of the luminescent substance can be detected simply and accurately.
  • a temperature detection condition indicating the relationship between the luminescence intensity ratio of the two peaks of the light-emitting substance used and the temperature is prepared in advance, and the temperature is detected according to this temperature detection condition.
  • the load on the controller 32 can be reduced, and the controller 32 can be simplified and miniaturized.
  • the ambient temperature of the portion where the sensor section 22 containing the luminescent substance 24 is arranged, or the luminescent substance-added semiconductor of the sensor section 22 is measured.
  • the temperature of an object with which the back surface of 23 is in contact can be measured.
  • the temperature of the object on which the back surface of the luminescent substance-added semiconductor 23 of the sensor section 22 is placed is heat-transferred from the luminescent substance-added semiconductor 23 placed in contact with the luminescent substance 24 . Therefore, the temperature of the object with which the luminescent substance-doped semiconductor 23 is in contact can be measured from the luminescence of the luminescent substance 24 .
  • an ion implantation mask is formed using electron beam drawing, and a predetermined number (for example, 1 ⁇ 10 4 praseodymium) is formed in a predetermined region (for example, 100 nm ⁇ 100 nm). ) is performed, and the region in which the light-emitting substance 24 exists and the current flows in the light-emitting substance-containing region 23c becomes a light-emitting region (light-emitting region). Therefore, it is possible to measure the temperature of the local area where the light-emitting substance 24 exists.
  • the temperature at that one place can be measured. can individually measure the temperature at each position by detecting the light of each light-emitting substance 24 (light-emitting element group).
  • the temperature is measured based on the emission spectrum of the light-emitting substance 24, if the sensor unit 22 is brought into contact with the temperature measurement target, there is no need to bring other objects into contact with the temperature measurement timing. In some cases, the temperature can be measured while preventing a temperature change due to contact with an object other than the sensor section 22 .
  • the base material of the luminescent material-added semiconductor 23 is gallium nitride
  • the luminescent material 24 is praseodymium, particularly trivalent praseodymium. can be done.
  • praseodymium is likely to emit light, so there is an advantage that light can be easily detected by the light receiving section 3 . That is, there is an advantage that the temperature can be easily detected.
  • gallium nitride as the base material of the luminescent substance-added semiconductor 23, it is possible to improve the embedability in electronic devices, particularly semiconductor devices.
  • the sensor section 22 or the temperature sensor 2 can also be configured. In this way, it is possible to locally detect the temperature at an arbitrary position on the electronic device, or to detect the temperature distribution in the electronic device by detecting the temperatures at a plurality of positions on the electronic device. .
  • FIG. 6 is a diagram showing the configuration of the temperature sensor 2 of the second embodiment.
  • the temperature detection device 1 of the second embodiment differs from that of the first embodiment in the configuration of the temperature sensor 2 .
  • the temperature sensor 2 has a sensor section 40 instead of the sensor section 22 .
  • the sensor section 40 is configured as a vertical Schottky barrier diode and has a semiconductor 41, a luminescent material 42, a Schottky electrode 43 and an electrode 44.
  • the semiconductor 41 has a substrate region 41a that functions as a semiconductor substrate in an electronic device or the like, and a luminescent substance containing region (luminescent substance containing semiconductor) 41b that contains a luminescent substance 42.
  • the substrate region 41a and the luminescent substance containing region 41b are separated from each other. It has a two-layer structure in which The luminescent material 42 is introduced into a portion between the Schottky electrode 43 and the electrode 44 in the luminescent material containing region 41b.
  • the Schottky electrode 43 is provided on the surface of the light-emitting substance-containing region 41b and on the surface opposite to the bonding surface with the substrate region 41a (one end face in the stacking direction of the light-emitting substance-added semiconductor 23). It is provided on the surface of the substrate region 41a and on the surface opposite to the bonding surface with the light emitting substance containing region 41b (the other end face in the stacking direction of the light emitting substance added semiconductor 23).
  • FIG. 7 is a diagram showing the configuration of the temperature sensor 2 of the third embodiment.
  • the temperature detection device 1 of Example 3 differs from Example 1 in the configuration of the temperature sensor 2 .
  • the temperature sensor 2 has a sensor section 50 instead of the sensor section 22 .
  • the sensor section 50 is configured as a lateral pn junction diode and has a semiconductor 51, a light emitting material 52, electrodes 53 and 54, and a substrate 55.
  • the semiconductor 51 has a p-type region 51a, an n-type region 51b, and a light emitting substance containing region 51c.
  • the p-type region 51a and the n-type region 51b are arranged so as to be separated from each other, and the light-emitting substance-containing region 51c has at least a portion sandwiched between the p-type region 51a and the n-type region 51b, and contains the light-emitting substance.
  • a light-emitting material 24 is introduced into a portion of the containing region 51c sandwiched between the p-type region 51a and the n-type region 51b.
  • One electrode 53 is provided on the surface of the p-type region 51a, and the other electrode 54 is provided on the surface of the n-type region 51b.
  • the luminescent substance 52 is introduced into a portion between the electrodes 53 and 54 in the luminescent substance containing region 51c.
  • FIG. 8 is a diagram showing the configuration of the temperature sensor 2 of the fourth embodiment.
  • the temperature detection device 1 of Example 4 differs from Example 1 in the configuration of the temperature sensor 2 .
  • the temperature sensor 2 has a sensor section 60 instead of the sensor section 22 .
  • the sensor section 60 is configured as a lateral Schottky barrier diode and has a semiconductor 61 , a light emitting material 62 , a Schottky electrode 63 , an electrode 64 and a substrate 65 .
  • the semiconductor 61 is either a p-type semiconductor or an n-type semiconductor, has a light-emitting substance 62 introduced therein, and functions as a light-emitting substance-containing region.
  • the Schottky electrode 63 and the electrode 64 are arranged so as to be separated from each other.
  • the light-emitting substance 62 is introduced into the portion between the Schottky electrode 63 and the electrode 64 in the semiconductor 61 .
  • FIG. 9 is a diagram showing the configuration of the temperature sensor 2 of the fifth embodiment.
  • the temperature detection device 1 of Example 5 differs from Example 1 in the configuration of the temperature sensor 2 .
  • the temperature sensor 2 has a sensor section 70 instead of the sensor section 22 .
  • the sensor unit 70 is configured as a high mobility field effect transistor (High Electron Mobility Transistor: HEMT), and includes a semiconductor 71, a light emitting material 72, a source electrode 73, a gate electrode 74, a drain electrode 75, and It has a substrate 76 .
  • the semiconductor 71 has a three-layer structure in which an electron supply layer 71a, a two-dimensional electron gas layer 71b, and an electron transit layer (channel layer) 71c are laminated.
  • the luminescent substance 72 exists in the two-dimensional electron gas layer 71b.
  • the source electrode 73, the gate electrode 74, and the drain electrode 75 are arranged so as to be separated from each other. current flows through
  • the luminescent material 72 is introduced into the semiconductor 71 between the source electrode 73 and the gate electrode 74 or between the gate electrode 74 and the drain electrode 75 .
  • FIG. 10 is a block diagram showing the configuration of the temperature detection device 1 of the sixth embodiment.
  • the temperature detection device 1 of the second embodiment differs from that of the first embodiment in the configuration of the light receiving section 3 .
  • the light receiving section 3 has a light detecting section 36 instead of the light detecting section 31 .
  • FIG. 11 is an emission spectrum of neodymium, and is a graph showing an emission spectrum at 10°C and an emission spectrum at 50°C. Some of the light-emitting substances 24 change the wavelength at which the emission peak appears according to the temperature change. Note that FIG. 11 is taken from Reference 2 (B. Del Rosal et al., “In Vivo Luminescence Nanothermometry: from Materials to Applications,” Advanced Optical Materials, 5, 1600508 (2017)).
  • an emission peak appears near 863 nm.
  • the wavelength of the emission peak becomes shorter (shorter wavelength) as the temperature becomes lower, and the wavelength of the emission peak becomes longer (longer wavelength) as the temperature rises. That is, it can be said that there is a relationship between the length of the wavelength at which the emission peak appears and the temperature.
  • the emission spectrum of the light-emitting substance 24 can be detected, and the temperature can be detected according to the length of the wavelength of the emission peak in the emission spectrum.
  • the wavelength at the reference temperature may be set as the reference wavelength, and the temperature may be detected according to the difference from the reference wavelength ( ⁇ shown in FIG. 11).
  • the photodetector 36 only needs to have one photodetector 37 .
  • the present invention is not limited to this embodiment, and can be made into various other embodiments. Also, the specific configurations and the like given in the above-described embodiments are examples, and can be changed as appropriate according to actual products.
  • the present invention provides not only a temperature detection device and a temperature sensor, but also a method, program, and program for detecting light from a light-emitting substance using the temperature sensor and detecting temperature based on the detected light.
  • a storage medium storing
  • This invention can be used in industries that detect temperature using the light of elements that emit light upon receiving excitation energy.

Abstract

The present invention makes it possible to reduce the device size and manufacturing cost. This temperature detection device 1 comprises: a sensor unit 22 having a light-emitting-substance-added semiconductor 23, a pair of electrodes 25, 26 provided on the surface of the light-emitting-substance-added semiconductor 23, and a light-emitting substance 24 disposed at a prescribed position in the light-emitting-substance-added semiconductor 23, the light-emitting substance 24 emitting light due to a current flowing through the light-emitting-substance-added semiconductor 23, the light emission spectrum of the light-emitting substance 24 changing according to the temperature; a voltage application unit 21 for applying a prescribed voltage between the pair of electrodes 25, 26; a light detection unit 31 for detecting light from the light-emitting substance 24; and a control unit 32 functioning as a temperature detection unit for detecting the temperature at the position at which the light-emitting substance 24 is installed, according to the light from the light-emitting substance 24.

Description

温度検出装置、温度センサ、温度検出方法、および温度検出プログラムTemperature detection device, temperature sensor, temperature detection method, and temperature detection program
 この発明は、励起エネルギーを受けて発光する元素の光を利用して温度を測定するような温度検出装置、温度センサ、温度検出方法、および温度検出プログラムに関する。 The present invention relates to a temperature detection device, a temperature sensor, a temperature detection method, and a temperature detection program that measure temperature using the light of an element that emits light upon receiving excitation energy.
 従来、マトリックスとして塩化物を含み、付活剤としてエルビウムイオンまたはツリウムイオンを含む塩化物蛍光体からなる温度センサを用いて、励起光によって温度センサを励起させ、温度センサの励起によって生じた蛍光スペクトルを検出し、検出したスペクトルから温度を演算する温度測定装置が提案されている(特許文献1参照)。 Conventionally, using a temperature sensor composed of a chloride phosphor containing chloride as a matrix and erbium ions or thulium ions as an activator, the temperature sensor is excited by excitation light, and the fluorescence spectrum generated by the excitation of the temperature sensor is There has been proposed a temperature measuring device that detects , and calculates the temperature from the detected spectrum (see Patent Document 1).
 しかしながら、上述の温度測定装置では、温度センサに励起光を照射するための光源等を備える必要があり、装置の小型化が難しく、製造コストの増大を招くという問題がある。 However, the above-described temperature measurement device needs to be equipped with a light source for irradiating the temperature sensor with excitation light, which makes it difficult to reduce the size of the device and increases the manufacturing cost.
特開2004-028629号公報Japanese Patent Application Laid-Open No. 2004-028629
 この発明は、上述した問題に鑑み、装置の小型化および製造コストの低減を図ることができる、温度検出装置、温度センサ、温度検出方法、および温度検出プログラムを提供することを目的とする。 An object of the present invention is to provide a temperature detection device, a temperature sensor, a temperature detection method, and a temperature detection program that can reduce the size and manufacturing cost of the device in view of the above-described problems.
 この発明は、励起エネルギーを受けて発光し、かつ、当該発光が温度によって変化する発光物質を有するセンサ部と、前記発光物質からの光を検出する光検出部と、検出した前記光に基づいて温度を検出する温度検出部とを備え、前記センサ部は、前記発光物質が半導体に導入された構成であり、前記発光物質は、前記半導体に電流が注入されることによって励起されて発光する温度検出装置、温度センサ、温度検出方法、および温度検出プログラムであることを特徴とする。 The present invention provides a sensor unit that emits light upon receiving excitation energy and that has a light-emitting substance whose light emission changes with temperature, a light detection unit that detects light from the light-emitting substance, and a sensor based on the detected light. a temperature detection unit for detecting temperature, wherein the sensor unit has a structure in which the light-emitting substance is introduced into a semiconductor; A detection device, a temperature sensor, a temperature detection method, and a temperature detection program.
 この発明により、装置の小型化および製造コストの低減を図ることができる、温度検出装置、温度センサ、温度検出方法、および温度検出プログラムを提供することができる。 According to the present invention, it is possible to provide a temperature detection device, a temperature sensor, a temperature detection method, and a temperature detection program that can reduce the size and manufacturing cost of the device.
温度検出装置の構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of a temperature detection device; 実施例1の温度センサの構成を示す図。4 is a diagram showing the configuration of the temperature sensor of Example 1. FIG. 或る発光物質の発光スペクトルを示すグラフ。Graph showing the emission spectrum of a certain luminescent material. 或る発光物質における発光強度比と温度の関係を示すグラフ。4 is a graph showing the relationship between the emission intensity ratio and temperature in a certain luminescent substance. 温度検出処理を示すフローチャート。4 is a flowchart showing temperature detection processing; 実施例2の温度センサの構成を示す図。FIG. 10 is a diagram showing the configuration of a temperature sensor according to the second embodiment; 実施例3の温度センサの構成を示す図。FIG. 10 is a diagram showing the configuration of a temperature sensor according to Example 3; 実施例4の温度センサの構成を示す図。FIG. 10 is a diagram showing the configuration of a temperature sensor of Example 4; 実施例5の温度センサの構成を示す図。FIG. 11 is a diagram showing the configuration of a temperature sensor according to Example 5; 実施例6の温度検出装置の構成を示すブロック図。FIG. 11 is a block diagram showing the configuration of the temperature detection device of Example 6; 或る発光物質の発光スペクトルを示すグラフ。Graph showing the emission spectrum of a certain luminescent material.
 以下、本発明の一実施形態を図面と共に説明する。 An embodiment of the present invention will be described below with reference to the drawings.
 図1は、温度検出装置(温度測定装置)1の構成を示すブロック図である。図2は、実施例1の温度センサ2の構成を示す図である。 FIG. 1 is a block diagram showing the configuration of a temperature detection device (temperature measurement device) 1. FIG. FIG. 2 is a diagram showing the configuration of the temperature sensor 2 according to the first embodiment.
 温度検出装置1は、発光する温度センサ2と、温度センサ2からの光を受光する受光部3と、導光路4を有している。導光路4は、光ファイバ等によって構成され、温度センサ2および受光部3を接続して温度センサ2からの光を受光部3に導く。 The temperature detection device 1 has a temperature sensor 2 that emits light, a light receiving section 3 that receives light from the temperature sensor 2, and a light guide path 4. The light guide path 4 is composed of an optical fiber or the like, connects the temperature sensor 2 and the light receiving section 3 and guides the light from the temperature sensor 2 to the light receiving section 3 .
 温度センサ2は、電圧印加部21およびセンサ部22を有する。電圧印加部21は、商用電源または電池などの電源に接続されており、センサ部22に所定の電圧(温度検出用の電圧)を印加する。この所定の電圧は、発光物質24が発光するために必要な電流(電圧)が発光物質添加半導体23に流れる(印加される)程度の電圧である。 The temperature sensor 2 has a voltage application section 21 and a sensor section 22 . The voltage application unit 21 is connected to a power supply such as a commercial power supply or a battery, and applies a predetermined voltage (voltage for temperature detection) to the sensor unit 22 . This predetermined voltage is a voltage at which a current (voltage) necessary for the light-emitting substance 24 to emit light flows (is applied) to the light-emitting substance-added semiconductor 23 .
 図2に示すように、センサ部22は、発光物質添加半導体23、発光物質添加半導体23内の所定位置に表面からドープ(導入)される発光物質24、および発光物質添加半導体23の表面の両端付近に設けられる一対の電極25,26を有する。 As shown in FIG. 2, the sensor section 22 includes a luminescent substance-doped semiconductor 23, a luminescent substance 24 doped (introduced) from the surface at a predetermined position in the luminescent substance-doped semiconductor 23, and both ends of the surface of the luminescent substance-doped semiconductor 23. It has a pair of electrodes 25 and 26 provided nearby.
 発光物質添加半導体23は、電流が流れても発光しないか、または発光したとしても発光物質24の発光スペクトルにおける発光ピークを含む所定の波長帯域では発光しない材料(半導体材料)が母材となる。発光物質添加半導体23の母材としては、窒化ガリウム、ヒ化ガリウム、ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、リン化インジウム、シリコンゲルマニウム、ケイ素、炭化ケイ素、窒化アルミニウム、窒化アルミニウムガリウム、酸化亜鉛、窒化インジウム、窒化インジウムガリウム、窒化ホウ素、ダイヤモンドなどを用いることができる。特に、母材に導入された発光物質24の発光のしやすさの観点から、窒化ガリウム、窒化アルミニウム、または窒化アルミニウムガリウムを発光物質添加半導体23の母材として用いることが好ましい。発光物質添加半導体23の母材は、熱伝導率が0.25W/(cm·K) (300K)以上であることが好ましく、0.5W/(cm·K) (300K)以上であることがより好ましく、1.8W/(cm·K) (300K)以上であることが好適である。 The base material of the luminescent substance-added semiconductor 23 is a material (semiconductor material) that does not emit light even when a current flows or does not emit light in a predetermined wavelength band including the emission peak in the emission spectrum of the luminescent substance 24 even if it emits light. Examples of the base material of the light-emitting substance-added semiconductor 23 include gallium nitride, gallium arsenide, aluminum gallium arsenide, indium gallium arsenide, indium phosphide, silicon germanium, silicon, silicon carbide, aluminum nitride, aluminum gallium nitride, zinc oxide, Indium nitride, indium gallium nitride, boron nitride, diamond, and the like can be used. In particular, it is preferable to use gallium nitride, aluminum nitride, or aluminum gallium nitride as the base material of the luminescent material-added semiconductor 23 from the viewpoint of ease of light emission of the luminescent material 24 introduced into the base material. The base material of the light-emitting substance-added semiconductor 23 preferably has a thermal conductivity of 0.25 W/(cm K) (300 K) or more, more preferably 0.5 W/(cm K) (300 K) or more. More preferably, it is 1.8 W/(cm K) (300 K) or more.
 発光物質添加半導体23の厚み(発光物質24が設けられる表面から裏面までの厚み)は、電流を流すことができる範囲でできるだけ薄いことが好ましい。具体的には、発光物質添加半導体23の厚みは、500nm以下であり、50nm以下であることが好ましく、1nm~10nmであることがより好ましい。これにより、裏面側の熱を表面側の発光物質24へ速やかにかつ十分に伝達でき、裏面側の温度を適切に測定することができる。ここで発光物質添加半導体23について説明したことは、後述する発光物質添加半導体41,51,61,71も同じである。 The thickness of the luminescent material-added semiconductor 23 (thickness from the front surface to the back surface where the luminescent material 24 is provided) is preferably as thin as possible within the range where current can flow. Specifically, the thickness of the light-emitting substance-added semiconductor 23 is 500 nm or less, preferably 50 nm or less, and more preferably 1 nm to 10 nm. As a result, the heat on the back side can be quickly and sufficiently transferred to the light-emitting material 24 on the front side, and the temperature on the back side can be appropriately measured. What has been described here for the light-emitting substance-added semiconductor 23 is the same for light-emitting substance-added semiconductors 41, 51, 61, and 71, which will be described later.
 発光物質24は、電流を励起エネルギーとして発光し、かつ、当該発光が温度によって変化する元素により構成されている。すなわち、発光物質24の発光スペクトルは、温度によって変化する。 The light-emitting substance 24 is composed of an element that emits light using electric current as excitation energy and whose light emission changes depending on temperature. That is, the emission spectrum of the luminescent material 24 changes with temperature.
 本実施例では、発光物質24は、発光物質添加半導体23に電流が流れ電子・正孔対の再結合エネルギーやホットキャリアの衝突によって励起(間接励起)され、発光する。すなわち、発光物質24は、発光物質添加半導体23に電流が注入されることによって励起されて発光する。 In this embodiment, the light-emitting substance 24 is excited (indirectly excited) by the recombination energy of electron-hole pairs and the collision of hot carriers when current flows through the light-emitting substance-added semiconductor 23 and emits light. That is, the light-emitting substance 24 is excited by current injected into the light-emitting substance-doped semiconductor 23 and emits light.
 たとえば、発光物質24は、希土類元素であり、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムから選択される1種以上である。ここで発光物質24について説明したことは、後述する発光物質42,52,62,72も同じである。 For example, the luminescent material 24 is a rare earth element, and is one or more selected from praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, and ytterbium. What has been described for the luminescent material 24 here is the same for the luminescent materials 42, 52, 62, and 72, which will be described later.
 実施例1では、センサ部22は、縦pn接合ダイオードとして構成される。発光物質添加半導体23は、p型領域(p型半導体)23aと、n型領域(n型半導体)23bと、p型領域23aとn型領域23bとに挟まれ、発光物質24を含有する発光物質含有領域23cとを有し、p型領域23a、発光物質含有領域23cおよびn型領域23bが、この順で積層される3層構造となっている。なお、発光物質含有領域23cは、空乏層とすることができるが、これに限らず、p型領域23aの空乏層側の所定領域からn型領域23bの空乏層側の所定領域までを発光物質含有領域23cとしてもよい。 In Example 1, the sensor unit 22 is configured as a vertical pn junction diode. The light-emitting substance-doped semiconductor 23 is sandwiched between a p-type region (p-type semiconductor) 23a, an n-type region (n-type semiconductor) 23b, and the p-type region 23a and the n-type region 23b, and emits light containing a light-emitting substance 24. A p-type region 23a, a light-emitting substance-containing region 23c, and an n-type region 23b are stacked in this order to form a three-layer structure. Note that the light-emitting substance-containing region 23c can be a depletion layer, but is not limited to this. It may be a containing region 23c.
 発光物質含有領域23cには、p型領域23aと発光物質含有領域23cとn型領域23bを層状に確認できる1つの表面から発光物質24が導入されている。すなわち、発光物質24は、発光物質添加半導体23中においてp型領域23aおよびn型領域23bの間に導入されているともいえる。また、発光物質含有領域23cは、発光物質24が導入された(発光物質24を含有する)発光物質含有半導体ということができる。 The luminescent substance 24 is introduced into the luminescent substance containing region 23c from one surface where the p-type region 23a, the luminescent substance containing region 23c, and the n-type region 23b can be confirmed in layers. That is, it can be said that the light-emitting substance 24 is introduced between the p-type region 23a and the n-type region 23b in the light-emitting substance-doped semiconductor 23. FIG. Also, the light-emitting substance-containing region 23c can be said to be a light-emitting substance-containing semiconductor into which the light-emitting substance 24 is introduced (containing the light-emitting substance 24).
 発光物質含有半導体の作成方法(発光物質添加半導体23の発光物質含有領域23cへの発光物質24の導入方法)としては、イオン注入法または気相成長法を用いることができる。イオン注入法の場合、発光物質添加半導体23(例えば窒化ガリウム)の1つの表面近傍内部に均一に、発光元素のイオン注入を加速器を用いて行う。これにより、発光物質添加半導体23の表面近傍内側に発光物質24を所定間隔で点在させることができる。ただし、イオン注入法を用いた場合には、母材となる半導体に発光物質24をイオン注入しただけでは活性化されておらず発光しない状態であるので、発光物質24を含む母材全体を500℃~1650℃で熱処理して、発光物質24を活性化(イオン化)させておくとともに、発光物質のクエンチング(消光)を引き起こす照射欠陥を消滅させる必要がある。なお、このような熱処理による照射欠陥の消滅に関する技術の一例として、窒化ガリウムを窒素ガス雰囲気中で高温(1550℃付近)、高圧にする技術が、参考文献1(S. Porowski et al., J. Phys: Condens. Matter 14 (2002) 11097-11110)に開示されているので参照されたい。すなわち、発光物質24は、イオン化した状態で発光物質添加半導体23に導入されている。ここで発光物質含有領域23cについて説明したことは、後述する発光物質含有領域41b,51c,61も同じである。 As a method for producing the luminescent substance-containing semiconductor (a method for introducing the luminescent substance 24 into the luminescent substance-containing region 23c of the luminescent substance-added semiconductor 23), an ion implantation method or a vapor phase epitaxy method can be used. In the case of the ion implantation method, ions of a light-emitting element are uniformly implanted in the vicinity of one surface of the light-emitting substance-added semiconductor 23 (for example, gallium nitride) using an accelerator. As a result, the light-emitting substance 24 can be scattered at predetermined intervals inside the vicinity of the surface of the light-emitting substance-doped semiconductor 23 . However, when the ion implantation method is used, the light-emitting substance 24 is not activated and does not emit light simply by ion-implanting the semiconductor as the base material. C. to 1650.degree. C. to activate (ionize) the luminescent material 24 and eliminate irradiation defects that cause quenching (quenching) of the luminescent material. In addition, as an example of technology related to the disappearance of irradiation defects by such heat treatment, a technology in which gallium nitride is subjected to high temperature (around 1550 ° C) and high pressure in a nitrogen gas atmosphere is described in Reference 1 (S. Porowski et al., J. Phys: Condens. Matter 14 (2002) 11097-11110). That is, the light-emitting substance 24 is introduced into the light-emitting substance-added semiconductor 23 in an ionized state. What has been described here for the luminescent substance-containing region 23c is the same for luminescent substance-containing regions 41b, 51c, and 61, which will be described later.
 一対の電極25,26のそれぞれは、電圧印加部21に電気的に接続されており、一方の電極25は、p型領域23aの表面(発光物質添加半導体23の積層方向の一方端面)に設けられ、他方の電極26は、n型領域23bの表面(発光物質添加半導体23の積層方向の他方端面)に設けられる。すなわち、発光物質24は、発光物質添加半導体23に配置される一対の電極25,26の間の少なくとも一部に配置されているともいえる。 Each of the pair of electrodes 25 and 26 is electrically connected to the voltage application section 21, and one electrode 25 is provided on the surface of the p-type region 23a (one end face in the stacking direction of the light-emitting substance-added semiconductor 23). The other electrode 26 is provided on the surface of the n-type region 23b (the other end face in the stacking direction of the light-emitting substance-added semiconductor 23). That is, it can be said that the luminescent material 24 is arranged at least partly between the pair of electrodes 25 and 26 arranged on the luminescent material-doped semiconductor 23 .
 電圧印加部21によって一対の電極25,26に電圧(順方向バイアス)が印加されると、発光物質添加半導体23内に電流が流れる(発光物質添加半導体23に電流が注入される)。このとき、発光物質添加半導体23における電子・正孔対の再結合エネルギーやホットキャリアの衝突によって発光物質24が励起され、発光する。 When a voltage (forward bias) is applied to the pair of electrodes 25 and 26 by the voltage application unit 21, current flows in the luminescent material-added semiconductor 23 (current is injected into the luminescent material-added semiconductor 23). At this time, the light-emitting substance 24 is excited by the recombination energy of electron-hole pairs and the collision of hot carriers in the light-emitting substance-doped semiconductor 23 to emit light.
 図3は3価のプラセオジムの発光スペクトルであって、22.5℃での発光スペクトルと、50.7℃での発光スペクトルとを示すグラフである。図4は3価のプラセオジムにおける発光強度比と温度の関係を示すグラフである。 FIG. 3 is an emission spectrum of trivalent praseodymium, which is a graph showing an emission spectrum at 22.5°C and an emission spectrum at 50.7°C. FIG. 4 is a graph showing the relationship between the emission intensity ratio and temperature in trivalent praseodymium.
 発光物質24には、発光スペクトルにおいて発光強度が高くなる波長帯域(発光ピーク)が2つ存在するものがある。たとえば、発光ピークが2つ存在するものとしては、3価のプラセオジムなどがある。図3は窒化ガリウム半導体にプラセオジムをイオン注入し、熱処理を行ったときの室温での発光スペクトルである。共鳴励起波長のレーザー光を照射したときの発光スペクトルをイメージングスペクトロメータで取得した。に示すように、3価のプラセオジムの発光スペクトルでは、650nm付近に第1の発光ピーク(第1のピーク)が存在し、652nm付近に第2の発光ピーク(第2のピーク)が存在する。本実施例では、649nm以上651nm未満の波長帯域(第1の波長帯域)を第1のピークとし、651nm以上653nm未満の波長帯域(第2の波長帯域)を第2のピークとした。 Some of the luminescent substances 24 have two wavelength bands (emission peaks) in which the emission intensity is high in the emission spectrum. For example, trivalent praseodymium and the like have two emission peaks. FIG. 3 shows an emission spectrum at room temperature when praseodymium is ion-implanted into a gallium nitride semiconductor and heat treatment is performed. An emission spectrum was obtained by an imaging spectrometer when irradiated with a laser beam having a resonance excitation wavelength. , the emission spectrum of trivalent praseodymium has a first emission peak (first peak) near 650 nm and a second emission peak (second peak) near 652 nm. In this example, the wavelength band of 649 nm or more and less than 651 nm (first wavelength band) was defined as the first peak, and the wavelength band of 651 nm or more and less than 653 nm (second wavelength band) was defined as the second peak.
 第1のピークおよび第2のピークのいずれも、温度が低い(22.5℃)場合の方が、温度が高い(50.7℃)場合よりも発光強度が高くなる。ただし、第1のピークと第2のピークとでは、温度変化による発光強度の変化量(変化率)に差がある。すなわち、図4に示すように、第1のピークにおける発光強度(第1の発光強度)と、第2のピークにおける発光強度(第2の発光強度)との比(発光強度比)は、温度に応じて変化する。 Both the first peak and the second peak have a higher emission intensity when the temperature is low (22.5°C) than when the temperature is high (50.7°C). However, between the first peak and the second peak, there is a difference in the amount of change (rate of change) in emission intensity due to temperature change. That is, as shown in FIG. 4, the ratio (emission intensity ratio) between the emission intensity at the first peak (first emission intensity) and the emission intensity at the second peak (second emission intensity) varies depending on the temperature Varies depending on
 プラセオジムを例に挙げると、図4に示すように、低温になるにつれて発光強度比が小さくなり、高温になるにつれて発光強度比が大きくなる。本実施例では、発光物質24がプラセオジムである場合を例に挙げて説明したが、発光物質の発光スペクトルが温度によって変化すること、より具体的には、温度に応じて2つのピークの発光強度比が変化すること、および、低温になるにつれて発光強度比が小さくなり、高温になるにつれて発光強度比が大きくなることは、他の希土類元素においても同じである。 Taking praseodymium as an example, as shown in FIG. 4, the lower the temperature, the lower the emission intensity ratio, and the higher the temperature, the higher the emission intensity ratio. In the present embodiment, the case where the luminescent substance 24 is praseodymium has been described as an example. It is the same with other rare earth elements that the ratio changes and that the emission intensity ratio decreases as the temperature decreases and the emission intensity ratio increases as the temperature increases.
 たとえば、図示は省略するが、ネオジムの発光スペクトルでは、865nm付近に第1のピークが存在し、885nm付近に第2のピークが存在する。また、エルビウムの発光スペクトルでは、525nm付近に第1のピークが存在し、550nm付近に第2のピークが存在する。さらに、ネオジムとイッテルビウムを共添加した場合には、950nm付近に第1のピークが存在し、1050nm付近に第2のピークが存在する。なお、ここで例示しない他の希土類元素についても、実験等により予め発光スペクトルを取得しておき、第1のピークと第2のピークを設定することによって、2つのピークの発光強度比と温度との関係を明らかにすることができると考えられる。 For example, although illustration is omitted, the emission spectrum of neodymium has a first peak near 865 nm and a second peak near 885 nm. In addition, the emission spectrum of erbium has a first peak near 525 nm and a second peak near 550 nm. Furthermore, when neodymium and ytterbium are co-doped, there is a first peak near 950 nm and a second peak near 1050 nm. In addition, for other rare earth elements not exemplified here, the emission spectrum is obtained in advance by experiment or the like, and by setting the first peak and the second peak, the emission intensity ratio of the two peaks and the temperature It is thought that it is possible to clarify the relationship between
 図1に戻って、受光部3は、光検出部31および制御部32を有する。光検出部31は、センサ部22からの光(発光物質24から発せられた光)を検出するためのものであり、分光部33、第1光検出器34、および第2光検出器35を有する。分光部33は、センサ部22(発光物質24)からの光を、第1のピークに相当する第1の波長帯域の光と、第2のピークに相当する第2の波長帯域の光とに分光するためのものである。分光部33の構成は特に限定されず、ビームスプリッタまたはダイクロイックミラー等を用いてもよいし、ミラー等の光学素子とエタロンフィルタ、バンドパスフィルタとの組み合わせによって構成してもよい。分光部33によって分光された光のうち、第1の波長帯域の光は第1光検出器34に入射され、第2の波長帯域の光は第2光検出器35に入射される。 Returning to FIG. 1 , the light receiving section 3 has a light detecting section 31 and a control section 32 . The light detection section 31 is for detecting light from the sensor section 22 (light emitted from the light-emitting substance 24), and includes a spectroscopic section 33, a first photodetector 34, and a second photodetector 35. have. The spectroscopic unit 33 splits the light from the sensor unit 22 (light-emitting material 24) into light in a first wavelength band corresponding to the first peak and light in a second wavelength band corresponding to the second peak. It is for spectroscopy. The configuration of the spectroscopic section 33 is not particularly limited, and a beam splitter, a dichroic mirror, or the like may be used, or a combination of an optical element such as a mirror, an etalon filter, and a bandpass filter may be used. Of the light split by the spectroscopic section 33 , light in the first wavelength band enters the first photodetector 34 , and light in the second wavelength band enters the second photodetector 35 .
 第1光検出器34および第2光検出器35は、入射された光の強度に応じた信号を制御部32に出力する。第1光検出器34および第2光検出器35の構成は特に限定されず、フォトダイオード等を用いることができる。また、第1光検出器34および第2光検出器35を単一光子の検出が可能な単一光子検出器で構成してもよい。 The first photodetector 34 and the second photodetector 35 output signals to the control unit 32 according to the intensity of the incident light. The configurations of the first photodetector 34 and the second photodetector 35 are not particularly limited, and photodiodes or the like can be used. Also, the first photodetector 34 and the second photodetector 35 may be composed of single photon detectors capable of detecting single photons.
 制御部32は、CPU(中央演算処理装置)と各種データを記憶する記憶部(メモリ)とを有している。この制御部32は、少なくとも温度検出処理を実行する。すなわち、制御部32は、光検出部31から出力される信号に基づいてセンサ部22の発光物質24からの光を検出し、検出した光に基づいて温度を検出(測定)する温度検出部として機能する。なお、制御部32は、温度検出装置1の主制御部として機能してもよく、この場合、制御部32は、電圧印加部21等の温度検出装置1の各部位に制御信号を送信し、温度検出装置1に種々の動作を実行させる。 The control unit 32 has a CPU (central processing unit) and a storage unit (memory) that stores various data. This control unit 32 executes at least temperature detection processing. That is, the control unit 32 functions as a temperature detection unit that detects light from the light-emitting material 24 of the sensor unit 22 based on the signal output from the light detection unit 31 and detects (measures) temperature based on the detected light. Function. Note that the control unit 32 may function as a main control unit of the temperature detection device 1. In this case, the control unit 32 transmits a control signal to each part of the temperature detection device 1 such as the voltage application unit 21, It causes the temperature detection device 1 to perform various operations.
 以上のように構成された温度検出装置1は、発光物質24の2つのピークの発光強度比と温度との関係を利用して、発光物質24の設置位置の温度を検出する温度検出処理を実行する。温度検出処理の実行にあたり、使用する発光物質24の2つのピークの発光強度比と温度との関係に基づいた温度の検出条件が予め作成されており、この温度の検出条件のデータが制御部32の記憶部に記憶されている。たとえば、さまざまな温度における2つのピークの発光強度比を実験等によって取得しておき、実験結果に基づいた発光強度比と温度の関係を示す近似式または発光強度比を温度に変換するためのテーブルデータなどを温度の検出条件として作成して制御部32の記憶部に記憶しておく。 The temperature detection device 1 configured as described above uses the relationship between the light emission intensity ratio of the two peaks of the light-emitting substance 24 and the temperature to execute temperature detection processing for detecting the temperature at the position where the light-emitting substance 24 is installed. do. In executing the temperature detection process, a temperature detection condition is created in advance based on the relationship between the luminescence intensity ratio of the two peaks of the light-emitting substance 24 to be used and the temperature. is stored in the storage unit of For example, the luminous intensity ratio of two peaks at various temperatures is obtained by experiment or the like, and an approximation formula showing the relationship between the luminous intensity ratio and temperature based on the experimental results, or a table for converting the luminous intensity ratio to temperature Data and the like are created as temperature detection conditions and stored in the storage section of the control section 32 .
 図5は、制御部32で実行される温度検出処理を示すフローチャートである。まず、電圧印加部21を制御して、センサ部22(電極25,26)に温度検出用の電圧を印加する(ステップS1)。センサ部22に温度検出用の電圧が印加されることによって、発光物質24が発光し、発光物質24の光が導光路4を通って光検出部31に入射される。このときの発光物質24からの光の発光スペクトルは、発光物質24の現在温度での発光スペクトルとなる。本実施例では、光検出部31に入射された光は、分光部33によって、第1光検出器34に入射される第1の波長帯域の光と、第2光検出器35に入射される第2の波長帯域の光とに分光される。 FIG. 5 is a flowchart showing temperature detection processing executed by the control unit 32. FIG. First, the voltage application unit 21 is controlled to apply a temperature detection voltage to the sensor unit 22 (electrodes 25 and 26) (step S1). When a voltage for temperature detection is applied to the sensor section 22 , the light-emitting substance 24 emits light, and the light from the light-emitting substance 24 passes through the light guide 4 and enters the light detection section 31 . The emission spectrum of the light from the light-emitting substance 24 at this time is the emission spectrum of the light-emitting substance 24 at the current temperature. In this embodiment, the light incident on the photodetector 31 is incident on the first photodetector 34 and the second photodetector 35 by the spectroscopic unit 33. light in the second wavelength band.
 そして、第1光検出器34からは、第1の波長帯域の光の強度である第1の発光強度に応じた信号が出力され、制御部32は、この信号に応じて第1の発光強度を検出(取得)する(ステップS2)。また、第2光検出器35からは、第2の波長帯域の光の強度である第2の発光強度に応じた信号が出力され、制御部32は、この信号に応じて第2の発光強度を取得する(ステップS3)。 Then, the first photodetector 34 outputs a signal corresponding to the first emission intensity, which is the intensity of the light in the first wavelength band. is detected (obtained) (step S2). Further, the second photodetector 35 outputs a signal corresponding to the second emission intensity, which is the intensity of the light in the second wavelength band. (step S3).
 続いて、第1の発光強度と第2の発光強度との発光強度比を算出し(ステップS4)、温度の検出条件に従って、発光強度比から発光物質24の設置位置の温度を検出する(ステップS5)。 Subsequently, the emission intensity ratio between the first emission intensity and the second emission intensity is calculated (step S4), and the temperature at the installation position of the light-emitting substance 24 is detected from the emission intensity ratio according to the temperature detection conditions (step S5).
 このようにして、本実施例では、少なくとも、発光物質24に励起光を照射するための光照射部を設けなくても、発光物質24を発光させて発光物質24の設置位置の温度を検出することができる。したがって、装置の小型化を図ることができるし、さらに、製造コストの低減を図ることもできる。 In this manner, in the present embodiment, the temperature at the installation position of the light-emitting substance 24 is detected by causing the light-emitting substance 24 to emit light without providing a light irradiation unit for irradiating the light-emitting substance 24 with excitation light. be able to. Therefore, the size of the device can be reduced, and the manufacturing cost can be reduced.
 また、従来技術として、炭化ケイ素中のシリコン空孔を磁気センサ等の量子センサとして用いる技術がある。このような従来技術では、適用できる材料が炭化ケイ素のみであり、他の材料には適用できなかった。これに対し、本実施例では、上記の従来技術に比べ、センサ部22を構成する材料的な制限が少ないという利点がある。 Also, as a conventional technology, there is a technology that uses silicon vacancies in silicon carbide as quantum sensors such as magnetic sensors. In such prior art, the applicable material was only silicon carbide, and other materials could not be applied. On the other hand, the present embodiment has the advantage that there are fewer restrictions on the material constituting the sensor section 22 than in the above-described prior art.
 また、本実施例では、使用する発光物質の発光スペクトルにおける2つのピークの発光強度比に応じて温度を検出するので、簡便かつ正確に発光物質の設置位置の温度を検出することができる。 In addition, in this embodiment, the temperature is detected according to the emission intensity ratio of the two peaks in the emission spectrum of the luminescent substance used, so the temperature at the installation position of the luminescent substance can be detected simply and accurately.
 さらに、本実施例では、使用する発光物質の2つのピークの発光強度比と温度との関係を示す温度の検出条件を予め作成しておき、この温度の検出条件に従って温度を検出するので、温度の検出方法を単純化して制御部32の負荷を低減し、ひいては制御部32の単純化および小型化を図ることができる。 Furthermore, in this embodiment, a temperature detection condition indicating the relationship between the luminescence intensity ratio of the two peaks of the light-emitting substance used and the temperature is prepared in advance, and the temperature is detected according to this temperature detection condition. can be simplified, the load on the controller 32 can be reduced, and the controller 32 can be simplified and miniaturized.
 また、発光物質24の現在温度での発光スペクトルによる温度測定を行うため、発光物質24を含むセンサ部22が配置されている部位の周辺温度を測定する、あるいは、センサ部22の発光物質添加半導体23の裏面が当接している対象物の温度を測定するといったことができる。たとえば、センサ部22の発光物質添加半導体23の裏面が設置された対象物の温度は、当接して設置されている発光物質添加半導体23から発光物質24へと熱伝達する。このため、発光物質添加半導体23が当接している対象物の温度を発光物質24の発光から測定することができる。 In addition, in order to perform temperature measurement based on the emission spectrum of the luminescent substance 24 at the current temperature, the ambient temperature of the portion where the sensor section 22 containing the luminescent substance 24 is arranged, or the luminescent substance-added semiconductor of the sensor section 22 is measured. For example, the temperature of an object with which the back surface of 23 is in contact can be measured. For example, the temperature of the object on which the back surface of the luminescent substance-added semiconductor 23 of the sensor section 22 is placed is heat-transferred from the luminescent substance-added semiconductor 23 placed in contact with the luminescent substance 24 . Therefore, the temperature of the object with which the luminescent substance-doped semiconductor 23 is in contact can be measured from the luminescence of the luminescent substance 24 .
 また、発光物質24の発光から温度を測定する構成であるため、電子ビーム描画を使ってイオン注入マスクを形成し、所定領域(例えば100nm×100nm)に所定個数(例えば1×10個のプラセオジム)の発光元素のイオン注入を行い、発光物質含有領域23cのうち、発光物質24が存在し、かつ、電流が流れる領域が、発光する領域(発光領域)となる。このため、発光物質24の存在する局所部位の温度測定を行うことができる。したがって、発光物質添加半導体23の1か所に発光物質24を設けた場合は、その1か所における温度を測定することができ、発光物質添加半導体23の複数個所に発光物質24を設けた場合は、そのそれぞれの発光物質24(発光元素群)の光を検知することでそれぞれの位置における温度を個別に測定することができる。 In addition, since the temperature is measured from the light emission of the light-emitting substance 24, an ion implantation mask is formed using electron beam drawing, and a predetermined number (for example, 1×10 4 praseodymium) is formed in a predetermined region (for example, 100 nm×100 nm). ) is performed, and the region in which the light-emitting substance 24 exists and the current flows in the light-emitting substance-containing region 23c becomes a light-emitting region (light-emitting region). Therefore, it is possible to measure the temperature of the local area where the light-emitting substance 24 exists. Therefore, when the light-emitting substance 24 is provided at one place on the light-emitting substance-added semiconductor 23, the temperature at that one place can be measured. can individually measure the temperature at each position by detecting the light of each light-emitting substance 24 (light-emitting element group).
 さらに、発光物質24の発光スペクトルに基づいて温度測定を行うため、温度測定対象にセンサ部22を当接させておけば、温度測定するタイミングで他のものを接触させる必要がないため、温度測定時においてセンサ部22以外の物体の接触による温度変化を防止して温度測定することができる。 Furthermore, since the temperature is measured based on the emission spectrum of the light-emitting substance 24, if the sensor unit 22 is brought into contact with the temperature measurement target, there is no need to bring other objects into contact with the temperature measurement timing. In some cases, the temperature can be measured while preventing a temperature change due to contact with an object other than the sensor section 22 .
 なお、発光物質添加半導体23の種類と発光物質24の種類との組み合わせについて、好ましくは、発光物質添加半導体23の母材を窒化ガリウムとし、発光物質24をプラセオジム、特に3価のプラセオジムとすることができる。この組み合わせであれば、プラセオジムが発光しやすいので、受光部3で光を検出しやすいという利点がある。すなわち、温度を検出しやすいという利点がある。また、発光物質添加半導体23の母材を窒化ガリウムとすることによって、電子デバイス、特に半導体デバイスへの組み込み性が高くなるし、さらに、窒化ガリウムを含む電子デバイス上に発光物質24を導入してセンサ部22または温度センサ2を構成することもできるようになる。このようにすれば、電子デバイス上の任意の位置の温度を局所的に検出したり、電子デバイス上の複数の位置の温度を検出し、当該電子デバイスにおける温度分布を検出したりすることもできる。 Regarding the combination of the type of the luminescent material-added semiconductor 23 and the type of the luminescent material 24, preferably, the base material of the luminescent material-added semiconductor 23 is gallium nitride, and the luminescent material 24 is praseodymium, particularly trivalent praseodymium. can be done. With this combination, praseodymium is likely to emit light, so there is an advantage that light can be easily detected by the light receiving section 3 . That is, there is an advantage that the temperature can be easily detected. In addition, by using gallium nitride as the base material of the luminescent substance-added semiconductor 23, it is possible to improve the embedability in electronic devices, particularly semiconductor devices. The sensor section 22 or the temperature sensor 2 can also be configured. In this way, it is possible to locally detect the temperature at an arbitrary position on the electronic device, or to detect the temperature distribution in the electronic device by detecting the temperatures at a plurality of positions on the electronic device. .
 図6は、実施例2の温度センサ2の構成を示す図である。実施例2の温度検出装置1は、温度センサ2の構成が実施例1と異なる。実施例2では、温度センサ2は、センサ部22に代えてセンサ部40を有する。 FIG. 6 is a diagram showing the configuration of the temperature sensor 2 of the second embodiment. The temperature detection device 1 of the second embodiment differs from that of the first embodiment in the configuration of the temperature sensor 2 . In Example 2, the temperature sensor 2 has a sensor section 40 instead of the sensor section 22 .
 図6に示すように、センサ部40は、縦ショットキーバリアダイオードとして構成され、半導体41、発光物質42、ショットキー電極43、電極44を有する。半導体41は、電子デバイス等における半導体基板として機能する基板領域41aと、発光物質42を含有する発光物質含有領域(発光物質含有半導体)41bとを有し、基板領域41aと発光物質含有領域41bとが積層される2層構造となっている。なお、発光物質42は、発光物質含有領域41b内における、ショットキー電極43と電極44の間の部分に導入されている。 As shown in FIG. 6, the sensor section 40 is configured as a vertical Schottky barrier diode and has a semiconductor 41, a luminescent material 42, a Schottky electrode 43 and an electrode 44. The semiconductor 41 has a substrate region 41a that functions as a semiconductor substrate in an electronic device or the like, and a luminescent substance containing region (luminescent substance containing semiconductor) 41b that contains a luminescent substance 42. The substrate region 41a and the luminescent substance containing region 41b are separated from each other. It has a two-layer structure in which The luminescent material 42 is introduced into a portion between the Schottky electrode 43 and the electrode 44 in the luminescent material containing region 41b.
 ショットキー電極43は、発光物質含有領域41bの表面であって、基板領域41aとの接合面の反対側の面(発光物質添加半導体23の積層方向の一方端面)に設けられ、電極44は、基板領域41aの表面であって、発光物質含有領域41bとの接合面の反対側の面(発光物質添加半導体23の積層方向の他方端面)に設けられる。 The Schottky electrode 43 is provided on the surface of the light-emitting substance-containing region 41b and on the surface opposite to the bonding surface with the substrate region 41a (one end face in the stacking direction of the light-emitting substance-added semiconductor 23). It is provided on the surface of the substrate region 41a and on the surface opposite to the bonding surface with the light emitting substance containing region 41b (the other end face in the stacking direction of the light emitting substance added semiconductor 23).
 温度検出処理の内容、その他の構成および動作については、実施例1と同一であるため、同一要素に同一符号を付してその詳細な説明を省略する。この実施例2においても、実施例1と同一の作用効果を奏することができる。 Since the content of the temperature detection process and other configurations and operations are the same as those of the first embodiment, the same elements are denoted by the same reference numerals, and detailed description thereof will be omitted. Also in the second embodiment, the same effects as in the first embodiment can be obtained.
 図7は、実施例3の温度センサ2の構成を示す図である。実施例3の温度検出装置1は、温度センサ2の構成が実施例1と異なる。実施例3では、温度センサ2は、センサ部22に代えてセンサ部50を有する。 FIG. 7 is a diagram showing the configuration of the temperature sensor 2 of the third embodiment. The temperature detection device 1 of Example 3 differs from Example 1 in the configuration of the temperature sensor 2 . In Example 3, the temperature sensor 2 has a sensor section 50 instead of the sensor section 22 .
 図7に示すように、センサ部50は、横pn接合ダイオードとして構成され、半導体51、発光物質52、電極53,54、および基板55を有する。半導体51は、p型領域51aと、n型領域51bと、発光物質含有領域51cとを有する。p型領域51aと、n型領域51bとは互いに離間するように配置されており、発光物質含有領域51cは、少なくともp型領域51aとn型領域51bとに挟まれる部分を有し、発光物質含有領域51cにおけるp型領域51aとn型領域51bとに挟まれる部分に、発光物質24が導入されている。一方の電極53は、p型領域51aの表面に設けられ、他方の電極54は、n型領域51bの表面に設けられる。なお、発光物質52は、発光物質含有領域51c内における、電極53,54の間の部分に導入されている。 As shown in FIG. 7, the sensor section 50 is configured as a lateral pn junction diode and has a semiconductor 51, a light emitting material 52, electrodes 53 and 54, and a substrate 55. The semiconductor 51 has a p-type region 51a, an n-type region 51b, and a light emitting substance containing region 51c. The p-type region 51a and the n-type region 51b are arranged so as to be separated from each other, and the light-emitting substance-containing region 51c has at least a portion sandwiched between the p-type region 51a and the n-type region 51b, and contains the light-emitting substance. A light-emitting material 24 is introduced into a portion of the containing region 51c sandwiched between the p-type region 51a and the n-type region 51b. One electrode 53 is provided on the surface of the p-type region 51a, and the other electrode 54 is provided on the surface of the n-type region 51b. The luminescent substance 52 is introduced into a portion between the electrodes 53 and 54 in the luminescent substance containing region 51c.
 温度検出処理の内容、その他の構成および動作については、実施例1と同一であるため、同一要素に同一符号を付してその詳細な説明を省略する。この実施例3においても、実施例1と同一の作用効果を奏することができる。 Since the content of the temperature detection process and other configurations and operations are the same as those of the first embodiment, the same elements are denoted by the same reference numerals, and detailed description thereof will be omitted. Also in the third embodiment, the same effects as in the first embodiment can be obtained.
 図8は、実施例4の温度センサ2の構成を示す図である。実施例4の温度検出装置1は、温度センサ2の構成が実施例1と異なる。実施例4では、温度センサ2は、センサ部22に代えてセンサ部60を有する。 FIG. 8 is a diagram showing the configuration of the temperature sensor 2 of the fourth embodiment. The temperature detection device 1 of Example 4 differs from Example 1 in the configuration of the temperature sensor 2 . In Example 4, the temperature sensor 2 has a sensor section 60 instead of the sensor section 22 .
 図8に示すように、センサ部60は、横ショットキーバリアダイオードとして構成され、半導体61、発光物質62、ショットキー電極63、電極64、および基板65を有する。半導体61は、p型半導体またはn型半導体のいずれか一方であり、発光物質62が導入されており、発光物質含有領域として機能する。 As shown in FIG. 8, the sensor section 60 is configured as a lateral Schottky barrier diode and has a semiconductor 61 , a light emitting material 62 , a Schottky electrode 63 , an electrode 64 and a substrate 65 . The semiconductor 61 is either a p-type semiconductor or an n-type semiconductor, has a light-emitting substance 62 introduced therein, and functions as a light-emitting substance-containing region.
 ショットキー電極63と電極64とは、互いに離間するように配置されている。なお、発光物質62は、半導体61内における、ショットキー電極63と電極64との間の部分に導入されている。 The Schottky electrode 63 and the electrode 64 are arranged so as to be separated from each other. The light-emitting substance 62 is introduced into the portion between the Schottky electrode 63 and the electrode 64 in the semiconductor 61 .
 温度検出処理の内容、その他の構成および動作については、実施例1と同一であるため、同一要素に同一符号を付してその詳細な説明を省略する。この実施例4においても、実施例1と同一の作用効果を奏することができる。 Since the content of the temperature detection process and other configurations and operations are the same as those of the first embodiment, the same elements are denoted by the same reference numerals, and detailed description thereof will be omitted. Also in the fourth embodiment, the same effects as in the first embodiment can be obtained.
 図9は、実施例5の温度センサ2の構成を示す図である。実施例5の温度検出装置1は、温度センサ2の構成が実施例1と異なる。実施例5では、温度センサ2は、センサ部22に代えてセンサ部70を有する。 FIG. 9 is a diagram showing the configuration of the temperature sensor 2 of the fifth embodiment. The temperature detection device 1 of Example 5 differs from Example 1 in the configuration of the temperature sensor 2 . In Example 5, the temperature sensor 2 has a sensor section 70 instead of the sensor section 22 .
 図9に示すように、センサ部70は、高移動度電界効果トランジスタ(High Electron Mobility Transistor:HEMT)として構成され、半導体71、発光物質72、ソース電極73、ゲート電極74、ドレイン電極75、および基板76を有する。半導体71は、電子供給層71aと、2次元電子ガス層71bと、電子走行層(チャネル層)71cとが積層される3層構造となっている。センサ部70においては、発光物質72は、2次元電子ガス層71bに存在している。 As shown in FIG. 9, the sensor unit 70 is configured as a high mobility field effect transistor (High Electron Mobility Transistor: HEMT), and includes a semiconductor 71, a light emitting material 72, a source electrode 73, a gate electrode 74, a drain electrode 75, and It has a substrate 76 . The semiconductor 71 has a three-layer structure in which an electron supply layer 71a, a two-dimensional electron gas layer 71b, and an electron transit layer (channel layer) 71c are laminated. In the sensor section 70, the luminescent substance 72 exists in the two-dimensional electron gas layer 71b.
 ソース電極73、ゲート電極74、ドレイン電極75のそれぞれは、互いに離間するように配置されており、ソース電極73、ゲート電極74、ドレイン電極75に電圧が印加されると、2次元電子ガス層71bに電流が流れる。 The source electrode 73, the gate electrode 74, and the drain electrode 75 are arranged so as to be separated from each other. current flows through
 なお、発光物質72は、半導体71内における、ソース電極73とゲート電極74の間の部分、またはゲート電極74とドレイン電極75の間の部分に導入されている。 The luminescent material 72 is introduced into the semiconductor 71 between the source electrode 73 and the gate electrode 74 or between the gate electrode 74 and the drain electrode 75 .
 温度検出処理の内容、その他の構成および動作については、実施例1と同一であるため、同一要素に同一符号を付してその詳細な説明を省略する。この実施例5においても、実施例1と同一の作用効果を奏することができる。 Since the content of the temperature detection process and other configurations and operations are the same as those of the first embodiment, the same elements are denoted by the same reference numerals, and detailed description thereof will be omitted. Also in this fifth embodiment, the same effect as in the first embodiment can be obtained.
 図10は、実施例6の温度検出装置1の構成を示すブロック図である。実施例2の温度検出装置1は、受光部3の構成が実施例1と異なる。図10に示すように、実施例6では、受光部3は、光検出部31に代えて光検出部36を有する。 FIG. 10 is a block diagram showing the configuration of the temperature detection device 1 of the sixth embodiment. The temperature detection device 1 of the second embodiment differs from that of the first embodiment in the configuration of the light receiving section 3 . As shown in FIG. 10 , in Example 6, the light receiving section 3 has a light detecting section 36 instead of the light detecting section 31 .
 図11はネオジムの発光スペクトルであって、10℃での発光スペクトルと、50℃での発光スペクトルとを示すグラフである。発光物質24には、温度変化に応じて発光ピークが表れる波長が変化するものがある。なお、図11は、参考文献2(B. del Rosal et al., “In Vivo Luminescence Nanothermometry: from Materials to Applications,” Advanced Optical Materials, 5, 1600508 (2017))から引用したものである。 FIG. 11 is an emission spectrum of neodymium, and is a graph showing an emission spectrum at 10°C and an emission spectrum at 50°C. Some of the light-emitting substances 24 change the wavelength at which the emission peak appears according to the temperature change. Note that FIG. 11 is taken from Reference 2 (B. Del Rosal et al., “In Vivo Luminescence Nanothermometry: from Materials to Applications,” Advanced Optical Materials, 5, 1600508 (2017)).
 図11に示すように、ネオジムの発光スペクトルでは、発光ピークが863nm付近に現れる。ただし、温度が低くなるにつれて発光ピークの波長が短くなり(短波長化し)、温度が高くなるにつれて発光ピークの波長が長くなる(長波長化する)傾向にある。すなわち、発光ピークが表れる波長の長短と、温度とは関係があるといえる。この発光ピークが表れる波長の長短と、温度との関係を利用して、発光物質24の発光スペクトルを検出し、その発光スペクトルにおける発光ピークの波長の長短に応じて、温度を検出することができる。この場合、基準となる温度における波長を基準波長として設定しておき、基準波長に対する差(図11に示すΔλ)に応じて温度を検出するようにしてもよい。 As shown in FIG. 11, in the emission spectrum of neodymium, an emission peak appears near 863 nm. However, there is a tendency that the wavelength of the emission peak becomes shorter (shorter wavelength) as the temperature becomes lower, and the wavelength of the emission peak becomes longer (longer wavelength) as the temperature rises. That is, it can be said that there is a relationship between the length of the wavelength at which the emission peak appears and the temperature. Using the relationship between the length of the wavelength at which the emission peak appears and the temperature, the emission spectrum of the light-emitting substance 24 can be detected, and the temperature can be detected according to the length of the wavelength of the emission peak in the emission spectrum. . In this case, the wavelength at the reference temperature may be set as the reference wavelength, and the temperature may be detected according to the difference from the reference wavelength (Δλ shown in FIG. 11).
 このように、発光ピークが表れる波長の長短と、温度との関係を利用する場合には、発光ピークが検出できればよく、発光物質24からの光を分光する必要が無い。したがって、光検出部36は、1つの光検出部37を有するだけでよい。 In this way, when utilizing the relationship between the length of the wavelength at which the emission peak appears and the temperature, it is sufficient if the emission peak can be detected, and there is no need to disperse the light from the light-emitting substance 24 . Therefore, the photodetector 36 only needs to have one photodetector 37 .
 その他の構成および動作については、実施例1と同一であるため、同一要素に同一符号を付してその詳細な説明を省略する。この実施例6においても、実施例1と同一の作用効果を奏することができる。また、光検出部36に分光部を設ける必要がなく、光検出部も1つ設けるだけでよいので、装置の小型化を図ることができるし、製造コストの低減を図ることもできる。 Since other configurations and operations are the same as those of the first embodiment, the same elements are denoted by the same reference numerals, and detailed description thereof will be omitted. Also in the sixth embodiment, the same effects as in the first embodiment can be obtained. Moreover, since it is not necessary to provide a spectroscopic section in the photodetector 36, and only one photodetector may be provided, the size of the device can be reduced, and the manufacturing cost can be reduced.
 この発明は本実施形態に限られず他の様々な実施形態とすることができる。また、上述の実施形態で挙げた具体的な構成等は一例であり、実際の製品に応じて適宜変更することが可能である。 The present invention is not limited to this embodiment, and can be made into various other embodiments. Also, the specific configurations and the like given in the above-described embodiments are examples, and can be changed as appropriate according to actual products.
 また、本発明は、温度検出装置および温度センサとして提供するだけでなく、温度センサを用いて、発光物質からの光を検出し、検出した光に基づいて温度を検出する方法、プログラム、およびプログラムを記憶した記憶媒体としても提供することができる。 Further, the present invention provides not only a temperature detection device and a temperature sensor, but also a method, program, and program for detecting light from a light-emitting substance using the temperature sensor and detecting temperature based on the detected light. can also be provided as a storage medium storing
 この発明は、励起エネルギーを受けて発光する元素の光を利用して温度を検出するような産業に利用することができる。 This invention can be used in industries that detect temperature using the light of elements that emit light upon receiving excitation energy.
1…温度検出装置
2…温度センサ
3…受光部
21…電圧印加部
22,40,60,72…センサ部
23…発光物質添加半導体
24,52,62,72…発光物質
25,26,44,53,54,64…電極
31,36…光検出部
32…制御部(温度検出部)
41,61,71…半導体
43,63…ショットキー電極
73…ソース電極
74…ゲート電極
75…ドレイン電極
 
DESCRIPTION OF SYMBOLS 1... Temperature detection device 2... Temperature sensor 3... Light receiving part 21... Voltage application part 22, 40, 60, 72... Sensor part 23... Luminous substance added semiconductors 24, 52, 62, 72... Luminous substances 25, 26, 44, 53, 54, 64... electrodes 31, 36... photodetector 32... controller (temperature detector)
41, 61, 71 semiconductors 43, 63 Schottky electrode 73 source electrode 74 gate electrode 75 drain electrode

Claims (6)

  1.  励起エネルギーを受けて発光し、かつ、当該発光が温度によって変化する発光物質を有するセンサ部と、
    前記発光物質からの光を検出する光検出部と、
    検出した前記光に基づいて温度を検出する温度検出部とを備え、
    前記センサ部は、前記発光物質が半導体に導入された構成であり、
    前記発光物質は、前記半導体に電流が注入されることによって励起されて発光する
    温度検出装置。
    a sensor unit having a light-emitting substance that emits light upon receiving excitation energy and whose light emission changes depending on temperature;
    a photodetector that detects light from the luminescent material;
    A temperature detection unit that detects temperature based on the detected light,
    The sensor unit has a structure in which the light-emitting substance is introduced into a semiconductor,
    The temperature detection device, wherein the light-emitting substance is excited by current injected into the semiconductor and emits light.
  2.  前記発光物質は、前記半導体に配置される一対の電極の間の少なくとも一部に配置されている
    請求項1記載の温度検出装置。
    2. The temperature detecting device according to claim 1, wherein said light emitting material is arranged at least partly between a pair of electrodes arranged on said semiconductor.
  3.  前記発光物質は、希土類元素である
    請求項1または2記載の温度検出装置。
    3. The temperature detection device according to claim 1, wherein said light-emitting substance is a rare earth element.
  4.  励起エネルギーを受けて発光し、かつ、当該発光が温度によって変化する発光物質を有するセンサ部を備え、
    前記センサ部は、前記発光物質が半導体に導入された構成であり、
    前記発光物質は、前記半導体に電流が注入されることによって励起されて発光する
    温度センサ。
    A sensor unit that emits light upon receiving excitation energy and has a light-emitting substance whose light emission changes depending on temperature;
    The sensor unit has a structure in which the light-emitting substance is introduced into a semiconductor,
    The temperature sensor, wherein the light-emitting substance is excited to emit light when a current is injected into the semiconductor.
  5.  励起エネルギーを受けて発光し、かつ、当該発光が温度によって変化する発光物質を有するセンサ部を備え、前記センサ部は、前記発光物質が半導体に導入された構成であり、前記発光物質は、前記半導体に電流が注入されることによって励起されて発光する温度センサを用い、
    前記発光物質からの光を検出し、
    検出した前記光に基づいて温度を検出する
    温度検出方法。
    A sensor unit that emits light upon receiving excitation energy and that includes a light-emitting substance whose light emission changes with temperature, the sensor unit has a structure in which the light-emitting substance is introduced into a semiconductor, and the light-emitting substance Using a temperature sensor that emits light when excited by current injection into the semiconductor,
    detecting light from the luminescent material;
    A temperature detection method for detecting temperature based on the detected light.
  6.  励起エネルギーを受けて発光し、かつ、当該発光が温度によって変化する発光物質を有するセンサ部を備え、前記センサ部は、前記発光物質が半導体に導入された構成であり、前記発光物質は、前記半導体に電流が注入されることによって励起されて発光する温度センサを備える温度検出装置のコンピュータを、
    前記発光物質からの光を検出する光検出部と、
    検出した前記光に基づいて温度を検出する温度検出部として機能させる
    温度検出プログラム。
    A sensor unit that emits light upon receiving excitation energy and that includes a light-emitting substance whose light emission changes with temperature, the sensor unit has a structure in which the light-emitting substance is introduced into a semiconductor, and the light-emitting substance A computer of a temperature detection device equipped with a temperature sensor that emits light when excited by injecting a current into a semiconductor,
    a photodetector that detects light from the luminescent material;
    A temperature detection program that functions as a temperature detection unit that detects temperature based on the detected light.
PCT/JP2022/008900 2021-03-02 2022-03-02 Temperature detection device, temperature sensor, temperature detection method, and temperature detection program WO2022186283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-032894 2021-03-02
JP2021032894A JP2022133932A (en) 2021-03-02 2021-03-02 Temperature detection device, temperature sensor, temperature detection method, and temperature detection program

Publications (1)

Publication Number Publication Date
WO2022186283A1 true WO2022186283A1 (en) 2022-09-09

Family

ID=83154618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008900 WO2022186283A1 (en) 2021-03-02 2022-03-02 Temperature detection device, temperature sensor, temperature detection method, and temperature detection program

Country Status (2)

Country Link
JP (1) JP2022133932A (en)
WO (1) WO2022186283A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072540U (en) * 1983-10-24 1985-05-22 横河電機株式会社 light thermometer
JP2004103931A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Rare earth element added semiconductor laminate structure for light emitting element, light emitting diode using the same, semiconductor laser diode, and semiconductor optical amplifier using the same, and manufacturing method
JP2008517265A (en) * 2004-10-15 2008-05-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thermometer to switch colors
US20180122872A1 (en) * 2015-03-27 2018-05-03 Lg Display Co., Ltd. Temperature sensor, method for manufacturing temperature sensor, and display device to which temperature sensor is applied

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072540U (en) * 1983-10-24 1985-05-22 横河電機株式会社 light thermometer
JP2004103931A (en) * 2002-09-11 2004-04-02 Japan Science & Technology Corp Rare earth element added semiconductor laminate structure for light emitting element, light emitting diode using the same, semiconductor laser diode, and semiconductor optical amplifier using the same, and manufacturing method
JP2008517265A (en) * 2004-10-15 2008-05-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thermometer to switch colors
US20180122872A1 (en) * 2015-03-27 2018-05-03 Lg Display Co., Ltd. Temperature sensor, method for manufacturing temperature sensor, and display device to which temperature sensor is applied

Also Published As

Publication number Publication date
JP2022133932A (en) 2022-09-14

Similar Documents

Publication Publication Date Title
Robbins et al. Electroluminescence from a pseudomorphic Si0. 8Ge0. 2 alloy
Krier et al. Powerful interface light emitting diodes for methane gas detection
Lehnhardt et al. Room temperature lifetime of triplet excitons in fluorescent host/guest systems
Torvik et al. Electroluminescence from erbium and oxygen coimplanted GaN
Meier et al. Determination of trapping parameters in poly (p-phenylenevinylene) light-emitting devices using thermally stimulated currents
Salvador et al. Near ultraviolet luminescence of Be doped GaN grown by reactive molecular beam epitaxy using ammonia
KR101891842B1 (en) Optoelectronic devices
Takahei et al. Temperature dependence of intra‐4 f‐shell photo‐and electroluminescence spectra for erbium‐doped GaAs
Beham et al. Nonlinear ground-state absorption observed in a single quantum dot
Winnewisser et al. In situ temperature measurements via ruby R lines of sapphire substrate based InGaN light emitting diodes during operation
WO2022186283A1 (en) Temperature detection device, temperature sensor, temperature detection method, and temperature detection program
Yamazaki et al. Electrically controllable position-controlled color centers created in SiC pn junction diode by proton beam writing
Lourenço et al. Efficient silicon light emitting diodes made by dislocation engineering
Pereira et al. Influence of nonradiative Auger process in the lanthanide complexes lifetime near interfaces in organic light-emitting diode structures
WO2022186284A1 (en) Temperature sensor, temperature sensing device, temperature sensing method, temperature sensing program, and method for manufacturing temperature sensor
US20220190549A1 (en) Semiconductor optical signal amplifier
Gaubas et al. In situ characterization of radiation sensors based on GaN LED structure by pulsed capacitance technique and luminescence spectroscopy
Forcales et al. Two-color mid-infrared spectroscopy of optically doped semiconductors
Prucnal et al. Reactivation of damaged rare earth luminescence centers in ion-implanted metal–oxide–silicon light emitting devices
Menyuk et al. Effects of pressure on optically pumped GaSb, InAs, and InSb lasers
Gallian et al. Laser oscillation at 2.4 μm from Cr2+ in ZnSe optically pumped over Cr ionization transitions
Gupta et al. Temperature dependence of amplified spontaneous emission in conjugated polymers
JP4529646B2 (en) Rare earth element ion diffusion region manufacturing method, light emitting device manufacturing method, and light emitting device
Korona et al. Manganese as a fast charge carrier trapping center in InP
Bagraev et al. Features of the electroluminescence spectra of quantum-confined silicon p+-n heterojunctions in the infrared spectral region

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763336

Country of ref document: EP

Kind code of ref document: A1