WO2022186276A1 - Modified polyalkylene diol - Google Patents

Modified polyalkylene diol Download PDF

Info

Publication number
WO2022186276A1
WO2022186276A1 PCT/JP2022/008875 JP2022008875W WO2022186276A1 WO 2022186276 A1 WO2022186276 A1 WO 2022186276A1 JP 2022008875 W JP2022008875 W JP 2022008875W WO 2022186276 A1 WO2022186276 A1 WO 2022186276A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyalkylenediol
general formula
modified
carbon atoms
Prior art date
Application number
PCT/JP2022/008875
Other languages
French (fr)
Japanese (ja)
Inventor
冬樹 相田
義隆 真鍋
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Priority to JP2023503911A priority Critical patent/JPWO2022186276A1/ja
Publication of WO2022186276A1 publication Critical patent/WO2022186276A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/50Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Definitions

  • the present invention relates to a polyalkylenediol-modified product, and more particularly to a polyalkylenediol-modified product that can be preferably used as a synthetic lubricating base oil with a high viscosity index.
  • Lubrication is an essential element for reducing friction and wear of members in various mechanical devices with moving parts, and for improving the energy saving and life of the device.
  • lubricating compositions containing a lubricating base oil, optionally a thickener, and optionally one or more performance additives are used in a wide variety of fields.
  • lubricating compositions include lubricating oils and greases (semi-solid lubricants).
  • the lubricating base oil is the base material of the lubricating composition.
  • a lubricating base oil is required to have a viscosity suitable for lubrication in the temperature range in which the lubricating composition is used. In general, the viscosity of fluids decreases at higher temperatures and increases at lower temperatures. In order for the lubricating composition to be usable over a wide temperature range, it is desirable that the temperature dependence of the viscosity of the lubricating base oil is small, that is, that the viscosity index of the lubricating base oil is high.
  • Groups IV The API base oil classification stipulated by the American Petroleum Institute (API) classifies lubricating base oils into five categories, Groups IV.
  • Group I base oils are mineral base oils having a sulfur content of greater than 0.03 mass % and/or a saturate content of less than 90 mass % and a viscosity index of 80 or more and less than 120.
  • Group II base oils are mineral base oils having a sulfur content of 0.03 mass % or less, a saturate content of 90 mass % or more, and a viscosity index of 80 or more and less than 120.
  • Group III base oils are mineral base oils having a sulfur content of 0.03% by weight or less, a saturates content of 90% by weight or more, and a viscosity index of 120 or more.
  • Group IV base oils are polyalphaolefin base oils.
  • Group V base oils are base oils other than Groups I-IV above.
  • Group III base oils the highest viscosity index mineral base oils, are generally produced via hydrocracking and hydrorefining processes or obtained by the Fischer-Tropsch process wax (FT Waxes) and waxes obtained by the Gas-to-Liquid process (GTL waxes) are isomerized by a wax isomerization process.
  • the achievable viscosity index of these conventional mineral base oils is approximately 135.
  • poly- ⁇ -olefin base oils group IV base oils
  • ester base oils Synthetic base oils such as Group V base oils are used.
  • An object of the present invention is to provide a novel functional fluid that can be suitably used as a lubricating base material with a high viscosity index.
  • the present invention includes the following embodiments [1] to [6].
  • [1] A modified polyalkylenediol represented by the following general formula (1), wherein the corresponding polyalkylenediol has a number average molecular weight of 100 to 8,000.
  • a plurality of R 1 may be the same or different, and each independently represents a linear alkylene group having 2 to 5 carbon atoms or a branched alkylene group having 3 to 8 carbon atoms. represents a branched alkylene group having a main chain of 2 to 5 carbon atoms, Q 1 and Q 2 may be the same or different and are each independently represented by the following general formula (2) It is a silyl group, and n represents an integer of 2 or more.
  • R 2 , R 3 and R 4 may be the same or different and each independently represents a hydrocarbon group having 1 to 9 carbon atoms.
  • R 1 is ethane-1,2-diyl group, propane-1,2-diyl group, butane-1,2-diyl group, butane-2,3-diyl group , or a butane-1,4-diyl group, or a combination thereof, the modified polyalkylenediol according to [1].
  • Q 1 and Q 2 are a trimethylsilyl group, an ethyldimethylsilyl group, a dimethylpropylsilyl group, a butyldimethylsilyl group, an octyldimethylsilyl group, a triethylsilyl group, and a dimethylisopropylsilyl group; Diethylisopropylsilyl group, triisopropylsilyl group, tributylsilyl group, tert-butyldimethylsilyl group, dimethylphenylsilyl group, benzyldimethylsilyl group, methyldiphenylsilyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, di-
  • the polyalkylenediol-modified product which is the functional fluid according to the first aspect of the present invention, can be suitably used as a lubricating base material with a high viscosity index.
  • the lubricating base oil according to the second aspect of the present invention it is possible to increase the viscosity index by containing the polyalkylenediol-modified product according to the first aspect of the present invention.
  • the lubricating oil composition according to the third aspect of the present invention by containing the lubricating base oil according to the second aspect of the present invention, the temperature-viscosity characteristics of the entire composition can be improved. It is possible.
  • the present invention will be described in detail below.
  • the notation “A to B" for numerical values A and B is equivalent to “A or more and B or less”. If a unit is attached only to the numerical value B in such notation, the unit is applied to the numerical value A as well.
  • the terms “or” and “or” shall mean a logical sum unless otherwise specified.
  • the notation “E 1 and/or E 2 ” for elements E 1 and E 2 is equivalent to “E 1 or E 2 , or a combination thereof” and N elements E 1 , . , E i , . _ _ , or a combination thereof” (i is a variable whose value is all integers satisfying 1 ⁇ i ⁇ N).
  • magnesium is also included in the "alkaline earth metal".
  • (meth)acrylate means “acrylate and/or methacrylate”.
  • diol is interpreted in the broadest sense and means a dihydric alcohol. Unless otherwise specified, the positional relationship of the two hydroxy groups in the “diol” is not restricted.
  • the content of each element of calcium, magnesium, zinc, phosphorus, sulfur, boron, barium, and molybdenum in oil is determined by inductively coupled plasma atomic emission spectrometry in accordance with JIS K0116. method (intensity ratio method (internal standard method)). Also, the nitrogen element content in the oil shall be measured by a chemiluminescence method in accordance with JIS K2609.
  • weight average molecular weight and “number average molecular weight” mean weight average molecular weight and number average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC). GPC measurement conditions are as follows.
  • the polyalkylenediol-modified product (hereinafter sometimes simply referred to as "polyalkylenediol-modified product") according to the first aspect of the present invention is a polyalkylenediol having a number average molecular weight of 100 to 8,000. It is a diol-modified product and has a structure represented by the following general formula (1).
  • a plurality of R 1 may be the same or different, and each independently represents a linear alkylene group having 2 to 5 carbon atoms or a branched alkylene group having 3 to 8 carbon atoms. represents a branched alkylene group having a main chain of 2 to 5 carbon atoms, Q 1 and Q 2 may be the same or different and are each independently represented by the following general formula (2) It is a silyl group, and n represents an integer of 2 or more.
  • R 2 , R 3 and R 4 may be the same or different and each independently represents a hydrocarbon group having 1 to 9 carbon atoms.
  • the corresponding polyalkylenediol is obtained by replacing Q 1 and Q 2 in general formula (1) with hydrogen atoms, and is represented by general formula (3) below.
  • the number average molecular weight of the corresponding polyalkylenediol is 100 or more, preferably 150 or more, more preferably 200 or more from the viewpoint of reducing volatility and improving abrasion resistance. From the viewpoint of reducing the viscosity to improve energy saving, it is 8,000 or less, preferably 6,000 or less, more preferably 5,000 or less, and in one embodiment, 2,500 or less. In one embodiment it may be 100-8000, or 150-6000, or 200-5000, or 200-2500.
  • the number average molecular weight of the corresponding polyalkylenediol can be determined as follows. i) Identify the silyl groups Q 1 , Q 2 . The number of different silyl groups and their abundance ratio can be confirmed by measuring the 29 Si NMR spectrum of the polyalkylenediol-modified product. Furthermore, the structure of the silyl group can be identified by subjecting the polyalkylenediol-modified product to cleavage of the Si—O bond and isolating the resulting low-molecular-weight silicon compound.
  • the abundance ratio of a plurality of different silyl groups cannot be determined by measuring the 29 Si NMR spectrum of the polyalkylenediol-modified product, the abundance ratio of each silyl group should be confirmed from the amount of each isolated silicon compound. can be done.
  • Treatment to cleave the Si—O bond of the polyalkylenediol-modified polyalkylenediol modification involves using a reagent that acts as a source of fluoride ions (typically tetrabutylammonium fluoride (TBAF) or HF-pyridine), silyl alcohol Deprotection can be carried out under the same conditions (for example, using TBAF in a tetrahydrofuran solvent and reacting at room temperature for 1 to 5 hours).
  • TBAF tetrabutylammonium fluoride
  • HF-pyridine HF-pyridine
  • silyl alcohol Deprotection can be carried out under the same conditions (for example, using TBAF in a tetrahydrofuran solvent and reacting at room temperature for 1 to 5 hours).
  • the silicon compound obtained by this reaction corresponding to the silyl group of general formula (3) has the structure of F-SiR 3 R 4 R 5 .
  • Determination of R 3 to R 5 can be carried out by a common-sense method in the field of organic chemistry using known analytical means such as 1 H NMR spectrum and, if necessary, 13 C NMR spectrum, IR spectrum, and mass spectrometry (MS). can be done based on ii) The polyalkylenediol simultaneously obtained in the Si—O cleavage reaction (deprotection reaction) of i) above is recovered, and its number average molecular weight Mn′ is measured by GPC. The measured Mn' is equal to the number average molecular weight Mn PAG of the corresponding polyalkylenediol.
  • step ii′) may be performed as a simple method instead of the above step ii).
  • step ii') The number average molecular weight Mn'' of the entire polyalkylenediol-modified product is measured by GPC. Based on the measured Mn′′ and the molecular weight M silyl of the silyl group, the number average molecular weight Mn PAG of the corresponding polyalkylenediol is determined by the following formula (1).
  • Mn PAG Mn′′ ⁇ M silyl +2.016 (1)
  • R 1 is a linear alkylene group having 2 to 5 carbon atoms, or a branched alkylene group having 3 to 8 carbon atoms and having a main chain of 2 to 5 carbon atoms. is the base.
  • R 1 preferably has 2 to 4 carbon atoms.
  • R 1 is a branched alkylene group, R 1 preferably has 3 to 6 carbon atoms and the main chain of R 1 preferably has 2 to 4 carbon atoms.
  • the number of carbon atoms in R 1 is always equal to or greater than the number of carbon atoms in the main chain.
  • the number of carbon atoms in the main chain of R 1 means the number of carbon atoms in the shortest carbon chain connecting two oxygen atoms bonded to R 1 , and the selection of the main chain used in naming R 1 determined regardless.
  • R 1 is a butane-1,2-diyl group
  • the main chain of R 1 has 2 carbon atoms.
  • R 1 is a linear alkylene group
  • the number of carbon atoms in the main chain of R 1 is equal to the number of carbon atoms in R 1 .
  • R 1 is a branched alkylene group
  • the side chain of R 1 is a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, in one embodiment can be a methyl group.
  • the repeating unit R 1 O having an alkylene group R 1 (the number of carbon atoms in the main chain is Z (Z is an integer of 2 to 5, Y ⁇ Z)) having Y carbon atoms (Y is an integer of 2 to 8), It can be obtained by ring-opening polymerization of an unsubstituted or substituted Z+1-membered saturated aliphatic cyclic ether having Y carbon atoms.
  • Ring-opening polymerization of an unsubstituted cyclic ether gives an alkylene oxide repeating unit R 1 O where R 1 is a linear alkylene group
  • ring-opening polymerization of a substituted cyclic ether gives a repeating unit R 1 O where R 1 is a branched alkylene group.
  • alkylene group R 1 Preferred examples of the alkylene group R 1 include ethane-1,2-diyl, propane-1,2-diyl, butane-1,2-diyl, butane-2,3-diyl, pentane-1, 2-diyl group, hexane-1,2-diyl group, heptane-1,2-diyl group, octane-1,2-diyl group, and other alkylene groups having a main chain of 2 carbon atoms; propane-1,3-diyl 3-methylbutane-1,3-diyl group, 2,2-dimethylpropane-1,3-diyl group, and other alkylene groups having 3 main chain carbon atoms; butane-1,4-diyl group, pentane-1 ,4-diyl group, 2-methylbutane-1,4-diyl group, hexane-1,4-diyl group, 4-methylp
  • R 1 may be a single alkylene group or a combination of two or more alkylene groups.
  • the alkylene group R 1 is ethane-1,2-diyl, propane-1,2-diyl, butane-1,2-diyl, butane-2,3-diyl, or butane-1,4-diyl groups, or combinations thereof.
  • unsubstituted or substituted 3-membered ring ethers such as oxide, 1,2-hexylene oxide, 1,2-heptylene oxide, 1,2-octylene oxide; oxetane (trimethylene oxide), 2,2-dimethyl Unsubstituted or substituted 4-membered ring ethers such as oxetane, 3,3-dimethyloxetane, etc.; and unsubstituted or substituted 5-membered ring ethers such as , and unsubstituted or substituted 6-membered ring ethers such as tetrahydropyran and 4-methyltetrahydropyran.
  • the alkylene oxide repeating unit R 1 O may consist of repeating units corresponding to one type of cyclic ether, or may be a combination of repeating units corresponding to two or more types of cyclic ethers.
  • n is an integer of 2 or more. Normally, n has a distribution, and the number average molecular weight is determined according to the distribution of n.
  • R 2 , R 3 and R 4 may be the same or different and each independently represents a hydrocarbon group having 1 to 9 carbon atoms.
  • Preferred examples of hydrocarbon groups include alkyl groups (which may have a ring structure), aryl groups, alkylaryl groups, and arylalkyl groups.
  • the alkyl group may be a straight-chain alkyl group, a branched-chain alkyl group, or may have a ring structure.
  • chain alkyl groups having 1 to 9 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1 -ethylpropyl group, hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, octyl group, isooctyl group, 2 -ethylhexyl group, and nonyl group.
  • Examples of the ring structure that the alkyl group may have include cycloalkyl rings having 5 to 7 carbon atoms such as cyclopentyl ring, cyclohexyl ring and cycloheptyl ring.
  • the cycloalkyl ring may further have alkyl substituents and/or alkylene substituents, and their substitution positions on the cycloalkyl ring are arbitrary.
  • Preferred examples of the alkyl group having 1 to 9 carbon atoms and having a ring structure include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a methylcyclopentyl group, a cyclopentylmethyl group, a methylcyclohexyl group, a cyclohexylmethyl group, and the like. .
  • aryl, alkylaryl and arylalkyl groups having 1 to 9 carbon atoms for R 2 to R 4 are phenyl, tolyl, xylyl, mesityl, cumyl and benzyl. can be done.
  • Preferred examples of the silyl group represented by the general formula (2) for Q 1 and Q 2 include a trimethylsilyl group, an ethyldimethylsilyl group, a dimethylpropylsilyl group, a butyldimethylsilyl group, an octyldimethylsilyl group, and a triethylsilyl group.
  • dimethylisopropylsilyl group diethylisopropylsilyl group, triisopropylsilyl group, tributylsilyl group, tert-butyldimethylsilyl group, dimethylphenylsilyl group, benzyldimethylsilyl group, methyldiphenylsilyl group, tert-butyldiphenylsilyl group, tri phenylsilyl group, di-tert-butylisobutylsilyl group, tricyclohexylsilyl group, dicyclohexylphenylsilyl group, cyclohexyldiphenylsilyl group, and the like.
  • Q 1 and Q 2 are one selected from a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group, a dimethylphenylsilyl group, and a tert-butyldiphenylsilyl group.
  • the above silyl groups can be preferably employed.
  • Q 1 and Q 2 can be the same and one silyl group.
  • Such a polyalkylenediol-modified product can be obtained by using a single silylating agent as a silylating agent in the production method described below.
  • Q 1 and Q 2 can be the same combination of two or more silyl groups.
  • Such a polyalkylenediol-modified product can be obtained by using a combination of two or more silylating agents as the silylating agent in the production method described below.
  • the corresponding polyalkylenediol and a silylating agent corresponding to the silyl group of general formula (2) ( X 1 -SiR 2 R 3 R 4 ), for example, by the reaction represented by the following general formula (4).
  • the silylating agent one silylating agent may be used alone, or two or more silylating agents may be used in combination.
  • a polyalkylenediol-modified product obtained by using a combination of a silylating agent A' corresponding to a silyl group A and a silylating agent B' corresponding to a silyl group B has the general formula In (1), a polyalkylenediol-modified product in which both Q1 and Q2 are silyl groups A, a polyalkylenediol-modified product in which both Q1 and Q2 are silyl groups B, and Q1 and Q2 It is a mixture with a modified polyalkylenediol in which one is a silyl group A and the other is a silyl group B.
  • silylating agent A' corresponding to the silyl group A is used alone to produce a first polyalkylenediol-modified product in which both Q1 and Q2 are silyl groups A, and the silylating agent corresponding to the silyl group B is prepared.
  • Agent B′ is used alone to prepare a second polyalkylenediol modification in which both Q 1 and Q 2 are silyl groups B and optionally one or more other silyl groups C (, D, . . . ) corresponding to the silylating agent C′ (, D′, .
  • a mixture of two or more polyalkylenediol-modified products in which Q 1 and Q 2 are the same silyl group may be obtained.
  • R 1 to R 4 and n are as defined in general formulas (1) to (3) above.
  • X 1 represents a leaving group of the silylating agent. Preferred examples of X 1 include halogeno groups such as -Cl group, -Br group and -I group, trifluoromethanesulfonyloxy group (-OTf group) and the like.
  • base is a base for neutralizing the acid H—X generated from the terminal hydroxy group of the polyalkylenediol and Si—X, or for deprotonating the hydroxy group.
  • bases include amines such as triethylamine, diisopropylethylamine, imidazole, N-methylimidazole, pyridine, and 2,6-lutidine; metal hydrides such as lithium hydride, sodium hydride, potassium hydride; organometallic compounds such as alkyllithiums and Grignard reagents; and active metals such as metallic lithium, metallic sodium, metallic potassium, and metallic calcium.
  • amines such as triethylamine, diisopropylethylamine, imidazole, N-methylimidazole, pyridine, and 2,6-lutidine
  • metal hydrides such as lithium hydride, sodium hydride, potassium hydride
  • organometallic compounds such as alkyllithiums and Grignard reagents
  • active metals such as metallic lithium, metallic sodium, metallic potassium, and metallic calcium.
  • the reaction of general formula (4) can be carried out in an aprotic solvent or without solvent.
  • solvents include hydrocarbon solvents such as benzene, toluene, xylene, hexane, petroleum ether, cyclohexane, and methylcyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride, chlorobenzene, and dichlorobenzene; Ether solvents such as tetrahydrofuran and 4-methyltetrahydropyran; amine solvents that also serve as bases such as triethylamine and pyridine; and aprotic organic solvents such as dimethylsulfoxide, acetonitrile and N,N-dimethylformamide. can.
  • the solvent it is preferable to use a solvent capable of dissolving both the starting polyalkylenediol and the silylated product.
  • the reaction of general formula (4) can be carried out by a known procedure as a silylation reaction.
  • a silylation reaction can be carried out by adding and mixing a base to a solution of a polyalkylenediol and then adding and mixing a silylating agent to the reaction mixture.
  • Addition and mixing of the silylating agent can be performed, for example, by dropping the silylating agent or its solution into a mixture of the polyalkylenediol solution and the base at a low temperature (for example, 0°C).
  • the silylation reaction can be allowed to proceed by stirring the reaction mixture at a low temperature or normal temperature for a certain period of time (for example, 0.01 to 100 hours).
  • the reactivity of the silylating agent varies depending on the structure of the polyalkylenediol and/or the substituents R 2 to R 4 on the silicon atom.
  • a higher temperature for example, reflux conditions for the solvent.
  • a silylating agent for example, 1 to 10 mol of a base and 0.5 to 2 mol, preferably 1.0 to 1.2 mol of a silylating agent can be used per 1 mol of the hydroxy group of the polyalkylenediol. can.
  • the silylating agent was used in an amount less than the equivalent of the hydroxy group, only the hydroxy group at one end of the polyalkylenediol was silylated together with the completely silylated product in which the hydroxy groups at both ends of the polyalkylenediol were silylated. A partial silylation product is formed.
  • a partially silylated product may be produced together with a fully silylated product, but a mixture containing a fully silylated product and a partially silylated product may be used as it is.
  • Post-treatment after completion of the reaction may be carried out in the same manner as in general alcohol silylation reactions. Unreacted silylating agent can be quenched by water or alcohol treatment. The silylated products have improved hydrophobicity due to the conversion of the terminal hydroxy groups to silyl ethers. Therefore, by washing the reaction mixture with water, the salt in the reaction mixture (for example, triethylamine hydrochloride when the base is triethylamine and the leaving group X 1 of the silylating agent is a —Cl group).
  • the salt in the reaction mixture for example, triethylamine hydrochloride when the base is triethylamine and the leaving group X 1 of the silylating agent is a —Cl group.
  • the silylated product by a waterless workup.
  • a solvent having a certain degree of polarity for example, toluene, etc.
  • the remaining unreacted silylating agent is removed with an alcohol (for example, methanol, ethanol, etc.)
  • a hydrophobic solvent e.g., hexane, petroleum ether, cyclohexane, benzene, further a hydrocarbon solvent such as toluene
  • an organic solvent solution of the silylated product can be obtained.
  • the silylated product can be separated by distilling off the organic solvent (for example, under reduced pressure) from the obtained organic solvent solution of the silylated product.
  • the polyalkylene diol modifications of the present invention have improved viscosity indexes over the corresponding non-silylated polyalkylene diols due to the conversion of the terminal hydroxy groups to silyl ethers, resulting in high viscosity index can be preferably used as a lubricating base material.
  • the polyalkylenediol-modified product of the present invention has higher polarity than conventional mineral oil-based base oils and poly- ⁇ -olefin base oils, and silicone oil (polydimethylsiloxane), which is a conventional general-purpose high viscosity index lubricating base material. Therefore, it is advantageous in terms of solubility of polar additives.
  • conventional ester-based synthetic base oils the carbonyl carbon of the ester bond is susceptible to nucleophilic attack, whereas the ether bond and silyl ether bond of the polyalkylenediol-modified product of the present invention are nucleophilic under basic conditions. It is more robust against attack than an ester bond. Therefore, the polyalkylenediol-modified product of the present invention can be combined with additives that have been difficult to use in combination with conventional ester-based synthetic base oils due to their nucleophilicity.
  • the modified polyalkylenediol of the present invention has a viscosity index improved over that of the corresponding polyalkylenediol.
  • a specific viscosity index of the polyalkylenediol modification can be, for example, 100-300, and in one embodiment 150-300.
  • the modified polyalkylenediol of the present invention can be produced by silylating the hydroxy groups of the polyalkylenediol.
  • the kinematic viscosity of the polyalkylenediol-modified product of the present invention can vary depending on the kinematic viscosity of the corresponding polyalkylenediol and the silyl groups (Q 1 and Q 2 in general formula (1)). The higher the kinematic viscosity of the corresponding polyalkylenediol, the higher the kinematic viscosity of the resulting polyalkylenediol-modified product.
  • the kinematic viscosity of the polyalkylenediol-modified product tends to increase as the silyl group is bulkier.
  • a mixture of two or more polyalkylenediols may be used as the starting polyalkylenediol in order to obtain a polyalkylenediol-modified product having the desired kinematic viscosity and viscosity index.
  • two or more polyalkylenediol-modified products may be mixed in order to obtain a polyalkylenediol-modified product having a desired kinematic viscosity and viscosity index.
  • the lubricating base oil according to the second aspect of the present invention is the polyalkylenediol-modified product according to the first aspect of the present invention (hereinafter referred to as “ (a) may be referred to as "component”).
  • the lubricating base oil may contain one polyalkylenediol-modified product alone, or may contain two or more polyalkylenediol-modified products.
  • the lubricating base oil consists of one or more polyalkylenediol modifications.
  • the lubricating base oil may further contain as an impurity an incompletely silylated polyalkylenediol that was not removed during the refining process of the modified polyalkylenediol.
  • incompletely silylated polyalkylene diols include non-silylated polyalkylene diols and polyalkylene diols in which only one terminal hydroxy group is silylated (partially silylated product).
  • the content of these incompletely silylated polyalkylenediols can be, for example, less than 50 parts by weight, or less than 30 parts by weight per 100 parts by weight of polyalkylenediol modification.
  • the content of incompletely silylated polyalkylenediol can be measured by 13 C NMR under the conditions described below.
  • the content of non-silylated hydroxy groups of the polyalkylenediol can be, for example, less than 0.5 mol, or less than 0.3 mol, per mol of silyl groups of the polyalkylenediol modification.
  • the lubricating base oil may further comprise one or more base oil components other than the polyalkylenediol modified product.
  • Such other base oil components can be mineral base oils, conventional synthetic base oils, or combinations thereof.
  • examples of mineral base oils include solvent deasphalting, solvent extraction, hydrocracking, hydroisomerization, and hydroisomerization of lubricating oil fractions obtained by atmospheric distillation and/or vacuum distillation of crude oil.
  • refining treatments such as dewaxing, solvent dewaxing, catalytic dewaxing, solvent refining, hydrorefining, chemical washing, clay treatment, etc.
  • Isoparaffinic base oils, naphthenic base oils, mixtures thereof, and the like can be mentioned.
  • preferred examples of the mineral base oil include any one of the following (1) to (8) as a raw material oil, and / or a lubricating oil distillate recovered from the raw material oil
  • Base oils obtained by refining fractions may be mentioned.
  • Waxes such as slack waxes obtained by lubricating oil dewaxing processes and/or Fischer-Tropsch (FT) processes (e.g.
  • Gas-to-Liquid (GTL) processes etc.) for example, FT wax such as GTL wax), synthetic wax obtained by oligomerization of ethylene (4) feed oil (1), (2), or (3), or a mild mixture thereof Hydrocracked oil (5) Mixed oil of two or more selected from feedstock oils (1) to (4) (6) Feedstock oil (1), (2), (3), (4) or (5) Deasphalted oil (DAO) (7) Mild hydrocracking treated oil (MHC) of raw material oil (6) (8) Mixed oil of two or more selected from raw materials (1) to (7)
  • FT wax such as GTL wax
  • synthetic wax obtained by oligomerization of ethylene (4) feed oil (1), (2), or (3), or a mild mixture thereof Hydrocracked oil (5) Mixed oil of two or more selected from feedstock oils (1) to (4) (6) Feedstock oil (1), (2), (3), (4) or (5) Deasphalted oil (DAO) (7) Mild hydrocracking treated oil (MHC) of raw material oil (6) (8) Mixed oil
  • a particularly preferred example of the mineral base oil is the following (9 ) or the base oil of (10).
  • (9) Hydrocracking the raw material oil selected from (1) to (8) above or the lubricating oil fraction recovered from the raw material oil, and the product or lubricating oil recovered from the product by distillation or the like
  • Hydrocracking base oil (10) obtained by subjecting the fraction to dewaxing treatment such as solvent dewaxing or catalytic dewaxing, or by distillation after the dewaxing treatment (10) selected from the above (1) to (8)
  • the raw oil or the lubricating oil fraction recovered from the raw oil is hydroisomerized, and the product or the lubricating oil fraction recovered from the product by distillation or the like is subjected to dewaxing such as solvent dewaxing or catalytic dewaxing.
  • a hydroisomerized base oil obtained by performing a waxing treatment or by distillation after the dewaxing treatment.
  • a solvent refining treatment and/or hydrofinishing treatment step may be further performed at an appropriate stage, if necessary.
  • the mineral base oil includes Group I base oil of API base oil classification (hereinafter sometimes referred to as "API Group I base oil”), Group II base oil (hereinafter referred to as “API Group II Group III base oils (hereinafter sometimes referred to as “API Group III base oils”), or combinations thereof can be used.
  • the API base oil classification is as described above.
  • API Group I base oils are typically produced via solvent refining processes, and API Group II and Group III base oils are typically manufactured via hydrocracking processes.
  • the viscosity index means a viscosity index measured according to JIS K 2283-2000.
  • the “sulfur content in the lubricating base oil” shall be measured in accordance with JIS K 2541-2003.
  • the “content of saturates in the lubricating base oil” as used herein means the value measured according to ASTM D 2007-93.
  • API base oils include API base oil classification group IV base oils (poly- ⁇ -olefin base oils, hereinafter sometimes referred to as “API group IV base oils”), or conventional API base oil classification group V Base oils (hereinafter sometimes referred to as “API Group V base oils”) or combinations thereof can be used.
  • API group IV base oils poly- ⁇ -olefin base oils
  • API Group V base oils conventional API base oil classification group V Base oils
  • the content of the component (a) in the lubricating base oil is not particularly limited, but for example, 1 to 100% by mass, or 5 to 100% by mass, or 10 to 100% by mass based on the total amount of the lubricating base oil , or 20-100% by weight, or 50-100% by weight, or 80-100% by weight.
  • the lubricating oil composition according to the third aspect of the present invention is the lubricating base oil according to the second aspect of the present invention (hereinafter referred to as “( A) may be referred to as “component”).
  • the lubricating oil composition may consist of the (A) component.
  • the lubricating oil composition may comprise component (A) and one or more additives.
  • the content of component (A) in the lubricating oil composition is not particularly limited, but can be, for example, 60 to 100% by mass, or 60 to 99% by mass based on the total amount of the composition.
  • additives known additives in the field of lubricating oils can be used.
  • additives include (B) antioxidants, (C) ashless dispersants, (D) metallic detergents, (E) friction modifiers, (F) antiwear or extreme pressure agents, (G) a viscosity index improver or pour point depressant, (H) a corrosion inhibitor, (I) a rust inhibitor, (J) a metal deactivator, (K) a demulsifier, (L) a defoamer, and (M)
  • B antioxidants
  • C ashless dispersants
  • D metallic detergents
  • E friction modifiers
  • F antiwear or extreme pressure agents
  • G a viscosity index improver or pour point depressant
  • H a corrosion inhibitor
  • I a rust inhibitor
  • J a metal deactivator
  • K a demulsifier
  • L a defoamer
  • M A coloring agent can be mentioned.
  • antioxidants examples include aromatic amine antioxidants, hindered amine antioxidants, and phenolic antioxidants. can.
  • aromatic amine antioxidants include primary aromatic amine compounds such as alkylated ⁇ -naphthylamine; - secondary aromatic amine compounds such as naphthylamine and alkylated phenyl- ⁇ -naphthylamine.
  • hindered amine antioxidants include compounds having a 2,2,6,6-tetraalkylpiperidine skeleton (2,2,6,6-tetraalkylpiperidine derivatives).
  • a 2,2,6,6-tetraalkylpiperidine derivative having a substituent at the 4-position is preferred.
  • two 2,2,6,6-tetraalkylpiperidine skeletons may be bonded via their respective 4-position substituents.
  • the N-position of the 2,2,6,6-tetraalkylpiperidine skeleton may be unsubstituted, or the N-position may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • the 2,2,6,6-tetraalkylpiperidine skeleton is preferably 2,2,6,6-tetramethylpiperidine skeleton.
  • phenolic antioxidants examples include 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 4,4' -bis(2-methyl-6-tert-butylphenol); 2,2'-methylenebis(4-ethyl-6-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4′-butylidenebis(3-methyl-6-tert-butylphenol); 4,4′-isopropylidenebis(2,6-di-tert-butylphenol); 2,2′-methylenebis(4-methyl-6 -nonylphenol); 2,2′-isobutylidenebis(4,6-dimethylphenol); 2,2′-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4 -methylphenol; 2,6-di-tert-but
  • the lubricating oil composition contains component (B), its content may be, for example, 0.01 to 5.0% by mass, or 0.1 to 5.0% by mass, based on the total amount of the composition. From the viewpoint of suppressing autoxidation of the polyalkylenediol-modified product (component (a)), the lubricating oil composition preferably contains at least the component (B).
  • ashless dispersant a known ashless dispersant such as a succinimide-based ashless dispersant can be used.
  • ashless dispersants include polybutenylsuccinimide, polybutenylbenzylamine, polybutenylamine having a polybutenyl group with a number average molecular weight of 900 to 3,500, and derivatives thereof (for example, modified with boric acid). etc.).
  • the lubricating oil composition contains an ashless dispersant, its content can be, for example, 0.01 to 20% by weight, or 0.1 to 10% by weight, based on the total amount of the composition.
  • metallic detergent a known metallic detergent in the lubricating oil field can be used.
  • metallic detergents include organic acid metal salts capable of forming micelles in base oils (e.g. alkali or alkaline earth metal alkyl salicylates, alkali or alkaline earth metal alkyl benzene sulfonates, and alkali or alkaline earth metal alkylphenate, etc.), or the organic acid metal salt and a basic metal salt (for example, alkali or alkaline earth metal hydroxides, carbonates, and boric acids constituting the organic acid metal salt) salt etc.) are used.
  • base oils e.g. alkali or alkaline earth metal alkyl salicylates, alkali or alkaline earth metal alkyl benzene sulfonates, and alkali or alkaline earth metal alkylphenate, etc.
  • organic acid metal salt and a basic metal salt for example, alkali or alkaline earth metal hydroxides, carbonates, and bo
  • Alkaline earth metals are preferred as metals, and Ca and/or Mg are preferred as alkaline earth metals.
  • the lubricating oil composition contains a metallic detergent, its content may be, for example, 0.001 to 5.0% by mass in terms of metal element based on the total amount of the composition.
  • friction modifier a known friction modifier in the lubricating oil field can be used, examples of which include oily agent-based friction modifiers; organic molybdenum compounds; organic boron compounds such as alkyl mercaptyl borate; molybdenum disulfide; antimony sulfide; boron compounds; polytetrafluoroethylene;
  • the lubricating oil composition contains a friction modifier, its content may be, for example, 0.05 to 5.0% by mass based on the total amount of the composition.
  • an anti-wear agent or extreme pressure agent known in the lubricating oil field can be used.
  • examples thereof include metal salts of dithiocarbamates (Zn salts, Pb salts, Sb salts, etc.), sulfur additives such as disulfides, sulfurized oils, sulfurized olefins, sulfurized mineral oils, dialkyl polysulfides, diarylalkyl polysulfides, and diaryl polysulfides; dithiophosphoric acid Metal salts (Zn salts, Pb salts, Sb salts, Mo salts, etc.), phosphate esters, phosphites, amine salts of phosphoric acid partial esters, metal salts of phosphoric acid partial esters (Zn salts, etc.), (monothio- or metal and amine salts of full and partial esters and partial esters of (monothio- or dithio-)phosphoric acid, metal and amine salts of full and partial and partial esters, metal and amine salts of full and
  • viscosity index improver or pour point depressant As the viscosity index improver or pour point depressant (G), a known viscosity index improver or pour point depressant in the lubricating oil field can be used.
  • viscosity index improvers include dispersant or non-dispersant polyalkyl (meth)acrylates; non-dispersant or dispersant ethylene- ⁇ -olefin copolymers and hydrogenated products thereof; polyisobutylene and hydrogenated products thereof; Hydrogenated products of styrene-diene copolymers; styrene-maleic anhydride ester copolymers; and polyalkylstyrenes.
  • pour point depressants include polymethacrylate-based polymers and ethylene vinyl acetate.
  • a known corrosion inhibitor in the lubricating oil field can be used. Examples thereof include benzotriazole-based compounds, tolyltriazole-based compounds, thiadiazole-based compounds, and imidazole-based compounds.
  • the lubricating oil composition contains a corrosion inhibitor, its content may be, for example, 0.005 to 5% by mass based on the total amount of the composition.
  • rust preventive agent a known rust preventive agent in the lubricating oil field can be used.
  • examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkylsulfonate, fatty acid, alkenyl succinic acid half ester, fatty acid soap, polyhydric alcohol fatty acid ester, fatty acid amine, paraffin oxide, alkyl polyoxyethylene ether, etc. can be mentioned.
  • the lubricating oil composition contains a rust inhibitor, its content may be, for example, 0.005 to 5% by mass based on the total amount of the composition.
  • a metal deactivator known in the lubricating oil field can be used. Examples include imidazolines, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles and their derivatives, 1,3,4-thiadiazole polysulfides, 1,3,4-thiadiazolyl-2,5-bisdialkyldithiocarbamates, 2 -(Alkyldithio)benzimidazole and ⁇ -(o-carboxybenzylthio)propiononitrile.
  • the lubricating oil composition contains a metal deactivator, its content may be, for example, 0.005 to 1% by mass based on the total amount of the composition.
  • demulsifier for example, a known demulsifier such as a polyalkylene glycol-based nonionic surfactant can be used.
  • a demulsifier such as a polyalkylene glycol-based nonionic surfactant
  • its content may be, for example, 0.005 to 5% by mass based on the total amount of the composition.
  • an antifoaming agent known in the lubricating oil field can be used. Examples include silicones, fluorosilicones, fluoroalkyl ethers, and the like.
  • the lubricating oil composition contains an antifoaming agent, its content may be, for example, 0.0001 to 0.1% by mass based on the total amount of the composition.
  • colorant for example, a known colorant such as an azo compound can be used.
  • Example> Molecular weight and molecular weight distribution measurement
  • Mn number average molecular weight of the samples was measured by gel permeation chromatography (GPC) as the number average molecular weight in terms of standard polystyrene.
  • GPC measurement conditions are as follows.
  • Apparatus ACQUITY (registered trademark) APC UV RI system manufactured by Waters Corporation
  • Eluent THF Solution injection volume: 20.0 ⁇ L
  • Reference material Standard polystyrene (Agilent EasiCal (registered trademark) PS-1 manufactured by Agilent Technologies) 10 points (
  • kinematic viscosity and viscosity index Measurement of kinematic viscosity and viscosity index
  • the kinematic viscosity of the samples was measured according to JIS K 2283-2000 using an automatic viscometer (trade name "CAV-2000", manufactured by Cannon Instruments) as a measuring device.
  • the viscosity index of the sample was determined based on the measured values of kinematic viscosity at 40°C and 100°C in accordance with JIS K 2283-2000.
  • Example 1 The hydroxy group of polypropylene glycol (PPG) is silylated with a trimethylsilyl (TMS) group by the following procedure, and the corresponding polyalkylenediol is PPG (in general formula (1), R 1 is a propane-1,2-diyl group).
  • TSA triethylamine
  • TMS-Cl trimethylchlorosilane
  • Example 1 PPG used as a raw material in Example 1 was measured for kinematic viscosity at 40°C and 100°C. The results are shown in Table 1.
  • Example 2 PPG used as a raw material in Example 2 was measured for kinematic viscosity at 40°C and 100°C. The results are shown in Table 1.
  • Example 3 A polyalkylenediol-modified product (TMS-modified PPG) in which the corresponding polyalkylenediol is PPG and Q 1 and Q 2 are TMS groups in general formula (1) was produced by the following procedure.
  • a TMS-modified PPG was synthesized by the same procedure as in Example 1, except for the changes. Table 1 shows the kinematic viscosity of the resulting modified product.
  • Example 3 PPG used as a raw material in Example 3 was measured for kinematic viscosity at 40°C and 100°C. The results are shown in Table 1.
  • Example 4 PPG used as a raw material in Example 4 was measured for kinematic viscosity at 40°C and 100°C. The results are shown in Table 1.
  • Example 5 By the following procedure, a polyalkylenediol-modified product (DMPS-modified PPG) in which the corresponding polyalkylenediol is PPG and Q 1 and Q 2 are dimethylphenyl groups (DMPS groups) in general formula (1) is produced.
  • DMPS-modified PPG polyalkylenediol-modified product
  • Q 1 and Q 2 dimethylphenyl groups
  • DMPS groups dimethylphenyl groups
  • Example 6 According to the following procedure, the corresponding polyalkylenediol is PPG, and in the general formula (1), Q 1 and Q 2 are tert-butyldimethylsilyl groups (TBDMS groups) polyalkylenediol-modified products (TBDMS-modified PPG ) was manufactured.
  • Sodium hydride NaH, 60% in oil, 40 mmol
  • 10 mL of dehydrated hexane was added, stirred, left to stand, and the supernatant was removed with a syringe.
  • Example 7 According to the following procedure, a polyalkylenediol-modified product (TIPS-modified PPG) in which the corresponding polyalkylenediol is PPG and Q 1 and Q 2 are triisopropylsilyl groups (TIPS groups) in general formula (1) manufactured.
  • TIPS-modified PPG polyalkylenediol-modified product
  • Example 6 except that the amount of PPG used in Example 3 was 10.48 g, the amount of toluene was 200 mL, and triisopropylchlorosilane (TIPS-Cl, 20 mmol) was used instead of TBDMS-Cl.
  • TIPS-modified PPG was obtained by the same procedure. Table 2 shows the kinematic viscosity of the resulting modified product.
  • Example 8 According to the following procedure, the corresponding polyalkylenediol is PPG, and in the general formula (1), Q 1 and Q 2 are tert-butyldiphenylsilyl groups (TBDPS groups) polyalkylenediol-modified products (TBDPS-modified PPG ) was manufactured.
  • the amount of PPG used in Example 3 was changed to 16.01 g, the amount of toluene used was changed to 200 mL, and tert-butyldiphenylchlorosilane (TBDPS-Cl, 30 mmol) was used instead of TBDMS-Cl.
  • TBDPS-modified PPG was obtained by the same procedure as in Example 6. Table 2 shows the kinematic viscosity of the resulting modified product.
  • the reaction mixture was filtered under reduced pressure, and the soluble matter was extracted from the cake portion with 300 mL of hexane and mixed with the previous filtrate (toluene solution). A white precipitate was formed again and vacuum filtration was performed again. The solvent was distilled off from the filtrate under reduced pressure to obtain TMS-modified PEG. Table 3 shows its kinematic viscosity.
  • the corresponding polyalkylene diol is a propylene oxide (PO, 90% by mass)-ethylene oxide (EO, 10% by mass) copolymer
  • Q 1 and Q 2 are TMS groups in the general formula (1).
  • Example 11 According to the following procedure, a polyalkylenediol-modified product in which the corresponding polyalkylenediol is a butene oxide (BO) polymer and Q 1 and Q 2 are TMS groups in general formula (1) was produced.
  • Table 4 shows the kinematic viscosity of the obtained TMS-modified product.
  • Example 12 By the following procedure, the corresponding polyalkylene diol is a BO polymer having a different number average molecular weight from that used in Example 11, and Q 1 and Q 2 are TMS groups in general formula (1).
  • An alkylenediol modified product was produced.
  • a TMS-modified product was obtained by the same procedure as in Example 10 except that Table 4 shows the kinematic viscosity of the modified TMS obtained.
  • the corresponding polyalkylene diol is a THF (45% by mass)-EO (55% by mass) copolymer, and in the general formula (1), Q 1 and Q 2 are TMS groups.
  • a TMS-modified product was obtained by the same procedure as in Example 10 except that Table 4 shows the kinematic viscosity of the modified TMS obtained.
  • Example 14 By the following procedure, the corresponding polyalkylene diol is a THF (60% by mass)-EO (40% by mass) copolymer, and in the general formula (1), Q 1 and Q 2 are TMS groups. A diol modification was produced. Example except that 20.36 g of THF (60% by mass)-EO (40% by mass) copolymer is used as the polyalkylenediol, the amount of TEA is 70 mmol, and the amount of TMS-Cl is 50 mmol. A TMS modified product was obtained by the same procedure as in 10. Table 4 shows the kinematic viscosity of the modified TMS obtained.

Abstract

A modified polyalkylene diol represented by general formula (1), wherein the number average molecular weight of the corresponding polyalkylene diol is 100-8000. (In general formula (1), the multiple R1 may be the same or different and each independently represent a C2-5 linear alkylene group or a C3-8 branched chain alkylene group in which the main chain of the branched chain alkylene group has 2-5 carbon atoms, Q1 and Q2 may be the same or different and each independently represent a silyl group represented by general formula (3), and n represents an integer of 2 or more.) (In general formula (2), R2, R3, and R4 may be the same or different and each independently is a C1-9 hydrocarbon group.)

Description

ポリアルキレンジオール変性物Modified polyalkylenediol
 本発明はポリアルキレンジオール変性物に関し、より詳しくは、高粘度指数の合成系潤滑基油として好ましく用いることのできるポリアルキレンジオール変性物に関する。 The present invention relates to a polyalkylenediol-modified product, and more particularly to a polyalkylenediol-modified product that can be preferably used as a synthetic lubricating base oil with a high viscosity index.
 潤滑は、可動部を有する各種の機械装置において、部材の摩擦および摩耗を低減し、装置の省エネルギー性および寿命を向上させるために不可欠の要素である。  Lubrication is an essential element for reducing friction and wear of members in various mechanical devices with moving parts, and for improving the energy saving and life of the device.
 潤滑剤としては、潤滑基油と、任意的に増ちょう剤と、任意的に1種以上の性能添加剤とを含む潤滑組成物が、幅広い分野で用いられている。そのような潤滑組成物の例としては、潤滑油およびグリース(半固体状潤滑剤)を挙げることができる。 As lubricants, lubricating compositions containing a lubricating base oil, optionally a thickener, and optionally one or more performance additives are used in a wide variety of fields. Examples of such lubricating compositions include lubricating oils and greases (semi-solid lubricants).
 潤滑基油は、潤滑組成物の基材である。潤滑基油には、潤滑組成物が用いられる温度範囲において、潤滑に適した粘度を有することが求められる。一般に、流体の粘度は高温で減少し、低温で増大する。潤滑組成物が幅広い温度範囲で使用可能であるためには、潤滑基油の粘度の温度依存性が小さいこと、すなわち、潤滑基油の粘度指数が高いことが望ましい。 The lubricating base oil is the base material of the lubricating composition. A lubricating base oil is required to have a viscosity suitable for lubrication in the temperature range in which the lubricating composition is used. In general, the viscosity of fluids decreases at higher temperatures and increases at lower temperatures. In order for the lubricating composition to be usable over a wide temperature range, it is desirable that the temperature dependence of the viscosity of the lubricating base oil is small, that is, that the viscosity index of the lubricating base oil is high.
 米国石油協会API(American Petroleum Institute)が定めるAPI基油分類は、潤滑基油をグループI~Vの5つのカテゴリに分類する。グループI基油は、硫黄分が0.03質量%超かつ/又は飽和分が90質量%未満であって、且つ粘度指数が80以上120未満の鉱油系基油である。グループII基油は、硫黄分が0.03質量%以下、飽和分が90質量%以上、且つ粘度指数が80以上120未満の鉱油系基油である。グループIII基油は、硫黄分が0.03質量%以下、飽和分が90質量%以上、且つ粘度指数が120以上の鉱油系基油である。グループIV基油はポリα-オレフィン基油である。グループV基油は上記グループI~IV以外の基油である。 The API base oil classification stipulated by the American Petroleum Institute (API) classifies lubricating base oils into five categories, Groups IV. Group I base oils are mineral base oils having a sulfur content of greater than 0.03 mass % and/or a saturate content of less than 90 mass % and a viscosity index of 80 or more and less than 120. Group II base oils are mineral base oils having a sulfur content of 0.03 mass % or less, a saturate content of 90 mass % or more, and a viscosity index of 80 or more and less than 120. Group III base oils are mineral base oils having a sulfur content of 0.03% by weight or less, a saturates content of 90% by weight or more, and a viscosity index of 120 or more. Group IV base oils are polyalphaolefin base oils. Group V base oils are base oils other than Groups I-IV above.
 最も粘度指数が高い鉱油系基油であるグループIII基油は、一般に、水素化分解および水素化精製プロセスを経て製造されるか、又はフィッシャー・トロプシュ(Fischer-Tropsch)プロセスにより得られるワックス(FTワックス)やガス・トゥ・リキッド(Gas-to-Liquid)プロセスにより得られるワックス(GTLワックス)等のワックスを異性化するワックス異性化プロセスにより製造される。これら従来の鉱油系基油が達成可能な粘度指数は概ね135程度であり、これより高い粘度指数を求められる用途には、ポリ-α-オレフィン基油(グループIV基油)やエステル基油(グループV基油)等の合成系基油が用いられている。 Group III base oils, the highest viscosity index mineral base oils, are generally produced via hydrocracking and hydrorefining processes or obtained by the Fischer-Tropsch process wax (FT Waxes) and waxes obtained by the Gas-to-Liquid process (GTL waxes) are isomerized by a wax isomerization process. The achievable viscosity index of these conventional mineral base oils is approximately 135. For applications requiring a higher viscosity index, poly-α-olefin base oils (group IV base oils) and ester base oils ( Synthetic base oils such as Group V base oils are used.
国際公開WO2018/207549号International publication WO2018/207549
 しかしながら、これら従来の合成系基油は、必ずしも全ての用途に適した化学性状を備えるわけではない。 However, these conventional synthetic base oils do not necessarily have chemical properties suitable for all uses.
 本発明は、高粘度指数の潤滑基材として好適に用いることのできる、新規な機能性流体を提供することを課題とする。 An object of the present invention is to provide a novel functional fluid that can be suitably used as a lubricating base material with a high viscosity index.
 本発明は、次の[1]~[6]の実施形態を包含する。
[1] 下記一般式(1)で表されるポリアルキレンジオール変性物であって、対応するポリアルキレンジオールの数平均分子量が100~8000である、ポリアルキレンジオール変性物。
The present invention includes the following embodiments [1] to [6].
[1] A modified polyalkylenediol represented by the following general formula (1), wherein the corresponding polyalkylenediol has a number average molecular weight of 100 to 8,000.
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、複数のRは同一でも相互に異なっていてもよく、それぞれ独立に、炭素数2~5の直鎖アルキレン基、又は、炭素数3~8の分岐鎖アルキレン基であって主鎖の炭素数が2~5である分岐鎖アルキレン基を表し、Q及びQは同一でも相互に異なっていてもよく、それぞれ独立に下記一般式(2)で表されるシリル基であり、nは2以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000003
(In general formula (1), a plurality of R 1 may be the same or different, and each independently represents a linear alkylene group having 2 to 5 carbon atoms or a branched alkylene group having 3 to 8 carbon atoms. represents a branched alkylene group having a main chain of 2 to 5 carbon atoms, Q 1 and Q 2 may be the same or different and are each independently represented by the following general formula (2) It is a silyl group, and n represents an integer of 2 or more.)
Figure JPOXMLDOC01-appb-C000004

(一般式(2)中、R、R、及びRは同一でも相互に異なっていてもよく、それぞれ独立に炭素数1~9の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000004

(In general formula (2), R 2 , R 3 and R 4 may be the same or different and each independently represents a hydrocarbon group having 1 to 9 carbon atoms.)
[2] 前記一般式(1)中、Rが、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、ブタン-1,2-ジイル基、ブタン―2,3-ジイル基、若しくはブタン-1,4-ジイル基、又はそれらの組み合わせである、[1]に記載のポリアルキレンジオール変性物。 [2] In general formula (1), R 1 is ethane-1,2-diyl group, propane-1,2-diyl group, butane-1,2-diyl group, butane-2,3-diyl group , or a butane-1,4-diyl group, or a combination thereof, the modified polyalkylenediol according to [1].
[3] 前記一般式(1)中、Q及びQが、トリメチルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ブチルジメチルシリル基、オクチルジメチルシリル基、トリエチルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、トリイソプロピルシリル基、トリブチルシリル基、tert-ブチルジメチルシリル基、ジメチルフェニルシリル基、ベンジルジメチルシリル基、メチルジフェニルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、ジ-tert-ブチルイソブチルシリル基、トリシクロヘキシルシリル基、ジシクロヘキシルフェニルシリル基、及びシクロヘキシルジフェニルシリル基から選ばれる1種以上のシリル基である、[1]又は[2]に記載のポリアルキレンジオール変性物。 [3] In the general formula (1), Q 1 and Q 2 are a trimethylsilyl group, an ethyldimethylsilyl group, a dimethylpropylsilyl group, a butyldimethylsilyl group, an octyldimethylsilyl group, a triethylsilyl group, and a dimethylisopropylsilyl group; Diethylisopropylsilyl group, triisopropylsilyl group, tributylsilyl group, tert-butyldimethylsilyl group, dimethylphenylsilyl group, benzyldimethylsilyl group, methyldiphenylsilyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, di- The polyalkylenediol-modified product according to [1] or [2], which is one or more silyl groups selected from a tert-butylisobutylsilyl group, a tricyclohexylsilyl group, a dicyclohexylphenylsilyl group, and a cyclohexyldiphenylsilyl group.
[4] 前記一般式(1)において、Q及びQが、同一のシリル基であるか、又は、2種以上のシリル基の同一の組み合わせである、[1]~[3]のいずれかに記載のポリアルキレンジオール変性物。 [4] Any of [1] to [3], wherein Q 1 and Q 2 are the same silyl group or the same combination of two or more silyl groups in the general formula (1) The modified polyalkylenediol according to 1.
[5] [1]~[4]のいずれかに記載のポリアルキレンジオール変性物を含有する、潤滑油基油。 [5] A lubricating base oil containing the modified polyalkylenediol according to any one of [1] to [4].
[6] [5]に記載の潤滑油基油を含有する、潤滑油組成物。 [6] A lubricating oil composition containing the lubricating base oil according to [5].
 本発明の第1の態様に係る機能性流体であるポリアルキレンジオール変性物は、高粘度指数の潤滑基材として好適に用いることができる。
 本発明の第2の態様に係る潤滑油基油によれば、本発明の第1の態様に係るポリアルキレンジオール変性物を含有することにより、粘度指数を高めることが可能である。
 本発明の第3の態様に係る潤滑油組成物によれば、本発明の第2の態様に係る潤滑油基油を含有することにより、組成物全体での温度-粘度特性を改善することが可能である。
The polyalkylenediol-modified product, which is the functional fluid according to the first aspect of the present invention, can be suitably used as a lubricating base material with a high viscosity index.
According to the lubricating base oil according to the second aspect of the present invention, it is possible to increase the viscosity index by containing the polyalkylenediol-modified product according to the first aspect of the present invention.
According to the lubricating oil composition according to the third aspect of the present invention, by containing the lubricating base oil according to the second aspect of the present invention, the temperature-viscosity characteristics of the entire composition can be improved. It is possible.
 以下、本発明について詳述する。なお本明細書においては、特に断らない限り、数値AおよびBについて「A~B」という表記は「A以上B以下」と等価であるものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。本明細書において、「または」および「もしくは」の語は、特に断りのない限り論理和を意味するものとする。本明細書において、要素EおよびEについて「Eおよび/またはE」という表記は「E、もしくはE、またはそれらの組み合わせ」と等価であり、N個の要素E、…、E、…、E(Nは3以上の整数である。)について「E、…、および/またはE」という表記は「E、…、もしくはE、…、もしくはE、またはそれらの組み合わせ」(iは1<i<Nを満たす全ての整数を値にとる変数である。)と等価である。また本明細書において、「アルカリ土類金属」にはマグネシウムも包含されるものとする。 The present invention will be described in detail below. In this specification, unless otherwise specified, the notation "A to B" for numerical values A and B is equivalent to "A or more and B or less". If a unit is attached only to the numerical value B in such notation, the unit is applied to the numerical value A as well. As used herein, the terms "or" and "or" shall mean a logical sum unless otherwise specified. As used herein, the notation “E 1 and/or E 2 ” for elements E 1 and E 2 is equivalent to “E 1 or E 2 , or a combination thereof” and N elements E 1 , . , E i , . _ _ , or a combination thereof” (i is a variable whose value is all integers satisfying 1<i<N). In this specification, magnesium is also included in the "alkaline earth metal".
 本明細書において、「(メタ)アクリレート」とは、「アクリレートおよび/またはメタクリレート」を意味する。 As used herein, "(meth)acrylate" means "acrylate and/or methacrylate".
 本明細書において、「ジオール」は最も広義に解釈され、2価のアルコールを意味する。別途指定がない限り、「ジオール」中の2つのヒドロキシ基の位置関係は制限されない。 As used herein, "diol" is interpreted in the broadest sense and means a dihydric alcohol. Unless otherwise specified, the positional relationship of the two hydroxy groups in the "diol" is not restricted.
 本明細書において、別途指定のない限り、油中のカルシウム、マグネシウム、亜鉛、リン、硫黄、ホウ素、バリウム、およびモリブデンの各元素の含有量は、JIS K0116に準拠して誘導結合プラズマ発光分光分析法(強度比法(内標準法))により測定されるものとする。また油中の窒素元素の含有量は、JIS K2609に準拠して化学発光法により測定されるものとする。また本明細書において「重量平均分子量」及び「数平均分子量」とは、ゲル浸透クロマトグラフィー(GPC)により測定される標準ポリスチレン換算での重量平均分子量および数平均分子量を意味する。GPCの測定条件は次の通りである。
[GPC測定条件]
装置:Waters Corporation製 ACQUITY(登録商標) APC UV RIシステム
カラム:上流側から順に、Waters Corporation製 ACQUITY(登録商標) APC XT125A(ゲル粒径2.5μm、カラムサイズ(内径×長さ)4.6mm×150mm)1本、および、Waters Corporation製 ACQUITY(登録商標) APC XT45A(ゲル粒径1.7μm、カラムサイズ(内径×長さ)4.6mm×150mm)2本を直列に接続
カラム温度:40℃
試料溶液:試料濃度1.0質量%のテトラヒドロフラン溶液
溶離液:テトラヒドロフラン
溶液注入量:20.0μL
流量:0.7mL/分
検出装置:示差屈折率検出器
基準物質:標準ポリスチレン(Agilent Technologies社製Agilent EasiCal(登録商標) PS-1)10点(分子量:30230、9590、2970、890、786、682、578、474、370、266)
In this specification, unless otherwise specified, the content of each element of calcium, magnesium, zinc, phosphorus, sulfur, boron, barium, and molybdenum in oil is determined by inductively coupled plasma atomic emission spectrometry in accordance with JIS K0116. method (intensity ratio method (internal standard method)). Also, the nitrogen element content in the oil shall be measured by a chemiluminescence method in accordance with JIS K2609. In the present specification, "weight average molecular weight" and "number average molecular weight" mean weight average molecular weight and number average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC). GPC measurement conditions are as follows.
[GPC measurement conditions]
Apparatus: ACQUITY (registered trademark) APC UV RI system manufactured by Waters Corporation Column: ACQUITY (registered trademark) APC XT125A manufactured by Waters Corporation (gel particle size 2.5 μm, column size (inner diameter x length) 4.6 mm, in order from the upstream side) × 150 mm) and two ACQUITY (registered trademark) APC XT45A manufactured by Waters Corporation (gel particle size 1.7 μm, column size (inner diameter × length) 4.6 mm × 150 mm) are connected in series Column temperature: 40 ℃
Sample solution: Tetrahydrofuran solution with a sample concentration of 1.0% by mass Eluent: Tetrahydrofuran solution Injection volume: 20.0 μL
Flow rate: 0.7 mL/min Detector: Differential refractive index detector Reference material: Standard polystyrene (Agilent EasiCal (registered trademark) PS-1 manufactured by Agilent Technologies) 10 points (molecular weight: 30230, 9590, 2970, 890, 786, 682, 578, 474, 370, 266)
 <1.ポリアルキレンジオール変性物>
 本発明の第1の態様に係るポリアルキレンジオール変性物(以下において単に「ポリアルキレンジオール変性物」ということがある。)は、対応するポリアルキレンジオールの数平均分子量が100~8000であるポリアルキレンジオール変性物であって、下記一般式(1)で表される構造を有する。
<1. Modified polyalkylenediol>
The polyalkylenediol-modified product (hereinafter sometimes simply referred to as "polyalkylenediol-modified product") according to the first aspect of the present invention is a polyalkylenediol having a number average molecular weight of 100 to 8,000. It is a diol-modified product and has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、複数のRは同一でも相互に異なっていてもよく、それぞれ独立に、炭素数2~5の直鎖アルキレン基、又は、炭素数3~8の分岐鎖アルキレン基であって主鎖の炭素数が2~5である分岐鎖アルキレン基を表し、Q及びQは同一でも相互に異なっていてもよく、それぞれ独立に下記一般式(2)で表されるシリル基であり、nは2以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(In general formula (1), a plurality of R 1 may be the same or different, and each independently represents a linear alkylene group having 2 to 5 carbon atoms or a branched alkylene group having 3 to 8 carbon atoms. represents a branched alkylene group having a main chain of 2 to 5 carbon atoms, Q 1 and Q 2 may be the same or different and are each independently represented by the following general formula (2) It is a silyl group, and n represents an integer of 2 or more.)
Figure JPOXMLDOC01-appb-C000006


(一般式(2)中、R、R、及びRは同一でも相互に異なっていてもよく、それぞれ独立に炭素数1~9の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000006


(In general formula (2), R 2 , R 3 and R 4 may be the same or different and each independently represents a hydrocarbon group having 1 to 9 carbon atoms.)
 対応するポリアルキレンジオールは、一般式(1)において、Q及びQを水素原子で置き換えることにより得られ、下記一般式(3)で表される。 The corresponding polyalkylenediol is obtained by replacing Q 1 and Q 2 in general formula (1) with hydrogen atoms, and is represented by general formula (3) below.
Figure JPOXMLDOC01-appb-C000007

 対応するポリアルキレンジオールの数平均分子量は、揮発性を低減する観点および耐摩耗性を高める観点から100以上、好ましくは150以上、より好ましくは200以上である。また粘度を低減して省エネルギー性を高める観点から8000以下、好ましくは6000以下、より好ましくは5000以下、一の実施形態において2500以下である。一の実施形態において100~8000、又は150~6000、又は200~5000、又は200~2500であり得る。
Figure JPOXMLDOC01-appb-C000007

The number average molecular weight of the corresponding polyalkylenediol is 100 or more, preferably 150 or more, more preferably 200 or more from the viewpoint of reducing volatility and improving abrasion resistance. From the viewpoint of reducing the viscosity to improve energy saving, it is 8,000 or less, preferably 6,000 or less, more preferably 5,000 or less, and in one embodiment, 2,500 or less. In one embodiment it may be 100-8000, or 150-6000, or 200-5000, or 200-2500.
 あるポリアルキレンジオール変性物が与えられたとき、対応するポリアルキレンジオールの数平均分子量は、次のようにして決定することができる。
 i)シリル基Q、Qを同定する。異なるシリル基の数およびそれらの存在比率は、ポリアルキレンジオール変性物の29Si NMRスペクトルを測定することにより確認することができる。さらに、ポリアルキレンジオール変性物のSi-O結合を開裂させる処理を行い、生じた低分子量のケイ素化合物を単離することにより、シリル基の構造を同定することができる。ポリアルキレンジオール変性物の29Si NMRスペクトルの測定では異なる複数のシリル基の存在比率を決定できない場合には、単離されたそれぞれのケイ素化合物の量から、各シリル基の存在比率を確認することができる。ポリアルキレンジオール変性物のSi-O結合を開裂させる処理は、フッ化物イオン源として作用する試薬(典型的にはフッ化テトラブチルアンモニウム(TBAF)又はHF-ピリジン。)を用いて、アルコールのシリル脱保護と同様の条件(例えばテトラヒドロフラン溶媒中でTBAFを用いて常温で1~5時間反応させる。)により行うことができる。この反応により一般式(3)のシリル基に対応して得られるケイ素化合物は、F-SiRの構造を有する。R~Rの決定は、H NMRスペクトル、及び、必要に応じて13C NMRスペクトル、IRスペクトル、質量分析(MS)等の公知の分析手段により、有機化学分野の常識的な手法に基づいて行うことができる。
 ii)上記i)のSi-O開裂反応(脱保護反応)において同時に得られるポリアルキレンジオールを回収し、その数平均分子量Mn’をGPCにより測定する。測定されたMn’は、対応するポリアルキレンジオールの数平均分子量MnPAGに等しい。
 なお、シリル基Q及びQが同一かつ1種のシリル基である場合には、上記工程ii)に代えて、簡便法として下記工程ii’)を行ってもよい。
 ii’)ポリアルキレンジオール変性物全体の数平均分子量Mn''をGPCにより測定する。測定されたMn''及びシリル基の分子量Msilylに基づいて、対応するポリアルキレンジオールの数平均分子量MnPAGを下記数式(1)により求める。
MnPAG=Mn''-Msilyl+2.016 …(1)
Given a polyalkylenediol modification, the number average molecular weight of the corresponding polyalkylenediol can be determined as follows.
i) Identify the silyl groups Q 1 , Q 2 . The number of different silyl groups and their abundance ratio can be confirmed by measuring the 29 Si NMR spectrum of the polyalkylenediol-modified product. Furthermore, the structure of the silyl group can be identified by subjecting the polyalkylenediol-modified product to cleavage of the Si—O bond and isolating the resulting low-molecular-weight silicon compound. If the abundance ratio of a plurality of different silyl groups cannot be determined by measuring the 29 Si NMR spectrum of the polyalkylenediol-modified product, the abundance ratio of each silyl group should be confirmed from the amount of each isolated silicon compound. can be done. Treatment to cleave the Si—O bond of the polyalkylenediol-modified polyalkylenediol modification involves using a reagent that acts as a source of fluoride ions (typically tetrabutylammonium fluoride (TBAF) or HF-pyridine), silyl alcohol Deprotection can be carried out under the same conditions (for example, using TBAF in a tetrahydrofuran solvent and reacting at room temperature for 1 to 5 hours). The silicon compound obtained by this reaction corresponding to the silyl group of general formula (3) has the structure of F-SiR 3 R 4 R 5 . Determination of R 3 to R 5 can be carried out by a common-sense method in the field of organic chemistry using known analytical means such as 1 H NMR spectrum and, if necessary, 13 C NMR spectrum, IR spectrum, and mass spectrometry (MS). can be done based on
ii) The polyalkylenediol simultaneously obtained in the Si—O cleavage reaction (deprotection reaction) of i) above is recovered, and its number average molecular weight Mn′ is measured by GPC. The measured Mn' is equal to the number average molecular weight Mn PAG of the corresponding polyalkylenediol.
When the silyl groups Q 1 and Q 2 are the same and one type of silyl group, the following step ii′) may be performed as a simple method instead of the above step ii).
ii') The number average molecular weight Mn'' of the entire polyalkylenediol-modified product is measured by GPC. Based on the measured Mn″ and the molecular weight M silyl of the silyl group, the number average molecular weight Mn PAG of the corresponding polyalkylenediol is determined by the following formula (1).
Mn PAG =Mn″−M silyl +2.016 (1)
 一般式(1)において、Rは炭素数2~5の直鎖アルキレン基、又は、炭素数3~8の分岐鎖アルキレン基であって主鎖の炭素数が2~5である分岐鎖アルキレン基である。Rが直鎖アルキレン基であるとき、Rの炭素数は好ましくは2~4である。Rが分岐鎖アルキレン基であるとき、Rの炭素数は好ましくは3~6であり、Rの主鎖の炭素数は好ましくは2~4である。ただしRの炭素数は必ず主鎖の炭素数以上である。本明細書において、Rの主鎖の炭素数は、Rと結合した2つの酸素原子を繋ぐ最短の炭素鎖の炭素数を意味し、Rの命名に用いられる主鎖の選択とは関係なく定まる。例えばRがブタン-1,2-ジイル基であるとき、Rの主鎖の炭素数は2である。Rが直鎖アルキレン基であるとき、Rの主鎖の炭素数はRの炭素数に等しい。Rが分岐鎖アルキレン基であるとき、Rの側鎖は炭素数1~6、好ましくは1~4、より好ましくは1~2の直鎖または分岐鎖アルキル基であり、一の実施形態においてメチル基であり得る。炭素数Y(Yは2~8の整数)のアルキレン基R(主鎖の炭素数はZ(Zは2~5の整数、Y≧Z)である)を有する繰り返し単位ROは、炭素数Yの無置換または置換Z+1員環飽和脂肪族環状エーテルの開環重合により得ることができる。無置換環状エーテルの開環重合はRが直鎖アルキレン基であるアルキレンオキシド繰り返し単位ROを与え、置換環状エーテルの開環重合はRが分岐鎖アルキレン基である繰り返し単位ROを与える。アルキレン基Rの好ましい例としては、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、ブタン-1,2-ジイル基、ブタン-2,3-ジイル基、ペンタン-1,2-ジイル基、ヘキサン-1,2-ジイル基、ヘプタン-1,2-ジイル基、オクタン-1,2-ジイル基、等の主鎖炭素数2のアルキレン基;プロパン-1,3-ジイル基、3-メチルブタン-1,3-ジイル基、2,2-ジメチルプロパン-1,3-ジイル基、等の主鎖炭素数3のアルキレン基;ブタン-1,4-ジイル基、ペンタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基、ヘキサン-1,4-ジイル基、4-メチルペンタン-1,4-ジイル基、ヘキサン-2,5-ジイル基、等の主鎖炭素数4のアルキレン基;並びに、ペンタン-1,5-ジイル基、3―メチルペンタン-1,5-ジイル基、等の主鎖炭素数5のアルキレン基を挙げることができる。Rは単一のアルキレン基であってもよく、2種以上のアルキレン基の組み合わせであってもよい。 In general formula (1), R 1 is a linear alkylene group having 2 to 5 carbon atoms, or a branched alkylene group having 3 to 8 carbon atoms and having a main chain of 2 to 5 carbon atoms. is the base. When R 1 is a linear alkylene group, R 1 preferably has 2 to 4 carbon atoms. When R 1 is a branched alkylene group, R 1 preferably has 3 to 6 carbon atoms and the main chain of R 1 preferably has 2 to 4 carbon atoms. However, the number of carbon atoms in R 1 is always equal to or greater than the number of carbon atoms in the main chain. As used herein, the number of carbon atoms in the main chain of R 1 means the number of carbon atoms in the shortest carbon chain connecting two oxygen atoms bonded to R 1 , and the selection of the main chain used in naming R 1 determined regardless. For example, when R 1 is a butane-1,2-diyl group, the main chain of R 1 has 2 carbon atoms. When R 1 is a linear alkylene group, the number of carbon atoms in the main chain of R 1 is equal to the number of carbon atoms in R 1 . When R 1 is a branched alkylene group, the side chain of R 1 is a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, in one embodiment can be a methyl group. The repeating unit R 1 O having an alkylene group R 1 (the number of carbon atoms in the main chain is Z (Z is an integer of 2 to 5, Y≧Z)) having Y carbon atoms (Y is an integer of 2 to 8), It can be obtained by ring-opening polymerization of an unsubstituted or substituted Z+1-membered saturated aliphatic cyclic ether having Y carbon atoms. Ring-opening polymerization of an unsubstituted cyclic ether gives an alkylene oxide repeating unit R 1 O where R 1 is a linear alkylene group, and ring-opening polymerization of a substituted cyclic ether gives a repeating unit R 1 O where R 1 is a branched alkylene group. give. Preferred examples of the alkylene group R 1 include ethane-1,2-diyl, propane-1,2-diyl, butane-1,2-diyl, butane-2,3-diyl, pentane-1, 2-diyl group, hexane-1,2-diyl group, heptane-1,2-diyl group, octane-1,2-diyl group, and other alkylene groups having a main chain of 2 carbon atoms; propane-1,3-diyl 3-methylbutane-1,3-diyl group, 2,2-dimethylpropane-1,3-diyl group, and other alkylene groups having 3 main chain carbon atoms; butane-1,4-diyl group, pentane-1 ,4-diyl group, 2-methylbutane-1,4-diyl group, hexane-1,4-diyl group, 4-methylpentane-1,4-diyl group, hexane-2,5-diyl group and the like. An alkylene group having a chain carbon number of 4; and an alkylene group having a main chain carbon number of 5 such as a pentane-1,5-diyl group and a 3-methylpentane-1,5-diyl group can be mentioned. R 1 may be a single alkylene group or a combination of two or more alkylene groups.
 一の好ましい実施形態において、アルキレン基Rは、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、ブタン-1,2-ジイル基、ブタン-2,3-ジイル基、若しくはブタン-1,4-ジイル基、又はそれらの組み合わせであり得る。 In one preferred embodiment, the alkylene group R 1 is ethane-1,2-diyl, propane-1,2-diyl, butane-1,2-diyl, butane-2,3-diyl, or butane-1,4-diyl groups, or combinations thereof.
 開環重合によりアルキレンオキシド繰り返し単位ROを与える環状エーテルの好ましい例としては、エチレンオキシド、1,2-プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド、1,2-ペンチレンオキシド、1,2-ヘキシレンオキシド、1,2-ヘプチレンオキシド、1,2-オクチレンオキシド、等の無置換または置換3員環エーテル;オキセタン(トリメチレンオキシド)、2,2-ジメチルオキセタン、3,3-ジメチルオキセタン、等の無置換または置換4員環エーテル;テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、2-エチルテトラヒドロフラン、2,2-ジメチルテトラヒドロフラン、2,5-ジメチルテトラヒドロフラン、等の無置換または置換5員環エーテル;並びに、テトラヒドロピラン、4-メチルテトラヒドロピラン、等の無置換または置換6員環エーテルを挙げることができる。アルキレンオキシド繰り返し単位ROは1種の環状エーテルに対応する繰り返し単位からなっていてもよく、2種以上の環状エーテルに対応する繰り返し単位の組み合わせであってもよい。 Preferable examples of cyclic ethers that give alkylene oxide repeating units R 1 O by ring-opening polymerization include ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide and 1,2-pentylene. unsubstituted or substituted 3-membered ring ethers such as oxide, 1,2-hexylene oxide, 1,2-heptylene oxide, 1,2-octylene oxide; oxetane (trimethylene oxide), 2,2-dimethyl Unsubstituted or substituted 4-membered ring ethers such as oxetane, 3,3-dimethyloxetane, etc.; and unsubstituted or substituted 5-membered ring ethers such as , and unsubstituted or substituted 6-membered ring ethers such as tetrahydropyran and 4-methyltetrahydropyran. The alkylene oxide repeating unit R 1 O may consist of repeating units corresponding to one type of cyclic ether, or may be a combination of repeating units corresponding to two or more types of cyclic ethers.
 一般式(1)において、nは2以上の整数である。通常、nは分布を有し、nの分布に対応して数平均分子量が定まる。 In general formula (1), n is an integer of 2 or more. Normally, n has a distribution, and the number average molecular weight is determined according to the distribution of n.
 一般式(2)において、R、R、及びRは同一でも相互に異なっていてもよく、それぞれ独立に炭素数1~9の炭化水素基である。炭化水素基の好ましい例としては、アルキル基(環構造を有していてもよい。)、アリール基、アルキルアリール基、アリールアルキル基、等を挙げることができる。 In general formula (2), R 2 , R 3 and R 4 may be the same or different and each independently represents a hydrocarbon group having 1 to 9 carbon atoms. Preferred examples of hydrocarbon groups include alkyl groups (which may have a ring structure), aryl groups, alkylaryl groups, and arylalkyl groups.
 R~Rについて、アルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよく、環構造を有していてもよい。炭素数1~9の鎖式アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、1-エチルプロピル基、ヘキシル基、イソヘキシル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、及びノニル基を挙げることができる。アルキル基が有し得る環構造の例としては、シクロペンチル環、シクロヘキシル環、シクロヘプチル環等の炭素数5~7のシクロアルキル環を挙げることができる。シクロアルキル環はさらにアルキル置換基及び/又はアルキレン置換基を有していてもよく、それらのシクロアルキル環上の置換位置は任意である。環構造を有する炭素数1~9のアルキル基の好ましい例としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、メチルシクロペンチル基、シクロペンチルメチル基、メチルシクロヘキシル基、シクロヘキシルメチル基、等を挙げることができる。 For R 2 to R 4 , the alkyl group may be a straight-chain alkyl group, a branched-chain alkyl group, or may have a ring structure. Examples of chain alkyl groups having 1 to 9 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1 -ethylpropyl group, hexyl group, isohexyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, octyl group, isooctyl group, 2 -ethylhexyl group, and nonyl group. Examples of the ring structure that the alkyl group may have include cycloalkyl rings having 5 to 7 carbon atoms such as cyclopentyl ring, cyclohexyl ring and cycloheptyl ring. The cycloalkyl ring may further have alkyl substituents and/or alkylene substituents, and their substitution positions on the cycloalkyl ring are arbitrary. Preferred examples of the alkyl group having 1 to 9 carbon atoms and having a ring structure include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a methylcyclopentyl group, a cyclopentylmethyl group, a methylcyclohexyl group, a cyclohexylmethyl group, and the like. .
 R~Rについて、炭素数1~9のアリール基、アルキルアリール基、及びアリールアルキル基の例としては、フェニル基、トリル基、キシリル基、メシチル基、クミル基、及びベンジル基を挙げることができる。 Examples of aryl, alkylaryl and arylalkyl groups having 1 to 9 carbon atoms for R 2 to R 4 are phenyl, tolyl, xylyl, mesityl, cumyl and benzyl. can be done.
 Q及びQについて、一般式(2)で表されるシリル基の好ましい例としては、トリメチルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ブチルジメチルシリル基、オクチルジメチルシリル基、トリエチルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、トリイソプロピルシリル基、トリブチルシリル基、tert-ブチルジメチルシリル基、ジメチルフェニルシリル基、ベンジルジメチルシリル基、メチルジフェニルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、ジ-tert-ブチルイソブチルシリル基、トリシクロヘキシルシリル基、ジシクロヘキシルフェニルシリル基、及びシクロヘキシルジフェニルシリル基、等を挙げることができる。
 一の実施形態において、Q及びQとしては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、ジメチルフェニルシリル基、及びtert-ブチルジフェニルシリル基から選ばれる1種以上のシリル基を好ましく採用できる。
Preferred examples of the silyl group represented by the general formula (2) for Q 1 and Q 2 include a trimethylsilyl group, an ethyldimethylsilyl group, a dimethylpropylsilyl group, a butyldimethylsilyl group, an octyldimethylsilyl group, and a triethylsilyl group. , dimethylisopropylsilyl group, diethylisopropylsilyl group, triisopropylsilyl group, tributylsilyl group, tert-butyldimethylsilyl group, dimethylphenylsilyl group, benzyldimethylsilyl group, methyldiphenylsilyl group, tert-butyldiphenylsilyl group, tri phenylsilyl group, di-tert-butylisobutylsilyl group, tricyclohexylsilyl group, dicyclohexylphenylsilyl group, cyclohexyldiphenylsilyl group, and the like.
In one embodiment, Q 1 and Q 2 are one selected from a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group, a dimethylphenylsilyl group, and a tert-butyldiphenylsilyl group. The above silyl groups can be preferably employed.
 一の実施形態において、Q及びQは、同一かつ1種のシリル基であり得る。そのようなポリアルキレンジオール変性物は、後述する製造方法においてシリル化剤として1種のシリル化剤を単独で用いることにより得ることができる。他の一の実施形態において、Q及びQは、2種以上のシリル基の同一の組み合わせであり得る。そのようなポリアルキレンジオール変性物は、後述する製造方法においてシリル化剤として2種以上のシリル化剤を組み合わせて用いることにより得ることができる。 In one embodiment, Q 1 and Q 2 can be the same and one silyl group. Such a polyalkylenediol-modified product can be obtained by using a single silylating agent as a silylating agent in the production method described below. In another embodiment, Q 1 and Q 2 can be the same combination of two or more silyl groups. Such a polyalkylenediol-modified product can be obtained by using a combination of two or more silylating agents as the silylating agent in the production method described below.
 (製造)
 本発明のポリアルキレンジオール変性物は、一般的な第1級または第2級アルコールのシリル保護と同様に、対応するポリアルキレンジオールと、一般式(2)のシリル基に対応するシリル化剤(X-SiR)とから、例えば下記一般式(4)で表される反応により製造することができる。シリル化剤としては1種のシリル化剤を単独で用いてもよく、2種以上のシリル化剤を組み合わせて用いてもよい。例えばシリル基Aに対応するシリル化剤A’と、シリル基Bに対応するシリル化剤B’とを組み合わせて用いた場合に得られるポリアルキレンジオール変性物(シリル化生成物)は、一般式(1)においてQ及びQの両方がシリル基Aであるポリアルキレンジオール変性物と、Q及びQの両方がシリル基Bであるポリアルキレンジオール変性物と、Q及びQの一方がシリル基A、他方がシリル基Bであるポリアルキレンジオール変性物との混合物である。またシリル基Aに対応するシリル化剤A’を単独で用いてQ及びQの両方がシリル基Aである第1のポリアルキレンジオール変性物を製造し、シリル基Bに対応するシリル化剤B’を単独で用いてQ及びQの両方がシリル基Bである第2のポリアルキレンジオール変性物を製造し、任意的に他の1種以上のシリル基C(、D、…)に対応するシリル化剤C’(、D’、…)を同様にそれぞれ単独で用いて1種以上のポリアルキレンジオール変性物をそれぞれ製造した後、製造したこれらの2種以上のポリアルキレンジオール変性物を混合することにより、QとQとが同一のシリル基である2種以上のポリアルキレンジオール変性物の混合物を得てもよい。
(Manufacturing)
In the polyalkylenediol-modified product of the present invention, the corresponding polyalkylenediol and a silylating agent corresponding to the silyl group of general formula (2) ( X 1 -SiR 2 R 3 R 4 ), for example, by the reaction represented by the following general formula (4). As the silylating agent, one silylating agent may be used alone, or two or more silylating agents may be used in combination. For example, a polyalkylenediol-modified product (silylation product) obtained by using a combination of a silylating agent A' corresponding to a silyl group A and a silylating agent B' corresponding to a silyl group B has the general formula In (1), a polyalkylenediol-modified product in which both Q1 and Q2 are silyl groups A, a polyalkylenediol-modified product in which both Q1 and Q2 are silyl groups B, and Q1 and Q2 It is a mixture with a modified polyalkylenediol in which one is a silyl group A and the other is a silyl group B. In addition, the silylating agent A' corresponding to the silyl group A is used alone to produce a first polyalkylenediol-modified product in which both Q1 and Q2 are silyl groups A, and the silylating agent corresponding to the silyl group B is prepared. Agent B′ is used alone to prepare a second polyalkylenediol modification in which both Q 1 and Q 2 are silyl groups B and optionally one or more other silyl groups C (, D, . . . ) corresponding to the silylating agent C′ (, D′, . By mixing modified products, a mixture of two or more polyalkylenediol-modified products in which Q 1 and Q 2 are the same silyl group may be obtained.
Figure JPOXMLDOC01-appb-C000008
 一般式(4)中、R~R及びnは上記一般式(1)~(3)における定義の通りである。Xはシリル化剤の脱離基を表す。Xの好ましい例としては、-Cl基、-Br基、及び-I基等のハロゲノ基、及びトリフルオロメタンスルホニルオキシ基(-OTf基)等を挙げることができる。一般式(4)中、「base」はポリアルキレンジオールの末端ヒドロキシ基とSi-Xとから生じる酸H-Xを中和する、又はヒドロキシ基を脱プロトン化するための塩基である。塩基の好ましい例としては、トリエチルアミン、ジイソプロピルエチルアミン、イミダゾール、N-メチルイミダゾール、ピリジン、及び2,6-ルチジン等のアミン類;水素化リチウム、水素化ナトリウム、水素化カリウム、等の金属水素化物;アルキルリチウム、Grignard試薬等の有機金属化合物;並びに、金属リチウム、金属ナトリウム、金属カリウム、金属カルシウム、等の活性金属を挙げることができる。
Figure JPOXMLDOC01-appb-C000008
In general formula (4), R 1 to R 4 and n are as defined in general formulas (1) to (3) above. X 1 represents a leaving group of the silylating agent. Preferred examples of X 1 include halogeno groups such as -Cl group, -Br group and -I group, trifluoromethanesulfonyloxy group (-OTf group) and the like. In general formula (4), “base” is a base for neutralizing the acid H—X generated from the terminal hydroxy group of the polyalkylenediol and Si—X, or for deprotonating the hydroxy group. Preferred examples of bases include amines such as triethylamine, diisopropylethylamine, imidazole, N-methylimidazole, pyridine, and 2,6-lutidine; metal hydrides such as lithium hydride, sodium hydride, potassium hydride; organometallic compounds such as alkyllithiums and Grignard reagents; and active metals such as metallic lithium, metallic sodium, metallic potassium, and metallic calcium.
一般式(4)の反応は非プロトン性の溶媒中で又は無溶媒で行うことができる。溶媒の例としては、ベンゼン、トルエン、キシレン、ヘキサン、石油エーテル、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒;ジクロロメタン、クロロホルム、四塩化炭素、クロロベンゼン、ジクロロベンゼン等のハロゲン系炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、4-メチルテトラヒドロピラン等のエーテル系溶媒;トリエチルアミン、ピリジン等の塩基を兼ねられるアミン系溶媒;並びに、ジメチルスルホキシド、アセトニトリル、N,N-ジメチルホルムアミド等の非プロトン性有機溶媒を挙げることができる。溶媒としては、原料ポリアルキレンジオール及びシリル化生成物の両方を溶解できる溶媒を用いることが好ましい。 The reaction of general formula (4) can be carried out in an aprotic solvent or without solvent. Examples of solvents include hydrocarbon solvents such as benzene, toluene, xylene, hexane, petroleum ether, cyclohexane, and methylcyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform, carbon tetrachloride, chlorobenzene, and dichlorobenzene; Ether solvents such as tetrahydrofuran and 4-methyltetrahydropyran; amine solvents that also serve as bases such as triethylamine and pyridine; and aprotic organic solvents such as dimethylsulfoxide, acetonitrile and N,N-dimethylformamide. can. As the solvent, it is preferable to use a solvent capable of dissolving both the starting polyalkylenediol and the silylated product.
 一般式(4)の反応は、シリル化反応として公知の手順により行うことができる。例えば、ポリアルキレンジオールの溶液に塩基を添加混合した後、反応混合物にシリル化剤を添加混合することによりシリル化反応を行うことができる。シリル化剤の添加混合は、例えば、低温(例えば0℃)のポリアルキレンジオール溶液と塩基との混合物に、シリル化剤又はその溶液を滴下することにより行うことができる。反応混合物にシリル化剤を加えた後は、低温または常温で一定時間(例えば0.01~100時間)反応混合物を撹拌することによりシリル化反応を進行させることができる。なおシリル化剤の反応性はポリアルキレンジオールの構造および/またはケイ素原子上の置換基R~Rに依存して異なる。常温で反応の進行が遅い場合には、より高い温度(例えば溶媒の還流条件)で反応を行うことが好ましい。 The reaction of general formula (4) can be carried out by a known procedure as a silylation reaction. For example, a silylation reaction can be carried out by adding and mixing a base to a solution of a polyalkylenediol and then adding and mixing a silylating agent to the reaction mixture. Addition and mixing of the silylating agent can be performed, for example, by dropping the silylating agent or its solution into a mixture of the polyalkylenediol solution and the base at a low temperature (for example, 0°C). After adding the silylating agent to the reaction mixture, the silylation reaction can be allowed to proceed by stirring the reaction mixture at a low temperature or normal temperature for a certain period of time (for example, 0.01 to 100 hours). The reactivity of the silylating agent varies depending on the structure of the polyalkylenediol and/or the substituents R 2 to R 4 on the silicon atom. When the progress of the reaction is slow at room temperature, it is preferable to carry out the reaction at a higher temperature (for example, reflux conditions for the solvent).
 一般式(4)の反応においては、ポリアルキレンジオールのヒドロキシ基1molに対し、例えば塩基1~10mol、及び、シリル化剤0.5~2mol、好ましくは1.0~1.2molを用いることができる。なおヒドロキシ基の当量未満のシリル化剤を用いた際は、ポリアルキレンジオールの両末端のヒドロキシ基がシリル化された完全シリル化物とともに、ポリアルキレンジオールの片末端のヒドロキシ基のみがシリル化された部分シリル化物が生成する。またシリル化反応の反応性によって、完全シリル化物とともに部分シリル化物が生成することもあるが、完全シリル化物と部分シリル化物とを含む混合物をそのまま使用することも可能である。 In the reaction of general formula (4), for example, 1 to 10 mol of a base and 0.5 to 2 mol, preferably 1.0 to 1.2 mol of a silylating agent can be used per 1 mol of the hydroxy group of the polyalkylenediol. can. When the silylating agent was used in an amount less than the equivalent of the hydroxy group, only the hydroxy group at one end of the polyalkylenediol was silylated together with the completely silylated product in which the hydroxy groups at both ends of the polyalkylenediol were silylated. A partial silylation product is formed. Depending on the reactivity of the silylation reaction, a partially silylated product may be produced together with a fully silylated product, but a mixture containing a fully silylated product and a partially silylated product may be used as it is.
 反応終了後の後処理は、一般的なアルコールのシリル化反応と同様に行ってもよい。未反応のシリル化剤は、水処理またはアルコール処理によりクエンチすることができる。シリル化生成物は、末端ヒドロキシ基がシリルエーテルに変換されたことにより疎水性が向上している。したがって反応後の混合物を水で洗浄することにより、反応混合物中の塩(例えば、塩基がトリエチルアミンであり、シリル化剤の脱離基Xが-Cl基である場合にはトリエチルアミン塩酸塩。)並びにシリル化が不完全なポリアルキレンジオール(すなわち、シリル化されていない未反応のポリアルキレンジオール、及び、ポリアルキレンジオールの片末端のヒドロキシ基のみがシリル化された部分シリル化物。)を除去して、シリル化生成物の有機溶媒溶液を得ることができる。
 ただし、原料ポリアルキレンジオールの繰り返し単位に占めるポリエチレンオキシド繰り返し単位の割合が高い場合(すなわちアルキレン基Rに占めるエタン-1,2-ジイル基の割合が高い場合)には、反応混合物を水と混合した際にシリル化生成物が有機層から水層に移行して、収率が低下する場合がある。そのような場合には、水を使わない後処理によりシリル化生成物を回収することが可能である。具体的には、原料ポリアルキレンジオールを溶解するためにある程度の極性を有する溶媒(例えばトルエン等。)を用いて反応を行った後、必要に応じて残存する未反応のシリル化剤をアルコール(例えばメタノールやエタノール等。)で処理し、スラリー状の反応混合物に疎水性溶媒(例えばヘキサン、石油エーテル、シクロヘキサン、ベンゼン、さらなるトルエン等の炭化水素溶媒。)を加えて沈殿した塩を濾別により除去することにより、シリル化生成物の有機溶媒溶液を得ることができる。
 得られたシリル化生成物の有機溶媒溶液から有機溶媒を(例えば減圧条件下で)留去することにより、シリル化生成物を分離できる。
Post-treatment after completion of the reaction may be carried out in the same manner as in general alcohol silylation reactions. Unreacted silylating agent can be quenched by water or alcohol treatment. The silylated products have improved hydrophobicity due to the conversion of the terminal hydroxy groups to silyl ethers. Therefore, by washing the reaction mixture with water, the salt in the reaction mixture (for example, triethylamine hydrochloride when the base is triethylamine and the leaving group X 1 of the silylating agent is a —Cl group). and incompletely silylated polyalkylenediol (that is, unreacted polyalkylenediol that is not silylated, and a partially silylated product in which only the hydroxy group at one end of the polyalkylenediol is silylated) are removed. to obtain an organic solvent solution of the silylated product.
However, when the ratio of polyethylene oxide repeating units in the repeating units of the starting polyalkylenediol is high (that is, when the ratio of ethane-1,2-diyl groups in the alkylene groups R 1 is high), the reaction mixture is mixed with water. When mixed, the silylated product may migrate from the organic layer to the aqueous layer, reducing the yield. In such cases, it is possible to recover the silylated product by a waterless workup. Specifically, after the reaction is carried out using a solvent having a certain degree of polarity (for example, toluene, etc.) in order to dissolve the raw material polyalkylenediol, the remaining unreacted silylating agent is removed with an alcohol ( For example, methanol, ethanol, etc.), a hydrophobic solvent (e.g., hexane, petroleum ether, cyclohexane, benzene, further a hydrocarbon solvent such as toluene) is added to the slurry reaction mixture, and the precipitated salt is filtered off. By removing, an organic solvent solution of the silylated product can be obtained.
The silylated product can be separated by distilling off the organic solvent (for example, under reduced pressure) from the obtained organic solvent solution of the silylated product.
 (物性)
 本発明のポリアルキレンジオール変性物は、末端ヒドロキシ基がシリルエーテルに変換されていることにより、シリル化されていない対応するポリアルキレンジオールよりも向上した粘度指数を有しているので、高粘度指数の潤滑基材として好ましく用いることができる。
(physical properties)
The polyalkylene diol modifications of the present invention have improved viscosity indexes over the corresponding non-silylated polyalkylene diols due to the conversion of the terminal hydroxy groups to silyl ethers, resulting in high viscosity index can be preferably used as a lubricating base material.
 また本発明のポリアルキレンジオール変性物は従来の鉱油系基油およびポリα-オレフィン基油、並びに従来の汎用の高粘度指数潤滑基材であるシリコーンオイル(ポリジメチルシロキサン)よりも高い極性を有するため、極性を有する添加剤の溶解性において有利である。さらに従来のエステル系合成基油はエステル結合のカルボニル炭素が求核攻撃を受けやすいのに対し、本発明のポリアルキレンジオール変性物が有するエーテル結合及びシリルエーテル結合は塩基性条件下での求核攻撃に対してエステル結合よりも頑強である。したがって本発明のポリアルキレンジオール変性物によれは、その求核性のために従来のエステル系合成基油と組み合わせて用いることが難しかった添加剤との組み合わせが可能になり得る。 In addition, the polyalkylenediol-modified product of the present invention has higher polarity than conventional mineral oil-based base oils and poly-α-olefin base oils, and silicone oil (polydimethylsiloxane), which is a conventional general-purpose high viscosity index lubricating base material. Therefore, it is advantageous in terms of solubility of polar additives. Furthermore, in conventional ester-based synthetic base oils, the carbonyl carbon of the ester bond is susceptible to nucleophilic attack, whereas the ether bond and silyl ether bond of the polyalkylenediol-modified product of the present invention are nucleophilic under basic conditions. It is more robust against attack than an ester bond. Therefore, the polyalkylenediol-modified product of the present invention can be combined with additives that have been difficult to use in combination with conventional ester-based synthetic base oils due to their nucleophilicity.
 本発明のポリアルキレンジオール変性物は、対応するポリアルキレンジオールよりも向上した粘度指数を有する。一般に嵩高いシリル基ほどシリルエーテル結合の化学的な安定性は高いので、想定される用途に必要な安定性および粘度指数を考慮してシリル基を選択することができる。ポリアルキレンジオール変性物の具体的な粘度指数は、例えば100~300、一の実施形態において150~300であり得る。 The modified polyalkylenediol of the present invention has a viscosity index improved over that of the corresponding polyalkylenediol. Generally, the bulkier the silyl group, the higher the chemical stability of the silyl ether bond, so the silyl group can be selected in consideration of the stability and viscosity index required for the intended use. A specific viscosity index of the polyalkylenediol modification can be, for example, 100-300, and in one embodiment 150-300.
 上記説明したように、本発明のポリアルキレンジオール変性物は、ポリアルキレンジオールのヒドロキシ基をシリル化することにより製造できる。本発明のポリアルキレンジオール変性物の動粘度は、対応するポリアルキレンジオールの動粘度、及び、シリル基(一般式(1)中のQ及びQ)に依存して異なり得る。対応するポリアルキレンジオールの動粘度が高いほど、得られるポリアルキレンジオール変性物の動粘度も高くなる傾向にある。また、対応するポリアルキレンジオールが同一であれば、シリル基が嵩高いほど、ポリアルキレンジオール変性物の動粘度は増大する傾向にある。所望の動粘度および粘度指数を有するポリアルキレンジオール変性物を得るために、原料のポリアルキレンジオールとして2種以上のポリアルキレンジオールの混合物を用いてもよい。また、所望の動粘度および粘度指数を有するポリアルキレンジオール変性物を得るために、2種以上のポリアルキレンジオール変性物を混合してもよい。 As explained above, the modified polyalkylenediol of the present invention can be produced by silylating the hydroxy groups of the polyalkylenediol. The kinematic viscosity of the polyalkylenediol-modified product of the present invention can vary depending on the kinematic viscosity of the corresponding polyalkylenediol and the silyl groups (Q 1 and Q 2 in general formula (1)). The higher the kinematic viscosity of the corresponding polyalkylenediol, the higher the kinematic viscosity of the resulting polyalkylenediol-modified product. Further, if the corresponding polyalkylenediol is the same, the kinematic viscosity of the polyalkylenediol-modified product tends to increase as the silyl group is bulkier. A mixture of two or more polyalkylenediols may be used as the starting polyalkylenediol in order to obtain a polyalkylenediol-modified product having the desired kinematic viscosity and viscosity index. In addition, two or more polyalkylenediol-modified products may be mixed in order to obtain a polyalkylenediol-modified product having a desired kinematic viscosity and viscosity index.
 <2.潤滑油基油>
 本発明の第2の態様に係る潤滑油基油(以下において単に「潤滑油基油」ということがある。)は、上記本発明の第1の態様に係るポリアルキレンジオール変性物(以下において「(a)成分」ということがある。)を含む。潤滑油基油は、1種のポリアルキレンジオール変性物を単独で含んでもよく、2種以上のポリアルキレンジオール変性物を含んでもよい。一の実施形態において、潤滑油基油は、1種以上のポリアルキレンジオール変性物からなる。潤滑油基油は、さらに不純物として、ポリアルキレンジオール変性物の精製過程で取り除かれなかった、シリル化が不完全なポリアルキレンジオールを含んでもよい。シリル化が不完全なポリアルキレンジオールの例としては、シリル化されていないポリアルキレンジオール、及び片末端のヒドロキシ基のみがシリル化されたポリアルキレンジオール(部分シリル化物)を挙げることができる。一の実施形態において、これらのシリル化が不完全なポリアルキレンジオールの含有量は、ポリアルキレンジオール変性物100質量部あたり例えば50質量部未満、又は30質量部未満であり得る。シリル化が不完全なポリアルキレンジオールの含有量は、後述する条件下での13C NMRによって測定することが可能である。一の実施形態において、ポリアルキレンジオールのシリル化されていないヒドロキシ基の含有量は、ポリアルキレンジオール変性物のシリル基1molあたり例えば0.5mol未満、又は0.3mol未満であり得る。
 一の実施形態において、潤滑油基油は、ポリアルキレンジオール変性物以外の1種以上の基油成分をさらに含んでもよい。そのような他の基油成分としては、鉱油系基油、若しくは従来の合成系基油、又はそれらの組み合わせを用いることができる。
<2. Lubricant base oil>
The lubricating base oil according to the second aspect of the present invention (hereinafter sometimes simply referred to as "lubricating base oil") is the polyalkylenediol-modified product according to the first aspect of the present invention (hereinafter referred to as " (a) may be referred to as "component"). The lubricating base oil may contain one polyalkylenediol-modified product alone, or may contain two or more polyalkylenediol-modified products. In one embodiment, the lubricating base oil consists of one or more polyalkylenediol modifications. The lubricating base oil may further contain as an impurity an incompletely silylated polyalkylenediol that was not removed during the refining process of the modified polyalkylenediol. Examples of incompletely silylated polyalkylene diols include non-silylated polyalkylene diols and polyalkylene diols in which only one terminal hydroxy group is silylated (partially silylated product). In one embodiment, the content of these incompletely silylated polyalkylenediols can be, for example, less than 50 parts by weight, or less than 30 parts by weight per 100 parts by weight of polyalkylenediol modification. The content of incompletely silylated polyalkylenediol can be measured by 13 C NMR under the conditions described below. In one embodiment, the content of non-silylated hydroxy groups of the polyalkylenediol can be, for example, less than 0.5 mol, or less than 0.3 mol, per mol of silyl groups of the polyalkylenediol modification.
In one embodiment, the lubricating base oil may further comprise one or more base oil components other than the polyalkylenediol modified product. Such other base oil components can be mineral base oils, conventional synthetic base oils, or combinations thereof.
 一の実施形態において、鉱油系基油の例としては、原油を常圧蒸留および/または減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、水素化異性化、溶剤脱ろう、接触脱ろう、溶剤精製、水素化精製、薬品洗浄、白土処理等の精製処理から選ばれる1種または2種以上の組み合わせにより精製したパラフィン系鉱油、ノルマルパラフィン系基油、イソパラフィン系基油、及びナフテン系基油、ならびにこれらの混合物などを挙げることができる。 In one embodiment, examples of mineral base oils include solvent deasphalting, solvent extraction, hydrocracking, hydroisomerization, and hydroisomerization of lubricating oil fractions obtained by atmospheric distillation and/or vacuum distillation of crude oil. Paraffinic mineral oil, normal paraffinic base oil, refined by one or a combination of two or more selected from refining treatments such as dewaxing, solvent dewaxing, catalytic dewaxing, solvent refining, hydrorefining, chemical washing, clay treatment, etc. Isoparaffinic base oils, naphthenic base oils, mixtures thereof, and the like can be mentioned.
 一の実施形態において、鉱油系基油の好ましい例としては、下記(1)~(8)のいずれかを原料油として用いて、当該原料油および/または当該原料油から回収された潤滑油留分を、精製することによって得られる基油を挙げることができる。
(1)パラフィン基系原油および/または混合基系原油の常圧蒸留による留出油
(2)パラフィン基系原油および/または混合基系原油の常圧蒸留残渣油の減圧蒸留による留出油(WVGO)
(3)潤滑油脱ろう工程により得られるワックス(スラックワックス等)、および/または、フィッシャー・トロプシュ(Fischer-Tropsch;FT)プロセス(例えばガス・トゥ・リキッド(Gas-to-Liquid;GTL)プロセス等)により得られる合成ワックス(例えばGTLワックス等のFTワックス)、エチレンのオリゴマー化によって得られる合成ワックス
(4)原料油(1)、(2)、若しくは(3)、又はそれらの混合物のマイルドハイドロクラッキング処理油
(5)原料油(1)~(4)から選ばれる2種以上の混合油
(6)原料油(1)、(2)、(3)、(4)または(5)の脱れき油(DAO)
(7)原料油(6)のマイルドハイドロクラッキング処理油(MHC)
(8)原料油(1)~(7)から選ばれる2種以上の混合油
In one embodiment, preferred examples of the mineral base oil include any one of the following (1) to (8) as a raw material oil, and / or a lubricating oil distillate recovered from the raw material oil Base oils obtained by refining fractions may be mentioned.
(1) Distillate oil obtained by atmospheric distillation of paraffin-based crude oil and/or mixed-base crude oil (2) Distillate oil obtained by vacuum distillation of atmospheric distillation residue oil of paraffin-based crude oil and/or mixed-base crude oil ( WVGO)
(3) Waxes (such as slack waxes) obtained by lubricating oil dewaxing processes and/or Fischer-Tropsch (FT) processes (e.g. Gas-to-Liquid (GTL) processes etc.) (for example, FT wax such as GTL wax), synthetic wax obtained by oligomerization of ethylene (4) feed oil (1), (2), or (3), or a mild mixture thereof Hydrocracked oil (5) Mixed oil of two or more selected from feedstock oils (1) to (4) (6) Feedstock oil (1), (2), (3), (4) or (5) Deasphalted oil (DAO)
(7) Mild hydrocracking treated oil (MHC) of raw material oil (6)
(8) Mixed oil of two or more selected from raw materials (1) to (7)
 鉱油系基油の特に好ましい例としては、上記(1)~(8)から選ばれる原料油または当該原料油から回収された潤滑油留分について、所定の処理を行うことにより得られる下記(9)又は(10)の基油を挙げることができる。
(9)上記(1)~(8)から選ばれる原料油または当該原料油から回収された潤滑油留分を水素化分解し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または当該脱ろう処理をした後に蒸留することによって得られる水素化分解基油
(10)上記(1)~(8)から選ばれる原料油または当該原料油から回収された潤滑油留分を水素化異性化し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または、当該脱ろう処理をした後に蒸留することによって得られる水素化異性化基油。脱ろう工程としては接触脱ろう工程を経て製造された基油が好ましい。
A particularly preferred example of the mineral base oil is the following (9 ) or the base oil of (10).
(9) Hydrocracking the raw material oil selected from (1) to (8) above or the lubricating oil fraction recovered from the raw material oil, and the product or lubricating oil recovered from the product by distillation or the like Hydrocracking base oil (10) obtained by subjecting the fraction to dewaxing treatment such as solvent dewaxing or catalytic dewaxing, or by distillation after the dewaxing treatment (10) selected from the above (1) to (8) The raw oil or the lubricating oil fraction recovered from the raw oil is hydroisomerized, and the product or the lubricating oil fraction recovered from the product by distillation or the like is subjected to dewaxing such as solvent dewaxing or catalytic dewaxing. A hydroisomerized base oil obtained by performing a waxing treatment or by distillation after the dewaxing treatment. As the dewaxing step, a base oil produced through a catalytic dewaxing step is preferred.
 また、上記(9)又は(10)の鉱油系基油を得るに際して、必要に応じて溶剤精製処理および/または水素化仕上げ処理工程を、適当な段階で更に行ってもよい。 In addition, when obtaining the mineral base oil of (9) or (10) above, a solvent refining treatment and/or hydrofinishing treatment step may be further performed at an appropriate stage, if necessary.
 一の実施形態において、鉱油系基油としては、API基油分類のグループI基油(以下において「APIグループI基油」ということがある。)、グループII基油(以下において「APIグループII基油」ということがある。)、若しくはグループIII基油(以下において「APIグループIII基油」ということがある。)、又はそれらの組み合わせを用いることができる。API基油分類については前述の通りである。APIグループI基油は通常、溶剤精製プロセスを経て製造され、APIグループII基油およびグループIII基油は通常、水素化分解プロセスを経て製造される。なお本明細書において、粘度指数とは、JIS K 2283-2000に準拠して測定された粘度指数を意味する。また本明細書において「潤滑油基油中の硫黄分の含有量」は、JIS K 2541-2003に準拠して測定されるものとする。また本明細書において「潤滑油基油中の飽和分の含有量」は、ASTM D 2007-93に準拠して測定された値を意味する。 In one embodiment, the mineral base oil includes Group I base oil of API base oil classification (hereinafter sometimes referred to as "API Group I base oil"), Group II base oil (hereinafter referred to as "API Group II Group III base oils (hereinafter sometimes referred to as "API Group III base oils"), or combinations thereof can be used. The API base oil classification is as described above. API Group I base oils are typically produced via solvent refining processes, and API Group II and Group III base oils are typically manufactured via hydrocracking processes. As used herein, the viscosity index means a viscosity index measured according to JIS K 2283-2000. Also, in this specification, the "sulfur content in the lubricating base oil" shall be measured in accordance with JIS K 2541-2003. In addition, the "content of saturates in the lubricating base oil" as used herein means the value measured according to ASTM D 2007-93.
 従来の合成系基油としては、API基油分類グループIV基油(ポリα-オレフィン基油、以下において「APIグループIV基油」ということがある。)、若しくは従来のAPI基油分類グループV基油(以下において「APIグループV基油」ということがある。)、又はそれらの組み合わせを用いることができる。 Conventional synthetic base oils include API base oil classification group IV base oils (poly-α-olefin base oils, hereinafter sometimes referred to as "API group IV base oils"), or conventional API base oil classification group V Base oils (hereinafter sometimes referred to as "API Group V base oils") or combinations thereof can be used.
 潤滑油基油中の(a)成分の含有量は特に制限されるものではないが、潤滑油基油全量基準で例えば1~100質量%、又は5~100質量%、又は10~100質量%、又は20~100質量%、又は50~100質量%、又は80~100質量%であり得る。 The content of the component (a) in the lubricating base oil is not particularly limited, but for example, 1 to 100% by mass, or 5 to 100% by mass, or 10 to 100% by mass based on the total amount of the lubricating base oil , or 20-100% by weight, or 50-100% by weight, or 80-100% by weight.
 <3.潤滑油組成物>
 本発明の第3の態様に係る潤滑油組成物(以下において単に「潤滑油組成物」ということがある。)は、上記本発明の第2の態様に係る潤滑油基油(以下において「(A)成分」ということがある。)を含む。一の実施形態において、潤滑油組成物は、(A)成分からなるものであってもよい。他の一の実施形態において、潤滑油組成物は、(A)成分と、1種以上の添加剤とを含み得る。
<3. Lubricating Oil Composition>
The lubricating oil composition according to the third aspect of the present invention (hereinafter sometimes simply referred to as "lubricating oil composition") is the lubricating base oil according to the second aspect of the present invention (hereinafter referred to as "( A) may be referred to as “component”). In one embodiment, the lubricating oil composition may consist of the (A) component. In another embodiment, the lubricating oil composition may comprise component (A) and one or more additives.
 潤滑油組成物中の(A)成分の含有量は特に制限されるものではないが、組成物全量基準で例えば60~100質量%、又は60~99質量%であり得る。 The content of component (A) in the lubricating oil composition is not particularly limited, but can be, for example, 60 to 100% by mass, or 60 to 99% by mass based on the total amount of the composition.
 添加剤としては、潤滑油の分野において公知の添加剤を用いることができる。そのような添加剤の例としては、(B)酸化防止剤、(C)無灰分散剤、(D)金属系清浄剤、(E)摩擦調整剤、(F)摩耗防止剤または極圧剤、(G)粘度指数向上剤または流動点降下剤、(H)腐食防止剤、(I)防錆剤、(J)金属不活性化剤、(K)抗乳化剤、(L)消泡剤、及び(M)着色剤を挙げることができる。 As additives, known additives in the field of lubricating oils can be used. Examples of such additives include (B) antioxidants, (C) ashless dispersants, (D) metallic detergents, (E) friction modifiers, (F) antiwear or extreme pressure agents, (G) a viscosity index improver or pour point depressant, (H) a corrosion inhibitor, (I) a rust inhibitor, (J) a metal deactivator, (K) a demulsifier, (L) a defoamer, and (M) A coloring agent can be mentioned.
 (B)酸化防止剤(以下において「(B)成分」ということがある。)の例としては、芳香族アミン系酸化防止剤、ヒンダードアミン系酸化防止剤、及びフェノール系酸化防止剤を挙げることができる。 Examples of (B) antioxidants (hereinafter sometimes referred to as "component (B)") include aromatic amine antioxidants, hindered amine antioxidants, and phenolic antioxidants. can.
 芳香族アミン系酸化防止剤の例としては、アルキル化α-ナフチルアミン等の第1級芳香族アミン化合物;及び、アルキル化ジフェニルアミン、フェニル-α-ナフチルアミン、アルキル化フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、アルキル化フェニル-β-ナフチルアミン等の第2級芳香族アミン化合物、を挙げることができる。 Examples of aromatic amine antioxidants include primary aromatic amine compounds such as alkylated α-naphthylamine; - secondary aromatic amine compounds such as naphthylamine and alkylated phenyl-β-naphthylamine.
 ヒンダードアミン系酸化防止剤の例としては、2,2,6,6-テトラアルキルピペリジン骨格を有する化合物(2,2,6,6-テトラアルキルピペリジン誘導体)を挙げることができる。2,2,6,6-テトラアルキルピペリジン誘導体としては、4-位に置換基を有する2,2,6,6-テトラアルキルピペリジン誘導体が好ましい。また、2個の2,2,6,6-テトラアルキルピペリジン骨格が、それぞれの4-位の置換基を介して結合していてもよい。また2,2,6,6-テトラアルキルピペリジン骨格のN-位は無置換であってもよく、該N-位に炭素数1~4のアルキル基が置換していてもよい。2,2,6,6-テトラアルキルピペリジン骨格は好ましくは2,2,6,6-テトラメチルピペリジン骨格である。 Examples of hindered amine antioxidants include compounds having a 2,2,6,6-tetraalkylpiperidine skeleton (2,2,6,6-tetraalkylpiperidine derivatives). As the 2,2,6,6-tetraalkylpiperidine derivative, a 2,2,6,6-tetraalkylpiperidine derivative having a substituent at the 4-position is preferred. Also, two 2,2,6,6-tetraalkylpiperidine skeletons may be bonded via their respective 4-position substituents. Also, the N-position of the 2,2,6,6-tetraalkylpiperidine skeleton may be unsubstituted, or the N-position may be substituted with an alkyl group having 1 to 4 carbon atoms. The 2,2,6,6-tetraalkylpiperidine skeleton is preferably 2,2,6,6-tetramethylpiperidine skeleton.
 フェノール系酸化防止剤の例としては、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール);4,4’-ビス(2,6-ジ-tert-ブチルフェノール);4,4’-ビス(2-メチル-6-tert-ブチルフェノール);2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール);2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール);4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール);4,4’-イソプロピリデンビス(2,6-ジ-tert-ブチルフェノール);2,2’-メチレンビス(4-メチル-6-ノニルフェノール);2,2’-イソブチリデンビス(4,6-ジメチルフェノール);2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール);2,6-ジ-tert-ブチル-4-メチルフェノール;2,6-ジ-tert-ブチル-4-エチルフェノール;2,4-ジメチル-6-tert-ブチルフェノール;2,6-ジ-tert-ブチル-4-(N,N’-ジメチルアミノメチル)フェノール;4,4’-チオビス(2-メチル-6-tert-ブチルフェノール);4,4’-チオビス(3-メチル-6-tert-ブチルフェノール);2,2’-チオビス(4-メチル-6-tert-ブチルフェノール);ビス(3-メチル-4-ヒドロキシ-5-tert-ブチルベンジル)スルフィド;ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド;3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸エステル類;3-メチル-5-tert-ブチル-4-ヒドロキシフェノール脂肪酸エステル類、等のヒンダードフェノール化合物およびビスフェノール化合物を挙げることができる。 Examples of phenolic antioxidants include 4,4'-methylenebis(2,6-di-tert-butylphenol); 4,4'-bis(2,6-di-tert-butylphenol); 4,4' -bis(2-methyl-6-tert-butylphenol); 2,2'-methylenebis(4-ethyl-6-tert-butylphenol); 2,2'-methylenebis(4-methyl-6-tert-butylphenol); 4,4′-butylidenebis(3-methyl-6-tert-butylphenol); 4,4′-isopropylidenebis(2,6-di-tert-butylphenol); 2,2′-methylenebis(4-methyl-6 -nonylphenol); 2,2′-isobutylidenebis(4,6-dimethylphenol); 2,2′-methylenebis(4-methyl-6-cyclohexylphenol); 2,6-di-tert-butyl-4 -methylphenol; 2,6-di-tert-butyl-4-ethylphenol; 2,4-dimethyl-6-tert-butylphenol; 2,6-di-tert-butyl-4-(N,N'-dimethyl aminomethyl)phenol; 4,4′-thiobis(2-methyl-6-tert-butylphenol); 4,4′-thiobis(3-methyl-6-tert-butylphenol); 2,2′-thiobis(4- methyl-6-tert-butylphenol); bis(3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide; bis(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide; 3-( 3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid esters; 3-methyl-5-tert-butyl-4-hydroxyphenol fatty acid esters, hindered phenol compounds and bisphenol compounds can be done.
 潤滑油組成物が(B)成分を含有する場合、その含有量は、組成物全量基準で、例えば0.01~5.0質量%、又は0.1~5.0質量%であり得る。ポリアルキレンジオール変性物((a)成分)の自動酸化を抑制する観点からは、潤滑油組成物は少なくとも(B)成分を含有することが好ましい。 When the lubricating oil composition contains component (B), its content may be, for example, 0.01 to 5.0% by mass, or 0.1 to 5.0% by mass, based on the total amount of the composition. From the viewpoint of suppressing autoxidation of the polyalkylenediol-modified product (component (a)), the lubricating oil composition preferably contains at least the component (B).
 (C)無灰分散剤としては、例えばコハク酸イミド系無灰分散剤等の公知の無灰分散剤を用いることができる。無灰分散剤の例としては、数平均分子量が900~3,500のポリブテニル基を有するポリブテニルコハク酸イミド、ポリブテニルベンジルアミン、ポリブテニルアミン、及びこれらの誘導体(例えばホウ酸変性物等。)等を挙げることができる。
潤滑油組成物が無灰分散剤を含有する場合、その含有量は、組成物全量基準で、例えば0.01~20質量%、又は0.1~10質量%であり得る。
(C) As the ashless dispersant, a known ashless dispersant such as a succinimide-based ashless dispersant can be used. Examples of ashless dispersants include polybutenylsuccinimide, polybutenylbenzylamine, polybutenylamine having a polybutenyl group with a number average molecular weight of 900 to 3,500, and derivatives thereof (for example, modified with boric acid). etc.).
When the lubricating oil composition contains an ashless dispersant, its content can be, for example, 0.01 to 20% by weight, or 0.1 to 10% by weight, based on the total amount of the composition.
 (D)金属系清浄剤としては、潤滑油分野において公知の金属系清浄剤を用いることができる。一般に潤滑油分野において、金属系清浄剤としては、基油中でミセルを形成することが可能な有機酸金属塩(例えばアルカリ又はアルカリ土類金属アルキルサリシレート、アルカリ又はアルカリ土類金属アルキルベンゼンスルホネート、及びアルカリ又はアルカリ土類金属アルキルフェネート等。)、又は該有機酸金属塩と塩基性金属塩(例えば該有機酸金属塩を構成するアルカリ又はアルカリ土類金属の水酸化物、炭酸塩、ホウ酸塩等。)との混合物が用いられる。金属としてはアルカリ土類金属が好ましく、アルカリ土類金属としてはCaおよび/またはMgが好ましい。
 潤滑油組成物が金属系清浄剤を含有する場合、その含有量は、組成物全量基準で、金属元素換算量として、例えば0.001~5.0質量%であり得る。
(D) As the metallic detergent, a known metallic detergent in the lubricating oil field can be used. In general, in the field of lubricating oils, metallic detergents include organic acid metal salts capable of forming micelles in base oils (e.g. alkali or alkaline earth metal alkyl salicylates, alkali or alkaline earth metal alkyl benzene sulfonates, and alkali or alkaline earth metal alkylphenate, etc.), or the organic acid metal salt and a basic metal salt (for example, alkali or alkaline earth metal hydroxides, carbonates, and boric acids constituting the organic acid metal salt) salt etc.) are used. Alkaline earth metals are preferred as metals, and Ca and/or Mg are preferred as alkaline earth metals.
When the lubricating oil composition contains a metallic detergent, its content may be, for example, 0.001 to 5.0% by mass in terms of metal element based on the total amount of the composition.
 (E)摩擦調整剤としては、潤滑油分野において公知の摩擦調整剤を用いることができ、その例としては、油性剤系摩擦調整剤;有機モリブデン化合物;アルキルメルカプチルボレートなどの有機ホウ素化合物;グラファイト;二硫化モリブデン;硫化アンチモン;ホウ素化合物;ポリテトラフルオロエチレン等を挙げることができる。 (E) As the friction modifier, a known friction modifier in the lubricating oil field can be used, examples of which include oily agent-based friction modifiers; organic molybdenum compounds; organic boron compounds such as alkyl mercaptyl borate; molybdenum disulfide; antimony sulfide; boron compounds; polytetrafluoroethylene;
 潤滑油組成物が摩擦調整剤を含有する場合、その含有量は、組成物全量基準で、例えば0.05~5.0質量%であり得る。 When the lubricating oil composition contains a friction modifier, its content may be, for example, 0.05 to 5.0% by mass based on the total amount of the composition.
 (F)摩耗防止剤または極圧剤としては、潤滑油分野において公知の摩耗防止剤または極圧剤を用いることができる。その例としては、ジチオカルバミン酸金属塩(Zn塩、Pb塩、Sb塩等)、ジスルフィド、硫化油脂、硫化オレフィン、硫化鉱油、ジアルキルポリスルフィド、ジアリールアルキルポリスルフィド、ジアリールポリスルフィド等の硫黄系添加剤;ジチオリン酸金属塩(Zn塩、Pb塩、Sb塩、Mo塩等)、リン酸エステル、亜リン酸エステル、リン酸部分エステルのアミン塩、リン酸部分エステルの金属塩(Zn塩など)、(モノチオ-又はジチオ-又はトリチオ-)リン酸の完全エステル及び部分エステル並びに部分エステルの金属塩およびアミン塩、(モノチオ-又はジチオ-)亜リン酸の完全エステル及び部分エステル並びに部分エステルの金属塩およびアミン塩、等のリン系およびリン-硫黄系添加剤;並びに、ナフテン酸金属塩(Pb塩等)、脂肪酸金属塩(Pb塩等)、ホウ素化合物、等を挙げることができる。
 潤滑油組成物が摩耗防止剤または極圧剤を含有する場合、その含有量は、組成物全量基準で、例えば0.05~5質量%であり得る。
(F) As the anti-wear agent or extreme pressure agent, an anti-wear agent or extreme pressure agent known in the lubricating oil field can be used. Examples thereof include metal salts of dithiocarbamates (Zn salts, Pb salts, Sb salts, etc.), sulfur additives such as disulfides, sulfurized oils, sulfurized olefins, sulfurized mineral oils, dialkyl polysulfides, diarylalkyl polysulfides, and diaryl polysulfides; dithiophosphoric acid Metal salts (Zn salts, Pb salts, Sb salts, Mo salts, etc.), phosphate esters, phosphites, amine salts of phosphoric acid partial esters, metal salts of phosphoric acid partial esters (Zn salts, etc.), (monothio- or metal and amine salts of full and partial esters and partial esters of (monothio- or dithio-)phosphoric acid, metal and amine salts of full and partial and partial esters of (monothio- or dithio-)phosphorous acid and phosphorus-sulfur additives such as , and naphthenic acid metal salts (Pb salts, etc.), fatty acid metal salts (Pb salts, etc.), boron compounds, and the like.
When the lubricating oil composition contains an antiwear agent or extreme pressure agent, its content may be, for example, 0.05 to 5% by mass based on the total amount of the composition.
 (G)粘度指数向上剤または流動点降下剤としては、潤滑油分野において公知の粘度指数向上剤または流動点降下剤を用いることができる。粘度指数向上剤の例としては、分散型又は非分散型ポリアルキル(メタ)アクリレート;非分散型又は分散型エチレン-α-オレフィン共重合体及びその水素添加物;ポリイソブチレン及びその水素添加物;スチレン-ジエン共重合体の水素添加物;スチレン-無水マレイン酸エステル共重合体;並びに、ポリアルキルスチレン等を挙げることができる。
 流動点降下剤の例としては、ポリメタクリレート系ポリマー、エチレンビニルアセテート等を挙げることができる。
 潤滑油組成物が粘度指数向上剤または流動点降下剤を含有する場合、その含有量は、組成物全量基準で、例えば0.01~20質量%であり得る。
As the viscosity index improver or pour point depressant (G), a known viscosity index improver or pour point depressant in the lubricating oil field can be used. Examples of viscosity index improvers include dispersant or non-dispersant polyalkyl (meth)acrylates; non-dispersant or dispersant ethylene-α-olefin copolymers and hydrogenated products thereof; polyisobutylene and hydrogenated products thereof; Hydrogenated products of styrene-diene copolymers; styrene-maleic anhydride ester copolymers; and polyalkylstyrenes.
Examples of pour point depressants include polymethacrylate-based polymers and ethylene vinyl acetate.
When the lubricating oil composition contains a viscosity index improver or a pour point depressant, its content may be, for example, 0.01 to 20% by mass based on the total amount of the composition.
 (H)腐食防止剤としては、潤滑油分野において公知の腐食防止剤を用いることができる。その例としては、ベンゾトリアゾール系化合物、トリルトリアゾール系化合物、チアジアゾール系化合物、及びイミダゾール系化合物等を挙げることができる。
 潤滑油組成物が腐食防止剤を含有する場合、その含有量は、組成物全量基準で、例えば0.005~5質量%であり得る。
(H) As the corrosion inhibitor, a known corrosion inhibitor in the lubricating oil field can be used. Examples thereof include benzotriazole-based compounds, tolyltriazole-based compounds, thiadiazole-based compounds, and imidazole-based compounds.
When the lubricating oil composition contains a corrosion inhibitor, its content may be, for example, 0.005 to 5% by mass based on the total amount of the composition.
 (I)防錆剤としては、潤滑油分野において公知の防錆剤を用いることができる。その例としては、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルキルスルホン酸塩、脂肪酸、アルケニルコハク酸ハーフエステル、脂肪酸セッケン、多価アルコール脂肪酸エステル、脂肪酸アミン、酸化パラフィン、アルキルポリオキシエチレンエーテル等を挙げることができる。
 潤滑油組成物が防錆剤を含有する場合、その含有量は、組成物全量基準で、例えば0.005~5質量%であり得る。
(I) As the rust preventive agent, a known rust preventive agent in the lubricating oil field can be used. Examples include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkylsulfonate, fatty acid, alkenyl succinic acid half ester, fatty acid soap, polyhydric alcohol fatty acid ester, fatty acid amine, paraffin oxide, alkyl polyoxyethylene ether, etc. can be mentioned.
When the lubricating oil composition contains a rust inhibitor, its content may be, for example, 0.005 to 5% by mass based on the total amount of the composition.
 (J)金属不活性化剤としては、潤滑油分野において公知の金属不活性化剤を用いることができる。その例としては、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾール及びその誘導体、1,3,4-チアジアゾールポリスルフィド、1,3,4-チアジアゾリル-2,5-ビスジアルキルジチオカーバメート、2-(アルキルジチオ)ベンゾイミダゾール、並びにβ-(o-カルボキシベンジルチオ)プロピオンニトリル等を挙げることができる。
潤滑油組成物が金属不活性化剤を含有する場合、その含有量は、組成物全量基準で、例えば0.005~1質量%であり得る。
(J) As the metal deactivator, a metal deactivator known in the lubricating oil field can be used. Examples include imidazolines, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles and their derivatives, 1,3,4-thiadiazole polysulfides, 1,3,4-thiadiazolyl-2,5-bisdialkyldithiocarbamates, 2 -(Alkyldithio)benzimidazole and β-(o-carboxybenzylthio)propiononitrile.
When the lubricating oil composition contains a metal deactivator, its content may be, for example, 0.005 to 1% by mass based on the total amount of the composition.
 (K)抗乳化剤としては、例えばポリアルキレングリコール系非イオン系界面活性剤等の公知の抗乳化剤を用いることができる。潤滑油組成物が抗乳化剤を含有する場合、その含有量は、組成物全量基準で、例えば0.005~5質量%であり得る。 (K) As the demulsifier, for example, a known demulsifier such as a polyalkylene glycol-based nonionic surfactant can be used. When the lubricating oil composition contains a demulsifier, its content may be, for example, 0.005 to 5% by mass based on the total amount of the composition.
 (L)消泡剤としては、潤滑油分野において公知の消泡剤を用いることができる。その例としては、シリコーン、フルオロシリコーン、及びフルオロアルキルエーテル等を挙げることができる。潤滑油組成物が消泡剤を含有する場合、その含有量は、組成物全量基準で、例えば0.0001~0.1質量%であり得る。 (L) As the antifoaming agent, an antifoaming agent known in the lubricating oil field can be used. Examples include silicones, fluorosilicones, fluoroalkyl ethers, and the like. When the lubricating oil composition contains an antifoaming agent, its content may be, for example, 0.0001 to 0.1% by mass based on the total amount of the composition.
 (M)着色剤としては、例えばアゾ化合物等の公知の着色剤を用いることができる。 (M) As the colorant, for example, a known colorant such as an azo compound can be used.
 以下、実施例および比較例に基づき、本発明についてさらに具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
 <実施例>
 (分子量および分子量分布測定)
 以下の実施例において、試料の数平均分子量(Mn)は、ゲル浸透クロマトグラフィー(GPC)により、標準ポリスチレン換算での数平均分子量として測定した。GPCの測定条件は次の通りである。
装置:Waters Corporation製 ACQUITY(登録商標) APC UV RIシステム
カラム:上流側から順に、Waters Corporation製 ACQUITY(登録商標) APC XT125A(ゲル粒径2.5μm、カラムサイズ(内径×長さ)4.6mm×150mm)1本、および、Waters Corporation製 ACQUITY(登録商標) APC XT45A(ゲル粒径1.7μm、カラムサイズ(内径×長さ)4.6mm×150mm)2本を直列に接続
カラム温度:40℃
試料溶液:試料濃度1.0質量%のテトラヒドロフラン(THF)溶液
溶離液:THF
溶液注入量:20.0μL
流量:0.7mL/分
検出装置:示差屈折率検出器
基準物質:標準ポリスチレン(Agilent Technologies社製Agilent EasiCal(登録商標) PS-1)10点(分子量:30230、9590、2970、890、786、682、578、474、370、266)
Hereinafter, the present invention will be described more specifically based on examples and comparative examples. However, the present invention is not limited to these examples.
<Example>
(Molecular weight and molecular weight distribution measurement)
In the following examples, the number average molecular weight (Mn) of the samples was measured by gel permeation chromatography (GPC) as the number average molecular weight in terms of standard polystyrene. GPC measurement conditions are as follows.
Apparatus: ACQUITY (registered trademark) APC UV RI system manufactured by Waters Corporation Column: ACQUITY (registered trademark) APC XT125A manufactured by Waters Corporation (gel particle size 2.5 μm, column size (inner diameter x length) 4.6 mm, in order from the upstream side) × 150 mm) and two ACQUITY (registered trademark) APC XT45A manufactured by Waters Corporation (gel particle size 1.7 μm, column size (inner diameter × length) 4.6 mm × 150 mm) are connected in series Column temperature: 40 ℃
Sample solution: Tetrahydrofuran (THF) solution with a sample concentration of 1.0% by mass Eluent: THF
Solution injection volume: 20.0 μL
Flow rate: 0.7 mL/min Detector: Differential refractive index detector Reference material: Standard polystyrene (Agilent EasiCal (registered trademark) PS-1 manufactured by Agilent Technologies) 10 points (molecular weight: 30230, 9590, 2970, 890, 786, 682, 578, 474, 370, 266)
 (動粘度および粘度指数の測定)
 以下の実施例において、試料の動粘度は、JIS K 2283-2000に準拠し、測定装置として自動粘度計(商品名「CAV-2000」、Cannon Instrument社製)を用いて測定した。また試料の粘度指数は、JIS K 2283-2000に準拠して、40℃及び100℃における動粘度の測定値に基づいて決定した。
(Measurement of kinematic viscosity and viscosity index)
In the following examples, the kinematic viscosity of the samples was measured according to JIS K 2283-2000 using an automatic viscometer (trade name "CAV-2000", manufactured by Cannon Instruments) as a measuring device. The viscosity index of the sample was determined based on the measured values of kinematic viscosity at 40°C and 100°C in accordance with JIS K 2283-2000.
 (実施例1)
 以下の手順によりポリプロピレングリコール(PPG)のヒドロキシ基をトリメチルシリル(TMS)基でシリル化して、対応するポリアルキレンジオールがPPG(一般式(1)においてRがプロパン-1,2-ジイル基)であり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物(TMS変性PPG)を製造した。
 PPG(Mn=200)10.00gを200mLのナスフラスコに測り取り、ここに脱水THF50mLを加えた。ここにトリエチルアミン(TEA)200mmolを加え、強力に攪拌しながら氷冷下(0℃)にて、トリメチルクロロシラン(TMS-Cl)101mmolを1時間かけて滴下し、スラリー状の反応混合物をさらに1時間継続して攪拌した。反応終了後に20mLの水をゆっくり加えて、白色不溶物を溶解し、エバポレーターでTHFを留去し、残存物からヘキサン50mLで2回、有機物を抽出した。ヘキサン層を飽和食塩水で洗浄し、洗浄されたヘキサン層を硫酸マグネシウムで乾燥した。ろ過にて乾燥剤を除去したヘキサン溶液から減圧下でヘキサンを留去して、TMS変性PPGを得た。得られた変性物の動粘度を測定した。結果を表1中に示す。
(Example 1)
The hydroxy group of polypropylene glycol (PPG) is silylated with a trimethylsilyl (TMS) group by the following procedure, and the corresponding polyalkylenediol is PPG (in general formula (1), R 1 is a propane-1,2-diyl group). A polyalkylenediol-modified product (TMS-modified PPG) in the form of general formula (1) in which Q1 and Q2 are TMS groups was produced.
10.00 g of PPG (Mn=200) was weighed into a 200 mL eggplant flask, and 50 mL of dehydrated THF was added thereto. To this, 200 mmol of triethylamine (TEA) was added, and 101 mmol of trimethylchlorosilane (TMS-Cl) was added dropwise over 1 hour under ice-cooling (0°C) with vigorous stirring, and the slurry-like reaction mixture was further stirred for 1 hour. Stirred continuously. After completion of the reaction, 20 mL of water was slowly added to dissolve the white insoluble matter, THF was distilled off with an evaporator, and organic matter was extracted from the residue twice with 50 mL of hexane. The hexane layer was washed with saturated saline, and the washed hexane layer was dried with magnesium sulfate. From the hexane solution from which the desiccant was removed by filtration, hexane was distilled off under reduced pressure to obtain TMS-modified PPG. The kinematic viscosity of the resulting modified product was measured. The results are shown in Table 1.
 (比較例1)
 実施例1で原料として用いたPPGについて、40℃及び100℃における動粘度を測定した。結果を表1中に示す。
(Comparative example 1)
PPG used as a raw material in Example 1 was measured for kinematic viscosity at 40°C and 100°C. The results are shown in Table 1.
 (実施例2)
 以下の手順により、対応するポリアルキレンジオールがPPGであり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物(TMS変性PPG)を製造した。
 ポリアルキレンジオールとして実施例1で使用したPPGとは数平均分子量の異なるPPG(Mn=750)20.00gを使用し、TEAの使用量を150mmolに変更し、TMS-Clの使用量を68mmolに変更したこと以外は、実施例1と同様の手順により、TMS変性PPGを合成した。得られた変性物の動粘度を表1中に示す。
(Example 2)
A polyalkylenediol-modified product (TMS-modified PPG) in which the corresponding polyalkylenediol is PPG and Q 1 and Q 2 are TMS groups in general formula (1) was produced by the following procedure.
20.00 g of PPG (Mn=750) having a different number average molecular weight from the PPG used in Example 1 was used as the polyalkylenediol, the amount of TEA was changed to 150 mmol, and the amount of TMS-Cl was changed to 68 mmol. A TMS-modified PPG was synthesized by the same procedure as in Example 1, except for the changes. Table 1 shows the kinematic viscosity of the resulting modified product.
 (比較例2)
 実施例2で原料として用いたPPGについて、40℃及び100℃における動粘度を測定した。結果を表1中に示す。
(Comparative example 2)
PPG used as a raw material in Example 2 was measured for kinematic viscosity at 40°C and 100°C. The results are shown in Table 1.
 (実施例3)
 以下の手順により、対応するポリアルキレンジオールがPPGであり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物(TMS変性PPG)を製造した。
 ポリアルキレンジオールとして実施例1で使用したPPGとは数平均分子量の異なるPPG(Mn=1120)9.82gを使用し、TEAの使用量を60mmolに変更し、TMS-Clの使用量を22mmolに変更したこと以外は、実施例1と同様の手順により、TMS変性PPGを合成した。得られた変性物の動粘度を表1中に示す。
(Example 3)
A polyalkylenediol-modified product (TMS-modified PPG) in which the corresponding polyalkylenediol is PPG and Q 1 and Q 2 are TMS groups in general formula (1) was produced by the following procedure.
As the polyalkylenediol, 9.82 g of PPG (Mn=1120) having a different number average molecular weight from the PPG used in Example 1 was used, the amount of TEA was changed to 60 mmol, and the amount of TMS-Cl was changed to 22 mmol. A TMS-modified PPG was synthesized by the same procedure as in Example 1, except for the changes. Table 1 shows the kinematic viscosity of the resulting modified product.
 (比較例3)
 実施例3で原料として用いたPPGについて、40℃及び100℃における動粘度を測定した。結果を表1中に示す。
(Comparative Example 3)
PPG used as a raw material in Example 3 was measured for kinematic viscosity at 40°C and 100°C. The results are shown in Table 1.
 (実施例4)
 以下の手順により、対応するポリアルキレンジオールがPPGであり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物(TMS変性PPG)を製造した。
 ポリアルキレンジオールとして実施例1で使用したPPGとは数平均分子量の異なるPPG(Mn=2110)20.00gを使用し、TEAの使用量を50mmolに変更し、TMS-Clの使用量を24mmolに変更したこと以外は、実施例1と同様の手順により、TMS変性PPGを合成した。得られた変性物の密度および動粘度を表1中に示す。
(Example 4)
A polyalkylenediol-modified product (TMS-modified PPG) in which the corresponding polyalkylenediol is PPG and Q 1 and Q 2 are TMS groups in general formula (1) was produced by the following procedure.
20.00 g of PPG (Mn=2110) having a different number average molecular weight from the PPG used in Example 1 was used as the polyalkylenediol, the amount of TEA was changed to 50 mmol, and the amount of TMS-Cl was changed to 24 mmol. A TMS-modified PPG was synthesized by the same procedure as in Example 1, except for the changes. Table 1 shows the density and kinematic viscosity of the resulting modified product.
 (比較例4)
 実施例4で原料として用いたPPGについて、40℃及び100℃における動粘度を測定した。結果を表1中に示す。
(Comparative Example 4)
PPG used as a raw material in Example 4 was measured for kinematic viscosity at 40°C and 100°C. The results are shown in Table 1.
 (実施例5)
 以下の手順により、対応するポリアルキレンジオールがPPGであり、一般式(1)においてQ及びQがジメチルフェニル基(DMPS基)である形態のポリアルキレンジオール変性物(DMPS変性PPG)を製造した。
 実施例3で使用したPPG19.56gを200mLのナスフラスコに測り取り、ここに脱水ヘキサン50mLを加えた。ここにTEA(46mmol)を加えて、さらにジメチルフェニルクロロシラン(DMPS-Cl、38mmol)をゆっくりと加えて、反応混合物を3時間加熱還流した。反応混合物を室温まで冷却した後、水(20mL)を加え、白色沈殿を溶解した。ヘキサン層を分離し、水層をトルエン50mLで2回抽出した。有機層を混合し、飽和食塩水で洗浄し、洗浄された有機層を無水硫酸マグネシウムで乾燥した。乾燥剤をろ過で分離し、溶媒を減圧下で留去することで、DMPS変性PPGを得た。得られた変性物の動粘度を表2中に示す。
(Example 5)
By the following procedure, a polyalkylenediol-modified product (DMPS-modified PPG) in which the corresponding polyalkylenediol is PPG and Q 1 and Q 2 are dimethylphenyl groups (DMPS groups) in general formula (1) is produced. did.
19.56 g of PPG used in Example 3 was weighed into a 200 mL eggplant flask, and 50 mL of dehydrated hexane was added thereto. TEA (46 mmol) was added thereto, followed by slowly adding dimethylphenylchlorosilane (DMPS-Cl, 38 mmol), and the reaction mixture was heated to reflux for 3 hours. After cooling the reaction mixture to room temperature, water (20 mL) was added to dissolve the white precipitate. The hexane layer was separated and the aqueous layer was extracted twice with 50 mL of toluene. The organic layers were combined, washed with saturated brine, and the washed organic layer was dried over anhydrous magnesium sulfate. The desiccant was separated by filtration, and the solvent was distilled off under reduced pressure to obtain DMPS-modified PPG. Table 2 shows the kinematic viscosity of the resulting modified product.
 (実施例6)
 以下の手順により、対応するポリアルキレンジオールがPPGであり、一般式(1)においてQ及びQがtert-ブチルジメチルシリル基(TBDMS基)である形態のポリアルキレンジオール変性物(TBDMS変性PPG)を製造した。
 水素化ナトリウム(NaH、60% in Oil、40mmol)を200mLナスフラスコに測り取り、脱水ヘキサン10mLを加えて攪拌、静置後に上澄みを注射器で取り除いた。このヘキサン洗浄操作を3回繰り返し、洗浄されたNaHに脱水トルエン100mLを加えた。ここに実施例3で使用したPPG(11.12g)を発泡に注意しながらゆっくりと加えた。さらにtert-ブチルジメチルクロロシラン(TBDMS-Cl、22mmol)を加え、80℃で2時間撹拌した。反応混合物を室温まで冷却し、水20mLを加えて、白色沈殿を溶解させた。トルエン層を分離し、水層をトルエン50mLで2回抽出した。有機層を混合し、飽和食塩水で洗浄した。洗浄したトルエン溶液を無水硫酸マグネシウムで乾燥し、ろ過で乾燥剤を除去し、減圧下でトルエンを留去して、TBDMS変性PPGを得た。得られた変性物の動粘度を表2中に示す。
(Example 6)
According to the following procedure, the corresponding polyalkylenediol is PPG, and in the general formula (1), Q 1 and Q 2 are tert-butyldimethylsilyl groups (TBDMS groups) polyalkylenediol-modified products (TBDMS-modified PPG ) was manufactured.
Sodium hydride (NaH, 60% in oil, 40 mmol) was weighed into a 200 mL round-bottomed flask, 10 mL of dehydrated hexane was added, stirred, left to stand, and the supernatant was removed with a syringe. This hexane washing operation was repeated three times, and 100 mL of dehydrated toluene was added to the washed NaH. The PPG (11.12 g) used in Example 3 was slowly added thereto while being careful of foaming. Furthermore, tert-butyldimethylchlorosilane (TBDMS-Cl, 22 mmol) was added, and the mixture was stirred at 80°C for 2 hours. The reaction mixture was cooled to room temperature and 20 mL of water was added to dissolve the white precipitate. The toluene layer was separated and the aqueous layer was extracted twice with 50 mL of toluene. The organic layers were combined and washed with saturated brine. The washed toluene solution was dried over anhydrous magnesium sulfate, the drying agent was removed by filtration, and the toluene was distilled off under reduced pressure to obtain TBDMS-modified PPG. Table 2 shows the kinematic viscosity of the resulting modified product.
 (実施例7)
 以下の手順により、対応するポリアルキレンジオールがPPGであり、一般式(1)においてQ及びQがトリイソプロピルシリル基(TIPS基)である形態のポリアルキレンジオール変性物(TIPS変性PPG)を製造した。
 実施例3で使用したPPGの使用量を10.48gとし、トルエンの使用量を200mLとし、TBDMS-Clの代わりにトリイソプロピルクロロシラン(TIPS-Cl、20mmol)を使用すること以外は、実施例6と同様の手順により、TIPS変性PPGを得た。得られた変性物の動粘度を表2中に示す。
(Example 7)
According to the following procedure, a polyalkylenediol-modified product (TIPS-modified PPG) in which the corresponding polyalkylenediol is PPG and Q 1 and Q 2 are triisopropylsilyl groups (TIPS groups) in general formula (1) manufactured.
Example 6 except that the amount of PPG used in Example 3 was 10.48 g, the amount of toluene was 200 mL, and triisopropylchlorosilane (TIPS-Cl, 20 mmol) was used instead of TBDMS-Cl. TIPS-modified PPG was obtained by the same procedure. Table 2 shows the kinematic viscosity of the resulting modified product.
 (実施例8)
 以下の手順により、対応するポリアルキレンジオールがPPGであり、一般式(1)においてQ及びQがtert-ブチルジフェニルシリル基(TBDPS基)である形態のポリアルキレンジオール変性物(TBDPS変性PPG)を製造した。
 実施例3で使用したPPGの使用量を16.01gとし、トルエンの使用量を200mLとし、TBDMS-Clの代わりにtert-ブチルジフェニルクロロシラン(TBDPS-Cl、30mmol)を使用すること以外は、実施例6と同様の手順により、TBDPS変性PPGを得た。得られた変性物の動粘度を表2中に示す。
(Example 8)
According to the following procedure, the corresponding polyalkylenediol is PPG, and in the general formula (1), Q 1 and Q 2 are tert-butyldiphenylsilyl groups (TBDPS groups) polyalkylenediol-modified products (TBDPS-modified PPG ) was manufactured.
The amount of PPG used in Example 3 was changed to 16.01 g, the amount of toluene used was changed to 200 mL, and tert-butyldiphenylchlorosilane (TBDPS-Cl, 30 mmol) was used instead of TBDMS-Cl. A TBDPS-modified PPG was obtained by the same procedure as in Example 6. Table 2 shows the kinematic viscosity of the resulting modified product.
 (実施例9)
 以下の手順により、対応するポリアルキレンジオールがポリエチレングリコール(PEG)であり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物(TMS変性PEG)を製造した。
 PEG(Mn=810)11.19gを200mLのナスフラスコに測り取り、ここに脱水トルエン50mLを加えた。ここにTEA(70mmol)を加え、強力に攪拌しながら氷冷下(0℃)にて、TMS-Cl(48mmol)を1時間かけて滴下し、スラリー状の反応混合物をさらに1時間続けて攪拌した。反応混合液を減圧濾過し、そのままケーキ分からヘキサン300mLで可溶分を抽出して、先のろ液(トルエン溶液)と混合した。白色沈殿が再度生成し、再度減圧濾過を行った。ろ液から減圧下で溶媒を留去し、TMS変性PEGを得た。その動粘度を表3に示す。
(Example 9)
A modified polyalkylenediol (TMS-modified PEG) in which the corresponding polyalkylenediol is polyethylene glycol (PEG) and Q 1 and Q 2 are TMS groups in general formula (1) was produced by the following procedure. .
11.19 g of PEG (Mn=810) was weighed into a 200 mL eggplant flask, and 50 mL of dehydrated toluene was added thereto. TEA (70 mmol) was added thereto, and TMS-Cl (48 mmol) was added dropwise over 1 hour under ice-cooling (0°C) with vigorous stirring, and the slurry-like reaction mixture was further stirred for 1 hour. did. The reaction mixture was filtered under reduced pressure, and the soluble matter was extracted from the cake portion with 300 mL of hexane and mixed with the previous filtrate (toluene solution). A white precipitate was formed again and vacuum filtration was performed again. The solvent was distilled off from the filtrate under reduced pressure to obtain TMS-modified PEG. Table 3 shows its kinematic viscosity.
 (比較例5)
 実施例9で原料として用いたPEGについて、40℃及び100℃における動粘度を測定した。結果を表3中に示す。
(Comparative Example 5)
For PEG used as a raw material in Example 9, kinematic viscosity at 40°C and 100°C was measured. The results are shown in Table 3.
 (実施例10)
 以下の手順により、対応するポリアルキレンジオールがプロピレンオキシド(PO、90質量%)-エチレンオキシド(EO、10質量%)共重合体であり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物を製造した。
 ポリアルキレンジオール(PO(90質量%)-EO(10質量%)共重合体(Mn=1210))21.07gをTHF(50mL)に溶解し、ここにTEA(70mmol)を加えた。氷冷下で強力に攪拌しながら、この溶液にTMS-Cl(50mmol)を1時間かけて滴下した。滴下終了後も攪拌を1時間継続した。この反応溶液に水20mLを加えて、減圧下でTHFを留去した。残留液からヘキサン50mLで2回、有機物を抽出した。得られたヘキサン溶液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過で乾燥剤を除去し、減圧下でヘキサンを留去してTMS変性物を得た。得られた変性物の動粘度を測定した。結果を表4中に示す。
(Example 10)
According to the following procedure, the corresponding polyalkylene diol is a propylene oxide (PO, 90% by mass)-ethylene oxide (EO, 10% by mass) copolymer, and Q 1 and Q 2 are TMS groups in the general formula (1). Certain forms of polyalkylenediol modifications have been prepared.
21.07 g of polyalkylenediol (PO (90% by mass)-EO (10% by mass) copolymer (Mn=1210)) was dissolved in THF (50 mL), and TEA (70 mmol) was added thereto. TMS-Cl (50 mmol) was added dropwise to this solution over 1 hour while being vigorously stirred under ice cooling. Stirring was continued for 1 hour after the completion of dropping. 20 mL of water was added to this reaction solution, and THF was distilled off under reduced pressure. Organic matter was extracted from the residual liquid twice with 50 mL of hexane. The resulting hexane solution was washed with saturated saline and dried over anhydrous magnesium sulfate. The desiccant was removed by filtration, and hexane was distilled off under reduced pressure to obtain a modified TMS product. The kinematic viscosity of the resulting modified product was measured. The results are shown in Table 4.
 (比較例6)
 実施例10で原料として用いたPO-EO共重合体(PO:EO共重合比=90:10w/w)について、40℃及び100℃における動粘度を測定した。結果を表4中に示す。
(Comparative Example 6)
The kinematic viscosity at 40° C. and 100° C. was measured for the PO—EO copolymer (PO:EO copolymerization ratio=90:10 w/w) used as a raw material in Example 10. The results are shown in Table 4.
 (実施例11)
 以下の手順により、対応するポリアルキレンジオールがブテンオキシド(BO)重合体であり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物を製造した。
 PO-EO共重合体に代えて、BO重合体(Mn=910)19.60gを使用すること以外は実施例10と同様の手順により、TMS変性物を得た。得られたTMS変性物の動粘度を表4中に示す。
(Example 11)
According to the following procedure, a polyalkylenediol-modified product in which the corresponding polyalkylenediol is a butene oxide (BO) polymer and Q 1 and Q 2 are TMS groups in general formula (1) was produced.
A TMS-modified product was obtained in the same manner as in Example 10, except that 19.60 g of a BO polymer (Mn=910) was used instead of the PO-EO copolymer. Table 4 shows the kinematic viscosity of the obtained TMS-modified product.
 (比較例7)
 実施例11で原料として用いたBO重合体について、40℃及び100℃における動粘度を測定した。結果を表4中に示す。
(Comparative Example 7)
The kinematic viscosity at 40°C and 100°C was measured for the BO polymer used as a raw material in Example 11. The results are shown in Table 4.
 (実施例12)
 以下の手順により、対応するポリアルキレンジオールが実施例11で用いたものとは数平均分子量の異なるBO重合体であり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物を製造した。
 ポリアルキレンジオールとして、実施例11で用いたものとは数平均分子量の異なるBO重合体(Mn=570)20.50gを用い、TEAの使用量を100mmolとし、TMS-Clの使用量を70mmolとすること以外は実施例10と同様の手順により、TMS変性物を得た。得られたTMS変性体の動粘度を表4中に示す。
(Example 12)
By the following procedure, the corresponding polyalkylene diol is a BO polymer having a different number average molecular weight from that used in Example 11, and Q 1 and Q 2 are TMS groups in general formula (1). An alkylenediol modified product was produced.
As the polyalkylenediol, 20.50 g of a BO polymer (Mn=570) having a different number average molecular weight from that used in Example 11 was used, the amount of TEA used was 100 mmol, and the amount of TMS-Cl was 70 mmol. A TMS-modified product was obtained by the same procedure as in Example 10 except that Table 4 shows the kinematic viscosity of the modified TMS obtained.
 (比較例8)
 実施例12で原料として用いた、数平均分子量570のBO重合体について、40℃及び100℃における動粘度を測定した。結果を表4中に示す。
(Comparative Example 8)
The kinematic viscosity at 40°C and 100°C was measured for the BO polymer having a number average molecular weight of 570, which was used as a raw material in Example 12. The results are shown in Table 4.
 (実施例13)
 以下の手順により、対応するポリアルキレンジオールがTHF(45質量%)-EO(55質量%)共重合体であり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物を製造した。
 ポリアルキレンジオールとしてTHF(45質量%)-EO(55質量%)共重合体(Mn=1760)19.29gを用い、TEAの使用量を150mmolとし,TMS-Clの使用量を103mmolとすること以外は実施例10と同様の手順により、TMS変性物を得た。得られたTMS変性体の動粘度を表4中に示す。
(Example 13)
By the following procedure, the corresponding polyalkylene diol is a THF (45% by mass)-EO (55% by mass) copolymer, and in the general formula (1), Q 1 and Q 2 are TMS groups. A diol modification was produced.
Using 19.29 g of a THF (45% by mass)-EO (55% by mass) copolymer (Mn=1760) as the polyalkylenediol, using 150 mmol of TEA and 103 mmol of TMS-Cl. A TMS-modified product was obtained by the same procedure as in Example 10 except that Table 4 shows the kinematic viscosity of the modified TMS obtained.
 (比較例9)
 実施例13で原料として用いたTHF-EO共重合体(THF:EO共重合比=45:55w/w)について、40℃及び100℃における動粘度を測定した。結果を表4中に示す。
(Comparative Example 9)
The kinematic viscosity at 40° C. and 100° C. was measured for the THF-EO copolymer (THF:EO copolymerization ratio=45:55 w/w) used as a raw material in Example 13. The results are shown in Table 4.
 (実施例14)
 以下の手順により、対応するポリアルキレンジオールがTHF(60質量%)-EO(40質量%)共重合体であり、一般式(1)においてQ及びQがTMS基である形態のポリアルキレンジオール変性物を製造した。
 ポリアルキレンジオールとしてTHF(60質量%)-EO(40質量%)共重合体20.36gを用い、TEAの使用量を70mmolとし、TMS-Clの使用量を50mmolとすること以外は、実施例10と同様の手順により、TMS変性物を得た。得られたTMS変性体の動粘度を表4中に示す。
(Example 14)
By the following procedure, the corresponding polyalkylene diol is a THF (60% by mass)-EO (40% by mass) copolymer, and in the general formula (1), Q 1 and Q 2 are TMS groups. A diol modification was produced.
Example except that 20.36 g of THF (60% by mass)-EO (40% by mass) copolymer is used as the polyalkylenediol, the amount of TEA is 70 mmol, and the amount of TMS-Cl is 50 mmol. A TMS modified product was obtained by the same procedure as in 10. Table 4 shows the kinematic viscosity of the modified TMS obtained.
 (比較例10)
 実施例14で原料として用いたTHF-EO共重合体(THF:EO共重合比=60:40w/w)について、40℃及び100℃における動粘度を測定した。結果を表4中に示す。
(Comparative Example 10)
The kinematic viscosity at 40° C. and 100° C. was measured for the THF-EO copolymer (THF:EO copolymerization ratio=60:40 w/w) used as a starting material in Example 14. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

Claims (6)

  1.  下記一般式(1)で表されるポリアルキレンジオール変性物であって、対応するポリアルキレンジオールの数平均分子量が100~8000である、ポリアルキレンジオール変性物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、複数のRは同一でも相互に異なっていてもよく、それぞれ独立に、炭素数2~5の直鎖アルキレン基、又は、炭素数3~8の分岐鎖アルキレン基であって主鎖の炭素数が2~5である分岐鎖アルキレン基を表し、Q及びQは同一でも相互に異なっていてもよく、それぞれ独立に下記一般式(2)で表されるシリル基であり、nは2以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R、R、及びRは同一でも相互に異なっていてもよく、それぞれ独立に炭素数1~9の炭化水素基である。)
    A modified polyalkylenediol represented by the following general formula (1), wherein the corresponding polyalkylenediol has a number average molecular weight of 100 to 8,000.
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), a plurality of R 1 may be the same or different, and each independently represents a linear alkylene group having 2 to 5 carbon atoms or a branched alkylene group having 3 to 8 carbon atoms. represents a branched alkylene group having a main chain of 2 to 5 carbon atoms, Q 1 and Q 2 may be the same or different and are each independently represented by the following general formula (2) It is a silyl group, and n represents an integer of 2 or more.)
    Figure JPOXMLDOC01-appb-C000002
    (In general formula (2), R 2 , R 3 and R 4 may be the same or different and each independently represents a hydrocarbon group having 1 to 9 carbon atoms.)
  2.  前記一般式(1)中、Rが、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、ブタン-1,2-ジイル基、ブタン-2,3-ジイル基、若しくはブタン-1,4-ジイル基、又はそれらの組み合わせである、請求項1に記載のポリアルキレンジオール変性物。 In general formula (1), R 1 is ethane-1,2-diyl group, propane-1,2-diyl group, butane-1,2-diyl group, butane-2,3-diyl group, or butane -1,4-diyl group, or a combination thereof, the polyalkylenediol modified product according to claim 1.
  3.  前記一般式(1)中、Q及びQが、トリメチルシリル基、エチルジメチルシリル基、ジメチルプロピルシリル基、ブチルジメチルシリル基、オクチルジメチルシリル基、トリエチルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、トリイソプロピルシリル基、トリブチルシリル基、tert-ブチルジメチルシリル基、ジメチルフェニルシリル基、ベンジルジメチルシリル基、メチルジフェニルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、ジ-tert-ブチルイソブチルシリル基、トリシクロヘキシルシリル基、ジシクロヘキシルフェニルシリル基、及びシクロヘキシルジフェニルシリル基から選ばれる1種以上のシリル基である、請求項1又は2に記載のポリアルキレンジオール変性物。 In the general formula (1), Q 1 and Q 2 are a trimethylsilyl group, an ethyldimethylsilyl group, a dimethylpropylsilyl group, a butyldimethylsilyl group, an octyldimethylsilyl group, a triethylsilyl group, a dimethylisopropylsilyl group, and a diethylisopropylsilyl group. group, triisopropylsilyl group, tributylsilyl group, tert-butyldimethylsilyl group, dimethylphenylsilyl group, benzyldimethylsilyl group, methyldiphenylsilyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, di-tert-butyl 3. The modified polyalkylenediol according to claim 1, which is one or more silyl groups selected from an isobutylsilyl group, a tricyclohexylsilyl group, a dicyclohexylphenylsilyl group, and a cyclohexyldiphenylsilyl group.
  4.  前記一般式(1)において、Q及びQが、同一のシリル基であるか、又は、2種以上のシリル基の同一の組み合わせである、請求項1~3のいずれかに記載のポリアルキレンジオール変性物。 4. The poly according to any one of claims 1 to 3, wherein in the general formula (1), Q 1 and Q 2 are the same silyl group or the same combination of two or more silyl groups. Modified alkylenediol.
  5.  請求項1~4のいずれかに記載のポリアルキレンジオール変性物を含有する、潤滑油基油。 A lubricating base oil containing the polyalkylenediol-modified product according to any one of claims 1 to 4.
  6.  請求項5に記載の潤滑油基油を含有する、潤滑油組成物。 A lubricating oil composition containing the lubricating base oil according to claim 5.
PCT/JP2022/008875 2021-03-03 2022-03-02 Modified polyalkylene diol WO2022186276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503911A JPWO2022186276A1 (en) 2021-03-03 2022-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-033764 2021-03-03
JP2021033764 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022186276A1 true WO2022186276A1 (en) 2022-09-09

Family

ID=83154605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008875 WO2022186276A1 (en) 2021-03-03 2022-03-02 Modified polyalkylene diol

Country Status (2)

Country Link
JP (1) JPWO2022186276A1 (en)
WO (1) WO2022186276A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516671A (en) * 2008-04-04 2011-05-26 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー Refrigerant composition
JP2011528394A (en) * 2008-07-16 2011-11-17 ダウ グローバル テクノロジーズ エルエルシー Refrigerant composition containing silyl-terminated polyalkylene glycol as lubricant and method for producing the same
WO2014139935A1 (en) * 2013-03-11 2014-09-18 Basf Se The use of polyalkoxylates in lubricant compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516671A (en) * 2008-04-04 2011-05-26 ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー Refrigerant composition
JP2011528394A (en) * 2008-07-16 2011-11-17 ダウ グローバル テクノロジーズ エルエルシー Refrigerant composition containing silyl-terminated polyalkylene glycol as lubricant and method for producing the same
WO2014139935A1 (en) * 2013-03-11 2014-09-18 Basf Se The use of polyalkoxylates in lubricant compositions

Also Published As

Publication number Publication date
JPWO2022186276A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
CN101437928B (en) Gear lubricant with base oil having a low traction coefficient
JP5237681B2 (en) Lubricating base oil and lubricating oil composition
CN106459821A (en) Lubricating oil composition
US10815445B2 (en) Lubricating oil composition, lubricating method, and transmission
KR20080108348A (en) Gear lubricant with low brookfield ratio
JP2009511728A (en) Lubricating oil composition
EP3747525B1 (en) Defoaming agent and lubricating oil composition
CN110088254A (en) Lubricant oil composite comprising dispersing agent comb polymer
CN101855328A (en) Tractor hydraulic fluid compositions and preparation thereof
JP2015086314A (en) Novel polymer and viscosity index improver, and lubricant composition
WO2022186276A1 (en) Modified polyalkylene diol
JP2020164497A (en) New compound, viscosity index improver, and lubricant composition
EP3425030A1 (en) Lubricating oil composition, lubricating method, and transmission
CN108368445B (en) Mineral base oil, lubricating oil composition, internal combustion engine, and method for lubricating internal combustion engine
WO2021124807A1 (en) Low-residue siloxane compound, and lubricating oil composition and lubricant using this
TW202200769A (en) Lubricating oil composition
EP3425031A1 (en) Lubricating oil composition, lubricating method, and transmission
CN111675786A (en) Novel viscosity index improver
CN115298291A (en) Lubricating oil composition and method for using lubricating oil composition
EP3318620A1 (en) Use of a lubricant for improving the low temperature viscosity of lubricant compositions
JP7282907B2 (en) Lubricating oil composition and lubricant using the same
JP7324729B2 (en) lubricating oil composition
WO2016039235A1 (en) Lubricating oil additive and lubricating oil composition
JP2023047696A (en) Lubricant composition
WO2016152230A1 (en) Lubricating oil composition for automatic transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503911

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763330

Country of ref document: EP

Kind code of ref document: A1