WO2022186273A1 - Radioactive compound - Google Patents

Radioactive compound Download PDF

Info

Publication number
WO2022186273A1
WO2022186273A1 PCT/JP2022/008860 JP2022008860W WO2022186273A1 WO 2022186273 A1 WO2022186273 A1 WO 2022186273A1 JP 2022008860 W JP2022008860 W JP 2022008860W WO 2022186273 A1 WO2022186273 A1 WO 2022186273A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
group
phase
hydrogen atom
Prior art date
Application number
PCT/JP2022/008860
Other languages
French (fr)
Japanese (ja)
Inventor
知也 上原
博元 鈴木
祐太 貝塚
Original Assignee
国立大学法人千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学 filed Critical 国立大学法人千葉大学
Priority to JP2023503909A priority Critical patent/JPWO2022186273A1/ja
Publication of WO2022186273A1 publication Critical patent/WO2022186273A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • C07C227/20Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters by hydrolysis of N-acylated amino-acids or derivatives thereof, e.g. hydrolysis of carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/34Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C229/36Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings with at least one amino group and one carboxyl group bound to the same carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a radioactive compound, a method for producing the same, and a radiopharmaceutical composition.
  • Non-Patent Document 1 amino acid derivatives labeled with astatine-211 ( 211 At), which is an ⁇ -emitting nuclide, are expected to enable nuclear medicine treatment using ⁇ -rays, enabling integrated diagnosis and treatment.
  • 211 At-labeled tyrosine derivatives and 211 At-labeled phenylalanine derivatives have been developed as 211 At-labeled drugs (eg, Non-Patent Document 2).
  • Amino acid derivatives labeled with radioactive fluorine or radioactive iodine that have been developed so far have high in vivo stability and high uptake into tumors, and their usefulness has been recognized.
  • 211 At-labeled amino acid derivatives exhibit high uptake into tumors
  • 211 At is observed to be lost in vivo, and non-specific accumulation in the stomach and thyroid is a problem. This not only leads to increased side effects due to radiation exposure, but also leads to decreased radioactivity in tumor tissue, resulting in insufficient therapeutic effects. Therefore, development of 211 At-labeled amino acid derivatives with high in vivo stability is desired.
  • TECHNICAL FIELD The present invention relates to novel radioactive compounds, particularly to radioactive compounds or pharmaceutically acceptable salts thereof having high biostability.
  • the present invention includes the following aspects. ⁇ 1> A radioactive compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof.
  • R a represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R b each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X represents a group represented by the following formula (x1), formula (x2) or formula (x3)
  • R a represents a hydrogen atom or a methyl group
  • ⁇ 4> A method for producing the radioactive compound or a pharmaceutically acceptable salt thereof according to any one of ⁇ 1> to ⁇ 3> above, comprising the following steps [1] to [4]. [1] providing a compound (i) represented by the following formula (y1), formula (y2) or formula (y3);
  • Z 1 each independently represents a hydrogen atom, an amino group-protecting group or R b
  • Z 2 represents a hydrogen atom or a carboxy-protecting group.
  • R a , R b , ⁇ are the same as above.
  • each L 1 independently represents a leaving group.
  • [3] (a) Substitution of the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) with a group excluding one L 1 in the compound (ii), and (b) the compound Y of the other L 1 in (ii) [wherein Y is the same as above. ] to obtain a compound (iii) represented by the following formula (III);
  • Step ⁇ 5> Deprotecting the protecting group of compound (iii) above ⁇ 5> A radioactive compound comprising the radioactive compound or a pharmaceutically acceptable salt thereof according to any one of ⁇ 1> to ⁇ 3> above pharmaceutical composition.
  • ⁇ 6> The radiopharmaceutical composition according to ⁇ 5> above, which is for diagnostic imaging.
  • ⁇ 7> The radiopharmaceutical composition according to ⁇ 5> above, which is for therapeutic use.
  • a novel radioactive compound or a pharmaceutically acceptable salt thereof is provided by the present invention.
  • the radioactive compounds of the present invention have high biostability.
  • FIG. 1 shows the results of HPLC analysis of compound (8) and compound (14) of Synthesis Example 1.
  • FIG. 2 shows the results of HPLC analysis of compound (12) and compound (16) of Synthesis Example 1.
  • FIG. 3 shows the results of Evaluation Example 2.
  • FIG. 4 shows the results of Evaluation Example 3.
  • the radioactive compound of the present invention (hereinafter also referred to as the compound of the present invention) is a radioactive compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof.
  • R a represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R b each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X represents a group represented by the following formula (x1), formula (x2) or formula (x3)
  • Y represents 18 F, 76 Br, 77 Br, 123 I, 124 I, 125 I, 132 I, or 211 At; ⁇ indicates an asymmetric carbon.
  • alkyl group having 1 to 6 carbon atoms for R a and R b includes, for example, a linear or branched alkyl group having 1 to 6 carbon atoms, specifically methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl and the like.
  • R a represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, still more preferably a hydrogen atom is.
  • Each R b independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably represents a hydrogen atom or a methyl group, further preferably is a hydrogen atom.
  • Two of R b are preferably both hydrogen atoms, or one is a hydrogen atom and the other is the above alkyl group, more preferably both are hydrogen atoms.
  • Y is a radioactive halogen atom and represents 18 F, 76 Br, 77 Br, 123 I, 124 I, 125 I, 132 I or 211 At, preferably 18 F, 125 I or 211 At, more preferably Indicates 125 I or 211 At.
  • the compound of the present invention has an asymmetric carbon.
  • the configuration of ⁇ C carbon, which is an asymmetric carbon, is the following L configuration
  • R a , R b and X are the same as above.
  • R a , R b and X are the same as above.
  • R a preferably represents a hydrogen atom or a methyl group
  • R b each independently represents a hydrogen atom or a methyl group.
  • Preferred embodiments of the compounds of the present invention include radioactive compounds represented by the following formulas (Ia-1), (Ia-2) or (Ia-3), or pharmaceutically acceptable salts thereof.
  • a more preferred embodiment of the compound of the present invention includes a radioactive compound represented by the following formula (Ib-1), (Ib-2) or (Ib-3) or a pharmaceutically acceptable salt thereof.
  • the compound of the present invention may be a pharmaceutically acceptable salt of the radioactive compound represented by formula (I) above.
  • Salts include acid addition salts and base addition salts.
  • the acid addition salt may be either an inorganic acid salt or an organic acid salt.
  • inorganic acid salts include hydrochloride, hydrobromide, sulfate, hydroiodide, nitrate and phosphate.
  • organic acid salts include citrate, oxalate, acetate, formate, propionate, benzoate, trifluoroacetate, maleate, tartrate, methanesulfonate, and benzenesulfonic acid. salts, p-toluenesulfonate.
  • the base addition salt may be either an inorganic base salt or an organic base salt.
  • Inorganic base salts include, for example, sodium salts, potassium salts, calcium salts, magnesium salts and ammonium salts.
  • Organic base salts include, for example, triethylammonium salts, triethanolammonium salts, pyridinium salts, and diisopropylammonium salts.
  • the compounds of the present invention may be solvates such as hydrates.
  • the solvent is not particularly limited as long as it is a pharmaceutically acceptable solvent.
  • the compound of the present invention can be suitably used as an active ingredient of a radiopharmaceutical composition for diagnostic imaging, treatment, etc., which will be described later.
  • a radioactive compound represented by formula (I) or a pharmaceutically acceptable salt thereof can be produced, for example, by a method including the following steps [1] to [4]. [1] providing a compound (i) represented by the following formula (y1), formula (y2) or formula (y3);
  • Z 1 each independently represents a hydrogen atom, an amino group-protecting group or R b
  • Z 2 represents a hydrogen atom or a carboxy-protecting group
  • R a , R b , ⁇ are the same as above.
  • each L 1 independently represents a leaving group.
  • [3] (a) Substitution of the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) with a group excluding one L 1 in the compound (ii), and (b) the compound Y of the other L 1 in (ii) [wherein Y is the same as above. ] to obtain a compound (iii) represented by the following formula (III);
  • step [1] compound (i) represented by formula (y1), formula (y2) or formula (y3) is provided.
  • the compound represented by formula (y1) is histidine or its ⁇ -alkyl type and/or N-alkyl type derivative whose amino group and carboxy group bonded to ⁇ carbon may be protected.
  • the compound represented by formula (y2) is tyrosine or its ⁇ -alkyl type and/or N-alkyl type derivative whose amino group and carboxy group bonded to ⁇ carbon may be protected.
  • the compound represented by formula (y3) is ⁇ -alkyl and/or N-alkyl tryptophan or a derivative thereof in which the amino group and carboxy group bonded to the ⁇ carbon may be protected.
  • Examples of protective groups for amino groups include tert-butoxycarbonyl group (Boc group), benzyloxycarbonyl group (Cbz group), 9-fluorenylmethyloxycarbonyl group (Fmoc group) and the like.
  • Examples of the carboxy-protecting group include methyl group, ethyl group, benzyl group, tert-butyl group and the like.
  • Z 1 is an amino group-protecting group and Z 2 is a carboxy group-protecting group
  • Z 1 and Z 2 are a combination of an amino group-protecting group and a carboxy group-protecting group that can be deprotected under the same conditions, more preferably an amino group-protecting group and a carboxyl group that can be deprotected with an acid catalyst such as trifluoroacetic acid.
  • an acid catalyst such as trifluoroacetic acid.
  • Such combinations include, for example, Z 1 is a Boc group and Z 2 is a tert-butyl group.
  • Introduction of an amino-protecting group and a carboxy-protecting group can be carried out by a conventional method.
  • step [2] compound (ii) represented by formula (II) is provided.
  • Compound (ii) is obtained by reacting two adjacent hydroxy groups of pentaerythritol with 2,2-dimethoxypropane to protect the can be obtained by reacting the other two hydroxy groups with an activating agent as leaving groups.
  • Leaving groups represented by L 1 include trifluoromethanesulfonate (triflate, —OTf) group, nonafluorobutanesulfonate (nonaflate) group, p-toluenesulfonate (tosylate) group, methanesulfonate (mesylate) group, and p-nitrosulfonyloxy (nosylate) group.
  • trifluoromethanesulfonate group and nonafluorobutanesulfonate group are preferable from the viewpoint of reactivity.
  • step [3] (a) substitution of the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) with a group excluding one L 1 in the compound (ii), and (b ) Y of the other L 1 in the above compound (ii) [wherein Y is the same as above. ] to obtain the compound (iii) represented by the formula (III).
  • Step (a) In the step (a), the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) is substituted with the group excluding one L 1 in the compound (ii).
  • 0.1 to 10 mol preferably 0.5 to 2 mol of compound (ii) can be reacted with 1 mol of compound (i).
  • the reaction can be carried out in the presence of, for example, 0.1 to excess mol, preferably 0.5 to 10 mol of base per 1 mol of compound (i), if necessary.
  • the base examples include organic bases such as pyridine, triethylamine, diisopropylethylamine (DIPEA), and 2,6-lutidine; alkali metal carbonates such as sodium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; Inorganic bases such as alkali metal hydrides are included.
  • the reaction is preferably carried out in a solvent.
  • solvents include organic solvents such as ethyl acetate, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane, tetrahydrofuran (THF), acetonitrile, and dichloromethane, but are limited to these. not to be
  • the solvent may be either a single solvent or a mixture of two or more solvents.
  • step (b) the radioactive atom Y[Y of the other L1 in compound (ii) is the same as above. ].
  • 0.1 to 10 mol, preferably 0.5 to 5 mol of a halogenating agent can be reacted with 1 mol of compound (ii) or the compound obtained in step (a).
  • the halogenating agent include radioactive halogen molecules corresponding to Y, alkali metal salts of Y such as sodium, oxides of Y, and N-halogen succinimide.
  • the reaction is carried out in the presence of, for example, 0.1 to excess mol, preferably 0.5 to 10 mol of a base, relative to 1 mol of compound (ii) or the compound obtained in step (a), if necessary.
  • a base include organic bases such as pyridine, triethylamine, diisopropylethylamine (DIPEA), and 2,6-lutidine; alkali metal carbonates such as sodium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; Inorganic bases such as alkali metal hydrides are included. Among them, organic bases are preferable from the viewpoint of reactivity.
  • an organic base that is liquid at room temperature is more preferable.
  • the reaction temperature can be, for example, 0-40°C.
  • the reaction time can be, for example, 30 minutes to 10 days.
  • the reaction is preferably carried out in a solvent.
  • solvents include organic solvents such as ethyl acetate, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane, tetrahydrofuran (THF), acetonitrile, and dichloromethane, but are limited to these. not to be
  • the solvent may be either a single solvent or a mixture of two or more solvents.
  • step (a) and step (b) are not limited, and step (b) may be performed after step (a), or step (a) may be performed after step (b). , from the viewpoint of reducing the number of steps for handling radioactive isotopes, step (b) is preferably carried out after step (a).
  • the compound (iii) represented by the formula (III) obtained in this way is subjected to isolation steps such as filtration, concentration, and extraction, and/or purification steps such as column chromatography and recrystallization, if necessary. After that, it can be subjected to the next step [4].
  • isolation steps such as filtration, concentration, and extraction, and/or purification steps such as column chromatography and recrystallization are performed to obtain the target compound. can be done.
  • step [4] the protecting group of compound (iii) is deprotected.
  • the protecting group of the compound (iii) means that Z 1 derived from the compound (i) is an amino-protecting group and Z 2 is a carboxy-protecting group, and that the compound (ii) is derived from It is an acetal protecting group with a neopentyl structure.
  • Deprotection of a protecting group can be performed by a conventional method.
  • the acetal protecting group with a neopentyl structure can be deprotected using an acid catalyst in an amount of, for example, 0.1 mol to excess, preferably about 0.5 mol to 10 mol, per 1 mol of compound (iii).
  • acid catalysts include organic acids such as trifluoroacetic acid and p-toluenesulfonic acid, and inorganic acids such as hydrochloric acid and sulfuric acid. Among them, trifluoroacetic acid is preferred.
  • a person skilled in the art can appropriately set the reaction temperature and the reaction time.
  • the reaction temperature can be, for example, about 10 to 40°C.
  • the reaction time can be, for example, about 30 minutes to 24 hours. From the viewpoint of reaction progress, the reaction is preferably carried out in a solvent.
  • solvents include aqueous solvents such as water.
  • step [4] the target radioactive compound represented by the formula (I) or its pharmacological properties is obtained through isolation steps such as filtration, concentration, and extraction, and/or purification steps such as column chromatography and recrystallization, as necessary.
  • isolation steps such as filtration, concentration, and extraction, and/or purification steps such as column chromatography and recrystallization, as necessary.
  • purification steps such as column chromatography and recrystallization, as necessary.
  • commercially acceptable salts can be obtained.
  • the radioactive compound of the invention is produced. Synthesis of the radioactive compound of the present invention can be confirmed by known means such as 1 H-NMR measurement, 13 C-NMR measurement and mass spectrometry.
  • an ⁇ -amino acid in which the amino group and carboxy group bonded to the ⁇ carbon may be protected, other than the compound (i) represented by formula (y1), formula (y2) or formula (y3).
  • a radioactive compound derived from the amino acid or a pharmaceutically acceptable salt thereof can be obtained.
  • ⁇ -amino acids include lysine, arginine, asparagine, and glutamine having an amino group in the side chain; serine, threonine, etc. having a hydroxy group in the side chain.
  • ⁇ -amino acids also include glycine, alanine, valine, leucine, isoleucine, phenylalanine, proline, cysteine, methionine, etc., which do not have amino groups or hydroxyl groups in their side chains.
  • the hydrogen atom of the amino group bonded to the ⁇ carbon is substituted with the group excluding one L 1 in the compound (ii).
  • An example of the radioactive compound thus obtained is shown below.
  • Radiopharmaceutical composition The present invention provides a radiopharmaceutical composition containing the above radioactive compound or a salt thereof as an active ingredient.
  • a radiopharmaceutical can be prepared as a pharmaceutical composition containing the above-mentioned radioactive compound or a salt thereof as an active ingredient and, if necessary, one or more pharmaceutically acceptable carriers.
  • Carriers include aqueous buffers, pH adjusters such as acids and bases, stabilizers such as ascorbic acid and p-aminobenzoic acid, excipients such as D-mannitol, tonicity agents, and preservatives. I can give an example.
  • Compounds such as citric acid, tartaric acid, malonic acid, sodium gluconate, sodium glucoheptonate, etc. may also be added to help improve radiochemical purity.
  • Radiopharmaceutical compositions can be provided in the form of aqueous solutions, frozen solutions, and lyophilizates.
  • the radiopharmaceutical composition of the present invention can be used, for example, for diagnostic imaging.
  • Diagnostic imaging includes, for example, Single Photon Emission Computed Tomography (also simply referred to as "SPECT"), Positron Emission Tomography (also simply referred to as “PET”), and the like.
  • SPECT Single Photon Emission Computed Tomography
  • PET Positron Emission Tomography
  • Diagnosis is not particularly limited, and it is used for various diseases such as tumors, inflammation, infectious diseases, cardiovascular diseases, brain and central system diseases, and radiological image diagnosis of organs or tissues.
  • Types of cancer include solid cancers in the stomach, large intestine, lung, liver, prostate, pancreas, esophagus, bladder, gallbladder/bile duct, breast, uterus, thyroid gland, ovary, and the like.
  • the radiopharmaceutical composition of the invention can be used, for example, for therapy. Preferably, it can be used for radiotherapy to suppress cancer.
  • it When used as an anticancer agent, for example, it has a preventive action to prevent the occurrence of cancer, metastasis/implantation, and recurrence, as well as suppressing the growth of cancer cells and shrinking cancer. It has the broadest meaning including both therapeutic actions such as prevention of progression of cancer and amelioration of symptoms, and should not be construed as limited in any case.
  • Y in formula (I) above is preferably 211 At, an ⁇ -emitting nuclide.
  • the administration target of the radiopharmaceutical composition of the present invention is not particularly limited.
  • mammals, including humans are suitable administration subjects.
  • Humans are not particularly limited in terms of race, sex, and age.
  • Mammals other than humans include pet animals such as dogs and cats.
  • the route of administration of the radiopharmaceutical composition of the present invention includes, for example, parenteral administration such as intravenous administration or intraarterial administration, and oral administration, with intravenous administration being preferred.
  • the administration route is not limited to these routes, and any route can be used as long as the radiopharmaceutical composition can effectively express its action after administration.
  • the radioactivity intensity of the radiopharmaceutical composition is arbitrary as long as it is an intensity that can achieve the purpose by administering the radiopharmaceutical composition and the radiation exposure of the subject is the lowest possible clinical dose. .
  • the radioactivity intensity can be determined with reference to the radioactivity intensity used in general diagnostic methods and therapeutic methods using radiopharmaceutical compositions.
  • the dose is determined in consideration of various conditions such as the patient's age, body weight, radiographic imaging device to be used, and the state of the target disease. For humans, the amount of radioactivity in the radiopharmaceutical composition is as follows.
  • the dosage of the diagnostic agent is not particularly limited, but for example, 1.0 MBq / kg to 3.0 MBq / kg as the radioactivity of a radioactive element (eg 211 At) is.
  • the reagents and solvents used in each step are as follows.
  • (a) (i) DIC, tBuOH, CuCl(I);
  • ( ii ) CH2Cl2 (b) 2,2-Dimethoxypropane, (+)-10-Camphorsulfonic acid, DMF
  • (c) Tf 2 O, 2,6-Lutidine, CH 2 Cl 2 ( d) 2,6 - Lutidine, CH2Cl2 (e) NaI, MeCN (f) TFA, H2O
  • the reagents and solvents used in each step are as follows. (g) NaH, THF (h) NaI, MeCN (i) TFA, H2O
  • HPLC high performance liquid chromatography
  • ODS column Unison US-C18, manufactured by Intact Co., Ltd., 150 x 20 mm
  • MilliQ water as the mobile phase for phase A and MeCN for phase B
  • the flow rate was At 1 mL/min, 40% A phase, 60% B phase, 30% A phase, 70% B phase for 0-20 minutes after initiation, and 30% A phase 20-30 minutes after initiation
  • the product was purified by a linear gradient method varying from 70% B phase to 0% A phase to 100% B phase.
  • Compound (13) was obtained with a radiochemical yield of 84.6%.
  • the separated solution was concentrated to 50 ⁇ L with a rotary evaporator, TFA (450 ⁇ L) was added to the concentrated solution, and reacted at 37° C. for 1 hour. After the reaction, the TFA in the solution was removed under a stream of nitrogen, and saturated NaHCO3 aqueous solution was added to neutralize the remaining TFA.
  • HPLC high performance liquid chromatography
  • ODS column Unison US-C18, manufactured by Intact Co., Ltd., 150 x 20 mm
  • the mobile phase was MilliQ water for phase A and MeCN for phase B, and the flow rate was 1 mL/min.
  • HPLC high performance liquid chromatography
  • ODS column Unison US-C18, manufactured by Intact Co., Ltd., 150 x 20 mm
  • MilliQ water as the mobile phase for phase A and MeCN for phase B
  • the flow rate was As 1 mL / min, from 0 to 20 minutes after the start, change from 30% A phase, 70% B phase to 20% A phase, 80% B phase, and 20 to 30 minutes after the start 20% A phase , B phase 80% to A phase 0%, B phase 100%.
  • Compound (15) was obtained with a radiochemical yield of 89.6%.
  • the separated solution was concentrated to 50 ⁇ L with a rotary evaporator, TFA (450 ⁇ L) was added to the concentrated solution, and reacted at 37° C. for 1 hour. After the reaction, the TFA in the solution was removed under a stream of nitrogen, and saturated NaHCO3 aqueous solution was added to neutralize the remaining TFA.
  • HPLC high performance liquid chromatography
  • ODS column Unison US-C18, manufactured by Intact Co., Ltd., 150 x 20 mm
  • the mobile phase was MilliQ water for phase A and MeCN for phase B, and the flow rate was 1 mL/min.
  • FIG. 1 shows the results of HPLC analysis of compound (8) and compound (14).
  • FIG. 2 shows the results of HPLC analysis of compound (12) and compound (16). The absorbance of compound (8) was measured and analyzed at 220 nm, and the absorbance of compound (12) was measured and analyzed at 254 nm. Compounds (14) and (16) were analyzed by connecting a gamma ray detector (Gabistar, manufactured by Raytest) online.
  • a gamma ray detector Gibstar, manufactured by Raytest
  • Tumor-bearing mice were prepared by transplanting C6 cells (5 ⁇ 10 6 cells/mouse) into the left leg of 4-week-old BALB/c Slc-nu/nu strain male mice. It should be noted that experiments using mice in the present specification were performed with approval from the Animal Ethics Committee of Chiba University.
  • mice were sacrificed 1 hour and 2 hours after administration, and organs of interest and tumors were harvested. After measuring the mass, the radioactivity was measured with an Autowell gamma system (WIZARD3, manufactured by PerkinElmer). As a control compound, the following compounds were used
  • the results are shown in Table 1.
  • the unit in the table is the radioactivity accumulation rate (%) [% ID/g] with respect to 100% of the radioactivity injected dose per 1 g of organ or tissue, except for the stomach, intestine and neck.
  • the radioactivity accumulation rate (%) [% ID] is the radioactivity accumulation rate (%) [% ID] with respect to 100% of the injected dose per organ or tissue.
  • phase A contained 0.1% TFA/MilliQ water and phase B contained 0.1% TFA/MilliQ water.
  • the flow rate is 1 mL / min, and from 0 to 20 minutes after the start, the phase A is changed from 90%, the B phase 10% to the A phase 50%, the B phase 50%.
  • the product was purified by a linear gradient method varying from 50% phase A, 50% phase B to 0% phase A, 100% phase B during 20-30 minutes.
  • Compound (17) was obtained with a radiochemical yield of 48.3% and a radiochemical purity of >98%.
  • the reagents and solvents used in each step are as follows. (n) [ 211 At]/MeCN, DIPEA, MeCN (o) TFA, H2O
  • WIZARD3 Autowell gamma system
  • the results and the corresponding results for compound (16) obtained in Evaluation Example 1 are shown in FIG.
  • the unit in the figure is the radioactivity accumulation rate (%) [% ID/g] with respect to 100% of the radioactivity dose (injected dose) per 1 g of tissue for blood and tumor.
  • the radioactivity accumulation rate (%) [% ID] with respect to 100% of the radioactivity dose (injected dose) per organ.
  • FIG. 4 in tumor-bearing mice to which compound (17) was administered, high accumulation of radioactivity was observed in tumors. Therefore, compound (17) was found to be efficiently taken up by tumors.
  • compound (17) showed less accumulation of radioactivity in the stomach of tumor-bearing mice and was highly stable in vivo. found to have sex.
  • the radioactive compound of the present invention or a pharmaceutically acceptable salt thereof is efficiently taken up by tumors and the like, and has high stability in vivo.
  • a radiopharmaceutical composition is provided.

Abstract

A purpose of the present invention is to provide a novel radioactive compound, in particular a radioactive compound having high biostability. The present invention relates to a radioactive compound represented by formula (I) or a pharmacologically acceptable salt thereof. [In the formula, Ra, Rb, X, Y, and † are as defined in the specification.]

Description

放射性化合物radioactive compound
 本発明は、放射性化合物及びその製造方法、並びに放射性医薬組成物に関する。 The present invention relates to a radioactive compound, a method for producing the same, and a radiopharmaceutical composition.
 がん細胞は一般的にアミノ酸等の栄養源を多く取り込むことが知られている。そのため、放射性核種で標識されたアミノ酸誘導体を開発すれば、多様な癌の診断や治療に有用と考えられる。実際、核医学診断を目的として放射性フッ素標識チロシン誘導体、フェニルアラニン誘導体や放射性ヨウ素標識チロシン誘導体等が開発され、数多くの臨床研究が行われている(例えば、非特許文献1)。また、α線放出核種であるアスタチン-211(211At)で標識されたアミノ酸誘導体によれば、α線による核医学治療が可能となり、診断と治療を一体的に行うことができることが期待される。現在までに、211At標識薬剤として211At標識チロシン誘導体や211At標識フェニルアラニン誘導体が開発されている(例えば、非特許文献2)。 It is known that cancer cells generally take up many nutrients such as amino acids. Therefore, development of radionuclide-labeled amino acid derivatives would be useful for the diagnosis and treatment of various cancers. In fact, for the purpose of nuclear medicine diagnosis, radioactive fluorine-labeled tyrosine derivatives, phenylalanine derivatives, radioactive iodine-labeled tyrosine derivatives, and the like have been developed, and many clinical studies are being conducted (for example, Non-Patent Document 1). In addition, amino acid derivatives labeled with astatine-211 ( 211 At), which is an α-emitting nuclide, are expected to enable nuclear medicine treatment using α-rays, enabling integrated diagnosis and treatment. . To date, 211 At-labeled tyrosine derivatives and 211 At-labeled phenylalanine derivatives have been developed as 211 At-labeled drugs (eg, Non-Patent Document 2).
 これまでに開発されてきた放射性フッ素や放射性ヨウ素で標識されたアミノ酸誘導体は、生体内安定性が高く、腫瘍への高い取り込みを示し、その有用性が認められてきた。しかし、211At標識アミノ酸誘導体は、腫瘍への高い取り込みを示す一方で、生体内で211Atの脱落が観察され、胃や甲状腺への非特異的集積が問題である。これは被ばくによる副作用の増強を招くだけでなく、腫瘍組織での放射活性が低下し、十分な治療効果が得られないことにも繋がる。そのため、生体内で高い安定性を有する211At標識アミノ酸誘導体の開発が望まれている。
 本発明は、新規な放射性化合物に関し、特に高い生体安定性を有する放射性化合物又はその薬学的に許容される塩に関する。
Amino acid derivatives labeled with radioactive fluorine or radioactive iodine that have been developed so far have high in vivo stability and high uptake into tumors, and their usefulness has been recognized. However, while 211 At-labeled amino acid derivatives exhibit high uptake into tumors, 211 At is observed to be lost in vivo, and non-specific accumulation in the stomach and thyroid is a problem. This not only leads to increased side effects due to radiation exposure, but also leads to decreased radioactivity in tumor tissue, resulting in insufficient therapeutic effects. Therefore, development of 211 At-labeled amino acid derivatives with high in vivo stability is desired.
TECHNICAL FIELD The present invention relates to novel radioactive compounds, particularly to radioactive compounds or pharmaceutically acceptable salts thereof having high biostability.
 本発明は、以下の態様を包含する。
<1> 下記式(I)で表される放射性化合物又はその薬学的に許容される塩。
The present invention includes the following aspects.
<1> A radioactive compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[式中、
 Raは、水素原子又は炭素数1~6のアルキル基を示し、
 Rbは、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、
 Xは、下記式(x1)、式(x2)又は式(x3)で表される基を示し、
[In the formula,
R a represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
R b each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
X represents a group represented by the following formula (x1), formula (x2) or formula (x3),
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、*はα炭素への結合部位を示し、**は他方の結合部位を示す。)
 Yは、18F、76Br、77Br、123I、124I、125I、132I、又は211Atを示し、
 †は、不斉炭素を示す。]
<2> Raは、水素原子又はメチル基を示し、
 Rbは、それぞれ独立に水素原子又はメチル基を示す、上記<1>に記載の放射性化合物又はその薬学的に許容される塩。
<3> 下記式(Ib-1)、(Ib-2)又は(Ib-3)で表される、上記<1>又は<2>に記載の放射性化合物又はその薬学的に許容される塩。
(Wherein, * indicates the binding site to the α-carbon, and ** indicates the other binding site.)
Y represents 18 F, 76 Br, 77 Br, 123 I, 124 I, 125 I, 132 I, or 211 At;
† indicates an asymmetric carbon. ]
<2> R a represents a hydrogen atom or a methyl group,
The radioactive compound or a pharmaceutically acceptable salt thereof according to <1> above, wherein each R b independently represents a hydrogen atom or a methyl group.
<3> The radioactive compound or a pharmaceutically acceptable salt thereof according to <1> or <2>, represented by the following formula (Ib-1), (Ib-2) or (Ib-3).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[式中、Yは前記に同じ。]
<4> 下記工程〔1〕~〔4〕を含む、上記<1>~<3>のいずれか1つに記載の放射性化合物又はその薬学的に許容される塩の製造方法。
〔1〕下記式(y1)、式(y2)又は式(y3)で表される化合物(i)を提供する工程;
[In the formula, Y is the same as above. ]
<4> A method for producing the radioactive compound or a pharmaceutically acceptable salt thereof according to any one of <1> to <3> above, comprising the following steps [1] to [4].
[1] providing a compound (i) represented by the following formula (y1), formula (y2) or formula (y3);
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、
 Z1は、それぞれ独立に水素原子、アミノ基の保護基又はRbを示し、
 Z2は、水素原子又はカルボキシ基の保護基を示す。
 Ra、Rb、†は前記に同じ。)
〔2〕下記式(II)で表される化合物(ii)を提供する工程;
(In the formula,
Z 1 each independently represents a hydrogen atom, an amino group-protecting group or R b ,
Z 2 represents a hydrogen atom or a carboxy-protecting group.
R a , R b , † are the same as above. )
[2] providing a compound (ii) represented by the following formula (II);
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式中、L1は、それぞれ独立に脱離基を示す。]
〔3〕(a)上記化合物(i)における側鎖のアミノ基又はヒドロキシ基の水素原子の、上記化合物(ii)における一方のL1を除いた基への置換、及び、(b)上記化合物(ii)における他方のL1の、Y[式中、Yは前記に同じ。]への置換を行い、下記式(III)で表される化合物(iii)を得る工程;
[In the formula, each L 1 independently represents a leaving group. ]
[3] (a) Substitution of the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) with a group excluding one L 1 in the compound (ii), and (b) the compound Y of the other L 1 in (ii) [wherein Y is the same as above. ] to obtain a compound (iii) represented by the following formula (III);
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式中、Ra、X、Y、Z1、Z2は前記に同じ。]
〔4〕上記化合物(iii)の保護基を脱保護する工程
<5> 上記<1>~<3>のいずれか1つに記載の放射性化合物又はその薬学的に許容される塩を含む、放射性医薬組成物。
<6> 画像診断用である、上記<5>に記載の放射性医薬組成物。
<7> 治療用である、上記<5>に記載の放射性医薬組成物。
[In the formula, R a , X, Y, Z 1 and Z 2 are the same as above. ]
[4] Step <5> Deprotecting the protecting group of compound (iii) above <5> A radioactive compound comprising the radioactive compound or a pharmaceutically acceptable salt thereof according to any one of <1> to <3> above pharmaceutical composition.
<6> The radiopharmaceutical composition according to <5> above, which is for diagnostic imaging.
<7> The radiopharmaceutical composition according to <5> above, which is for therapeutic use.
 本発明により新規な放射性化合物又はその薬学的に許容される塩が提供される。本発明の放射性化合物は、高い生体安定性を有する。 A novel radioactive compound or a pharmaceutically acceptable salt thereof is provided by the present invention. The radioactive compounds of the present invention have high biostability.
図1は、合成例1の化合物(8)及び化合物(14)のHPLC解析の結果を示す。1 shows the results of HPLC analysis of compound (8) and compound (14) of Synthesis Example 1. FIG. 図2は、合成例1の化合物(12)及び化合物(16)のHPLC解析の結果を示す。2 shows the results of HPLC analysis of compound (12) and compound (16) of Synthesis Example 1. FIG. 図3は、評価例2の結果を示す。3 shows the results of Evaluation Example 2. FIG. 図4は、評価例3の結果を示す。4 shows the results of Evaluation Example 3. FIG.
[放射性化合物]
 本発明の放射性化合物(以下、本発明の化合物ともいう)は、下記式(I)で表される放射性化合物又はその薬学的に許容される塩である。
[Radioactive compound]
The radioactive compound of the present invention (hereinafter also referred to as the compound of the present invention) is a radioactive compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式中、
 Raは、水素原子又は炭素数1~6のアルキル基を示し、
 Rbは、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、
 Xは、下記式(x1)、式(x2)又は式(x3)で表される基を示し、
[In the formula,
R a represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
R b each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
X represents a group represented by the following formula (x1), formula (x2) or formula (x3),
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、*はα炭素への結合部位を示し、**は他方の結合部位を示す。)
 Yは、18F、76Br、77Br、123I、124I、125I、132I、又は211Atを示し、
 †は、不斉炭素を示す。]
(Wherein, * indicates the binding site to the α-carbon, and ** indicates the other binding site.)
Y represents 18 F, 76 Br, 77 Br, 123 I, 124 I, 125 I, 132 I, or 211 At;
† indicates an asymmetric carbon. ]
 Ra及びRbにおける「炭素数1~6のアルキル基」としては、例えば、直鎖状又は分枝鎖状の炭素数1~6のアルキル基、具体的には、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、n-ヘキシル等が挙げられる。 The "alkyl group having 1 to 6 carbon atoms" for R a and R b includes, for example, a linear or branched alkyl group having 1 to 6 carbon atoms, specifically methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, n-hexyl and the like.
 Raは、水素原子又は炭素数1~6のアルキル基を示し、好ましくは水素原子又は炭素数1~3のアルキル基を示し、より好ましくは水素原子又はメチル基を示し、更に好ましくは水素原子である。
 Rbは、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、好ましくは水素原子又は炭素数1~3のアルキル基を示し、より好ましくは水素原子又はメチル基を示し、更に好ましくは水素原子である。
 Rbは、好ましくは2つがともに水素原子、又は、一方が水素原子であり、他方が上記アルキル基であり、より好ましくは2つがともに水素原子である。
 Yは、放射性ハロゲン原子であり、18F、76Br、77Br、123I、124I、125I、132I、又は211Atを示し、好ましくは18F、125I又は211At、より好ましくは125I又は211Atを示す。
R a represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group, still more preferably a hydrogen atom is.
Each R b independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably represents a hydrogen atom or a methyl group, further preferably is a hydrogen atom.
Two of R b are preferably both hydrogen atoms, or one is a hydrogen atom and the other is the above alkyl group, more preferably both are hydrogen atoms.
Y is a radioactive halogen atom and represents 18 F, 76 Br, 77 Br, 123 I, 124 I, 125 I, 132 I or 211 At, preferably 18 F, 125 I or 211 At, more preferably Indicates 125 I or 211 At.
 本発明の化合物は不斉炭素を有する。不斉炭素である†C炭素の立体配置は、下記L配置 The compound of the present invention has an asymmetric carbon. The configuration of †C carbon, which is an asymmetric carbon, is the following L configuration
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
又は、下記D配置 Or, the following D arrangement
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[式中、Ra、R、Xは前記に同じ。]
のいずれでもあってよく、L配置であることが好ましい。
[In the formula, R a , R b and X are the same as above. ]
may be any of, and the L configuration is preferred.
 式(I)において、好ましくは、Raは、水素原子又はメチル基を示し、かつ、Rbは、それぞれ独立に水素原子又はメチル基を示す。 In formula (I), R a preferably represents a hydrogen atom or a methyl group, and R b each independently represents a hydrogen atom or a methyl group.
 本発明の化合物の好ましい態様として、下記式(Ia-1)、(Ia-2)又は(Ia-3)で表される放射性化合物又はその薬学的に許容される塩が挙げられる。 Preferred embodiments of the compounds of the present invention include radioactive compounds represented by the following formulas (Ia-1), (Ia-2) or (Ia-3), or pharmaceutically acceptable salts thereof.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[式中、Ra、R、Y、†は前記に同じ。] [In the formula, R a , R b , Y and † are the same as above. ]
 本発明の化合物のより好ましい態様として、下記式(Ib-1)、(Ib-2)又は(Ib-3)で表される放射性化合物又はその薬学的に許容される塩が挙げられる。 A more preferred embodiment of the compound of the present invention includes a radioactive compound represented by the following formula (Ib-1), (Ib-2) or (Ib-3) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式中、Yは前記に同じ。] [In the formula, Y is the same as above. ]
 本発明の化合物は、上記式(I)で表される放射性化合物の薬学的に許容される塩であってもよい。塩としては、酸付加塩、塩基付加塩が挙げられる。
 酸付加塩としては、無機酸塩、有機酸塩のいずれであってもよい。無機酸塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、ヨウ化水素酸塩、硝酸塩、リン酸塩が挙げられる。有機酸塩としては、例えば、クエン酸塩、シュウ酸塩、酢酸塩、ギ酸塩、プロピオン酸塩、安息香酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、パラトルエンスルホン酸塩が挙げられる。
 塩基付加塩としては、無機塩基塩、有機塩基塩のいずれであってもよい。無機塩基塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩が挙げられる。有機塩基塩としては、例えば、トリエチルアンモニウム塩、トリエタノールアンモニウム塩、ピリジニウム塩、ジイソプロピルアンモニウム塩が挙げられる。
 本発明の化合物は、水和物等の溶媒和物であってもよい。溶媒は、薬学的に許容される溶媒であれば特に限定されない。
The compound of the present invention may be a pharmaceutically acceptable salt of the radioactive compound represented by formula (I) above. Salts include acid addition salts and base addition salts.
The acid addition salt may be either an inorganic acid salt or an organic acid salt. Examples of inorganic acid salts include hydrochloride, hydrobromide, sulfate, hydroiodide, nitrate and phosphate. Examples of organic acid salts include citrate, oxalate, acetate, formate, propionate, benzoate, trifluoroacetate, maleate, tartrate, methanesulfonate, and benzenesulfonic acid. salts, p-toluenesulfonate.
The base addition salt may be either an inorganic base salt or an organic base salt. Inorganic base salts include, for example, sodium salts, potassium salts, calcium salts, magnesium salts and ammonium salts. Organic base salts include, for example, triethylammonium salts, triethanolammonium salts, pyridinium salts, and diisopropylammonium salts.
The compounds of the present invention may be solvates such as hydrates. The solvent is not particularly limited as long as it is a pharmaceutically acceptable solvent.
 本発明の化合物は、後述する画像診断用、治療用等の放射性医薬組成物の有効成分として好適に使用することができる。 The compound of the present invention can be suitably used as an active ingredient of a radiopharmaceutical composition for diagnostic imaging, treatment, etc., which will be described later.
[製造方法]
 式(I)で示される放射性化合物又はその薬学的に許容される塩は、例えば、下記工程〔1〕~〔4〕を含む方法により製造することができる。
〔1〕下記式(y1)、式(y2)又は式(y3)で表される化合物(i)を提供する工程;
[Production method]
A radioactive compound represented by formula (I) or a pharmaceutically acceptable salt thereof can be produced, for example, by a method including the following steps [1] to [4].
[1] providing a compound (i) represented by the following formula (y1), formula (y2) or formula (y3);
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、
 Z1は、それぞれ独立に水素原子、アミノ基の保護基又はRbを示し、
 Z2は、水素原子又はカルボキシ基の保護基を示し、
 Ra、Rb、†は前記に同じ。)
〔2〕下記式(II)で表される化合物(ii)を提供する工程;
(In the formula,
Z 1 each independently represents a hydrogen atom, an amino group-protecting group or R b ,
Z 2 represents a hydrogen atom or a carboxy-protecting group,
R a , R b , † are the same as above. )
[2] providing a compound (ii) represented by the following formula (II);
Figure JPOXMLDOC01-appb-C000020

[式中、L1は、それぞれ独立に脱離基を示す。]
〔3〕(a)上記化合物(i)における側鎖のアミノ基又はヒドロキシ基の水素原子の、上記化合物(ii)における一方のL1を除いた基への置換、及び、(b)上記化合物(ii)における他方のL1の、Y[式中、Yは前記に同じ。]への置換を行い、下記式(III)で表される化合物(iii)を得る工程;
Figure JPOXMLDOC01-appb-C000020

[In the formula, each L 1 independently represents a leaving group. ]
[3] (a) Substitution of the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) with a group excluding one L 1 in the compound (ii), and (b) the compound Y of the other L 1 in (ii) [wherein Y is the same as above. ] to obtain a compound (iii) represented by the following formula (III);
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[式中、Ra、X、Y、Z1、Z2は前記に同じ。]
〔4〕上記化合物(iii)の保護基を脱保護する工程
[In the formula, R a , X, Y, Z 1 and Z 2 are the same as above. ]
[4] Step of deprotecting the protecting group of compound (iii)
<工程〔1〕>
 工程〔1〕において、上記式(y1)、式(y2)又は式(y3)で表される化合物(i)を提供する。
 式(y1)で表される化合物は、α炭素に結合するアミノ基及びカルボキシ基が保護されていてもよいヒスチジン又はそのα-アルキル型及び/若しくはN-アルキル型誘導体である。式(y2)で表される化合物は、α炭素に結合するアミノ基及びカルボキシ基が保護されていてもよいチロシン又はそのα-アルキル型及び/若しくはN-アルキル型誘導体である。式(y3)で表される化合物は、α炭素に結合するアミノ基及びカルボキシ基が保護されていてもよいα-アルキル型及び/若しくはN-アルキル型トリプトファン又はその誘導体である。
 アミノ基の保護基としては、tert-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基(Cbz基)、9-フルオレニルメチルオキシカルボニル基(Fmoc基)等が例示される。
 カルボキシ基の保護基としては、メチル基、エチル基、ベンジル基、tert-ブチル基等が例示される。
 化合物(i)において、本発明の製造方法の反応効率の観点から、好ましくは、Z1はアミノ基の保護基であり、かつ、Zはカルボキシ基の保護基であり、より好ましくは、Z1及びZは同一の条件で脱保護できるアミノ基の保護基とカルボキシ基の保護基の組み合わせであり、更に好ましくは、トリフルオロ酢酸等の酸触媒により脱保護できるアミノ基の保護基とカルボキシ基の保護基の組み合わせである。このような組み合わせとして、例えば、ZがBoc基であり、Zがtert-ブチル基である組み合わせが挙げられる。
 アミノ基の保護基及びカルボキシ基の保護基の導入は、常法により行うことができる。
<Step [1]>
In step [1], compound (i) represented by formula (y1), formula (y2) or formula (y3) is provided.
The compound represented by formula (y1) is histidine or its α-alkyl type and/or N-alkyl type derivative whose amino group and carboxy group bonded to α carbon may be protected. The compound represented by formula (y2) is tyrosine or its α-alkyl type and/or N-alkyl type derivative whose amino group and carboxy group bonded to α carbon may be protected. The compound represented by formula (y3) is α-alkyl and/or N-alkyl tryptophan or a derivative thereof in which the amino group and carboxy group bonded to the α carbon may be protected.
Examples of protective groups for amino groups include tert-butoxycarbonyl group (Boc group), benzyloxycarbonyl group (Cbz group), 9-fluorenylmethyloxycarbonyl group (Fmoc group) and the like.
Examples of the carboxy-protecting group include methyl group, ethyl group, benzyl group, tert-butyl group and the like.
In compound (i), from the viewpoint of the reaction efficiency of the production method of the present invention, preferably Z 1 is an amino group-protecting group and Z 2 is a carboxy group-protecting group, more preferably Z 1 and Z 2 are a combination of an amino group-protecting group and a carboxy group-protecting group that can be deprotected under the same conditions, more preferably an amino group-protecting group and a carboxyl group that can be deprotected with an acid catalyst such as trifluoroacetic acid. is a combination of protecting groups of groups. Such combinations include, for example, Z 1 is a Boc group and Z 2 is a tert-butyl group.
Introduction of an amino-protecting group and a carboxy-protecting group can be carried out by a conventional method.
<工程〔2〕>
 工程〔2〕において、式(II)で表される化合物(ii)を提供する
 化合物(ii)は、例えばペンタエリトリトールの隣接する2つのヒドロキシ基を2,2-ジメトキシプロパンと反応させアセタール保護し、他の2つのヒドロキシ基を活性化剤と反応させ脱離基とし、得ることができる。
 L1が示す脱離基としては、トリフルオロメタンスルホナート(トリフラート、-OTf)基、ノナフルオロブタンスルホナート(ノナフラート)基、p-トルエンスルホナート(トシラート)基、メタンスルホナート(メシラート)基、p-ニトロスルホニルオキシ(ノシラート)基等が挙げられる。中でも、反応性の観点から、好ましくは、トリフルオロメタンスルホナート基、ノナフルオロブタンスルホナート基である。
<Step [2]>
In step [2], compound (ii) represented by formula (II) is provided. Compound (ii) is obtained by reacting two adjacent hydroxy groups of pentaerythritol with 2,2-dimethoxypropane to protect the can be obtained by reacting the other two hydroxy groups with an activating agent as leaving groups.
Leaving groups represented by L 1 include trifluoromethanesulfonate (triflate, —OTf) group, nonafluorobutanesulfonate (nonaflate) group, p-toluenesulfonate (tosylate) group, methanesulfonate (mesylate) group, and p-nitrosulfonyloxy (nosylate) group. Among them, trifluoromethanesulfonate group and nonafluorobutanesulfonate group are preferable from the viewpoint of reactivity.
<工程〔3〕>
 工程〔3〕において、(a)上記化合物(i)における側鎖のアミノ基又はヒドロキシ基の水素原子の、上記化合物(ii)における一方のL1を除いた基への置換、及び、(b)上記化合物(ii)における他方のL1の、Y[式中、Yは前記に同じ。]への置換を行い、前記式(III)で表される化合物(iii)を得る。
<Step [3]>
In step [3], (a) substitution of the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) with a group excluding one L 1 in the compound (ii), and (b ) Y of the other L 1 in the above compound (ii) [wherein Y is the same as above. ] to obtain the compound (iii) represented by the formula (III).
(工程(a))
 工程(a)では、上記化合物(i)における側鎖のアミノ基又はヒドロキシ基の水素原子の、上記化合物(ii)における一方のL1を除いた基への置換を行う。
 反応は、1モルの化合物(i)に対して、例えば0.1~10モル、好ましくは0.5~2モルの化合物(ii)を反応させることができる。
 反応は、必要に応じて1モルの化合物(i)に対して、例えば0.1~過剰量モル、好ましくは0.5~10モルの塩基の存在下で行うことができる。塩基としては、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン(DIPEA)、2,6-ルチジン等の有機塩基等;炭酸ナトリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、水素化ナトリウム等の水素化アルカリ金属等の無機塩基が挙げられる。
 反応は、反応進行性の観点から、溶媒中で行うことが好ましい。溶媒としては、酢酸エチル、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、1,4-ジオキサン、テトラヒドロフラン(THF)、アセトニトリル、ジクロロメタン等の有機溶媒が例示されるが、これに限定されるものではない。溶媒は、単一溶媒又は2以上の溶媒の混合溶媒のいずれであってもよい。
(Step (a))
In the step (a), the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) is substituted with the group excluding one L 1 in the compound (ii).
In the reaction, 0.1 to 10 mol, preferably 0.5 to 2 mol of compound (ii) can be reacted with 1 mol of compound (i).
The reaction can be carried out in the presence of, for example, 0.1 to excess mol, preferably 0.5 to 10 mol of base per 1 mol of compound (i), if necessary. Examples of the base include organic bases such as pyridine, triethylamine, diisopropylethylamine (DIPEA), and 2,6-lutidine; alkali metal carbonates such as sodium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; Inorganic bases such as alkali metal hydrides are included.
From the viewpoint of reaction progress, the reaction is preferably carried out in a solvent. Examples of solvents include organic solvents such as ethyl acetate, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane, tetrahydrofuran (THF), acetonitrile, and dichloromethane, but are limited to these. not to be The solvent may be either a single solvent or a mixture of two or more solvents.
(工程(b))
 工程(b)では、上記化合物(ii)における他方のLの放射性原子Y[Yは前記に同じ。]への置換を行う。
 反応は、1モルの化合物(ii)又は工程(a)で得られた化合物に対して、例えば0.1~10モル、好ましくは0.5~5モルのハロゲン化剤を反応させることができる。
 ハロゲン化剤としては、Yに対応する放射性ハロゲン分子、Yのナトリウム等のアルカリ金属塩、Yの酸化物、N-ハロゲンスクシンイミド等が挙げられる。
 反応は、必要に応じて1モルの化合物(ii)又は工程(a)で得られた化合物に対して、例えば0.1~過剰量モル、好ましくは0.5~10モルの塩基の存在下で行うことができる。塩基としては、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン(DIPEA)、2,6-ルチジン等の有機塩基等;炭酸ナトリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、水素化ナトリウム等の水素化アルカリ金属等の無機塩基が挙げられる。中でも、反応性の観点から、好ましくは有機塩基である。また、溶媒を兼ねることができるとの観点から、より好ましくは、室温で液体の有機塩基である。
 反応温度、反応時間は、当業者が適宜設定することができる。反応温度は、例えば0~40℃とすることができる。反応時間は、例えば30分間~10日間とすることができる。
 反応は、反応進行性の観点から、溶媒中で行うことが好ましい。溶媒としては、酢酸エチル、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、1,4-ジオキサン、テトラヒドロフラン(THF)、アセトニトリル、ジクロロメタン等の有機溶媒が例示されるが、これに限定されるものではない。溶媒は、単一溶媒又は2以上の溶媒の混合溶媒のいずれであってもよい。
(Step (b))
In step (b), the radioactive atom Y[Y of the other L1 in compound (ii) is the same as above. ].
In the reaction, 0.1 to 10 mol, preferably 0.5 to 5 mol of a halogenating agent can be reacted with 1 mol of compound (ii) or the compound obtained in step (a). .
Examples of the halogenating agent include radioactive halogen molecules corresponding to Y, alkali metal salts of Y such as sodium, oxides of Y, and N-halogen succinimide.
The reaction is carried out in the presence of, for example, 0.1 to excess mol, preferably 0.5 to 10 mol of a base, relative to 1 mol of compound (ii) or the compound obtained in step (a), if necessary. can be done with Examples of the base include organic bases such as pyridine, triethylamine, diisopropylethylamine (DIPEA), and 2,6-lutidine; alkali metal carbonates such as sodium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate; Inorganic bases such as alkali metal hydrides are included. Among them, organic bases are preferable from the viewpoint of reactivity. Further, from the viewpoint that it can also serve as a solvent, an organic base that is liquid at room temperature is more preferable.
A person skilled in the art can appropriately set the reaction temperature and the reaction time. The reaction temperature can be, for example, 0-40°C. The reaction time can be, for example, 30 minutes to 10 days.
From the viewpoint of reaction progress, the reaction is preferably carried out in a solvent. Examples of solvents include organic solvents such as ethyl acetate, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), 1,4-dioxane, tetrahydrofuran (THF), acetonitrile, and dichloromethane, but are limited to these. not to be The solvent may be either a single solvent or a mixture of two or more solvents.
 工程(a)及び工程(b)の順序は限定されず、工程(a)を行った後工程(b)を行っても、工程(b)を行った後工程(a)を行ってもよく、放射性同位体を扱う工程を少なくする観点から、好ましくは工程(a)を行った後工程(b)を行う。 The order of step (a) and step (b) is not limited, and step (b) may be performed after step (a), or step (a) may be performed after step (b). , from the viewpoint of reducing the number of steps for handling radioactive isotopes, step (b) is preferably carried out after step (a).
 工程(a)を行った後工程(b)を行う場合の反応スキームを下記に示す。
Figure JPOXMLDOC01-appb-C000022

[式中、Ra、X、Y、Z1、Z2、L1は前記に同じ。]
The reaction scheme for performing step (b) after step (a) is shown below.
Figure JPOXMLDOC01-appb-C000022

[In the formula, R a , X, Y, Z 1 , Z 2 and L 1 are the same as above. ]
 工程(b)を行った後工程(a)を行う場合の反応スキームを下記に示す。
Figure JPOXMLDOC01-appb-C000023

[式中、Ra、X、Y、Z1、Z2、L1は前記に同じ。]
The reaction scheme for performing step (a) after step (b) is shown below.
Figure JPOXMLDOC01-appb-C000023

[In the formula, R a , X, Y, Z 1 , Z 2 and L 1 are the same as above. ]
 このようにして得られる式(III)で表される化合物(iii)は、必要に応じて濾過、濃縮、抽出等の単離工程、及び/又はカラムクロマトグラフィ、再結晶化等の精製工程を経た後に、次の工程〔4〕に付すことができる。また、工程(a)及び工程(b)の間に、必要に応じて濾過、濃縮、抽出等の単離工程、及び/又はカラムクロマトグラフィ、再結晶化等の精製工程を経て目的化合物を得ることができる。 The compound (iii) represented by the formula (III) obtained in this way is subjected to isolation steps such as filtration, concentration, and extraction, and/or purification steps such as column chromatography and recrystallization, if necessary. After that, it can be subjected to the next step [4]. In addition, between steps (a) and (b), if necessary, isolation steps such as filtration, concentration, and extraction, and/or purification steps such as column chromatography and recrystallization are performed to obtain the target compound. can be done.
<工程〔4〕>
 工程〔4〕において、上記化合物(iii)の保護基を脱保護する。化合物(iii)の保護基とは、化合物(i)に由来するZ1がアミノ基の保護基である場合及びZ2がカルボキシ基の保護基である場合、並びに、化合物(ii)に由来するネオペンチル構造のアセタール保護基である。
<Step [4]>
In step [4], the protecting group of compound (iii) is deprotected. The protecting group of the compound (iii) means that Z 1 derived from the compound (i) is an amino-protecting group and Z 2 is a carboxy-protecting group, and that the compound (ii) is derived from It is an acetal protecting group with a neopentyl structure.
 保護基の脱保護は、常法により行うことができる。
 ネオペンチル構造のアセタール保護基は、1モルの化合物(iii)に対して、例えば0.1モル~過剰量、好ましくは0.5モル~10モル程度の酸触媒を用いて、脱保護を行うことができる。
 酸触媒としては、トリフルオロ酢酸、p-トルエンスルホン酸等の有機酸、塩酸、硫酸等の無機酸等が挙げられる。中でも、好ましくはトリフルオロ酢酸である。
 反応温度、反応時間は、当業者が適宜設定することができる。反応温度は、例えば10~40℃程度とすることができる。反応時間は、例えば30分間~24時間程度とすることができる。
 反応は、反応進行性の観点から、溶媒中で行うことが好ましい。溶媒としては、水等の水性溶媒が挙げられる。
 Z1がBoc基であり、かつ、Zがtert-ブチル基である場合、上記の酸触媒を用いた脱保護により、同時に脱保護が行えるため好ましい。
Deprotection of a protecting group can be performed by a conventional method.
The acetal protecting group with a neopentyl structure can be deprotected using an acid catalyst in an amount of, for example, 0.1 mol to excess, preferably about 0.5 mol to 10 mol, per 1 mol of compound (iii). can be done.
Examples of acid catalysts include organic acids such as trifluoroacetic acid and p-toluenesulfonic acid, and inorganic acids such as hydrochloric acid and sulfuric acid. Among them, trifluoroacetic acid is preferred.
A person skilled in the art can appropriately set the reaction temperature and the reaction time. The reaction temperature can be, for example, about 10 to 40°C. The reaction time can be, for example, about 30 minutes to 24 hours.
From the viewpoint of reaction progress, the reaction is preferably carried out in a solvent. Examples of solvents include aqueous solvents such as water.
When Z 1 is a Boc group and Z 2 is a tert-butyl group, deprotection can be performed simultaneously with the above-described deprotection using an acid catalyst, which is preferable.
 工程〔4〕において、必要に応じて濾過、濃縮、抽出等の単離工程、及び/又はカラムクロマトグラフィ、再結晶化等の精製工程を経て目的の式(I)で示される放射性化合物又はその薬学的に許容される塩を得ることができる。 In step [4], the target radioactive compound represented by the formula (I) or its pharmacological properties is obtained through isolation steps such as filtration, concentration, and extraction, and/or purification steps such as column chromatography and recrystallization, as necessary. commercially acceptable salts can be obtained.
 かくして、本発明の放射性化合物が製造される。本発明の放射性化合物が合成されたことは、例えばH-NMR測定、13C-NMR測定、質量分析等の公知の手段により確認することができる。 Thus, the radioactive compound of the invention is produced. Synthesis of the radioactive compound of the present invention can be confirmed by known means such as 1 H-NMR measurement, 13 C-NMR measurement and mass spectrometry.
 上記製造方法において、式(y1)、式(y2)又は式(y3)で表される化合物(i)以外の、α炭素に結合するアミノ基及びカルボキシ基が保護されていてもよいα-アミノ酸又はそのα-アルキル型及び/若しくはN-アルキル型誘導体を提供し、当該アミノ酸に由来する放射性化合物又はその薬学的に許容される塩を得ることができる。
 このようなα-アミノ酸として、側鎖にアミノ基を有するリシン、アルギニン、アスパラギン、グルタミン;側鎖にヒドロキシ基を有するセリン、スレオニン等が挙げられる。
 また、このようなα-アミノ酸として、側鎖にアミノ基及びヒドロキシ基を有さないグリシン、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニン、プロリン、システイン、メチオニン等も挙げられる。ただしこの場合、上記工程〔3〕中の工程(a)では、α炭素に結合するアミノ基の水素原子の、上記化合物(ii)における一方のL1を除いた基への置換を行う。
 このようにして得られる放射性化合物の一例を以下に示す。
In the above production method, an α-amino acid in which the amino group and carboxy group bonded to the α carbon may be protected, other than the compound (i) represented by formula (y1), formula (y2) or formula (y3). Alternatively, by providing an α-alkyl type and/or N-alkyl type derivative thereof, a radioactive compound derived from the amino acid or a pharmaceutically acceptable salt thereof can be obtained.
Examples of such α-amino acids include lysine, arginine, asparagine, and glutamine having an amino group in the side chain; serine, threonine, etc. having a hydroxy group in the side chain.
Examples of such α-amino acids also include glycine, alanine, valine, leucine, isoleucine, phenylalanine, proline, cysteine, methionine, etc., which do not have amino groups or hydroxyl groups in their side chains. However, in this case, in the step (a) of the step [3], the hydrogen atom of the amino group bonded to the α carbon is substituted with the group excluding one L 1 in the compound (ii).
An example of the radioactive compound thus obtained is shown below.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
[放射性医薬組成物]
 本発明は、上記放射性化合物又はその塩を有効成分とする放射性医薬組成物を提供する。
[Radiopharmaceutical composition]
The present invention provides a radiopharmaceutical composition containing the above radioactive compound or a salt thereof as an active ingredient.
 放射性医薬は、上記放射性化合物又はその塩を有効成分として含む他、必要に応じて、1種類又は2種類以上の薬学的に許容される担体を含む医薬組成物として調製できる。担体として、水性緩衝液、酸、及び塩基等のpH調節剤、アスコルビン酸やp-アミノ安息香酸等の安定化剤、D-マンニトール等の賦形剤、等張化剤、並びに保存剤等を例示できる。また、放射化学的純度を改良するのに役立つクエン酸、酒石酸、マロン酸、グルコン酸ナトリウム、グルコヘプトン酸ナトリウム等の化合物を添加してもよい。放射性医薬組成物は、水溶液の形態、凍結溶液の形態、及び凍結乾燥品のいずれでも提供が可能である。 A radiopharmaceutical can be prepared as a pharmaceutical composition containing the above-mentioned radioactive compound or a salt thereof as an active ingredient and, if necessary, one or more pharmaceutically acceptable carriers. Carriers include aqueous buffers, pH adjusters such as acids and bases, stabilizers such as ascorbic acid and p-aminobenzoic acid, excipients such as D-mannitol, tonicity agents, and preservatives. I can give an example. Compounds such as citric acid, tartaric acid, malonic acid, sodium gluconate, sodium glucoheptonate, etc. may also be added to help improve radiochemical purity. Radiopharmaceutical compositions can be provided in the form of aqueous solutions, frozen solutions, and lyophilizates.
 本発明の放射性医薬組成物は、例えば、画像診断用に用いることができる。
 画像診断としては、例えば、単一光子放射断層撮影(Single Photon Emission Computed Tomography,単に「SPECT」ともいう)、陽電子放射断層撮影(Positron Emission Tomography,単に「PET」ともいう)等が挙げられる。
 診断としては、特に限定されず、腫瘍、炎症、感染症、心循環器疾患、脳・中枢系疾患等の各種疾患及び臓器又は組織の放射線画像診断等に用いられ、好ましくは、がんの放射線画像診断に使用される。がんの種類としては、胃、大腸、肺、肝、前立腺、膵、食道、膀胱、胆嚢・胆管、乳房、子宮、甲状腺、卵巣等における固形がんが挙げられる。
The radiopharmaceutical composition of the present invention can be used, for example, for diagnostic imaging.
Diagnostic imaging includes, for example, Single Photon Emission Computed Tomography (also simply referred to as "SPECT"), Positron Emission Tomography (also simply referred to as "PET"), and the like.
Diagnosis is not particularly limited, and it is used for various diseases such as tumors, inflammation, infectious diseases, cardiovascular diseases, brain and central system diseases, and radiological image diagnosis of organs or tissues. Used for diagnostic imaging. Types of cancer include solid cancers in the stomach, large intestine, lung, liver, prostate, pancreas, esophagus, bladder, gallbladder/bile duct, breast, uterus, thyroid gland, ovary, and the like.
 本発明の放射性医薬組成物は、例えば、治療用に用いることができる。
 好適には、がんを抑制する放射線治療に使用することができる。抗がん剤として使用する場合、例えば、がんの発生、又は転移・着床、再発を防止するという予防的作用、並びにがん細胞の増殖を抑制したり、がんを縮小することによってがんの進行を阻止したり、症状を改善させるという治療的作用の両方を含む最も広い意味を有し、いかなる場合においても限定的に解釈されるものではない。
 治療用である場合、上記式(I)におけるYは、好ましくはα線を放出する核種の211Atである。
The radiopharmaceutical composition of the invention can be used, for example, for therapy.
Preferably, it can be used for radiotherapy to suppress cancer. When used as an anticancer agent, for example, it has a preventive action to prevent the occurrence of cancer, metastasis/implantation, and recurrence, as well as suppressing the growth of cancer cells and shrinking cancer. It has the broadest meaning including both therapeutic actions such as prevention of progression of cancer and amelioration of symptoms, and should not be construed as limited in any case.
For therapeutic use, Y in formula (I) above is preferably 211 At, an α-emitting nuclide.
 本発明の放射性医薬組成物の投与対象は特に限定されるものではない。例えば、ヒトを含めた哺乳類が好適な投与対象である。ヒトは、人種、性別、年齢は特に限定されない、ヒト以外の哺乳類として、イヌ、ネコ等のペット動物が挙げられる。
 本発明の放射性医薬組成物の投与経路としては、例えば、静脈内投与若しくは動脈内投与等の非経口投与、経口投与が挙げられ、静脈内投与が好ましい。
 投与経路はこれら経路に限定されず、放射性医薬組成物の投与後に、その作用が有効に発現し得る経路であればいずれも利用できる。
The administration target of the radiopharmaceutical composition of the present invention is not particularly limited. For example, mammals, including humans, are suitable administration subjects. Humans are not particularly limited in terms of race, sex, and age. Mammals other than humans include pet animals such as dogs and cats.
The route of administration of the radiopharmaceutical composition of the present invention includes, for example, parenteral administration such as intravenous administration or intraarterial administration, and oral administration, with intravenous administration being preferred.
The administration route is not limited to these routes, and any route can be used as long as the radiopharmaceutical composition can effectively express its action after administration.
 放射性医薬組成物の放射活性強度は、該放射性医薬組成物を投与することにより目的を達成し得る強度であり、かつ、被験者の放射線被爆が可能な限り低い臨床投与量である限りにおいて任意である。
 放射性強度は、放射性医薬組成物を使用する一般的な診断方法や治療方法で使用されている放射活性強度を参考にして決定できる。その投与量は患者の年齢、体重、使用する放射線イメージング装置、及び対象疾患の状態等の諸条件を考慮し、投与量が決定される。
 ヒトを対象とする場合、放射性医薬組成物における放射能量は、以下のとおりである。
 通常、放射線治療に使用されることが想定され、その診断薬剤の投与量は、特に限定されないが、例えば、放射性元素(例えば211At)の放射能量として1.0MBq/kg~3.0MBq/kgである。
The radioactivity intensity of the radiopharmaceutical composition is arbitrary as long as it is an intensity that can achieve the purpose by administering the radiopharmaceutical composition and the radiation exposure of the subject is the lowest possible clinical dose. .
The radioactivity intensity can be determined with reference to the radioactivity intensity used in general diagnostic methods and therapeutic methods using radiopharmaceutical compositions. The dose is determined in consideration of various conditions such as the patient's age, body weight, radiographic imaging device to be used, and the state of the target disease.
For humans, the amount of radioactivity in the radiopharmaceutical composition is as follows.
Usually, it is assumed to be used for radiation therapy, and the dosage of the diagnostic agent is not particularly limited, but for example, 1.0 MBq / kg to 3.0 MBq / kg as the radioactivity of a radioactive element (eg 211 At) is.
[合成例1]
〔Nα-tert-butoxycarbonyl-L-histidine tert-butyl ester(2)の合成〕
 (i)N,N'-diisopropylcarbodiimide(5.24g,41.5mmol)をtert-butanol(tBuOH)(4.6mL)に溶解し、30℃に加熱した。窒素雰囲気下、10分間撹拌した後、CuCl(I)(4.10mg,0.0414mmol)を加え、30℃で4日間撹拌した。Poly(4-vinylpyridine)(0.83g)を加えて、遊離の銅を吸着させた後、dichloromethane(CHCl)(21mL)を加えて15分間撹拌した。反応液を濾過し沈殿物を除去した後、濾液を減圧留去し、油状のN,N-Diisopropyl-O-tert-butylisourea(DIC)の粗生成物(6.57g)を得た。
 (ii)Nα-(tert-butoxycarbonyl)-L-histidine(1)をCHCl(50mL)に溶解し、アルゴン雰囲気下、(i)で得た粗生成物に緩徐に加え、室温で4日間撹拌した。副生したdiisopropylureaを濾過した後、濾液を減圧留去した。クロロホルム:メタノール=10:1を溶出溶媒とするシリカゲルクロマトグラフィーにより残渣から生成物を精製した。化合物(2)(1.42g,4.57mmol、収率58.4%)を淡黄色油状物として得た。
1H NMR (CDCl3): δ 1.42-1.44 (18H, overlapped, CH3, CH3), 3.07-3.08 (2H, d, CH2), 4.40 (1H, s, CH), 5.64 (1H, s, NH), 6.83 (1H, s, aromatic), 7.61 (1H, s, aromatic). 
13C-NMR (CDCl3): δ 28.03, 28.40, 29.86, 54.18, 79.85, 81.97, 117.12, 133.42, 135.20, 155.76, 171.40. 
ESI-MS (M+H)+: m/z 312, found 312.
[Synthesis Example 1]
[Synthesis of N α -tert-butyl-L-histidine tert-butyl ester (2)]
(i) N,N'-diisopropylcarbodiimide (5.24 g, 41.5 mmol) was dissolved in tert-butanol (tBuOH) (4.6 mL) and heated to 30°C. After stirring for 10 minutes under nitrogen atmosphere, CuCl(I) (4.10 mg, 0.0414 mmol) was added and stirred at 30° C. for 4 days. Poly(4-vinylpyridine) (0.83 g) was added to adsorb free copper, then dichloromethane (CH 2 Cl 2 ) (21 mL) was added and stirred for 15 minutes. After the reaction solution was filtered to remove the precipitate, the filtrate was distilled off under reduced pressure to obtain an oily N,N-Diisopropyl-O-tert-butylisourea (DIC) crude product (6.57 g).
(ii) N α -(tert-butoxycarbonyl)-L-histidine (1) was dissolved in CH 2 Cl 2 (50 mL), slowly added to the crude product obtained in (i) under an argon atmosphere, and stirred at room temperature. Stirred for 4 days. After diisopropylurea as a by-product was filtered, the filtrate was evaporated under reduced pressure. The product was purified from the residue by silica gel chromatography using chloroform:methanol=10:1 as an elution solvent. Compound (2) (1.42 g, 4.57 mmol, 58.4% yield) was obtained as a pale yellow oil.
1H NMR ( CDCl3 ): δ 1.42-1.44 (18H, overlapped, CH3 , CH3 ), 3.07-3.08 (2H, d, CH2 ), 4.40 (1H, s, CH), 5.64 (1H, s , NH), 6.83 (1H, s, aromatic), 7.61 (1H, s, aromatic).
13 C-NMR (CDCl 3 ): δ 28.03, 28.40, 29.86, 54.18, 79.85, 81.97, 117.12, 133.42, 135.20, 155.76, 171.40.
ESI-MS (M+H) + : m/z 312, found 312.
〔2,2-Dimethyl-1,3-dioxane-5,5-dimethanol(4)の合成〕
 Pentaerythritol(3)(6.00g,44.1mmol)及び(+)-10-camphorsulfonic acid(0.205g,0.881mmol)をN,N-dimethylformamide(DMF)(120mL)に加え、80℃に加熱し完全に溶解させた。おだやかに40℃まで降温した後、2,2-dimethoxypropane(6.50mL,52.8mmol)を滴下した。室温まで降温し、2日間撹拌した。Triethylamine(370μL,2.65mmol)を加えて反応液を中和し、溶媒を減圧留去した。残渣を回収し、ヘキサンを用いたソックスレー抽出を2日間行った。抽出液を減圧留去した後、酢酸エチルとヘキサンを用いた再結晶法により、残渣から生成物を精製し、化合物(4)(633mg,3.59mmol、収率36.1%)を得た。
1H-NMR (DMSO-d6): δ 1.29 (6H, s, CH3), 3.35-3.36 (4H, d, CH2), 3.59 (4H, s, CH2), 4.48-4.51 (2H, t, OH). 
13C-NMR (DMSO-d6): 23.83, 38.88, 60.50, 61.67, 91.12.
[Synthesis of 2,2-Dimethyl-1,3-dioxane-5,5-dimethanol (4)]
Pentaerythritol (3) (6.00 g, 44.1 mmol) and (+)-10-camphorsulfonic acid (0.205 g, 0.881 mmol) were added to N,N-dimethylformamide (DMF) (120 mL) and heated to 80°C. and completely dissolved. After gently lowering the temperature to 40° C., 2,2-dimethoxypropane (6.50 mL, 52.8 mmol) was added dropwise. It was cooled to room temperature and stirred for 2 days. Triethylamine (370 μL, 2.65 mmol) was added to neutralize the reaction solution, and the solvent was distilled off under reduced pressure. The residue was collected and subjected to Soxhlet extraction using hexane for 2 days. After the extract was evaporated under reduced pressure, the product was purified from the residue by recrystallization using ethyl acetate and hexane to obtain compound (4) (633 mg, 3.59 mmol, yield 36.1%). .
1 H-NMR (DMSO - d6): δ 1.29 (6H, s, CH3 ), 3.35-3.36 (4H, d, CH2 ), 3.59 (4H, s, CH2 ), 4.48-4.51 (2H, t, OH).
13C -NMR (DMSO - d6): 23.83, 38.88, 60.50, 61.67, 91.12.
〔(2,2-Dimethyl-1,3-dioxane-5,5-diyl)bis(methylene) bis(trifluoromethanesulfonate)(5)の合成〕
 上記で得た化合物(4)(633mg,3.59mmol)をCHCl(40mL)に溶解し、2,6-lutidine(4.20mL,35.9mmol)を加えた。溶液を-78℃に冷却し、trifluoromethanesulfonic anhydride(TfO)(2.00mL,12.2mmol)を滴下し、1時間撹拌した。反応液を-20℃に緩やかに昇温し、一晩撹拌した。反応後、反応液を飽和NaHCO水溶液(20mL)、5%クエン酸水溶液(30mL×3回)、飽和食塩水(20mL)の順に洗浄した。有機層に硫酸マグネシウムを加え乾燥した後、溶媒を減圧留去した。ヘキサン:酢酸エチル=10:1を溶出溶媒とするシリカゲルクロマトグラフィーにより、残渣から生成物を精製した。化合物(5)(1.30g,2.94mmol、収率82.0%)を白色固体として得た。
1H-NMR (CDCl3): δ 1.44 (6H, s, CH3), 3.79 (4H, s, CH2), 4.57 (4H, s, CH2). 
13C-NMR (CDCl3): 23.39, 39.00, 60.88, 73.54, 99.71, 113.92, 117.11, 120.29, 123.47.
ESI-MS (M+H)+: m/z 441, found 441.
[Synthesis of (2,2-Dimethyl-1,3-dioxane-5,5-diyl)bis(methylene)bis(trifluoromethanesulfonate) (5)]
Compound (4) (633 mg, 3.59 mmol) obtained above was dissolved in CH 2 Cl 2 (40 mL), and 2,6-lutidine (4.20 mL, 35.9 mmol) was added. The solution was cooled to −78° C. and trifluoromethanesulfonic anhydride (Tf 2 O) (2.00 mL, 12.2 mmol) was added dropwise and stirred for 1 hour. The reaction was slowly warmed to -20°C and stirred overnight. After the reaction, the reaction solution was washed with saturated NaHCO 3 aqueous solution (20 mL), 5% citric acid aqueous solution (30 mL×3 times) and saturated brine (20 mL) in that order. After magnesium sulfate was added to the organic layer to dry it, the solvent was distilled off under reduced pressure. The product was purified from the residue by silica gel chromatography using hexane:ethyl acetate=10:1 as the eluent. Compound (5) (1.30 g, 2.94 mmol, 82.0% yield) was obtained as a white solid.
1 H-NMR (CDCl 3 ): δ 1.44 (6H, s, CH 3 ), 3.79 (4H, s, CH 2 ), 4.57 (4H, s, CH 2 ).
13C -NMR ( CDCl3 ): 23.39, 39.00, 60.88, 73.54, 99.71, 113.92, 117.11, 120.29, 123.47.
ESI-MS (M+H) + : m/z 441, found 441.
〔Nα-(tert-butoxycarbonyl)-Nτ-((2,2-dimethyl-5-((((trifluoromethyl)sulfonyl)oxy)methyl)-1,3-dioxan-5-yl)methyl)-L-histidine tert-butyl ester(6)の合成〕
 上記で得た化合物(5)(145mg,0.330mmol)をCHCl(800μL)に溶解し、2,6-lutidine(48.0μL,0.413mmol)加えた。溶液を-20℃に冷却し、化合物(2)(51.4mg,0.165mmol)を溶解したCHCl(200μL)を滴下した。反応液は-20℃のまま一晩撹拌した。反応液を飽和NaHCO水溶液(5mL)、5%クエン酸水溶液(10mL×3回)、飽和食塩水(10mL)の順に洗浄した。有機層に硫酸ナトリウムを加え乾燥した後、溶媒を減圧留去した。残渣を少量のCHClに溶解し、厚さ1mmの分取用薄層クロマトグラフィ(TLC)プレートにアプライし、クロロホルム:メタノール=15:1を展開溶媒とすることで、残渣から生成物を精製した。化合物(6)(19.9mg,0.0331mmol、収率20.0%)を無色油状物として得た。
1H-NMR (CDCl3): δ 1.41-1.47 (24H, overlapped, CH3), 3.03 (2H, broad, CH2), 3.63-3.74 (4H, multiple, CH2), 4.11 (2H, s, CH2), 4.37 (3H, overlapped, CH2, CH), 5.70 (1H, d, NH), 6.74 (1H, s, aromatic), 7.53 (1H, s, aromatic). 
ESI-MS (M+H)+: m/z 602, found 602.
[N α -(tert-butoxycarbonyl)-N τ -((2,2-dimethyl-5-((((trifluoromethyl)sulfonyl)oxy)methyl)-1,3-dioxan-5-yl)methyl)-L -Synthesis of histidine tert-butyl ester (6)]
Compound (5) (145 mg, 0.330 mmol) obtained above was dissolved in CH 2 Cl 2 (800 μL), and 2,6-lutidine (48.0 μL, 0.413 mmol) was added. The solution was cooled to −20° C., and CH 2 Cl 2 (200 μL) in which compound (2) (51.4 mg, 0.165 mmol) was dissolved was added dropwise. The reaction mixture was stirred overnight at -20°C. The reaction solution was washed with saturated NaHCO 3 aqueous solution (5 mL), 5% citric acid aqueous solution (10 mL×3 times) and saturated brine (10 mL) in that order. After the organic layer was dried by adding sodium sulfate, the solvent was distilled off under reduced pressure. The residue was dissolved in a small amount of CH 2 Cl 2 , applied to a 1 mm thick preparative thin layer chromatography (TLC) plate, and the product was isolated from the residue by using chloroform:methanol=15:1 as a developing solvent. Refined. Compound (6) (19.9 mg, 0.0331 mmol, yield 20.0%) was obtained as a colorless oil.
1 H-NMR (CDCl 3 ): δ 1.41-1.47 (24H, overlapped, CH 3 ), 3.03 (2H, broad, CH 2 ), 3.63-3.74 (4H, multiple, CH 2 ), 4.11 (2H, s, CH2 ), 4.37 (3H, overlapped, CH2 , CH), 5.70 (1H, d, NH), 6.74 (1H, s, aromatic), 7.53 (1H, s, aromatic).
ESI-MS (M+H) + : m/z 602, found 602.
〔Nα-(tert-butoxycarbonyl)-Nτ-((5-(iodomethyl)-2,2-dimethyl-1,3-dioxan-5-yl)methyl)-L-histidine tert-butyl ester(7)の合成〕
 上記で得た化合物(6)(37.0mg,0.0615mmol)をacetonitrile(MeCN)(800μL)に溶解し、そこへsodium iodide(27.0mg,0.184mmol)を加え、反応液を室温で5日間撹拌した。反応後、溶媒を減圧留去し、酢酸エチルに溶解後、MilliQ水(2mL×2回)、飽和食塩水(2mL)の順に洗浄した。有機層に硫酸マグネシウムを加え乾燥した後、溶媒を減圧留去した。精製装置(Purif compact、昭光サイエンティフィック株式会社製)においてヘキサンと酢酸エチルを用いて、残渣から生成物を精製した。化合物(7)(9.9mg,0.0171mmol、収率27.8%)を淡黄色油状物として得た。
1H-NMR (CDCl3): δ 1.41-1.57 (24H, overlapped, CH3), 2.87 (2H, s, CH2), 3.02 (2H, s, CH2), 3.48-3.69 (4H, multiple, CH2), 4.19 (2H, s, CH2), 4.38-4.40 (1H, broad, CH), 5.74-5.76 (1H, d, NH), 6.84 (1H, s, aromatic), 7.56 (1H, s, aromatic). 
13C-NMR (CDCl3): 9.01,19.71, 27.35, 28.02, 28.35, 30.43, 36.74, 47.63, 53.97, 65.26, 79.30, 81.41, 99.00, 117.95, 137.67, 137.88, 155.53, 171.09. 
ESI-MS (M+H)+: m/z 580, found 580.
[N α -(tert-butoxycarbonyl)-N τ -((5-(iodmethyl)-2,2-dimethyl-1,3-dioxan-5-yl)methyl)-L-histidine tert-butyl ester (7) Synthesis of]
The compound (6) obtained above (37.0 mg, 0.0615 mmol) was dissolved in acetonitrile (MeCN) (800 μL), sodium iodide (27.0 mg, 0.184 mmol) was added thereto, and the reaction solution was allowed to cool at room temperature. Stirred for 5 days. After the reaction, the solvent was distilled off under reduced pressure, and the residue was dissolved in ethyl acetate and washed with MilliQ water (2 mL×2 times) and saturated brine (2 mL) in that order. After magnesium sulfate was added to the organic layer to dry it, the solvent was distilled off under reduced pressure. The product was purified from the residue using hexane and ethyl acetate in a purification apparatus (Purif compact, manufactured by Shoko Scientific Co., Ltd.). Compound (7) (9.9 mg, 0.0171 mmol, yield 27.8%) was obtained as a pale yellow oil.
1 H-NMR (CDCl 3 ): δ 1.41-1.57 (24H, overlapped, CH 3 ), 2.87 (2H, s, CH 2 ), 3.02 (2H, s, CH 2 ), 3.48-3.69 (4H, multiple, CH2 ), 4.19 (2H, s, CH2 ), 4.38-4.40 (1H, broad, CH), 5.74-5.76 (1H, d, NH), 6.84 (1H, s, aromatic), 7.56 (1H, s , aromatic).
13C -NMR ( CDCl3 ): 9.01, 19.71, 27.35, 28.02, 28.35, 30.43, 36.74, 47.63, 53.97, 65.26, 79.30, 81.41, 99.00, 117.95, 137.67, 137.155, 137.588
ESI-MS (M+H) + : m/z 580, found 580.
〔Nτ-(3-hydroxy-2-(hydroxymethyl)-2-(iodomethyl)propyl)-L-histidine(8)の合成〕
 化合物(7)(8.2mg,0.0142mmol)をtrifluoroacetic acid(TFA)(800μL)とMilliQ水(200μL)の混液に加え、室温で4時間撹拌した。反応後、TFAを減圧留去し、MeCN(1mL×2回)で溶媒を共沸した。残渣をMilliQ水:MeCN=70:30(2mL)の混液に溶解し、ODSカラム(Unison US-C18、インタクト株式会社製、150×20mm)を用いた高速液体クロマトグラフィ(HPLC)において、移動相としてA相に0.1%(v/v)TFA/MilliQ水、B相に0.1%(v/v)TFA/MeCNを使用し、流速は5mL/分として、開始後0-30分の間はA相90%、B相10%からA相50%、B相50%まで変化させ、開始後30-50分の間はA相50%、B相50%からA相0%、B相100%まで変化させる直線グラジエント法により、残渣から生成物を精製した。化合物(8)のトリフルオロ酢酸塩(TFA塩)(3.6mg,9.39nmol、収率75.3%)を淡黄色固体として得た。
1H-NMR (D2O): δ 3.18 (2H, s, CH2), 3.34 (2H, d, CH2), 3.51-3.53 (2H, d, CH2), 4.05-4.09 (1H, t, CH), 4.30 (2H, s, CH2), 7.47 (1H, s, aromatic), 8.76 (1H, s, aromatic). 
ESI-MS (M+H)+: m/z 384, found 384.
[Synthesis of N τ -(3-hydroxy-2-(hydroxymethyl)-2-(iodethyl)propyl)-L-histidine (8)]
Compound (7) (8.2 mg, 0.0142 mmol) was added to a mixture of trifluoroacetic acid (TFA) (800 μL) and MilliQ water (200 μL), and stirred at room temperature for 4 hours. After the reaction, TFA was distilled off under reduced pressure, and the solvent was azeotroped with MeCN (1 mL x 2 times). The residue was dissolved in a mixture of MilliQ water: MeCN = 70:30 (2 mL), and in high performance liquid chromatography (HPLC) using an ODS column (Unison US-C18, manufactured by Intact Co., 150 x 20 mm), Using 0.1% (v/v) TFA/MilliQ water for phase A and 0.1% (v/v) TFA/MeCN for phase B with a flow rate of 5 mL/min for 0-30 minutes after initiation. between 90% A phase, 10% B phase, 50% A phase, and 50% B phase. The product was purified from the residue by a linear gradient method changing phases up to 100%. A trifluoroacetic acid salt (TFA salt) of compound (8) (3.6 mg, 9.39 nmol, yield 75.3%) was obtained as a pale yellow solid.
1H - NMR (D2O): δ 3.18 (2H, s, CH2 ), 3.34 (2H, d, CH2 ), 3.51-3.53 (2H, d, CH2 ), 4.05-4.09 (1H, t , CH), 4.30 (2H, s, CH 2 ), 7.47 (1H, s, aromatic), 8.76 (1H, s, aromatic).
ESI-MS (M+H) + : m/z 384, found 384.
 化合物(8)の合成に至る反応スキームを下記に示す。 The reaction scheme leading to the synthesis of compound (8) is shown below.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 各工程で用いた試薬及び溶媒は以下のとおりである。
(a)(i)DIC,tBuOH,CuCl(I);(ii)CHCl
(b)2,2-Dimethoxypropane,(+)-10-Camphorsulfonic acid,DMF
(c)TfO,2,6-Lutidine,CHCl
(d)2,6-Lutidine,CHCl
(e)NaI,MeCN
(f)TFA,H
The reagents and solvents used in each step are as follows.
(a) (i) DIC, tBuOH, CuCl(I); ( ii ) CH2Cl2
(b) 2,2-Dimethoxypropane, (+)-10-Camphorsulfonic acid, DMF
(c) Tf 2 O, 2,6-Lutidine, CH 2 Cl 2
( d) 2,6 - Lutidine, CH2Cl2
(e) NaI, MeCN
(f) TFA, H2O
〔Nα-tert-butoxycarbonyl-L-tyrosine tert-butyl ester(9)の合成〕
 文献Bioconjug. Chem. 2013: 24, 2, 291-299の記載に従い合成した。
[Synthesis of N α -tert-butyl-L-tyrosine tert-butyl ester (9)]
Synthesized as described in the literature Bioconjug. Chem. 2013: 24, 2, 291-299.
〔Nα-(tert-butoxycarbonyl)-O-((2,2-dimethyl-5-((((trifluoromethyl)sulfonyl)oxy)methyl)-1,3-dioxan-5-yl)methyl)-L-tyrosine tert-butyl ester(10)の合成〕
 NaH(10.8mg,0.270mmol)をテトラヒドロフラン(THF)(0.50mL)に懸濁した。アルゴン雰囲気中、上記で得た化合物(9)(76.0mg,0.226mmol)を溶解したTHF(1.50mL)を氷冷下で滴下し、室温で30分間撹拌した。次に、室温で、上記で得た化合物(5)(100mg,0.226mmol)を加え、40分間撹拌した。溶媒を減圧留去した後、残渣を酢酸エチルに溶解し、飽和NaHCO3溶液(10mL×3回)で洗浄した。有機層に硫酸マグネシウムを加えて乾燥した後、溶媒を留去した。残渣を少量のCHClに溶解し、厚さ1mmの分取用TLCプレートにアプライし、ヘキサン:酢酸エチル=2:1を展開溶媒とすることで、残渣から生成物を精製した。化合物(10)(86.2mg,0.137mmol、収率60.8%)を無色油状物として得た。
1H-NMR (CDCl3): δ 1.41-1.45 (24H, overlapped, CH3), 2.99-3.01 (2H, t, CH2), 3.81-3.93 (6H, overlapped, CH2), 4.39-4.41 (1H, multiple, CH), 4.79 (2H, s, CH2), 4.96-4.98 (1H, d, NH), 6.80-6.82 (2H, d, aromatic), 7.08-7.10 (2H, d, aromatic). 
13C-NMR (CDCl3): 21.58, 25.62, 28.07, 28.43, 37.71, 38.90, 55.01, 61.85, 66.22, 75.43, 79.75, 82.16, 99.19, 113.94, 114.43, 117.12, 120.30, 123.48, 129.57, 130.61, 130.75, 155.19, 157.21, 170.93, 171.07. 
ESI-MS (M+Na)+: m/z 650, found 650.
[N α- (tert-butoxycarbonyl)-O-((2,2-dimethyl-5-((((trifluoromethyl)sulfonyl)oxy)methyl)-1,3-dioxan-5-yl)methyl)-L- Synthesis of tyrosine tert-butyl ester (10)]
NaH (10.8 mg, 0.270 mmol) was suspended in tetrahydrofuran (THF) (0.50 mL). In an argon atmosphere, THF (1.50 mL) in which compound (9) (76.0 mg, 0.226 mmol) obtained above was dissolved was added dropwise under ice cooling, and the mixture was stirred at room temperature for 30 minutes. Next, compound (5) (100 mg, 0.226 mmol) obtained above was added at room temperature and stirred for 40 minutes. After removing the solvent under reduced pressure, the residue was dissolved in ethyl acetate and washed with saturated NaHCO 3 solution (10 mL×3). After magnesium sulfate was added to the organic layer to dry it, the solvent was distilled off. The residue was dissolved in a small amount of CH 2 Cl 2 , applied to a preparative TLC plate with a thickness of 1 mm, and hexane:ethyl acetate=2:1 was used as a developing solvent to purify the product from the residue. Compound (10) (86.2 mg, 0.137 mmol, yield 60.8%) was obtained as a colorless oil.
1 H-NMR (CDCl 3 ): δ 1.41-1.45 (24H, overlapped, CH 3 ), 2.99-3.01 (2H, t, CH 2 ), 3.81-3.93 (6H, overlapped, CH 2 ), 4.39-4.41 ( 1H, multiple, CH), 4.79 (2H, s, CH2 ), 4.96-4.98 (1H, d, NH), 6.80-6.82 (2H, d, aromatic), 7.08-7.10 (2H, d, aromatic).
13 C-NMR (CDCL 3 ): 21.58, 25.62, 28.07, 28.43, 37.90, 38.90, 55.01, 66.22, 75.43, 79.75, 82.16, 99.19, 99.19, 99.19, 99.94 , 155.19, 157.21, 170.93, 171.07.
ESI-MS (M+Na) + : m/z 650, found 650.
〔Nα-(tert-butoxycarbonyl)-O-((5-(iodomethyl)-2,2-dimethyl-1,3-dioxan-5-yl)methyl)-L-tyrosine tert-butyl ester(11)の合成〕
 上記で得た化合物(10)(64.6mg,0.103mmol)をMeCN(1.0mL)に溶解し、そこへsodium iodide(46.0mg,0.309mmol)を加え、反応液を室温で一晩撹拌した。反応後、溶媒を減圧留去し、酢酸エチルに溶解後、5%NaHCO水溶液(5mL)、MilliQ水(5mL×2回)、飽和食塩水(5mL)の順に洗浄した。有機層に硫酸マグネシウムを加え乾燥した後、溶媒を減圧留去した。残渣を少量のCHClに溶解し、厚さ1mmの分取用TLCプレートにアプライし、ヘキサン:酢酸エチル=2:1を展開溶媒とすることで生成物を精製した。化合物(11)(51.4mg,0.0849mmol、収率82.4%)を無色油状物として得た。
1H-NMR (CDCl3): δ 1.42-1.44 (24H, overlapped, CH3), 2.99-3.01(2H, t, CH2), 3.41 (2H, s, CH2), 3.78-3.91 (4H, multiple, CH2), 3.98 (2H, s, CH2), 4.40-4.41 (1H, multiple, CH), 4.95-4.97 (1H, d, NH), 6.83-6.85 (2H, d, aromatic), 7.07-7.09 (2H, d, aromatic). 
13C-NMR (CDCl3): 10.42, 27.58, 24.74, 28.11, 28.45, 36.84, 37.63, 55.02, 64.84, 68.81, 79.73, 82.11, 98.85, 114.63, 129.00, 130.65, 155.21, 157.76, 171.11. 
ESI-MS (M+Na)+: m/z 628, found 628.
[N α -(tert-butyl)-O-((5-(iodmethyl)-2,2-dimethyl-1,3-dioxan-5-yl)methyl)-L-tyrosine tert-butyl ester (11) Synthesis]
Compound (10) (64.6 mg, 0.103 mmol) obtained above was dissolved in MeCN (1.0 mL), sodium iodide (46.0 mg, 0.309 mmol) was added thereto, and the reaction solution was allowed to stand at room temperature. Stir overnight. After the reaction, the solvent was distilled off under reduced pressure, and after dissolving in ethyl acetate, the residue was washed with 5% NaHCO 3 aqueous solution (5 mL), MilliQ water (5 mL×2 times), and saturated brine (5 mL) in that order. After magnesium sulfate was added to the organic layer to dry it, the solvent was distilled off under reduced pressure. The residue was dissolved in a small amount of CH 2 Cl 2 , applied to a 1 mm thick preparative TLC plate, and hexane:ethyl acetate=2:1 was used as a developing solvent to purify the product. Compound (11) (51.4 mg, 0.0849 mmol, 82.4% yield) was obtained as a colorless oil.
1 H-NMR (CDCl 3 ): δ 1.42-1.44 (24H, overlapped, CH 3 ), 2.99-3.01 (2H, t, CH 2 ), 3.41 (2H, s, CH 2 ), 3.78-3.91 (4H, multiple, CH2 ), 3.98 (2H, s, CH2 ), 4.40-4.41 (1H, multiple, CH), 4.95-4.97 (1H, d, NH), 6.83-6.85 (2H, d, aromatic), 7.07 -7.09 (2H, d, aromatic).
13 C-NMR (CDCL 3 ): 10.42, 27.58, 24.74, 28.11, 28.45, 36.63, 37.63, 55.02, 68.81, 68.81, 79.73, 82.11, 98.63
ESI-MS (M+Na) + : m/z 628, found 628.
〔O-(3-hydroxy-2-(hydroxymethyl)-2-(iodomethyl)propyl)-L-tyrosine(12)の合成〕
 上記で得た化合物(11)(10.2mg,16.8nmol)をTFA(800μL)とMilliQ水(200μL)の混液に加え、室温で5時間撹拌した。反応後、TFAを減圧留去し、MeCN(1mL×2回)で溶媒を共沸した。残渣をMilliQ水:MeCN=70:30(2mL)の混液に溶解し、ODSカラム(Unison US-C18、インタクト株式会社製、150×20mm)を用いた高速液体クロマトグラフィ(HPLC)において、移動相としてA相に0.1%(v/v)TFA/MilliQ水、B相に0.1%(v/v)TFA/MeCNを使用し、流速は5mL/分として、開始後0-30分の間はA相90%、B相10%からA相50%、B相50%まで変化させ、開始後30-50分の間はA相50%、B相50%からA相0%、B相100%まで変化させる直線グラジエント法により、残渣から生成物を精製した。化合物(12)のTFA塩(5.45mg,10.8nmol、収率64.1%)を白色固体として得た。
1H-NMR (D2O): δ 2.95-3.14 (2H, multiple, CH2), 3.20 (2H, s, CH2), 3.51 (4H. s, CH2), 3.79 (2H, s, CH2), 4.04-4.07 (1H, q, CH), 6.86-6.88 (2H, d, aromatic), 7.07-7.09 (2H, d, aromatic). 
ESI-MS (M+H)+: m/z 410, found 410.
[Synthesis of O-(3-hydroxy-2-(hydroxymethyl)-2-(iodethyl)propyl)-L-tyrosine (12)]
Compound (11) (10.2 mg, 16.8 nmol) obtained above was added to a mixture of TFA (800 μL) and MilliQ water (200 μL), and the mixture was stirred at room temperature for 5 hours. After the reaction, TFA was distilled off under reduced pressure, and the solvent was azeotroped with MeCN (1 mL x 2 times). The residue was dissolved in a mixture of MilliQ water: MeCN = 70:30 (2 mL), and in high performance liquid chromatography (HPLC) using an ODS column (Unison US-C18, manufactured by Intact Co., 150 x 20 mm), Using 0.1% (v/v) TFA/MilliQ water for phase A and 0.1% (v/v) TFA/MeCN for phase B with a flow rate of 5 mL/min for 0-30 minutes after initiation. between 90% A phase, 10% B phase, 50% A phase, and 50% B phase. The product was purified from the residue by a linear gradient method changing phases up to 100%. The TFA salt of compound (12) (5.45 mg, 10.8 nmol, yield 64.1%) was obtained as a white solid.
1H - NMR (D2O): δ 2.95-3.14 (2H, multiple, CH2 ), 3.20 (2H, s, CH2 ), 3.51 (4H.s, CH2 ), 3.79 (2H, s, CH2 ). 2 ), 4.04-4.07 (1H, q, CH), 6.86-6.88 (2H, d, aromatic), 7.07-7.09 (2H, d, aromatic). 
ESI-MS (M+H) + : m/z 410, found 410.
 化合物(12)の合成に至る反応スキームを下記に示す。 The reaction scheme leading to the synthesis of compound (12) is shown below.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 各工程で用いた試薬及び溶媒は以下のとおりである。
(g)NaH,THF
(h)NaI,MeCN
(i)TFA,H
The reagents and solvents used in each step are as follows.
(g) NaH, THF
(h) NaI, MeCN
(i) TFA, H2O
〔[125I]Nτ-(3-hydroxy-2-(hydroxymethyl)-2-(iodomethyl)propyl)-L-histidine(14)の合成〕
 上記で得た化合物(6)(600μg,1.0nmol)を1%N,N-diisopropylethylamine(DIPEA)/MeCN(100μL)に溶解した。溶液に[125I]NaI水溶液(1.0μL,57.1μCi)を加え、37℃で1時間反応させた。反応後、ODSカラム(Unison US-C18、インタクト株式会社製、150×20mm)を用いた高速液体クロマトグラフィ(HPLC)において、移動相としてA相にMilliQ水、B相にMeCNを使用し、流速は1mL/分として、開始後0-20分の間はA相40%、B相60%からA相30%、B相70%まで変化させ、開始後20-30分の間はA相30%、B相70%からA相0%、B相100%まで変化させる直線グラジエント法により、生成物を精製した。放射化学的収率84.6%で化合物(13)を得た。
 分取した溶液をロータリーエバポレーターで50μLに濃縮し、濃縮後の溶液にTFA(450μL)を加え、37℃で1時間反応させた。反応後、窒素気流下で溶液中のTFAを除去し、飽和NaHCO水溶液を加えて残存するTFAを中和した。ODSカラム(Unison US-C18、インタクト株式会社製、150×20mm)を用いた高速液体クロマトグラフィ(HPLC)において、移動相としてA相にMilliQ水、B相にMeCNを使用し、流速は1mL/分として、開始後0-20分の間はA相100%、B相0%からA相80%、B相20%まで変化させ、開始後20-30分の間はA相80%、B相20%からA相0%、B相100%まで変化させる直線グラジエント法により、生成物を精製した。放射化学的収率>99%、放射化学的純度>99%で化合物(14)を得た。
[Synthesis of [ 125 I]N τ -(3-hydroxy-2-(hydroxymethyl)-2-(iodmethyl)propyl)-L-histidine (14)]
Compound (6) obtained above (600 μg, 1.0 nmol) was dissolved in 1% N,N-diisopropylethylamine (DIPEA)/MeCN (100 μL). An aqueous [ 125 I]NaI solution (1.0 μL, 57.1 μCi) was added to the solution and reacted at 37° C. for 1 hour. After the reaction, high performance liquid chromatography (HPLC) using an ODS column (Unison US-C18, manufactured by Intact Co., Ltd., 150 x 20 mm) was performed using MilliQ water as the mobile phase for phase A and MeCN for phase B, and the flow rate was At 1 mL/min, 40% A phase, 60% B phase, 30% A phase, 70% B phase for 0-20 minutes after initiation, and 30% A phase 20-30 minutes after initiation , the product was purified by a linear gradient method varying from 70% B phase to 0% A phase to 100% B phase. Compound (13) was obtained with a radiochemical yield of 84.6%.
The separated solution was concentrated to 50 μL with a rotary evaporator, TFA (450 μL) was added to the concentrated solution, and reacted at 37° C. for 1 hour. After the reaction, the TFA in the solution was removed under a stream of nitrogen, and saturated NaHCO3 aqueous solution was added to neutralize the remaining TFA. In high performance liquid chromatography (HPLC) using an ODS column (Unison US-C18, manufactured by Intact Co., Ltd., 150 x 20 mm), the mobile phase was MilliQ water for phase A and MeCN for phase B, and the flow rate was 1 mL/min. As, 0-20 minutes after the start, change from 100% A phase, 0% B phase to 80% A phase, 20% B phase, and 20-30 minutes after the start A phase 80%, B phase The product was purified by a linear gradient method varying from 20% to 0% phase A to 100% phase B. Compound (14) was obtained in radiochemical yield >99% and radiochemical purity >99%.
 化合物(14)の合成に至る反応スキームを下記に示す。 The reaction scheme leading to the synthesis of compound (14) is shown below.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 各工程で用いた試薬及び溶媒は以下のとおりである。
(j)[125I]NaI aq.,DIPEA,MeCN
(k)TFA,H
The reagents and solvents used in each step are as follows.
(j) [ 125 I]NaI aq. , DIPEA, MeCN
(k) TFA, H2O
〔[125I]O-(3-hydroxy-2-(hydroxymethyl)-2-(iodomethyl)propyl)-L-tyrosine(16)の合成〕
 上記で得た化合物(10)(627μg,1.0nmol)を1%DIPEA/MeCN(100μL)に溶解した。溶液に[125I]NaI水溶液(1.0μL,82.0μCi)を加え、37℃で1時間反応させた。反応後、ODSカラム(Unison US-C18、インタクト株式会社製、150×20mm)を用いた高速液体クロマトグラフィ(HPLC)において、移動相としてA相にMilliQ水、B相にMeCNを使用し、流速は1mL/分として、開始後0-20分の間はA相30%、B相70%からA相20%、B相80%まで変化させ、開始後20-30分の間はA相20%、B相80%からA相0%、B相100%まで変化させる直線グラジエント法により生成物を精製した。放射化学的収率89.6%で化合物(15)を得た。
 分取した溶液をロータリーエバポレーターで50μLに濃縮し、濃縮後の溶液にTFA(450μL)を加え、37℃で1時間反応させた。反応後、窒素気流下で溶液中のTFAを除去し、飽和NaHCO水溶液を加えて残存するTFAを中和した。ODSカラム(Unison US-C18、インタクト株式会社製、150×20mm)を用いた高速液体クロマトグラフィ(HPLC)において、移動相としてA相にMilliQ水、B相にMeCNを使用し、流速は1mL/分として、開始後0-20分の間はA相90%、B相10%からA相50%、B相50%まで変化させ、開始後20-30分の間はA相50%、B相50%からA相0%、B相100%まで変化させる直線グラジエント法により、生成物を精製した。放射化学的収率>99%、放射化学的純度>99%で化合物(16)を得た。
[Synthesis of [ 125 I]O-(3-hydroxy-2-(hydroxymethyl)-2-(iodethyl)propyl)-L-tyrosine (16)]
Compound (10) obtained above (627 μg, 1.0 nmol) was dissolved in 1% DIPEA/MeCN (100 μL). An aqueous [ 125 I]NaI solution (1.0 μL, 82.0 μCi) was added to the solution and reacted at 37° C. for 1 hour. After the reaction, high performance liquid chromatography (HPLC) using an ODS column (Unison US-C18, manufactured by Intact Co., Ltd., 150 x 20 mm) was performed using MilliQ water as the mobile phase for phase A and MeCN for phase B, and the flow rate was As 1 mL / min, from 0 to 20 minutes after the start, change from 30% A phase, 70% B phase to 20% A phase, 80% B phase, and 20 to 30 minutes after the start 20% A phase , B phase 80% to A phase 0%, B phase 100%. Compound (15) was obtained with a radiochemical yield of 89.6%.
The separated solution was concentrated to 50 μL with a rotary evaporator, TFA (450 μL) was added to the concentrated solution, and reacted at 37° C. for 1 hour. After the reaction, the TFA in the solution was removed under a stream of nitrogen, and saturated NaHCO3 aqueous solution was added to neutralize the remaining TFA. In high performance liquid chromatography (HPLC) using an ODS column (Unison US-C18, manufactured by Intact Co., Ltd., 150 x 20 mm), the mobile phase was MilliQ water for phase A and MeCN for phase B, and the flow rate was 1 mL/min. As, 0-20 minutes after the start, change from 90% A phase, 10% B phase to 50% A phase, 50% B phase, and 20-30 minutes after the start 50% A phase, B phase The product was purified by a linear gradient method varying from 50% to 0% phase A to 100% phase B. Compound (16) was obtained in radiochemical yield >99% and radiochemical purity >99%.
 化合物(16)の合成に至る反応スキームを下記に示す。 The reaction scheme leading to the synthesis of compound (16) is shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 各工程で用いた試薬及び溶媒は以下のとおりである。
(l)[125I]NaI aq.,DIPEA,MeCN
(m)TFA,H
The reagents and solvents used in each step are as follows.
(l) [ 125 I]NaI aq. , DIPEA, MeCN
(m) TFA, H2O
 図1に、化合物(8)及び化合物(14)の、HPLC解析の結果を示す。
 図2に、化合物(12)及び化合物(16)の、HPLC解析の結果を示す。
 なお、化合物(8)は220nmの吸光度を計測し分析し、化合物(12)は254nmの吸光度を計測し分析した。化合物(14)及び化合物(16)は、γ線検出器(Gabi star、Raytest社製)をオンラインで接続し分析した。
FIG. 1 shows the results of HPLC analysis of compound (8) and compound (14).
FIG. 2 shows the results of HPLC analysis of compound (12) and compound (16).
The absorbance of compound (8) was measured and analyzed at 220 nm, and the absorbance of compound (12) was measured and analyzed at 254 nm. Compounds (14) and (16) were analyzed by connecting a gamma ray detector (Gabistar, manufactured by Raytest) online.
[評価例1:担癌マウスにおける体内分布の評価(1)]
〔担癌マウスの作製〕
 4週齢のBALB/c Slc-nu/nu系統雄性マウスにC6細胞(5×10cell/匹)を左脚に移植して担癌マウスを作製した。
 なお、本明細書中のマウスを用いた実験は、千葉大学の動物倫理委員会によって承認を受けて実施した。
〔担癌マウスにおける体内分布試験〕
 マウスにC6細胞を移植した1週間後に、それぞれの尾静脈より化合物(14)、化合物(16)又は対照化合物(0.3μCi/100μL/匹)を投与した。投与1時間後、及び2時間後にマウスを屠殺し、関心臓器及び腫瘍を採取した。質量を測定後、オートウェルガンマシステム(WIZARD3,パーキンエルマー社製)により放射活性を測定した。
 対照化合物として、下記の化合物を用いた
[Evaluation Example 1: Evaluation of biodistribution in tumor-bearing mice (1)]
[Generation of tumor-bearing mice]
Tumor-bearing mice were prepared by transplanting C6 cells (5×10 6 cells/mouse) into the left leg of 4-week-old BALB/c Slc-nu/nu strain male mice.
It should be noted that experiments using mice in the present specification were performed with approval from the Animal Ethics Committee of Chiba University.
[Biodistribution test in tumor-bearing mice]
One week after transplantation of C6 cells to mice, compound (14), compound (16) or control compound (0.3 μCi/100 μL/mouse) was administered through the tail vein of each mouse. Mice were sacrificed 1 hour and 2 hours after administration, and organs of interest and tumors were harvested. After measuring the mass, the radioactivity was measured with an Autowell gamma system (WIZARD3, manufactured by PerkinElmer).
As a control compound, the following compounds were used
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 結果を表1に示す。なお、表中の単位は、胃、腸及び首以外は、臓器又は組織1gあたりの放射能投与量(injected dose)100%に対する放射能集積率(%)[%ID/g]である。胃、腸及び首については、臓器又は組織あたりの放射能投与量(injected dose)100%に対する放射能集積率(%)[%ID]である。 The results are shown in Table 1. The unit in the table is the radioactivity accumulation rate (%) [% ID/g] with respect to 100% of the radioactivity injected dose per 1 g of organ or tissue, except for the stomach, intestine and neck. For the stomach, intestines and neck, it is the radioactivity accumulation rate (%) [% ID] with respect to 100% of the injected dose per organ or tissue.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表に示すとおり、化合物(14)又は化合物(16)を投与した担癌マウスにおいて、腫瘍に高い放射能の集積が観察された。また、化合物(14)又は化合物(16)を投与した担癌マウスにおいて、遊離のヨウ素が集積する傾向がある甲状腺がある首には、放射能の集積が少なかった。従って、化合物(14)及び化合物(16)は腫瘍に効率よく取り込まれ、また生体内で高い安定性を有することが分かった。 As shown in the table, in tumor-bearing mice administered compound (14) or compound (16), high radioactivity accumulation was observed in the tumor. In tumor-bearing mice administered with compound (14) or compound (16), less radioactivity was accumulated in the neck where free iodine tends to accumulate in the thyroid gland. Therefore, it was found that compound (14) and compound (16) are efficiently taken up by tumors and have high stability in vivo.
[合成例2]
〔[211At]O-(3-hydroxy-2-(hydroxymethyl)-2-(astatomethyl)propyl)-L-tyrosine(17)の合成〕
 合成例(1)と同様にして得た化合物(10)(300μg,0.48μmol)を1%N,N-diisopropylethylamine(DIPEA)/MeCN(50μL)に溶解した。溶液に[211At]を溶かしたMeCN溶液(10μL,135μCi)を加え、37℃で30分反応させた。次いで、TFA(100μL)を加え、37℃で1時間反応させた。反応後、窒素気流下で溶液中のTFAを除去し、1N NaOH水溶液を加えて残存するTFAを中和した。
 ODSカラム(Unison US-C18、インタクト株式会社製、150×4.6mm)を用いた高速液体クロマトグラフィ(HPLC)において、移動相としてA相に0.1%TFA/MilliQ水、B相に0.1%TFA/MeCNを使用し、流速は1mL/minとして、開始後0-20分の間はA相90%、B相10%からA相50%、B相50%まで変化させ、開始後20-30分の間はA相50%、B相50%からA相0%、B相100%まで変化させる直線グラジエント法により、生成物を精製した。放射化学的収率48.3%、放射化学的純度>98%で化合物(17)を得た。
[Synthesis Example 2]
[Synthesis of [ 211 At] O-(3-hydroxy-2-(hydroxymethyl)-2-(astatomethyl)propyl)-L-tyrosine (17)]
Compound (10) (300 μg, 0.48 μmol) obtained in the same manner as in Synthesis Example (1) was dissolved in 1% N,N-diisopropylethylamine (DIPEA)/MeCN (50 μL). A MeCN solution (10 μL, 135 μCi) in which [ 211 At] was dissolved was added to the solution, and the mixture was allowed to react at 37° C. for 30 minutes. Then, TFA (100 μL) was added and reacted at 37° C. for 1 hour. After the reaction, TFA in the solution was removed under a nitrogen stream, and a 1N NaOH aqueous solution was added to neutralize the remaining TFA.
In high-performance liquid chromatography (HPLC) using an ODS column (Unison US-C18, manufactured by Intact Co., Ltd., 150 x 4.6 mm), phase A contained 0.1% TFA/MilliQ water and phase B contained 0.1% TFA/MilliQ water. Using 1% TFA / MeCN, the flow rate is 1 mL / min, and from 0 to 20 minutes after the start, the phase A is changed from 90%, the B phase 10% to the A phase 50%, the B phase 50%. The product was purified by a linear gradient method varying from 50% phase A, 50% phase B to 0% phase A, 100% phase B during 20-30 minutes. Compound (17) was obtained with a radiochemical yield of 48.3% and a radiochemical purity of >98%.
 化合物(17)の合成に至る反応スキームを下記に示す。 The reaction scheme leading to the synthesis of compound (17) is shown below.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 各工程で用いた試薬及び溶媒は以下のとおりである。
(n)[211At]/MeCN,DIPEA,MeCN
(o)TFA,H
The reagents and solvents used in each step are as follows.
(n) [ 211 At]/MeCN, DIPEA, MeCN
(o) TFA, H2O
[評価例2:正常マウスにおける体内分布の評価]
 6週齢のISR系統マウスの尾静脈より化合物(16)[n=4-5]及び化合物(17)[n=4](0.3μCi/100μL/匹)を投与した。投与1時間後、及び3時間後にマウスを屠殺し、関心臓器を採取した。質量を測定後、オートウェルガンマシステム(WIZARD3,パーキンエルマー社製)により放射活性を測定した。
 図3に結果を示す。なお、図中の単位は、血液、肝臓、及び膵臓は、臓器又は組織1gあたりの放射能投与量(injected dose)100%に対する放射能集積率(%)[%ID/g]である。胃については、臓器あたりの放射能投与量(injected dose)100%に対する放射能集積率(%)[%ID]である。
 図3に示すとおり、化合物(16)又は化合物(17)を投与した正常マウスにおいて、胃への放射能の集積が少なかった。一般に、生体内で安定な化合物は、胃への放射能の集積は2%ID以下である。従って、化合物(16)及び化合物(17)は、生体内で高い安定性を有することが分かった。
[Evaluation Example 2: Evaluation of biodistribution in normal mice]
Compound (16) [n=4-5] and compound (17) [n=4] (0.3 μCi/100 μL/mouse) were administered through the tail vein of 6-week-old ISR strain mice. Mice were sacrificed 1 hour and 3 hours after administration, and organs of interest were harvested. After measuring the mass, the radioactivity was measured with an Autowell gamma system (WIZARD3, manufactured by PerkinElmer).
The results are shown in FIG. The unit in the figure is the radioactivity accumulation rate (%) [% ID/g] with respect to 100% of the radioactivity dose (injected dose) per gram of organ or tissue for blood, liver, and pancreas. For the stomach, it is the radioactivity accumulation rate (%) [% ID] with respect to 100% of the radioactivity dose (injected dose) per organ.
As shown in FIG. 3, normal mice to which compound (16) or compound (17) was administered showed less accumulation of radioactivity in the stomach. In general, compounds that are stable in vivo have a radioactivity accumulation in the stomach of 2% ID or less. Therefore, compound (16) and compound (17) were found to have high stability in vivo.
[評価例3:担癌マウスにおける体内分布の評価(2)]
〔担癌マウスの作製〕
 5週齢のBALB/c Slc-nu/nu系統雄性マウスにC6細胞(5×10cell/匹)を左脚に移植して担癌マウスを作製した。
 マウスにC6細胞を移植した1週間後に、それぞれの尾静脈より化合物(17)[n=2](0.3μCi/100μL/匹)を投与した。投与1時間後にマウスを屠殺し、関心臓器及び腫瘍を採取した。質量を測定後、オートウェルガンマシステム(WIZARD3,パーキンエルマー社製)により放射活性を測定した。
 図4に結果及び評価例1で得られた化合物(16)の対応する結果を示す。なお、図中の単位は、血液及び腫瘍は、組織1gあたりの放射能投与量(injected dose)100%に対する放射能集積率(%)[%ID/g]である。胃については、臓器あたりの放射能投与量(injected dose)100%に対する放射能集積率(%)[%ID]である。
 図4に示すとおり、化合物(17)を投与した担癌マウスにおいて、腫瘍に高い放射能の集積が観察された。従って、化合物(17)は、腫瘍に効率よく取り込まれることが分かった。また、担癌マウスにおける化合物(16)の結果及び正常マウスにおける化合物(17)の結果と同様に、化合物(17)は担癌マウスにおいて胃への放射能の集積が少なく、生体内で高い安定性を有することが分かった。
[Evaluation Example 3: Evaluation of biodistribution in tumor-bearing mice (2)]
[Generation of tumor-bearing mice]
Tumor-bearing mice were prepared by transplanting C6 cells (5×10 6 cells/mouse) into the left leg of 5-week-old BALB/c Slc-nu/nu strain male mice.
One week after transplantation of C6 cells to mice, Compound (17) [n=2] (0.3 μCi/100 μL/mouse) was administered through the tail vein of each mouse. Mice were sacrificed 1 hour after administration, and organs of interest and tumors were harvested. After measuring the mass, the radioactivity was measured with an Autowell gamma system (WIZARD3, manufactured by PerkinElmer).
The results and the corresponding results for compound (16) obtained in Evaluation Example 1 are shown in FIG. The unit in the figure is the radioactivity accumulation rate (%) [% ID/g] with respect to 100% of the radioactivity dose (injected dose) per 1 g of tissue for blood and tumor. For the stomach, it is the radioactivity accumulation rate (%) [% ID] with respect to 100% of the radioactivity dose (injected dose) per organ.
As shown in FIG. 4, in tumor-bearing mice to which compound (17) was administered, high accumulation of radioactivity was observed in tumors. Therefore, compound (17) was found to be efficiently taken up by tumors. In addition, similar to the results of compound (16) in tumor-bearing mice and compound (17) in normal mice, compound (17) showed less accumulation of radioactivity in the stomach of tumor-bearing mice and was highly stable in vivo. found to have sex.
 本発明の放射性化合物は又はその薬学的に許容される塩は、腫瘍等に効率よく取り込まれ、また生体内で高い安定性を有するため、これを有効成分とする画像診断用、治療用等の放射性医薬組成物が提供される。 The radioactive compound of the present invention or a pharmaceutically acceptable salt thereof is efficiently taken up by tumors and the like, and has high stability in vivo. A radiopharmaceutical composition is provided.

Claims (7)

  1.  下記式(I)で表される放射性化合物又はその薬学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000001

    [式中、
     Raは、水素原子又は炭素数1~6のアルキル基を示し、
     Rbは、それぞれ独立に水素原子又は炭素数1~6のアルキル基を示し、
     Xは、下記式(x1)、式(x2)又は式(x3)で表される基を示し、
    Figure JPOXMLDOC01-appb-C000002

    (式中、*はα炭素への結合部位を示し、**は他方の結合部位を示す。)
     Yは、18F、76Br、77Br、123I、124I、125I、132I、又は211Atを示し、
     †は、不斉炭素を示す。]
    A radioactive compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000001

    [In the formula,
    R a represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
    R b each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms,
    X represents a group represented by the following formula (x1), formula (x2) or formula (x3),
    Figure JPOXMLDOC01-appb-C000002

    (Wherein, * indicates the binding site to the α-carbon, and ** indicates the other binding site.)
    Y represents 18 F, 76 Br, 77 Br, 123 I, 124 I, 125 I, 132 I, or 211 At;
    † indicates an asymmetric carbon. ]
  2.  Raは、水素原子又はメチル基を示し、
     Rbは、それぞれ独立に水素原子又はメチル基を示す、請求項1に記載の放射性化合物又はその薬学的に許容される塩。
    R a represents a hydrogen atom or a methyl group,
    2. The radioactive compound or a pharmaceutically acceptable salt thereof according to claim 1, wherein each R b independently represents a hydrogen atom or a methyl group.
  3.  下記式(Ib-1)、(Ib-2)又は(Ib-3)で表される、請求項1又は2に記載の放射性化合物又はその薬学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000003

    [式中、Yは前記に同じ。]
    3. The radioactive compound or a pharmaceutically acceptable salt thereof according to claim 1, represented by the following formula (Ib-1), (Ib-2) or (Ib-3).
    Figure JPOXMLDOC01-appb-C000003

    [In the formula, Y is the same as above. ]
  4.  下記工程〔1〕~〔4〕を含む、請求項1~3のいずれか1項に記載の放射性化合物又はその薬学的に許容される塩の製造方法。
    〔1〕下記式(y1)、式(y2)又は式(y3)で表される化合物(i)を提供する工程;
    Figure JPOXMLDOC01-appb-C000004

    (式中、
     Z1は、それぞれ独立に水素原子、アミノ基の保護基又はRbを示し、
     Z2は、水素原子又はカルボキシ基の保護基を示す。
     Ra、Rb、†は前記に同じ。)
    〔2〕下記式(II)で表される化合物(ii)を提供する工程;
    Figure JPOXMLDOC01-appb-C000005

    [式中、Lは、それぞれ独立に脱離基を示す。]
    〔3〕(a)上記化合物(i)における側鎖のアミノ基又はヒドロキシ基の水素原子の、上記化合物(ii)における一方のL1を除いた基への置換、及び、(b)上記化合物(ii)における他方のL1の、Y[式中、Yは前記に同じ。]への置換を行い、下記式(III)で表される化合物(iii)を得る工程;
    Figure JPOXMLDOC01-appb-C000006

    [式中、Ra、X、Y、Z1、Z2は前記に同じ。]
    〔4〕上記化合物(iii)の保護基を脱保護する工程
    A method for producing a radioactive compound or a pharmaceutically acceptable salt thereof according to any one of claims 1 to 3, comprising the following steps [1] to [4].
    [1] providing a compound (i) represented by the following formula (y1), formula (y2) or formula (y3);
    Figure JPOXMLDOC01-appb-C000004

    (In the formula,
    Z 1 each independently represents a hydrogen atom, an amino group-protecting group or R b ,
    Z 2 represents a hydrogen atom or a carboxy-protecting group.
    R a , R b , † are the same as above. )
    [2] providing a compound (ii) represented by the following formula (II);
    Figure JPOXMLDOC01-appb-C000005

    [In the formula, each L 1 independently represents a leaving group. ]
    [3] (a) Substitution of the hydrogen atom of the side chain amino group or hydroxy group in the compound (i) with a group excluding one L 1 in the compound (ii), and (b) the compound Y of the other L 1 in (ii) [wherein Y is the same as above. ] to obtain a compound (iii) represented by the following formula (III);
    Figure JPOXMLDOC01-appb-C000006

    [In the formula, R a , X, Y, Z 1 and Z 2 are the same as above. ]
    [4] Step of deprotecting the protecting group of compound (iii)
  5.  請求項1~3のいずれか1項に記載の放射性化合物又はその薬学的に許容される塩を含む、放射性医薬組成物。 A radiopharmaceutical composition comprising the radioactive compound according to any one of claims 1 to 3 or a pharmaceutically acceptable salt thereof.
  6.  画像診断用である、請求項5に記載の放射性医薬組成物。 The radiopharmaceutical composition according to claim 5, which is for diagnostic imaging.
  7.  治療用である、請求項5に記載の放射性医薬組成物。 The radiopharmaceutical composition according to claim 5, which is for therapeutic use.
PCT/JP2022/008860 2021-03-03 2022-03-02 Radioactive compound WO2022186273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503909A JPWO2022186273A1 (en) 2021-03-03 2022-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021033912 2021-03-03
JP2021-033912 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022186273A1 true WO2022186273A1 (en) 2022-09-09

Family

ID=83154639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008860 WO2022186273A1 (en) 2021-03-03 2022-03-02 Radioactive compound

Country Status (2)

Country Link
JP (1) JPWO2022186273A1 (en)
WO (1) WO2022186273A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333138A (en) * 2008-07-23 2008-12-31 北京师范大学 Device and process capable of simultaneously preparing three different <18>F radiopharmaceuticals
WO2013042668A1 (en) * 2011-09-22 2013-03-28 日本メジフィジックス株式会社 Radioactive fluorine labeled compound
JP2016166151A (en) * 2015-03-10 2016-09-15 国立大学法人群馬大学 Peptide compounds and production methods of peptide compounds
JP2017052713A (en) * 2015-09-08 2017-03-16 日本メジフィジックス株式会社 Radioactive fluorine labeled precursor compound and manufacturing method of radioactive fluorine labeled compound using the same
CN107088228A (en) * 2017-03-10 2017-08-25 南京大学 The exploitation and application of New video diagnosis and treatment reagent based on tryptophan and its derivative
WO2019089603A1 (en) * 2017-10-31 2019-05-09 Dana-Farber Cancer Institute, Inc. Methods for determining and treating cellular resistance to adp-ribosylating toxin
WO2019151384A1 (en) * 2018-01-31 2019-08-08 国立大学法人千葉大学 Radioactive pharmaceutical

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333138A (en) * 2008-07-23 2008-12-31 北京师范大学 Device and process capable of simultaneously preparing three different <18>F radiopharmaceuticals
WO2013042668A1 (en) * 2011-09-22 2013-03-28 日本メジフィジックス株式会社 Radioactive fluorine labeled compound
JP2016166151A (en) * 2015-03-10 2016-09-15 国立大学法人群馬大学 Peptide compounds and production methods of peptide compounds
JP2017052713A (en) * 2015-09-08 2017-03-16 日本メジフィジックス株式会社 Radioactive fluorine labeled precursor compound and manufacturing method of radioactive fluorine labeled compound using the same
CN107088228A (en) * 2017-03-10 2017-08-25 南京大学 The exploitation and application of New video diagnosis and treatment reagent based on tryptophan and its derivative
WO2019089603A1 (en) * 2017-10-31 2019-05-09 Dana-Farber Cancer Institute, Inc. Methods for determining and treating cellular resistance to adp-ribosylating toxin
WO2019151384A1 (en) * 2018-01-31 2019-08-08 国立大学法人千葉大学 Radioactive pharmaceutical

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TATSUTA, MAHO; WASHIYA, NANA; SATO, YUI; SUZUKI, HIROYUKI; UEHARA, TOMOYA; ARANO, YASUSHI; TANAKA, HIROSHI: "2D3-49 Synthesis of radioactive neopentyl iodides as dual-responsive molecular probe for theranostics", PROCEEDINGS OF THE 98TH CSJ ANNUAL MEETING; MARCH 20 TO 23, 2018, CHEMICAL SOCIETY OF JAPAN, JP, vol. 98, 6 March 2018 (2018-03-06) - 23 March 2018 (2018-03-23), JP, pages 2D3 - 49, XP009539437 *

Also Published As

Publication number Publication date
JPWO2022186273A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
ES2731837T3 (en) Prodrugs of monomethyl fumarate (MMF)
CN107250149B (en) Deuterated chenodeoxycholic acid derivative and pharmaceutical composition containing same
CA2602324C (en) Phosphoramidate derivatives of nucleoside compounds for use in the treatment of cancer
US9238631B2 (en) Radiolabeled amino acids for diagnostic imaging
EA024118B1 (en) Targeted pyrrolobenzodiazepine conjugates
US20140309187A1 (en) Solid forms of an antiviral compound
WO2009141090A1 (en) {f-19} -labeled l-glutamic acid and l-glutamine derivative (iii), use thereof and method for obtaining them
WO2019151384A1 (en) Radioactive pharmaceutical
US8747809B2 (en) Single diastereomers of 4-fluoroglutamine and methods of their preparation and use
WO2008092335A1 (en) Novel vinblastine derivatives, their preparation, use and pharmaceutical compositions comprising the said derivatives
WO2022186273A1 (en) Radioactive compound
JP7237169B2 (en) Fluorovinylbenzamide compounds that are PD-L1 immunomodulators
JP5538224B2 (en) Optically active α-amino acids into which BSH has been introduced and method for synthesizing the same
EP4148059A1 (en) Compound, contrast medium, and method for producing compound
WO2023162946A1 (en) RADIOLABELED FAPα-AFFINITY COMPOUND AND USE THEREOF
US20130156701A1 (en) Method of preparing ethacrynic amide derivatives and application thereof
US20120093726A1 (en) Radiolabeled Fluorine Derivatives of Methionine
JP2019085344A (en) Radioactive fluorine-labeled compound
KR101427292B1 (en) F-18 labeled triazanonane derivatives or pharmaceutically acceptable salt thereof for hypoxic tissue imaging
JP2000219674A (en) New aralkyl guanidine compound
JPH01275596A (en) 2-deoxy-5-fluorouridine derivative and 5-fluorouridine derivative
JP2003267987A (en) Geranyl-saccharide derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503909

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763327

Country of ref document: EP

Kind code of ref document: A1