WO2022186205A1 - Heat exchange unit - Google Patents

Heat exchange unit Download PDF

Info

Publication number
WO2022186205A1
WO2022186205A1 PCT/JP2022/008622 JP2022008622W WO2022186205A1 WO 2022186205 A1 WO2022186205 A1 WO 2022186205A1 JP 2022008622 W JP2022008622 W JP 2022008622W WO 2022186205 A1 WO2022186205 A1 WO 2022186205A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
refrigerant
heat exchange
plate
exchange unit
Prior art date
Application number
PCT/JP2022/008622
Other languages
French (fr)
Japanese (ja)
Inventor
隆平 加治
宏和 藤野
尚志 前田
智己 廣川
祥志 松本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021033433A external-priority patent/JP7475298B2/en
Priority claimed from JP2021062240A external-priority patent/JP7280522B2/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2022186205A1 publication Critical patent/WO2022186205A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • Patent Document 1 discloses a refrigeration cycle device having a distribution pipe that evenly distributes refrigerant flowing through a plurality of refrigerant flow paths.
  • the distributor of the refrigeration cycle apparatus of Patent Literature 1 includes a vertical pipe into which a refrigerant flows, a plurality of branch pipes arranged vertically and substantially horizontally connected to the vertical pipe, and a flow rate control unit.
  • the flow control unit has capillary tubes and flow control valves provided for each of the plurality of distribution pipes.
  • the flow control valve of Patent Document 1 opens and closes the refrigerant flow path. For this reason, the passage control valve must be large in order to operate when the pressure difference is large when the valve is fully closed.
  • a heat exchange unit is a heat exchange unit of a refrigeration cycle device, and includes a plurality of refrigerant flow paths and a flow rate adjustment section. Coolant flows through the plurality of coolant channels.
  • the flow rate adjuster is provided in at least one coolant channel and adjusts the flow rate of the coolant flowing through the coolant channel.
  • the flow rate adjusting unit reduces the pressure of the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value, which is the maximum value of the difference between the high pressure and low pressure of the refrigerant that occurs during operation of the refrigeration cycle device.
  • a heat exchange unit includes a flow rate adjusting section that decompresses a refrigerant only in a pressure range of 1/20 or less of a maximum differential pressure value. For this reason, it is sufficient to use a flow rate adjusting section that depressurizes the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value, so that an increase in the size of the flow rate adjusting section can be suppressed. Therefore, an increase in size of the heat exchange unit can be suppressed.
  • the heat exchange unit according to the second aspect is the heat exchange unit according to the first aspect, and the flow rate adjusting section reduces the pressure of the refrigerant only within a pressure range of 1/30 or less of the maximum differential pressure value.
  • the heat exchange unit according to the third aspect is the heat exchange unit according to the first aspect or the second aspect, and the flow rate adjusting section includes a narrow path that communicates the upstream side and the downstream side at the time of minimum opening.
  • the refrigerant can be communicated even at the minimum opening, so the pressure difference in the flow rate adjustment section can be reduced. Therefore, it is possible to reduce the generated force required for the flow rate adjusting unit. Therefore, it is possible to further suppress an increase in the size of the flow rate adjusting unit.
  • a heat exchange unit is the heat exchange unit according to the first aspect to the third aspect, further comprising a bypass section that bypasses the flow rate adjustment section when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjustment section. .
  • the refrigerant when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjustment section, the refrigerant can flow to the bypass section.
  • the heat exchange unit according to the fifth aspect is the heat exchange unit according to the first to fourth aspects, and the flow rate adjusting section is operated by the applied voltage.
  • the heat exchange unit further includes a control section that controls to change the time for which the applied voltage is turned on and the time for which it is turned off.
  • the flow rate of the refrigerant can be adjusted by changing the ON state time and the OFF state time of the applied voltage that operates the flow rate adjustment unit.
  • the heat exchange unit according to the sixth aspect is the heat exchange unit according to the first to fourth aspects, and the flow rate adjusting section is operated by the applied voltage.
  • the heat exchange unit further includes a controller that controls to increase or decrease the applied voltage.
  • the heat exchange unit it is possible to adjust the flow rate of the refrigerant by controlling the voltage applied to operate the flow rate adjusting section to increase or decrease.
  • the heat exchange unit according to the seventh aspect is the heat exchange unit according to the first to sixth aspects, and the flow rate adjustment section includes a body section and a plate member.
  • the main body has a coolant inlet, a coolant outlet, and a channel that communicates the inlet and the outlet.
  • the plate member has a piezoelectric body and a metal body.
  • the piezoelectric body is made of a piezoelectric material that is deformed by an applied voltage.
  • the metal body is laminated with the piezoelectric body and made of a metal material.
  • the body portion is provided with a valve seat facing the plate member.
  • the channel has an adjustment channel defined by the valve seat and the plate member. The cross-sectional area of the adjustment channel on the downstream side is changed by the displacement generated in the piezoelectric body by the applied voltage.
  • the heat exchange unit according to the seventh aspect it is possible to increase and decrease the cross-sectional area of the adjustment flow path due to the displacement caused by applying voltage to the piezoelectric body. Therefore, the flow rate of the refrigerant can be easily adjusted within a predetermined pressure range.
  • the heat exchange unit according to the eighth aspect is the heat exchange unit according to the seventh aspect, in which the direction in which the piezoelectric body is displaced intersects with the direction in which the flow path extends at the inlet.
  • the heat exchange unit according to the eighth aspect it is possible to reduce the force applied to the piezoelectric body, so it is possible to widen the range in which the flow rate can be adjusted.
  • the heat exchange unit according to the ninth aspect is the heat exchange unit according to the seventh aspect or the eighth aspect, and the flow rate adjusting section further includes an electrode and an insulating member.
  • the electrodes are connected with the piezoelectric body.
  • the insulating member is made of an insulating material that insulates the electrode from the main body. A portion of the electrode protrudes from the main body into the atmosphere.
  • the heat exchange unit according to the ninth aspect it is possible to realize a structure in which voltage is applied from the electrodes to the piezoelectric body.
  • the heat exchange unit according to the tenth aspect is the heat exchange unit according to the first aspect, and the flow rate adjusting section includes a valve main body and a plate member.
  • the valve body has a fluid inlet and a fluid outlet.
  • the plate member is arranged inside the valve body.
  • the plate-like member has a plate-like piezoelectric body and a metal plate.
  • the valve body has a first channel connecting the inlet and the outlet, and a second channel connecting the inlet and the outlet.
  • the plate member adjusts the flow rate of the fluid flowing from the inflow port to the outflow port by opening and closing the first channel by displacement of the plate member caused by applying a voltage to the piezoelectric body.
  • a bypass flow path (second flow path) is provided in the main flow path (first flow path) from the inflow port to the outflow port, so that the valve when the main flow path opens The load applied to the body (plate-shaped member) is reduced. Therefore, since a thin valve body can be used, the flow rate adjusting section can be miniaturized.
  • a heat exchange unit is the heat exchange unit according to the tenth aspect, wherein the plate-like member is periodically displaced in the first flow path by displacement of the plate-like member caused by applying a voltage to the piezoelectric body. By opening and closing, the flow rate of the fluid flowing from the inflow port to the outflow port is adjusted.
  • a heat exchange unit is the heat exchange unit according to the tenth aspect or the eleventh aspect, wherein the plate-like member further comprises a plate-like member which is changed by changing the magnitude of the voltage applied to the piezoelectric body. By adjusting the amount of displacement of the member, the flow rate of the fluid flowing from the inlet to the outlet is adjusted.
  • a heat exchange unit is the heat exchange unit according to any one of the tenth to twelfth aspects, further comprising a first member.
  • the first member is a conductive member arranged in a first space that communicates with the first flow path inside the valve body.
  • the first member is electrically connected to the piezoelectric body and the metal plate.
  • the conductive pin (first member) electrically connected to the valve body is arranged inside the valve body. Therefore, the valve body is protected by the valve body.
  • the heat exchange unit according to the fourteenth aspect is the heat exchange unit according to the thirteenth aspect, wherein the valve body further has a first opening connecting the external space of the valve body and the first space.
  • the first opening is sealed by a second member which is an insulating member.
  • the first member extends from the first space to the external space of the valve body and passes through the second member without contacting the valve body.
  • the flow rate adjusting section can be made smaller.
  • FIG. 1 is a schematic configuration diagram of a heat exchange unit according to an embodiment; FIG. It is a sectional view showing roughly the flow volume adjustment part concerning an embodiment.
  • 1 is a schematic configuration diagram of a plate member and electrodes according to an embodiment;
  • FIG. 1 is a schematic configuration diagram of a plate member and electrodes according to an embodiment;
  • FIG. 1 is a schematic configuration diagram of a plate member and electrodes according to an embodiment;
  • FIG. It is a figure for demonstrating the control which concerns on embodiment.
  • It is a sectional view showing roughly the flow volume adjustment part concerning a modification.
  • FIG. 4 is an external view of a valve seat of the flow control unit; It is a top view of the valve seat of the flow control part.
  • 1 is a schematic configuration diagram of a plate member and electrodes of an embodiment; FIG. FIG.
  • FIG. 4 is a diagram showing a state in which no voltage is applied to the piezoelectric body; 1 is a schematic configuration diagram of a plate member and electrodes of an embodiment; FIG. It is a figure showing the state by which the positive voltage is applied to the 1st piezoelectric body. 1 is a schematic configuration diagram of a plate member and electrodes of an embodiment; FIG. It is a figure showing the state by which the negative voltage is applied to the 2nd piezoelectric body. It is a figure for demonstrating control of the plate-shaped member of embodiment.
  • Refrigerating cycle device (1-1) Overall configuration As shown in Fig. 1, the refrigerating cycle device 1 is capable of cooling and heating the interior of a building or the like by performing a vapor compression refrigerating cycle. device.
  • the refrigeration cycle device 1 mainly includes an outdoor unit 2 , an indoor unit 3 , a liquid refrigerant communication pipe 4 and a gas refrigerant communication pipe 5 .
  • the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 connect the outdoor unit 2 and the indoor unit 3 .
  • the vapor compression refrigerant circuit 6 of the refrigeration cycle device 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 via refrigerant communication pipes 4 and 5 .
  • the indoor unit 3 is installed indoors (a living room, a space above the ceiling, etc.) and constitutes a part of the refrigerant circuit 6 .
  • the indoor unit 3 mainly has an indoor heat exchanger 31 .
  • the indoor heat exchanger 31 is a heat exchanger that functions as a refrigerant evaporator to cool indoor air during cooling operation, and functions as a refrigerant radiator to heat indoor air during heating operation.
  • the liquid side of the indoor heat exchanger 31 is connected to the liquid refrigerant communication pipe 4
  • the gas side of the indoor heat exchanger 31 is connected to the gas refrigerant communication pipe 5 .
  • the outdoor unit 2 is installed outdoors (on the roof of the building, near the wall of the building, etc.) and forms part of the refrigerant circuit 6 .
  • the outdoor unit 2 mainly has a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an accumulator 25, a liquid closing valve 26, and a gas closing valve 27. is doing.
  • the compressor 21 is a device that compresses low-pressure refrigerant to high pressure.
  • a closed-type compressor is used in which a positive displacement compression element (not shown) such as a rotary type or a scroll type is rotationally driven by a compressor motor.
  • the four-way switching valve 22 switches the connection state of the internal piping of the outdoor unit 2 .
  • the four-way switching valve 22 realizes the connection state indicated by the dashed line in FIG.
  • the four-way switching valve 22 realizes the connection state indicated by the solid line in FIG.
  • the outdoor heat exchanger 23 exchanges heat between the refrigerant circulating in the refrigerant circuit 6 and the outdoor air.
  • the outdoor heat exchanger 23 functions as a refrigerant radiator during cooling operation, and functions as a refrigerant evaporator during heating operation.
  • the outdoor heat exchanger 23 of this embodiment includes a plurality of heat exchange units 23a to 23i.
  • the heat exchange portions 23a to 23i are portions where heat is exchanged between the refrigerant and the outdoor air.
  • nine heat exchange portions 23a to 23i are arranged in order from the bottom.
  • the heat exchange portions 23a to 23i have refrigerant channels through which refrigerant flows, and heat transfer fins in contact with outdoor air.
  • Each of the heat exchange portions 23a to 23i shares heat transfer fins.
  • the outdoor expansion valve 24 is an electrically operated valve or a solenoid valve whose opening degree can be adjusted.
  • the outdoor expansion valve 24 reduces the pressure of the refrigerant flowing through the internal piping of the outdoor unit 2 .
  • the outdoor expansion valve 24 controls the flow rate of refrigerant flowing through the internal piping of the outdoor unit 2 .
  • the accumulator 25 is installed in the piping on the suction side of the compressor 21 .
  • the accumulator 25 separates the gas-liquid mixed refrigerant flowing through the refrigerant circuit 6 into gas refrigerant and liquid refrigerant, and stores the liquid refrigerant. Gas refrigerant separated by the accumulator 25 is sent to the suction port of the compressor 21 .
  • the liquid shutoff valve 26 and the gas shutoff valve 27 are valves capable of shutting off the refrigerant flow path.
  • the liquid closing valve 26 is installed between the indoor heat exchanger 31 and the outdoor expansion valve 24 .
  • a gas shutoff valve 27 is installed between the indoor heat exchanger 31 and the four-way switching valve 22 .
  • the liquid shutoff valve 26 and the gas shutoff valve 27 are opened and closed by an operator, for example, when installing the refrigeration cycle device 1 or the like.
  • the controller 28 controls components of the outdoor unit 2 including the heat exchange unit 100 .
  • the control unit 28 is implemented by a computer.
  • the control unit 28 includes a control arithmetic device and a storage device.
  • a processor such as a CPU or a GPU, can be used for the control computing unit.
  • the control arithmetic device reads a program stored in the storage device and performs predetermined image processing and arithmetic processing according to the program. Furthermore, the control arithmetic unit can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • (1-2-3) Refrigerant Connection Pipe The liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are constructed on site when the refrigeration cycle device 1 including the refrigerant circuit 6 is installed in a building or the like. Refrigerant pipes having various lengths and pipe diameters are used according to installation conditions such as the installation location and the combination of the outdoor unit 2 and the indoor unit 3 .
  • the refrigerant flowing through the liquid refrigerant communication pipe 4 may be liquid or may be gas-liquid two-phase.
  • the operation of the refrigeration cycle apparatus 1 will be described with reference to FIG.
  • the refrigeration cycle device 1 performs a cooling operation and a heating operation.
  • the high-pressure gas refrigerant sent to the indoor heat exchanger 31 exchanges heat with the indoor air in the indoor heat exchanger 31 to radiate heat and becomes a high-pressure liquid refrigerant. This heats the indoor air.
  • the liquid refrigerant that has radiated heat in the indoor heat exchanger 31 is sent to the outdoor expansion valve 24 through the liquid refrigerant communication pipe 4 and the liquid closing valve 26 .
  • the refrigerant sent to the outdoor expansion valve 24 is reduced in pressure to the low pressure of the refrigeration cycle by the outdoor expansion valve 24 .
  • the low-pressure refrigerant decompressed by the outdoor expansion valve is sent to the outdoor heat exchanger 23 .
  • the low-pressure refrigerant sent to the outdoor heat exchanger 23 exchanges heat with outdoor air in the outdoor heat exchanger 23, which functions as a refrigerant evaporator, and evaporates to become a low-pressure gas refrigerant.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is sucked into the compressor again through the four-way switching valve 22 and the accumulator 25 .
  • the high-pressure gas refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air in the outdoor heat exchanger 23, which functions as a refrigerant radiator, and releases heat to become a high-pressure liquid refrigerant.
  • This high-pressure liquid refrigerant is sent to the indoor heat exchanger 31 through the outdoor expansion valve 24 , the liquid closing valve 26 and the liquid refrigerant connecting pipe 4 .
  • the refrigerant sent to the indoor heat exchanger 31 exchanges heat with the indoor air in the indoor heat exchanger 31 that functions as a refrigerant evaporator, and evaporates to become a low-pressure gas refrigerant. This cools the indoor air.
  • the gas refrigerant evaporated in the indoor heat exchanger 31 is sucked into the compressor 21 again through the gas refrigerant communication pipe 5 , the gas shutoff valve 27 , the four-way switching valve 22 and the accumulator 25 .
  • the heat exchange unit 100 is included in the refrigeration cycle device 1 described above.
  • the heat exchange unit 100 of this embodiment is provided in the outdoor unit 2 . Therefore, the heat exchange unit 100 includes an outdoor heat exchanger 23 .
  • the heat exchange unit 100 mainly includes a flow divider 110, a refrigerant flow path 120, a header 130, a flow rate adjustment section 140, and a control section 28.
  • the flow divider 110 is provided between the outdoor expansion valve 24 and the outdoor heat exchanger 23 .
  • the flow divider 110 is arranged on one end side (left side in FIG. 2) of the heat exchange portions 23a to 23i.
  • the flow divider 110 is shown below the heat exchange sections 23a to 23i in FIG. 2, it may be arranged on the side of the heat exchange sections 23a to 23i.
  • the flow divider 110 branches the refrigerant heading for the outdoor heat exchanger 23 in the refrigerant circuit 6 to each of the plurality of refrigerant flow paths 120 as indicated by the arrows in FIG. In this case, liquid refrigerant flows into the flow divider 110 .
  • the flow divider 110 branches into nine refrigerant flow paths 120a to 120i. Note that the number of branched refrigerant flow paths is not particularly limited.
  • the coolant channel 120 is a pipe through which coolant flows.
  • the inner diameter of this pipe is, for example, 10 mm or less, preferably 7 mm or less.
  • One end of each of the refrigerant flow paths 120a-120i is connected to the flow divider 110, and the other end of each of the refrigerant flow paths 120a-120i is connected to the header .
  • Each of the coolant channels 120a to 120i shown in FIG. 2 has a vertically extending portion and a horizontally extending portion.
  • the vertically extending portion extends upwardly from the flow divider 110 .
  • the laterally extending portions constitute part of the heat exchange portions 23a to 23i of the outdoor heat exchanger 23.
  • each heat exchange portion 23a-23i of the outdoor heat exchanger 23 includes each refrigerant flow path 120a-120i.
  • three vertically arranged refrigerant flow paths 120a to 120i are arranged in each of the heat exchange portions 23a to 23i.
  • the three coolant channels 120a to 120i are formed by folding one coolant channel twice.
  • a plurality of common heat transfer fins are arranged in the plurality of coolant channels 120a to 120i.
  • Header 130 is connected to a plurality of coolant channels 120a-120i.
  • the header 130 is erected on the other end side (right side in FIG. 2) of the heat exchange portions 23a to 23i.
  • Header 130 is a tubular member.
  • the header 130 joins the refrigerant flowing through the plurality of refrigerant flow paths 120a to 120i during heating operation.
  • the gas refrigerant flows into the header 130 .
  • This gas refrigerant is sent to the four-way switching valve 22 in the refrigerant circuit 6 .
  • the flow adjusting section 140 is provided in at least one refrigerant channel 120 .
  • one flow rate adjusting section 140a to 140i is provided for each of the plurality of refrigerant flow paths 120a to 120i.
  • the number of flow rate adjusting units 140 is the same as the number of multiple coolant channels 120 .
  • the flow rate adjusting unit 140 is attached to the pipe that is the refrigerant flow path 120 .
  • the flow rate adjusting unit 140 is provided between the outdoor expansion valve 24 and the outdoor heat exchanger 23. Specifically, a plurality of flow rate adjustment units 140a-140i are provided between the flow divider 110 and the heat exchange units 23a-23i. In this case, drift can be prevented.
  • the flow rate adjusting unit 140 adjusts the flow rate of the coolant flowing through the coolant channel 120 .
  • the flow rate adjusting unit 140 increases or decreases the flow rate of the coolant flowing through the coolant flow path 120 according to the degree of opening.
  • the flow rate adjusting unit 140 reduces the pressure of the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value, which is the maximum value of the difference between the high pressure and low pressure of the refrigerant that occurs during the operation of the refrigeration cycle device 1 .
  • the flow rate adjusting unit 140 preferably decompresses the refrigerant only within a pressure range of 1/30 or less of the maximum differential pressure value, and more preferably decompresses the refrigerant only within a pressure range of 1/40 or less of the maximum differential pressure value.
  • the pressure range in which the flow rate adjustment unit 140 decompresses the refrigerant is preferably low within a range of 1/20 or less of the maximum differential pressure value from the viewpoint of suppressing an increase in size, but the lower limit value is, for example, the maximum differential pressure 1/200 of the value.
  • the "maximum differential pressure value” is the difference between the highest pressure and the lowest pressure of the refrigerant that can occur during operation of the refrigeration cycle device 1.
  • the highest pressure that can occur during operation of the refrigeration cycle device 1 is the "design pressure of the refrigerant to be used”.
  • the lowest pressure that can occur during operation of the refrigeration cycle apparatus 1 is "the lowest pressure that occurs under the environment of use”. More specifically, the "maximum differential pressure value” is, for example, 0.1 MPa or more and 4.3 MPa or less.
  • the flow rate adjustment unit 140 can finely adjust the flow rate within a pressure range below the maximum pressure that the flow rate adjustment unit 140 can reduce.
  • the flow regulating section 140 mainly includes a body section 141, a plate member 142, an electrode 143, an insulating member 144, and side walls 145.
  • the flow rate adjusting section 140 of this embodiment uses a piezoelectric element. Therefore, the flow rate adjusting section 140 is operated by the applied voltage.
  • the flow rate adjusting unit 140 uses a bimorph type piezoelectric element that generates a force smaller than that of the electromagnetic coil used for the electromagnetic valve.
  • the body portion 141 is connected to the refrigerant channel 120 .
  • the body portion 141 is composed of an upper body portion and a lower body portion. Although the upper body portion and the lower body portion may be composed of one member, they are composed of separate members here.
  • a space is formed in the body portion 141 . A part of the space is a channel through which the coolant passes.
  • the main body 141 has a coolant inlet 141a, a coolant outlet 141b, a coolant flow path 141c, and a valve seat 141d.
  • inflow and outflow are defined based on the refrigerant flow during heating operation indicated by the arrows in FIG.
  • the inlet 141a is provided at one end (the right end in FIG. 3), and the outlet 141b is provided at the other end (the left end in FIG. 3).
  • Each of the inflow port 141 a and the outflow port 141 b communicates with the coolant channel 120 .
  • the diameter of the inlet 141 a is the same as the diameter of the coolant channel 120 .
  • the diameter of the outflow port 141b is smaller than the diameter of the coolant channel 120 .
  • the flow path 141c communicates the inflow port 141a and the outflow port 141b.
  • the channel 141c extends generally rightward.
  • the channel 141c has an adjustment channel 141c1, an inlet channel 141c2, and an outlet channel 141c3.
  • the adjustment flow path 141c is a portion whose cross-sectional area changes in order to adjust the flow rate of the refrigerant.
  • the adjustment channel 141c1 is defined by the valve seat 141d and the plate member 142. As shown in FIG. In other words, the adjustment channel 141c1 is a gap provided between the valve seat 141d and the plate member 142. As shown in FIG. The cross-sectional area of the downstream side of the adjustment channel 141c1 is changed by the displacement generated in the piezoelectric body 142b, which will be described later, due to the applied voltage. Here, the plate-like member 142 is displaced by the applied voltage, thereby changing the cross-sectional area of the adjustment channel 141c1 on the downstream side.
  • the adjustment channel 141c1 is a narrow channel that communicates between the upstream side and the downstream side at the minimum opening. In other words, the coolant flows through the adjustment channel 141c1 even at the minimum opening.
  • the inlet channel 141c2 is formed between the inlet 141a and the valve seat 141d.
  • the inlet channel 141c2 has a channel that slopes upward toward the left and a channel that extends in the left-right direction.
  • the outlet channel 141c3 is formed between the valve seat 141d and the outlet 141b. In FIG. 3, the cross-sectional area of the outlet channel 141c3 increases toward the outlet 141b.
  • the valve seat 141d faces the plate member 142 as a valve body.
  • the valve seat 141d receives a plate-like member 142 that moves up and down to adjust the flow rate of the refrigerant.
  • a plate-like member 142 as a valve body is close to the valve seat 141d.
  • the plate member 142 is arranged in the space of the body portion 141 and extends in the left-right direction in FIG.
  • the plate member 142 has a cantilever structure in which one end (right end in FIG. 3) is supported and the other end (left end in FIG. 3) is unsupported.
  • one end of plate member 142 is fixed to electrode 143 attached to insulating member 144 .
  • the other end of the plate member 142 includes a free end and faces the valve seat 141d.
  • the plate member 142 and the electrode 143 constitute a piezoelectric element.
  • the plate member 142 has a metal body 142a and a piezoelectric body 142b.
  • the plate member 142 includes a first piezoelectric body 142b, a metal body 142a formed on the first piezoelectric body 142b, and a second piezoelectric body 142b formed on the metal body 142a. have.
  • the metal body 142a is made of a metal material.
  • the piezoelectric body 142b is laminated with the metal body 142a.
  • the piezoelectric body 142b is made of a piezoelectric material (piezoelectric material) that is deformed by an applied voltage.
  • the metal body 142a is longer than the piezoelectric body 142b.
  • the other ends (the left ends in FIGS. 4 to 6) of the metal body 142a and the piezoelectric body 142b are aligned.
  • One end (right end in FIGS. 4 to 6) of the metal body 142a protrudes from one end (right end in FIGS. 4 to 6) of the piezoelectric body 142b.
  • the metal body 142a has a positive or negative contact 142a1.
  • the longitudinal direction of the metal body 142a is parallel to the coolant channel 120 having the inlet 141a and the coolant channel 120 having the outlet 141b.
  • the piezoelectric body 142b is displaced in a direction crossing the longitudinal direction of the piezoelectric body 142b when a voltage is applied. Specifically, the other free end of the piezoelectric body 142b is displaced vertically in FIGS. Specifically, the piezoelectric body 142b extends straight in the left-right direction as shown in FIG. 4, moves downward at the other end as shown in FIG. , with the other end moved upward.
  • the direction in which the piezoelectric body 142b is displaced intersects with the direction in which the flow path 141c extends at the inlet 141a.
  • the direction in which the channel 141c extends at the inlet 141a is 45 degrees with respect to the left-right direction (horizontal direction).
  • the direction in which the piezoelectric body 142b is displaced is 180 degrees with respect to the left-right direction (horizontal direction).
  • the stacking direction of the plate members 142 and the flow direction of the coolant intersect.
  • the stacking direction of the plate members 142 and the flow direction of the coolant are perpendicular to each other. Since the stacking direction of the plate members 142 is the vertical direction, it is 180 degrees with respect to the horizontal direction.
  • the flow direction of the coolant is the direction in which the coolant flows at the other end portion (adjustment flow path 141c1) where the piezoelectric body 142b is displaced, so that it is 0 degrees with respect to the left-right direction.
  • the electrode 143 is connected to the piezoelectric body 142b. 4-6, the electrode 143 is connected with the piezoelectric body 142b and the metal body 142a. Specifically, the electrode 143 has a first contact 143a and a second contact 143b. The first contact 143a is a positive contact connected to the upper piezoelectric body 142b. The second contact 143b is a negative contact connected to the lower piezoelectric body 142b. The first contact 143a and the second contact 143b are configured to be connectable with the contact 142a1 of the metal body 142a.
  • the plate member 142 having the piezoelectric body 142b is vertically displaced in FIG. 3 by the applied voltage.
  • the cross-sectional area of the adjustment flow path 141c1 defined by the plate member 142 and the valve seat 141d changes.
  • the cross-sectional area of the adjustment flow path 141c1 is increased or decreased.
  • the cross-sectional area of the adjusting flow path 141c1 is reduced, so that the flow rate of the coolant can be reduced.
  • the cross-sectional area of the adjusting flow path 141c1 increases, so that the flow rate of the coolant can be increased.
  • the adjustment flow path 141c1 communicates between the upstream and the downstream.
  • the cross-sectional area of the adjustment channel 141c1 is, for example, 1 mm 2 or more and 5 mm 2 or less.
  • the height t (vertical distance) of the gap between the plate member 142 and the valve seat 141d is, for example, 0 mm or more and 1 mm or less.
  • the electrode 143 is made of a conductive material. Also, the electrode 143 can withstand the operating pressure of the flow rate regulator 140 .
  • part of the electrode 143 protrudes from the main body 141 into the atmosphere.
  • the rest of the electrode 143 is located inside the body portion 141 .
  • one end of the electrode 143 is exposed from the main body 141 to the atmosphere.
  • the other end of the electrode 143 is housed inside the main body 141 and connected to the plate member 142 .
  • the insulating member 144 insulates the electrode 143 and the body portion 141 from each other.
  • the insulating member 144 is made of an insulating material.
  • the insulating member 144 is arranged so as to close the space in the central portion of the right end of the body portion 141 . Airtightness can be maintained by the insulating member 144 .
  • the side walls 145 are provided above and below the insulating member 144 respectively. Side walls 145 are constructed of metal. In FIG. 3 , side walls 145 are also arranged on the upper and lower left ends of the body portion 141 .
  • the control section 28 shown in FIG. 1 controls the flow rate adjustment section 140 of the heat exchange unit 100 .
  • the controller 28 performs control to change the time t1 for turning on the applied voltage and the time t2 for turning off the applied voltage.
  • the electrical signal input to the flow rate adjusting unit 140 is a pulse signal from the control unit 28, and by changing the ON width and the OFF width with respect to the cycle of the pulse, the ON time t1 of the applied voltage and off-time t2 are changed.
  • the control section 28 when the flow rate is to be reduced, the control section 28 sends a pulse signal to the flow rate adjustment section 140 so as to connect the contact 142a1 to the first contact 143a to turn off the contact 142a1 as shown in FIG. Send.
  • the control unit 28 controls the time t2 for turning off.
  • the control section 28 transmits a pulse signal to the flow rate adjusting section 140 so as to connect the third contact 142a1 to the second contact 143b to turn it on, as shown in FIG. .
  • the control unit 28 controls the time t1 for turning on.
  • the control unit 28 acquires the temperature of the coolant flowing through the coolant flow path 120, determines whether to increase or decrease the flow rate of the coolant in the flow rate adjusting unit 140 based on the temperature, and based on the determination, the flow rate adjusting unit 140 to control the opening of the
  • the control unit 28 acquires the temperature of the refrigerant in the vicinity of the outlet of the refrigerant flow path 120 of the heat exchange units 23a to 23i during the heating operation.
  • the control unit 28 measures the surface temperature of the piping forming the refrigerant flow path 120 by the temperature sensors provided in the vicinity of the outlets of the refrigerant flow paths 120 of the heat exchange units 23a to 23i in a non-contact manner.
  • the control unit 28 increases the amount of the coolant flowing through the coolant channel with a relatively high temperature among the plurality of coolant channels 120a to 120i, and/or the coolant with a relatively low temperature.
  • the opening degrees of the respective flow rate adjusting units 140a to 140b are controlled so as to reduce the amount of coolant flowing through the flow path.
  • the liquid refrigerant that has flowed into the inlet 141a of each flow rate adjusting unit 140 passes through the inlet channel 141c2 and flows into the adjustment channel 141c1.
  • the controller 28 applies an applied voltage to the piezoelectric body 142b of the plate-like member 142 to displace the other end of the plate-like member 142 downward. Thereby, the cross-sectional area of the downstream side of the adjustment channel 141c1 is reduced. Thereby, the flow rate of the refrigerant can be reduced.
  • the controller 28 applies voltage to the piezoelectric body 142b of the plate member 142 to displace the other end of the plate member 142 upward, as shown in FIG. By increasing the cross-sectional area of the downstream side of the adjustment flow path 141c1. Thereby, the flow rate of the refrigerant can be increased.
  • the coolant whose flow rate is adjusted passes through the outlet channel 141c3 and flows into the coolant channel 120 from the outlet 141b. Refrigerant flowing through the refrigerant flow path 120 flows into each of the heat exchange portions 23a to 23i shown in FIG.
  • the liquid refrigerant that has flowed into each of the heat exchange portions 23a to 23i exchanges heat with the outdoor air in each of the heat exchange portions 23a to 23i, evaporates, becomes gas refrigerant, and flows into the header 130.
  • Refrigerant flowing through each of the refrigerant flow paths 120a to 120i through each of the heat exchange portions 23a to 23i joins at the header 130.
  • the gas refrigerant joined at header 130 flows toward four-way switching valve 22 .
  • the refrigeration cycle device 1 When the refrigeration cycle device 1 performs cooling operation, the high-pressure gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 into the header 130 shown in FIG.
  • the gas refrigerant that has flowed into the header 130 is branched into a plurality of refrigerant flow paths 120a-120i, and flows into the respective heat exchange portions 23a-23i.
  • the gas refrigerant that has flowed into each of the heat exchange sections 23a to 23i exchanges heat with the outdoor air in the heat exchange sections 23a to 23i, releases heat, becomes liquid refrigerant, and flows into the flow rate adjustment sections 140a to 140i.
  • the controller 28 applies an applied voltage to the piezoelectric body 142b of the plate-like member 142 to displace the other end of the plate-like member 142 downward.
  • the cross-sectional area of the upstream side (downstream side during heating operation) of the adjustment flow path 141c1 is reduced. Thereby, the flow rate of the refrigerant can be reduced.
  • the controller 28 applies voltage to the piezoelectric body 142b of the plate member 142 to displace the other end of the plate member 142 upward, as shown in FIG.
  • the flow rate of the refrigerant can be increased.
  • the coolant whose flow rate is adjusted passes through the inlet channel 141c2 and flows into the coolant channel 120 from the inlet 141a.
  • the liquid refrigerant merged at the flow splitter 110 flows toward the outdoor expansion valve 24 .
  • the heat exchange unit 100 is a heat exchange unit of the refrigeration cycle device 1, and includes a plurality of refrigerant flow paths 120, 120a-120i and flow rate adjustment units 140, 140a-140i. Coolant flows through the plurality of coolant channels 120, 120a to 120i.
  • the flow rate adjusters 140, 140a-140i are provided in at least one coolant channel 120, 120a-120i, and adjust the flow rate of the coolant flowing through the coolant channels 120, 120a-120i.
  • the flow rate adjusting units 140, 140a to 140i reduce the pressure of the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value, which is the maximum value of the difference between the high pressure and low pressure of the refrigerant generated during the operation of the refrigeration cycle device 1.
  • the heat exchange unit 100 includes flow rate adjusting units 140, 140a to 140i that reduce the pressure of the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value.
  • the flow rate adjusting sections 140, 140a to 140i of the heat exchange unit 100 do not need to depressurize the refrigerant in a large range of pressure exceeding 1/20 of the maximum differential pressure value.
  • it is sufficient to use the flow rate adjusting units 140, 140a to 140i that depressurize the refrigerant only in a small range of pressure equal to or less than 1/20 of the maximum differential pressure value. can be suppressed. Therefore, an increase in size of the heat exchange unit 100 can be suppressed.
  • the flow rate adjusting units 140, 140a to 140i depressurize the refrigerant only in a small range of pressure equal to or less than 1/20 of the maximum differential pressure value, the flow rate adjusting units 140, 140a to 140i can be simplified. . In addition, since the flow rate adjusting units 140, 140a to 140i decompress the refrigerant only in a small and narrow range, the cost of the flow rate adjusting units 140, 140a to 140i can be reduced.
  • the flow rate adjusting units 140, 140a to 140i reduce the pressure of the refrigerant only within a pressure range of 1/30 or less of the maximum differential pressure value. As a result, it is possible to further suppress the increase in size of the flow rate adjusting units 140, 140a to 140i.
  • the flow rate adjusting units 140, 140a to 140i include narrow passages that communicate the upstream side and the downstream side when the opening is at a minimum.
  • the pressure difference in the flow rate adjusting sections 140, 140a to 140i can be reduced. Therefore, it is possible to reduce the force generated by the flow rate adjusting units 140, 140a to 140i. Therefore, it is possible to further suppress the increase in size of the flow rate adjusting units 140, 140a to 140i.
  • the flow rate regulators 140, 140a-140i are operated by applied voltage.
  • the heat exchange unit 100 further includes a control section 28 that controls to change the time t1 for turning on the applied voltage and the time t2 for turning off the applied voltage. This makes it possible to easily adjust the flow rate of the refrigerant.
  • the flow rate adjusting units 140, 140a to 140i each include a body portion 141 and a plate member 142.
  • the body portion 141 has a coolant inlet 141a, a coolant outlet 141b, and a channel 141c that communicates the inlet 141a and the outlet 141b.
  • the plate member 142 has a piezoelectric body 142b and a metal body 142a.
  • the piezoelectric body 142b is made of a piezoelectric material that is deformed by an applied voltage.
  • the metal body 142a is laminated with the piezoelectric body 142b and is made of a metal material.
  • a valve seat 141 d facing the plate member 142 is provided on the body portion 141 .
  • the channel 141c has an adjustment channel 141c1 defined by the valve seat 141d and the plate member 142 . Due to the displacement that occurs in the piezoelectric body 142b due to the applied voltage, the downstream cross-sectional area of the adjustment channel 141c1 is changed.
  • the cross-sectional area of the adjustment flow path 141c1 can be increased and decreased by the displacement caused by applying voltage to the piezoelectric body 142b. Therefore, the flow rate of the refrigerant can be easily adjusted within a pressure range of 1/20 or less of the maximum differential pressure value.
  • the displacement of the piezoelectric body 142b is smaller than that of the electromagnetic coil, it can be applied to adjust the flow rate as in the present embodiment.
  • the piezoelectric body 142b can be finely displaced within a range of 1/20 or less of the maximum differential pressure value. Therefore, the flow rate adjusters 140, 140a to 140i can finely adjust the flow rate of the refrigerant within a pressure range equal to or lower than the maximum pressure that the flow rate adjuster 140 can reduce.
  • the direction in which the plate member 142 is displaced and the direction in which the coolant flows are perpendicular to each other.
  • the longitudinal direction of the piezoelectric body 142b and the inlet channel 141c2 are preferably parallel.
  • the inflow port 141a is positioned in a direction parallel to the longitudinal direction of the plate-like member 142 . In this case, since the force is applied mainly in the extending direction of the plate-like member 142, the force applied to the plate-like member 142 can be greatly reduced.
  • the plate-like member 142 in which the direction in which the piezoelectric body 142b is displaced and the direction in which the flow path 141c extends at the inlet 141a are perpendicular to each other, is arranged so that the direction in which the piezoelectric body 142b is displaced and the flow at the inlet 141a It has knowledge that the flow rate adjustment range can be widened about three times compared to the plate member 142 parallel to the extending direction of the path 141c.
  • the flow rate adjusting units 140, 140a to 140i further include an electrode 143 and an insulating member 144.
  • the electrode 143 is connected with the piezoelectric body 142b.
  • the insulating member 144 is made of an insulating material that insulates the electrode 143 and the body portion 141 from each other. A portion of the electrode 143 protrudes from the body portion 141 into the atmosphere. Thereby, a structure in which a voltage is applied from the electrode 143 to the piezoelectric body 142b can be realized.
  • the adjustment flow path 141c1 formed in the main body portion 141 extends in the left-right direction as in the embodiment.
  • the inlet channel 141c2 has a portion extending in the horizontal direction and a portion extending in the vertical direction.
  • the outlet channel 141c3 has a vertically extending portion and a horizontally extending portion. Therefore, as shown by the arrow in FIG. 8, which shows the flow during the heating operation, the refrigerant that has flowed into the inlet 141a flows leftward in the inlet channel 141c2, then upward, and then flows upward. It flows leftward in 141c1, flows downward in outlet channel 141c3, and then flows leftward. Therefore, in this modification, the direction in which the piezoelectric body 142b is displaced is parallel to the direction in which the flow path 141c extends in the inlet 141a.
  • bypass section 150 bypasses the flow rate adjustment section 140 when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjustment section 140 .
  • the bypass unit 150 of this modification is a check valve that functions during heating operation and does not function during cooling operation.
  • the bypass portion 150 is provided in a protruding portion that separates the inlet channel 141c2 and the outlet channel 141c3 of the body portion 141 from each other.
  • the bypass portion 150 connects the laterally extending portions of the inlet channel 141c2 and the outlet channel 141c3.
  • the bypass section 150 has a channel section 151 through which the coolant flows and a blocking section 152 that blocks the channel section.
  • Flow path portion 151 extends in the left-right direction.
  • the blocking portion 152 is arranged inside the flow path portion 151 .
  • the blocking part 152 has a ball member and an elastic member. The ball member is connected with the elastic member. When a differential pressure of less than a predetermined value is applied to the flow rate adjusting portion 140, the ball member is pressed by the elastic member and blocks the flow path portion 151 by the ball member. Therefore, the coolant does not flow into the channel portion 151, but flows through the inlet channel 141c2, the adjustment channel 141c1, and the outlet channel 141c3.
  • the ball member moves and the flow path section 151 is opened. Therefore, the flow path portion 151 communicates with the inlet flow path 141 c 2 and the outlet flow path 141 c 3 , so that the coolant flows through the flow path portion 151 .
  • the predetermined value is 1/20 or less of the maximum differential pressure value, and here, it is equal to or less than the maximum pressure that the flow rate adjusting section 140 can reduce.
  • This modification further includes a bypass section 150 that bypasses the flow rate adjusting sections 140 and 140a to 140i when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjusting sections 140 and 140a to 140i.
  • a bypass section 150 that bypasses the flow rate adjusting sections 140 and 140a to 140i when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjusting sections 140 and 140a to 140i.
  • the control unit 28 performs control to change the ON state time and the OFF state time of the applied voltage that operates the flow rate adjusting unit 140, but the present invention is not limited to this.
  • the controller 28 controls to increase or decrease the applied voltage.
  • the electrical signal input to the flow rate adjusting section 140 is a signal for increasing or decreasing the voltage from the control section 28 .
  • the voltage applied to the electrode 143 of the flow control unit 140 is increased or decreased by the control unit 28 sending a signal for increasing or decreasing the voltage to the flow control unit 140 .
  • the flow rate of the coolant can be adjusted by changing the voltage applied to the ON state to increase or decrease the displacement of the piezoelectric body 142b.
  • the flow rate adjusting section 140 adjusts the flow rate of the refrigerant by using the piezoelectric element, but it is not limited to this.
  • the flow rate adjusting unit 140 may adjust the flow rate of the refrigerant by having a capacitance type structure, for example.
  • the flow rate adjustment units 140a-140i are arranged between the flow divider 110 and the heat exchange units 23a-23i, but the present invention is not limited to this.
  • the flow control units 140a-140i may be arranged between the heat exchange units 23a-23i and the header 130.
  • FIG. 1 is a diagrammatic representation of the flow rate adjustment units 140a-140i.
  • the number of flow rate adjusting units 140 is the same as the number of multiple coolant channels 120, but the present invention is not limited to this.
  • the flow rate adjusting section 140 may be arranged in at least one of the plurality of coolant channels 120 .
  • x is the number of flow rate adjusting units 140 and y is the number of a plurality of refrigerant flow paths, x is preferably the same as y or y ⁇ 1. In the case of y ⁇ 1, no flow rate adjustment section 140 is arranged in one refrigerant flow path, and one flow rate adjustment section 140 is arranged in the remaining refrigerant flow path.
  • the indoor unit 3 of the refrigeration cycle device 1 includes one indoor heat exchanger 31, but is not limited to this.
  • the indoor unit 3 of this modified example includes a plurality of indoor heat exchangers.
  • the heat exchange unit of this embodiment has the same basic configuration and operation as the heat exchange unit of the first embodiment.
  • the structure of the flow rate adjusting unit, which is the difference between the present embodiment and the first embodiment, will be described below.
  • the flow adjusting section 140 is provided in at least one refrigerant channel 120 .
  • one flow rate adjusting section 140a to 140i is provided for each of the plurality of refrigerant flow paths 120a to 120i.
  • the number of flow rate adjusting units 140 is the same as the number of multiple coolant channels 120 .
  • the flow rate adjusting unit 140 is attached to the pipe that is the refrigerant flow path 120 .
  • the flow rate adjusting unit 140 is provided between the outdoor expansion valve 24 and the outdoor heat exchanger 23. Specifically, a plurality of flow rate adjustment units 140a-140i are provided between the flow divider 110 and the heat exchange units 23a-23i.
  • the flow rate adjusting unit 140 adjusts the flow rate of the coolant flowing through the coolant channel 120 .
  • the flow rate adjusting section 140 increases or decreases the flow rate of the coolant flowing through the coolant flow path 120 according to the degree of opening thereof.
  • the flow rate adjusting section 140 can adjust the flow rate within a pressure range equal to or lower than the maximum pressure that the flow rate adjusting section 140 can reduce. As a result, it is possible to prevent the drift of the refrigerant due to the refrigerant flowing through some of the plurality of refrigerant passages 120a to 120i in a larger amount than the other refrigerant passages.
  • the opening degree of the flow rate adjusting section 140 can be adjusted within a range from a predetermined minimum opening degree to a predetermined maximum opening degree.
  • the minimum opening degree of the flow rate adjusting section 140 is a predetermined value greater than zero. Therefore, the refrigerant can pass through the flow rate adjusting section 140 even if the opening degree of the flow rate adjusting section 140 is the smallest.
  • the flow regulating portion 140 mainly includes a valve body 241, a plate member 242, an electrode 243, and an insulating member 244.
  • the flow rate adjusting section 140 of this embodiment uses a piezoelectric element. Therefore, the flow rate adjusting section 140 is operated by voltage application.
  • the flow rate adjusting unit 140 uses a bimorph type piezoelectric element having a generated force smaller than that of the electromagnetic coil used for the electromagnetic valve.
  • valve body 241 is connected to the refrigerant channel 120 .
  • the valve body 241 may be composed of one member, or may be composed of a plurality of members.
  • a space for the refrigerant to pass is formed inside the valve body 241 .
  • the valve body 241 has a refrigerant inlet 241 a , a refrigerant outlet 241 b , a first flow path 241 c 1 , a second flow path 241 c 2 , and a valve seat 245 .
  • the first flow path 241c1 and the second flow path 241c2 connect the inflow port 241a and the outflow port 241b, and in FIGS. 10 and 11, extend from right to left and then downward.
  • the valve seat 245 is a member arranged inside the valve body 241 . The following description is based on the refrigerant flow during the heating operation indicated by the arrows in FIG.
  • the inflow port 241a is provided at the longitudinal end of the valve body 241 (the right side in FIG. 10), and the outflow port 241b is provided at the lower portion of the longitudinal central portion of the valve body 241 (the lower side in FIG. 10).
  • Each of the inlet 241 a and the outlet 241 b is connected to the coolant channel 120 .
  • the end of the refrigerant flow path 120 extends inside the valve body 241 beyond the inflow port 241a and the outflow port 241b.
  • An inlet channel 241d1, an adjustment channel 241d2, and a bypass channel 241d3 are formed inside the valve body 241.
  • the first channel 241c1 includes an inlet channel 241d1 and an adjustment channel 241d2.
  • the second channel 241c2 includes an inlet channel 241d1 and a bypass channel 241d3.
  • the inlet channel 241d1 extends along the longitudinal direction of the valve body 241 (horizontal direction in FIG. 10).
  • the inlet channel 241d1 communicates with the coolant channel 120 connected to the inlet 241a.
  • Refrigerant that has flowed into the valve body 241 through the inflow port 241a first flows through the inlet channel 241d1.
  • the opening degree of the flow rate adjusting unit 140 is not the minimum, part of the refrigerant that has passed through the inlet channel 241d1 flows into the adjusting channel 241d2, and the rest flows into the bypass channel 241d3.
  • the refrigerant that has passed through the adjustment channel 241d2 and the refrigerant that has passed through the bypass channel 241d3 join and flow through the outlet 241b into the coolant channel 120 connected to the outlet 241b.
  • the first flow path 241c1 and the second flow path 241c2 join after being divided once.
  • the adjustment flow path 241d2 is a portion whose cross-sectional area changes in order to adjust the flow rate of the refrigerant passing through the flow rate adjustment section 140.
  • the adjustment flow path 241 d 2 is mainly composed of a first through hole 241 e 1 passing through the valve seat 245 and the plate member 242 .
  • the plate-like member 242 is a member for opening and closing the first through hole 241e1 in order to change the cross-sectional area of the adjustment flow path 241d2.
  • the cross-sectional area of the adjustment flow path 241d2 changes according to the size of the gap between the valve seat 245 and the plate member 242. As shown in FIG. As will be described later, the cross-sectional area of the adjustment channel 241d2 changes according to the displacement of the plate member 242. As shown in FIG.
  • the first through hole 241e1 of the valve seat 245 is closed by the plate-like member 242 when the opening degree of the flow rate adjusting section 140 is the minimum. Therefore, when the opening degree of the flow rate adjusting section 140 is minimum, the refrigerant cannot pass through the adjusting flow path 241d2, so the flow rate adjusting section 140 is in a state where the first flow path 241c1 is closed.
  • the first through-hole 241e1 of the valve seat 245 is not closed by the plate-like member 242 when the opening degree of the flow rate adjusting section 140 is not the minimum. Therefore, when the opening degree of the flow rate adjusting section 140 is not the minimum, the coolant can pass through the adjusting flow path 241d2, so the flow rate adjusting section 140 is in a state where the first flow path 241c1 is open.
  • the bypass flow path 241d3 is mainly composed of a second through hole 241e2 penetrating through the valve seat 245.
  • the second through hole 241 e 2 is not opened or closed by an external member such as the plate member 242 . Therefore, since the bypass channel 241d3 is always open, the second channel 241c2 is always open. Therefore, even when the opening degree of the flow rate adjusting unit 140 is minimum, the refrigerant that has flowed into the valve body 241 through the inlet port 241a passes through the inlet channel 241d1 and then the bypass channel 241d3. to reach the outflow port 241b.
  • bypass channel 241d3 and the upstream side of the adjustment channel 241d2 are arranged when the opening degree of the flow rate adjusting portion 140 is the minimum, in other words, when the first through hole 241e1 is closed by the plate-like member 242. It has the function of communicating with the downstream side.
  • the upstream side is the inlet 241a side
  • the downstream side is the outlet 241b side.
  • the valve seat 245 has the first through hole 241e1 and the second through hole 241e2.
  • the first through hole 241 e 1 is a substantially cylindrical hole penetrating through the central portion of the valve seat 245 .
  • the longitudinal direction (the penetrating direction) of the first through hole 241e1 is defined as the first direction.
  • the first direction is, for example, the vertical direction.
  • the second through hole 241e2 is a substantially arcuate hole formed around the first through hole 241e1.
  • the number of substantially arc-shaped second through holes 241 e 2 is one, but the number and shape of the second through holes 241 e 2 can be arbitrarily set according to the shape of the valve seat 245 .
  • the second through holes 241e2 may be a plurality of substantially circular holes formed around the first through holes 241e1 when viewed along the first direction.
  • the shape of the valve seat 245 is not limited to the forms shown in FIGS. 12 and 13 .
  • the plate-shaped member 242 is a valve element arranged near the valve seat 245 .
  • the plate member 242 is arranged in the space inside the valve body 241 and extends in the left-right direction in FIG.
  • the plate member 242 has a cantilever structure in which one end (the left end in FIG. 10) is supported and the other end (the right end in FIG. 10) is not supported.
  • one end of the plate member 242 is fixed to the valve body 241 while being connected to the electrode 243 .
  • the other end of plate-like member 242 is a free end facing valve seat 245 .
  • the plate member 242 has a metal plate 242a, a pair of piezoelectric bodies 242b, and an elastic member 242c.
  • the pair of piezoelectric bodies 242b is composed of a first piezoelectric body 242b1 and a second piezoelectric body 242b2.
  • the plate-like member 242 has a configuration in which a first piezoelectric body 242b1, a metal plate 242a, and a second piezoelectric body 242b2 are laminated in the first direction.
  • the metal plate 242a is sandwiched between the first piezoelectric body 242b1 and the second piezoelectric body 242b2.
  • the free end of the plate member 242 is displaced in the first direction, and the cross-sectional area of the adjustment channel 241d2 is changed.
  • the free end of plate-like member 242 is the right end of plate-like member 242 .
  • the metal plate 242a is made of a metal material.
  • the piezoelectric body 242b is made of a piezoelectric material (piezoelectric material) that is deformed by an applied voltage.
  • the metal plate 242a is longer than the piezoelectric body 242b in the longitudinal direction of the plate member 242 (horizontal direction in FIGS. 10 and 11).
  • One ends of the metal plate 242a and the piezoelectric body 242b (right ends in FIGS. 14 to 16) are aligned.
  • the other end of the metal plate 242a protrudes from the other end of the piezoelectric body 242b (the left end in FIGS. 14 to 16).
  • the metal plate 242a has a positive or negative third contact 243c.
  • the piezoelectric body 242b When a voltage is applied, the piezoelectric body 242b is displaced in a first direction crossing the longitudinal direction of the piezoelectric body 242b. Specifically, the free end of the piezoelectric body 242b (the end on the free end side of the plate member 242) is displaced in the vertical direction in FIGS.
  • the piezoelectric body 242b extends straight in the horizontal direction as shown in FIG. 14, has its free end moved downward as shown in FIG. 15, and has its free end moved upward as shown in FIG. It can be in a state of being moved.
  • the elastic member 242c is attached to the second piezoelectric body 242b2, which is the piezoelectric body 242b on the side closer to the valve seat 245, on the free end side of the plate member 242.
  • the elastic member 242c is, for example, a rubber plate. As shown in FIG. 10, when the free end of the plate member 242 is in contact with the valve seat 245, the elastic member 242c closes the upstream opening of the first through hole 241e1. As shown in FIG. 11, when the free end of the plate member 242 is not in contact with the valve seat 245, the elastic member 242c does not close the upstream opening of the first through hole 241e1. 10 and 11, the elastic member 242c corresponds to a portion protruding downward at the free end of the plate-like member 242. As shown in FIG.
  • Electrode The electrode 243 is connected to the piezoelectric body 242b and forms a piezoelectric element together with the plate member 242.
  • FIG. 14-16 the electrode 243 is connected with the piezoelectric body 242b and the metal plate 242a.
  • the electrode 243 has a first contact 243a and a second contact 243b.
  • the first contact 243a is a positive contact connected to the first piezoelectric body 242b1.
  • the second contact 243b is a negative contact connected to the second piezoelectric body 242b2.
  • the first contact 243a and the second contact 243b are configured to be connectable with the third contact 243c of the metal plate 242a.
  • the free end of the plate member 242 having the piezoelectric body 242b is displaced in the first direction by the applied voltage.
  • the cross-sectional area of the adjustment channel 241d2 changes.
  • the cross-sectional area of the adjustment flow path 241d2 increases or decreases.
  • the flow rate of the coolant flowing through the first channel 241c1 increases or decreases.
  • the cross-sectional area of the adjustment channel 241d2 becomes zero, and the flow rate of the coolant flowing through the first channel 241c1 becomes zero.
  • the amount of displacement of the free end of the plate member 242 in the first direction changes the flow rate of the coolant flowing through the first flow path 241c1.
  • the cross-sectional area of the adjustment channel 241d2 changes, for example, within the range of 0 mm 2 or more and 5 mm 2 or less. Due to the displacement of the free end of the plate-like member 242, the dimension of the gap (the distance in the first direction) between the plate-like member 242 and the valve seat 245 changes, for example, within the range of 0 mm or more and 1 mm or less.
  • the electrode 243 is made of a conductive material that can withstand the operating pressure of the flow rate regulator 140. As shown in FIGS. 10 and 11 , one end of the electrode 243 is positioned in an electrode-side space 246 that is the internal space of the valve body 241 . The electrode-side space 246 communicates with the first channel 241c1 (inlet channel 241d1). In the electrode-side space 246 , one end of the electrode 243 is connected to the non-free end of the plate member 242 . The other end of the electrode 243 extends from the electrode-side space 246 to the external space of the valve body 241 and is exposed to the outside air. The other end of electrode 243 is connected to an external power supply as shown in FIGS. 14-16.
  • the insulating member 244 insulates the electrode 243 and the valve body 241 from each other.
  • the insulating member 244 is made of an insulating material such as silicone rubber.
  • the valve body 241 has an electrode-side opening 247 that connects the external space of the valve body 241 and the electrode-side space 246 .
  • the insulating member 244 seals the electrode-side opening 247 to ensure the airtightness of the internal space of the valve body 241 .
  • the electrode 243 is fixed by an insulating member 244 and passes through the electrode side opening 247 without contacting the valve body 241 .
  • the control section 28 controls the flow rate adjustment section 140 of the heat exchange unit 100 .
  • the control unit 28 controls the time t1 for turning on the applied voltage and the time t2 for turning off the applied voltage.
  • the electrical signal input from the control unit 28 to the flow rate adjustment unit 140 is a pulse signal from the control unit 28, and by adjusting the applied voltage according to the cycle of the pulse, the time t1 to turn on and the time t1 to turn off It controls the time t2 to make the state.
  • control section 28 when reducing the flow rate of the refrigerant flowing through the flow rate adjusting section 140, the control section 28 connects the third contact point 243c to the first contact point 243a to turn it off, as shown in FIG. , a pulse signal is transmitted to the flow rate adjusting unit 140 .
  • control section 28 when increasing the flow rate of the refrigerant flowing through the flow rate adjusting section 140, the control section 28 connects the third contact 243c to the second contact 243b to turn on the flow rate, as shown in FIG. A pulse signal is transmitted to the adjustment unit 140 .
  • the control unit 28 acquires the temperature of the coolant flowing through the coolant flow path 120, determines whether to increase or decrease the flow rate of the coolant in the flow rate adjusting unit 140 based on the temperature, and based on the determination, the flow rate adjusting unit 140 to control the opening of the
  • the control unit 28 acquires the temperature of the refrigerant in the vicinity of the outlet of the refrigerant flow path 120 of the heat exchange units 23a to 23i during the heating operation.
  • the control unit 28 detects temperature sensors provided in the vicinity of the outlets of the refrigerant flow paths 120 of the heat exchange units 23a to 23i and the surface temperatures of the pipes forming the refrigerant flow paths 120 in a non-contact manner.
  • the control unit 28 controls the refrigerant flow path with a relatively high temperature among the plurality of refrigerant flow paths 120a to 120i to increase the amount of the refrigerant flowing therein, or the refrigerant flow path with a relatively low temperature.
  • the opening degree of each of the flow rate adjusting units 140a to 140i is controlled so that the amount of refrigerant flowing through is reduced.
  • the control section 28 controls the ON state time t1, and when the flow rate of the refrigerant flowing through the flow rate adjusting section 140 is temporarily decreased. , the time t2 for turning off is controlled. Thereby, the control unit 28 can adjust the flow rate of the refrigerant flowing from the inlet 241a toward the outlet 241b.
  • the control unit 28 alternately switches between the ON state and the OFF state to periodically displace the plate-like member 242, thereby controlling the periodic opening and closing of the first channel 241c1. you can go In this case, the control unit 28 can finely adjust the flow rate of the refrigerant flowing through the flow rate adjusting unit 140 by adjusting the cycle of switching between the ON state time t1 and the OFF state time t2.
  • the control unit 28 further changes the magnitude of the voltage applied to the piezoelectric body 242b to adjust the amount of displacement of the free end of the plate member 242, thereby increasing the flow rate of the coolant passing through the first flow path 241c1. may be controlled.
  • the electric signal input from the control section 28 to the flow rate adjusting section 140 is a signal for increasing or decreasing the voltage applied to the piezoelectric body 242b.
  • the control unit 28 finely adjusts the flow rate of the coolant flowing through the flow rate adjusting unit 140 by controlling the voltage applied to the piezoelectric body 242b to adjust the amount of displacement of the free end of the plate member 242. be able to.
  • the liquid refrigerant that has flowed into the inlet 241a of each flow rate adjusting unit 140 passes through the first channel 241c1 and the second channel 241c2.
  • the control section 28 applies an applied voltage to the piezoelectric body 242b of the plate-like member 242, as shown in FIG. is displaced downward to reduce the cross-sectional area of the adjustment channel 241d2 of the first channel 241c1.
  • the control section 28 applies an applied voltage to the piezoelectric body 242b of the plate-like member 242, as shown in FIG.
  • the coolant whose flow rate is adjusted flows into the coolant channel 120 from the outlet 241b. After that, the refrigerant flowing through the refrigerant channel 120 flows into each of the heat exchange portions 23a to 23i shown in FIG.
  • the liquid refrigerant that has flowed into each of the heat exchange portions 23a to 23i exchanges heat with the outdoor air in each of the heat exchange portions 23a to 23i, evaporates, and becomes a gas refrigerant.
  • the refrigerants flowing through the refrigerant flow paths 120a to 120i merge at the header 130.
  • FIG. The gas refrigerant joined at header 130 flows toward four-way switching valve 22 .
  • the high-pressure gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and flows into the header 130 shown in FIG. .
  • the gas refrigerant that has flowed into the header 130 is divided into a plurality of refrigerant flow paths 120a-120i and flows into the respective heat exchange portions 23a-23i.
  • the gas refrigerant that has flowed into each of the heat exchange sections 23a to 23i exchanges heat with the outdoor air in the heat exchange sections 23a to 23i, releases heat, becomes liquid refrigerant, and flows into the flow rate adjustment sections 140a to 140i.
  • the liquid refrigerant that has flowed into the outlet 241b of each flow rate adjusting unit 140 passes through the first channel 241c1 and the second channel 241c2.
  • the control section 28 applies an applied voltage to the piezoelectric body 242b of the plate-like member 242, as shown in FIG. is displaced downward to reduce the cross-sectional area of the adjustment channel 241d2 of the first channel 241c1.
  • the control section 28 applies an applied voltage to the piezoelectric body 242b of the plate-like member 242, as shown in FIG.
  • the coolant whose flow rate is adjusted flows into the coolant channel 120 from the inlet 241a. After that, the liquid refrigerant flowing through the refrigerant flow path 120 flows out from the refrigerant flow path 120 and then joins at the flow splitter 110 . The liquid refrigerant merged at the flow splitter 110 flows toward the outdoor expansion valve 24 .
  • the flow rate adjusting section 140 of this embodiment includes a plate-like member 242 arranged inside the valve body 241 .
  • the plate member 242 has a piezoelectric body 242b.
  • a first flow path 241c1 and a second flow path 241c2 are formed inside the flow rate adjusting section 140 .
  • the flow rate adjusting unit 140 adjusts the flow rate of the coolant flowing from the inlet 241a toward the outlet 241b by opening and closing the first flow path 241c1 according to the displacement of the plate member 242 caused by applying a voltage to the piezoelectric body 242b. adjust.
  • the flow rate adjustment unit 140 internally has an adjustment channel 241d2 included in the first channel 241c1 and a bypass channel 241d3 included in the second channel 241c2.
  • the bypass channel 241d3 is a channel that bypasses the adjustment channel 241d2.
  • the plate member 242 closes the first flow path 241c1, allowing the refrigerant to pass through the bypass flow path 241d3 even while the refrigerant cannot pass through the adjustment flow path 241d2.
  • the plate member 242 closes the first flow path 241c1.
  • the space on the upstream side of the plate-like member 242 and the space on the downstream side of the plate-like member 242 communicate with each other through the bypass channel 241d3. Therefore, even when the first channel 241c1 is closed, the pressure in the space on the upstream side of the plate member 242 (inlet channel 241d1) and the space on the downstream side of the plate member 242 (adjustment channel 241d2) The difference from the pressure (hereinafter referred to as valve element differential pressure) is reduced by the bypass channel 241d3.
  • valve body load increases. As the load on the valve body increases, it is necessary to use a large plate-like member 242 having a larger generated force. tend to
  • the flow rate adjusting unit 140 of the present embodiment Since the flow rate adjusting unit 140 of the present embodiment has the bypass flow path 241d3 inside, the valve element differential pressure is low, and therefore the valve element load is low as compared with a configuration that does not have the bypass flow path 241d3 inside. . Therefore, the flow rate adjusting unit 140 of this embodiment can use a plate-like member 242 that is smaller than the plate-like member 242 that is required in a configuration that does not have the bypass channel 241d3 inside. Therefore, the flow rate adjusting unit 140 of the present embodiment can suppress the size of the valve body 241, so that size reduction can be suppressed and downsizing can be realized. As a result, the cost of the flow rate adjusting section 140 can be reduced. Also, the heat exchange unit 100 including the flow rate adjusting section 140 of the present embodiment can be reduced in size by suppressing an increase in size.
  • the electrode 243 is electrically connected to the plate member 242 inside the valve body 241 . Therefore, the flow rate adjusting unit 140 can protect the plate-like member 242 by housing the entire plate-like member 242 inside the valve main body 241 .
  • part of the electrode 243 is arranged inside the valve body 241 and part of the electrode 243 is exposed to the outside air outside the valve body 241 . Therefore, the flow rate adjusting unit 140 does not need to dispose the entire electrode 243 inside the valve body 241, so the size of the valve body 241 can be suppressed. Therefore, it is possible to suppress an increase in the size of the flow rate adjusting unit 140 and realize a reduction in size.
  • the flow rate adjusting unit 140 of the present embodiment is configured such that the cross-sectional area of the adjusting flow path 241d2 is changed by displacing the free end of the plate member 242 in the first direction due to the voltage applied to the piezoelectric body 242b. ing.
  • the control unit 28 of the heat exchange unit 100 can easily adjust the flow rate of the refrigerant passing through the flow rate adjusting unit 140 by controlling the time t1 in which the applied voltage is turned on and the time t2 in which the applied voltage is turned off. can be done. Further, the control unit 28 can adjust the amount of displacement of the free end of the plate member 242 by controlling the voltage applied to the piezoelectric body 242b. Therefore, the flow rate adjusting section 140 can finely adjust the flow rate of the refrigerant in a pressure range equal to or lower than the maximum pressure that the flow rate adjusting section 140 can reduce.
  • the refrigerant flowing through the first flow path 241c1 flows through the inlet flow path 241d1 before reaching the plate member 242 during the heating operation of the refrigeration cycle device 1 .
  • the direction in which the free end of the plate member 242 is displaced intersects with the direction in which the coolant flows in the inlet channel 241d1.
  • the force required to displace the free end of the plate member 242 can be suppressed in the flow rate adjusting section 140 of this embodiment. Therefore, since a small plate-like member 242 can be used, it is possible to suppress an increase in the size of the flow rate adjusting section 140 and realize a reduction in size.
  • the direction in which the free end of the plate member 242 is displaced and the direction in which the coolant flows in the inlet channel 241d1 are perpendicular to each other.
  • the longitudinal direction of the plate member 242 and the flow direction of the coolant in the inlet channel 241d1 are parallel to each other.
  • the inflow port 241a is positioned in a direction in which the plate member 242 is extended in its longitudinal direction. In this case, the force required to displace the free end of plate-like member 242 is greatly reduced.
  • the heat exchange unit 100 of the embodiment is provided in the outdoor unit 2, but is not limited to this.
  • the heat exchange unit 100 may be provided in the indoor unit 3.
  • the flow rate adjusting section 140 of the embodiment is arranged between the flow divider 110 and the heat exchanging sections 23a to 23i, but is not limited to this.
  • the flow rate adjusting section 140 may be arranged between the heat exchanging sections 23 a to 23 i and the header 130 .
  • the number of flow rate adjusting units 140 in the embodiment is the same as the number of multiple coolant channels 120, but is not limited to this. Specifically, the flow rate adjusting unit 140 may be arranged in at least one of the plurality of coolant channels 120 . If x is the number of flow rate adjusting units 140 and y is the number of a plurality of refrigerant flow paths, x is preferably the same as y or y ⁇ 1. When x is y ⁇ 1, one of the plurality of refrigerant flow paths 120 is not provided with the flow rate adjusting unit 140, and the remaining refrigerant flow paths are provided with one flow rate adjusting unit. 140 are arranged.
  • the heat exchange parts 23a to 23i of the outdoor heat exchanger 23 share fins, but the invention is not limited to this.
  • the fins shared by the heat exchange units 23a and 23b located below the outdoor heat exchanger 23 and the fins shared by the heat exchange units 23c to 23h located in the center and above the outdoor heat exchanger 23 are separated. may be
  • the indoor unit 3 of the refrigeration cycle device 1 includes one indoor heat exchanger 31, but is not limited to this.
  • the indoor unit 3 may include multiple indoor heat exchangers 31 .
  • Reference Signs List 1 Refrigeration cycle device 2: Outdoor unit 3: Indoor unit 28: Control unit 100: Heat exchange unit 110: Flow dividers 120, 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i: Refrigerant channel 140 , 140a, 140b, 140c, 140d, 140e, 140f, 140g, 140h, 140i: flow rate adjusting portion 141: body portion 141a: inlet 141b: outlet 141c: flow path 141c1: adjustment flow path 141d: valve seat 142: plate Shaped member 142a : Metal body 142b : Piezoelectric body 143 : Electrode 144 : Insulating member 145 : Side wall 150 : Bypass part 241 : Valve body 241a : Inlet 241b : Outlet 241c1 : First channel 241c2 : Second channel 242 : Plate member 242a: Metal plate 242b: Piezoelectric body 243: Electrode (first member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

A heat exchange unit (100) is for a refrigeration cycle and comprises: a plurality of refrigerant flow passages (120); and a flow rate adjustment unit (140). A refrigerant flows in the plurality of the refrigerant flow passages (120). The flow rate adjustment unit (140) is provided to at least one of the refrigerant flow passages (120), and adjusts the flow rate of the refrigerant flowing in the refrigerant flow passages (120). The flow rate adjustment unit (140) decompresses the refrigerant only in a pressure range that is less than or equal to 1/20th of a maximum pressure difference value, which is the maximum value of the difference between a refrigerant high pressure and low pressure occurring during the operation of a refrigerant cycle device.

Description

熱交換ユニットheat exchange unit
 熱交換ユニットに関する。 Regarding the heat exchange unit.
 特許文献1(特許5197819号)には、複数の冷媒流路を流れる冷媒を均等に分配する分配管を備える冷凍サイクル装置が開示されている。特許文献1の冷凍サイクル装置の分配器は、冷媒が流入する鉛直管と、この鉛直管に上下方向に並べて略水平に接続される複数の分岐管と、流量制御ユニットと、を備える。流量制御ユニットは、複数の分配管毎に設けられるキャピラリーチューブ及び流路制御弁を有する。 Patent Document 1 (Patent No. 5197819) discloses a refrigeration cycle device having a distribution pipe that evenly distributes refrigerant flowing through a plurality of refrigerant flow paths. The distributor of the refrigeration cycle apparatus of Patent Literature 1 includes a vertical pipe into which a refrigerant flows, a plurality of branch pipes arranged vertically and substantially horizontally connected to the vertical pipe, and a flow rate control unit. The flow control unit has capillary tubes and flow control valves provided for each of the plurality of distribution pipes.
 特許文献1の流路制御弁は、冷媒流路を開閉させている。このため、全閉時の圧力差が大きい場合に作動させるためには、流路制御弁は大型になってしまう。 The flow control valve of Patent Document 1 opens and closes the refrigerant flow path. For this reason, the passage control valve must be large in order to operate when the pressure difference is large when the valve is fully closed.
 第1観点に係る熱交換ユニットは、冷凍サイクル装置の熱交換ユニットであって、複数の冷媒流路と、流量調整部と、を備える。複数の冷媒流路には、冷媒が流れる。流量調整部は、少なくとも1つの冷媒流路に設けられ、冷媒流路を流れる冷媒の流量を調整する。流量調整部は、冷凍サイクル装置の動作中に生じる冷媒の高圧及び低圧の差の最大値である最大差圧値の1/20以下の圧力範囲でのみ冷媒を減圧する。 A heat exchange unit according to the first aspect is a heat exchange unit of a refrigeration cycle device, and includes a plurality of refrigerant flow paths and a flow rate adjustment section. Coolant flows through the plurality of coolant channels. The flow rate adjuster is provided in at least one coolant channel and adjusts the flow rate of the coolant flowing through the coolant channel. The flow rate adjusting unit reduces the pressure of the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value, which is the maximum value of the difference between the high pressure and low pressure of the refrigerant that occurs during operation of the refrigeration cycle device.
 本発明者が大型化を抑制するために鋭意検討した結果、特許文献1の流路制御弁のように圧力差が大きい場合ではなく、圧力差が小さい場合に作動させる流量調整部を用いることに着眼して本開示を完成させた。第1観点に係る熱交換ユニットは、最大差圧値の1/20以下の圧力範囲でのみ冷媒を減圧する流量調整部を備える。このため、最大差圧値の1/20以下の圧力範囲でのみ冷媒を減圧する流量調整部を用いればよいので、流量調整部の大型化を抑制できる。したがって、熱交換ユニットの大型化を抑制できる。 As a result of extensive studies by the inventors of the present invention in order to suppress the increase in size, it was decided to use a flow rate adjustment unit that operates when the pressure difference is small, not when the pressure difference is large as in the flow control valve of Patent Document 1. This disclosure was completed with this in mind. A heat exchange unit according to a first aspect includes a flow rate adjusting section that decompresses a refrigerant only in a pressure range of 1/20 or less of a maximum differential pressure value. For this reason, it is sufficient to use a flow rate adjusting section that depressurizes the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value, so that an increase in the size of the flow rate adjusting section can be suppressed. Therefore, an increase in size of the heat exchange unit can be suppressed.
 第2観点に係る熱交換ユニットは、第1観点の熱交換ユニットであって、流量調整部は、最大差圧値の1/30以下の圧力範囲でのみ冷媒を減圧する。 The heat exchange unit according to the second aspect is the heat exchange unit according to the first aspect, and the flow rate adjusting section reduces the pressure of the refrigerant only within a pressure range of 1/30 or less of the maximum differential pressure value.
 第2観点に係る熱交換ユニットでは、最大差圧値の1/30以下の圧力範囲でのみ冷媒を減圧する流量調整部を用いればよいので、流量調整部の大型化をより抑制できる。 In the heat exchange unit according to the second aspect, it is only necessary to use a flow rate adjusting section that reduces the pressure of the refrigerant only within a pressure range of 1/30 or less of the maximum differential pressure value, so it is possible to further suppress an increase in the size of the flow rate adjusting section.
 第3観点に係る熱交換ユニットは、第1観点または第2観点の熱交換ユニットであって、流量調整部は、最小開度時に、上流側及び下流側を連通させる細路を含む。 The heat exchange unit according to the third aspect is the heat exchange unit according to the first aspect or the second aspect, and the flow rate adjusting section includes a narrow path that communicates the upstream side and the downstream side at the time of minimum opening.
 第3観点に係る熱交換ユニットでは、最小開度時にも冷媒を連通させることができるので、流量調整部における圧力差を低減できる。このため、流量調整部に求められる発生力を低減できる。したがって、流量調整部の大型化をより抑制できる。 In the heat exchange unit according to the third aspect, the refrigerant can be communicated even at the minimum opening, so the pressure difference in the flow rate adjustment section can be reduced. Therefore, it is possible to reduce the generated force required for the flow rate adjusting unit. Therefore, it is possible to further suppress an increase in the size of the flow rate adjusting unit.
 第4観点に係る熱交換ユニットは、第1観点から第3観点の熱交換ユニットであって、流量調整部に所定値以上の差圧がかかると、流量調整部をバイパスするバイパス部をさらに備える。 A heat exchange unit according to a fourth aspect is the heat exchange unit according to the first aspect to the third aspect, further comprising a bypass section that bypasses the flow rate adjustment section when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjustment section. .
 第4観点に係る熱交換ユニットでは、所定値以上の差圧が流量調整部にかかると、冷媒をバイパス部に流すことができる。 In the heat exchange unit according to the fourth aspect, when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjustment section, the refrigerant can flow to the bypass section.
 第5観点に係る熱交換ユニットは、第1観点から第4観点の熱交換ユニットであって、流量調整部は、印加電圧により作動する。熱交換ユニットは、印加電圧をオン状態にする時間と、オフ状態にする時間と、を変えるように制御する制御部をさらに備える。 The heat exchange unit according to the fifth aspect is the heat exchange unit according to the first to fourth aspects, and the flow rate adjusting section is operated by the applied voltage. The heat exchange unit further includes a control section that controls to change the time for which the applied voltage is turned on and the time for which it is turned off.
 第5観点に係る熱交換ユニットでは、流量調整部を作動させる印加電圧のオン状態の時間とオフ状態の時間と、を変えるように制御することによって、冷媒の流量を調整することができる。 In the heat exchange unit according to the fifth aspect, the flow rate of the refrigerant can be adjusted by changing the ON state time and the OFF state time of the applied voltage that operates the flow rate adjustment unit.
 第6観点に係る熱交換ユニットは、第1観点から第4観点の熱交換ユニットであって、流量調整部は、印加電圧により作動する。熱交換ユニットは、印加電圧を増減させるように制御する制御部をさらに備える。 The heat exchange unit according to the sixth aspect is the heat exchange unit according to the first to fourth aspects, and the flow rate adjusting section is operated by the applied voltage. The heat exchange unit further includes a controller that controls to increase or decrease the applied voltage.
 第6観点に係る熱交換ユニットでは、流量調整部を作動させる印加電圧を増減させるように制御することによって、冷媒の流量を調整することができる。 In the heat exchange unit according to the sixth aspect, it is possible to adjust the flow rate of the refrigerant by controlling the voltage applied to operate the flow rate adjusting section to increase or decrease.
 第7観点に係る熱交換ユニットは、第1観点から第6観点の熱交換ユニットであって、流量調整部は、本体部と、板状部材と、を含む。本体部は、冷媒の流入口と、冷媒の流出口と、流入口と流出口とを連通する流路と、を有する。板状部材は、圧電体と、金属体と、を有する。圧電体は、印加電圧により変形する圧電性を有する材料で構成される。金属体は、圧電体と積層され、金属材料で構成される。本体部には、板状部材と対向する弁座が設けられる。流路は、弁座と板状部材とで区画される調整流路を有する。印加電圧により圧電体に生じる変位により、調整流路の下流側の断面積を変える。 The heat exchange unit according to the seventh aspect is the heat exchange unit according to the first to sixth aspects, and the flow rate adjustment section includes a body section and a plate member. The main body has a coolant inlet, a coolant outlet, and a channel that communicates the inlet and the outlet. The plate member has a piezoelectric body and a metal body. The piezoelectric body is made of a piezoelectric material that is deformed by an applied voltage. The metal body is laminated with the piezoelectric body and made of a metal material. The body portion is provided with a valve seat facing the plate member. The channel has an adjustment channel defined by the valve seat and the plate member. The cross-sectional area of the adjustment channel on the downstream side is changed by the displacement generated in the piezoelectric body by the applied voltage.
 第7観点に係る熱交換ユニットでは、圧電体に電圧が印加されることで生じる変位により、調整流路の断面積を増やすことと、減らすことと、ができる。このため、所定の圧力範囲内において、冷媒の流量を容易に調整できる。 In the heat exchange unit according to the seventh aspect, it is possible to increase and decrease the cross-sectional area of the adjustment flow path due to the displacement caused by applying voltage to the piezoelectric body. Therefore, the flow rate of the refrigerant can be easily adjusted within a predetermined pressure range.
 第8観点に係る熱交換ユニットは、第7観点の熱交換ユニットであって、圧電体が変位する方向と、流入口における流路の延びる方向とは、交差する。 The heat exchange unit according to the eighth aspect is the heat exchange unit according to the seventh aspect, in which the direction in which the piezoelectric body is displaced intersects with the direction in which the flow path extends at the inlet.
 第8観点に係る熱交換ユニットでは、圧電体に加えられる力を減らすことができるので、流量を調整できる範囲を広くすることができる。 In the heat exchange unit according to the eighth aspect, it is possible to reduce the force applied to the piezoelectric body, so it is possible to widen the range in which the flow rate can be adjusted.
 第9観点に係る熱交換ユニットは、第7観点または第8観点の熱交換ユニットであって、流量調整部は、電極と、絶縁部材と、をさらに含む。電極は、圧電体と接続される。絶縁部材は、電極と本体部とを絶縁する絶縁材料で構成される。電極の一部は、本体部から大気中に突出する。 The heat exchange unit according to the ninth aspect is the heat exchange unit according to the seventh aspect or the eighth aspect, and the flow rate adjusting section further includes an electrode and an insulating member. The electrodes are connected with the piezoelectric body. The insulating member is made of an insulating material that insulates the electrode from the main body. A portion of the electrode protrudes from the main body into the atmosphere.
 第9観点に係る熱交換ユニットでは、電極から圧電体に電圧を印加する構造を実現できる。 In the heat exchange unit according to the ninth aspect, it is possible to realize a structure in which voltage is applied from the electrodes to the piezoelectric body.
 第10観点に係る熱交換ユニットは、第1観点の熱交換ユニットであって、流量調整部は、弁本体と、板状部材とを備える。弁本体は、流体の流入口、及び、流体の流出口を有する。板状部材は、弁本体の内部に配置される。板状部材は、板状の圧電体と、金属板とを有する。弁本体は、流入口と流出口とを結ぶ第1流路と、流入口と流出口とを結ぶ第2流路とを有する。板状部材は、圧電体に電圧を印加することで生じる板状部材の変位によって第1流路を開閉することで、流入口から流出口に流れる流体の流量を調整する。 The heat exchange unit according to the tenth aspect is the heat exchange unit according to the first aspect, and the flow rate adjusting section includes a valve main body and a plate member. The valve body has a fluid inlet and a fluid outlet. The plate member is arranged inside the valve body. The plate-like member has a plate-like piezoelectric body and a metal plate. The valve body has a first channel connecting the inlet and the outlet, and a second channel connecting the inlet and the outlet. The plate member adjusts the flow rate of the fluid flowing from the inflow port to the outflow port by opening and closing the first channel by displacement of the plate member caused by applying a voltage to the piezoelectric body.
 第10観点に係る熱交換ユニットでは、流入口から流出口へ向かうメイン流路(第1流路)にバイパス流路(第2流路)が設けられることで、メイン流路が開くときの弁体(板状部材)にかかる負荷が低減される。従って、薄型の弁体を使用できるので、流量調整部を小型化できる。 In the heat exchange unit according to the tenth aspect, a bypass flow path (second flow path) is provided in the main flow path (first flow path) from the inflow port to the outflow port, so that the valve when the main flow path opens The load applied to the body (plate-shaped member) is reduced. Therefore, since a thin valve body can be used, the flow rate adjusting section can be miniaturized.
 第11観点に係る熱交換ユニットは、第10観点の熱交換ユニットであって、板状部材は、圧電体に電圧を印加することで生じる板状部材の変位によって第1流路を周期的に開閉することで、流入口から流出口に流れる流体の流量を調整する。 A heat exchange unit according to an eleventh aspect is the heat exchange unit according to the tenth aspect, wherein the plate-like member is periodically displaced in the first flow path by displacement of the plate-like member caused by applying a voltage to the piezoelectric body. By opening and closing, the flow rate of the fluid flowing from the inflow port to the outflow port is adjusted.
 第11観点に係る熱交換ユニットでは、弁体を周期的に変位させて、メイン流路の開度を周期的に変えることで、流量の細かい調整が可能となる。 In the heat exchange unit according to the eleventh aspect, it is possible to finely adjust the flow rate by periodically changing the opening of the main flow path by periodically displacing the valve body.
 第12観点に係る熱交換ユニットは、第10観点又は第11観点の熱交換ユニットであって、板状部材は、さらに、圧電体に印加される電圧の大きさを変化させることによる、板状部材の変位量の調整によって、流入口から流出口に流れる流体の流量を調整する。 A heat exchange unit according to a twelfth aspect is the heat exchange unit according to the tenth aspect or the eleventh aspect, wherein the plate-like member further comprises a plate-like member which is changed by changing the magnitude of the voltage applied to the piezoelectric body. By adjusting the amount of displacement of the member, the flow rate of the fluid flowing from the inlet to the outlet is adjusted.
 第12観点に係る熱交換ユニットでは、弁体に印加する電圧を制御して弁体の変位量を調整することで、流量の細かい調整が可能となる。 In the heat exchange unit according to the twelfth aspect, it is possible to finely adjust the flow rate by controlling the voltage applied to the valve body to adjust the amount of displacement of the valve body.
 第13観点に係る熱交換ユニットは、第10乃至第12観点のいずれか1つの熱交換ユニットであって、第1部材をさらに備える。第1部材は、弁本体の内部において第1流路と連通する第1空間に配置される導電性部材である。第1部材は、圧電体及び金属板と電気的に接続される。 A heat exchange unit according to a thirteenth aspect is the heat exchange unit according to any one of the tenth to twelfth aspects, further comprising a first member. The first member is a conductive member arranged in a first space that communicates with the first flow path inside the valve body. The first member is electrically connected to the piezoelectric body and the metal plate.
 第13観点に係る熱交換ユニットでは、弁体と電気的に接続される導電性ピン(第1部材)が、弁本体の内部に配置される。従って、弁体が弁本体によって保護される。 In the heat exchange unit according to the thirteenth aspect, the conductive pin (first member) electrically connected to the valve body is arranged inside the valve body. Therefore, the valve body is protected by the valve body.
 第14観点に係る熱交換ユニットは、第13観点の熱交換ユニットであって、弁本体は、弁本体の外部空間と第1空間とを結ぶ第1開口をさらに有する。第1開口は、絶縁性部材である第2部材によってシールされる。第1部材は、第1空間から弁本体の外部空間まで延びており、かつ、弁本体と接することなく第2部材を貫通している。 The heat exchange unit according to the fourteenth aspect is the heat exchange unit according to the thirteenth aspect, wherein the valve body further has a first opening connecting the external space of the valve body and the first space. The first opening is sealed by a second member which is an insulating member. The first member extends from the first space to the external space of the valve body and passes through the second member without contacting the valve body.
 第14観点に係る熱交換ユニットでは、弁本体の内部には導電性ピンの一部しか配置されない。従って、導電性ピンの一部を弁本体の外部に露出させることで、流量調整部を小型化できる。 In the heat exchange unit according to the fourteenth aspect, only part of the conductive pin is arranged inside the valve body. Therefore, by exposing a portion of the conductive pin to the outside of the valve body, the flow rate adjusting section can be made smaller.
実施形態に係る熱交換ユニットを備える冷凍サイクル装置を示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows the refrigerating-cycle apparatus provided with the heat exchange unit which concerns on embodiment. 実施形態に係る熱交換ユニットの概略構成図である。1 is a schematic configuration diagram of a heat exchange unit according to an embodiment; FIG. 実施形態に係る流量調整部を概略的に示す断面図である。It is a sectional view showing roughly the flow volume adjustment part concerning an embodiment. 実施形態に係る板状部材及び電極を概略構成図である。1 is a schematic configuration diagram of a plate member and electrodes according to an embodiment; FIG. 実施形態に係る板状部材及び電極を概略構成図である。1 is a schematic configuration diagram of a plate member and electrodes according to an embodiment; FIG. 実施形態に係る板状部材及び電極を概略構成図である。1 is a schematic configuration diagram of a plate member and electrodes according to an embodiment; FIG. 実施形態に係る制御を説明するための図である。It is a figure for demonstrating the control which concerns on embodiment. 変形例に係る流量調整部を概略的に示す断面図である。It is a sectional view showing roughly the flow volume adjustment part concerning a modification. 変形例に係る流量調整部を概略的に示す断面図である。It is a sectional view showing roughly the flow volume adjustment part concerning a modification. 実施形態の流量調整部の概略断面図である。流量調整部の開度が最小である時の状態を表す図である。It is a schematic sectional drawing of the flow volume adjustment part of embodiment. It is a figure showing the state when the opening degree of a flow volume adjustment part is the minimum. 実施形態の流量調整部の概略断面図である。流量調整部の開度が最小でない時の状態を表す図である。It is a schematic sectional drawing of the flow volume adjustment part of embodiment. It is a figure showing a state when the opening degree of a flow volume adjustment part is not the minimum. 流量調整部の弁座の外観図である。FIG. 4 is an external view of a valve seat of the flow control unit; 流量調整部の弁座の上面図である。It is a top view of the valve seat of the flow control part. 実施形態の板状部材及び電極の概略構成図である。圧電体に電圧が印加されていない状態を表す図である。1 is a schematic configuration diagram of a plate member and electrodes of an embodiment; FIG. FIG. 4 is a diagram showing a state in which no voltage is applied to the piezoelectric body; 実施形態の板状部材及び電極の概略構成図である。第1圧電体にプラスの電圧が印加されている状態を表す図である。1 is a schematic configuration diagram of a plate member and electrodes of an embodiment; FIG. It is a figure showing the state by which the positive voltage is applied to the 1st piezoelectric body. 実施形態の板状部材及び電極の概略構成図である。第2圧電体にマイナスの電圧が印加されている状態を表す図である。1 is a schematic configuration diagram of a plate member and electrodes of an embodiment; FIG. It is a figure showing the state by which the negative voltage is applied to the 2nd piezoelectric body. 実施形態の板状部材の制御を説明するための図である。It is a figure for demonstrating control of the plate-shaped member of embodiment.
 <第1実施形態>
 本開示の一実施形態に係る熱交換ユニット、及び、熱交換ユニットを備える冷凍サイクル装置について、図面を参照しながら説明する。
<First Embodiment>
A heat exchange unit according to an embodiment of the present disclosure and a refrigeration cycle device including the heat exchange unit will be described with reference to the drawings.
 (1)冷凍サイクル装置
 (1-1)全体構成
 図1に示すように、冷凍サイクル装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、建物等の室内の冷房及び暖房を行うことが可能な装置である。冷凍サイクル装置1は、主として、室外ユニット2と、室内ユニット3と、液冷媒連絡管4と、ガス冷媒連絡管5と、を備える。液冷媒連絡管4及びガス冷媒連絡管5は、室外ユニット2と室内ユニット3とを接続する。そして、冷凍サイクル装置1の蒸気圧縮式の冷媒回路6は、室外ユニット2と、室内ユニット3とが冷媒連絡管4、5を介して接続されることによって構成されている。
(1) Refrigerating cycle device (1-1) Overall configuration As shown in Fig. 1, the refrigerating cycle device 1 is capable of cooling and heating the interior of a building or the like by performing a vapor compression refrigerating cycle. device. The refrigeration cycle device 1 mainly includes an outdoor unit 2 , an indoor unit 3 , a liquid refrigerant communication pipe 4 and a gas refrigerant communication pipe 5 . The liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 connect the outdoor unit 2 and the indoor unit 3 . The vapor compression refrigerant circuit 6 of the refrigeration cycle device 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 via refrigerant communication pipes 4 and 5 .
 (1-2)詳細構成
 (1-2-1)室内ユニット
 室内ユニット3は、室内(居室や天井裏空間等)に設置されており、冷媒回路6の一部を構成している。室内ユニット3は、主として、室内熱交換器31を有している。室内熱交換器31は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の放熱器として機能して室内空気を加熱する熱交換器である。室内熱交換器31の液側は液冷媒連絡管4に接続されており、室内熱交換器31のガス側はガス冷媒連絡管5に接続されている。
(1-2) Detailed Configuration (1-2-1) Indoor Unit The indoor unit 3 is installed indoors (a living room, a space above the ceiling, etc.) and constitutes a part of the refrigerant circuit 6 . The indoor unit 3 mainly has an indoor heat exchanger 31 . The indoor heat exchanger 31 is a heat exchanger that functions as a refrigerant evaporator to cool indoor air during cooling operation, and functions as a refrigerant radiator to heat indoor air during heating operation. The liquid side of the indoor heat exchanger 31 is connected to the liquid refrigerant communication pipe 4 , and the gas side of the indoor heat exchanger 31 is connected to the gas refrigerant communication pipe 5 .
 (1-2-2)室外ユニット
 室外ユニット2は、室外(建物の屋上や建物の壁面近傍等)に設置されており、冷媒回路6の一部を構成している。室外ユニット2は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、室外膨張弁24と、アキュムレータ25と、液閉鎖弁26と、ガス閉鎖弁27と、を有している。
(1-2-2) Outdoor Unit The outdoor unit 2 is installed outdoors (on the roof of the building, near the wall of the building, etc.) and forms part of the refrigerant circuit 6 . The outdoor unit 2 mainly has a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 24, an accumulator 25, a liquid closing valve 26, and a gas closing valve 27. is doing.
 圧縮機21は、低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が圧縮機用モータによって回転駆動される密閉式構造の圧縮機が使用されている。 The compressor 21 is a device that compresses low-pressure refrigerant to high pressure. Here, as the compressor 21, a closed-type compressor is used in which a positive displacement compression element (not shown) such as a rotary type or a scroll type is rotationally driven by a compressor motor.
 四路切換弁22は、室外ユニット2の内部配管の接続状態を切り替える。冷凍サイクル装置1が冷房運転を行う場合、四路切換弁22は、図1の破線で示される接続状態を実現する。冷凍サイクル装置1が暖房運転を行う場合、四路切換弁22は、図1の実線で示される接続状態を実現する。 The four-way switching valve 22 switches the connection state of the internal piping of the outdoor unit 2 . When the refrigeration cycle device 1 performs cooling operation, the four-way switching valve 22 realizes the connection state indicated by the dashed line in FIG. When the refrigeration cycle device 1 performs heating operation, the four-way switching valve 22 realizes the connection state indicated by the solid line in FIG.
 室外熱交換器23は、冷媒回路6を循環する冷媒と、室外空気との熱交換を行う。室外熱交換器23は、冷房運転時には冷媒の放熱器として機能し、暖房運転時には冷媒の蒸発器として機能する。 The outdoor heat exchanger 23 exchanges heat between the refrigerant circulating in the refrigerant circuit 6 and the outdoor air. The outdoor heat exchanger 23 functions as a refrigerant radiator during cooling operation, and functions as a refrigerant evaporator during heating operation.
 図2に示すように、本実施形態の室外熱交換器23は、複数の熱交換部23a~23iを含む。熱交換部23a~23iは、冷媒と室外空気とが、熱交換を行う部分である。図2では、9つの熱交換部23a~23iが下から順に配置されている。熱交換部23a~23iは、冷媒が流れる冷媒流路と、室外空気と接する伝熱フィンと、を有する。各熱交換部23a~23iは、伝熱フィンを共有する。 As shown in FIG. 2, the outdoor heat exchanger 23 of this embodiment includes a plurality of heat exchange units 23a to 23i. The heat exchange portions 23a to 23i are portions where heat is exchanged between the refrigerant and the outdoor air. In FIG. 2, nine heat exchange portions 23a to 23i are arranged in order from the bottom. The heat exchange portions 23a to 23i have refrigerant channels through which refrigerant flows, and heat transfer fins in contact with outdoor air. Each of the heat exchange portions 23a to 23i shares heat transfer fins.
 図1に戻り、室外膨張弁24は、開度調整が可能な電動弁または電磁弁である。室外膨張弁24は、室外ユニット2の内部配管を流れる冷媒を減圧させる。室外膨張弁24は、室外ユニット2の内部配管を流れる冷媒の流量を制御する。 Returning to FIG. 1, the outdoor expansion valve 24 is an electrically operated valve or a solenoid valve whose opening degree can be adjusted. The outdoor expansion valve 24 reduces the pressure of the refrigerant flowing through the internal piping of the outdoor unit 2 . The outdoor expansion valve 24 controls the flow rate of refrigerant flowing through the internal piping of the outdoor unit 2 .
 アキュムレータ25は、圧縮機21の吸入側の配管に設置される。アキュムレータ25は、冷媒回路6を流れる気液混合冷媒を、ガス冷媒と液冷媒とに分離して、液冷媒を貯留する。アキュムレータ25で分離されたガス冷媒は、圧縮機21の吸入ポートに送られる。 The accumulator 25 is installed in the piping on the suction side of the compressor 21 . The accumulator 25 separates the gas-liquid mixed refrigerant flowing through the refrigerant circuit 6 into gas refrigerant and liquid refrigerant, and stores the liquid refrigerant. Gas refrigerant separated by the accumulator 25 is sent to the suction port of the compressor 21 .
 液閉鎖弁26及びガス閉鎖弁27は、冷媒流路を遮断することが可能な弁である。液閉鎖弁26は、室内熱交換器31と室外膨張弁24との間に設置される。ガス閉鎖弁27は、室内熱交換器31と四路切換弁22との間に設置される。液閉鎖弁26及びガス閉鎖弁27は、例えば、冷凍サイクル装置1の設置時等において、作業者によって開閉される。 The liquid shutoff valve 26 and the gas shutoff valve 27 are valves capable of shutting off the refrigerant flow path. The liquid closing valve 26 is installed between the indoor heat exchanger 31 and the outdoor expansion valve 24 . A gas shutoff valve 27 is installed between the indoor heat exchanger 31 and the four-way switching valve 22 . The liquid shutoff valve 26 and the gas shutoff valve 27 are opened and closed by an operator, for example, when installing the refrigeration cycle device 1 or the like.
 制御部28は、熱交換ユニット100を含む室外ユニット2の構成機器を制御する。制御部28は、コンピュータにより実現されるものである。制御部28は、制御演算装置と記憶装置とを備える。制御演算装置には、CPUまたはGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。 The controller 28 controls components of the outdoor unit 2 including the heat exchange unit 100 . The control unit 28 is implemented by a computer. The control unit 28 includes a control arithmetic device and a storage device. A processor, such as a CPU or a GPU, can be used for the control computing unit. The control arithmetic device reads a program stored in the storage device and performs predetermined image processing and arithmetic processing according to the program. Furthermore, the control arithmetic unit can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
 (1-2-3)冷媒連絡管
 液冷媒連絡管4及びガス冷媒連絡管5は、冷媒回路6を備える冷凍サイクル装置1をビル等の設置場所に設置する際に、現地にて施工される冷媒管であり、設置場所や室外ユニット2と室内ユニット3との組み合わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。
(1-2-3) Refrigerant Connection Pipe The liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are constructed on site when the refrigeration cycle device 1 including the refrigerant circuit 6 is installed in a building or the like. Refrigerant pipes having various lengths and pipe diameters are used according to installation conditions such as the installation location and the combination of the outdoor unit 2 and the indoor unit 3 .
 なお、液冷媒連絡管4に流れる冷媒は、液体であってもよく、気液二相であってもよい。 It should be noted that the refrigerant flowing through the liquid refrigerant communication pipe 4 may be liquid or may be gas-liquid two-phase.
 (1-3)動作
 図1を参照して、冷凍サイクル装置1の動作について説明する。冷凍サイクル装置1では、冷房運転と、暖房運転と、が行われる。
(1-3) Operation The operation of the refrigeration cycle apparatus 1 will be described with reference to FIG. The refrigeration cycle device 1 performs a cooling operation and a heating operation.
 (1-3-1)暖房運転
 冷凍サイクル装置1が暖房運転を行う場合、四路切換弁22が室外蒸発状態(図1の実線で示される状態)に切り換えられる。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22、ガス閉鎖弁27及びガス冷媒連絡管5を通じて、室内熱交換器31に送られる。室内熱交換器31に送られた高圧のガス冷媒は、室内熱交換器31において、室内空気と熱交換を行って放熱して、高圧の液冷媒になる。これにより、室内空気は加熱される。室内熱交換器31で放熱した液冷媒は、液冷媒連絡管4及び液閉鎖弁26を通じて、室外膨張弁24に送られる。室外膨張弁24に送られた冷媒は、室外膨張弁24によって冷凍サイクルの低圧まで減圧でされる。室外膨張弁で減圧された低圧の冷媒は、室外熱交換器23に送られる。室外熱交換器23に送られた低圧の冷媒は、冷媒の蒸発器として機能する室外熱交換器23において、室外空気と熱交換を行って蒸発して、低圧のガス冷媒となる。室外熱交換器23で蒸発した低圧の冷媒は、四路切換弁22及びアキュムレータ25を通じて、再び、圧縮機に吸入される。
(1-3-1) Heating Operation When the refrigeration cycle device 1 performs the heating operation, the four-way switching valve 22 is switched to the outdoor evaporation state (the state indicated by the solid line in FIG. 1). In the refrigerant circuit 6, the low-pressure gas refrigerant of the refrigerating cycle is sucked into the compressor 21, compressed to a high pressure of the refrigerating cycle, and then discharged. A high-pressure gas refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 31 through the four-way switching valve 22 , the gas shut-off valve 27 and the gas refrigerant connecting pipe 5 . The high-pressure gas refrigerant sent to the indoor heat exchanger 31 exchanges heat with the indoor air in the indoor heat exchanger 31 to radiate heat and becomes a high-pressure liquid refrigerant. This heats the indoor air. The liquid refrigerant that has radiated heat in the indoor heat exchanger 31 is sent to the outdoor expansion valve 24 through the liquid refrigerant communication pipe 4 and the liquid closing valve 26 . The refrigerant sent to the outdoor expansion valve 24 is reduced in pressure to the low pressure of the refrigeration cycle by the outdoor expansion valve 24 . The low-pressure refrigerant decompressed by the outdoor expansion valve is sent to the outdoor heat exchanger 23 . The low-pressure refrigerant sent to the outdoor heat exchanger 23 exchanges heat with outdoor air in the outdoor heat exchanger 23, which functions as a refrigerant evaporator, and evaporates to become a low-pressure gas refrigerant. The low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is sucked into the compressor again through the four-way switching valve 22 and the accumulator 25 .
 (1-3-2)冷房運転
 冷凍サイクル装置1が冷房運転を行う場合、四路切換弁22が室外放熱状態(図1の破線で示される状態)に切り換えられる。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22を通じて、室外熱交換器23に送られる。室外熱交換器23に送られた高圧のガス冷媒は、冷媒の放熱器として機能する室外熱交換器23において、室外空気と熱交換を行って放熱して、高圧の液冷媒となる。この高圧の液冷媒は、室外膨張弁24、液閉鎖弁26及び液冷媒連絡管4を通じて、室内熱交換器31に送られる。室内熱交換器31に送られた冷媒は、冷媒の蒸発器として機能する室内熱交換器31において、室内空気と熱交換を行って蒸発して、低圧のガス冷媒になる。これにより、室内空気は冷却される。室内熱交換器31において蒸発したガス冷媒は、ガス冷媒連絡管5、ガス閉鎖弁27、四路切換弁22及びアキュムレータ25を通じて、再び、圧縮機21に吸入される。
(1-3-2) Cooling Operation When the refrigerating cycle device 1 performs cooling operation, the four-way switching valve 22 is switched to the outdoor heat radiation state (the state indicated by the dashed line in FIG. 1). In the refrigerant circuit 6, the low-pressure gas refrigerant of the refrigerating cycle is sucked into the compressor 21, compressed to a high pressure of the refrigerating cycle, and then discharged. A high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the four-way switching valve 22 . The high-pressure gas refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air in the outdoor heat exchanger 23, which functions as a refrigerant radiator, and releases heat to become a high-pressure liquid refrigerant. This high-pressure liquid refrigerant is sent to the indoor heat exchanger 31 through the outdoor expansion valve 24 , the liquid closing valve 26 and the liquid refrigerant connecting pipe 4 . The refrigerant sent to the indoor heat exchanger 31 exchanges heat with the indoor air in the indoor heat exchanger 31 that functions as a refrigerant evaporator, and evaporates to become a low-pressure gas refrigerant. This cools the indoor air. The gas refrigerant evaporated in the indoor heat exchanger 31 is sucked into the compressor 21 again through the gas refrigerant communication pipe 5 , the gas shutoff valve 27 , the four-way switching valve 22 and the accumulator 25 .
 (2)熱交換ユニット
 (2-1)全体構成
 熱交換ユニット100は、上述した冷凍サイクル装置1に含まれる。本実施形態の熱交換ユニット100は、室外ユニット2に設けられる。このため、熱交換ユニット100は、室外熱交換器23を含む。
(2) Heat Exchange Unit (2-1) Overall Configuration The heat exchange unit 100 is included in the refrigeration cycle device 1 described above. The heat exchange unit 100 of this embodiment is provided in the outdoor unit 2 . Therefore, the heat exchange unit 100 includes an outdoor heat exchanger 23 .
 図1及び図2に示すように、熱交換ユニット100は、主に、分流器110と、冷媒流路120と、ヘッダ130と、流量調整部140と、制御部28と、を備える。 As shown in FIGS. 1 and 2, the heat exchange unit 100 mainly includes a flow divider 110, a refrigerant flow path 120, a header 130, a flow rate adjustment section 140, and a control section 28.
 (2-2)詳細構成
 (2-2-1)分流器
 分流器110は、室外膨張弁24と室外熱交換器23との間に設けられる。図2では、分流器110は、熱交換部23a~23iの一端側(図2における左側)に配置されている。なお、図2では、分流器110は、熱交換部23a~23iの下方に図示されているが、熱交換部23a~23iの側方に配置されてもよい。
(2-2) Detailed Configuration (2-2-1) Flow Divider The flow divider 110 is provided between the outdoor expansion valve 24 and the outdoor heat exchanger 23 . In FIG. 2, the flow divider 110 is arranged on one end side (left side in FIG. 2) of the heat exchange portions 23a to 23i. Although the flow divider 110 is shown below the heat exchange sections 23a to 23i in FIG. 2, it may be arranged on the side of the heat exchange sections 23a to 23i.
 分流器110は、暖房運転時に、冷媒回路6において室外熱交換器23に向かう冷媒を、図2の矢印に示すように、複数の冷媒流路120のそれぞれに分岐させる。この場合、分流器110には、液冷媒が流入する。図2では、分流器110により、9本の冷媒流路120a~120iに分岐されている。なお、分岐される冷媒流路の数は、特に限定されない。 During heating operation, the flow divider 110 branches the refrigerant heading for the outdoor heat exchanger 23 in the refrigerant circuit 6 to each of the plurality of refrigerant flow paths 120 as indicated by the arrows in FIG. In this case, liquid refrigerant flows into the flow divider 110 . In FIG. 2, the flow divider 110 branches into nine refrigerant flow paths 120a to 120i. Note that the number of branched refrigerant flow paths is not particularly limited.
 (2-2-2)冷媒流路
 分流器110により分岐された複数の冷媒流路120a~120iには、冷媒が流れる。冷媒流路120は、内部に冷媒が流れる配管である。この配管の内径は、例えば10mm以下であり、好ましくは7mm以下である。各冷媒流路120a~120iの一端部は、分流器110に接続され、各冷媒流路120a~120iの他端部は、ヘッダ130に接続されている。
(2-2-2) Refrigerant Flow Paths Refrigerant flows through a plurality of refrigerant flow paths 120a to 120i branched by the flow divider 110. FIG. The coolant channel 120 is a pipe through which coolant flows. The inner diameter of this pipe is, for example, 10 mm or less, preferably 7 mm or less. One end of each of the refrigerant flow paths 120a-120i is connected to the flow divider 110, and the other end of each of the refrigerant flow paths 120a-120i is connected to the header .
 図2に示す各冷媒流路120a~120iは、上下方向に延びる部分と、左右方向に延びる部分と、を有する。上下に延びる部分は、分流器110から上方に延びる。左右に延びる部分は、室外熱交換器23の熱交換部23a~23iの一部を構成する。言い換えると、室外熱交換器23の各熱交換部23a~23iは、各冷媒流路120a~120iを含む。ここでは、各熱交換部23a~23iには、上下に並ぶ3本の冷媒流路120a~120iがそれぞれ配置される。3本の冷媒流路120a~120iは、1つの冷媒流路が2回折り返されてなる。そして、複数の冷媒流路120a~120iには、共通の複数の伝熱フィンが配置される。 Each of the coolant channels 120a to 120i shown in FIG. 2 has a vertically extending portion and a horizontally extending portion. The vertically extending portion extends upwardly from the flow divider 110 . The laterally extending portions constitute part of the heat exchange portions 23a to 23i of the outdoor heat exchanger 23. As shown in FIG. In other words, each heat exchange portion 23a-23i of the outdoor heat exchanger 23 includes each refrigerant flow path 120a-120i. Here, three vertically arranged refrigerant flow paths 120a to 120i are arranged in each of the heat exchange portions 23a to 23i. The three coolant channels 120a to 120i are formed by folding one coolant channel twice. A plurality of common heat transfer fins are arranged in the plurality of coolant channels 120a to 120i.
 (2-2-3)ヘッダ
 ヘッダ130は、複数の冷媒流路120a~120iと接続される。ここでは、ヘッダ130は、熱交換部23a~23iの他端側(図2における右側)に立設されている。ヘッダ130は、筒状の部材である。
(2-2-3) Header The header 130 is connected to a plurality of coolant channels 120a-120i. Here, the header 130 is erected on the other end side (right side in FIG. 2) of the heat exchange portions 23a to 23i. Header 130 is a tubular member.
 ヘッダ130は、暖房運転時に、複数の冷媒流路120a~120iを流れる冷媒を合流させる。この場合、ヘッダ130には、ガス冷媒が流入する。このガス冷媒は、冷媒回路6において四路切換弁22に送られる。 The header 130 joins the refrigerant flowing through the plurality of refrigerant flow paths 120a to 120i during heating operation. In this case, the gas refrigerant flows into the header 130 . This gas refrigerant is sent to the four-way switching valve 22 in the refrigerant circuit 6 .
 (2-2-4)流量調整部
 流量調整部140は、少なくとも1つの冷媒流路120に設けられる。図2では、複数の冷媒流路120a~120iのそれぞれに、1つの流量調整部140a~140iが設けられている。言い換えると、流量調整部140の数は、複数の冷媒流路120の数と同じである。流量調整部140は、冷媒流路120である配管に取り付けられる。
(2-2-4) Flow Adjusting Section The flow adjusting section 140 is provided in at least one refrigerant channel 120 . In FIG. 2, one flow rate adjusting section 140a to 140i is provided for each of the plurality of refrigerant flow paths 120a to 120i. In other words, the number of flow rate adjusting units 140 is the same as the number of multiple coolant channels 120 . The flow rate adjusting unit 140 is attached to the pipe that is the refrigerant flow path 120 .
 流量調整部140は、室外膨張弁24と室外熱交換器23との間に設けられる。具体的には、複数の流量調整部140a~140iは、分流器110と熱交換部23a~23iとの間に設けられる。この場合、偏流を防止できる。 The flow rate adjusting unit 140 is provided between the outdoor expansion valve 24 and the outdoor heat exchanger 23. Specifically, a plurality of flow rate adjustment units 140a-140i are provided between the flow divider 110 and the heat exchange units 23a-23i. In this case, drift can be prevented.
 流量調整部140は、冷媒流路120を流れる冷媒の流量を調整する。言い換えると、流量調整部140は、開度に応じて、冷媒流路120を流れる冷媒の流量を増減させる。流量調整部140は、冷凍サイクル装置1の動作中に生じる冷媒の高圧及び低圧の差の最大値である最大差圧値の1/20以下の圧力範囲でのみ冷媒を減圧する。流量調整部140は、最大差圧値の1/30以下の圧力範囲でのみ冷媒を減圧することが好ましく、最大差圧値の1/40以下の圧力範囲でのみ冷媒を減圧することがより好ましい。なお、流量調整部140が冷媒を減圧する圧力範囲は、大型化を抑制する観点から、最大差圧値の1/20以下の範囲内で低いことが好ましいが、下限値は、例えば最大差圧値の1/200である。 The flow rate adjusting unit 140 adjusts the flow rate of the coolant flowing through the coolant channel 120 . In other words, the flow rate adjusting unit 140 increases or decreases the flow rate of the coolant flowing through the coolant flow path 120 according to the degree of opening. The flow rate adjusting unit 140 reduces the pressure of the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value, which is the maximum value of the difference between the high pressure and low pressure of the refrigerant that occurs during the operation of the refrigeration cycle device 1 . The flow rate adjusting unit 140 preferably decompresses the refrigerant only within a pressure range of 1/30 or less of the maximum differential pressure value, and more preferably decompresses the refrigerant only within a pressure range of 1/40 or less of the maximum differential pressure value. . In addition, the pressure range in which the flow rate adjustment unit 140 decompresses the refrigerant is preferably low within a range of 1/20 or less of the maximum differential pressure value from the viewpoint of suppressing an increase in size, but the lower limit value is, for example, the maximum differential pressure 1/200 of the value.
 ここで、「最大差圧値」は、冷凍サイクル装置1の動作中に生じ得る冷媒の最も高い圧力と最も低い圧力との差である。具体的には、冷凍サイクル装置1の動作中に生じ得る最も高い圧力は、「使用する冷媒の設計圧力」である。冷凍サイクル装置1の動作中に生じ得る最も低い圧力は、「使用する環境下で発生する最低圧力」である。より具体的には、「最大差圧値」は、例えば0.1MPa以上4.3MPa以下である。 Here, the "maximum differential pressure value" is the difference between the highest pressure and the lowest pressure of the refrigerant that can occur during operation of the refrigeration cycle device 1. Specifically, the highest pressure that can occur during operation of the refrigeration cycle device 1 is the "design pressure of the refrigerant to be used". The lowest pressure that can occur during operation of the refrigeration cycle apparatus 1 is "the lowest pressure that occurs under the environment of use". More specifically, the "maximum differential pressure value" is, for example, 0.1 MPa or more and 4.3 MPa or less.
 流量調整部140は、流量調整部140が減圧できる最大圧力以下の圧力範囲において、流量を細かく調整できる。 The flow rate adjustment unit 140 can finely adjust the flow rate within a pressure range below the maximum pressure that the flow rate adjustment unit 140 can reduce.
 図3に示すように、流量調整部140は、主に、本体部141と、板状部材142と、電極143と、絶縁部材144と、側壁145と、を含む。本実施形態の流量調整部140は、室外膨張弁24に用いられる電磁弁または電動弁と異なり、圧電素子を用いている。このため、流量調整部140は、印加電圧により作動する。ここでは、流量調整部140は、電磁弁に使用される電磁コイルよりも小さい発生力のバイモルフ型圧電素子を用いている。 As shown in FIG. 3, the flow regulating section 140 mainly includes a body section 141, a plate member 142, an electrode 143, an insulating member 144, and side walls 145. Unlike the solenoid valve or the motor-operated valve used for the outdoor expansion valve 24, the flow rate adjusting section 140 of this embodiment uses a piezoelectric element. Therefore, the flow rate adjusting section 140 is operated by the applied voltage. Here, the flow rate adjusting unit 140 uses a bimorph type piezoelectric element that generates a force smaller than that of the electromagnetic coil used for the electromagnetic valve.
 本体部141は、冷媒流路120と連結されている。本体部141は、上本体部及び下本体部で構成される。上本体部及び下本体部は、1つの部材で構成されてもよいが、ここでは別部材で構成される。本体部141には、空間が形成されている。空間の一部は、冷媒が通る流路である。 The body portion 141 is connected to the refrigerant channel 120 . The body portion 141 is composed of an upper body portion and a lower body portion. Although the upper body portion and the lower body portion may be composed of one member, they are composed of separate members here. A space is formed in the body portion 141 . A part of the space is a channel through which the coolant passes.
 本体部141は、冷媒の流入口141aと、冷媒の流出口141bと、冷媒の流路141cと、弁座141dと、を有する。なお、以下の説明では、図3の矢印に示す暖房運転時の冷媒の流れを基準に、流入及び流出としている。 The main body 141 has a coolant inlet 141a, a coolant outlet 141b, a coolant flow path 141c, and a valve seat 141d. In the following description, inflow and outflow are defined based on the refrigerant flow during heating operation indicated by the arrows in FIG.
 本実施形態では、流入口141aは、一方端部(図3における右端部)に設けられ、流出口141bは、他方端部(図3における左端部)に設けられる。流入口141a及び流出口141bのそれぞれは、冷媒流路120と連通する。図3では、流入口141aの径は、冷媒流路120の径と同じである。また流出口141bの径は、冷媒流路120の径よりも小さい。 In this embodiment, the inlet 141a is provided at one end (the right end in FIG. 3), and the outlet 141b is provided at the other end (the left end in FIG. 3). Each of the inflow port 141 a and the outflow port 141 b communicates with the coolant channel 120 . In FIG. 3 , the diameter of the inlet 141 a is the same as the diameter of the coolant channel 120 . Also, the diameter of the outflow port 141b is smaller than the diameter of the coolant channel 120 .
 流路141cは、流入口141aと流出口141bとを連通する。図3では、流路141cは、概ね右方向に延びる。流路141cは、調整流路141c1と、入口流路141c2と、出口流路141c3と、を有する。 The flow path 141c communicates the inflow port 141a and the outflow port 141b. In FIG. 3, the channel 141c extends generally rightward. The channel 141c has an adjustment channel 141c1, an inlet channel 141c2, and an outlet channel 141c3.
 調整流路141cは、冷媒の流量を調整するために、断面積が変化する部分である。調整流路141c1は、弁座141dと板状部材142とで区画される。言い換えると、調整流路141c1は、弁座141dと板状部材142との間に設けられる隙間である。印加電圧により後述する圧電体142bに生じる変位により、調整流路141c1の下流側の断面積を変える。ここでは、印加電圧により板状部材142が変位することにより、調整流路141c1の下流側の断面積が変化する。 The adjustment flow path 141c is a portion whose cross-sectional area changes in order to adjust the flow rate of the refrigerant. The adjustment channel 141c1 is defined by the valve seat 141d and the plate member 142. As shown in FIG. In other words, the adjustment channel 141c1 is a gap provided between the valve seat 141d and the plate member 142. As shown in FIG. The cross-sectional area of the downstream side of the adjustment channel 141c1 is changed by the displacement generated in the piezoelectric body 142b, which will be described later, due to the applied voltage. Here, the plate-like member 142 is displaced by the applied voltage, thereby changing the cross-sectional area of the adjustment channel 141c1 on the downstream side.
 調整流路141c1は、最小開度時に、上流側及び下流側を連通させる細路である。言い換えると、最小開度時でも、調整流路141c1には冷媒が流れる。 The adjustment channel 141c1 is a narrow channel that communicates between the upstream side and the downstream side at the minimum opening. In other words, the coolant flows through the adjustment channel 141c1 even at the minimum opening.
 入口流路141c2は、流入口141aと弁座141dとの間に形成される。図3では、入口流路141c2は、左側に向かって上方に傾斜する流路と、左右方向に延びる流路と、を有する。 The inlet channel 141c2 is formed between the inlet 141a and the valve seat 141d. In FIG. 3, the inlet channel 141c2 has a channel that slopes upward toward the left and a channel that extends in the left-right direction.
 出口流路141c3は、弁座141dと流出口141bとの間に形成される。図3では、出口流路141c3は、流出口141bに向けて断面積が大きくなる。 The outlet channel 141c3 is formed between the valve seat 141d and the outlet 141b. In FIG. 3, the cross-sectional area of the outlet channel 141c3 increases toward the outlet 141b.
 弁座141dは、弁体としての板状部材142と対向する。弁座141dは、冷媒の流量を調整するために上下に移動する板状部材142を受ける。 The valve seat 141d faces the plate member 142 as a valve body. The valve seat 141d receives a plate-like member 142 that moves up and down to adjust the flow rate of the refrigerant.
 弁体としての板状部材142は、弁座141dに近接する。板状部材142は、本体部141の空間に配置され、図3では左右方向に延びる。板状部材142は、一端部(図3における右端部)が支持されて、他端部(図3における左端部)が支持されていない、片持ちの構造を有する。具体的には、板状部材142の一端部は絶縁部材144に取り付けられた電極143に固定されている。板状部材142の他端部は、自由端を含み、弁座141dと対向する。 A plate-like member 142 as a valve body is close to the valve seat 141d. The plate member 142 is arranged in the space of the body portion 141 and extends in the left-right direction in FIG. The plate member 142 has a cantilever structure in which one end (right end in FIG. 3) is supported and the other end (left end in FIG. 3) is unsupported. Specifically, one end of plate member 142 is fixed to electrode 143 attached to insulating member 144 . The other end of the plate member 142 includes a free end and faces the valve seat 141d.
 板状部材142及び電極143は、圧電素子を構成する。図4~図6に示すように、板状部材142は、金属体142aと、圧電体142bと、を有する。ここでは、板状部材142は、第1の圧電体142bと、第1の圧電体142b上に形成された金属体142aと、金属体142a上に形成された第2の圧電体142bと、を有する。 The plate member 142 and the electrode 143 constitute a piezoelectric element. As shown in FIGS. 4 to 6, the plate member 142 has a metal body 142a and a piezoelectric body 142b. Here, the plate member 142 includes a first piezoelectric body 142b, a metal body 142a formed on the first piezoelectric body 142b, and a second piezoelectric body 142b formed on the metal body 142a. have.
 金属体142aは、金属材料で構成されている。圧電体142bは、金属体142aと積層されている。また圧電体142bは、印加電圧により変形する圧電性を有する材料(圧電材料)で構成されている。長手方向において、金属体142aは、圧電体142bよりも長い。ここでは、金属体142a及び圧電体142bの他端(図4~図6における左端)は揃っている。金属体142aの一端部(図4~6における右端部)は、圧電体142bの一端(図4~6における右端)から突出している。金属体142aは、プラスまたはマイナスの接点142a1を有する。 The metal body 142a is made of a metal material. The piezoelectric body 142b is laminated with the metal body 142a. The piezoelectric body 142b is made of a piezoelectric material (piezoelectric material) that is deformed by an applied voltage. In the longitudinal direction, the metal body 142a is longer than the piezoelectric body 142b. Here, the other ends (the left ends in FIGS. 4 to 6) of the metal body 142a and the piezoelectric body 142b are aligned. One end (right end in FIGS. 4 to 6) of the metal body 142a protrudes from one end (right end in FIGS. 4 to 6) of the piezoelectric body 142b. The metal body 142a has a positive or negative contact 142a1.
 なお、図3では、金属体142aの長手方向と、流入口141aが形成された冷媒流路120及び流出口141bが形成された冷媒流路120とは、互いに平行である。 In FIG. 3, the longitudinal direction of the metal body 142a is parallel to the coolant channel 120 having the inlet 141a and the coolant channel 120 having the outlet 141b.
 圧電体142bは、電圧が印加されると、圧電体142bの長手方向と交差する方向に変位する。具体的には、圧電体142bの自由端側の他端部は、図3~図6における上下方向に変位する。具体的には、圧電体142bは、図4に示すように、左右方向にまっすぐに延びる状態と、図5に示すように、他端部が下方に移動した状態と、図6に示すように、他端部が上方に移動した状態と、になり得る。 The piezoelectric body 142b is displaced in a direction crossing the longitudinal direction of the piezoelectric body 142b when a voltage is applied. Specifically, the other free end of the piezoelectric body 142b is displaced vertically in FIGS. Specifically, the piezoelectric body 142b extends straight in the left-right direction as shown in FIG. 4, moves downward at the other end as shown in FIG. , with the other end moved upward.
 圧電体142bが変位する方向は、流入口141aにおける流路141cの延びる方向と交差する。図3では、流入口141aにおける流路141cの延びる方向は、左右方向(水平方向)に対して45度である。圧電体142bの変位する方向は、左右方向(水平方向)に対して180度である。 The direction in which the piezoelectric body 142b is displaced intersects with the direction in which the flow path 141c extends at the inlet 141a. In FIG. 3, the direction in which the channel 141c extends at the inlet 141a is 45 degrees with respect to the left-right direction (horizontal direction). The direction in which the piezoelectric body 142b is displaced is 180 degrees with respect to the left-right direction (horizontal direction).
 また、板状部材142の積層方向と冷媒の流れ方向とは、交差する。ここでは、板状部材142の積層方向と冷媒の流れ方向とは、直交する。板状部材142の積層方向は、上下方向であるので、左右方向に対して180度である。冷媒の流れ方向は、圧電体142bの変位する他方端部(調整流路141c1)において冷媒が流れる方向であるので、左右方向に対して0度である。 Also, the stacking direction of the plate members 142 and the flow direction of the coolant intersect. Here, the stacking direction of the plate members 142 and the flow direction of the coolant are perpendicular to each other. Since the stacking direction of the plate members 142 is the vertical direction, it is 180 degrees with respect to the horizontal direction. The flow direction of the coolant is the direction in which the coolant flows at the other end portion (adjustment flow path 141c1) where the piezoelectric body 142b is displaced, so that it is 0 degrees with respect to the left-right direction.
 電極143は、圧電体142bと接続される。図4~図6では、電極143は、圧電体142b及び金属体142aと接続される。具体的には、電極143は、第1接点143aと、第2接点143bと、を有する。第1接点143aは、上側の圧電体142bに接続されるプラスの接点である。第2接点143bは、下側の圧電体142bに接続されるマイナスの接点である。第1接点143a及び第2接点143bは、金属体142aの接点142a1と接続可能に構成されている。 The electrode 143 is connected to the piezoelectric body 142b. 4-6, the electrode 143 is connected with the piezoelectric body 142b and the metal body 142a. Specifically, the electrode 143 has a first contact 143a and a second contact 143b. The first contact 143a is a positive contact connected to the upper piezoelectric body 142b. The second contact 143b is a negative contact connected to the lower piezoelectric body 142b. The first contact 143a and the second contact 143b are configured to be connectable with the contact 142a1 of the metal body 142a.
 図4に示すように、金属体142aの接点142a1が第1接点143a及び第2接点143bに接続されていない場合には、圧電体142bに電圧が印加されない。この時には、圧電体142bは、左右方向にまっすぐ延びる。図5に示すように、接点142a1が第1接点143aに接続される場合には、第1接点143aと接続される圧電体142bにプラスの電圧が印加される。このオフ状態では、圧電体142bの他端部は下方に変位する。図6に示すように、接点142a1が第2接点143bに接続される場合には、第2接点143bと接続される圧電体142bにマイナスの電圧が印加される。このオン状態では、圧電体142bの他端部は上方に変位する。 As shown in FIG. 4, when the contact 142a1 of the metal body 142a is not connected to the first contact 143a and the second contact 143b, no voltage is applied to the piezoelectric body 142b. At this time, the piezoelectric body 142b extends straight in the horizontal direction. As shown in FIG. 5, when the contact 142a1 is connected to the first contact 143a, a positive voltage is applied to the piezoelectric body 142b connected to the first contact 143a. In this OFF state, the other end of the piezoelectric body 142b is displaced downward. As shown in FIG. 6, when the contact 142a1 is connected to the second contact 143b, a negative voltage is applied to the piezoelectric body 142b connected to the second contact 143b. In this ON state, the other end of the piezoelectric body 142b is displaced upward.
 このように、圧電体142bを有する板状部材142は、印加電圧によって、図3において上下方向に変位する。これにより、板状部材142と弁座141dとで区画される調整流路141c1の断面積が変化する。言い換えると、板状部材142を変形させて、板状部材142と弁座141dとの隙間を変えることで、調整流路141c1の断面積を増減させる。具体的には、板状部材142が図4から図5に示すように下方に変位すると、調整流路141c1の断面積は減少するので、冷媒の流量を減らすことができる。板状部材142が図4から図6に示すように上方に変位すると、調整流路141c1の断面積は増加するので、冷媒の流量を増やすことができる。ここでは、板状部材142が最も下方に変位する最小開度時に、調整流路141c1は上流及び下流を連通させる。 Thus, the plate member 142 having the piezoelectric body 142b is vertically displaced in FIG. 3 by the applied voltage. As a result, the cross-sectional area of the adjustment flow path 141c1 defined by the plate member 142 and the valve seat 141d changes. In other words, by deforming the plate-like member 142 to change the gap between the plate-like member 142 and the valve seat 141d, the cross-sectional area of the adjustment flow path 141c1 is increased or decreased. Specifically, when the plate-like member 142 is displaced downward as shown in FIGS. 4 and 5, the cross-sectional area of the adjusting flow path 141c1 is reduced, so that the flow rate of the coolant can be reduced. When the plate-like member 142 is displaced upward as shown in FIGS. 4 to 6, the cross-sectional area of the adjusting flow path 141c1 increases, so that the flow rate of the coolant can be increased. Here, when the plate-like member 142 is displaced most downward and at the minimum opening degree, the adjustment flow path 141c1 communicates between the upstream and the downstream.
 ここで、調整流路141c1の断面積は、例えば、1mm以上5mm以下である。板状部材142と弁座141dとの隙間の高さt(上下方向の距離)は、例えば、0mm以上1mm以下である。 Here, the cross-sectional area of the adjustment channel 141c1 is, for example, 1 mm 2 or more and 5 mm 2 or less. The height t (vertical distance) of the gap between the plate member 142 and the valve seat 141d is, for example, 0 mm or more and 1 mm or less.
 電極143は、導電性材料で構成される。また、電極143は、流量調整部140の動作圧力に耐えることができる。 The electrode 143 is made of a conductive material. Also, the electrode 143 can withstand the operating pressure of the flow rate regulator 140 .
 図3に示すように、電極143の一部は、本体部141から大気中に突出する。電極143の残部は、本体部141の内部に位置する。ここでは、電極143の一端部は、本体部141から大気中に露出している。電極143の他端部は、本体部141の内部に収容され、板状部材142に接続されている。 As shown in FIG. 3, part of the electrode 143 protrudes from the main body 141 into the atmosphere. The rest of the electrode 143 is located inside the body portion 141 . Here, one end of the electrode 143 is exposed from the main body 141 to the atmosphere. The other end of the electrode 143 is housed inside the main body 141 and connected to the plate member 142 .
 絶縁部材144は、電極143と本体部141とを絶縁する。絶縁部材144は、絶縁材料で構成される。図3では、本体部141の右端の中央部の空間を閉じるように、絶縁部材144が配置されている。絶縁部材144により、気密性を保つことができる。 The insulating member 144 insulates the electrode 143 and the body portion 141 from each other. The insulating member 144 is made of an insulating material. In FIG. 3, the insulating member 144 is arranged so as to close the space in the central portion of the right end of the body portion 141 . Airtightness can be maintained by the insulating member 144 .
 側壁145は、絶縁部材144の上下のそれぞれに設けられる。側壁145は、金属で構成される。図3では、本体部141の左端の上部及び下部にも、側壁145が配置されている。 The side walls 145 are provided above and below the insulating member 144 respectively. Side walls 145 are constructed of metal. In FIG. 3 , side walls 145 are also arranged on the upper and lower left ends of the body portion 141 .
 (2-2-5)制御部
 図1に示す制御部28は、熱交換ユニット100の流量調整部140を制御する。本実施形態では、制御部28は、図7に示すように、印加電圧をオン状態にする時間t1と、オフ状態にする時間t2と、を変えるように制御する。ここでは、流量調整部140へ入力する電気信号は、制御部28からのパルス信号であり、パルスの周期に対してオンの幅とオフの幅とを変更することで、印加電圧のオン時間t1及びオフ時間t2を変えている。
(2-2-5) Control Section The control section 28 shown in FIG. 1 controls the flow rate adjustment section 140 of the heat exchange unit 100 . In the present embodiment, as shown in FIG. 7, the controller 28 performs control to change the time t1 for turning on the applied voltage and the time t2 for turning off the applied voltage. Here, the electrical signal input to the flow rate adjusting unit 140 is a pulse signal from the control unit 28, and by changing the ON width and the OFF width with respect to the cycle of the pulse, the ON time t1 of the applied voltage and off-time t2 are changed.
 具体的には、制御部28は、流量を減らす場合には、図5に示すように、接点142a1を第1接点143aに接続してオフ状態にするように、流量調整部140にパルス信号を送信する。制御部28は、オフ状態にする時間t2を制御する。また制御部28は、流量を増やす場合には、図6に示すように、第3接点142a1を第2接点143bに接続してオン状態にするように、流量調整部140にパルス信号を送信する。制御部28は、オン状態にする時間t1を制御する。 Specifically, when the flow rate is to be reduced, the control section 28 sends a pulse signal to the flow rate adjustment section 140 so as to connect the contact 142a1 to the first contact 143a to turn off the contact 142a1 as shown in FIG. Send. The control unit 28 controls the time t2 for turning off. Further, when increasing the flow rate, the control section 28 transmits a pulse signal to the flow rate adjusting section 140 so as to connect the third contact 142a1 to the second contact 143b to turn it on, as shown in FIG. . The control unit 28 controls the time t1 for turning on.
 制御部28は、冷媒流路120を流れる冷媒の温度を取得して、その温度から流量調整部140における冷媒の流量を増加させるか減少させるかを判断し、その判断に基づいて流量調整部140の開度を制御する。ここでは、制御部28は、暖房運転時における熱交換部23a~23iの冷媒流路120の出口近傍の冷媒の温度を取得する。具体的には、本実施形態では、制御部28は、熱交換部23a~23iの冷媒流路120の出口近傍に設けられた温度センサ、冷媒流路120を形成する配管の表面温度を非接触で検出するアレイセンサなどから、冷媒の温度を取得する。そして、制御部28は、複数の冷媒流路120a~120iの中で、相対的に温度が高い冷媒流路を流れる冷媒の量を増加するように、及び/又は、相対的に温度が低い冷媒流路を流れる冷媒の量を減少させるように、各流量調整部140a~140bの開度を制御する。 The control unit 28 acquires the temperature of the coolant flowing through the coolant flow path 120, determines whether to increase or decrease the flow rate of the coolant in the flow rate adjusting unit 140 based on the temperature, and based on the determination, the flow rate adjusting unit 140 to control the opening of the Here, the control unit 28 acquires the temperature of the refrigerant in the vicinity of the outlet of the refrigerant flow path 120 of the heat exchange units 23a to 23i during the heating operation. Specifically, in the present embodiment, the control unit 28 measures the surface temperature of the piping forming the refrigerant flow path 120 by the temperature sensors provided in the vicinity of the outlets of the refrigerant flow paths 120 of the heat exchange units 23a to 23i in a non-contact manner. Obtain the temperature of the refrigerant from the array sensor detected by Then, the control unit 28 increases the amount of the coolant flowing through the coolant channel with a relatively high temperature among the plurality of coolant channels 120a to 120i, and/or the coolant with a relatively low temperature. The opening degrees of the respective flow rate adjusting units 140a to 140b are controlled so as to reduce the amount of coolant flowing through the flow path.
 (2-3)動作
 次に、熱交換ユニット100における冷媒の流れについて説明する。
(2-3) Operation Next, the flow of refrigerant in the heat exchange unit 100 will be described.
 (2-3-1)暖房運転
 冷凍サイクル装置1が暖房運転を行う場合、室外膨張弁24で減圧された低圧の液冷媒は、図2に示す分流器110に流入する。分流器110に流入した液冷媒は、複数の冷媒流路120a~120iに分岐され、各流量調整部140a~140iに流入する。
(2-3-1) Heating Operation When the refrigeration cycle device 1 performs a heating operation, the low-pressure liquid refrigerant decompressed by the outdoor expansion valve 24 flows into the flow divider 110 shown in FIG. The liquid refrigerant that has flowed into the flow divider 110 is branched into a plurality of refrigerant flow paths 120a-120i, and flows into the respective flow rate adjusters 140a-140i.
 図3に示すように、各流量調整部140の流入口141aに流入した液冷媒は、入口流路141c2を通り、調整流路141c1に流入する。冷媒の流量を減らす場合には、制御部28により、図5に示すように、板状部材142の圧電体142bに印加電圧を加えて、板状部材142の他方端部を下方に変位させることにより、調整流路141c1の下流側の断面積を減らす。これにより、冷媒の流量を減らすことができる。また、冷媒の流量を増やす場合には、制御部28により、図6に示すように、板状部材142の圧電体142bに印加電圧を加えて、板状部材142の他方端部を上方に変位させることにより、調整流路141c1の下流側の断面積を増やす。これにより、冷媒の流量を増やすことができる。流量が調整された冷媒は、出口流路141c3を通り、流出口141bから冷媒流路120に流れる。冷媒流路120を流れる冷媒は、図2に示す各熱交換部23a~23iに流入する。 As shown in FIG. 3, the liquid refrigerant that has flowed into the inlet 141a of each flow rate adjusting unit 140 passes through the inlet channel 141c2 and flows into the adjustment channel 141c1. When the flow rate of the coolant is to be decreased, as shown in FIG. 5, the controller 28 applies an applied voltage to the piezoelectric body 142b of the plate-like member 142 to displace the other end of the plate-like member 142 downward. Thereby, the cross-sectional area of the downstream side of the adjustment channel 141c1 is reduced. Thereby, the flow rate of the refrigerant can be reduced. When increasing the flow rate of the coolant, the controller 28 applies voltage to the piezoelectric body 142b of the plate member 142 to displace the other end of the plate member 142 upward, as shown in FIG. By increasing the cross-sectional area of the downstream side of the adjustment flow path 141c1. Thereby, the flow rate of the refrigerant can be increased. The coolant whose flow rate is adjusted passes through the outlet channel 141c3 and flows into the coolant channel 120 from the outlet 141b. Refrigerant flowing through the refrigerant flow path 120 flows into each of the heat exchange portions 23a to 23i shown in FIG.
 各熱交換部23a~23iに流入した液冷媒は、各熱交換部23a~23iにおいて、室外空気と熱交換を行って蒸発してガス冷媒となり、ヘッダ130流入する。各熱交換部23a~23iを通った各冷媒流路120a~120iを流れる冷媒は、ヘッダ130で合流する。ヘッダ130で合流したガス冷媒は、四路切換弁22に向けて流れる。 The liquid refrigerant that has flowed into each of the heat exchange portions 23a to 23i exchanges heat with the outdoor air in each of the heat exchange portions 23a to 23i, evaporates, becomes gas refrigerant, and flows into the header 130. Refrigerant flowing through each of the refrigerant flow paths 120a to 120i through each of the heat exchange portions 23a to 23i joins at the header 130. As shown in FIG. The gas refrigerant joined at header 130 flows toward four-way switching valve 22 .
 (2-3-2)冷房運転
 冷凍サイクル装置1が冷房運転を行う場合、圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22を通じて、図2に示すヘッダ130に流入する。ヘッダ130に流入したガス冷媒は、複数の冷媒流路120a~120iに分岐され、各熱交換部23a~23iに流入する。各熱交換部23a~23iに流入したガス冷媒は、熱交換部23a~23iにおいて、室外空気と熱交換を行って放熱して液冷媒となり、流量調整部140a~140iに流入する。
(2-3-2) Cooling Operation When the refrigeration cycle device 1 performs cooling operation, the high-pressure gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 into the header 130 shown in FIG. The gas refrigerant that has flowed into the header 130 is branched into a plurality of refrigerant flow paths 120a-120i, and flows into the respective heat exchange portions 23a-23i. The gas refrigerant that has flowed into each of the heat exchange sections 23a to 23i exchanges heat with the outdoor air in the heat exchange sections 23a to 23i, releases heat, becomes liquid refrigerant, and flows into the flow rate adjustment sections 140a to 140i.
 図3に示すように、各流量調整部140の流出口141bに流入した液冷媒は、調整流路141c1に流入する。冷媒の流量を減らす場合には、制御部28により、図5に示すように、板状部材142の圧電体142bに印加電圧を加えて、板状部材142の他方端部を下方に変位させることにより、調整流路141c1の上流側(暖房運転時の下流側)の断面積を減らす。これにより、冷媒の流量を減らすことができる。また、冷媒の流量を増やす場合には、制御部28により、図6に示すように、板状部材142の圧電体142bに印加電圧を加えて、板状部材142の他方端部を上方に変位させることにより、調整流路141c1の上流側(暖房運転時の下流側)の断面積を増やす。これにより、冷媒の流量を増やすことができる。流量が調整された冷媒は、入口流路141c2を通り、流入口141aから冷媒流路120に流れる。図2に示す各冷媒流路120a~120iを流れ、冷媒流路120a~120iから流出した液冷媒は、分流器110に流入する。分流器110で合流した液冷媒は、室外膨張弁24に向けて流れる。 As shown in FIG. 3, the liquid refrigerant that has flowed into the outflow port 141b of each flow rate adjusting unit 140 flows into the adjusting channel 141c1. When the flow rate of the coolant is to be decreased, as shown in FIG. 5, the controller 28 applies an applied voltage to the piezoelectric body 142b of the plate-like member 142 to displace the other end of the plate-like member 142 downward. Thus, the cross-sectional area of the upstream side (downstream side during heating operation) of the adjustment flow path 141c1 is reduced. Thereby, the flow rate of the refrigerant can be reduced. When increasing the flow rate of the coolant, the controller 28 applies voltage to the piezoelectric body 142b of the plate member 142 to displace the other end of the plate member 142 upward, as shown in FIG. By increasing the cross-sectional area of the adjustment flow path 141c1 on the upstream side (downstream side during heating operation). Thereby, the flow rate of the refrigerant can be increased. The coolant whose flow rate is adjusted passes through the inlet channel 141c2 and flows into the coolant channel 120 from the inlet 141a. The liquid refrigerant flowing through each of the refrigerant flow paths 120a to 120i shown in FIG. The liquid refrigerant merged at the flow splitter 110 flows toward the outdoor expansion valve 24 .
 (3)特徴
 (3-1)
 本実施形態に係る熱交換ユニット100は、冷凍サイクル装置1の熱交換ユニットであって、複数の冷媒流路120、120a~120iと、流量調整部140、140a~140iと、を備える。複数の冷媒流路120、120a~120iには、冷媒が流れる。流量調整部140、140a~140iは、少なくとも1つの冷媒流路120、120a~120iに設けられ、冷媒流路120、120a~120iを流れる冷媒の流量を調整する。流量調整部140、140a~140iは、冷凍サイクル装置1の動作中に生じる冷媒の高圧及び低圧の差の最大値である最大差圧値の1/20以下の圧力範囲でのみ冷媒を減圧する。
(3) Features (3-1)
The heat exchange unit 100 according to the present embodiment is a heat exchange unit of the refrigeration cycle device 1, and includes a plurality of refrigerant flow paths 120, 120a-120i and flow rate adjustment units 140, 140a-140i. Coolant flows through the plurality of coolant channels 120, 120a to 120i. The flow rate adjusters 140, 140a-140i are provided in at least one coolant channel 120, 120a-120i, and adjust the flow rate of the coolant flowing through the coolant channels 120, 120a-120i. The flow rate adjusting units 140, 140a to 140i reduce the pressure of the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value, which is the maximum value of the difference between the high pressure and low pressure of the refrigerant generated during the operation of the refrigeration cycle device 1.
 本実施形態に係る熱交換ユニット100は、最大差圧値の1/20以下の圧力範囲でのみ冷媒を減圧する流量調整部140、140a~140iを備える。これにより、熱交換ユニット100の流量調整部140、140a~140iは、最大差圧値の1/20を超える圧力の大きな範囲で冷媒を減圧する必要がない。このように、最大差圧値の1/20以下の圧力の小さな範囲でのみ冷媒を減圧する流量調整部140、140a~140iを用いればよいので、流量調整部140、140a~140iの大型化を抑制できる。したがって、熱交換ユニット100の大型化を抑制できる。 The heat exchange unit 100 according to the present embodiment includes flow rate adjusting units 140, 140a to 140i that reduce the pressure of the refrigerant only within a pressure range of 1/20 or less of the maximum differential pressure value. As a result, the flow rate adjusting sections 140, 140a to 140i of the heat exchange unit 100 do not need to depressurize the refrigerant in a large range of pressure exceeding 1/20 of the maximum differential pressure value. In this way, it is sufficient to use the flow rate adjusting units 140, 140a to 140i that depressurize the refrigerant only in a small range of pressure equal to or less than 1/20 of the maximum differential pressure value. can be suppressed. Therefore, an increase in size of the heat exchange unit 100 can be suppressed.
 また、流量調整部140、140a~140iは、最大差圧値の1/20以下の圧力の小さな範囲でのみ冷媒を減圧するので、流量調整部140、140a~140iの簡素化を図ることができる。また、流量調整部140、140a~140iは、圧力が小さく、かつ狭い範囲でのみ冷媒を減圧するので、流量調整部140、140a~140iのコストを低減することができる。 In addition, since the flow rate adjusting units 140, 140a to 140i depressurize the refrigerant only in a small range of pressure equal to or less than 1/20 of the maximum differential pressure value, the flow rate adjusting units 140, 140a to 140i can be simplified. . In addition, since the flow rate adjusting units 140, 140a to 140i decompress the refrigerant only in a small and narrow range, the cost of the flow rate adjusting units 140, 140a to 140i can be reduced.
 (3-2)
 本実施形態では、流量調整部140、140a~140iは、最大差圧値の1/30以下の圧力範囲でのみ冷媒を減圧する。これにより、流量調整部140、140a~140iの大型化をより抑制できる。
(3-2)
In this embodiment, the flow rate adjusting units 140, 140a to 140i reduce the pressure of the refrigerant only within a pressure range of 1/30 or less of the maximum differential pressure value. As a result, it is possible to further suppress the increase in size of the flow rate adjusting units 140, 140a to 140i.
 (3-3)
 本実施形態では、流量調整部140、140a~140iは、最小開度時に、上流側及び下流側を連通させる細路を含む。ここでは、最小開度時にも冷媒を連通させることができるので、流量調整部140、140a~140iにおける圧力差を低減できる。このため、流量調整部140、140a~140iに求められる発生力を低減できる。したがって、流量調整部140、140a~140iの大型化をより抑制できる。
(3-3)
In this embodiment, the flow rate adjusting units 140, 140a to 140i include narrow passages that communicate the upstream side and the downstream side when the opening is at a minimum. Here, since the refrigerant can be communicated even at the minimum opening, the pressure difference in the flow rate adjusting sections 140, 140a to 140i can be reduced. Therefore, it is possible to reduce the force generated by the flow rate adjusting units 140, 140a to 140i. Therefore, it is possible to further suppress the increase in size of the flow rate adjusting units 140, 140a to 140i.
 (3-4)
 本実施形態では、流量調整部140、140a~140iは、印加電圧により作動する。熱交換ユニット100は、印加電圧をオン状態にする時間t1と、オフ状態にする時間t2と、を変えるように制御する制御部28をさらに備える。これにより、冷媒の流量を容易に調整することができる。
(3-4)
In this embodiment, the flow rate regulators 140, 140a-140i are operated by applied voltage. The heat exchange unit 100 further includes a control section 28 that controls to change the time t1 for turning on the applied voltage and the time t2 for turning off the applied voltage. This makes it possible to easily adjust the flow rate of the refrigerant.
 (3-5)
 本実施形態では、流量調整部140、140a~140iは、本体部141と、板状部材142と、を含む。本体部141は、冷媒の流入口141aと、冷媒の流出口141bと、流入口141aと流出口141bとを連通する流路141cと、を有する。板状部材142は、圧電体142bと、金属体142aと、を有する。圧電体142bは、印加電圧により変形する圧電性を有する材料で構成される。金属体142aは、圧電体142bと積層され、金属材料で構成される。本体部141には、板状部材142と対向する弁座141dが設けられる。流路141cは、弁座141dと板状部材142とで区画される調整流路141c1を有する。印加電圧により圧電体142bに生じる変位により、調整流路141c1の下流側の断面積を変える。
(3-5)
In this embodiment, the flow rate adjusting units 140, 140a to 140i each include a body portion 141 and a plate member 142. As shown in FIG. The body portion 141 has a coolant inlet 141a, a coolant outlet 141b, and a channel 141c that communicates the inlet 141a and the outlet 141b. The plate member 142 has a piezoelectric body 142b and a metal body 142a. The piezoelectric body 142b is made of a piezoelectric material that is deformed by an applied voltage. The metal body 142a is laminated with the piezoelectric body 142b and is made of a metal material. A valve seat 141 d facing the plate member 142 is provided on the body portion 141 . The channel 141c has an adjustment channel 141c1 defined by the valve seat 141d and the plate member 142 . Due to the displacement that occurs in the piezoelectric body 142b due to the applied voltage, the downstream cross-sectional area of the adjustment channel 141c1 is changed.
 これにより、圧電体142bに電圧が印加されることで生じる変位により、調整流路141c1の断面積を増やすことと、減らすことと、ができる。このため、最大差圧値の1/20以下の圧力範囲内において、冷媒の流量を容易に調整できる。 Accordingly, the cross-sectional area of the adjustment flow path 141c1 can be increased and decreased by the displacement caused by applying voltage to the piezoelectric body 142b. Therefore, the flow rate of the refrigerant can be easily adjusted within a pressure range of 1/20 or less of the maximum differential pressure value.
 なお、圧電体142bの変位は、電磁コイルに比べて小さいが、本実施形態のように、流量の調整には適用できる。 Although the displacement of the piezoelectric body 142b is smaller than that of the electromagnetic coil, it can be applied to adjust the flow rate as in the present embodiment.
 また、印加電圧を制御することにより、最大差圧値の1/20以下の範囲内において、圧電体142bを細かく変位させることができる。このため、流量調整部140、140a~140iは、流量調整部140が減圧できる最大圧力以下の圧力範囲において、冷媒の流量を細かく調整できる。 Also, by controlling the applied voltage, the piezoelectric body 142b can be finely displaced within a range of 1/20 or less of the maximum differential pressure value. Therefore, the flow rate adjusters 140, 140a to 140i can finely adjust the flow rate of the refrigerant within a pressure range equal to or lower than the maximum pressure that the flow rate adjuster 140 can reduce.
 (3-6)
 本実施形態では、圧電体142bが変位する方向と、流入口141aにおける流路141cの延びる方向とは、交差する。これにより、圧電体142bに加えられる力を減らすことができるので、流量を調整できる範囲を広くすることができる。
(3-6)
In this embodiment, the direction in which the piezoelectric body 142b is displaced intersects with the direction in which the flow path 141c extends at the inlet 141a. As a result, the force applied to the piezoelectric body 142b can be reduced, so the range in which the flow rate can be adjusted can be widened.
 この観点から、板状部材142の変位する方向と、冷媒の流れ方向とが、直交することが好ましい。言い換えると、圧電体142bの長手方向と、入口流路141c2とが、平行であることが好ましい。さらに言い換えると、板状部材142の長手方向と水平な方向に流入口141aが位置することが好ましい。この場合、板状部材142の延びる方向に主に力が加えられるので、板状部材142に加えられる力を大幅に減らすことができる。 From this point of view, it is preferable that the direction in which the plate member 142 is displaced and the direction in which the coolant flows are perpendicular to each other. In other words, the longitudinal direction of the piezoelectric body 142b and the inlet channel 141c2 are preferably parallel. In other words, it is preferable that the inflow port 141a is positioned in a direction parallel to the longitudinal direction of the plate-like member 142 . In this case, since the force is applied mainly in the extending direction of the plate-like member 142, the force applied to the plate-like member 142 can be greatly reduced.
 なお、本発明者は、圧電体142bが変位する方向と、流入口141aにおける流路141cの延びる方向とが直交する板状部材142は、圧電体142bが変位する方向と、流入口141aにおける流路141cの延びる方向とが平行の板状部材142に比べて、流量調整範囲を約3倍広くすることができるという知見を有している。 Note that the inventors of the present invention have found that the plate-like member 142, in which the direction in which the piezoelectric body 142b is displaced and the direction in which the flow path 141c extends at the inlet 141a are perpendicular to each other, is arranged so that the direction in which the piezoelectric body 142b is displaced and the flow at the inlet 141a It has knowledge that the flow rate adjustment range can be widened about three times compared to the plate member 142 parallel to the extending direction of the path 141c.
 (3-7)
 本実施形態では、流量調整部140、140a~140iは、電極143と、絶縁部材144と、をさらに含む。電極143は、圧電体142bと接続される。絶縁部材144は、電極143と本体部141とを絶縁する絶縁材料で構成される。電極143の一部は、本体部141から大気中に突出する。これにより、電極143から圧電体142bに電圧を印加する構造を実現できる。
(3-7)
In this embodiment, the flow rate adjusting units 140, 140a to 140i further include an electrode 143 and an insulating member 144. As shown in FIG. The electrode 143 is connected with the piezoelectric body 142b. The insulating member 144 is made of an insulating material that insulates the electrode 143 and the body portion 141 from each other. A portion of the electrode 143 protrudes from the body portion 141 into the atmosphere. Thereby, a structure in which a voltage is applied from the electrode 143 to the piezoelectric body 142b can be realized.
 (4)変形例
 (4-1)変形例A
 上述した実施形態では、圧電体142bの変位する方向と、冷媒の流れ方向とが、交差する流量調整部140を例に挙げて説明したが、これに限定されない。本変形例の流量調整部140では、図8に示すように、圧電体142bの変位する方向と、冷媒の流れ方向とは、平行である。
(4) Modification (4-1) Modification A
In the above-described embodiment, the flow rate adjusting unit 140 in which the direction in which the piezoelectric body 142b is displaced and the direction in which the coolant flows intersect has been described as an example, but the present invention is not limited to this. In the flow rate adjusting unit 140 of this modified example, as shown in FIG. 8, the direction in which the piezoelectric body 142b is displaced is parallel to the direction in which the coolant flows.
 具体的には、本体部141に形成される調整流路141c1は、実施形態と同様に左右方向に延びる。入口流路141c2は、左右方向に延びる部分と、上下方向に延びる部分と、を有する。出口流路141c3は、上下方向に延びる部分と、左右方向に延びる部分と、を有する。このため、暖房運転時の流れを示す図8の矢印のように、流入口141aに流入した冷媒は、入口流路141c2において、左に向かって流れた後に、上に向かって流れ、調整流路141c1において左に向かって流れ、出口流路141c3において、下に向かって流れた後に、左に向かって流れる。このため、本変形例では、圧電体142bが変位する方向と、流入口141aにおける流路141cの延びる方向とは、平行である。 Specifically, the adjustment flow path 141c1 formed in the main body portion 141 extends in the left-right direction as in the embodiment. The inlet channel 141c2 has a portion extending in the horizontal direction and a portion extending in the vertical direction. The outlet channel 141c3 has a vertically extending portion and a horizontally extending portion. Therefore, as shown by the arrow in FIG. 8, which shows the flow during the heating operation, the refrigerant that has flowed into the inlet 141a flows leftward in the inlet channel 141c2, then upward, and then flows upward. It flows leftward in 141c1, flows downward in outlet channel 141c3, and then flows leftward. Therefore, in this modification, the direction in which the piezoelectric body 142b is displaced is parallel to the direction in which the flow path 141c extends in the inlet 141a.
 (4-2)変形例B
 (4-2-1)構成
 図9に示す変形例Bの熱交換ユニットは、図8に示す変形例Aの熱交換ユニットと基本的には同様の構成を備えるが、バイパス部150をさらに備えている点において異なる。
(4-2) Modification B
(4-2-1) Configuration The heat exchange unit of Modification B shown in FIG. 9 has basically the same configuration as the heat exchange unit of Modification A shown in FIG. different in that
 具体的にはバイパス部150は、流量調整部140に所定値以上の差圧がかかると、流量調整部140をバイパスする。本変形例のバイパス部150は、逆止弁であり、暖房運転時に機能し、冷房運転時に機能しない。 Specifically, the bypass section 150 bypasses the flow rate adjustment section 140 when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjustment section 140 . The bypass unit 150 of this modification is a check valve that functions during heating operation and does not function during cooling operation.
 バイパス部150は、本体部141の入口流路141c2と出口流路141c3とを仕切る突出部分に設けられる。バイパス部150は、入口流路141c2及び出口流路141c3の左右に延びる部分を連結する。 The bypass portion 150 is provided in a protruding portion that separates the inlet channel 141c2 and the outlet channel 141c3 of the body portion 141 from each other. The bypass portion 150 connects the laterally extending portions of the inlet channel 141c2 and the outlet channel 141c3.
 バイパス部150は、冷媒が流れる流路部151と、流路部を遮断する遮断部152と、を有する。流路部151は、左右方向に延びる。遮断部152は、流路部151の内部に配置される。遮断部152は、ボール部材及び弾性部材を有する。ボール部材は、弾性部材と接続されている。流量調整部140に所定値未満の差圧がかかる時には、ボール部材が弾性部材で押さえられていて、流路部151をボール部材で遮断している。このため、冷媒は、流路部151に流れず、入口流路141c2、調整流路141c1及び出口流路141c3を流れる。一方、流量調整部140に所定値以上の圧力がかかると、ボール部材が移動して、流路部151が開放される。このため、流路部151は、入口流路141c2及び出口流路141c3と連通するので、流路部151に冷媒が流れる。 The bypass section 150 has a channel section 151 through which the coolant flows and a blocking section 152 that blocks the channel section. Flow path portion 151 extends in the left-right direction. The blocking portion 152 is arranged inside the flow path portion 151 . The blocking part 152 has a ball member and an elastic member. The ball member is connected with the elastic member. When a differential pressure of less than a predetermined value is applied to the flow rate adjusting portion 140, the ball member is pressed by the elastic member and blocks the flow path portion 151 by the ball member. Therefore, the coolant does not flow into the channel portion 151, but flows through the inlet channel 141c2, the adjustment channel 141c1, and the outlet channel 141c3. On the other hand, when a pressure equal to or higher than a predetermined value is applied to the flow rate adjusting section 140, the ball member moves and the flow path section 151 is opened. Therefore, the flow path portion 151 communicates with the inlet flow path 141 c 2 and the outlet flow path 141 c 3 , so that the coolant flows through the flow path portion 151 .
 なお、所定値は、最大差圧値の1/20以下であり、ここでは、流量調整部140が減圧できる最大圧力以下である。 It should be noted that the predetermined value is 1/20 or less of the maximum differential pressure value, and here, it is equal to or less than the maximum pressure that the flow rate adjusting section 140 can reduce.
 (4-2-2)特徴
 本変形例では、流量調整部140、140a~140iに所定値以上の差圧がかかると、流量調整部140、140a~140iをバイパスするバイパス部150をさらに備える。これにより、所定値以上の差圧が流量調整部140、140a~140iにかかると、冷媒をバイパス部150に流すことができる。このため、熱交換ユニットの安全性を向上することができる。
(4-2-2) Features This modification further includes a bypass section 150 that bypasses the flow rate adjusting sections 140 and 140a to 140i when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjusting sections 140 and 140a to 140i. As a result, the refrigerant can flow to the bypass section 150 when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjusting sections 140, 140a to 140i. Therefore, the safety of the heat exchange unit can be improved.
 (4-3)変形例C
 上述した実施形態では、制御部28は、流量調整部140を作動させる印加電圧のオン状態の時間とオフ状態の時間とを変えるように制御しているが、これに限定されない。本変形例では、制御部28は、印加電圧を増減させるように制御する。具体的には、流量調整部140へ入力する電気信号は、制御部28からの電圧を増減させる信号である。制御部28が電圧を増減させる信号を流量調整部140へ送ることで、流量調整部140の電極143に印加される電圧を増減させる。このような制御では、オン状態にかける電圧を変えることで、圧電体142bの変位を増減させることによって、冷媒の流量を調整することができる。
(4-3) Modification C
In the above-described embodiment, the control unit 28 performs control to change the ON state time and the OFF state time of the applied voltage that operates the flow rate adjusting unit 140, but the present invention is not limited to this. In this modification, the controller 28 controls to increase or decrease the applied voltage. Specifically, the electrical signal input to the flow rate adjusting section 140 is a signal for increasing or decreasing the voltage from the control section 28 . The voltage applied to the electrode 143 of the flow control unit 140 is increased or decreased by the control unit 28 sending a signal for increasing or decreasing the voltage to the flow control unit 140 . In such control, the flow rate of the coolant can be adjusted by changing the voltage applied to the ON state to increase or decrease the displacement of the piezoelectric body 142b.
 (4-4)変形例D
 上述した実施形態では、流量調整部140は圧電素子により冷媒の流量を調整しているが、これに限定されない。流量調整部140は、例えば、静電容量式の構造を有することにより、冷媒の流量を調整してもよい。
(4-4) Modification D
In the above-described embodiment, the flow rate adjusting section 140 adjusts the flow rate of the refrigerant by using the piezoelectric element, but it is not limited to this. The flow rate adjusting unit 140 may adjust the flow rate of the refrigerant by having a capacitance type structure, for example.
 (4-5)変形例E
 上述した実施形態では、熱交換ユニット100は、室外ユニット2に設けられているが、これに限定されず、室内ユニット3に設けられてもよい。
(4-5) Modification E
Although the heat exchange unit 100 is provided in the outdoor unit 2 in the above-described embodiment, the heat exchange unit 100 is not limited to this and may be provided in the indoor unit 3 .
 (4-6)変形例F
 上述した実施形態では、流量調整部140a~140iは、分流器110と熱交換部23a~23iとの間に配置されているが、これに限定されない。例えば、流量調整部140a~140iは、熱交換部23a~23iとヘッダ130との間に配置されてもよい。
(4-6) Modification F
In the above-described embodiment, the flow rate adjustment units 140a-140i are arranged between the flow divider 110 and the heat exchange units 23a-23i, but the present invention is not limited to this. For example, the flow control units 140a-140i may be arranged between the heat exchange units 23a-23i and the header 130. FIG.
 (4-7)変形例G
 上述した実施形態では、流量調整部140の数は、複数の冷媒流路120の数と同じであるが、これに限定されない。流量調整部140は、複数の冷媒流路120のうちの少なくとも1つに配置されていればよい。ただし、流量調整部140の数をxとし、複数の冷媒流路の数をyとすると、xは、yと同じ、または、y-1であることが好ましい。y-1の場合、1つの冷媒流路には、流量調整部140が配置されておらず、残部の冷媒流路には、1つの流量調整部140が配置される。
(4-7) Modification G
In the above-described embodiment, the number of flow rate adjusting units 140 is the same as the number of multiple coolant channels 120, but the present invention is not limited to this. The flow rate adjusting section 140 may be arranged in at least one of the plurality of coolant channels 120 . However, if x is the number of flow rate adjusting units 140 and y is the number of a plurality of refrigerant flow paths, x is preferably the same as y or y−1. In the case of y−1, no flow rate adjustment section 140 is arranged in one refrigerant flow path, and one flow rate adjustment section 140 is arranged in the remaining refrigerant flow path.
 (4-8)変形例H
 上述した実施形態では、室外熱交換器23の熱交換部23a~23iは、フィンを共有しているが、これに限定されない。本変形例では、熱交換部23a~23iの下方に位置する熱交換部23a、23bが共有するフィンと、中央及び上方に位置する熱交換部23c~23hが共有するフィンとは、分離している。
(4-8) Modification H
In the above-described embodiment, the heat exchange portions 23a to 23i of the outdoor heat exchanger 23 share the fins, but the invention is not limited to this. In this modification, the fins shared by the heat exchange portions 23a and 23b located below the heat exchange portions 23a to 23i and the fins shared by the heat exchange portions 23c to 23h located in the center and above are separated. there is
 (4-9)変形例I
 上述した実施形態では、冷凍サイクル装置1の室内ユニット3は1つの室内熱交換器31を含んでいるが、これに限定されない。本変形例の室内ユニット3は、複数の室内熱交換器を含む。
(4-9) Modification I
In the embodiment described above, the indoor unit 3 of the refrigeration cycle device 1 includes one indoor heat exchanger 31, but is not limited to this. The indoor unit 3 of this modified example includes a plurality of indoor heat exchangers.
 <第2実施形態>
 本実施形態の熱交換ユニットは、第1実施形態の熱交換ユニットと、基本的な構成及び動作が共通する。以下、本実施形態と第1実施形態との相違点である、流量調整部の構造について説明する。
<Second embodiment>
The heat exchange unit of this embodiment has the same basic configuration and operation as the heat exchange unit of the first embodiment. The structure of the flow rate adjusting unit, which is the difference between the present embodiment and the first embodiment, will be described below.
 (1)構成
 (1-1)流量調整部
 流量調整部140は、少なくとも1つの冷媒流路120に設けられる。図2では、複数の冷媒流路120a~120iのそれぞれに、1つの流量調整部140a~140iが設けられている。言い換えると、流量調整部140の数は、複数の冷媒流路120の数と同じである。流量調整部140は、冷媒流路120である配管に取り付けられる。
(1) Configuration (1-1) Flow Adjusting Section The flow adjusting section 140 is provided in at least one refrigerant channel 120 . In FIG. 2, one flow rate adjusting section 140a to 140i is provided for each of the plurality of refrigerant flow paths 120a to 120i. In other words, the number of flow rate adjusting units 140 is the same as the number of multiple coolant channels 120 . The flow rate adjusting unit 140 is attached to the pipe that is the refrigerant flow path 120 .
 流量調整部140は、室外膨張弁24と室外熱交換器23との間に設けられる。具体的には、複数の流量調整部140a~140iは、分流器110と熱交換部23a~23iとの間に設けられる。 The flow rate adjusting unit 140 is provided between the outdoor expansion valve 24 and the outdoor heat exchanger 23. Specifically, a plurality of flow rate adjustment units 140a-140i are provided between the flow divider 110 and the heat exchange units 23a-23i.
 流量調整部140は、冷媒流路120を流れる冷媒の流量を調整する。言い換えると、流量調整部140は、その開度に応じて、冷媒流路120を流れる冷媒の流量を増減させる。流量調整部140は、流量調整部140が減圧できる最大圧力以下の圧力範囲において、流量を調整できる。これにより、複数の冷媒流路120a~120iの一部の冷媒流路に他の冷媒流路よりも多くの冷媒が流れることによる、冷媒の偏流を防止できる。流量調整部140の開度は、所定の最小開度から所定の最大開度までの範囲内において調整可能である。流量調整部140の最小開度は、ゼロより大きい所定の値である。そのため、流量調整部140の開度が最小であっても、冷媒は、流量調整部140を通過することができる。 The flow rate adjusting unit 140 adjusts the flow rate of the coolant flowing through the coolant channel 120 . In other words, the flow rate adjusting section 140 increases or decreases the flow rate of the coolant flowing through the coolant flow path 120 according to the degree of opening thereof. The flow rate adjusting section 140 can adjust the flow rate within a pressure range equal to or lower than the maximum pressure that the flow rate adjusting section 140 can reduce. As a result, it is possible to prevent the drift of the refrigerant due to the refrigerant flowing through some of the plurality of refrigerant passages 120a to 120i in a larger amount than the other refrigerant passages. The opening degree of the flow rate adjusting section 140 can be adjusted within a range from a predetermined minimum opening degree to a predetermined maximum opening degree. The minimum opening degree of the flow rate adjusting section 140 is a predetermined value greater than zero. Therefore, the refrigerant can pass through the flow rate adjusting section 140 even if the opening degree of the flow rate adjusting section 140 is the smallest.
 図10に示すように、流量調整部140は、主に、弁本体241と、板状部材242と、電極243と、絶縁部材244とを含む。本実施形態の流量調整部140は、室外膨張弁24に用いられる電磁弁又は電動弁と異なり、圧電素子を用いている。このため、流量調整部140は、電圧の印加により作動する。ここでは、流量調整部140は、電磁弁に使用される電磁コイルよりも小さい発生力を有するバイモルフ型圧電素子を用いている。 As shown in FIG. 10, the flow regulating portion 140 mainly includes a valve body 241, a plate member 242, an electrode 243, and an insulating member 244. Unlike the electromagnetic valve or the motor-operated valve used for the outdoor expansion valve 24, the flow rate adjusting section 140 of this embodiment uses a piezoelectric element. Therefore, the flow rate adjusting section 140 is operated by voltage application. Here, the flow rate adjusting unit 140 uses a bimorph type piezoelectric element having a generated force smaller than that of the electromagnetic coil used for the electromagnetic valve.
 (1-1-1)弁本体
 弁本体241は、冷媒流路120と連結されている。弁本体241は、1つの部材で構成されてもよく、複数の部材で構成されてもよい。弁本体241の内部には、冷媒が通過するための空間が形成されている。
(1-1-1) Valve Body The valve body 241 is connected to the refrigerant channel 120 . The valve body 241 may be composed of one member, or may be composed of a plurality of members. A space for the refrigerant to pass is formed inside the valve body 241 .
 弁本体241は、冷媒の流入口241aと、冷媒の流出口241bと、第1流路241c1と、第2流路241c2と、弁座245と、を有する。第1流路241c1及び第2流路241c2は、流入口241aと流出口241bとを結び、図10及び図11では、概ね右側から左側に向かって延びた後、下側に向かって延びる。弁座245は、弁本体241の内部に配置される部材である。以下の説明では、図10の矢印に示す暖房運転時の冷媒の流れを基準にしている。 The valve body 241 has a refrigerant inlet 241 a , a refrigerant outlet 241 b , a first flow path 241 c 1 , a second flow path 241 c 2 , and a valve seat 245 . The first flow path 241c1 and the second flow path 241c2 connect the inflow port 241a and the outflow port 241b, and in FIGS. 10 and 11, extend from right to left and then downward. The valve seat 245 is a member arranged inside the valve body 241 . The following description is based on the refrigerant flow during the heating operation indicated by the arrows in FIG.
 本実施形態では、流入口241aは、弁本体241の長手方向の端部(図10における右側)に設けられ、流出口241bは、弁本体241の長手方向中央部の下部(図10における下側)に設けられる。流入口241a及び流出口241bのそれぞれは、冷媒流路120に接続されている。図10では、冷媒流路120の端部は、流入口241a及び流出口241bよりも弁本体241の内側まで入り込んでいる。 In this embodiment, the inflow port 241a is provided at the longitudinal end of the valve body 241 (the right side in FIG. 10), and the outflow port 241b is provided at the lower portion of the longitudinal central portion of the valve body 241 (the lower side in FIG. 10). ). Each of the inlet 241 a and the outlet 241 b is connected to the coolant channel 120 . In FIG. 10 , the end of the refrigerant flow path 120 extends inside the valve body 241 beyond the inflow port 241a and the outflow port 241b.
 弁本体241の内部には、入口流路241d1と、調整流路241d2と、バイパス流路241d3とが形成されている。第1流路241c1は、入口流路241d1と調整流路241d2とを含む。第2流路241c2は、入口流路241d1とバイパス流路241d3とを含む。 An inlet channel 241d1, an adjustment channel 241d2, and a bypass channel 241d3 are formed inside the valve body 241. The first channel 241c1 includes an inlet channel 241d1 and an adjustment channel 241d2. The second channel 241c2 includes an inlet channel 241d1 and a bypass channel 241d3.
 入口流路241d1は、弁本体241の長手方向(図10の左右方向)に沿って延びている。入口流路241d1は、流入口241aに接続される冷媒流路120と連通する。流入口241aを経由して弁本体241の内部に流入した冷媒は、最初に入口流路241d1を流れる。流量調整部140の開度が最小でない場合、入口流路241d1を通過した冷媒の一部は、調整流路241d2に流入し、残りは、バイパス流路241d3に流入する。調整流路241d2を通過した冷媒、及び、バイパス流路241d3を通過した冷媒は、合流して、流出口241bを経由して、流出口241bに接続される冷媒流路120に流入する。言い換えると、第1流路241c1及び第2流路241c2は、弁本体241の内部において、一旦分流した後に合流する。 The inlet channel 241d1 extends along the longitudinal direction of the valve body 241 (horizontal direction in FIG. 10). The inlet channel 241d1 communicates with the coolant channel 120 connected to the inlet 241a. Refrigerant that has flowed into the valve body 241 through the inflow port 241a first flows through the inlet channel 241d1. When the opening degree of the flow rate adjusting unit 140 is not the minimum, part of the refrigerant that has passed through the inlet channel 241d1 flows into the adjusting channel 241d2, and the rest flows into the bypass channel 241d3. The refrigerant that has passed through the adjustment channel 241d2 and the refrigerant that has passed through the bypass channel 241d3 join and flow through the outlet 241b into the coolant channel 120 connected to the outlet 241b. In other words, inside the valve body 241, the first flow path 241c1 and the second flow path 241c2 join after being divided once.
 調整流路241d2は、流量調整部140を通過する冷媒の流量を調整するために、断面積が変化する部分である。調整流路241d2は、主として、弁座245を貫通する第1貫通孔241e1と、板状部材242とから構成される。板状部材242は、調整流路241d2の断面積を変化させるために、第1貫通孔241e1を開閉するための部材である。調整流路241d2の断面積は、弁座245と板状部材242との間の隙間の寸法に応じて変化する。後述するように、調整流路241d2の断面積は、板状部材242の変位によって変化する。 The adjustment flow path 241d2 is a portion whose cross-sectional area changes in order to adjust the flow rate of the refrigerant passing through the flow rate adjustment section 140. The adjustment flow path 241 d 2 is mainly composed of a first through hole 241 e 1 passing through the valve seat 245 and the plate member 242 . The plate-like member 242 is a member for opening and closing the first through hole 241e1 in order to change the cross-sectional area of the adjustment flow path 241d2. The cross-sectional area of the adjustment flow path 241d2 changes according to the size of the gap between the valve seat 245 and the plate member 242. As shown in FIG. As will be described later, the cross-sectional area of the adjustment channel 241d2 changes according to the displacement of the plate member 242. As shown in FIG.
 図10に示されるように、流量調整部140の開度が最小であるとき、弁座245の第1貫通孔241e1は、板状部材242によって閉じられている。そのため、流量調整部140の開度が最小であるとき、冷媒は調整流路241d2を通過することができないので、流量調整部140は、第1流路241c1が閉じている状態にある。 As shown in FIG. 10, the first through hole 241e1 of the valve seat 245 is closed by the plate-like member 242 when the opening degree of the flow rate adjusting section 140 is the minimum. Therefore, when the opening degree of the flow rate adjusting section 140 is minimum, the refrigerant cannot pass through the adjusting flow path 241d2, so the flow rate adjusting section 140 is in a state where the first flow path 241c1 is closed.
 図11に示されるように、流量調整部140の開度が最小でないとき、弁座245の第1貫通孔241e1は、板状部材242によって閉じられていない。そのため、流量調整部140の開度が最小でないとき、冷媒は調整流路241d2を通過することができるので、流量調整部140は、第1流路241c1が開いている状態にある。 As shown in FIG. 11, the first through-hole 241e1 of the valve seat 245 is not closed by the plate-like member 242 when the opening degree of the flow rate adjusting section 140 is not the minimum. Therefore, when the opening degree of the flow rate adjusting section 140 is not the minimum, the coolant can pass through the adjusting flow path 241d2, so the flow rate adjusting section 140 is in a state where the first flow path 241c1 is open.
 バイパス流路241d3は、主として、弁座245を貫通する第2貫通孔241e2から構成される。第2貫通孔241e2は、板状部材242のような外部の部材によって開閉されない。そのため、バイパス流路241d3は常に開いているので、第2流路241c2は、常に開いている状態にある。従って、流量調整部140の開度が最小であるときでも、流入口241aを経由して弁本体241の内部に流入した冷媒は、入口流路241d1を通過した後、バイパス流路241d3を通過して、流出口241bに到達することができる。また、バイパス流路241d3は、流量調整部140の開度が最小であるとき、言い換えると、第1貫通孔241e1が板状部材242によって閉じられているときに、調整流路241d2の上流側と下流側とを連通させる機能を有する。上流側とは、流入口241aの側であり、下流側とは、流出口241bの側である。 The bypass flow path 241d3 is mainly composed of a second through hole 241e2 penetrating through the valve seat 245. The second through hole 241 e 2 is not opened or closed by an external member such as the plate member 242 . Therefore, since the bypass channel 241d3 is always open, the second channel 241c2 is always open. Therefore, even when the opening degree of the flow rate adjusting unit 140 is minimum, the refrigerant that has flowed into the valve body 241 through the inlet port 241a passes through the inlet channel 241d1 and then the bypass channel 241d3. to reach the outflow port 241b. In addition, the bypass channel 241d3 and the upstream side of the adjustment channel 241d2 are arranged when the opening degree of the flow rate adjusting portion 140 is the minimum, in other words, when the first through hole 241e1 is closed by the plate-like member 242. It has the function of communicating with the downstream side. The upstream side is the inlet 241a side, and the downstream side is the outlet 241b side.
 上述したように、弁座245は、第1貫通孔241e1と第2貫通孔241e2とを有する。図12及び図13に示されるように、第1貫通孔241e1は、弁座245の中央部を貫通する略円筒形状の孔である。以降、第1貫通孔241e1の長手方向(貫通する方向)を第1方向と定義する。第1方向は、例えば、鉛直方向である。 As described above, the valve seat 245 has the first through hole 241e1 and the second through hole 241e2. As shown in FIGS. 12 and 13, the first through hole 241 e 1 is a substantially cylindrical hole penetrating through the central portion of the valve seat 245 . Hereinafter, the longitudinal direction (the penetrating direction) of the first through hole 241e1 is defined as the first direction. The first direction is, for example, the vertical direction.
 図13に示されるように、第1方向に沿って見た場合、第2貫通孔241e2は、第1貫通孔241e1の周囲に形成される略円弧状の孔である。本実施形態において、略円弧状の第2貫通孔241e2の数は1つであるが、第2貫通孔241e2の数及び形状は、弁座245の形状に応じて任意に設定可能である。例えば、第2貫通孔241e2は、第1方向に沿って見た場合に、第1貫通孔241e1の周囲に形成される複数の略円形の孔であってもよい。また、弁座245の形状も、図12及び図13に示される形態に限られない。 As shown in FIG. 13, when viewed along the first direction, the second through hole 241e2 is a substantially arcuate hole formed around the first through hole 241e1. In this embodiment, the number of substantially arc-shaped second through holes 241 e 2 is one, but the number and shape of the second through holes 241 e 2 can be arbitrarily set according to the shape of the valve seat 245 . For example, the second through holes 241e2 may be a plurality of substantially circular holes formed around the first through holes 241e1 when viewed along the first direction. Also, the shape of the valve seat 245 is not limited to the forms shown in FIGS. 12 and 13 .
 (1-1-2)板状部材
 板状部材242は、弁座245の近傍に配置される弁体である。板状部材242は、弁本体241の内部の空間に配置され、図10では左右方向に延びている。板状部材242は、一方の端部(図10における左端部)が支持されて、他方の端部(図10における右端部)が支持されていない、片持ちの構造を有する。具体的には、板状部材242の一方の端部は、電極243に接続された状態で、弁本体241に固定されている。板状部材242の他方の端部は、自由端であり、弁座245と対向している。板状部材242の自由端が第1方向に変位することで、弁座245の第1貫通孔241e1の上流側の開口(図10における上側の開口)が開閉する。
(1-1-2) Plate-shaped member The plate-shaped member 242 is a valve element arranged near the valve seat 245 . The plate member 242 is arranged in the space inside the valve body 241 and extends in the left-right direction in FIG. The plate member 242 has a cantilever structure in which one end (the left end in FIG. 10) is supported and the other end (the right end in FIG. 10) is not supported. Specifically, one end of the plate member 242 is fixed to the valve body 241 while being connected to the electrode 243 . The other end of plate-like member 242 is a free end facing valve seat 245 . By displacing the free end of the plate member 242 in the first direction, the upstream opening (upper opening in FIG. 10) of the first through hole 241e1 of the valve seat 245 opens and closes.
 図10に示されるように、板状部材242の自由端が弁座245に接しているとき、第1貫通孔241e1は板状部材242によって塞がれているので、調整流路241d2の断面積はゼロとなる。 As shown in FIG. 10, when the free end of the plate-like member 242 is in contact with the valve seat 245, the first through hole 241e1 is closed by the plate-like member 242, so the cross-sectional area of the adjustment flow path 241d2 is becomes zero.
 図11に示されるように、板状部材242の自由端が弁座245に接していないとき、第1貫通孔241e1は板状部材242によって塞がれていないので、調整流路241d2の断面積はゼロではない。板状部材242の自由端の第1方向の位置によって、板状部材242と弁座245との間の隙間の寸法が変化するので、調整流路241d2の断面積も変化する。そのため、板状部材242の変位量に応じて、第1流路241c1を流れる冷媒の流量が変化する。 As shown in FIG. 11, when the free end of the plate-like member 242 is not in contact with the valve seat 245, the first through-hole 241e1 is not blocked by the plate-like member 242, so the cross-sectional area of the adjustment channel 241d2 is is not zero. Since the dimension of the gap between the plate-like member 242 and the valve seat 245 changes depending on the position of the free end of the plate-like member 242 in the first direction, the cross-sectional area of the adjustment channel 241d2 also changes. Therefore, the flow rate of the coolant flowing through the first flow path 241c1 changes according to the amount of displacement of the plate member 242. FIG.
 図14~図16に示すように、板状部材242は、金属板242aと、一対の圧電体242bと、弾性部材242cと、を有する。一対の圧電体242bは、第1圧電体242b1と、第2圧電体242b2とから構成される。板状部材242は、第1圧電体242b1と、金属板242aと、第2圧電体242b2とが第1方向に積層している構成を有する。金属板242aは、第1圧電体242b1と第2圧電体242b2とによって挟まれている。印加電圧によって圧電体242bに生じる変位により、板状部材242の自由端が第1方向に変位して、調整流路241d2の断面積が変化する。図14~16において、板状部材242の自由端は、板状部材242の右側の端部である。 As shown in FIGS. 14 to 16, the plate member 242 has a metal plate 242a, a pair of piezoelectric bodies 242b, and an elastic member 242c. The pair of piezoelectric bodies 242b is composed of a first piezoelectric body 242b1 and a second piezoelectric body 242b2. The plate-like member 242 has a configuration in which a first piezoelectric body 242b1, a metal plate 242a, and a second piezoelectric body 242b2 are laminated in the first direction. The metal plate 242a is sandwiched between the first piezoelectric body 242b1 and the second piezoelectric body 242b2. Due to the displacement of the piezoelectric body 242b caused by the applied voltage, the free end of the plate member 242 is displaced in the first direction, and the cross-sectional area of the adjustment channel 241d2 is changed. In FIGS. 14-16, the free end of plate-like member 242 is the right end of plate-like member 242 .
 金属板242aは、金属材料で構成されている。圧電体242bは、印加電圧により変形する圧電性を有する材料(圧電材料)で構成されている。板状部材242の長手方向(図10,11の左右方向)において、金属板242aは、圧電体242bよりも長い。金属板242a及び圧電体242bの一方の端部(図14~図16における右側の端部)は揃っている。金属板242aの他方の端部(図14~16における左側の端部)は、圧電体242bの他方の端部(図14~16における左側の端部)から突出している。金属板242aは、プラス又はマイナスの第3接点243cを有する。 The metal plate 242a is made of a metal material. The piezoelectric body 242b is made of a piezoelectric material (piezoelectric material) that is deformed by an applied voltage. The metal plate 242a is longer than the piezoelectric body 242b in the longitudinal direction of the plate member 242 (horizontal direction in FIGS. 10 and 11). One ends of the metal plate 242a and the piezoelectric body 242b (right ends in FIGS. 14 to 16) are aligned. The other end of the metal plate 242a (the left end in FIGS. 14 to 16) protrudes from the other end of the piezoelectric body 242b (the left end in FIGS. 14 to 16). The metal plate 242a has a positive or negative third contact 243c.
 圧電体242bは、電圧が印加されると、圧電体242bの長手方向と交差する第1方向に変位する。具体的には、圧電体242bの自由端(板状部材242の自由端の側の端部)は、図14~図16における上下方向に変位する。圧電体242bは、図14に示すように、左右方向にまっすぐに延びる状態と、図15に示すように、自由端が下方に移動した状態と、図16に示すように、自由端が上方に移動した状態と、になり得る。 When a voltage is applied, the piezoelectric body 242b is displaced in a first direction crossing the longitudinal direction of the piezoelectric body 242b. Specifically, the free end of the piezoelectric body 242b (the end on the free end side of the plate member 242) is displaced in the vertical direction in FIGS. The piezoelectric body 242b extends straight in the horizontal direction as shown in FIG. 14, has its free end moved downward as shown in FIG. 15, and has its free end moved upward as shown in FIG. It can be in a state of being moved.
 弾性部材242cは、板状部材242の自由端の側において、弁座245に近い側の圧電体242bである第2圧電体242b2に取り付けられている。弾性部材242cは、例えば、ゴム製の板である。図10に示されるように、板状部材242の自由端が弁座245に接しているとき、弾性部材242cは、第1貫通孔241e1の上流側の開口を塞いでいる。図11に示されるように、板状部材242の自由端が弁座245に接していないとき、弾性部材242cは、第1貫通孔241e1の上流側の開口を塞いでいない。図10,11では、弾性部材242cは、板状部材242の自由端において下方に向かって突出している部分に相当する。 The elastic member 242c is attached to the second piezoelectric body 242b2, which is the piezoelectric body 242b on the side closer to the valve seat 245, on the free end side of the plate member 242. The elastic member 242c is, for example, a rubber plate. As shown in FIG. 10, when the free end of the plate member 242 is in contact with the valve seat 245, the elastic member 242c closes the upstream opening of the first through hole 241e1. As shown in FIG. 11, when the free end of the plate member 242 is not in contact with the valve seat 245, the elastic member 242c does not close the upstream opening of the first through hole 241e1. 10 and 11, the elastic member 242c corresponds to a portion protruding downward at the free end of the plate-like member 242. As shown in FIG.
 (1-1-3)電極
 電極243は、圧電体242bに接続され、板状部材242と共に圧電素子を構成する。図14~図16では、電極243は、圧電体242b及び金属板242aと接続される。具体的には、電極243は、第1接点243aと、第2接点243bと、を有する。第1接点243aは、第1圧電体242b1に接続されるプラスの接点である。第2接点243bは、第2圧電体242b2に接続されるマイナスの接点である。第1接点243a及び第2接点243bは、金属板242aの第3接点243cと接続可能に構成されている。
(1-1-3) Electrode The electrode 243 is connected to the piezoelectric body 242b and forms a piezoelectric element together with the plate member 242. FIG. 14-16, the electrode 243 is connected with the piezoelectric body 242b and the metal plate 242a. Specifically, the electrode 243 has a first contact 243a and a second contact 243b. The first contact 243a is a positive contact connected to the first piezoelectric body 242b1. The second contact 243b is a negative contact connected to the second piezoelectric body 242b2. The first contact 243a and the second contact 243b are configured to be connectable with the third contact 243c of the metal plate 242a.
 図14に示すように、金属板242aの第3接点243cが第1接点243a及び第2接点243bに接続されていない場合には、圧電体242bに電圧が印加されない。この時には、圧電体242bは、長手方向にまっすぐ延びている。 As shown in FIG. 14, when the third contact 243c of the metal plate 242a is not connected to the first contact 243a and the second contact 243b, no voltage is applied to the piezoelectric body 242b. At this time, the piezoelectric body 242b extends straight in the longitudinal direction.
 図15に示すように、第3接点243cが第1接点243aに接続されている場合には、第1接点243aに接続される第1圧電体242b1にプラスの電圧が印加される。このオフ状態では、圧電体242bの自由端は下方に変位する。 As shown in FIG. 15, when the third contact 243c is connected to the first contact 243a, a positive voltage is applied to the first piezoelectric body 242b1 connected to the first contact 243a. In this off state, the free end of piezoelectric body 242b is displaced downward.
 図16に示すように、第3接点243cが第2接点243bに接続されている場合には、第2接点243bに接続される第2圧電体242b2にマイナスの電圧が印加される。このオン状態では、圧電体242bの自由端は上方に変位する。 As shown in FIG. 16, when the third contact 243c is connected to the second contact 243b, a negative voltage is applied to the second piezoelectric body 242b2 connected to the second contact 243b. In this ON state, the free end of piezoelectric body 242b is displaced upward.
 このように、圧電体242bを有する板状部材242の自由端は、印加電圧によって第1方向に変位する。これにより、調整流路241d2の断面積が変化する。言い換えると、板状部材242の自由端を変位させて、板状部材242と弁座245との間の隙間の寸法を変えることで、調整流路241d2の断面積が増減し、その結果、第1流路241c1を流れる冷媒の流量が増減する。 Thus, the free end of the plate member 242 having the piezoelectric body 242b is displaced in the first direction by the applied voltage. As a result, the cross-sectional area of the adjustment channel 241d2 changes. In other words, by displacing the free end of the plate-like member 242 to change the size of the gap between the plate-like member 242 and the valve seat 245, the cross-sectional area of the adjustment flow path 241d2 increases or decreases. The flow rate of the coolant flowing through the first channel 241c1 increases or decreases.
 具体的には、図10に示されるように調整流路241d2の断面積がゼロである場合に、板状部材242の自由端が図16に示すように上方に変位すると、調整流路241d2の断面積はゼロから増加する。これにより、第1流路241c1を流れる冷媒の流量がゼロから増加する。その後、板状部材242の自由端が図15に示すように下方に変位すると、調整流路241d2の断面積は減少する。これにより、第1流路241c1を流れる冷媒の流量が減少する。板状部材242の自由端が最も下方に位置するときに、調整流路241d2の断面積はゼロとなり、第1流路241c1を流れる冷媒の流量がゼロとなる。このように、板状部材242の自由端の第1方向の変位量によって、第1流路241c1を流れる冷媒の流量が変化する。 Specifically, when the cross-sectional area of the adjustment channel 241d2 is zero as shown in FIG. 10, when the free end of the plate member 242 is displaced upward as shown in FIG. The cross-sectional area increases from zero. As a result, the flow rate of the coolant flowing through the first flow path 241c1 increases from zero. After that, when the free end of the plate-like member 242 is displaced downward as shown in FIG. 15, the cross-sectional area of the adjustment channel 241d2 is reduced. This reduces the flow rate of the coolant flowing through the first flow path 241c1. When the free end of the plate-like member 242 is positioned at the lowest position, the cross-sectional area of the adjustment channel 241d2 becomes zero, and the flow rate of the coolant flowing through the first channel 241c1 becomes zero. Thus, the amount of displacement of the free end of the plate member 242 in the first direction changes the flow rate of the coolant flowing through the first flow path 241c1.
 板状部材242の自由端の変位によって、調整流路241d2の断面積は、例えば、0mm以上かつ5mm以下の範囲内で変化する。板状部材242の自由端の変位によって、板状部材242と弁座245との間の隙間の寸法(第1方向の距離)は、例えば、0mm以上かつ1mm以下の範囲内で変化する。 By displacing the free end of the plate member 242, the cross-sectional area of the adjustment channel 241d2 changes, for example, within the range of 0 mm 2 or more and 5 mm 2 or less. Due to the displacement of the free end of the plate-like member 242, the dimension of the gap (the distance in the first direction) between the plate-like member 242 and the valve seat 245 changes, for example, within the range of 0 mm or more and 1 mm or less.
 電極243は、流量調整部140の動作圧力に耐えることができる導電性材料で構成される。図10及び図11に示すように、電極243の一端は、弁本体241の内部空間である電極側空間246に位置している。電極側空間246は、第1流路241c1(入口流路241d1)と連通している。電極側空間246において、電極243の一端は、板状部材242の自由端ではない方の端部に接続されている。電極243の他端は、電極側空間246から、弁本体241の外部空間まで延びて外気に露出している。電極243の他端は、図14~16に示されるように外部電源に接続されている。 The electrode 243 is made of a conductive material that can withstand the operating pressure of the flow rate regulator 140. As shown in FIGS. 10 and 11 , one end of the electrode 243 is positioned in an electrode-side space 246 that is the internal space of the valve body 241 . The electrode-side space 246 communicates with the first channel 241c1 (inlet channel 241d1). In the electrode-side space 246 , one end of the electrode 243 is connected to the non-free end of the plate member 242 . The other end of the electrode 243 extends from the electrode-side space 246 to the external space of the valve body 241 and is exposed to the outside air. The other end of electrode 243 is connected to an external power supply as shown in FIGS. 14-16.
 (1-1-4)絶縁部材
 絶縁部材244は、電極243と弁本体241とを絶縁する。絶縁部材244は、シリコーンゴム等の絶縁性の材料で構成される。弁本体241は、弁本体241の外部空間と電極側空間246とを結ぶ電極側開口247を有する。絶縁部材244は、電極側開口247をシールして、弁本体241の内部空間の気密性を確保する。電極243は、絶縁部材244によって固定され、弁本体241と接することなく電極側開口247を通過する。
(1-1-4) Insulating Member The insulating member 244 insulates the electrode 243 and the valve body 241 from each other. The insulating member 244 is made of an insulating material such as silicone rubber. The valve body 241 has an electrode-side opening 247 that connects the external space of the valve body 241 and the electrode-side space 246 . The insulating member 244 seals the electrode-side opening 247 to ensure the airtightness of the internal space of the valve body 241 . The electrode 243 is fixed by an insulating member 244 and passes through the electrode side opening 247 without contacting the valve body 241 .
 (1-2)制御部
 制御部28は、熱交換ユニット100の流量調整部140を制御する。本実施形態では、制御部28は、図17に示すように、印加電圧をオン状態にする時間t1と、オフ状態にする時間t2と、を制御する。制御部28から流量調整部140に入力される電気信号は、制御部28からのパルス信号であり、パルスの周期に応じて印加電圧を調整することで、オン状態にする時間t1、及び、オフ状態にする時間t2を制御している。
(1-2) Control Section The control section 28 controls the flow rate adjustment section 140 of the heat exchange unit 100 . In this embodiment, as shown in FIG. 17, the control unit 28 controls the time t1 for turning on the applied voltage and the time t2 for turning off the applied voltage. The electrical signal input from the control unit 28 to the flow rate adjustment unit 140 is a pulse signal from the control unit 28, and by adjusting the applied voltage according to the cycle of the pulse, the time t1 to turn on and the time t1 to turn off It controls the time t2 to make the state.
 具体的には、制御部28は、流量調整部140を流れる冷媒の流量を減らす場合には、図15に示すように、第3接点243cを第1接点243aに接続してオフ状態にするように、流量調整部140にパルス信号を送信する。 Specifically, when reducing the flow rate of the refrigerant flowing through the flow rate adjusting section 140, the control section 28 connects the third contact point 243c to the first contact point 243a to turn it off, as shown in FIG. , a pulse signal is transmitted to the flow rate adjusting unit 140 .
 また、制御部28は、流量調整部140を流れる冷媒の流量を増やす場合には、図16に示すように、第3接点243cを第2接点243bに接続してオン状態にするように、流量調整部140にパルス信号を送信する。 Further, when increasing the flow rate of the refrigerant flowing through the flow rate adjusting section 140, the control section 28 connects the third contact 243c to the second contact 243b to turn on the flow rate, as shown in FIG. A pulse signal is transmitted to the adjustment unit 140 .
 制御部28は、冷媒流路120を流れる冷媒の温度を取得して、その温度から流量調整部140における冷媒の流量を増加させるか減少させるかを判断し、その判断に基づいて流量調整部140の開度を制御する。ここでは、制御部28は、暖房運転時における熱交換部23a~23iの冷媒流路120の出口近傍の冷媒の温度を取得する。具体的には、制御部28は、熱交換部23a~23iの冷媒流路120の出口近傍に設けられた温度センサ、および、冷媒流路120を形成する配管の表面温度を非接触で検出するアレイセンサなどから、冷媒の温度を取得する。そして、制御部28は、複数の冷媒流路120a~120iの中で、相対的に温度が高い冷媒流路を流れる冷媒の量が増加するように、又は、相対的に温度が低い冷媒流路を流れる冷媒の量が減少するように、各流量調整部140a~140iの開度を制御する。 The control unit 28 acquires the temperature of the coolant flowing through the coolant flow path 120, determines whether to increase or decrease the flow rate of the coolant in the flow rate adjusting unit 140 based on the temperature, and based on the determination, the flow rate adjusting unit 140 to control the opening of the Here, the control unit 28 acquires the temperature of the refrigerant in the vicinity of the outlet of the refrigerant flow path 120 of the heat exchange units 23a to 23i during the heating operation. Specifically, the control unit 28 detects temperature sensors provided in the vicinity of the outlets of the refrigerant flow paths 120 of the heat exchange units 23a to 23i and the surface temperatures of the pipes forming the refrigerant flow paths 120 in a non-contact manner. Obtain the temperature of the refrigerant from an array sensor or the like. Then, the control unit 28 controls the refrigerant flow path with a relatively high temperature among the plurality of refrigerant flow paths 120a to 120i to increase the amount of the refrigerant flowing therein, or the refrigerant flow path with a relatively low temperature. The opening degree of each of the flow rate adjusting units 140a to 140i is controlled so that the amount of refrigerant flowing through is reduced.
 制御部28は、流量調整部140を流れる冷媒の流量を一時的に増加させる場合には、オン状態にする時間t1を制御し、流量調整部140を流れる冷媒の流量を一時的に減少させる場合には、オフ状態にする時間t2を制御する。これにより、制御部28は、流入口241aから流出口241bに向かって流れる冷媒の流量を調整することができる。 When the flow rate of the refrigerant flowing through the flow rate adjusting section 140 is temporarily increased, the control section 28 controls the ON state time t1, and when the flow rate of the refrigerant flowing through the flow rate adjusting section 140 is temporarily decreased. , the time t2 for turning off is controlled. Thereby, the control unit 28 can adjust the flow rate of the refrigerant flowing from the inlet 241a toward the outlet 241b.
 制御部28は、図17に示されるように、オン状態とオフ状態とを交互に切り替えて板状部材242を周期的に変位させることで、第1流路241c1を周期的に開閉する制御を行ってもよい。この場合、制御部28は、オン状態にする時間t1と、オフ状態にする時間t2とを切り替える周期を調節することで、流量調整部140を流れる冷媒の流量を細かく調整することができる。 As shown in FIG. 17, the control unit 28 alternately switches between the ON state and the OFF state to periodically displace the plate-like member 242, thereby controlling the periodic opening and closing of the first channel 241c1. you can go In this case, the control unit 28 can finely adjust the flow rate of the refrigerant flowing through the flow rate adjusting unit 140 by adjusting the cycle of switching between the ON state time t1 and the OFF state time t2.
 制御部28は、さらに、圧電体242bに印加される電圧の大きさを変化させて、板状部材242の自由端の変位量を調整することで、第1流路241c1を通過する冷媒の流量を制御してもよい。制御部28から流量調整部140に入力される電気信号は、圧電体242bに印加される電圧を増減させるための信号である。この場合、制御部28は、圧電体242bに印加される電圧を制御して、板状部材242の自由端の変位量を調整することで、流量調整部140を流れる冷媒の流量を細かく調整することができる。 The control unit 28 further changes the magnitude of the voltage applied to the piezoelectric body 242b to adjust the amount of displacement of the free end of the plate member 242, thereby increasing the flow rate of the coolant passing through the first flow path 241c1. may be controlled. The electric signal input from the control section 28 to the flow rate adjusting section 140 is a signal for increasing or decreasing the voltage applied to the piezoelectric body 242b. In this case, the control unit 28 finely adjusts the flow rate of the coolant flowing through the flow rate adjusting unit 140 by controlling the voltage applied to the piezoelectric body 242b to adjust the amount of displacement of the free end of the plate member 242. be able to.
 (2)動作
 次に、熱交換ユニット100における冷媒の流れについて説明する。各流量調整部140の第1流路241c1は、図11に示されるように、開いている状態にあるとする。
(2) Operation Next, the flow of refrigerant in the heat exchange unit 100 will be described. Assume that the first flow path 241c1 of each flow rate adjusting unit 140 is in an open state as shown in FIG.
 (2-1)暖房運転
 冷凍サイクル装置1が暖房運転を行う場合、室外膨張弁24で減圧された低圧の液冷媒は、図2に示す分流器110に流入する。分流器110に流入した液冷媒は、複数の冷媒流路120a~120iに分流して、各流量調整部140a~140iに流入する。
(2-1) Heating Operation When the refrigeration cycle device 1 performs a heating operation, the low-pressure liquid refrigerant decompressed by the outdoor expansion valve 24 flows into the flow divider 110 shown in FIG. The liquid refrigerant that has flowed into the flow divider 110 is divided into a plurality of refrigerant flow paths 120a to 120i, and flows into the respective flow rate adjusters 140a to 140i.
 図10に示すように、各流量調整部140の流入口241aに流入した液冷媒は、第1流路241c1及び第2流路241c2を通過する。流量調整部140を通過する冷媒の流量を減らす場合には、制御部28は、図15に示すように、板状部材242の圧電体242bに印加電圧を加えて、板状部材242の自由端を下方に変位させることにより、第1流路241c1の調整流路241d2の断面積を減らす。流量調整部140を通過する冷媒の流量を増やす場合には、制御部28は、図16に示すように、板状部材242の圧電体242bに印加電圧を加えて、板状部材242の自由端を上方に変位させることにより、第1流路241c1の調整流路241d2の断面積を増やす。流量が調整された冷媒は、流出口241bから冷媒流路120に流入する。その後、冷媒流路120を流れる冷媒は、図2に示す各熱交換部23a~23iに流入する。 As shown in FIG. 10, the liquid refrigerant that has flowed into the inlet 241a of each flow rate adjusting unit 140 passes through the first channel 241c1 and the second channel 241c2. When reducing the flow rate of the coolant passing through the flow rate adjusting section 140, the control section 28 applies an applied voltage to the piezoelectric body 242b of the plate-like member 242, as shown in FIG. is displaced downward to reduce the cross-sectional area of the adjustment channel 241d2 of the first channel 241c1. When increasing the flow rate of the coolant passing through the flow rate adjusting section 140, the control section 28 applies an applied voltage to the piezoelectric body 242b of the plate-like member 242, as shown in FIG. is displaced upward to increase the cross-sectional area of the adjustment channel 241d2 of the first channel 241c1. The coolant whose flow rate is adjusted flows into the coolant channel 120 from the outlet 241b. After that, the refrigerant flowing through the refrigerant channel 120 flows into each of the heat exchange portions 23a to 23i shown in FIG.
 各熱交換部23a~23iに流入した液冷媒は、各熱交換部23a~23iにおいて、室外空気と熱交換を行って蒸発してガス冷媒となる。各熱交換部23a~23iを通過した後、各冷媒流路120a~120iを流れる冷媒は、ヘッダ130で合流する。ヘッダ130で合流したガス冷媒は、四路切換弁22に向かって流れる。 The liquid refrigerant that has flowed into each of the heat exchange portions 23a to 23i exchanges heat with the outdoor air in each of the heat exchange portions 23a to 23i, evaporates, and becomes a gas refrigerant. After passing through the heat exchange portions 23a to 23i, the refrigerants flowing through the refrigerant flow paths 120a to 120i merge at the header 130. FIG. The gas refrigerant joined at header 130 flows toward four-way switching valve 22 .
 (2-2)冷房運転
 冷凍サイクル装置1が冷房運転を行う場合、圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22を通過して、図2に示すヘッダ130に流入する。ヘッダ130に流入したガス冷媒は、複数の冷媒流路120a~120iに分流して、各熱交換部23a~23iに流入する。各熱交換部23a~23iに流入したガス冷媒は、熱交換部23a~23iにおいて、室外空気と熱交換を行って放熱して液冷媒となり、流量調整部140a~140iに流入する。
(2-2) Cooling Operation When the refrigeration cycle device 1 performs cooling operation, the high-pressure gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and flows into the header 130 shown in FIG. . The gas refrigerant that has flowed into the header 130 is divided into a plurality of refrigerant flow paths 120a-120i and flows into the respective heat exchange portions 23a-23i. The gas refrigerant that has flowed into each of the heat exchange sections 23a to 23i exchanges heat with the outdoor air in the heat exchange sections 23a to 23i, releases heat, becomes liquid refrigerant, and flows into the flow rate adjustment sections 140a to 140i.
 図10に示すように、各流量調整部140の流出口241bに流入した液冷媒は、第1流路241c1及び第2流路241c2を通過する。流量調整部140を通過する冷媒の流量を減らす場合には、制御部28は、図15に示すように、板状部材242の圧電体242bに印加電圧を加えて、板状部材242の自由端を下方に変位させることにより、第1流路241c1の調整流路241d2の断面積を減らす。流量調整部140を通過する冷媒の流量を増やす場合には、制御部28は、図16に示すように、板状部材242の圧電体242bに印加電圧を加えて、板状部材242の自由端を上方に変位させることにより、第1流路241c1の調整流路241d2の断面積を増やす。流量が調整された冷媒は、流入口241aから冷媒流路120に流入する。その後、冷媒流路120を流れる液冷媒は、冷媒流路120から流出した後、分流器110で合流する。分流器110で合流した液冷媒は、室外膨張弁24に向かって流れる。 As shown in FIG. 10, the liquid refrigerant that has flowed into the outlet 241b of each flow rate adjusting unit 140 passes through the first channel 241c1 and the second channel 241c2. When reducing the flow rate of the coolant passing through the flow rate adjusting section 140, the control section 28 applies an applied voltage to the piezoelectric body 242b of the plate-like member 242, as shown in FIG. is displaced downward to reduce the cross-sectional area of the adjustment channel 241d2 of the first channel 241c1. When increasing the flow rate of the coolant passing through the flow rate adjusting section 140, the control section 28 applies an applied voltage to the piezoelectric body 242b of the plate-like member 242, as shown in FIG. is displaced upward to increase the cross-sectional area of the adjustment channel 241d2 of the first channel 241c1. The coolant whose flow rate is adjusted flows into the coolant channel 120 from the inlet 241a. After that, the liquid refrigerant flowing through the refrigerant flow path 120 flows out from the refrigerant flow path 120 and then joins at the flow splitter 110 . The liquid refrigerant merged at the flow splitter 110 flows toward the outdoor expansion valve 24 .
 (3)特徴
 (3-1)
 本実施形態の流量調整部140は、弁本体241の内部に配置される板状部材242を備える。板状部材242は、圧電体242bを有する。流量調整部140の内部には、第1流路241c1及び第2流路241c2が形成されている。流量調整部140は、圧電体242bに電圧を印加することで生じる板状部材242の変位によって第1流路241c1を開閉することで、流入口241aから流出口241bに向かって流れる冷媒の流量を調整する。
(3) Features (3-1)
The flow rate adjusting section 140 of this embodiment includes a plate-like member 242 arranged inside the valve body 241 . The plate member 242 has a piezoelectric body 242b. A first flow path 241c1 and a second flow path 241c2 are formed inside the flow rate adjusting section 140 . The flow rate adjusting unit 140 adjusts the flow rate of the coolant flowing from the inlet 241a toward the outlet 241b by opening and closing the first flow path 241c1 according to the displacement of the plate member 242 caused by applying a voltage to the piezoelectric body 242b. adjust.
 流量調整部140は、第1流路241c1に含まれる調整流路241d2と、第2流路241c2に含まれるバイパス流路241d3とを内部に有する。バイパス流路241d3は、調整流路241d2をバイパスする流路である。板状部材242によって第1流路241c1が閉じられており、冷媒が調整流路241d2を通過できない間でも、冷媒はバイパス流路241d3を通過することができる。 The flow rate adjustment unit 140 internally has an adjustment channel 241d2 included in the first channel 241c1 and a bypass channel 241d3 included in the second channel 241c2. The bypass channel 241d3 is a channel that bypasses the adjustment channel 241d2. The plate member 242 closes the first flow path 241c1, allowing the refrigerant to pass through the bypass flow path 241d3 even while the refrigerant cannot pass through the adjustment flow path 241d2.
 流量調整部140の開度が所定の最小開度である場合、板状部材242によって第1流路241c1は閉じられている。この時、板状部材242の上流側の空間と、板状部材242の下流側の空間とは、バイパス流路241d3によって互いに連通している。そのため、第1流路241c1は閉じられている状態でも、板状部材242の上流側の空間(入口流路241d1)の圧力と、板状部材242の下流側の空間(調整流路241d2)の圧力との差(以下、弁体差圧という。)が、バイパス流路241d3によって軽減される。 When the opening degree of the flow rate adjusting unit 140 is a predetermined minimum opening degree, the plate member 242 closes the first flow path 241c1. At this time, the space on the upstream side of the plate-like member 242 and the space on the downstream side of the plate-like member 242 communicate with each other through the bypass channel 241d3. Therefore, even when the first channel 241c1 is closed, the pressure in the space on the upstream side of the plate member 242 (inlet channel 241d1) and the space on the downstream side of the plate member 242 (adjustment channel 241d2) The difference from the pressure (hereinafter referred to as valve element differential pressure) is reduced by the bypass channel 241d3.
 流量調整部140がバイパス流路241d3を内部に有さない場合、冷凍サイクル装置1の暖房運転時には、流入口241aから流入する冷媒によって、板状部材242の上流側の空間の圧力は、板状部材242の下流側の空間の圧力よりも大きくなるので、弁体差圧が高くなりやすい。この場合、板状部材242が弁座245と接して第1流路241c1が閉じられている状態では、弁体差圧が高いほど、板状部材242の自由端を変位させて板状部材242を弁座245から離すために必要となる負荷(以下、弁体負荷という。)が大きくなる。弁体負荷が大きいほど、より大きい発生力を有する大型の板状部材242を使用する必要があるので、板状部材242を収容する弁本体241の寸法も大きくなり、流量調整部140が大型化する傾向にある。 When the flow rate adjusting unit 140 does not have the bypass flow path 241d3 inside, during the heating operation of the refrigeration cycle device 1, the pressure in the space on the upstream side of the plate-like member 242 is increased by the refrigerant flowing from the inlet 241a. Since the pressure is greater than the pressure in the space downstream of the member 242, the valve body differential pressure tends to increase. In this case, when the plate-like member 242 is in contact with the valve seat 245 to close the first flow path 241c1, the higher the valve element pressure difference, the more the free end of the plate-like member 242 is displaced. from the valve seat 245 (hereinafter referred to as valve body load) increases. As the load on the valve body increases, it is necessary to use a large plate-like member 242 having a larger generated force. tend to
 本実施形態の流量調整部140は、バイパス流路241d3を内部に有するので、バイパス流路241d3を内部に有さない構成と比較して、弁体差圧が低く、従って、弁体負荷も低い。そのため、本実施形態の流量調整部140は、バイパス流路241d3を内部に有さない構成において必要な板状部材242よりも、小型の板状部材242を使用することができる。従って、本実施形態の流量調整部140は、弁本体241の寸法を抑えることができるので、大型化を抑制して小型化を実現することができる。その結果、流量調整部140のコストを低減することができる。また、本実施形態の流量調整部140を備える熱交換ユニット100も、大型化を抑制して小型化を実現することができる。 Since the flow rate adjusting unit 140 of the present embodiment has the bypass flow path 241d3 inside, the valve element differential pressure is low, and therefore the valve element load is low as compared with a configuration that does not have the bypass flow path 241d3 inside. . Therefore, the flow rate adjusting unit 140 of this embodiment can use a plate-like member 242 that is smaller than the plate-like member 242 that is required in a configuration that does not have the bypass channel 241d3 inside. Therefore, the flow rate adjusting unit 140 of the present embodiment can suppress the size of the valve body 241, so that size reduction can be suppressed and downsizing can be realized. As a result, the cost of the flow rate adjusting section 140 can be reduced. Also, the heat exchange unit 100 including the flow rate adjusting section 140 of the present embodiment can be reduced in size by suppressing an increase in size.
 (3-2)
 本実施形態の流量調整部140では、電極243は弁本体241の内部において板状部材242に電気的に接続されている。そのため、流量調整部140は、板状部材242全体を弁本体241の内部に収容することで、板状部材242を保護することができる。
(3-2)
In the flow rate adjusting section 140 of this embodiment, the electrode 243 is electrically connected to the plate member 242 inside the valve body 241 . Therefore, the flow rate adjusting unit 140 can protect the plate-like member 242 by housing the entire plate-like member 242 inside the valve main body 241 .
 (3-3)
 本実施形態の流量調整部140では、電極243の一部は弁本体241の内部に配置され、電極243の一部は弁本体241の外部の外気に露出している。そのため、流量調整部140は、電極243全体を弁本体241の内部に配置する必要がないので、弁本体241の寸法を抑えることができる。従って、流量調整部140の大型化を抑制して小型化を実現することができる。
(3-3)
In the flow regulating part 140 of this embodiment, part of the electrode 243 is arranged inside the valve body 241 and part of the electrode 243 is exposed to the outside air outside the valve body 241 . Therefore, the flow rate adjusting unit 140 does not need to dispose the entire electrode 243 inside the valve body 241, so the size of the valve body 241 can be suppressed. Therefore, it is possible to suppress an increase in the size of the flow rate adjusting unit 140 and realize a reduction in size.
 (3-4)
 本実施形態の流量調整部140は、圧電体242bに印加される電圧によって板状部材242の自由端が第1方向に変位することで、調整流路241d2の断面積が変化するように構成されている。熱交換ユニット100の制御部28は、印加電圧をオン状態にする時間t1と、オフ状態にする時間t2とを制御することにより、流量調整部140を通過する冷媒の流量を容易に調整することができる。また、制御部28は、圧電体242bに印加される電圧を制御することにより、板状部材242の自由端の変位量を調節することができる。そのため、流量調整部140は、流量調整部140が減圧できる最大圧力以下の圧力範囲において、冷媒の流量を細かく調整することができる。
(3-4)
The flow rate adjusting unit 140 of the present embodiment is configured such that the cross-sectional area of the adjusting flow path 241d2 is changed by displacing the free end of the plate member 242 in the first direction due to the voltage applied to the piezoelectric body 242b. ing. The control unit 28 of the heat exchange unit 100 can easily adjust the flow rate of the refrigerant passing through the flow rate adjusting unit 140 by controlling the time t1 in which the applied voltage is turned on and the time t2 in which the applied voltage is turned off. can be done. Further, the control unit 28 can adjust the amount of displacement of the free end of the plate member 242 by controlling the voltage applied to the piezoelectric body 242b. Therefore, the flow rate adjusting section 140 can finely adjust the flow rate of the refrigerant in a pressure range equal to or lower than the maximum pressure that the flow rate adjusting section 140 can reduce.
 (3-5)
 本実施形態の流量調整部140では、冷凍サイクル装置1の暖房運転時において、第1流路241c1を流れる冷媒は、板状部材242に到達する前に入口流路241d1を流れる。板状部材242の自由端が変位する方向と、入口流路241d1で冷媒が流れる方向とは、交差している。これらの2つの方向が互いに平行である場合と比較して、本実施形態の流量調整部140では、板状部材242の自由端を変位させるために必要な力を抑えることができる。従って、小型の板状部材242を使用することができるので、流量調整部140の大型化を抑制して小型化を実現することができる。
(3-5)
In the flow rate adjusting unit 140 of the present embodiment, the refrigerant flowing through the first flow path 241c1 flows through the inlet flow path 241d1 before reaching the plate member 242 during the heating operation of the refrigeration cycle device 1 . The direction in which the free end of the plate member 242 is displaced intersects with the direction in which the coolant flows in the inlet channel 241d1. Compared to the case where these two directions are parallel to each other, the force required to displace the free end of the plate member 242 can be suppressed in the flow rate adjusting section 140 of this embodiment. Therefore, since a small plate-like member 242 can be used, it is possible to suppress an increase in the size of the flow rate adjusting section 140 and realize a reduction in size.
 この観点からは、板状部材242の自由端が変位する方向と、入口流路241d1で冷媒が流れる方向とは、互いに直交することが好ましい。言い換えると、板状部材242の長手方向と、入口流路241d1における冷媒の流れ方向とが、互いに平行であることが好ましい。さらに言い換えると、板状部材242をその長手方向に延長した方向に流入口241aが位置することが好ましい。この場合、板状部材242の自由端を変位させるために必要な力が大幅に抑えられる。 From this point of view, it is preferable that the direction in which the free end of the plate member 242 is displaced and the direction in which the coolant flows in the inlet channel 241d1 are perpendicular to each other. In other words, it is preferable that the longitudinal direction of the plate member 242 and the flow direction of the coolant in the inlet channel 241d1 are parallel to each other. In other words, it is preferable that the inflow port 241a is positioned in a direction in which the plate member 242 is extended in its longitudinal direction. In this case, the force required to displace the free end of plate-like member 242 is greatly reduced.
 (4)変形例
 (4-1)変形例J
 実施形態の熱交換ユニット100は、室外ユニット2に設けられているが、これに限定されない。例えば、熱交換ユニット100は、室内ユニット3に設けられてもよい。
(4) Modification (4-1) Modification J
The heat exchange unit 100 of the embodiment is provided in the outdoor unit 2, but is not limited to this. For example, the heat exchange unit 100 may be provided in the indoor unit 3.
 (4-2)変形例K
 実施形態の流量調整部140は、分流器110と熱交換部23a~23iとの間に配置されているが、これに限定されない。例えば、流量調整部140は、熱交換部23a~23iとヘッダ130との間に配置されてもよい。
(4-2) Modification K
The flow rate adjusting section 140 of the embodiment is arranged between the flow divider 110 and the heat exchanging sections 23a to 23i, but is not limited to this. For example, the flow rate adjusting section 140 may be arranged between the heat exchanging sections 23 a to 23 i and the header 130 .
 (4-3)変形例L
 実施形態の流量調整部140の数は、複数の冷媒流路120の数と同じであるが、これに限定されない。具体的には、流量調整部140は、複数の冷媒流路120のうちの少なくとも1つに配置されていればよい。流量調整部140の数をxとし、複数の冷媒流路の数をyとすると、xは、yと同じ、又は、y-1であることが好ましい。xがy-1である場合、複数の冷媒流路120のうちの1つの冷媒流路には、流量調整部140が配置されておらず、残りの冷媒流路には、1つの流量調整部140が配置されている。
(4-3) Modification L
The number of flow rate adjusting units 140 in the embodiment is the same as the number of multiple coolant channels 120, but is not limited to this. Specifically, the flow rate adjusting unit 140 may be arranged in at least one of the plurality of coolant channels 120 . If x is the number of flow rate adjusting units 140 and y is the number of a plurality of refrigerant flow paths, x is preferably the same as y or y−1. When x is y−1, one of the plurality of refrigerant flow paths 120 is not provided with the flow rate adjusting unit 140, and the remaining refrigerant flow paths are provided with one flow rate adjusting unit. 140 are arranged.
 (4-4)変形例M
 実施形態では、室外熱交換器23の熱交換部23a~23iは、フィンを共有しているが、これに限定されない。例えば、室外熱交換器23の下方に位置する熱交換部23a,23bが共有するフィンと、室外熱交換器23の中央及び上方に位置する熱交換部23c~23hが共有するフィンとが、別々であってもよい。
(4-4) Modification M
In the embodiment, the heat exchange parts 23a to 23i of the outdoor heat exchanger 23 share fins, but the invention is not limited to this. For example, the fins shared by the heat exchange units 23a and 23b located below the outdoor heat exchanger 23 and the fins shared by the heat exchange units 23c to 23h located in the center and above the outdoor heat exchanger 23 are separated. may be
 (4-5)変形例N
 実施形態では、冷凍サイクル装置1の室内ユニット3は1つの室内熱交換器31を含んでいるが、これに限定されない。例えば、室内ユニット3は、複数の室内熱交換器31を含んでいてもよい。
(4-5) Modification N
In the embodiment, the indoor unit 3 of the refrigeration cycle device 1 includes one indoor heat exchanger 31, but is not limited to this. For example, the indoor unit 3 may include multiple indoor heat exchangers 31 .
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although embodiments of the present disclosure have been described above, it will be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure as set forth in the appended claims. .
1     :冷凍サイクル装置
2     :室外ユニット
3     :室内ユニット
28    :制御部
100   :熱交換ユニット
110   :分流器
120,120a,120b,120c,120d,120e,120f,120g,120h,120i :冷媒流路
140,140a,140b,140c,140d,140e,140f,140g,140h,140i :流量調整部
141   :本体部
141a  :流入口
141b  :流出口
141c  :流路
141c1 :調整流路
141d  :弁座
142   :板状部材
142a  :金属体
142b  :圧電体
143   :電極
144   :絶縁部材
145   :側壁
150   :バイパス部
241   :弁本体
241a  :流入口
241b  :流出口
241c1 :第1流路
241c2 :第2流路
242   :板状部材
242a  :金属板
242b  :圧電体
243   :電極(第1部材)
244   :絶縁部材(第2部材)
246   :電極側空間(第1空間)
247   :電極側開口(第1開口)
Reference Signs List 1: Refrigeration cycle device 2: Outdoor unit 3: Indoor unit 28: Control unit 100: Heat exchange unit 110: Flow dividers 120, 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i: Refrigerant channel 140 , 140a, 140b, 140c, 140d, 140e, 140f, 140g, 140h, 140i: flow rate adjusting portion 141: body portion 141a: inlet 141b: outlet 141c: flow path 141c1: adjustment flow path 141d: valve seat 142: plate Shaped member 142a : Metal body 142b : Piezoelectric body 143 : Electrode 144 : Insulating member 145 : Side wall 150 : Bypass part 241 : Valve body 241a : Inlet 241b : Outlet 241c1 : First channel 241c2 : Second channel 242 : Plate member 242a: Metal plate 242b: Piezoelectric body 243: Electrode (first member)
244: insulating member (second member)
246: Electrode side space (first space)
247: electrode side opening (first opening)
特許5197819号Patent No. 5197819

Claims (14)

  1.  冷凍サイクル装置(1)の熱交換ユニットであって、
     冷媒が流れる複数の冷媒流路(120)と、
     少なくとも1つの前記冷媒流路に設けられ、前記冷媒流路を流れる冷媒の流量を調整する流量調整部(140)と、
    を備え、
     前記流量調整部は、前記冷凍サイクル装置の動作中に生じる冷媒の高圧及び低圧の差の最大値である最大差圧値の1/20以下の圧力範囲でのみ冷媒を減圧する、
    熱交換ユニット(100)。
    A heat exchange unit of a refrigeration cycle device (1),
    a plurality of coolant channels (120) through which coolant flows;
    a flow rate adjustment unit (140) provided in at least one of the refrigerant flow paths and adjusting the flow rate of the refrigerant flowing through the refrigerant flow path;
    with
    The flow rate adjusting unit decompresses the refrigerant only in a pressure range of 1/20 or less of a maximum differential pressure value, which is the maximum value of the difference between high pressure and low pressure of the refrigerant generated during operation of the refrigeration cycle device,
    A heat exchange unit (100).
  2.  前記流量調整部は、前記最大差圧値の1/30以下の圧力範囲でのみ冷媒を減圧する、
    請求項1に記載の熱交換ユニット。
    The flow rate adjusting unit depressurizes the refrigerant only within a pressure range of 1/30 or less of the maximum differential pressure value.
    A heat exchange unit according to claim 1 .
  3.  前記流量調整部は、最小開度時に、上流側及び下流側を連通させる細路を含む、
    請求項1または2に記載の熱交換ユニット。
    The flow rate adjustment unit includes a narrow passage that communicates the upstream side and the downstream side at the minimum opening,
    A heat exchange unit according to claim 1 or 2.
  4.  前記流量調整部に所定値以上の差圧がかかると、前記流量調整部をバイパスするバイパス部(150)をさらに備える、
    請求項1~3のいずれか1項に記載の熱交換ユニット。
    Further comprising a bypass unit (150) that bypasses the flow rate adjustment unit when a differential pressure equal to or greater than a predetermined value is applied to the flow rate adjustment unit,
    A heat exchange unit according to any one of claims 1 to 3.
  5.  前記流量調整部は、印加電圧により作動し、
     前記印加電圧をオン状態にする時間と、オフ状態にする時間と、を変えるように制御する制御部(28)をさらに備える、
    請求項1~4のいずれか1項に記載の熱交換ユニット。
    The flow rate adjustment unit is operated by an applied voltage,
    Further comprising a control unit (28) that controls to change the time to turn on the applied voltage and the time to turn off the applied voltage,
    A heat exchange unit according to any one of claims 1 to 4.
  6.  前記流量調整部は、印加電圧により作動し、
     前記印加電圧を増減させるように制御する制御部(28)をさらに備える、
    請求項1~4のいずれか1項に記載の熱交換ユニット。
    The flow rate adjustment unit is operated by an applied voltage,
    Further comprising a control unit (28) that controls to increase or decrease the applied voltage,
    A heat exchange unit according to any one of claims 1 to 4.
  7.  前記流量調整部は、
      冷媒の流入口(141a)と、冷媒の流出口(141b)と、前記流入口と前記流出口とを連通する流路(141c)と、を有する本体部(141)と、
      印加電圧により変形する圧電性を有する材料で構成された圧電体(142b)と、前記圧電体と積層され、金属材料で構成された金属体(142a)と、を有する板状部材(142)と、
    を含み、
     前記本体部には、前記板状部材と対向する弁座(141d)が設けられ、
     前記流路は、前記弁座と前記板状部材とで区画される調整流路(141c1)を有し、
     印加電圧により前記圧電体に生じる変位により、前記調整流路の下流側の断面積を変える、
    請求項1~6のいずれか1項に記載の熱交換ユニット。
    The flow rate adjustment unit is
    a main body (141) having a coolant inlet (141a), a coolant outlet (141b), and a channel (141c) connecting the inlet and the outlet;
    a plate-like member (142) having a piezoelectric body (142b) made of a material having piezoelectricity that deforms with an applied voltage, and a metal body (142a) laminated with the piezoelectric body and made of a metal material; ,
    including
    The body portion is provided with a valve seat (141d) facing the plate member,
    The flow path has an adjustment flow path (141c1) defined by the valve seat and the plate member,
    changing the cross-sectional area on the downstream side of the adjustment channel by the displacement generated in the piezoelectric body by the applied voltage;
    A heat exchange unit according to any one of claims 1 to 6.
  8.  前記圧電体が変位する方向と、前記流入口における前記流路の延びる方向とは、交差する、
    請求項7に記載の熱交換ユニット。
    a direction in which the piezoelectric body is displaced and a direction in which the flow path extends at the inlet intersect;
    A heat exchange unit according to claim 7.
  9.  前記流量調整部は、
      前記圧電体と接続される電極(143)と、
      前記電極と前記本体部とを絶縁する絶縁材料で構成された絶縁部材(144)と、
    をさらに含み、
     前記電極の一部は、前記本体部から大気中に突出する、
    請求項7または8に記載の熱交換ユニット。
    The flow rate adjustment unit is
    an electrode (143) connected to the piezoelectric body;
    an insulating member (144) made of an insulating material that insulates the electrode from the main body;
    further comprising
    A portion of the electrode protrudes from the main body into the atmosphere,
    A heat exchange unit according to claim 7 or 8.
  10.  前記流量調整部は、
      流体の流入口(241a)及び流出口(241b)を有する弁本体(241)と、
      前記弁本体の内部に配置され、板状の圧電体(242b)と金属板(242a)とを有する板状部材(242)と、
    を備え、
     前記弁本体は、
      前記流入口と前記流出口とを結ぶ第1流路(241c1)と、
      前記流入口と前記流出口とを結ぶ第2流路(241c2)と、
     を有し、
     前記板状部材は、前記圧電体に電圧を印加することで生じる前記板状部材の変位によって前記第1流路を開閉することで、前記流入口から前記流出口に流れる流体の流量を調整する、
    請求項1に記載の熱交換ユニット。
    The flow rate adjustment unit is
    a valve body (241) having a fluid inlet (241a) and a fluid outlet (241b);
    a plate-like member (242) disposed inside the valve body and having a plate-like piezoelectric body (242b) and a metal plate (242a);
    with
    The valve body is
    a first channel (241c1) connecting the inlet and the outlet;
    a second flow path (241c2) connecting the inlet and the outlet;
    has
    The plate member adjusts the flow rate of the fluid flowing from the inflow port to the outflow port by opening and closing the first flow path according to displacement of the plate member caused by applying a voltage to the piezoelectric body. ,
    A heat exchange unit according to claim 1 .
  11.  前記板状部材は、前記圧電体に電圧を印加することで生じる前記板状部材の変位によって前記第1流路を周期的に開閉することで、前記流量を調整する、
    請求項10に記載の熱交換ユニット。
    The plate-shaped member adjusts the flow rate by periodically opening and closing the first flow path due to displacement of the plate-shaped member caused by applying a voltage to the piezoelectric body.
    11. A heat exchange unit according to claim 10.
  12.  前記板状部材は、さらに、前記圧電体に印加される電圧の大きさを変化させることによる、前記板状部材の変位量の調整によって、前記流量を調整する、
    請求項10又は11に記載の熱交換ユニット。
    The plate-shaped member further adjusts the flow rate by adjusting the amount of displacement of the plate-shaped member by changing the magnitude of the voltage applied to the piezoelectric body.
    A heat exchange unit according to claim 10 or 11.
  13.  前記弁本体の内部において前記第1流路と連通する第1空間(246)に配置される導電性部材である第1部材(243)をさらに備え、
     前記第1部材は、前記圧電体及び前記金属板と電気的に接続される、
    請求項10から12のいずれか1項に記載の熱交換ユニット。
    further comprising a first member (243) that is a conductive member arranged in a first space (246) that communicates with the first flow path inside the valve body,
    wherein the first member is electrically connected to the piezoelectric body and the metal plate;
    A heat exchange unit according to any one of claims 10-12.
  14.  前記弁本体は、前記弁本体の外部空間と前記第1空間とを結ぶ第1開口(247)をさらに有し、
     前記第1開口は、絶縁性部材である第2部材(244)によってシールされ、
     前記第1部材は、前記第1空間から前記弁本体の外部空間まで延びており、かつ、前記弁本体と接することなく前記第2部材を貫通している、
    請求項13に記載の熱交換ユニット。
     
    The valve body further has a first opening (247) connecting the external space of the valve body and the first space,
    the first opening is sealed by a second member (244) which is an insulating member;
    The first member extends from the first space to an external space of the valve body, and penetrates the second member without contacting the valve body.
    14. A heat exchange unit according to claim 13.
PCT/JP2022/008622 2021-03-03 2022-03-01 Heat exchange unit WO2022186205A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-033433 2021-03-03
JP2021033433A JP7475298B2 (en) 2021-03-03 2021-03-03 Heat Exchange Unit
JP2021-062240 2021-03-31
JP2021062240A JP7280522B2 (en) 2021-03-31 2021-03-31 Flow control valve and heat exchange unit

Publications (1)

Publication Number Publication Date
WO2022186205A1 true WO2022186205A1 (en) 2022-09-09

Family

ID=83154788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008622 WO2022186205A1 (en) 2021-03-03 2022-03-01 Heat exchange unit

Country Status (1)

Country Link
WO (1) WO2022186205A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178447A (en) * 1994-12-19 1996-07-12 Toshiba Ave Corp Multi-room split type air conditioner
JPH10258508A (en) * 1997-03-19 1998-09-29 Matsushita Electric Ind Co Ltd Ink jet head
JPH11211285A (en) * 1998-01-23 1999-08-06 Mitsubishi Electric Corp Open-close valve and refrigerator using open/close valve
JP2006153141A (en) * 2004-11-29 2006-06-15 Fujikin Inc Minute flow rate controller with entrance channel
JP2006308151A (en) * 2005-04-27 2006-11-09 Hitachi Ltd Absorption water cooler/heater
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
JP2011247582A (en) * 2011-09-12 2011-12-08 Mitsubishi Electric Corp Distributor and refrigerating cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178447A (en) * 1994-12-19 1996-07-12 Toshiba Ave Corp Multi-room split type air conditioner
JPH10258508A (en) * 1997-03-19 1998-09-29 Matsushita Electric Ind Co Ltd Ink jet head
JPH11211285A (en) * 1998-01-23 1999-08-06 Mitsubishi Electric Corp Open-close valve and refrigerator using open/close valve
JP2006153141A (en) * 2004-11-29 2006-06-15 Fujikin Inc Minute flow rate controller with entrance channel
JP2009133624A (en) * 2005-03-14 2009-06-18 Mitsubishi Electric Corp Refrigerating/air-conditioning device
JP2006308151A (en) * 2005-04-27 2006-11-09 Hitachi Ltd Absorption water cooler/heater
JP2011247582A (en) * 2011-09-12 2011-12-08 Mitsubishi Electric Corp Distributor and refrigerating cycle device

Similar Documents

Publication Publication Date Title
US20180340700A1 (en) Variable refrigerant flow system
US8540207B2 (en) Fluid flow control assembly
US10006678B2 (en) Air-conditioning apparatus
JP5182358B2 (en) Refrigeration equipment
JP6657613B2 (en) Air conditioner
CN107490090B (en) Air conditioner
CN111051793B (en) Air conditioning apparatus
WO2018076934A1 (en) Air conditioner and refrigeration system thereof
CN107489786A (en) Slidingtype switching valve and refrigerating circulation system
US7380411B2 (en) Heat source unit with switching means between heating and cooling
JP2010101558A (en) Control method for heat pump device, outdoor unit for heat pump device, and heat pump device
CN109990429A (en) A kind of air conditioner defrosting control method and air conditioner
US11499727B2 (en) Air conditioning apparatus
JP7280522B2 (en) Flow control valve and heat exchange unit
WO2022186205A1 (en) Heat exchange unit
CN107726475B (en) Air conditioner
CN111854240B (en) Refrigeration cycle system
JP7350888B2 (en) Refrigeration cycle equipment
JP2022134359A (en) heat exchange unit
JP2020060364A (en) Heat exchanger with multi-stage expansion device, refrigerant cycle, and temperature adjustment system
US20220299215A1 (en) Water source heat pump dual functioning condensing coil
CN115597250A (en) Heat pump system and four-way valve
CN108895698A (en) air conditioner
JP6234849B2 (en) Air conditioner heat exchanger
CN212930542U (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/11/2023)