WO2022186182A1 - 予測装置、予測方法、及び、記録媒体 - Google Patents

予測装置、予測方法、及び、記録媒体 Download PDF

Info

Publication number
WO2022186182A1
WO2022186182A1 PCT/JP2022/008533 JP2022008533W WO2022186182A1 WO 2022186182 A1 WO2022186182 A1 WO 2022186182A1 JP 2022008533 W JP2022008533 W JP 2022008533W WO 2022186182 A1 WO2022186182 A1 WO 2022186182A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
predicted value
amount
feature amount
machine learning
Prior art date
Application number
PCT/JP2022/008533
Other languages
English (en)
French (fr)
Inventor
綾 緒方
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/279,521 priority Critical patent/US20240303540A1/en
Priority to JP2023503851A priority patent/JPWO2022186182A5/ja
Publication of WO2022186182A1 publication Critical patent/WO2022186182A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/22Fuzzy logic, artificial intelligence, neural networks or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/003Determining well or borehole volumes

Definitions

  • This disclosure relates to a method of making predictions related to resource development using AI (Artificial Intelligence).
  • AI Artificial Intelligence
  • a method of making predictions related to resource development using AI is known.
  • US Pat. No. 6,200,000 discloses a method for estimating petrophysical properties of hydrocarbon reservoirs using neural networks (NN).
  • Patent document 1 is not intended for use in shale gas or shale oil mining, and cannot be applied to shale gas or shale oil mining. Moreover, since the technique of Patent Document 1 uses a neural network, there is a problem that the interpretability of the obtained prediction result is low.
  • the purpose of this disclosure is to present predictions related to the development of shale gas and shale oil in a highly interpretable manner.
  • One aspect of the present disclosure is a prediction device comprising: Acquisition means for acquiring feature values relating to shale gas or shale oil wells; Prediction means for calculating a predicted value of the production amount of the well or the sand return amount of the well using a machine learning model based on the feature amount; and output means for outputting the predicted value and the degree of contribution of the feature amount to the predicted value.
  • Another aspect of the present disclosure is a prediction method comprising: Acquiring features related to shale gas or shale oil wells, Based on the feature amount, a machine learning model is used to calculate a predicted value of the production amount of the well or the sand return amount of the well, Outputting the predicted value and the degree of contribution of the feature amount to the predicted value.
  • Yet another aspect of the present disclosure is a recording medium comprising: Acquiring features related to shale gas or shale oil wells, Based on the feature amount, a machine learning model is used to calculate a predicted value of the production amount of the well or the sand return amount of the well, A program for causing a computer to execute a process of outputting the predicted value and the degree of contribution of the feature amount to the predicted value is recorded.
  • 1 shows a prediction device according to a first embodiment
  • 2 shows a hardware configuration of a prediction device according to the first embodiment
  • 1 shows a functional configuration of the prediction device of the first embodiment when generating a model
  • An example of the structure of a prediction model using heterogeneous mixture learning is shown schematically.
  • An example of a forecast model for forecasting shale gas and oil production is shown.
  • An example of a prediction model that predicts the amount of sand backflow in shale gas and oil development is shown.
  • FIG. 9 is a diagram explaining a prediction formula in the prediction model of FIG.
  • FIG. 8 shows a functional configuration of a prediction device according to the first embodiment
  • 4 is a flowchart of prediction processing by the prediction device according to the first embodiment
  • 2 shows the functional configuration of a prediction device according to a second embodiment
  • 9 is a flowchart of prediction processing by a prediction device according to the second embodiment
  • FIG. 11 shows a functional configuration of a prediction device according to a third embodiment
  • FIG. 10 is a flowchart of processing by a prediction device according to the third embodiment
  • FIG. 1 is a diagram explaining the basic steps of a shale gas/oil mining method.
  • the mining method for shale oil is basically the same.
  • Shale gas and shale oil are natural gas and crude oil extracted from the shale layer, which is a layer of sedimentary rock called shale.
  • shale gas mining basically follows the sequence of drilling, hydraulic fracturing, water recovery, and gas production. Specifically, in the drilling process, a steel pipe with a drill at the tip is used to drill a well horizontally deep into the shale layer. Next, in the hydraulic fracturing process, high-pressure water containing sand (proppant) is sent to create artificial fissures in the shale layer. Subsequently, in the water recovery step, the water used for the hydraulic fracturing is recovered and a gas flow path is secured. Gas production is then started.
  • FIG. 2 shows a prediction device 100 according to the first embodiment.
  • the forecasting device 100 makes forecasts related to shale development.
  • the prediction device 100 receives feature amount data representing various feature amounts related to shale development.
  • the prediction device 100 uses machine learning to predict factors that affect development plans for shale gas and shale oil, specifically, the production volume of wells and the amount of sand reclaimed from wells, from the feature amount data. Print the result.
  • Feature data indicates feature values related to well location, geology, mining, finishing, production, etc.
  • the feature values relating to the position of the well include, for example, country, region, latitude/longitude, and the like.
  • Geological features include, for example, mining area, stratum, porosity, permeability, water saturation, salinity, and the like.
  • the mining features include, for example, mining depth, horizontal length, well interval, horizontal undulation, excavation period, excavator, and the like.
  • the feature values relating to finishing include, for example, the number of stages, the number of clusters, the type/granularity (size) of sand, the type/amount/viscosity of fluid (water), injection pressure, casing type, and the like.
  • the feature values related to production include water recovery amount, sand recovery amount, gas/oil recovery amount/ratio, and the like.
  • FIG. 3 is a block diagram showing the hardware configuration of the prediction device 100.
  • the prediction device 100 includes an interface (IF) 101 , a processor 102 , a memory 103 , a recording medium 104 , a display section 105 and an input section 106 .
  • IF interface
  • processor 102 processor 102
  • memory 103 memory
  • recording medium 104 recording medium
  • display section 105 display section
  • input section 106 input section
  • the IF 101 inputs and outputs data to and from the prediction device 100 .
  • the IF 101 is used to input various feature amount data related to shale development and to output prediction results to the outside.
  • the processor 102 is a computer such as a CPU, and controls the entire prediction device 100 by executing a program prepared in advance.
  • the processor 102 may be GPU (Graphics Processing Unit) or FPGA (Field-Programmable Gate Array). Specifically, the processor 102 executes prediction processing, which will be described later.
  • the memory 103 is composed of ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the memory 103 stores information about prediction models used by the prediction device 100 .
  • the memory 103 is also used as a working memory while the processor 102 is executing various processes.
  • the recording medium 104 is a non-volatile, non-temporary recording medium such as a disk-shaped recording medium or semiconductor memory, and is configured to be detachable from the prediction device 100 .
  • the recording medium 104 records various programs executed by the processor 102 .
  • a program recorded in the recording medium 104 is loaded into the memory 103 and executed by the processor 102 .
  • the display unit 105 is, for example, a liquid crystal display device, and displays various information to the user.
  • the input unit 106 is, for example, a keyboard, a mouse, etc., and is used when the user performs various instructions and inputs.
  • FIG. 4 is a block diagram showing the functional configuration of the prediction device 100 during model generation.
  • the prediction device 100 includes a data acquisition unit 111 and a prediction model generation unit 112 .
  • the data acquisition unit 111 outputs various past feature amount data related to shale development to the prediction model generation unit 112 as training data.
  • the prediction model generator 112 trains a prediction model using the training data, and outputs the trained prediction model.
  • the obtained prediction model is stored in the memory 103 or the like. Note that, when generating a forecast model, the forecast model may be trained by dividing the training data for each region where shale development is to be carried out, specifically for each country and latitude/longitude.
  • the prediction model generation unit 112 generates a prediction model through heterogeneous mixture learning.
  • Heterogeneous mixture learning is a method of automatically discovering specific regularities from a wide variety of data, dividing the data into groups, and making predictions using appropriate regularities for each group.
  • a prediction model generated by heterogeneous mixture learning is a combination of a tree structure indicating conditions for selecting a prediction formula and a linear prediction formula.
  • the predictive model generation unit 112 first analyzes the patterns and tendencies of the data, divides the data into groups (cases), and determines whether the data belongs to each group. Generate a prediction formula that fits the regularity of the data. For example, when the prediction device 100 predicts the production of shale gas, the prediction model generator 112 predicts the production of shale gas for each group using past feature amount data and past actual production. Generate a prediction formula.
  • the heterogeneous mixture learning method is disclosed, for example, in US Publication No. US2014/0222741A1.
  • Fig. 5 schematically shows an example of the structure of a prediction model using heterogeneous mixture learning.
  • all data are divided into four groups G1 to G4 according to conditions 1 to 4, and prediction is performed using a corresponding prediction formula for data in each group.
  • prediction formula 1 is used to predict data belonging to group G1 for which condition 1 is No.
  • Prediction is performed using prediction formula 2 for data belonging to group G2 for which condition 1 is Yes and condition 2 is No.
  • prediction is performed using the appropriate prediction formula for each group of data.
  • FIG. 6 shows an example of a forecast model for forecasting shale gas and oil production.
  • condition 1 porosity ⁇ 3.5%
  • condition 2 organic carbon content > 2.2%
  • the input feature amount data are divided into four groups G1 It is divided into ⁇ G4.
  • G1-G4 For each group G1-G4, a prediction formula corresponding to that group is generated.
  • FIG. 7 is a diagram explaining the prediction formula.
  • Nine parameters are used as feature data to be input: formation pressure, sand grain size, amount of clay, resistivity, cluster interval, amount of fluid input, number of stages, amount of sand input, and horizontal length. Note that the above parameters are merely examples, and in practice more parameters may be used.
  • a graph corresponding to each prediction formula A to D shows the contribution of each parameter to the production amount in each prediction formula. For example, for prediction formula A, among the above nine parameters, the amount of sand input and the horizontal length contribute to the prediction of the production amount. The contribution of the horizontal length is approximately 1.4. In prediction formula A, the other 7 parameters do not contribute to production.
  • Each parameter is divided into a parameter having a positive correlation with the production amount and a parameter having a negative correlation. A parameter with a positive correlation contributes to an increase in production amount, and a parameter with a negative correlation contributes to a decrease in production amount.
  • prediction formulas B to D are also derived as shown in FIG. 7 based on each graph.
  • FIG. 8 shows an example of a prediction model for predicting the sand backflow amount in shale gas/oil development.
  • the sand return amount refers to the amount of sand (proppant) introduced in the hydraulic fracturing process shown in FIG. 1 that returns in the water recovery process. If a large amount of sand is returned, it will be necessary to re-inject sand to maintain cracks in the shale layer, leading to increased costs and other factors.
  • condition 1 (geological factor F1 ⁇ 0.2), condition 2 (geological factor F2 ⁇ 64), and condition 3 (geological factor F3 ⁇ 0.9)
  • the input feature amount data is 4. are divided into two groups G1 to G4. For each group G1-G4, a prediction formula corresponding to that group is generated.
  • FIG. 9 is a diagram explaining the prediction formula. Eight factors of finishing system factors A to D, mining system factors A to B, and mining system factors A to B are used as input feature amount data. It should be noted that each of the factors described above is merely an example, and more feature amount data may be used in practice. Graphs corresponding to each of the prediction formulas A to D show the degree of contribution of each factor to the amount of back sand in each prediction formula. For example, with regard to prediction formula A, of the above eight factors, production-related factor A and finishing-related factor B contribute to the prediction of the sandback amount. about 0.1, and the contribution of the finishing system factor B is about 0.5. In prediction formula A, the other six factors do not contribute to the sand return amount. As in the first example, there are positively correlated factors and negatively correlated factors.
  • FIG. 10 is a block diagram showing the functional configuration of the prediction device 100 during prediction.
  • a prediction device 100 for prediction includes a data acquisition unit 121 and a prediction unit 122 .
  • the data acquisition unit 121 is an example of acquisition means
  • the prediction unit 122 is an example of prediction means.
  • the data acquisition unit 121 acquires current feature amount data related to shale development and outputs it to the prediction model generation unit 112 .
  • the prediction unit 122 makes predictions using the prediction model generated by the heterogeneous mixture learning described above. Specifically, the prediction unit 122 predicts the production amount of shale gas, the amount of sand receding, and the like, based on the input current feature amount data, according to the grouping and prediction formulas illustrated in FIGS. 6 to 9 . Specifically, the prediction unit 122 determines one group based on the input feature amount data, and uses a prediction formula corresponding to that group to predict predicted values such as the production amount of shale gas and the amount of sand return. Calculate as a result.
  • the prediction unit 122 outputs the prediction result and the prediction formula used for the prediction. For example, in the prediction of the production amount of shale gas shown in FIG. outputs the calculated prediction result and the prediction formula A. Note that the prediction unit 122 may output a grouping condition corresponding to the prediction formula together with the prediction formula. That is, in the above example, the prediction unit 122 may output the prediction result, the prediction formula A, and the condition 1 corresponding to the prediction formula A. The output prediction result and prediction formula are displayed on the display unit 105, for example.
  • FIG. 11 is a flowchart of prediction processing by the prediction device 100.
  • FIG. This processing is realized by the processor 102 shown in FIG. 2 executing a program prepared in advance and operating as elements shown in FIG.
  • the data acquisition unit 121 acquires the current feature amount data (step S11).
  • the prediction unit 122 makes a prediction using a pre-generated prediction model (step S12). For example, in the above-described first and second examples, the prediction unit 122 predicts the amount of shale oil produced and the amount of sand return.
  • the prediction unit 122 outputs the prediction result and the prediction formula used for prediction (step S13). Then the process ends.
  • ⁇ Second embodiment> In the first embodiment described above, prediction is performed using a highly interpretable prediction model generated by heterogeneous mixture learning. Instead, in the second embodiment, instead of making the prediction model itself a highly interpretable model, by outputting auxiliary information that assists the interpretability of the prediction by the prediction model, the interpretability of the prediction result is guaranteed. .
  • FIG. 12 is a block diagram showing the functional configuration of the prediction device 200 of the second embodiment. Note that the hardware configuration of the prediction device 200 is the same as that of the prediction device 100 of the second embodiment.
  • the prediction device 200 includes a data acquisition unit 221 , a prediction unit 222 and an auxiliary information generation unit 223 .
  • the data acquisition unit 221 is an example of acquisition means
  • the prediction unit 222 is an example of prediction means
  • the auxiliary information generation unit 223 is an example of auxiliary information generation means.
  • the data acquisition unit 221 acquires feature amount data related to shale development and outputs it to the prediction unit 222 .
  • the prediction unit 222 does not need to use a particularly highly interpretable machine learning model, and can use, for example, a deep learning model using a neural network.
  • the prediction unit 222 performs prediction using a prediction model trained using past feature amount data related to shale development, and outputs a prediction result.
  • the auxiliary information generation unit 223 generates auxiliary information that supplements the interpretability of the machine learning model used by the prediction unit 222.
  • Auxiliary information is information indicating the basis of prediction by the machine learning model used by the prediction unit 222, and is generally generated using a technique called explainable AI (XAI).
  • XAI explainable AI
  • the auxiliary information includes the following.
  • the auxiliary information presenting a global explanation is information that approximately expresses the prediction model used by the prediction unit 222 with a highly readable model. Specifically, the auxiliary information expresses the target prediction model by approximating it with a single decision tree or rule model.
  • the auxiliary information can be generated using techniques such as BATREE (Born Again Tree) and defragTree. For example, in BATREE, a learned model is used to generate pseudo-training data, and the generated pseudo-training data is used to learn and present a decision tree.
  • the auxiliary information presenting local explanation indicates the grounds for prediction by the prediction model used by the prediction unit 222, and includes the following.
  • auxiliary information can be information indicating a feature amount on which prediction is based. That is, the auxiliary information indicates which features were important for prediction.
  • the auxiliary information can be generated using techniques such as LIME, SHAP, ANCHOR, and Grad-CAM.
  • auxiliary information can be information presenting training data that forms the basis for prediction.
  • the auxiliary information can be generated using a method such as influence, for example. Influences provide information about how much the prediction would change if certain training data were missing.
  • FIG. 13 is a flowchart of prediction processing by the prediction device 200.
  • FIG. This processing is realized by the processor 102 shown in FIG. 2 executing a program prepared in advance and operating as elements shown in FIG.
  • the data acquisition unit 221 acquires the current feature amount data (step S21).
  • the prediction unit 222 makes a prediction using a pre-generated prediction model (step S22).
  • the auxiliary information generation unit 223 generates auxiliary information that presents the grounds for prediction by the prediction model (step S23).
  • the prediction unit 222 and the auxiliary information generation unit 223 output prediction results and auxiliary information, respectively (step S24). Then the process ends.
  • the interpretability of the prediction model is improved by presenting auxiliary information for the model. You can make up for the lack.
  • FIG. 14 is a block diagram showing the functional configuration of a prediction device 300 according to the third embodiment.
  • the prediction device 300 includes acquisition means 301 , prediction means 302 and output means 303 .
  • FIG. 15 is a flowchart of processing by the prediction device 300 according to the third embodiment.
  • the acquisition means 301 acquires the feature amount related to the shale gas or shale oil well (step S31).
  • the prediction means 302 calculates a predicted value of the production volume of the well or the amount of sand return of the well using a machine learning model based on the feature amount (step S32).
  • the output unit 303 outputs the predicted value and the weighting factor of the feature quantity for the predicted value as the degree of contribution (step S33). Then the process ends. That is, the degree of contribution is a value indicating how much each feature amount contributed to the predicted value.
  • the weighting coefficient of the feature amount for the predicted value is output as the degree of contribution, so that the user can easily understand the grounds for obtaining the predicted value. can do.
  • a prediction device comprising a
  • the machine learning model includes a plurality of linear prediction formulas for calculating the predicted value, and a condition for selecting the linear prediction formula used to calculate the predicted value based on the feature amount,
  • the prediction apparatus according to supplementary note 1, wherein the output means outputs, as a contribution, a weighting factor of the feature quantity in the linear prediction formula used to calculate the prediction value.
  • Appendix 4 The prediction device according to appendix 3, wherein the auxiliary information is a feature quantity that is the basis of prediction using the machine learning model, or training data of the machine learning model that is the basis of the prediction.
  • Appendix 5 The prediction device according to appendix 3, wherein the auxiliary information is information expressing the machine learning model by a decision tree or a rule model.
  • Appendix 6 The prediction device according to any one of Appendices 1 to 5, wherein the feature amount includes information on proppant used in the well.
  • Appendix 7 The prediction device according to any one of Appendices 1 to 6, wherein the feature amount includes information about fluid used in the well.
  • Appendix 8 The prediction device according to any one of appendices 1 to 7, wherein the machine learning model has been trained using training data divided for each region.
  • a recording medium recording a program for causing a computer to execute a process of outputting the predicted value and the degree of contribution of the feature amount to the predicted value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

予測装置において、取得手段は、シェールガス又はシェールオイルの井戸に関する特徴量を取得する。予測手段は、特徴量に基づき、機械学習モデルを用いて井戸の生産量又は井戸の砂戻り量の予測値を算出する。出力手段は、予測値と、予測値に対する特徴量の寄与度とを出力する。

Description

予測装置、予測方法、及び、記録媒体
 本開示は、AI(Artificial Intelligence)を用いて資源開発に関連する予測を行う手法に関する。
 AIを利用して資源開発に関連する予測を行う方法が知られている。例えば、特許文献1は、ニューラルネットワーク(NN)を用いる炭化水素貯留層の石油物理的特性の推測方法を開示している。
特表2020-534456号公報
 特許文献1は、シェールガスやシェールオイルの採掘への利用は想定されておらず、シェールガスやシェールオイルの採掘には適用できない。また、特許文献1の手法は、ニューラルネットワークを利用するため、得られた予測結果の解釈性が低いという課題がある。
 本開示の目的は、シェールガスやシェールオイルの開発に関連する予測を、解釈性の高い方法で提示することにある。
 本開示の1つの観点は、予測装置であって、
 シェールガス又はシェールオイルの井戸に関する特徴量を取得する取得手段と、
 前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出する予測手段と、
 前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する出力手段と、を備える。
 本開示の他の観点は、予測方法であって、
 シェールガス又はシェールオイルの井戸に関する特徴量を取得し、
 前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出し、
 前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する。
 本開示のさらに他の観点は、記録媒体であって、
 シェールガス又はシェールオイルの井戸に関する特徴量を取得し、
 前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出し、
 前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する処理をコンピュータに実行させるプログラムを記録する。
 本開示によれば、シェールガスやシェールオイルの開発に関連する予測を、解釈性の高い方法で提示することが可能となる。
シェールガス・オイルの採掘方法の基本的な工程を説明する図である。 第1実施形態に係る予測装置を示す。 第1実施形態に係る予測装置のハードウェア構成を示す。 第1実施形態の予測装置のモデル生成時の機能構成を示す。 異種混合学習を用いた予測モデルの構造の一例を模式的に示す。 シェールガス・オイルの生産量を予測する予測モデルの例を示す。 図6の予測モデルにおける予測式を説明する図である。 シェールガス・オイル開発における砂戻り量を予測する予測モデルの例を示す。 図8の予測モデルにおける予測式を説明する図である。 第1実施形態に係る予測装置の機能構成を示す。 第1実施形態に係る予測装置による予測処理のフローチャートである。 第2実施形態に係る予測装置の機能構成を示す。 第2実施形態に係る予測装置による予測処理のフローチャートである。 第3実施形態に係る予測装置の機能構成を示す。 第3実施形態に係る予測装置による処理のフローチャートである。
 以下、図面を参照しながら、本開示の好適な実施形態について説明する。
 <シェール開発>
 まず、前提として、シェールオイルやシェールガスの開発(「シェール開発」とも呼ぶ。)の基本的な流れを説明する。図1は、シェールガス・オイルの採掘方法の基本的な工程を説明する図である。なお、シェールオイルの採掘方法も基本的に同様である。
 シェールガスやシェールオイルは、頁岩と呼ばれる堆積岩の層であるシェール層から採取される天然ガスや原油である。図示のように、シェールガスの採掘は、基本的に掘削、水圧破砕、水の回収、ガスの生産という順序で行われる。具体的に、掘削工程では、先端にドリルがついた鋼管を使って、地中深くのシェール層内に水平に抗井を掘削する。次に、水圧破砕工程では、砂(プロパント)を含んだ高圧の水を送り、シェール層に人工的な亀裂を作る。続いて、水の回収工程では、水圧破砕に使用した水を回収し、ガスの流路を確保する。その後、ガスの生産が開始される。
 シェール開発は、未だ歴史が浅く、開発因子が膨大にあるため、最適な開発方法論が未確立な面がある。このため、トライアンドエラーの手法での開発が行われることが多く、生産性の低い井戸を開発したり、仕上コストを過剰に投入したりした結果、事業としての採算性が悪化するという課題がある。このため、過去に得られた膨大なデータを用いて、機械学習により生産性を予測することが期待されている。予測の際、ニューラルネットワークを用いた深層学習などの手法を用いると、生産性の予測は可能であるが、得られた予測結果の解釈性が低いため、どのような因子がどの程度寄与してその予測結果が得られているかがわからない。以下の実施形態では、機械学習を用いてシェールガスやシェールオイルの生産性などを予測する際に、予測結果を解釈性の高い方法で提示することを可能とする。
 <第1実施形態>
 [基本構成]
 図2は、第1実施形態に係る予測装置100を示す。予測装置100は、シェール開発に関連する予測を行う。具体的に、予測装置100には、シェール開発に関連する各種の特徴量を示す特徴量データが入力される。予測装置100は、特徴量データから、機械学習を用いて、シェールガスやシェールオイルの開発計画に影響を与える要素、具体的には井戸の生産量や井戸の砂戻り量などを予測し、予測結果を出力する。
 特徴量データは、井戸の位置、地質、採掘、仕上、生産などに関する特徴量を示す。井戸の位置に関する特徴量は、例えば国、地域、緯度・経度などを含む。地質に関する特徴量は、例えば鉱区、地層、孔隙率、浸透率、水飽和率、塩分濃度などを含む。採掘に関する特徴量は、例えば採掘深度、水平長、井戸間隔、水平起伏、掘削期間、掘削業者などを含む。仕上に関する特徴量は、例えばステージ数、クラスタ数、砂の種類/粒度(大きさ)、流体(水)の種類/量/粘性、圧入圧力、ケーシング種類などを含む。生産に関する特徴量は、水回収量、砂回収量、ガス・オイルの回収量/比率などを含む。
 [ハードウェア構成]
 図3は、予測装置100のハードウェア構成を示すブロック図である。予測装置100は、インタフェース(IF)101と、プロセッサ102と、メモリ103と、記録媒体104と、表示部105と、入力部106とを備える。
 IF101は、予測装置100に対するデータの入出力を行う。具体的に、IF101は、シェール開発に関する各種の特徴量データの入力、及び、予測結果の外部への出力に使用される。
 プロセッサ102は、CPUなどのコンピュータであり、予め用意されたプログラムを実行することにより、予測装置100の全体を制御する。なお、プロセッサ102は、GPU(Graphics Processing Unit)又はFPGA(Field-Programmable Gate Array)などであってもよい。具体的に、プロセッサ102は、後述する予測処理を実行する。
 メモリ103は、ROM(Read Only Memory)、RAM(Random Access Memory)などにより構成される。メモリ103には、予測装置100が使用する予測モデルに関する情報が記憶される。また、メモリ103は、プロセッサ102による各種の処理の実行中に作業メモリとしても使用される。
 記録媒体104は、ディスク状記録媒体、半導体メモリなどの不揮発性で非一時的な記録媒体であり、予測装置100に対して着脱可能に構成される。記録媒体104は、プロセッサ102が実行する各種のプログラムを記録している。予測装置100が処理を実行する際には、記録媒体104に記録されているプログラムがメモリ103にロードされ、プロセッサ102により実行される。
 表示部105は、例えば液晶表示装置などであり、利用者に各種の情報を表示する。入力部106は、例えばキーボード、マウスなどであり、利用者が各種の指示、入力を行う際に使用される。
 [モデル生成時の機能構成]
 図4は、予測装置100のモデル生成時の機能構成を示すブロック図である。モデルの生成時、即ちモデルの訓練時には、予測装置100は、データ取得部111と、予測モデル生成部112とを備える。データ取得部111は、シェール開発に関連する各種の過去の特徴量データを訓練データとして予測モデル生成部112へ出力する。予測モデル生成部112は、訓練データを用いて予測モデルを訓練し、訓練後の予測モデルを出力する。得られた予測モデルは、メモリ103などに保存される。なお、予測モデルの生成時には、シェール開発を行う地域毎、具体的には、国や緯度・経度毎に訓練データを分割して予測モデルを訓練してもよい。
 本実施形態では、予測モデル生成部112は、異種混合学習により予測モデルを生成する。異種混合学習は、多種多様なデータから特定の規則性を自動的に発見してデータをグループ分けし、グループ毎に適切な規則性を用いて予測を行う手法である。異種混合学習により生成された予測モデルは、予測式の選択のための条件を示す木構造と、線形予測式とを組み合わせたものである。
 具体的に、予測モデル生成部112は、シェール開発に関する過去の特徴量データが入力されると、まず、それらのパターンや傾向を分析してデータをグループ分け(場合分け)し、各グループに属するデータの規則性に適合した予測式を生成する。例えば、予測装置100がシェールガスの生産量を予測する場合、予測モデル生成部112は、過去の特徴量データ及び過去の実際の生産量を用いて、各グループについてシェールガスの生産量を予測する予測式を生成する。なお、異種混合学習の手法は、例えば米国公開特許US2014/0222741A1号公報等に開示されている。
 図5は、異種混合学習を用いた予測モデルの構造の一例を模式的に示す。この例では、全データは、条件1~4により4つのグループG1~G4に分割され、各グループのデータについて対応する予測式を用いて予測が行われる。例えば、条件1がNoとなるグループG1に属するデータは、予測式1を用いて予測が行われる。また、条件1がYes、条件2がNoとなるグループG2に属するデータは、予測式2を用いて予測が行われる。こうして、データのグループ毎に適切な予測式を用いて予測が行われる。これにより、シェール開発に関する多種多様なデータが混在している場合でも、それらのデータの規則性を自動で発見し、それぞれに対して適切な予測を行うことができる。
 [予測モデルの例]
 次に、異種混合学習を用いて生成した予測モデルの例を説明する。なお、以下の実施例で使用するデータ項目は単なる例示であり、実際に使用するデータ項目とは異なる場合がある。
 (第1例)
 図6は、シェールガス・オイルの生産量を予測する予測モデルの例を示す。この例では、条件1(孔隙率<3.5%)、条件2(有機炭素量>2.2%)、条件3(岩石種別=Carbonate)により、入力される特徴量データが4つのグループG1~G4に分割されている。各グループG1~G4について、そのグループに対応する予測式が生成される。
 図7は、予測式を説明する図である。入力される特徴量データとしては、地層圧力、砂粒度、粘土量、比抵抗、クラスター間隔、流体投入量、ステージ数、砂投入量、水平長の9個のパラメータを用いている。なお、上記のパラメータは単なる例示であり、実際にはより多数のパラメータを使用することがある。各予測式A~Dに対応するグラフは、各予測式における生産量に対する各パラメータの寄与度を示している。例えば、予測式Aについては、上記の9個のパラメータのうち、砂投入量と水平長が生産量の予測に寄与し、グラフに示すように、砂投入量の寄与度は約0.5、水平長の寄与度は約1.4となっている。予測式Aでは、他の7個のパラメータは生産量に寄与していない。なお、各パラメータは、生産量に対して正の相関を有するパラメータと、負の相関を有するパラメータとに分けられる。正の相関を有するパラメータは、生産量が増加する方向に寄与し、負の相関を有するパラメータは生産量が減少する方向に寄与する。
 予測式Aの場合、砂投入量の寄与度は約0.5、水平長の寄与度は約1.4であり、それ以外のパラメータは寄与度が0であるので、予測式Aは、
  生産量X=0.5×(砂投入量)+1.4×(水平長)
と得られる。同様に、予測式B~Dも、各グラフに基づいて図7に示すように導出される。
 (第2例)
 図8は、シェールガス・オイル開発における砂戻り量を予測する予測モデルの例を示す。砂戻り量とは、図1に示す水圧破砕工程において投入した砂(プロパント)が、水の回収工程において逆戻りする量をいう。砂戻り量が多いと、シェール層にできた亀裂を維持するために砂の再投入する必要が生じ、コストの増大などにつながるため、開発計画において考慮すべき事項となっている。
 この例では、条件1(地質系要因F1<0.2)、条件2(地質系要因F2<64)、条件3(地質系要因F3<0.9)により、入力された特徴量データが4つのグループG1~G4に分割されている。各グループG1~G4について、そのグループに対応する予測式が生成される。
 図9は、予測式を説明する図である。入力される特徴量データとしては、仕上系要因A~D、採掘系要因A~B、採掘系要因A~Bの8個の要因を用いている。なお、上記の各要因は単なる例示であり、実際にはより多数の特徴量データを使用することがある。各予測式A~Dに対応するグラフは、各予測式における砂戻り量に対する各要因の寄与度を示している。例えば、予測式Aについては、上記の8個の要因のうち、生産系要因Aと仕上系要因Bが砂戻り量の予測に寄与し、グラフに示すように、生産系要因Aの寄与度は約0.1、仕上系要因Bの寄与度は約0.5となっている。予測式Aでは、他の6個の要因は、砂戻り量に寄与しない。なお、正の相関を有する要因と負の相関を有する要因があるのは、第1例と同様である。
 予測式Aの場合、生産系要因Aの寄与度は約0.1、仕上系要因Bの寄与度は約0.5であり、それ以外の要因は寄与度が0であるので、予測式Aは、
  砂戻り量Y=0.1×(生産系要因A)+0.5×(仕上系要因B)
と得られる。同様に、予測式B~Dも、各グラフに基づいて図9に示すように導出される。
 以上、第1例及び第2例を用いて説明したように、異種混合学習を用いた予測モデルでは、入力データをいくつかの条件によってグループ分けし、各グループに対して適切な予測式を用いて予測を行う。よって、利用者は、予測結果と、木構造の内容(どのような条件で分割しているか)と、その予測結果を算出するために使用した予測式とを見ることにより、どの条件のときに、どの特徴量がどの程度寄与して生産量や砂戻り量が予測されているかを理解することができる。よって、予測結果を開発計画などに効果的に利用することが可能となる。
 [予測時の機能構成]
 図10は、予測装置100の予測時の機能構成を示すブロック図である。予測時の予測装置100は、データ取得部121と、予測部122とを備える。なお、データ取得部121は取得手段の一例であり、予測部122は予測手段の一例である。
 データ取得部121は、シェール開発に関連する現在の特徴量データを取得し、予測モデル生成部112へ出力する。
 予測部122は、前述の異種混合学習により生成された予測モデルを用いて予測を行う。具体的には、予測部122は、入力された現在の特徴量データに基づき、図6~図9に例示したグループ分け及び予測式に従って、シェールガスの生産量や砂戻り量などを予測する。具体的に、予測部122は、入力された特徴量データに基づいて1つのグループを決定し、そのグループに対応する予測式を用いてシェールガスの生産量や砂戻り量などの予測値を予測結果として算出する。
 そして、予測部122は、予測結果と、その予測に使用した予測式とを出力する。例えば、図6に示すシェールガスの生成量の予測において、現在の特徴量データが条件1に該当し、予測部122が予測式Aを用いて生産量の予測値を算出した場合、予測部122は、算出した予測結果と予測式Aとを出力する。なお、予測部122は、予測式とともに、その予測式に対応するグループ分けの条件も出力してもよい。即ち、上記の例では、予測部122は、予測結果と、予測式Aと、その予測式Aに対応する条件1とを出力してもよい。出力された予測結果及び予測式は、例えば表示部105に表示される。
 [予測処理]
 図11は、予測装置100による予測処理のフローチャートである。この処理は、図2に示すプロセッサ102が、予め用意されたプログラムを実行し、図10に示す要素として動作することにより実現される。
 まず、データ取得部121は、現在の特徴量データを取得する(ステップS11)。次に、予測部122は、予め生成された予測モデルを用いて予測を行う(ステップS12)。例えば前述の第1例や第2例では、予測部122はシェールオイルの生産量や砂戻り量を予測する。次に、予測部122は、予測結果と、予測に使用した予測式を出力する(ステップS13)。そして、処理は終了する。
 <第2実施形態>
 上記の第1実施形態では、異種混合学習により生成した解釈性の高い予測モデルを用いて予測を行っている。その代わりに、第2実施形態では、予測モデル自体を解釈性の高いモデルとする代わりに、予測モデルによる予測の解釈性を補助する補助情報を出力することにより、予測結果に対する解釈性を担保する。
 [機能構成]
 図12は、第2実施形態の予測装置200の機能構成を示すブロック図である。なお、予測装置200のハードウェア構成は、第2実施形態の予測装置100と同様である。予測装置200は、データ取得部221と、予測部222と、補助情報生成部223とを備える。なお、データ取得部221は取得手段の一例であり、予測部222は予測手段の一例であり、補助情報生成部223は補助情報生成手段の一例である。
 データ取得部221は、シェール開発に関連する特徴量データを取得し、予測部222へ出力する。
 予測部222は、特に解釈性の高い機械学習モデルを用いる必要はなく、例えばニューラルネットワークを使用した深層学習のモデルなどを用いることができる。予測部222は、シェール開発に関連する過去の特徴量データを用いて訓練された予測モデルを用いて予測を行い、予測結果を出力する。
 補助情報生成部223は、予測部222が使用した機械学習モデルの解釈性を補う補助情報を生成する。補助情報は、予測部222が使用した機械学習モデルによる予測の根拠などを示す情報であり、一般的に説明可能AI(XAI:Explainable AI)と呼ばれる手法を用いて生成される。具体的に、補助情報としては、以下のものが挙げられる。
(1)大局的説明を提示する補助情報
 大局的説明を提示する補助情報とは、予測部222が使用する予測モデルを可読性の高いモデルで近似的に表現する情報である。具体的に、補助情報は、対象の予測モデルを単一の決定木やルールモデルで近似して表現する。この場合、補助情報は、例えばBATREE(Born Again Tree)、defragTreeなどの手法を用いて生成することができる。例えばBATREEでは、学習されたモデルを使って疑似的に訓練データを生成し、生成された疑似的な訓練データを使って決定木を学習して提示する。
(2)局所的説明を提示する補助情報
 局所的説明を提示する補助情報とは、予測部222が使用する予測モデルによる予測の根拠を示すものであり、以下のものが挙げられる。
(1-1)予測の根拠となった特徴量を提示する情報
 補助情報は、予測の根拠となった特徴量を示す情報とすることができる。即ち、補助情報は、どの特徴量が予測に重要であったかを示す。この場合、補助情報は、例えばLIME、SHAP、ANCHOR、Grad-CAMなどの手法を用いて生成することができる。
(1-2)予測の根拠となった訓練データを提示する情報
 補助情報は、予測の根拠となった訓練データを提示する情報とすることができる。この場合、補助情報は、例えばinfluenceなどの手法を用いて生成することができる。influenceは、ある特定の訓練データが欠けていたとしたら、予測結果がどれくらい変わるかを示す情報を提示する。
 [予測処理]
 図13は、予測装置200による予測処理のフローチャートである。この処理は、図2に示すプロセッサ102が、予め用意されたプログラムを実行し、図12に示す要素として動作することにより実現される。
 まず、データ取得部221は、現在の特徴量データを取得する(ステップS21)。次に、予測部222は、予め生成された予測モデルを用いて予測を行う(ステップS22)。次に、補助情報生成部223は、予測モデルによる予測の根拠を提示する補助情報を生成する(ステップS23)。次に、予測部222及び補助情報生成部223は、それぞれ予測結果と補助情報とを出力する(ステップS24)。そして、処理は終了する。
 このように、第2実施形態によれば、予測モデルとして解釈性が低い、いわゆるブラックボックスモデルと呼ばれるモデルを使用しても、そのモデルに対する補助情報を提示することにより、予測モデルの解釈性の欠如を補うことができる。
 <第3実施形態>
 図14は、第3実施形態に係る予測装置300の機能構成を示すブロック図である。予測装置300は、取得手段301と、予測手段302と、出力手段303とを備える。
 図15は、第3実施形態に係る予測装置300による処理のフローチャートである。まず、取得手段301は、シェールガス又はシェールオイルの井戸に関する特徴量を取得する(ステップS31)。予測手段302は、特徴量に基づき、機械学習モデルを用いて井戸の生産量又は井戸の砂戻り量の予測値を算出する(ステップS32)。出力手段303は、予測値と、予測値に対する特徴量の重み係数を寄与度として出力する(ステップS33)。そして、処理は終了する。即ち、寄与度とは、予測値に対して各特徴量がどれだけ寄与したかを示す値である。
 第3実施形態の予測装置300によれば、予測値に加えて、予測値に対する特徴量の重み係数が寄与度として出力されるので、利用者は予測値が得られた根拠などを容易に理解することができる。
 その他、上記の各実施形態(変形例を含む、以下同じ)の一部又は全部は、以下の付記のようにも記載され得るが以下には限られない。
 (付記1)
 シェールガス又はシェールオイルの井戸に関する特徴量を取得する取得手段と、
 前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出する予測手段と、
 前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する出力手段と、
 を備える予測装置。
 (付記2)
 前記機械学習モデルは、前記予測値を算出するための複数の線形予測式と、前記特徴量に基づいて前記予測値の算出に使用する線形予測式を選択するための条件とを含み、
 前記出力手段は、前記予測値の算出に使用した線形予測式における前記特徴量の重み係数を寄与度として出力する付記1に記載の予測装置。
 (付記3)
 前記機械学習モデルを用いた予測の根拠を示す補助情報を生成する補助情報生成手段を備え、
 前記出力手段は、前記補助情報を前記特徴量の寄与度として出力する付記1に記載の予測装置。
 (付記4)
 前記補助情報は、前記機械学習モデルを用いた予測の根拠となった特徴量、又は、前記予測の根拠となった当該機械学習モデルの訓練データである付記3に記載の予測装置。
 (付記5)
 前記補助情報は、前記機械学習モデルを決定木又はルールモデルで表現した情報である付記3に記載の予測装置。
 (付記6)
 前記特徴量は、前記井戸に使用するプロパントに関する情報を含む付記1乃至5のいずれか一項に記載の予測装置。
 (付記7)
 前記特徴量は、前記井戸に使用する流体に関する情報を含む付記1乃至6のいずれか一項に記載の予測装置。
 (付記8)
 前記機械学習モデルは、地域毎に分割した訓練データを用いて訓練済みである付記1乃至7のいずれか一項に記載の予測装置。
 (付記9)
 シェールガス又はシェールオイルの井戸に関する特徴量を取得し、
 前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出し、
 前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する予測方法。
 (付記10)
 シェールガス又はシェールオイルの井戸に関する特徴量を取得し、
 前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出し、
 前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する処理をコンピュータに実行させるプログラムを記録した記録媒体。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。すなわち、本願発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。
 100、200 予測装置
 102 プロセッサ
 111、121、221 データ取得部
 112 予測モデル生成部
 122,222 予測部
 223 補助情報生成部

Claims (10)

  1.  シェールガス又はシェールオイルの井戸に関する特徴量を取得する取得手段と、
     前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出する予測手段と、
     前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する出力手段と、
     を備える予測装置。
  2.  前記機械学習モデルは、前記予測値を算出するための複数の線形予測式と、前記特徴量に基づいて前記予測値の算出に使用する線形予測式を選択するための条件とを含み、
     前記出力手段は、前記予測値の算出に使用した線形予測式における前記特徴量の重み係数を寄与度として出力する請求項1に記載の予測装置。
  3.  前記機械学習モデルを用いた予測の根拠を示す補助情報を生成する補助情報生成手段を備え、
     前記出力手段は、前記補助情報を前記特徴量の寄与度として出力する請求項1に記載の予測装置。
  4.  前記補助情報は、前記機械学習モデルを用いた予測の根拠となった特徴量、又は、前記予測の根拠となった当該機械学習モデルの訓練データである請求項3に記載の予測装置。
  5.  前記補助情報は、前記機械学習モデルを決定木又はルールモデルで表現した情報である請求項3に記載の予測装置。
  6.  前記特徴量は、前記井戸に使用するプロパントに関する情報を含む請求項1乃至5のいずれか一項に記載の予測装置。
  7.  前記特徴量は、前記井戸に使用する流体に関する情報を含む請求項1乃至6のいずれか一項に記載の予測装置。
  8.  前記機械学習モデルは、地域毎に分割した訓練データを用いて訓練済みである請求項1乃至7のいずれか一項に記載の予測装置。
  9.  シェールガス又はシェールオイルの井戸に関する特徴量を取得し、
     前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出し、
     前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する予測方法。
  10.  シェールガス又はシェールオイルの井戸に関する特徴量を取得し、
     前記特徴量に基づき、機械学習モデルを用いて前記井戸の生産量又は前記井戸の砂戻り量の予測値を算出し、
     前記予測値と、前記予測値に対する前記特徴量の寄与度とを出力する処理をコンピュータに実行させるプログラムを記録した記録媒体。
PCT/JP2022/008533 2021-03-04 2022-03-01 予測装置、予測方法、及び、記録媒体 WO2022186182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/279,521 US20240303540A1 (en) 2021-03-04 2022-03-01 Prediction device, prediction method, and recording medium
JP2023503851A JPWO2022186182A5 (ja) 2022-03-01 予測装置、予測方法、及び、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021034393 2021-03-04
JP2021-034393 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022186182A1 true WO2022186182A1 (ja) 2022-09-09

Family

ID=83154775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008533 WO2022186182A1 (ja) 2021-03-04 2022-03-01 予測装置、予測方法、及び、記録媒体

Country Status (2)

Country Link
US (1) US20240303540A1 (ja)
WO (1) WO2022186182A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116738226A (zh) * 2023-05-26 2023-09-12 北京龙软科技股份有限公司 一种基于自可解释注意力网络的瓦斯涌出量预测方法
WO2024135423A1 (ja) * 2022-12-23 2024-06-27 コニカミノルタ株式会社 情報処理装置、情報処理方法、プログラムおよび情報処理システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180335538A1 (en) * 2017-05-22 2018-11-22 Schlumberger Technology Corporation Resource Production Forecasting
WO2019130974A1 (ja) * 2017-12-25 2019-07-04 ソニー株式会社 情報処理装置、情報処理方法及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180335538A1 (en) * 2017-05-22 2018-11-22 Schlumberger Technology Corporation Resource Production Forecasting
WO2019130974A1 (ja) * 2017-12-25 2019-07-04 ソニー株式会社 情報処理装置、情報処理方法及びプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
UMEZU KEISUKE, MOTOHASHI YOSUKE: " A Study on Utilization of Analysis Results in Business and Interpretation of Model ", THE 30TH ANNUAL CONFERENCE OF THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, 1 June 2016 (2016-06-01), pages 1 - 4, XP055964412 *
XUE LIANG; LIU YUETIAN; XIONG YIFEI; LIU YANLI; CUI XUEHUI; LEI GANG: "A data-driven shale gas production forecasting method based on the multi-objective random forest regression", JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, ELSEVIER, AMSTERDAM,, NL, vol. 196, 20 August 2020 (2020-08-20), NL , XP086410768, ISSN: 0920-4105, DOI: 10.1016/j.petrol.2020.107801 *
浅川 直輝, 説明可能AIの理想と現実, 日経コンピュータ, 06 February 2020, no. 1009, pp. 38-44 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135423A1 (ja) * 2022-12-23 2024-06-27 コニカミノルタ株式会社 情報処理装置、情報処理方法、プログラムおよび情報処理システム
CN116738226A (zh) * 2023-05-26 2023-09-12 北京龙软科技股份有限公司 一种基于自可解释注意力网络的瓦斯涌出量预测方法
CN116738226B (zh) * 2023-05-26 2024-03-12 北京龙软科技股份有限公司 一种基于自可解释注意力网络的瓦斯涌出量预测方法

Also Published As

Publication number Publication date
JPWO2022186182A1 (ja) 2022-09-09
US20240303540A1 (en) 2024-09-12

Similar Documents

Publication Publication Date Title
WO2022186182A1 (ja) 予測装置、予測方法、及び、記録媒体
CN105095986B (zh) 多层油藏整体产量预测的方法
Jaber et al. A review of proxy modeling applications in numerical reservoir simulation
CN103336997B (zh) 致密油资源分布预测方法以及预测装置
Chaikine et al. A machine learning model for predicting multi-stage horizontal well production
Park et al. Improved decision making with new efficient workflows for well placement optimization
US12012826B2 (en) Field development planning based on deep reinforcement learning
US20230111179A1 (en) Predicting oil and gas reservoir production
Epelle et al. Adjoint-based well placement optimisation for Enhanced Oil Recovery (EOR) under geological uncertainty: From seismic to production
Temizel et al. Data-driven optimization of injection/production in waterflood operations
EP4118302A1 (en) Fast front tracking in eor flooding simulation on coarse grids
CN116641688A (zh) Co2提高气藏采收率及其封存的方法、系统、设备及存储介质
WO2019199723A1 (en) Predictions in unconventional plays using machine learning
Chen et al. Optimization of production performance in a CO2 flooding reservoir under uncertainty
Alrashdi et al. Applying reservoir-engineering methods to well-placement optimization algorithms for improved performance
Nnamdi Conceptual Reservoir Development and Short-Term Forecasting Using Material Balance Based Integrated Asset Models and Neural Network Proxy Models
Markov et al. Methodology for Constructing Simplified Reservoir Models for Integrated Asset Models
Nguyen et al. Robust optimization of unconventional reservoirs under uncertainties
CN108229713A (zh) 断块油藏多层合采方案优化设计方法
Al-adliy et al. Comparison Different Techniques of Optimum Location for Infill Well Drilling
Edet Ita et al. A Computational Model for Wells’ Performance Analysis
Lubnin et al. System approach to planning the development of multilayer offshore fields
Artun et al. A pattern-based approach to waterflood performance prediction using knowledge management tools and classical reservoir engineering forecasting methods
US20230332490A1 (en) Method and system for performing reservoir simulations using look-ahead models
Villarroel et al. Methodology of feasibility study on pilot test for dump flood completion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763237

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503851

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18279521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763237

Country of ref document: EP

Kind code of ref document: A1