WO2022186152A1 - Thermally expandable fire resistant material - Google Patents

Thermally expandable fire resistant material Download PDF

Info

Publication number
WO2022186152A1
WO2022186152A1 PCT/JP2022/008347 JP2022008347W WO2022186152A1 WO 2022186152 A1 WO2022186152 A1 WO 2022186152A1 JP 2022008347 W JP2022008347 W JP 2022008347W WO 2022186152 A1 WO2022186152 A1 WO 2022186152A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory material
thermally expandable
mass
component
ratio
Prior art date
Application number
PCT/JP2022/008347
Other languages
French (fr)
Japanese (ja)
Inventor
健一 大月
美香 辻井
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2022186152A1 publication Critical patent/WO2022186152A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor

Definitions

  • the present invention relates to a thermally expandable refractory material containing thermally expandable graphite.
  • fireproof materials are used for building materials such as fittings, columns, and wall materials for fire prevention.
  • a thermally expandable refractory material or the like in which thermally expandable graphite is blended with a resin in addition to a flame retardant, an inorganic filler, or the like is used (see, for example, Patent Document 1).
  • Such a thermally expandable refractory material expands when heated, and the combustion residue forms a refractory and heat insulating layer, thereby exhibiting refractory and heat insulating performance.
  • the thermally expandable refractory material containing thermally expandable graphite is provided, for example, in the gap between fittings such as doors and windows provided in openings of buildings and frames such as door frames and window frames surrounding these.
  • the sheet expands in the thickness direction to block the gap between the fitting and the frame material, thereby preventing the spread of the fire.
  • thermally expandable refractory material containing thermally expandable graphite in the case of a refractory material that cannot expand sufficiently when heated at a slow heating rate, the surface of the door or window that is not in contact with the flame (non-heated surface) ), it was found that the refractory material strength on the non-heated surface was brittle and sufficient refractoriness was not exhibited.
  • SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a thermally expansible fire-resistant material that can expand sufficiently even when the temperature is raised at a slow heating rate and that has excellent fire resistance.
  • thermally expandable refractory material containing at least one matrix component selected from resins and rubber components and thermally expandable graphite contains a specific It has been found that the above problem can be solved by setting the ratio (II/I) between the expansion ratio (expansion ratio I) and the expansion ratio (expansion ratio II) within a predetermined range.
  • the gist of the present invention is as follows [1] to [10].
  • the thermally expandable refractory material according to any one of [1] to [4], wherein the content of the thermally expandable graphite is 20 to 500 parts by mass with respect to 100 parts by mass of the matrix component.
  • the matrix component is at least one selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl acetate resin, styrene-butadiene rubber, acrylonitrile-butadiene rubber, urethane elastomer, chloroprene rubber, and EPDM.
  • the thermally expandable fireproof material according to any one of [1] to [5].
  • the thermally expandable refractory material according to any one of [1] to [6], wherein the rubber component is acrylonitrile-butadiene rubber having a nitrile content of 10 to 35% by mass.
  • the thermally expandable fireproof material according to any one of [1] to [7], wherein the rubber component is an acrylo-nitrile-butadiene rubber having a Mooney viscosity of 30 to 80 at 100°C.
  • the resin is at least one selected from the group consisting of an ethylene-vinyl acetate copolymer containing a high Vac component having a vinyl acetate content of 20% by mass or more, and a polyvinyl acetate resin. ] to [8].
  • the thermally expandable refractory material of the present invention is a thermally expandable refractory material containing a matrix component and thermally expandable graphite, and comprises an expansion ratio (expansion ratio I) when the refractory material is expanded at 300° C.,
  • the ratio (II/I) of the expansion ratio (expansion ratio II) when the refractory material is expanded by increasing the temperature from 20° C. to 300° C. at a heating rate of 5° C./min is 0.5 to 1.0.
  • the thermally expandable fireproof material of the present invention may be simply referred to as fireproof material.
  • the refractory material of the present invention has an expansion ratio (expansion ratio I) when the refractory material is expanded at 300 ° C., and the refractory material is heated from 20 ° C. to 300 ° C. at a heating rate of 5 ° C./min.
  • the ratio (II/I) of the expansion ratio (expansion ratio II) when the material is expanded (hereinafter referred to as “ratio (II/I)”) is 0.5 to 1.0. If the ratio (II/I) is less than the above lower limit, the refractory material will not expand sufficiently when the temperature of the refractory material is gradually increased, and the fire resistance will be impaired. From this point of view, the ratio (II/I) is preferably 0.6 or more, more preferably 0.7 or more. The ratio (II/I) can be adjusted by appropriately selecting matrix components.
  • the expansion ratio II in the refractory material of the present invention is 7 from the viewpoint that the refractory material expands sufficiently even when the temperature of the refractory material is gradually increased, and the ratio (II/I) can be easily adjusted to the desired range. It is preferably at least 15 times, more preferably at least 30 times, even more preferably at least 30 times. On the other hand, although the upper limit of the expansion ratio II is not particularly limited, it is preferably 55 times or less, more preferably 50 times or less, and still more preferably from the viewpoint of maintaining a certain level or more of the residue residual rate and residue hardness. 45 times or less.
  • the expansion ratio I in the refractory material of the present invention is not particularly limited as long as the ratio (II/I) satisfies the above range. From the viewpoint of security, it is preferably 8 times or more, more preferably 17 times or more, still more preferably 33 times or more, and preferably 70 times or less, more preferably 60 times or less, further preferably 50 times or less.
  • the refractory material of the present invention contains at least one matrix component selected from rubber components and resins.
  • the matrix component is preferably a rubber component.
  • Rubber components include natural rubber, isoprene rubber, butyl rubber, butadiene rubber (BR), 1,2-polybutadiene rubber, styrene-butadiene rubber (SBR), chloroprene rubber, acrylonitrile rubber-butadiene rubber (NBR), ethylene- Propylene rubber, ethylene-propylene-diene rubber (EPDM), chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polyvulcanized rubber, non-vulcanized rubber, silicone rubber, fluororubber, urethane elastomer and the like.
  • natural rubber isoprene rubber, butyl rubber, butadiene rubber (BR), 1,2-polybutadiene rubber, styrene-butadiene rubber (SBR), chloroprene rubber, acrylonitrile rubber-butadiene rubber (NBR), ethylene- Propylene rubber, ethylene-propylene-diene rubber (EPDM), chlorosulfon
  • At least one selected from the group consisting of acrylonitrile-butadiene rubber, chloroprene rubber, and styrene-butadiene rubber is more preferable from the viewpoint of easily adjusting the ratio (II/I) to a desired range, acrylonitrile-butadiene rubber, At least one selected from the group consisting of chloroprene rubber is more preferred, and acrylonitrile-butadiene rubber is particularly preferred.
  • Acrylonitrile-butadiene rubber has a stable structure even when the temperature of the refractory material is gradually raised, so it can maintain an appropriate viscosity when a fire occurs, and the ratio (II/I) can be adjusted to the desired range. It is easy to improve fire resistance.
  • the nitrile content of the acrylonitrile-butadiene rubber is preferably 8 to 40% by mass, more preferably 10 to 35% by mass, even more preferably 15 to 25% by mass.
  • An acrylonitrile-butadiene rubber having a nitrile content within the above range can easily increase the expansion pressure of the refractory material, and can easily adjust the ratio (II/I) within the desired range.
  • Mooney viscosity ML(1+4) at 100° C. of acrylonitrile-butadiene rubber is preferably 20-90, more preferably 30-80, and even more preferably 40-70.
  • An acrylonitrile-butadiene rubber having a Mooney viscosity ML(1+4) at 100° C. within the above range can easily increase the expansion pressure of the refractory material and easily adjust the ratio (II/I) within the desired range.
  • chloroprene rubber can reduce the content of carbon in the refractory material, it is also preferable to use chloroprene rubber as the rubber contained in the refractory material from the viewpoint of enhancing fire resistance.
  • chloroprene rubber a sulfur-modified type (G type), a non-sulfur-modified type (W type), and the like can also be used.
  • the Mooney viscosity ML(1+4) at 100° C. of the chloroprene rubber is preferably 60-120, more preferably 70-90.
  • a chloroprene rubber having a Mooney viscosity ML(1+4) at 100° C. within the above range can easily increase the expansion pressure of the refractory material, and can easily adjust the ratio (II/I) within the desired range.
  • Mooney viscosity is measured based on JISK6300 in this specification.
  • the refractory material preferably contains a plasticizer, which will be described later.
  • a plasticizer which will be described later.
  • aliphatic ester plasticizers are preferred, among them, aliphatic ester plasticizers having ether bonds are more preferred, and dibutoxyethoxyethyl adipate is even more preferred.
  • Commercial products of dibutoxyethoxyethyl adipate include, for example, Adekasizer RS-107 manufactured by ADEKA Co., Ltd., which is called an adipic acid ether ester. The amount of the plasticizer to be used for the resin will be described later.
  • Styrene-butadiene rubber includes random copolymers of styrene and butadiene.
  • the styrene content of the styrene-butadiene rubber is preferably 20 to 60% by mass, more preferably 25 to 50% by mass, even more preferably 30 to 45% by mass.
  • a styrene-butadiene rubber having a styrene content within the above range can easily increase the expansion pressure of the refractory material, and can easily adjust the ratio (II/I) within the desired range.
  • styrene-butadiene rubber is preferably 20-60, more preferably 30-55, even more preferably 40-50.
  • a styrene-butadiene rubber having a Mooney viscosity ML(1+4) at 100° C. within the above range can easily increase the expansion pressure of the refractory material and can easily adjust the ratio (II/I) within the desired range.
  • the resin may be a thermosetting resin or a thermoplastic resin, preferably a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, but examples include polypropylene resin, polyethylene resin, polyolefin resin such as ethylene-vinyl acetate copolymer, polyvinyl acetate resin, polyvinyl chloride resin, fluororesin such as polytetrafluoroethylene, Urethane resins such as phenol resins, polycarbonate resins, polyacrylonitrile resins, and urethane elastomers can be used.
  • thermoplastic resins ethylene-vinyl acetate copolymers and polyvinyl acetate resins are preferable from the viewpoint of increasing the ratio (II/I) to improve fire resistance.
  • a thermoplastic resin having a high vinyl acetate content is preferred.
  • the thermoplastic resin is at least one selected from an ethylene-vinyl acetate copolymer containing a high Vac component having a vinyl acetate content of 20% by mass or more, and a polyvinyl acetate resin.
  • Polyvinyl acetate resin is preferred, and polyvinyl acetate resin is more preferred.
  • the high Vac component having a vinyl acetate content of 20% by mass or more means an ethylene-vinyl acetate copolymer component having a vinyl acetate content of 20% by mass or more.
  • Ethylene-vinyl acetate copolymers and polyvinyl acetate resins are non-chlorinated resins, so dioxins are less likely to occur, and they are kneaded with thermally expandable graphite at relatively low temperatures without containing plasticizers. It is preferable to use it as a resin contained in the refractory material because it can be used and the moldability of the refractory material is improved.
  • the vinyl acetate content of the high-Vac component is preferably 25% by mass or more, more preferably 30% by mass or more, and still more preferably from the viewpoint of easily adjusting the ratio (II/I) to a desired range. is 50% by mass or more, more preferably 70% by mass or more.
  • the ethylene-vinyl acetate copolymer may contain an ethylene-vinyl acetate copolymer component (low Vac component) with a vinyl acetate content of less than 20% by mass to the extent that the effects of the present invention are not impaired.
  • the content of the high Vac component is preferably 50% by mass or more based on the total amount of the ethylene-vinyl acetate copolymer, and more It is preferably 70% by mass or more, more preferably 100% by mass.
  • the ethylene-vinyl acetate copolymer is an ethylene-vinyl acetate copolymer having a melt flow rate (MFR) at 190°C of 8.0 g/10 min or less from the viewpoint of increasing the expansion pressure of the refractory material and improving the moldability. It preferably contains a polymer component (hereinafter also referred to as a low MFR component).
  • the melt flow rate (MFR) of the low MFR component at 190° C. is more preferably 6.0 g/10 min or less, still more preferably 1.0 g/10 min or less.
  • the melt flow rate of the ethylene-vinyl acetate copolymer at 190°C is a value measured under a load of 2.16 kg, and is measured according to JIS K7210:1999.
  • the content of the low-MFR component is preferably 70% by mass or more, more preferably 90% by mass or more, based on the total amount of the ethylene-vinyl acetate copolymer.
  • MFR and vinyl acetate content are separate parameters representing the structure of the ethylene-vinyl acetate copolymer, there are also components that correspond to low MFR components and high Vac components.
  • the high Vac component when using a high Vac component having a vinyl acetate content of 20% by mass or more and less than 50% by mass, the high Vac component is used from the viewpoint of increasing the expansion pressure and improving fire resistance.
  • the MFR (190° C.) of the high-Vac component is preferably 8.0 g/10 min or less, more preferably 6.0 g/10 min or less, even more preferably 1.0 g/10 min or less, and preferably 0 05 g/10 min or more, more preferably 0.1 g/10 min or more, and still more preferably 0.3 g/10 min or more.
  • the Mooney viscosity ML(1+4) at 100° C. of the high-Vac component is preferably 10-50, more preferably 20-40.
  • Polyvinyl acetate resin is a homopolymer of vinyl acetate, and by using this as a resin contained in a fireproof material, the ratio (II/I) can be easily adjusted to the desired range, and fire resistance can be effectively improved. do.
  • the weight average molecular weight of the polyvinyl acetate resin is preferably 100,000 to 1,000,000, more preferably 200,000 to 600,000, and still more preferably from the viewpoint of increasing the expansion pressure while improving the moldability of the refractory material. is 300,000 to 500,000.
  • the weight average molecular weight is a standard polystyrene conversion value obtained by measuring by gel permeation chromatography (GPC).
  • the refractory material of the present invention has a viscosity A of the matrix component at 250 ° C. when heated at a temperature increase rate of 40 ° C./min at 100 ° C. to 300 ° C. at 5 ° C./min at 100 ° C. to 300 ° C.
  • the ratio (B/A) of the viscosity B of the matrix component at 250° C. when the temperature is raised (hereinafter referred to as “ratio (B/A)”) is preferably 2.0 or less. When the ratio (B/A) is 2.0 or less, it is possible to prevent the viscosity of the matrix component from excessively increasing even when the temperature of the refractory material is gradually increased.
  • the refractory material expands easily, the ratio of the expansion ratio can also satisfy a predetermined range, and the fire resistance is improved. Moreover, in the process of manufacturing the refractory material, the fluidity of the resin composition can be ensured to some extent, and excellent moldability can be obtained, making it possible to provide a high-quality refractory material. Based on these points of view, 1.8 or less is more preferable, and 1.6 or less is even more preferable.
  • the lower limit of the ratio (B/A) is not particularly limited. From the viewpoint of obtaining moldability, it is preferably 0.7 or more, more preferably 0.8 or more, and still more preferably 1.0 or more.
  • the ratio (B/A) can be appropriately adjusted depending on the type, viscosity, molecular weight, etc. of the matrix component.
  • the viscosity B of the matrix component in the present invention is preferably 7500 Pa s or less from the viewpoint of making the refractory material sufficiently expand easily and obtaining excellent moldability even when the temperature of the refractory material is gradually increased. , 5000 Pa ⁇ s or less, and more preferably 3000 Pa ⁇ s or less.
  • the lower limit of the viscosity B of the matrix component is not particularly limited, but from the viewpoint of improving moldability, it is preferably 1000 Pa ⁇ s or more, more preferably 1200 Pa ⁇ s or more, and still more preferably 1300 Pa ⁇ s. s or more.
  • the viscosity A of the matrix component in the present invention is not particularly limited as long as the ratio (B/A) satisfies the above range. From the viewpoints of sufficient expansion and excellent moldability, the viscosity is preferably 6000 Pa ⁇ s or less, more preferably 4500 Pa ⁇ s or less, and even more preferably 2500 Pa ⁇ s or less.
  • the lower limit of the viscosity B of the matrix component is not particularly limited, but from the viewpoint of obtaining the minimum moldability, it is preferably 800 Pa ⁇ s or more, more preferably 900 Pa ⁇ s or more, and still more preferably 1100 Pa. - s or more.
  • Thermally expandable graphite is a conventionally known substance that expands when heated, and is produced by acid-treating a raw material powder such as natural flake graphite, pyrolytic graphite, or Kish graphite with a strong oxidizing agent to form a graphite intercalation compound.
  • strong oxidizing agents include inorganic acids such as concentrated sulfuric acid, nitric acid and selenic acid, concentrated nitric acid, perchloric acid, perchlorates, permanganates, bichromates, and hydrogen peroxide.
  • Thermally expandable graphite is a crystalline compound that maintains the layered structure of carbon.
  • Thermally expandable graphite may be neutralized. That is, the thermally expandable graphite obtained by treatment with a strong oxidizing agent or the like as described above may be further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, or the like.
  • the content of thermally expandable graphite in the refractory material of the present invention is preferably 20 to 500 parts by mass, more preferably 30 to 250 parts by mass, and still more preferably 70 parts by mass with respect to 100 parts by mass of the matrix component. ⁇ 150 parts by mass.
  • the content of thermally expandable graphite is at least these lower limits, it becomes easier to increase the expansion pressure of the thermally expandable refractory material, and it becomes easier to adjust the expansion ratio ratio (II/I) within a desired range.
  • the content of the thermally expandable graphite is not more than these upper limits, the shape retainability, workability, etc. are improved.
  • the thermally expandable graphite in the present invention preferably has an average aspect ratio of 15 or more, more preferably 20 or more, and usually 1000 or less.
  • the aspect ratio of thermally expandable graphite is obtained by measuring the maximum dimension (major axis) and the minimum dimension (minor axis) of 10 or more (for example, 50) thermally expandable graphite, and calculating the ratio (maximum dimension / minimum dimension).
  • the average particle size of the thermally expandable graphite is preferably 50 to 500 ⁇ m, more preferably 100 to 400 ⁇ m, from the viewpoint of achieving a desired expansion pressure.
  • the average particle size of the thermally expandable graphite is determined as the average value of the maximum dimensions of 10 or more (for example, 50) thermally expandable graphites.
  • the minimum and maximum dimensions of the thermally expandable graphite described above can be measured using, for example, a field emission scanning electron microscope (FE-SEM).
  • the refractory material of the present invention preferably contains a flame retardant. Fire resistance improves by containing a flame retardant.
  • flame retardants include various phosphoric acid esters such as triphenyl phosphate (triphenyl phosphate), tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, and xylenyl diphenyl phosphate, sodium phosphate, phosphorus phosphites such as sodium phosphite, potassium phosphite, magnesium phosphite, aluminum phosphite and the like, ammonium polyphosphate, red phosphorus, and the like. be done.
  • flame retardants include compounds represented by the following general formula (1).
  • R 1 and R 3 are the same or different and represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or a carbon number Represents 6-16 aryloxy groups.
  • Specific examples of the compound represented by the general formula (1) include methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, n-propylphosphonic acid, n-butylphosphonic acid and 2-methylpropylphosphonic acid.
  • t-butylphosphonic acid 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid , phenylphosphinic acid, diethylphenylphosphinic acid, diphenylphosphinic acid, bis(4-methoxyphenyl)phosphinic acid and the like.
  • the flame retardants may be used alone or in combination of two or more.
  • Zinc borate etc. are mentioned as a boron-type compound.
  • metal hydroxides include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, hydrotalcite, and the like. When a metal hydroxide is used, water is produced by heat generated by ignition, and the fire can be quickly extinguished.
  • red phosphorus, phosphoric acid esters such as triphenyl phosphate (triphenyl phosphate), aluminum phosphite, ammonium polyphosphate, and zinc borate are preferable from the viewpoint of safety and cost.
  • aluminum phosphite and ammonium polyphosphate are more preferable.
  • the flame retardants listed above may be used alone or in combination of two or more, but it is preferable to use one alone, and phosphorous acid More preferably, aluminum is used. Since aluminum phosphite has expansive properties, the expansion pressure of the refractory material containing the aluminum phosphite tends to increase, and the fire resistance tends to be improved more effectively.
  • the average particle size of the flame retardant is preferably 1-200 ⁇ m, more preferably 1-60 ⁇ m, still more preferably 3-40 ⁇ m, and even more preferably 5-20 ⁇ m.
  • the average particle size of the flame retardant is within the above range, the dispersibility of the flame retardant in the refractory material is improved, the flame retardant is uniformly dispersed in the resin, and the amount of the flame retardant compounded in the resin is increased. be able to.
  • the average particle size is outside the above range, the flame retardant will be difficult to disperse in the resin, making it difficult to uniformly disperse the flame retardant in the resin or to mix a large amount of the flame retardant.
  • the average particle size of the flame retardant is the value of the median size (D50) measured with a laser diffraction/scattering particle size distribution analyzer.
  • the content of the flame retardant in the refractory material of the present invention is preferably 15 to 1000 parts by mass, more preferably 20 to 300 parts by mass, and even more preferably 30 to 100 parts by mass with respect to 100 parts by mass of the matrix component. .
  • the content of the flame retardant is at least these lower limit values, the fire resistance of the fire resistant material is improved.
  • the content of the flame retardant is not more than these upper limits, it becomes easier to uniformly disperse in the resin, and moldability and the like are excellent.
  • the refractory material of the present invention may contain a cross-linking agent. Especially when acrylonitrile-butadiene rubber is used as the rubber component, the combined use of the cross-linking agent can increase the expansion pressure and improve the fire resistance. When the refractory material contains a cross-linking agent, it is believed that the heat generated during a fire promotes the cross-linking of the matrix component such as the rubber component, increasing the viscosity and increasing the expansion pressure.
  • any known cross-linking agent can be used without limitation, and examples thereof include sulfur-based cross-linking agents, organic peroxides, and azo compounds.
  • the sulfur-based cross-linking agent may be an inorganic cross-linking agent such as sulfur, insoluble sulfur, precipitated sulfur, sulfur chloride, sulfur monochloride, sulfur dichloride, or a sulfur-containing organic cross-linking agent.
  • sulfur-containing organic cross-linking agents examples include morpholine disulfide, alkylphenol disulfide, N,N'-dithio-bis(hexahydro-2H-azepinone-2), thiuram polysulfide, 2-(4'-morpholino-dithio)benzothiazole and the like. be done.
  • organic peroxides examples include 2,5-dimethylhexane, 2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 3-di-t -butyl peroxide, t-dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne, dicumyl peroxide, ⁇ , ⁇ '-bis(t-butylperoxyisopropyl ) benzene, n-butyl-4,4-bis(t-butylperoxy)butane, 2,2-bis(t-butylperoxy)butane, 1,1-bis(t-butylperoxy)cyclohexane, 1 ,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, t-butylperoxybenzoate: benzoyl peroxide: t-but
  • cross-linking agents when producing a refractory material, a cross-linking reaction is unlikely to occur at the temperature (for example, 70 ° C. to 150 ° C.) at which each component is kneaded, and acrylonitrile-butadiene rubber etc. It is preferable that the cross-linking reaction of the rubber component easily occurs.
  • a sulfur-based cross-linking agent is preferred, and among these, an inorganic cross-linking agent is preferred from the viewpoint of cross-linkability, and sulfur is more preferred.
  • the content of the cross-linking agent is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, with respect to 100 parts by mass of the matrix component. Yes, more preferably 0.5 to 3 parts by mass.
  • the refractory material of the present invention preferably contains a cross-linking accelerator in addition to the cross-linking agent.
  • cross-linking accelerators include metal oxides.
  • metal oxides include zinc oxide and magnesium oxide. When using metal oxides in the present invention, it is preferred to use zinc oxide.
  • These metal oxides are more preferably used in combination with a long-chain aliphatic carboxylic acid having 12 to 24 carbon atoms, preferably 16 to 20 carbon atoms, such as stearic acid.
  • the long-chain aliphatic carboxylic acid used in combination with the metal oxide is also referred to as a cross-linking accelerator.
  • cross-linking accelerators examples include, in addition to those described above, thiazole-based compounds, sulfenamide-based compounds, thiuram-based compounds, dithiocarbamate-based compounds, and guanidine-based compounds.
  • Thiazole compounds include bis(benzothiazol-2-ylthio)zinc.
  • a crosslinking accelerator may be used individually by 1 type, and may use 2 or more types together.
  • the cross-linking accelerator at least one selected from metal oxides and thiazole-based compounds is preferable, and a mode in which these are used in combination is also preferable. At this time, the metal oxide may be used in combination with a long-chain aliphatic carboxylic acid having 16 to 20 carbon atoms such as stearic acid.
  • the amount of the cross-linking accelerator when it is used in the refractory material of the present invention is not particularly limited, but is preferably 0.1 to 15 parts by mass, more preferably 100 parts by mass of the matrix component. is 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass.
  • the refractory material of the present invention may contain a plasticizer.
  • a plasticizer By using a plasticizer, moldability tends to be improved.
  • the content of the plasticizer is not particularly limited, but is preferably 10 to 200 parts by mass, more preferably 20 to 60 parts by mass, based on 100 parts by mass of the matrix component. If the content of the plasticizer is at least these lower limits, the moldability of the refractory material will be improved. When the content of the plasticizer is below these upper limits, it becomes easier to adjust the ratio (II/I) within the desired range, and the expansion pressure also increases, making it easier to improve the fire resistance.
  • plasticizers include di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate, diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diundecyl phthalate (DUP), or those having 10 to 10 carbon atoms.
  • Phthalic acid ester plasticizers such as phthalic acid esters of higher alcohols or mixed alcohols of about 13, di-2-ethylhexyl adipate (DOA), diisobutyl adipate (DIBA), dibutyl adipate (DBA), di-n-octyl adipate, Aliphatic ester plasticizers such as di-n-decyl adipate, diisodecyl adipate, di-2-ethylhexyl azelate, dibutyl sebacate, di-2-ethylhexyl sebacate, dibutoxyethoxyethyl adipate, tri-2-ethylhexyl Trimellitate ester plasticizers such as trimellitate (TOTM), tri-n-octyl trimellitate, tridecyl trimellitate, triisodecyl trimellitate, and di-n-octyl-n-decy
  • the refractory material of the present invention may further contain an inorganic filler other than the flame retardant and thermally expandable graphite.
  • Inorganic fillers other than flame retardants and thermally expandable graphite are not particularly limited, and examples include metal carbonates such as alumina, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, strontium carbonate, and barium carbonate, and silica.
  • diatomaceous earth dawsonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica-based balloons, aluminum nitride, boron nitride, silicon nitride, carbon black, Graphite, carbon fiber, carbon balloon, charcoal powder, various metal powders, potassium titanate, magnesium sulfate, lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, various magnetic powders, slag fiber, fly ash, and dehydrated sludge.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the average particle size of the inorganic filler is preferably 0.5-100 ⁇ m, more preferably 1-50 ⁇ m.
  • the particle size of the inorganic filler is small from the viewpoint of improving dispersibility. Therefore, those having a large particle size are preferable.
  • the refractory material of the present invention contains an inorganic filler other than a flame retardant and thermally expandable graphite
  • the content thereof is preferably 10 to 300 parts by mass, more preferably 10 to 200 parts by mass, based on 100 parts by mass of the resin. part by mass.
  • the content of the inorganic filler is within the above range, the mechanical properties of the refractory material can be improved.
  • the refractory material of the present invention can contain various additive components as necessary within a range that does not impair the object of the present invention.
  • the type of additive component is not particularly limited, and various additives can be used.
  • Such additives include, for example, lubricants, anti-shrinking agents, crystal nucleating agents, coloring agents (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, dispersants, gelation accelerators, fillers, , reinforcing agents, flame retardant aids, antistatic agents, surfactants, vulcanizing agents, and surface treatment agents.
  • the amount of the additive to be added can be appropriately selected within a range that does not impair the moldability and the like. Additives may be used alone or in combination of two or more.
  • the refractory material of the present invention preferably has a residual hardness of 0.10 kgf/cm 2 or more, more preferably 0.13 kgf/cm 2 or more, and still more preferably 0.13 kgf/cm 2 or more after thermal expansion. It is 17 kgf/cm 2 or more, more preferably 0.22 kgf/cm 2 or more.
  • the residual hardness is preferably 1.00 kgf/cm 2 or less, more preferably 0.95 kgf/cm 2 or less, and even more preferably, from the viewpoint of ensuring fire resistance by making the refractory material expand easily. is 0.85 kgf/cm 2 or less.
  • the refractory material of the present invention preferably exhibits residual hardness within the above range even after being immersed in water at 60° C. for one week. If the swelling residue is within the above range after being immersed in water for a long period of time, the water resistance is also good.
  • the hardness of the residue can be obtained by measuring the hardness of the expanded residue after heating and expanding the refractory material.
  • the refractory material of the present invention is preferably in the form of a sheet, and its thickness is not particularly limited. preferable.
  • the refractory material of the present invention can be produced, for example, as follows. First, a predetermined amount of thermally expandable graphite, a resin, a plasticizer, a flame retardant, a cross-linking agent, an inorganic filler, and other components blended as necessary are kneaded with a kneader such as a kneading roll to obtain a refractory product. to obtain a flexible resin composition. Next, the resulting refractory resin composition can be formed into a sheet by a known molding method such as press molding, calendar molding, extrusion molding, etc., to obtain a refractory material.
  • a kneader such as a kneading roll
  • the temperature during kneading and the temperature for forming into a sheet are preferably lower than the expansion initiation temperature of the thermally expandable graphite. Therefore, the kneading temperature is preferably 70 to 150°C, more preferably 90 to 140°C.
  • the temperature for forming into a sheet is preferably 80 to 130°C, more preferably 90 to 120°C.
  • the refractory material of the present invention may be laminated with another sheet member or adhesive layer to form a laminated sheet.
  • a laminated sheet includes, for example, a base material and a fireproof material laminated on one side or both sides of the base material. Substrates are typically woven or non-woven. Fibers used for woven fabrics or non-woven fabrics are not particularly limited, but nonflammable or quasi-flammable materials are preferred, such as glass fibers, ceramic fibers, cellulose fibers, polyester fibers, carbon fibers, graphite fibers, thermosetting A flexible resin fiber or the like is preferable.
  • the laminated sheet can be obtained, for example, by molding the fire-resistant resin composition into a sheet on a base material.
  • the laminated sheet may include a refractory material and an adhesive layer.
  • the adhesive layer may be laminated on one side or both sides of the refractory material, for example.
  • the laminated sheet may comprise a refractory material, a substrate, and an adhesive layer.
  • Such a laminated sheet may have a refractory material on one side of the substrate and an adhesive layer on the other side, or a refractory material and an adhesive layer on one side of the substrate. They may be provided in order.
  • the pressure-sensitive adhesive layer can be formed, for example, by transferring the pressure-sensitive adhesive applied to the release paper to the laminated sheet.
  • the refractory material of the present invention, and the laminated sheet using the same are specifically used for various fittings such as detached houses, collective housing, high-rise housing, high-rise buildings, commercial facilities, public facilities, automobiles, trains, etc. It can be used for various vehicles, ships, aircraft, etc. Among these, it is preferably used for fittings.
  • fixtures concretely, it can be used for walls, beams, pillars, floors, bricks, roofs, board materials, windows, shoji screens, doors, doors, doors, fusuma, transoms, wiring, piping, and the like.
  • refractory material of the present invention and the laminated sheet using the same are particularly applied to the gaps of fittings such as windows, doors, and doors to prevent flames from penetrating through the gaps in the event of a fire or the like. can be prevented.
  • expansion ratio I The refractory materials of each example and comparative example were made to have a predetermined size (thickness 1.8 mm, width 25 mm, length 25 mm). A refractory material of a predetermined size is placed on the bottom surface of a stainless steel plate (98 mm square, thickness 0.3 mm), and the refractory material is placed in an electric furnace that has been set to 300 ° C in advance. heated for a minute. The expansion ratio I was obtained by dividing the thickness of the refractory material after heating by the thickness of the refractory material before heating.
  • Viscosity A of matrix component Among the formulations shown in Table 1, the matrix component was hot-pressed at 100° C. to prepare a circular test piece with a thickness of 1 mm and a diameter of 2 cm. After that, using "MCR 302" (manufactured by Anton Paar), the viscosity was evaluated while heating from 100 ° C. to 300 ° C. at a temperature increase rate of 40 ° C./min at an angular frequency of 63 rad / s. Viscosity was measured.
  • Viscosity B of matrix component The viscosity of the matrix component at 250° C. was measured when the temperature was gradually raised in the same manner as in the measurement of (3) except that the temperature was raised at a rate of 5° C./min.
  • Residual hardness Put the refractory material in an electric furnace preliminarily heated to 600 ° C. and heat the test piece for 30 minutes. It was compressed with an indenter of 0.25 cm 2 at a rate of 0.1 cm/sec, and the stress at break was measured.
  • a door member for fire-resistant time evaluation was prepared, which consisted of a door made of a calcium silicate plate (manufactured by Nippon Insulation Co., Ltd.) and a door frame. A gap of 1 cm was provided between the side surface of the door member for fire resistance time evaluation and the door frame. A refractory material (thickness: 1.8 mm, width: 25 mm, length: 1000 mm) of each example and comparative example having a predetermined size was attached to the side of the door. Then, in a refractory furnace, it was heated according to the standard heating curve of ISO834, and the time until the refractory material peeled off was measured.
  • the evaluation criteria of the fire resistance time are as follows. A: Time until peeling off 90 minutes or more B: Time until peeling off 75 minutes or more and less than 90 minutes C: Time until peeling off 60 minutes or more and less than 75 minutes D: Time until peeling off less than 60 minutes
  • Formability When kneading with rolls, if the material is too hard to flow, or too soft to flow easily and the shape cannot be maintained, the yield will deteriorate.
  • the formability was determined by the yield of the material that was taken out in the form of a sheet after kneading, out of the charged materials, as follows. A: 90% or more B: 70% or more and less than 90% C: 50% or more and less than 70% D: less than 50%
  • (matrix component) Rubber component/NBR (1) “Nipol DN401L” manufactured by Nippon Zeon Co., Ltd. Mooney viscosity ML (1+4): 70, nitrile content 18% by mass ⁇ NBR (2) “Nipol 1052J” manufactured by Nippon Zeon Co., Ltd. Mooney viscosity ML (1+4): 46, nitrile content 33.5% by mass ⁇ NBR (3) “Nipol DN101L” manufactured by Nippon Zeon Co., Ltd.
  • Mooney viscosity ML (1+4) 60, nitrile content 42.5% by mass ⁇ NBR (4) “Nipol DN401” manufactured by Nippon Zeon Co., Ltd. Mooney viscosity ML (1+4): 77.5, nitrile content 18% by mass ⁇ NBR (5) “Nipol DN101LL” manufactured by Nippon Zeon Co., Ltd. Mooney viscosity ML (1+4): 32, nitrile content 18% by mass ⁇ SBR (1) “Nipol 1502” manufactured by Nippon Zeon Co., Ltd.
  • Mooney viscosity ML (1+4) 52, styrene content 23.5% by mass ⁇ SBR (2) “Nipol 1739” manufactured by Nippon Zeon Co., Ltd. Mooney viscosity ML (1+4): 49, styrene content 40% by mass ⁇ Chloroprene rubber (1) “Skyprene TSR-56” manufactured by Tosoh Corporation Mooney viscosity ML(1+4) at 100°C: 70 ⁇ Chloroprene rubber (2) “Skyprene 640” manufactured by Tosoh Corporation Mooney viscosity ML(1+4) at 100°C: 85
  • Polyvinyl acetate resin/Polyvinyl acetate (1) “VINNAPAS 4FS” manufactured by Tomoe Chemical Industry Co., Ltd. Weight average molecular weight: 300,000 g/mol ⁇ Polyvinyl acetate (2) “VINNAPAS 25FS” manufactured by Tomoe Chemical Industry Co., Ltd. Weight average molecular weight: 500,000 g/mol
  • EVM Ethylene-Vinyl Acetate Copolymer
  • EVM Ethylene-Vinyl Acetate Copolymer
  • Thermal expandable graphite (Thermal expandable graphite) ⁇ Thermal expandable graphite “ADT351” manufactured by ADT Average aspect ratio: 21.3
  • Examples 1 to 17, Comparative Examples 1 to 3 A matrix component, thermally expandable graphite, a flame retardant, a cross-linking agent, and a plasticizer were put into a roll and kneaded at 120° C. for 5 minutes to obtain a fire-resistant resin composition.
  • the resulting refractory resin composition was press-molded at 100° C. for 3 minutes to obtain a sheet-like refractory material with a thickness of 1.8 mm.
  • the evaluation results are shown in Table 1.
  • the refractory material of the present invention containing a matrix component and thermally expandable graphite and having an expansion ratio within a predetermined range was found to have a long fire resistance time and excellent fire resistance. rice field.
  • the refractory materials of each comparative example having expansion ratios outside the predetermined range had a short fire resistance time and poor fire resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

The present invention provides a thermally-expandable fire resistant material containing thermally-expandable graphite and at least one type of matrix component selected from the group consisting of a rubber component and a resin, and having a ratio (II/I) from 0.5 to 1.0 of an expansion factor (expansion factor II) when the fire resistant material expands while being heated from 20°C to 300°C at a rate of 5°C/min to an expansion factor (expansion factor I) when the fire resistant material expands at 300°C.

Description

熱膨張性耐火材Inflatable refractory material
 本発明は、熱膨張性黒鉛を含有する熱膨張性耐火材に関する。 The present invention relates to a thermally expandable refractory material containing thermally expandable graphite.
 建築分野では、防火のために、建具、柱、壁材等の建築材料に耐火材が用いられる。耐火材としては、樹脂に、難燃剤、無機充填材などに加えて、熱膨張性黒鉛が配合された熱膨張性耐火材等が用いられている(例えば、特許文献1参照)。このような熱膨張性耐火材は、加熱により膨張して燃焼残渣が耐火断熱層を形成し、耐火断熱性能を発現する。
 熱膨張性黒鉛を含有する熱膨張性耐火材は、例えば、建築物の開口部に設けられるドア、窓などの建具と、これらを包囲するドア枠、窓枠などの枠との隙間に設けられ、火災時には該シートが厚み方向に膨張して、建具と枠材の隙間を閉塞し、延焼を防止することができる。
In the construction field, fireproof materials are used for building materials such as fittings, columns, and wall materials for fire prevention. As the refractory material, a thermally expandable refractory material or the like in which thermally expandable graphite is blended with a resin in addition to a flame retardant, an inorganic filler, or the like is used (see, for example, Patent Document 1). Such a thermally expandable refractory material expands when heated, and the combustion residue forms a refractory and heat insulating layer, thereby exhibiting refractory and heat insulating performance.
The thermally expandable refractory material containing thermally expandable graphite is provided, for example, in the gap between fittings such as doors and windows provided in openings of buildings and frames such as door frames and window frames surrounding these. In the event of a fire, the sheet expands in the thickness direction to block the gap between the fitting and the frame material, thereby preventing the spread of the fire.
特開2017-141463号公報JP 2017-141463 A
 ところが、熱膨張性黒鉛を含む熱膨張性耐火材を用いても、緩やかな昇温速度で加熱した際に十分に膨張できない耐火材の場合、ドアや窓の炎と接しない面(非加熱面)で十分に膨張することができず、非加熱面の耐火材強度が脆くなり十分な耐火性を発現しないことが分かった。
 そこで本発明は、緩やかな昇温速度で昇温しても十分に膨張することができ、耐火性に優れる熱膨張性耐火材を提供することを目的とする。
However, even if a thermally expandable refractory material containing thermally expandable graphite is used, in the case of a refractory material that cannot expand sufficiently when heated at a slow heating rate, the surface of the door or window that is not in contact with the flame (non-heated surface) ), it was found that the refractory material strength on the non-heated surface was brittle and sufficient refractoriness was not exhibited.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a thermally expansible fire-resistant material that can expand sufficiently even when the temperature is raised at a slow heating rate and that has excellent fire resistance.
 上記課題を解決すべく鋭意検討した結果、本発明者らは、樹脂及びゴム成分から選択される少なくとも1種のマトリックス成分と、熱膨張性黒鉛とを含有する熱膨張性耐火材において、特定の膨張倍率(膨張倍率I)と膨張倍率(膨張倍率II)の比率(II/I)を所定範囲とすることで上記課題を解決できることを見出した。
 本発明の要旨は、下記[1]~[10]の通りである。
[1]ゴム成分及び樹脂からなる群から選択される少なくとも1種のマトリックス成分と、熱膨張性黒鉛とを含有する熱膨張性耐火材であって、300℃で前記耐火材を膨張させたときの膨張倍率(膨張倍率I)に対する、昇温速度5℃/minにて20℃から300℃まで昇温させて前記耐火材を膨張させたときの膨張倍率(膨張倍率II)の比率(II/I)が0.5~1.0である、熱膨張性耐火材。
[2]前記膨張倍率IIが30倍以上である、[1]に記載の熱膨張性耐火材。
[3]100℃~300℃において、昇温速度40℃/minで昇温させたときの250℃における前記マトリックス成分の粘度Aに対する、100℃~300℃において5℃/minにて昇温させたときの250℃における前記マトリックス成分の粘度Bとの比率(B/A)が2.0以下である、[1]又は[2]に記載の熱膨張性耐火材。
[4]前記マトリックス成分の粘度Bが3000Pa・s以下である、[1]~[3]のいずれかに記載の熱膨張性耐火材。
[5]前記熱膨張性黒鉛の含有量が、マトリックス成分100質量部に対して20~500質量部である、[1]~[4]のいずれかに記載の熱膨張性耐火材。
[6]前記マトリックス成分が、エチレン-酢酸ビニル共重合体、ポリ酢酸ビニル樹脂、スチレンブタジエンゴム、アクリロニトリル-ブタジエンゴム、ウレタンエラストマー、クロロプレンゴム、及びEPDMからなる群から選択される少なくとも1種である、[1]~[5]のいずれかに記載の熱膨張性耐火材。
[7]前記ゴム成分が、ニトリル量10~35質量%のアクリロニトリル-ブタジエンゴムである、[1]~[6]のいずれかに記載の熱膨張性耐火材。
[8]前記ゴム成分が、100℃におけるムーニー粘度が30~80のアクリロ-ニトリルブタジエンゴムである、[1]~[7]のいずれかに記載の熱膨張性耐火材。
[9]前記樹脂が、酢酸ビニル含量が20質量%以上の高Vac成分を含有するエチレン-酢酸ビニル共重合体、及びポリ酢酸ビニル樹脂からなる群から選択される少なくとも1種である、[1]~[8]のいずれかに記載の熱膨張性耐火材。
[10]前記エチレン-酢酸ビニル共重合体が、190℃におけるメルトフローレート(MFR)が、8.0g/10min以下である低MFR成分を含む、[6]~[9]のいずれかに記載の熱膨張性耐火材。
As a result of intensive studies to solve the above problems, the present inventors have found that a thermally expandable refractory material containing at least one matrix component selected from resins and rubber components and thermally expandable graphite contains a specific It has been found that the above problem can be solved by setting the ratio (II/I) between the expansion ratio (expansion ratio I) and the expansion ratio (expansion ratio II) within a predetermined range.
The gist of the present invention is as follows [1] to [10].
[1] A thermally expandable refractory material containing at least one matrix component selected from the group consisting of a rubber component and a resin, and thermally expandable graphite, when the refractory material is expanded at 300°C The ratio of the expansion ratio (expansion ratio II) when the refractory material is expanded by increasing the temperature from 20° C. to 300° C. at a heating rate of 5° C./min to the expansion ratio (expansion ratio I) (II/ A thermally expandable refractory material having I) of 0.5 to 1.0.
[2] The thermally expandable refractory material according to [1], wherein the expansion ratio II is 30 times or more.
[3] The viscosity A of the matrix component at 250°C when the temperature is raised at a rate of 40°C/min at 100°C to 300°C, and the temperature is raised at 5°C/min at 100°C to 300°C. The thermally expandable refractory material according to [1] or [2], wherein the ratio (B/A) to the viscosity B of the matrix component at 250° C. is 2.0 or less.
[4] The thermally expandable refractory material according to any one of [1] to [3], wherein the matrix component has a viscosity B of 3000 Pa·s or less.
[5] The thermally expandable refractory material according to any one of [1] to [4], wherein the content of the thermally expandable graphite is 20 to 500 parts by mass with respect to 100 parts by mass of the matrix component.
[6] The matrix component is at least one selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl acetate resin, styrene-butadiene rubber, acrylonitrile-butadiene rubber, urethane elastomer, chloroprene rubber, and EPDM. , The thermally expandable fireproof material according to any one of [1] to [5].
[7] The thermally expandable refractory material according to any one of [1] to [6], wherein the rubber component is acrylonitrile-butadiene rubber having a nitrile content of 10 to 35% by mass.
[8] The thermally expandable fireproof material according to any one of [1] to [7], wherein the rubber component is an acrylo-nitrile-butadiene rubber having a Mooney viscosity of 30 to 80 at 100°C.
[9] The resin is at least one selected from the group consisting of an ethylene-vinyl acetate copolymer containing a high Vac component having a vinyl acetate content of 20% by mass or more, and a polyvinyl acetate resin. ] to [8].
[10] Any one of [6] to [9], wherein the ethylene-vinyl acetate copolymer contains a low MFR component having a melt flow rate (MFR) at 190°C of 8.0 g/10 min or less. thermally expandable refractory material.
[熱膨張性耐火材]
 本発明の熱膨張性耐火材は、マトリックス成分及び熱膨張性黒鉛を含有する熱膨張性耐火材であって、300℃で前記耐火材を膨張させたときの膨張倍率(膨張倍率I)と、昇温速度5℃/minにて20℃から300℃まで昇温させて前記耐火材を膨張させたときの膨張倍率(膨張倍率II)の比率(II/I)が0.5~1.0である。以下、本発明の熱膨張性耐火材のことを、単に耐火材という場合もある。
[Thermal expansion fireproof material]
The thermally expandable refractory material of the present invention is a thermally expandable refractory material containing a matrix component and thermally expandable graphite, and comprises an expansion ratio (expansion ratio I) when the refractory material is expanded at 300° C., The ratio (II/I) of the expansion ratio (expansion ratio II) when the refractory material is expanded by increasing the temperature from 20° C. to 300° C. at a heating rate of 5° C./min is 0.5 to 1.0. is. Hereinafter, the thermally expandable fireproof material of the present invention may be simply referred to as fireproof material.
(膨張倍率)
 本発明の耐火材は、300℃下で前記耐火材を膨張させたときの膨張倍率(膨張倍率I)と、昇温速度5℃/minにて20℃から300℃まで昇温させながら前記耐火材を膨張させたときの膨張倍率(膨張倍率II)の比率(II/I)(以下、「比率(II/I)」と表記)が0.5~1.0である。比率(II/I)が前記下限値未満である場合、耐火材を徐々に昇温させた場合において、耐火材が十分膨張せず、耐火性が損なわれる。こうした観点を踏まえると、比率(II/I)は、0.6以上が好ましく、0.7以上がより好ましい。なお、比率(II/I)は、マトリックス成分を適宜選択することで調整できる。
(expansion ratio)
The refractory material of the present invention has an expansion ratio (expansion ratio I) when the refractory material is expanded at 300 ° C., and the refractory material is heated from 20 ° C. to 300 ° C. at a heating rate of 5 ° C./min. The ratio (II/I) of the expansion ratio (expansion ratio II) when the material is expanded (hereinafter referred to as “ratio (II/I)”) is 0.5 to 1.0. If the ratio (II/I) is less than the above lower limit, the refractory material will not expand sufficiently when the temperature of the refractory material is gradually increased, and the fire resistance will be impaired. From this point of view, the ratio (II/I) is preferably 0.6 or more, more preferably 0.7 or more. The ratio (II/I) can be adjusted by appropriately selecting matrix components.
 本発明の耐火材における膨張倍率IIは、耐火材を徐々に昇温させた場合においても、耐火材が十分膨張し、比率(II/I)を所望の範囲に調整しやすくする観点から、7倍以上が好ましく、15倍以上がより好ましく、30倍以上がさらに好ましい。他方、膨張倍率IIの上限については、特に限定されるものではないが、残渣残存率及び残渣硬さを一定以上維持する観点から、好ましくは55倍以下、より好ましくは50倍以下、さらに好ましくは45倍以下である。 The expansion ratio II in the refractory material of the present invention is 7 from the viewpoint that the refractory material expands sufficiently even when the temperature of the refractory material is gradually increased, and the ratio (II/I) can be easily adjusted to the desired range. It is preferably at least 15 times, more preferably at least 30 times, even more preferably at least 30 times. On the other hand, although the upper limit of the expansion ratio II is not particularly limited, it is preferably 55 times or less, more preferably 50 times or less, and still more preferably from the viewpoint of maintaining a certain level or more of the residue residual rate and residue hardness. 45 times or less.
 本発明の耐火材における膨張倍率Iは、比率(II/I)が上記範囲を満たせるものであれば特に限定されないが、火災発生時に、耐火材が直接炎に晒された場合においても耐火性を担保する観点から、好ましくは8倍以上、より好ましくは17倍以上、さらに好ましくは33倍以上であり、そして好ましくは70倍以下、より好ましくは60倍以下、さらに好ましくは50倍以下である。 The expansion ratio I in the refractory material of the present invention is not particularly limited as long as the ratio (II/I) satisfies the above range. From the viewpoint of security, it is preferably 8 times or more, more preferably 17 times or more, still more preferably 33 times or more, and preferably 70 times or less, more preferably 60 times or less, further preferably 50 times or less.
(マトリックス成分)
 本発明の耐火材は、ゴム成分及び樹脂から選択される少なくとも1種であるマトリックス成分を含有する。マトリックス成分はゴム成分が好ましい。
(matrix component)
The refractory material of the present invention contains at least one matrix component selected from rubber components and resins. The matrix component is preferably a rubber component.
<ゴム成分>
 ゴム成分としては、例えば、天然ゴム、イソプレンゴム、ブチルゴム、ブタジエンゴム(BR)、1,2-ポリブタジエンゴム、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム、アクリロニトリルゴム-ブタジエンゴム(NBR)、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム(EPDM)、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多加硫ゴム、非加硫ゴム、シリコーンゴム、フッ素ゴム、ウレタンエラストマーなどが挙げられる。
 これらの中でも、残渣硬さ及び膨張圧力を高め、耐火性を向上させる観点から、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、ウレタンエラストマー、クロロプレンゴム、EPDMからなる群から選択される少なくとも1種であることが好ましい。中でも、比率(II/I)を所望の範囲に調整しやすい観点から、アクリロニトリル-ブタジエンゴム、クロロプレンゴム、スチレン-ブタジエンゴムからなる群から選択される少なくとも1種がより好ましく、アクリロニトリル-ブタジエンゴム、クロロプレンゴムからなる群から選択される少なくとも1種がさらに好ましく、アクリロニトリル-ブタジエンゴムが特に好ましい。アクリロニトリル-ブタジエンゴムは、耐火材を徐々に昇温させた場合においても、構造が安定するため、火災発生時に適切な粘度を維持することができ、比率(II/I)を所望の範囲に調整して、耐火性を向上しやすい。
 アクリロニトリル-ブタジエンゴムのニトリル量は、8~40質量%が好ましく、10~35質量%がより好ましく、15~25質量%がさらに好ましい。ニトリル量が上記の範囲にあるアクリロニトリル-ブタジエンゴムは、耐火材の膨張圧力を高めやすく、比率(II/I)も所望の範囲に調整しやすい。
 アクリロニトリル-ブタジエンゴムの100℃におけるムーニー粘度ML(1+4)は、20~90が好ましく、30~80がより好ましく、40~70がさらに好ましい。100℃におけるムーニー粘度ML(1+4)が上記の範囲にあるアクリロニトリル-ブタジエンゴムは、耐火材の膨張圧力を高めやすく、比率(II/I)も所望の範囲に調整しやすい。
<Rubber component>
Examples of rubber components include natural rubber, isoprene rubber, butyl rubber, butadiene rubber (BR), 1,2-polybutadiene rubber, styrene-butadiene rubber (SBR), chloroprene rubber, acrylonitrile rubber-butadiene rubber (NBR), ethylene- Propylene rubber, ethylene-propylene-diene rubber (EPDM), chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polyvulcanized rubber, non-vulcanized rubber, silicone rubber, fluororubber, urethane elastomer and the like.
Among these, at least one selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, urethane elastomer, chloroprene rubber, and EPDM from the viewpoint of increasing residue hardness and expansion pressure and improving fire resistance. is preferred. Among them, at least one selected from the group consisting of acrylonitrile-butadiene rubber, chloroprene rubber, and styrene-butadiene rubber is more preferable from the viewpoint of easily adjusting the ratio (II/I) to a desired range, acrylonitrile-butadiene rubber, At least one selected from the group consisting of chloroprene rubber is more preferred, and acrylonitrile-butadiene rubber is particularly preferred. Acrylonitrile-butadiene rubber has a stable structure even when the temperature of the refractory material is gradually raised, so it can maintain an appropriate viscosity when a fire occurs, and the ratio (II/I) can be adjusted to the desired range. It is easy to improve fire resistance.
The nitrile content of the acrylonitrile-butadiene rubber is preferably 8 to 40% by mass, more preferably 10 to 35% by mass, even more preferably 15 to 25% by mass. An acrylonitrile-butadiene rubber having a nitrile content within the above range can easily increase the expansion pressure of the refractory material, and can easily adjust the ratio (II/I) within the desired range.
Mooney viscosity ML(1+4) at 100° C. of acrylonitrile-butadiene rubber is preferably 20-90, more preferably 30-80, and even more preferably 40-70. An acrylonitrile-butadiene rubber having a Mooney viscosity ML(1+4) at 100° C. within the above range can easily increase the expansion pressure of the refractory material and easily adjust the ratio (II/I) within the desired range.
 クロロプレンゴムは、耐火材における含有炭素の割合を低くすることができるため、耐火性を高める観点から、耐火材に含まれるゴムとしてクロロプレンゴム使用することも好ましい。
 クロロプレンゴムとしては、硫黄変性タイプ(Gタイプ)、非硫黄変性タイプ(Wタイプ)等も用いることができる。
 クロロプレンゴムの100℃におけるムーニー粘度ML(1+4)は、60~120が好ましく、70~90がより好ましい。100℃におけるムーニー粘度ML(1+4)が上記の範囲にあるクロロプレンゴムは、耐火材の膨張圧力を高めやすく、比率(II/I)も所望の範囲に調整しやすい。
 なお、本明細書においてムーニー粘度はJIS K6300に準拠して測定される。
Since chloroprene rubber can reduce the content of carbon in the refractory material, it is also preferable to use chloroprene rubber as the rubber contained in the refractory material from the viewpoint of enhancing fire resistance.
As the chloroprene rubber, a sulfur-modified type (G type), a non-sulfur-modified type (W type), and the like can also be used.
The Mooney viscosity ML(1+4) at 100° C. of the chloroprene rubber is preferably 60-120, more preferably 70-90. A chloroprene rubber having a Mooney viscosity ML(1+4) at 100° C. within the above range can easily increase the expansion pressure of the refractory material, and can easily adjust the ratio (II/I) within the desired range.
In addition, Mooney viscosity is measured based on JISK6300 in this specification.
 クロロプレンゴムを用いる場合は、耐火材は、後述する可塑剤を含有することが好ましい。耐火材の成形性を高める観点から、後述する可塑剤の中でも脂肪族エステル系可塑剤が好ましく、中でもエーテル結合を有する脂肪族エステル系可塑剤がより好ましく、アジピン酸ジブトキシエトキシエチルがさらに好ましい。アジピン酸ジブトキシエトキシエチルの市販品としては、例えば、(株)ADEKA製のアデカサイザーRS-107等が該当し、アジピン酸エーテルエステル系と称される。
 なお、樹脂に対する可塑剤の使用量については後述する。
When using chloroprene rubber, the refractory material preferably contains a plasticizer, which will be described later. From the viewpoint of improving the moldability of the refractory material, among the plasticizers described later, aliphatic ester plasticizers are preferred, among them, aliphatic ester plasticizers having ether bonds are more preferred, and dibutoxyethoxyethyl adipate is even more preferred. Commercial products of dibutoxyethoxyethyl adipate include, for example, Adekasizer RS-107 manufactured by ADEKA Co., Ltd., which is called an adipic acid ether ester.
The amount of the plasticizer to be used for the resin will be described later.
 スチレン-ブタジエンゴム(SBR)としては、スチレンとブタジエンのランダム共重合体が挙げられる。スチレン-ブタジエンゴムのスチレン量は、20~60質量%が好ましく、25~50質量%がより好ましく、30~45質量%がさらに好ましい。スチレン量が上記の範囲にあるスチレン-ブタジエンゴムは、耐火材の膨張圧力を高めやすく、比率(II/I)も所望の範囲に調整しやすい。
 スチレン-ブタジエンゴムの100℃におけるムーニー粘度ML(1+4)は、20~60が好ましく、30~55がより好ましく、40~50がさらに好ましい。100℃におけるムーニー粘度ML(1+4)が上記の範囲にあるスチレン-ブタジエンゴムは、耐火材の膨張圧力を高めやすく、比率(II/I)も所望の範囲に調整しやすい。
Styrene-butadiene rubber (SBR) includes random copolymers of styrene and butadiene. The styrene content of the styrene-butadiene rubber is preferably 20 to 60% by mass, more preferably 25 to 50% by mass, even more preferably 30 to 45% by mass. A styrene-butadiene rubber having a styrene content within the above range can easily increase the expansion pressure of the refractory material, and can easily adjust the ratio (II/I) within the desired range.
The Mooney viscosity ML(1+4) at 100° C. of the styrene-butadiene rubber is preferably 20-60, more preferably 30-55, even more preferably 40-50. A styrene-butadiene rubber having a Mooney viscosity ML(1+4) at 100° C. within the above range can easily increase the expansion pressure of the refractory material and can easily adjust the ratio (II/I) within the desired range.
<樹脂>
 樹脂としては熱硬化性樹脂でもよいし、熱可塑性樹脂でもよいが、好ましくは熱可塑性樹脂である。熱可塑性樹脂としては、特に制限されないが、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン-酢酸ビニル共重合体などのポリオレフィン樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリテトラフルオロエチレンなどのフッ素樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、ウレタンエラストマーなどのウレタン系樹脂などが挙げられる。
<Resin>
The resin may be a thermosetting resin or a thermoplastic resin, preferably a thermoplastic resin. The thermoplastic resin is not particularly limited, but examples include polypropylene resin, polyethylene resin, polyolefin resin such as ethylene-vinyl acetate copolymer, polyvinyl acetate resin, polyvinyl chloride resin, fluororesin such as polytetrafluoroethylene, Urethane resins such as phenol resins, polycarbonate resins, polyacrylonitrile resins, and urethane elastomers can be used.
 上記した熱可塑性樹脂の中でも、比率(II/I)を高めて耐火性を向上させる観点から、エチレン-酢酸ビニル共重合体及びポリ酢酸ビニル樹脂が好ましい。また、耐火性をより向上させる観点から、酢酸ビニル含量の多い熱可塑性樹脂が好ましい。具体的には、熱可塑性樹脂としては、酢酸ビニル含量が20質量%以上の高Vac成分を含有するエチレン-酢酸ビニル共重合体、及びポリ酢酸ビニル樹脂から選択される少なくとも1種であることが好ましく、ポリ酢酸ビニル樹脂であることがより好ましい。なお、酢酸ビニル含量が20質量%以上の高Vac成分とは、酢酸ビニル含量が20質量%以上のエチレン-酢酸ビニル共重合体成分を意味する。エチレン-酢酸ビニル共重合体及びポリ酢酸ビニル樹脂は、非塩素系樹脂であるため、ダイオキシンなどが発生し難く、かつ、可塑剤を含有させることなく、比較的低温で熱膨張性黒鉛などと共に混練でき、また耐火材の成形性も良好になるため、耐火材に含まれる樹脂として使用することが好ましい。 Among the above thermoplastic resins, ethylene-vinyl acetate copolymers and polyvinyl acetate resins are preferable from the viewpoint of increasing the ratio (II/I) to improve fire resistance. Moreover, from the viewpoint of further improving fire resistance, a thermoplastic resin having a high vinyl acetate content is preferred. Specifically, the thermoplastic resin is at least one selected from an ethylene-vinyl acetate copolymer containing a high Vac component having a vinyl acetate content of 20% by mass or more, and a polyvinyl acetate resin. Polyvinyl acetate resin is preferred, and polyvinyl acetate resin is more preferred. The high Vac component having a vinyl acetate content of 20% by mass or more means an ethylene-vinyl acetate copolymer component having a vinyl acetate content of 20% by mass or more. Ethylene-vinyl acetate copolymers and polyvinyl acetate resins are non-chlorinated resins, so dioxins are less likely to occur, and they are kneaded with thermally expandable graphite at relatively low temperatures without containing plasticizers. It is preferable to use it as a resin contained in the refractory material because it can be used and the moldability of the refractory material is improved.
 高Vac成分の酢酸ビニル含有量は、及び、比率(II/I)を所望の範囲に調整しやすい観点から、好ましくは25質量%以上であり、より好ましくは30質量%以上であり、さらに好ましくは50質量%以上であり、さらに好ましくは70質量%以上である。 The vinyl acetate content of the high-Vac component is preferably 25% by mass or more, more preferably 30% by mass or more, and still more preferably from the viewpoint of easily adjusting the ratio (II/I) to a desired range. is 50% by mass or more, more preferably 70% by mass or more.
 エチレン-酢酸ビニル共重合体は、本発明の効果を阻害しない範囲で、酢酸ビニル含有量が、20質量%未満のエチレン-酢酸ビニル共重合体成分(低Vac成分)を含んでもよい。比率(II/I)所望の範囲に調整して、耐火性を高める観点から、エチレン-酢酸ビニル共重合体全量基準で、高Vac成分の含有量は、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは100質量%である。 The ethylene-vinyl acetate copolymer may contain an ethylene-vinyl acetate copolymer component (low Vac component) with a vinyl acetate content of less than 20% by mass to the extent that the effects of the present invention are not impaired. From the viewpoint of improving the fire resistance by adjusting the ratio (II/I) within the desired range, the content of the high Vac component is preferably 50% by mass or more based on the total amount of the ethylene-vinyl acetate copolymer, and more It is preferably 70% by mass or more, more preferably 100% by mass.
 エチレン-酢酸ビニル共重合体は、耐火材の膨張圧力を高める観点及び成形性を良好にする観点から、190℃におけるメルトフローレート(MFR)が、8.0g/10min以下のエチレン-酢酸ビニル共重合体成分(以下、低MFR成分ともいう)を含むことが好ましい。該低MFR成分の190℃におけるメルトフローレート(MFR)は、6.0g/10min以下であることがより好ましく、1.0g/10min以下であることが更に好ましい。低MFR成分の190℃におけるメルトフローレート(MFR)は、耐火材の成形性の観点から、0.05g/10min以上であることが好ましく、0.07g/10min以上であることがより好ましく、0.1g/10min以上であることがさらに好ましい。
 エチレン-酢酸ビニル共重合体の190℃におけるメルトフローレートは、荷重2.16kgにおける測定値であり、JIS K7210:1999に準拠して測定される。
The ethylene-vinyl acetate copolymer is an ethylene-vinyl acetate copolymer having a melt flow rate (MFR) at 190°C of 8.0 g/10 min or less from the viewpoint of increasing the expansion pressure of the refractory material and improving the moldability. It preferably contains a polymer component (hereinafter also referred to as a low MFR component). The melt flow rate (MFR) of the low MFR component at 190° C. is more preferably 6.0 g/10 min or less, still more preferably 1.0 g/10 min or less. The melt flow rate (MFR) of the low MFR component at 190 ° C. is preferably 0.05 g / 10 min or more, more preferably 0.07 g / 10 min or more, from the viewpoint of moldability of the refractory material. .1 g/10 min or more is more preferable.
The melt flow rate of the ethylene-vinyl acetate copolymer at 190°C is a value measured under a load of 2.16 kg, and is measured according to JIS K7210:1999.
 エチレン-酢酸ビニル共重合体全量基準で、低MFR成分の含有量は、好ましくは70質量%以上であり、より好ましくは90質量%以上である。 The content of the low-MFR component is preferably 70% by mass or more, more preferably 90% by mass or more, based on the total amount of the ethylene-vinyl acetate copolymer.
 なお、MFRと酢酸ビニル含有量は、エチレン-酢酸ビニル共重合体の構造を表す別々のパラメーターであるため、低MFR成分に該当し、かつ高Vac成分にも該当する成分も存在する。 Since MFR and vinyl acetate content are separate parameters representing the structure of the ethylene-vinyl acetate copolymer, there are also components that correspond to low MFR components and high Vac components.
 エチレン-酢酸ビニル共重合体の中でも、酢酸ビニル含量が20質量%以上50質量%未満の高Vac成分を使用する場合は、膨張圧力を高め、耐火性を向上させる観点などから、該高Vac成分は上記した低MFR成分であることが好ましい。言い換えると、該高Vac成分のMFR(190℃)は、好ましくは8.0g/10min以下、より好ましくは6.0g/10min以下、更に好ましくは1.0g/10min以下であり、そして好ましくは0.05g/10min以上であり、より好ましくは0.1g/10min以上であり、さらに好ましくは0.3g/10min以上である。
 エチレン-酢酸ビニル共重合体の中でも、酢酸ビニル含量が50質量%以上の高Vac成分を使用する場合は、比率(II/I)を所望の範囲に調整して、耐火性を向上させる観点などから、該高Vac成分の100℃におけるムーニー粘度ML(1+4)は、好ましくは10~50、より好ましくは20~40である。
Among ethylene-vinyl acetate copolymers, when using a high Vac component having a vinyl acetate content of 20% by mass or more and less than 50% by mass, the high Vac component is used from the viewpoint of increasing the expansion pressure and improving fire resistance. is preferably a low MFR component as described above. In other words, the MFR (190° C.) of the high-Vac component is preferably 8.0 g/10 min or less, more preferably 6.0 g/10 min or less, even more preferably 1.0 g/10 min or less, and preferably 0 05 g/10 min or more, more preferably 0.1 g/10 min or more, and still more preferably 0.3 g/10 min or more.
Among ethylene-vinyl acetate copolymers, when using a high Vac component having a vinyl acetate content of 50% by mass or more, the ratio (II/I) is adjusted to a desired range to improve fire resistance. Therefore, the Mooney viscosity ML(1+4) at 100° C. of the high-Vac component is preferably 10-50, more preferably 20-40.
 ポリ酢酸ビニル樹脂は、酢酸ビニルの単独重合体であり、これを耐火材に含まれる樹脂として用いることで、比率(II/I)を所望の範囲に調整しやすく、耐火性も効果的に向上する。ポリ酢酸ビニル樹脂の重量平均分子量は、耐火材の成形性を良好にしつつ、膨張圧力を高める観点から、好ましくは10万~100万であり、より好ましくは20万~60万であり、さらに好ましくは30万~50万である。本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定して得られる標準ポリスチレン換算値である。 Polyvinyl acetate resin is a homopolymer of vinyl acetate, and by using this as a resin contained in a fireproof material, the ratio (II/I) can be easily adjusted to the desired range, and fire resistance can be effectively improved. do. The weight average molecular weight of the polyvinyl acetate resin is preferably 100,000 to 1,000,000, more preferably 200,000 to 600,000, and still more preferably from the viewpoint of increasing the expansion pressure while improving the moldability of the refractory material. is 300,000 to 500,000. As used herein, the weight average molecular weight is a standard polystyrene conversion value obtained by measuring by gel permeation chromatography (GPC).
(マトリックス成分の粘度)
 本発明の耐火材は、100℃~300℃において、昇温速度40℃/minで昇温させたときの250℃におけるマトリックス成分の粘度Aに対する、100℃~300℃において5℃/minにて昇温させたときの250℃におけるマトリックス成分の粘度Bの比率(B/A)(以下、「比率(B/A)」と表記)が2.0以下であることが好ましい。比率(B/A)が2.0以下であることにより、耐火材を徐々に昇温させた場合においても、マトリックス成分の粘度が過剰に高まることを防止できる。そのため、耐火材が膨張しやすくなり、膨張倍率の比率も所定の範囲を満たすことができ、耐火性が向上する。また、耐火材の製造過程において、樹脂組成物の流動性をある程度担保でき、優れた成形性を得られることにより、良質な耐火材の提供が可能になる。こうした観点を踏まえると、1.8以下がより好ましく、1.6以下がさらに好ましい。
 なお、比率(B/A)の下限は、特に限定されるものではないが、耐火材を徐々に昇温させた場合においても、耐火材樹脂組成物の硬さをある程度担保し、最低限の成形性を得る観点から、好ましくは0.7以上、より好ましくは0.8以上、さらに好ましくは1.0以上である。
 比率(B/A)は、マトリックス成分の種類、粘度、分子量などにより適宜調整できる。
(Viscosity of matrix component)
The refractory material of the present invention has a viscosity A of the matrix component at 250 ° C. when heated at a temperature increase rate of 40 ° C./min at 100 ° C. to 300 ° C. at 5 ° C./min at 100 ° C. to 300 ° C. The ratio (B/A) of the viscosity B of the matrix component at 250° C. when the temperature is raised (hereinafter referred to as “ratio (B/A)”) is preferably 2.0 or less. When the ratio (B/A) is 2.0 or less, it is possible to prevent the viscosity of the matrix component from excessively increasing even when the temperature of the refractory material is gradually increased. Therefore, the refractory material expands easily, the ratio of the expansion ratio can also satisfy a predetermined range, and the fire resistance is improved. Moreover, in the process of manufacturing the refractory material, the fluidity of the resin composition can be ensured to some extent, and excellent moldability can be obtained, making it possible to provide a high-quality refractory material. Based on these points of view, 1.8 or less is more preferable, and 1.6 or less is even more preferable.
The lower limit of the ratio (B/A) is not particularly limited. From the viewpoint of obtaining moldability, it is preferably 0.7 or more, more preferably 0.8 or more, and still more preferably 1.0 or more.
The ratio (B/A) can be appropriately adjusted depending on the type, viscosity, molecular weight, etc. of the matrix component.
 本発明におけるマトリックス成分の粘度Bは、耐火材を徐々に昇温させた場合においても、耐火材が十分膨張しやすくしたり、優れた成形性を得たりする観点から、7500Pa・s以下が好ましく、5000Pa・s以下がより好ましく、3000Pa・s以下がさらに好ましい。他方、マトリックス成分の粘度Bの下限については、特に限定されるものではないが、成形性を良好にする観点から、好ましくは1000Pa・s以上、より好ましくは1200Pa・s以上、さらに好ましくは1300Pa・s以上である。 The viscosity B of the matrix component in the present invention is preferably 7500 Pa s or less from the viewpoint of making the refractory material sufficiently expand easily and obtaining excellent moldability even when the temperature of the refractory material is gradually increased. , 5000 Pa·s or less, and more preferably 3000 Pa·s or less. On the other hand, the lower limit of the viscosity B of the matrix component is not particularly limited, but from the viewpoint of improving moldability, it is preferably 1000 Pa·s or more, more preferably 1200 Pa·s or more, and still more preferably 1300 Pa·s. s or more.
 本発明におけるマトリックス成分の粘度Aは、比率(B/A)が上記範囲を満たせるものであれば特に限定されないが、火災発生時に、耐火材を急速に昇温させた場合においても、耐火材が十分膨張しやすくしたり、優れた成形性を得たりする観点から、6000Pa・s以下が好ましく、4500Pa・s以下がより好ましく、2500Pa・s以下がさらに好ましい。他方、マトリックス成分の粘度Bの下限については、特に限定されるものではないが、最低限の成形性を得る観点から、好ましくは800Pa・s以上、より好ましくは900Pa・s以上、さらに好ましくは1100Pa・s以上である。 The viscosity A of the matrix component in the present invention is not particularly limited as long as the ratio (B/A) satisfies the above range. From the viewpoints of sufficient expansion and excellent moldability, the viscosity is preferably 6000 Pa·s or less, more preferably 4500 Pa·s or less, and even more preferably 2500 Pa·s or less. On the other hand, the lower limit of the viscosity B of the matrix component is not particularly limited, but from the viewpoint of obtaining the minimum moldability, it is preferably 800 Pa·s or more, more preferably 900 Pa·s or more, and still more preferably 1100 Pa. - s or more.
(熱膨張性黒鉛)
 本発明の耐火材は、熱膨張性黒鉛を含有する。熱膨張性黒鉛は、加熱時に膨張する従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の原料粉末を、強酸化剤で酸処理してグラファイト層間化合物を生成させたものである。強酸化剤としては、濃硫酸、硝酸、セレン酸等の無機酸、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等が挙げられる。熱膨張性黒鉛は炭素の層状構造を維持したままの結晶化合物である。
 熱膨張性黒鉛は中和処理されてもよい。つまり、上記のように強酸化剤などで処理して得られた熱膨張性黒鉛を、更にアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和してもよい。
(Thermal expandable graphite)
The refractory material of the present invention contains thermally expandable graphite. Thermally expandable graphite is a conventionally known substance that expands when heated, and is produced by acid-treating a raw material powder such as natural flake graphite, pyrolytic graphite, or Kish graphite with a strong oxidizing agent to form a graphite intercalation compound. be. Examples of strong oxidizing agents include inorganic acids such as concentrated sulfuric acid, nitric acid and selenic acid, concentrated nitric acid, perchloric acid, perchlorates, permanganates, bichromates, and hydrogen peroxide. Thermally expandable graphite is a crystalline compound that maintains the layered structure of carbon.
Thermally expandable graphite may be neutralized. That is, the thermally expandable graphite obtained by treatment with a strong oxidizing agent or the like as described above may be further neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, or the like.
 本発明の耐火材中の熱膨張性黒鉛の含有量は、マトリックス成分100質量部に対して、好ましくは20~500質量部であり、より好ましくは30~250質量部であり、さらに好ましくは70~150質量部である。熱膨張性黒鉛の含有量がこれら下限値以上であると、熱膨張性耐火材の膨張圧力を高めやすくなり、膨張倍率の比率(II/I)を所望の範囲に調整しやすくなる。他方、熱膨張性黒鉛の含有量がこれら上限値以下であると、形状保持性、加工性などが良好になる。 The content of thermally expandable graphite in the refractory material of the present invention is preferably 20 to 500 parts by mass, more preferably 30 to 250 parts by mass, and still more preferably 70 parts by mass with respect to 100 parts by mass of the matrix component. ~150 parts by mass. When the content of thermally expandable graphite is at least these lower limits, it becomes easier to increase the expansion pressure of the thermally expandable refractory material, and it becomes easier to adjust the expansion ratio ratio (II/I) within a desired range. On the other hand, if the content of the thermally expandable graphite is not more than these upper limits, the shape retainability, workability, etc. are improved.
 本発明における熱膨張性黒鉛は、平均アスペクト比が好ましくは15以上であり、より好ましくは20以上であり、そして通常は1000以下である。熱膨張性黒鉛の平均アスペクト比がこれら下限値以上であると、耐火材の膨張圧力を高めやすくなる。
 熱膨張性黒鉛のアスペクト比は、10個以上(例えば50個)の熱膨張性黒鉛を対象にして、最大寸法(長径)と最小寸法(短径)を測定し、これらの比(最大寸法/最小寸法)の平均値として求める。
The thermally expandable graphite in the present invention preferably has an average aspect ratio of 15 or more, more preferably 20 or more, and usually 1000 or less. When the average aspect ratio of the thermally expandable graphite is at least these lower limits, it becomes easier to increase the expansion pressure of the refractory material.
The aspect ratio of thermally expandable graphite is obtained by measuring the maximum dimension (major axis) and the minimum dimension (minor axis) of 10 or more (for example, 50) thermally expandable graphite, and calculating the ratio (maximum dimension / minimum dimension).
 熱膨張性黒鉛の平均粒径は、所望の膨張圧力とする観点から、好ましくは50~500μmであり、より好ましくは100~400μmである。なお、熱膨張性黒鉛の平均粒径は、10個以上(例えば50個)の熱膨張性黒鉛を対象にして、最大寸法の平均値として求める。
 上記した熱膨張性黒鉛の最小寸法及び最大寸法は、例えば、電界放出形走査電子顕微鏡(FE-SEM)を用いて測定することができる。
The average particle size of the thermally expandable graphite is preferably 50 to 500 μm, more preferably 100 to 400 μm, from the viewpoint of achieving a desired expansion pressure. The average particle size of the thermally expandable graphite is determined as the average value of the maximum dimensions of 10 or more (for example, 50) thermally expandable graphites.
The minimum and maximum dimensions of the thermally expandable graphite described above can be measured using, for example, a field emission scanning electron microscope (FE-SEM).
(難燃剤)
 本発明の耐火材は、難燃剤を含有することが好ましい。難燃剤を含有することにより、耐火性が向上する。
 難燃剤としては、例えば、トリフェニルホスフェート(リン酸トリフェニル)、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、及びキシレニルジフェニルホスフェート等の各種リン酸エステル、リン酸ナトリウム、リン酸カリウム、及びリン酸マグネシウム等のリン酸金属塩、亜リン酸ナトリウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸アルミニウム等の亜リン酸金属塩、ポリリン酸アンモニウム、赤リン等が挙げられる。難燃剤としては、下記一般式(1)で表される化合物等も挙げられる。
(Flame retardants)
The refractory material of the present invention preferably contains a flame retardant. Fire resistance improves by containing a flame retardant.
Examples of flame retardants include various phosphoric acid esters such as triphenyl phosphate (triphenyl phosphate), tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, and xylenyl diphenyl phosphate, sodium phosphate, phosphorus phosphites such as sodium phosphite, potassium phosphite, magnesium phosphite, aluminum phosphite and the like, ammonium polyphosphate, red phosphorus, and the like. be done. Examples of flame retardants include compounds represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記一般式(1)中、R及びRは、同一又は異なって、水素、炭素数1~16の直鎖状もしくは分岐状のアルキル基、又は炭素数6~16のアリール基を示す。Rは、水酸基、炭素数1~16の直鎖状もしくは分岐状のアルキル基、炭素数1~16の直鎖状もしくは分岐状のアルコキシル基、炭素数6~16のアリール基、又は炭素数6~16のアリールオキシ基を示す。 In general formula (1), R 1 and R 3 are the same or different and represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or a carbon number Represents 6-16 aryloxy groups.
 前記一般式(1)で表される化合物の具体例としては、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、n-プロピルホスホン酸、n-ブチルホスホン酸、2-メチルプロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチル-ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。前記難燃剤は、単独でも、2種以上を組み合わせて用いてもよい。 Specific examples of the compound represented by the general formula (1) include methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, n-propylphosphonic acid, n-butylphosphonic acid and 2-methylpropylphosphonic acid. , t-butylphosphonic acid, 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid , phenylphosphinic acid, diethylphenylphosphinic acid, diphenylphosphinic acid, bis(4-methoxyphenyl)phosphinic acid and the like. The flame retardants may be used alone or in combination of two or more.
 本発明の難燃剤としては、ホウ素系化合物及び金属水酸化物を使用することもできる。
 ホウ素系化合物としては、ホウ酸亜鉛等が挙げられる。
 金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、及びハイドロタルサイト等が挙げられる。金属水酸化物を用いた場合、発火により生じた熱によって水が生成し、速やかに消火することができる。
Boron-based compounds and metal hydroxides can also be used as the flame retardant of the present invention.
Zinc borate etc. are mentioned as a boron-type compound.
Examples of metal hydroxides include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, hydrotalcite, and the like. When a metal hydroxide is used, water is produced by heat generated by ignition, and the fire can be quickly extinguished.
 前記難燃剤の中でも、安全性やコスト等の観点から、赤リン、トリフェニルホスフェート(リン酸トリフェニル)等のリン酸エステル、亜リン酸アルミニウム、ポリリン酸アンモニウム、及びホウ酸亜鉛が好ましい。中でも、亜リン酸アルミニウム、及びポリリン酸アンモニウムがより好ましい。
 なお、上記に列挙した難燃剤は、1種を単独で使用してもよいし、2種以上を併用して使用してもよいが、1種を単独で使用することが好ましく、亜リン酸アルミニウムを使用することがより好ましい。亜リン酸アルミニウムは、膨張性があるため、これを含む耐火材は、膨張圧力が高まりやすく、より効果的に耐火性を向上させ易い。
Among the flame retardants, red phosphorus, phosphoric acid esters such as triphenyl phosphate (triphenyl phosphate), aluminum phosphite, ammonium polyphosphate, and zinc borate are preferable from the viewpoint of safety and cost. Among them, aluminum phosphite and ammonium polyphosphate are more preferable.
The flame retardants listed above may be used alone or in combination of two or more, but it is preferable to use one alone, and phosphorous acid More preferably, aluminum is used. Since aluminum phosphite has expansive properties, the expansion pressure of the refractory material containing the aluminum phosphite tends to increase, and the fire resistance tends to be improved more effectively.
 難燃剤の平均粒子径は、1~200μmが好ましく、1~60μmがより好ましく、3~40μmがさらに好ましく、5~20μmがさらに好ましい。難燃剤の平均粒子径が上記範囲内であると、耐火材における難燃剤の分散性が向上し、難燃剤を樹脂中に均一に分散させたり、樹脂に対する難燃剤の配合量を多くしたりすることができる。また、平均粒子径が上記範囲外となると、樹脂中に難燃剤が分散しにくくなり、樹脂中に難燃剤を均一に分散させたり、多量に配合させたりすることが難しくなる。
 なお、難燃剤の平均粒子径は、レーザー回折/散乱式粒度分布測定装置により測定したメディアン径(D50)の値である。
The average particle size of the flame retardant is preferably 1-200 μm, more preferably 1-60 μm, still more preferably 3-40 μm, and even more preferably 5-20 μm. When the average particle size of the flame retardant is within the above range, the dispersibility of the flame retardant in the refractory material is improved, the flame retardant is uniformly dispersed in the resin, and the amount of the flame retardant compounded in the resin is increased. be able to. On the other hand, if the average particle size is outside the above range, the flame retardant will be difficult to disperse in the resin, making it difficult to uniformly disperse the flame retardant in the resin or to mix a large amount of the flame retardant.
The average particle size of the flame retardant is the value of the median size (D50) measured with a laser diffraction/scattering particle size distribution analyzer.
 本発明の耐火材の難燃剤の含有量は、マトリックス成分100質量部に対して、15~1000質量部であることが好ましく、20~300質量部がより好ましく、30~100質量部が更に好ましい。難燃剤の含有量がこれら下限値以上であると、耐火材の耐火性が向上する。また、難燃剤の含有量がこれら上限値以下であると、樹脂中に均一に分散しやすくなり、成形性などが優れたものとなる。 The content of the flame retardant in the refractory material of the present invention is preferably 15 to 1000 parts by mass, more preferably 20 to 300 parts by mass, and even more preferably 30 to 100 parts by mass with respect to 100 parts by mass of the matrix component. . When the content of the flame retardant is at least these lower limit values, the fire resistance of the fire resistant material is improved. Moreover, when the content of the flame retardant is not more than these upper limits, it becomes easier to uniformly disperse in the resin, and moldability and the like are excellent.
(架橋剤)
 本発明の耐火材は、架橋剤を含んでもよく、特にゴム成分として、アクリロニトリル-ブタジエンゴムを用いる場合は、架橋剤を併用することで、膨張圧力を高めることができ、耐火性が向上する。耐火材が架橋剤を含む場合は、火災の際の熱により、ゴム成分などのマトリックス成分の架橋が進行して、粘度が高くなり、それに伴い、膨張圧力が高まるものと考えられる。
(crosslinking agent)
The refractory material of the present invention may contain a cross-linking agent. Especially when acrylonitrile-butadiene rubber is used as the rubber component, the combined use of the cross-linking agent can increase the expansion pressure and improve the fire resistance. When the refractory material contains a cross-linking agent, it is believed that the heat generated during a fire promotes the cross-linking of the matrix component such as the rubber component, increasing the viscosity and increasing the expansion pressure.
 架橋剤としては、公知のものが制限なく使用でき、例えば、硫黄系架橋剤、有機過酸化物、アゾ化合物などを挙げることができる。
 硫黄系架橋剤としては、硫黄、不溶性硫黄、沈降硫黄、塩化硫黄、一塩化硫黄、二塩化硫黄等の無機系のものでもよいが、含硫黄有機架橋剤であってもよい。含硫黄有機架橋剤としては、モルホリンジスルフィド、アルキルフェノールジスルフィド、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2)、チウラムポリスルフィド、2-(4’-モルホリノ・ジチオ)ベンゾチアゾール等が挙げられる。
 有機過酸化物としては、例えば、2,5-ジメチルヘキサン、2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、3-ジ-t-ブチルパーオキサイド、t-ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、ジクミルパーオキサイド、α,α’ -ビス(t-ブチルパーオキシイソプロピル)ベンゼン、n-ブチル-4,4-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシベンゾエート:ベンゾイルパーオキサイド:t-ブチルパーオキシ-2-エチルヘキシルカーボネート等が挙げられる。
 アゾ化合物としては、例えば、アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。
 架橋剤は、1種を単独で使用してもよいし、2種以上を併用して使用してもよい。
As the cross-linking agent, any known cross-linking agent can be used without limitation, and examples thereof include sulfur-based cross-linking agents, organic peroxides, and azo compounds.
The sulfur-based cross-linking agent may be an inorganic cross-linking agent such as sulfur, insoluble sulfur, precipitated sulfur, sulfur chloride, sulfur monochloride, sulfur dichloride, or a sulfur-containing organic cross-linking agent. Examples of sulfur-containing organic cross-linking agents include morpholine disulfide, alkylphenol disulfide, N,N'-dithio-bis(hexahydro-2H-azepinone-2), thiuram polysulfide, 2-(4'-morpholino-dithio)benzothiazole and the like. be done.
Examples of organic peroxides include 2,5-dimethylhexane, 2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 3-di-t -butyl peroxide, t-dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne, dicumyl peroxide, α,α'-bis(t-butylperoxyisopropyl ) benzene, n-butyl-4,4-bis(t-butylperoxy)butane, 2,2-bis(t-butylperoxy)butane, 1,1-bis(t-butylperoxy)cyclohexane, 1 ,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane, t-butylperoxybenzoate: benzoyl peroxide: t-butylperoxy-2-ethylhexyl carbonate and the like.
Examples of azo compounds include azobisisobutyronitrile and azobis(2,4-dimethylvaleronitrile).
The cross-linking agents may be used singly or in combination of two or more.
 また、上記した架橋剤の中でも、耐火材を製造する際に、各成分を混練する温度(例えば70℃~150℃)で架橋反応が生じ難く、かつ、火災時の熱によりアクリロニトリル-ブタジエンゴムなどのゴム成分の架橋反応が生じやすいものが好ましい。具体的には、硫黄系架橋剤が好ましく、これらの中では、架橋性の観点から無機系のものが好ましく、硫黄がより好ましい。
 耐火材が架橋剤を含有する場合は、架橋剤の含有量は、マトリックス成分100質量部に対して、好ましくは0.1~10質量部であり、より好ましくは0.2~5質量部であり、さらに好ましくは0.5~3質量部である。
Among the above-mentioned cross-linking agents, when producing a refractory material, a cross-linking reaction is unlikely to occur at the temperature (for example, 70 ° C. to 150 ° C.) at which each component is kneaded, and acrylonitrile-butadiene rubber etc. It is preferable that the cross-linking reaction of the rubber component easily occurs. Specifically, a sulfur-based cross-linking agent is preferred, and among these, an inorganic cross-linking agent is preferred from the viewpoint of cross-linkability, and sulfur is more preferred.
When the refractory material contains a cross-linking agent, the content of the cross-linking agent is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 5 parts by mass, with respect to 100 parts by mass of the matrix component. Yes, more preferably 0.5 to 3 parts by mass.
(架橋促進剤)
 本発明の耐火材は、架橋剤に加えて架橋促進剤が配合されることも好ましい。架橋促進剤としては、例えば、金属酸化物を挙げることができる。
 金属酸化物としては、酸化亜鉛、酸化マグネシウム等が挙げられる。本発明において金属酸化物を使用する場合、酸化亜鉛を使用することが好ましい。これら金属酸化物は、ステアリン酸などの炭素数12~24,好ましくは炭素数16~20の長鎖脂肪族カルボン酸と併用することがより好ましい。なお、このように、金属酸化物と併用される長鎖脂肪族カルボン酸も本明細書では架橋促進剤とする。
 本発明の耐火材で使用できる架橋促進剤としては、上記したもの以外にも、例えば、チアゾール系化合物、スルフェンアミド系化合物、チウラム系化合物、ジチオカルバミン酸塩系化合物、グアニジン系化合物などが挙げられる。チアゾール系化合物としてはビス(ベンゾチアゾール-2-イルチオ)亜鉛が挙げられる。 架橋促進剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋促進剤としては、金属酸化物及びチアゾール系化合物から選択される少なくとも1種が好ましく、これらを併用する態様も好ましい。この際、金属酸化物は、ステアリン酸などの炭素数16~20の長鎖脂肪族カルボン酸とさらに併用させてもよい。
(Crosslinking accelerator)
The refractory material of the present invention preferably contains a cross-linking accelerator in addition to the cross-linking agent. Examples of cross-linking accelerators include metal oxides.
Examples of metal oxides include zinc oxide and magnesium oxide. When using metal oxides in the present invention, it is preferred to use zinc oxide. These metal oxides are more preferably used in combination with a long-chain aliphatic carboxylic acid having 12 to 24 carbon atoms, preferably 16 to 20 carbon atoms, such as stearic acid. In this specification, the long-chain aliphatic carboxylic acid used in combination with the metal oxide is also referred to as a cross-linking accelerator.
Examples of cross-linking accelerators that can be used in the refractory material of the present invention include, in addition to those described above, thiazole-based compounds, sulfenamide-based compounds, thiuram-based compounds, dithiocarbamate-based compounds, and guanidine-based compounds. . Thiazole compounds include bis(benzothiazol-2-ylthio)zinc. A crosslinking accelerator may be used individually by 1 type, and may use 2 or more types together.
As the cross-linking accelerator, at least one selected from metal oxides and thiazole-based compounds is preferable, and a mode in which these are used in combination is also preferable. At this time, the metal oxide may be used in combination with a long-chain aliphatic carboxylic acid having 16 to 20 carbon atoms such as stearic acid.
 本発明の耐火材において架橋促進剤を使用する場合の架橋促進剤の配合量は、特に限定されないが、マトリックス成分100質量部に対して、好ましくは0.1~15質量部であり、より好ましくは0.5~10質量部であり、さらに好ましくは1~8質量部である。 The amount of the cross-linking accelerator when it is used in the refractory material of the present invention is not particularly limited, but is preferably 0.1 to 15 parts by mass, more preferably 100 parts by mass of the matrix component. is 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass.
(可塑剤)
 本発明の耐火材は、可塑剤を含有してもよい。可塑剤を用いることにより、成形性が良好になりやすい。可塑剤を使用する場合において、可塑剤の含有量は、特に限定されないが、マトリックス成分100質量部に対して、好ましくは10~200質量部であり、より好ましくは20~60質量部である。可塑剤の含有量がこれら下限値以上であると耐火材の成形性が向上する。可塑剤の含有量がこれら上限値以下であると比率(II/I)を所望の範囲に調整しやすくなり、また、膨張圧力も高くなって、耐火性が向上しやすくなる。
(Plasticizer)
The refractory material of the present invention may contain a plasticizer. By using a plasticizer, moldability tends to be improved. When a plasticizer is used, the content of the plasticizer is not particularly limited, but is preferably 10 to 200 parts by mass, more preferably 20 to 60 parts by mass, based on 100 parts by mass of the matrix component. If the content of the plasticizer is at least these lower limits, the moldability of the refractory material will be improved. When the content of the plasticizer is below these upper limits, it becomes easier to adjust the ratio (II/I) within the desired range, and the expansion pressure also increases, making it easier to improve the fire resistance.
 可塑剤の具体例としては、ジ-2-エチルヘキシルフタレート(DOP)、ジ-n-オクチルフタレート、ジイソノニルフタレート(DINP)、ジイソデシルフタレート(DIDP)、ジウンデシルフタレート(DUP)、又は炭素原子数10~13程度の高級アルコール又は混合アルコールのフタル酸エステル等のフタル酸エステル系可塑剤、ジ-2-エチルヘキシルアジペート(DOA)、ジイソブチルアジペート(DIBA)、ジブチルアジペート(DBA)、ジ-n-オクチルアジペート、ジ-n-デシルアジペート、ジイソデシルアジペート、ジ-2-エチルヘキシルアゼレート、ジブチルセバケート、ジ-2-エチルヘキシルセバケート、アジピン酸ジブトキシエトキシエチル等の脂肪族エステル系可塑剤、トリ-2-エチルヘキシルトリメリテート(TOTM)、トリ-n-オクチルトリメリテート、トリデシルトリメリテート、トリイソデシルトリメリテート、ジ-n-オクチル-n-デシルトリメリレート等のトリメリット酸エステル系可塑剤、鉱油等のプロセスオイル等が挙げられる。 Specific examples of plasticizers include di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate, diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diundecyl phthalate (DUP), or those having 10 to 10 carbon atoms. Phthalic acid ester plasticizers such as phthalic acid esters of higher alcohols or mixed alcohols of about 13, di-2-ethylhexyl adipate (DOA), diisobutyl adipate (DIBA), dibutyl adipate (DBA), di-n-octyl adipate, Aliphatic ester plasticizers such as di-n-decyl adipate, diisodecyl adipate, di-2-ethylhexyl azelate, dibutyl sebacate, di-2-ethylhexyl sebacate, dibutoxyethoxyethyl adipate, tri-2-ethylhexyl Trimellitate ester plasticizers such as trimellitate (TOTM), tri-n-octyl trimellitate, tridecyl trimellitate, triisodecyl trimellitate, and di-n-octyl-n-decyl trimellitate and process oils such as mineral oil.
(無機充填材)
 本発明の耐火材は、難燃剤及び熱膨張性黒鉛以外の無機充填材を更に含有してもよい。
 難燃剤及び熱膨張性黒鉛以外の無機充填材としては特に制限されず、例えば、アルミナ、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、及び炭酸バリウム等の金属炭酸塩、シリカ、珪藻土、ドーソナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルーン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、各種磁性粉、スラグ繊維、フライアッシュ、及び脱水汚泥等が挙げられる。これらの無機充填材は、単独でも、2種以上を組み合わせて用いてもよい。
(Inorganic filler)
The refractory material of the present invention may further contain an inorganic filler other than the flame retardant and thermally expandable graphite.
Inorganic fillers other than flame retardants and thermally expandable graphite are not particularly limited, and examples include metal carbonates such as alumina, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, strontium carbonate, and barium carbonate, and silica. , diatomaceous earth, dawsonite, barium sulfate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica-based balloons, aluminum nitride, boron nitride, silicon nitride, carbon black, Graphite, carbon fiber, carbon balloon, charcoal powder, various metal powders, potassium titanate, magnesium sulfate, lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, various magnetic powders, slag fiber, fly ash, and dehydrated sludge. These inorganic fillers may be used alone or in combination of two or more.
 無機充填材の平均粒子径は、0.5~100μmが好ましく、1~50μmがより好ましい。無機充填材は、含有量が少ないときは分散性を向上させる観点から粒子径が小さいものが好ましく、含有量が多いときは高充填が進むにつれて、耐火材の粘度が高くなり成形性が低下するため粒子径が大きいものが好ましい。 The average particle size of the inorganic filler is preferably 0.5-100 μm, more preferably 1-50 μm. When the content of the inorganic filler is small, it is preferable that the particle size of the inorganic filler is small from the viewpoint of improving dispersibility. Therefore, those having a large particle size are preferable.
 本発明の耐火材が、難燃剤及び熱膨張性黒鉛以外の無機充填材を含有する場合、その含有量は樹脂100質量部に対して、好ましくは10~300質量部、より好ましくは10~200質量部である。無機充填材の含有量が前記範囲内であると、耐火材の機械的物性を向上させることができる。 When the refractory material of the present invention contains an inorganic filler other than a flame retardant and thermally expandable graphite, the content thereof is preferably 10 to 300 parts by mass, more preferably 10 to 200 parts by mass, based on 100 parts by mass of the resin. part by mass. When the content of the inorganic filler is within the above range, the mechanical properties of the refractory material can be improved.
 本発明の耐火材は、本発明の目的が損なわれない範囲で、必要に応じて各種の添加成分を含有させることができる。
 この添加成分の種類は特に限定されず、各種添加剤を用いることができる。このような添加剤として、例えば、滑剤、収縮防止剤、結晶核剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、分散剤、ゲル化促進剤、充填材、補強剤、難燃助剤、帯電防止剤、界面活性剤、加硫剤、及び表面処理剤等が挙げられる。添加剤の添加量は成形性等を損なわない範囲で適宜選択できる。添加剤は、単独でも、2種以上を組み合わせて用いてもよい。
The refractory material of the present invention can contain various additive components as necessary within a range that does not impair the object of the present invention.
The type of additive component is not particularly limited, and various additives can be used. Such additives include, for example, lubricants, anti-shrinking agents, crystal nucleating agents, coloring agents (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, dispersants, gelation accelerators, fillers, , reinforcing agents, flame retardant aids, antistatic agents, surfactants, vulcanizing agents, and surface treatment agents. The amount of the additive to be added can be appropriately selected within a range that does not impair the moldability and the like. Additives may be used alone or in combination of two or more.
 また、本発明の耐火材は、耐火性の観点から、熱膨張後の残渣硬さが、好ましくは0.10kgf/cm以上、より好ましくは0.13kgf/cm以上、さらに好ましくは0.17kgf/cm以上、よりさらに好ましくは0.22kgf/cm以上である。上記残渣硬さは、耐火材が膨張しやすくすることで耐火性を確保する観点から、好ましくは1.00kgf/cm以下であり、より好ましくは0.95kgf/cm以下であり、さらに好ましくは0.85kgf/cm以下である。
 本発明の耐火材は、水に60℃で1週間浸漬した後においても、上記した範囲の残渣硬さを示すことが好ましい。水に長期間浸漬した後で膨張残渣が上記範囲内であると耐水性も良好である。なお、残渣硬さは、耐火材を加熱して膨張した後の膨張残渣において硬さを測定することで求めることができる。
In addition, from the viewpoint of fire resistance, the refractory material of the present invention preferably has a residual hardness of 0.10 kgf/cm 2 or more, more preferably 0.13 kgf/cm 2 or more, and still more preferably 0.13 kgf/cm 2 or more after thermal expansion. It is 17 kgf/cm 2 or more, more preferably 0.22 kgf/cm 2 or more. The residual hardness is preferably 1.00 kgf/cm 2 or less, more preferably 0.95 kgf/cm 2 or less, and even more preferably, from the viewpoint of ensuring fire resistance by making the refractory material expand easily. is 0.85 kgf/cm 2 or less.
The refractory material of the present invention preferably exhibits residual hardness within the above range even after being immersed in water at 60° C. for one week. If the swelling residue is within the above range after being immersed in water for a long period of time, the water resistance is also good. The hardness of the residue can be obtained by measuring the hardness of the expanded residue after heating and expanding the refractory material.
(厚さ)
 本発明の耐火材は、シート状であることが好ましく、その厚さは特に限定されないが、耐火性及び取扱い性の観点から、0.2~10mmが好ましく、0.5~3.0mmがより好ましい。
(thickness)
The refractory material of the present invention is preferably in the form of a sheet, and its thickness is not particularly limited. preferable.
(耐火材の製造方法)
 本発明の耐火材は例えば下記のようにして製造することができる。
 まず、所定量の熱膨張性黒鉛、樹脂、必要に応じて配合される可塑剤、難燃剤、架橋剤、無機充填材、及びその他の成分を、混練ロールなどの混練機で混練して、耐火性樹脂組成物を得る。
 次に、得られた耐火性樹脂組成物を、例えば、プレス成形、カレンダー成形、押出成形等、公知の成形方法によりシート状などに成形することで耐火材を得ることができる。
 混練する際の温度及びシート状に成形する温度は、熱膨張性黒鉛の膨張開始温度未満であることが好ましく、架橋剤を配合する場合は、架橋剤が架橋し難い温度であることが好ましい。そのため、混練する温度は、70~150℃が好ましく、90~140℃がより好ましい。シート状に成形する温度は、80~130℃が好ましく、90~120℃がより好ましい。
(Method for manufacturing refractory material)
The refractory material of the present invention can be produced, for example, as follows.
First, a predetermined amount of thermally expandable graphite, a resin, a plasticizer, a flame retardant, a cross-linking agent, an inorganic filler, and other components blended as necessary are kneaded with a kneader such as a kneading roll to obtain a refractory product. to obtain a flexible resin composition.
Next, the resulting refractory resin composition can be formed into a sheet by a known molding method such as press molding, calendar molding, extrusion molding, etc., to obtain a refractory material.
The temperature during kneading and the temperature for forming into a sheet are preferably lower than the expansion initiation temperature of the thermally expandable graphite. Therefore, the kneading temperature is preferably 70 to 150°C, more preferably 90 to 140°C. The temperature for forming into a sheet is preferably 80 to 130°C, more preferably 90 to 120°C.
(積層シート)
 本発明の耐火材は、他のシート部材や粘着剤層が積層され積層シートを構成してもよい。積層シートは、例えば、基材と、基材の片面又は両面に積層される耐火材とを備える。基材は通常、織布又は不織布である。織布又は不織布に使用される繊維としては、特に限定はされないが、不燃性材料又は準不燃材料が好ましく、例えば、ガラス繊維、セラミック繊維、セルロース繊維、ポリエステル繊維、炭素繊維、グラファイト繊維、熱硬化性樹脂繊維等が好ましい。
 上記積層シートは、例えば、耐火性樹脂組成物を基材の上にシート状に成形して得ることができる。
(Laminated sheet)
The refractory material of the present invention may be laminated with another sheet member or adhesive layer to form a laminated sheet. A laminated sheet includes, for example, a base material and a fireproof material laminated on one side or both sides of the base material. Substrates are typically woven or non-woven. Fibers used for woven fabrics or non-woven fabrics are not particularly limited, but nonflammable or quasi-flammable materials are preferred, such as glass fibers, ceramic fibers, cellulose fibers, polyester fibers, carbon fibers, graphite fibers, thermosetting A flexible resin fiber or the like is preferable.
The laminated sheet can be obtained, for example, by molding the fire-resistant resin composition into a sheet on a base material.
 また、積層シートは、耐火材と粘着剤層を備えるものであってもよい。粘着剤層は、例えば、耐火材の片面又は両面に積層されてもよい。
 さらに、積層シートは、耐火材と、基材と、粘着剤層とを備えてもよい。そのような積層シートは、基材の一方の面に耐火材、他方の面に粘着剤層が設けられてもよいし、基材の一方の面の上に、耐火材及び粘着剤層がこの順に設けられてもよい。粘着剤層は、例えば、離型紙に塗工した粘着剤を積層シートに転写することで形成できる。
Moreover, the laminated sheet may include a refractory material and an adhesive layer. The adhesive layer may be laminated on one side or both sides of the refractory material, for example.
Furthermore, the laminated sheet may comprise a refractory material, a substrate, and an adhesive layer. Such a laminated sheet may have a refractory material on one side of the substrate and an adhesive layer on the other side, or a refractory material and an adhesive layer on one side of the substrate. They may be provided in order. The pressure-sensitive adhesive layer can be formed, for example, by transferring the pressure-sensitive adhesive applied to the release paper to the laminated sheet.
 本発明の耐火材は、及びこれを用いた積層シートは、具体的には、一戸建住宅、集合住宅、高層住宅、高層ビル、商業施設、公共施設等の各種の建具、自動車、電車などの各種車両、船舶、航空機などに使用できるが、これらの中では建具に使用されることが好ましい。建具としては、具体的には、壁、梁、柱、床、レンガ、屋根、板材、窓、障子、扉、ドア、戸、ふすま、欄間、配線、配管などに使用することができるが、これらに限定されない。本発明の耐火材は、及びこれを用いた積層シートは、特に、窓、扉、ドアなどの建具の隙間に適用することで、火災等の際に炎が隙間を通過して侵入するのを防止することができる。 The refractory material of the present invention, and the laminated sheet using the same, are specifically used for various fittings such as detached houses, collective housing, high-rise housing, high-rise buildings, commercial facilities, public facilities, automobiles, trains, etc. It can be used for various vehicles, ships, aircraft, etc. Among these, it is preferably used for fittings. As fixtures, concretely, it can be used for walls, beams, pillars, floors, bricks, roofs, board materials, windows, shoji screens, doors, doors, doors, fusuma, transoms, wiring, piping, and the like. is not limited to The refractory material of the present invention and the laminated sheet using the same are particularly applied to the gaps of fittings such as windows, doors, and doors to prevent flames from penetrating through the gaps in the event of a fire or the like. can be prevented.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these.
[評価方法]
(1)膨張倍率I
 各実施例、及び比較例の耐火材を所定のサイズにした(厚み1.8mm、幅25mm、長さ25mm)。該所定のサイズの耐火材をステンレス製の板(98mm角・厚み0.3mm)の底面に設置し、あらかじめ300℃に設定しておいた電気炉に該耐火材を入れ、該耐火材を30分間加熱した。加熱後の耐火材の厚さを加熱前の耐火材の厚さで除することにより、膨張倍率Iを求めた。
[Evaluation method]
(1) expansion ratio I
The refractory materials of each example and comparative example were made to have a predetermined size (thickness 1.8 mm, width 25 mm, length 25 mm). A refractory material of a predetermined size is placed on the bottom surface of a stainless steel plate (98 mm square, thickness 0.3 mm), and the refractory material is placed in an electric furnace that has been set to 300 ° C in advance. heated for a minute. The expansion ratio I was obtained by dividing the thickness of the refractory material after heating by the thickness of the refractory material before heating.
(2)膨張倍率II
 20℃に設定した電気炉に耐火材を入れ、そこから5℃/minの昇温速度で昇温し300℃に到達した時点で該耐火材を取り出した以外は(1)と同様にして膨張倍率IIを求めた。
(2) Expansion ratio II
The refractory material was placed in an electric furnace set at 20 ° C., and the temperature was raised at a rate of 5 ° C./min. Magnification II was obtained.
(3)マトリックス成分の粘度A
 表1に示す配合のうち、マトリックス成分を100℃で加熱プレスし、1mm厚み、直径2cmの円状の試験片を作製した。その後「MCR 302」(Anton Paar社製)を用いて、角周波数63rad/sの条件で100℃~300℃まで昇温速度40℃/minの条件で加熱しながら粘度を評価し、250℃における粘度を測定した。
(3) Viscosity A of matrix component
Among the formulations shown in Table 1, the matrix component was hot-pressed at 100° C. to prepare a circular test piece with a thickness of 1 mm and a diameter of 2 cm. After that, using "MCR 302" (manufactured by Anton Paar), the viscosity was evaluated while heating from 100 ° C. to 300 ° C. at a temperature increase rate of 40 ° C./min at an angular frequency of 63 rad / s. Viscosity was measured.
(4)マトリックス成分の粘度B
 昇温速度を5℃/minにした以外は(3)の測定と同様にして、徐々に昇温したときのマトリックス成分の250℃における粘度を測定した。
(4) Viscosity B of matrix component
The viscosity of the matrix component at 250° C. was measured when the temperature was gradually raised in the same manner as in the measurement of (3) except that the temperature was raised at a rate of 5° C./min.
(5)残渣硬さ
 あらかじめ600℃に昇温しておいた電気炉に耐火材を入れ、30分間加熱させた後の試験片を圧縮試験機(カトーテック社製フィンガーフィリングテスター)に供給し、0.25cmの圧子で0.1cm/秒の速度で圧縮し、破断点応力を測定した。
(5) Residual hardness Put the refractory material in an electric furnace preliminarily heated to 600 ° C. and heat the test piece for 30 minutes. It was compressed with an indenter of 0.25 cm 2 at a rate of 0.1 cm/sec, and the stress at break was measured.
(6)耐火時間
 ケイ酸カルシウム板(日本インシュレーション社製)で作製したドアと、ドア枠とからなる耐火時間評価用ドア部材を作製した。該耐火時間評価用ドア部材のドアの側面と、ドア枠とは1cmの隙間が空いている。ドアの側面に、所定のサイズにした各実施例及び比較例の耐火材(厚み1.8mm、幅25mm、長さ1000mm)を取り付けた。次いで耐火炉にて、ISO834の標準加熱曲線に従って加熱して、耐火材が剥がれ落ちるまでの時間を測定した。剥がれ落ちるまでの時間が長いほど、耐火性に優れた耐火材である。
 なお、耐火時間の評価基準は、以下の通りである。
A:剥がれ落ちるまでの時間が90分以上
B:剥がれ落ちるまでの時間が75分以上90分未満
C:剥がれ落ちるまでの時間が60分以上75分未満
D:剥がれ落ちるまでの時間が60分未満
(6) Fire-resistant time A door member for fire-resistant time evaluation was prepared, which consisted of a door made of a calcium silicate plate (manufactured by Nippon Insulation Co., Ltd.) and a door frame. A gap of 1 cm was provided between the side surface of the door member for fire resistance time evaluation and the door frame. A refractory material (thickness: 1.8 mm, width: 25 mm, length: 1000 mm) of each example and comparative example having a predetermined size was attached to the side of the door. Then, in a refractory furnace, it was heated according to the standard heating curve of ISO834, and the time until the refractory material peeled off was measured. The longer the time it takes for the material to peel off, the more excellent the fire resistance.
In addition, the evaluation criteria of the fire resistance time are as follows.
A: Time until peeling off 90 minutes or more B: Time until peeling off 75 minutes or more and less than 90 minutes C: Time until peeling off 60 minutes or more and less than 75 minutes D: Time until peeling off less than 60 minutes
(7)成形性
 ロールで混錬する際、硬すぎて流動しなかったり、柔らかすぎて流れやすくなり、形を保つことが出来なかったりすると収率が悪化する。成形性は、投入した材料のうち、混錬後シート状態で取り出せた収率で下記の通りで判定した。
A:90%以上
B:70%以上90%未満
C:50%以上70%未満
D:50%未満
(7) Formability When kneading with rolls, if the material is too hard to flow, or too soft to flow easily and the shape cannot be maintained, the yield will deteriorate. The formability was determined by the yield of the material that was taken out in the form of a sheet after kneading, out of the charged materials, as follows.
A: 90% or more B: 70% or more and less than 90% C: 50% or more and less than 70% D: less than 50%
 各実施例、比較例で使用した各種成分は以下のとおりである。
(マトリックス成分)
1.ゴム成分
・NBR(1) 日本ゼオン社製「Nipol DN401L」
 ムーニー粘度ML(1+4):70、ニトリル含有量18質量%
・NBR(2) 日本ゼオン社製「Nipol 1052J」
 ムーニー粘度ML(1+4):46、ニトリル含有量33.5質量%
・NBR(3) 日本ゼオン社製「Nipol DN101L」
 ムーニー粘度ML(1+4):60、ニトリル含有量42.5質量%
・NBR(4) 日本ゼオン社製「Nipol DN401」
 ムーニー粘度ML(1+4):77.5、ニトリル含有量18質量%
・NBR(5) 日本ゼオン社製「Nipol DN101LL」
 ムーニー粘度ML(1+4):32、ニトリル含有量18質量%
・SBR(1) 日本ゼオン社製「Nipol 1502」
 ムーニー粘度ML(1+4):52、スチレン含有量23.5質量%
・SBR(2) 日本ゼオン社製「Nipol 1739」
 ムーニー粘度ML(1+4):49、スチレン含有量40質量%
・クロロプレンゴム(1) 東ソー株式会社製「スカイプレンTSR-56」
 100℃におけるムーニー粘度ML(1+4):70
・クロロプレンゴム(2) 東ソー株式会社製「スカイプレン640」
 100℃におけるムーニー粘度ML(1+4):85
Various components used in each example and comparative example are as follows.
(matrix component)
1. Rubber component/NBR (1) “Nipol DN401L” manufactured by Nippon Zeon Co., Ltd.
Mooney viscosity ML (1+4): 70, nitrile content 18% by mass
・ NBR (2) “Nipol 1052J” manufactured by Nippon Zeon Co., Ltd.
Mooney viscosity ML (1+4): 46, nitrile content 33.5% by mass
・ NBR (3) “Nipol DN101L” manufactured by Nippon Zeon Co., Ltd.
Mooney viscosity ML (1+4): 60, nitrile content 42.5% by mass
・ NBR (4) “Nipol DN401” manufactured by Nippon Zeon Co., Ltd.
Mooney viscosity ML (1+4): 77.5, nitrile content 18% by mass
・ NBR (5) “Nipol DN101LL” manufactured by Nippon Zeon Co., Ltd.
Mooney viscosity ML (1+4): 32, nitrile content 18% by mass
・ SBR (1) “Nipol 1502” manufactured by Nippon Zeon Co., Ltd.
Mooney viscosity ML (1+4): 52, styrene content 23.5% by mass
・ SBR (2) “Nipol 1739” manufactured by Nippon Zeon Co., Ltd.
Mooney viscosity ML (1+4): 49, styrene content 40% by mass
・Chloroprene rubber (1) “Skyprene TSR-56” manufactured by Tosoh Corporation
Mooney viscosity ML(1+4) at 100°C: 70
・Chloroprene rubber (2) “Skyprene 640” manufactured by Tosoh Corporation
Mooney viscosity ML(1+4) at 100°C: 85
2.ポリ酢酸ビニル樹脂
・ポリ酢酸ビニル(1) 巴化学工業株式会社製「VINNAPAS 4FS」
重量平均分子量:30万 g/mol
・ポリ酢酸ビニル(2) 巴化学工業株式会社製「VINNAPAS 25FS」
重量平均分子量:50万 g/mol
2. Polyvinyl acetate resin/Polyvinyl acetate (1) “VINNAPAS 4FS” manufactured by Tomoe Chemical Industry Co., Ltd.
Weight average molecular weight: 300,000 g/mol
・ Polyvinyl acetate (2) “VINNAPAS 25FS” manufactured by Tomoe Chemical Industry Co., Ltd.
Weight average molecular weight: 500,000 g/mol
3.エチレン-酢酸ビニル共重合体
・EVM(1) ランクサス社製「レバプレン500」
 100℃におけるムーニー粘度ML(1+4):27
 酢酸ビニル含量:50質量%
・EVM(2) ランクサス社製「レバプレン800」
 100℃におけるムーニー粘度ML(1+4):27
 酢酸ビニル含量:80質量%
・EVA(1) 三井・ダウポリケミカル株式会社製「EV180」
 190℃におけるMFR:0.2g/10min
3. Ethylene-Vinyl Acetate Copolymer EVM (1) “Levaprene 500” manufactured by Lanxus
Mooney viscosity ML(1+4) at 100°C: 27
Vinyl acetate content: 50% by mass
・ EVM (2) “Levaprene 800” manufactured by Lanxus
Mooney viscosity ML(1+4) at 100°C: 27
Vinyl acetate content: 80% by mass
・ EVA (1) “EV180” manufactured by Mitsui Dow Polychemical Co., Ltd.
MFR at 190°C: 0.2g/10min
(熱膨張性黒鉛)
・熱膨張性黒鉛 ADT社製「ADT351」
 平均アスペクト比:21.3
(Thermal expandable graphite)
・Thermal expandable graphite “ADT351” manufactured by ADT
Average aspect ratio: 21.3
(難燃剤)
・亜リン酸アルミニウム 太平化学産業株式会社製「APA100」
・ポリリン酸アンモニウム クラリアントケミカルズ社製「AP422」
(Flame retardants)
・ Aluminum phosphite “APA100” manufactured by Taihei Chemical Industry Co., Ltd.
・ Ammonium polyphosphate “AP422” manufactured by Clariant Chemicals
(可塑剤)
・アジピン酸エーテルエステル系 (株)ADEKA製「アデカサイザーRS-107」
(Plasticizer)
・Adipic acid ether ester type “ADEKA CIZER RS-107” manufactured by ADEKA Co., Ltd.
(架橋剤)
・硫黄 細井化学工業株式会社社製「微粉硫黄S」
(crosslinking agent)
・ Sulfur Hosoi Chemical Industry Co., Ltd. “Fine Sulfur S”
(架橋促進剤)
・亜鉛華(酸化亜鉛) 堺化学工業株式会社社製「ZnO」
・ステアリン酸 新日本理化株式会社社製「ステアリン酸 5000」
・ジクミルパーオキサイド 日本油脂株式会社製「パークミルD」
・ビス(ベンゾチアゾール-2-イルチオ)亜鉛 三新化学工業社製「サンセラーMZ」
(Crosslinking accelerator)
・ Zinc white (zinc oxide) “ZnO” manufactured by Sakai Chemical Industry Co., Ltd.
・Stearic acid “Stearic acid 5000” manufactured by New Japan Chemical Co., Ltd.
・Dicumyl peroxide NOF Co., Ltd. “Percumyl D”
・Bis(benzothiazol-2-ylthio)zinc “Suncellar MZ” manufactured by Sanshin Chemical Industry Co., Ltd.
(実施例1~17、比較例1~3)
 表1に示す配合にて、マトリックス成分、熱膨張性黒鉛、難燃剤、架橋剤、及び可塑剤をロールに投入して、120℃で5分間混練して、耐火性樹脂組成物を得た。得られた耐火性樹脂組成物を、100℃で3分間プレス成形して、厚さ1.8mmのシート状の耐火材を得た。評価結果を表1に示した。
(Examples 1 to 17, Comparative Examples 1 to 3)
A matrix component, thermally expandable graphite, a flame retardant, a cross-linking agent, and a plasticizer were put into a roll and kneaded at 120° C. for 5 minutes to obtain a fire-resistant resin composition. The resulting refractory resin composition was press-molded at 100° C. for 3 minutes to obtain a sheet-like refractory material with a thickness of 1.8 mm. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の実施例に示すように、マトリックス成分及び熱膨張性黒鉛を含有し、かつ膨張倍率の比率が所定範囲内である本発明の耐火材は、耐火時間が長く、耐火性に優れることが分かった。
 これに対して、膨張倍率の比率が所定範囲外である、各比較例の耐火材は、耐火時間が短く、耐火性に劣ることが分かった。
As shown in the above examples, the refractory material of the present invention containing a matrix component and thermally expandable graphite and having an expansion ratio within a predetermined range was found to have a long fire resistance time and excellent fire resistance. rice field.
On the other hand, it was found that the refractory materials of each comparative example having expansion ratios outside the predetermined range had a short fire resistance time and poor fire resistance.

Claims (10)

  1.  ゴム成分及び樹脂からなる群から選択される少なくとも1種のマトリックス成分と、熱膨張性黒鉛とを含有する熱膨張性耐火材であって、
     300℃で前記耐火材を膨張させたときの膨張倍率(膨張倍率I)に対する、昇温速度5℃/minにて20℃から300℃まで昇温させて前記耐火材を膨張させたときの膨張倍率(膨張倍率II)の比率(II/I)が0.5~1.0である、熱膨張性耐火材。
    A thermally expandable refractory material containing at least one matrix component selected from the group consisting of a rubber component and a resin, and thermally expandable graphite,
    Expansion when the refractory material is expanded by increasing the temperature from 20° C. to 300° C. at a heating rate of 5° C./min with respect to the expansion ratio (expansion ratio I) when the refractory material is expanded at 300° C. A thermally expandable refractory material having a ratio (II/I) of expansion ratio (expansion ratio II) of 0.5 to 1.0.
  2.  前記膨張倍率IIが30倍以上である、請求項1に記載の熱膨張性耐火材。 The thermally expandable refractory material according to claim 1, wherein the expansion ratio II is 30 times or more.
  3.  100℃~300℃において、昇温速度40℃/minで昇温させたときの250℃における前記マトリックス成分の粘度Aに対する、100℃~300℃において5℃/minにて昇温させたときの250℃における前記マトリックス成分の粘度Bとの比率(B/A)が2.0以下である、請求項1又は2に記載の熱膨張性耐火材。 At 100°C to 300°C, the viscosity A of the matrix component at 250°C when the temperature is raised at a temperature increase rate of 40°C/min at a temperature increase rate of 40°C/min. 3. The thermally expandable refractory material according to claim 1 or 2, wherein the ratio (B/A) to the viscosity B of the matrix component at 250°C is 2.0 or less.
  4.  前記マトリックス成分の粘度Bが3000Pa・s以下である、請求項1~3のいずれかに記載の熱膨張性耐火材。 The thermally expandable refractory material according to any one of claims 1 to 3, wherein the matrix component has a viscosity B of 3000 Pa·s or less.
  5.  前記熱膨張性黒鉛の含有量が、マトリックス成分100質量部に対して20~500質量部である、請求項1~4のいずれかに記載の熱膨張性耐火材。 The thermally expandable refractory material according to any one of claims 1 to 4, wherein the content of the thermally expandable graphite is 20 to 500 parts by mass with respect to 100 parts by mass of the matrix component.
  6.  前記マトリックス成分が、エチレン-酢酸ビニル共重合体、ポリ酢酸ビニル樹脂、スチレンブタジエンゴム、アクリロニトリル-ブタジエンゴム、ウレタンエラストマー、クロロプレンゴム、及びEPDMからなる群から選択される少なくとも1種である、請求項1~5のいずれかに記載の熱膨張性耐火材。 The matrix component is at least one selected from the group consisting of ethylene-vinyl acetate copolymer, polyvinyl acetate resin, styrene-butadiene rubber, acrylonitrile-butadiene rubber, urethane elastomer, chloroprene rubber, and EPDM. 6. The thermally expandable fireproof material according to any one of 1 to 5.
  7.  前記ゴム成分が、ニトリル量10~35質量%のアクリロニトリル-ブタジエンゴムである、請求項1~6のいずれかに記載の熱膨張性耐火材。 The thermally expandable refractory material according to any one of claims 1 to 6, wherein the rubber component is acrylonitrile-butadiene rubber having a nitrile content of 10 to 35% by mass.
  8.  前記ゴム成分が、100℃におけるムーニー粘度が30~80のアクリロ-ニトリルブタジエンゴムである、請求項1~7のいずれかに記載の熱膨張性耐火材。 The thermally expandable refractory material according to any one of claims 1 to 7, wherein the rubber component is an acrylo-nitrile butadiene rubber having a Mooney viscosity of 30 to 80 at 100°C.
  9.  前記樹脂が、酢酸ビニル含量が20質量%以上の高Vac成分を含有するエチレン-酢酸ビニル共重合体、及びポリ酢酸ビニル樹脂からなる群から選択される少なくとも1種である、請求項1~8のいずれかに記載の熱膨張性耐火材。 Claims 1 to 8, wherein the resin is at least one selected from the group consisting of an ethylene-vinyl acetate copolymer containing a high Vac component with a vinyl acetate content of 20% by mass or more, and a polyvinyl acetate resin. The thermally expandable refractory material according to any one of 1.
  10.  前記エチレン-酢酸ビニル共重合体が、190℃におけるメルトフローレート(MFR)が、8.0g/10min以下である低MFR成分を含む、請求項6~9のいずれかに記載の熱膨張性耐火材。

     
    The thermally expandable refractory according to any one of claims 6 to 9, wherein the ethylene-vinyl acetate copolymer contains a low MFR component having a melt flow rate (MFR) at 190°C of 8.0 g/10 min or less. material.

PCT/JP2022/008347 2021-03-02 2022-02-28 Thermally expandable fire resistant material WO2022186152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-032977 2021-03-02
JP2021032977A JP7127170B1 (en) 2021-03-02 2021-03-02 Inflatable refractory material

Publications (1)

Publication Number Publication Date
WO2022186152A1 true WO2022186152A1 (en) 2022-09-09

Family

ID=83059873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008347 WO2022186152A1 (en) 2021-03-02 2022-02-28 Thermally expandable fire resistant material

Country Status (2)

Country Link
JP (2) JP7127170B1 (en)
WO (1) WO2022186152A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150391A (en) * 2017-03-09 2018-09-27 旭化成建材株式会社 Heat expansion refractory composition
JP2019116606A (en) * 2017-12-26 2019-07-18 清典 藏田 Heat expansion fireproof heat insulation coating, fireproof heat insulation sheet for cable using the same
JP2020128089A (en) * 2018-02-20 2020-08-27 積水化学工業株式会社 Fire-resistant laminate and battery
JP2020139058A (en) * 2019-02-28 2020-09-03 積水化学工業株式会社 Refractory material
JP2021187974A (en) * 2020-06-01 2021-12-13 積水化学工業株式会社 Fire-resistant resin composition, fire-resistant sheet and fitting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150391A (en) * 2017-03-09 2018-09-27 旭化成建材株式会社 Heat expansion refractory composition
JP2019116606A (en) * 2017-12-26 2019-07-18 清典 藏田 Heat expansion fireproof heat insulation coating, fireproof heat insulation sheet for cable using the same
JP2020128089A (en) * 2018-02-20 2020-08-27 積水化学工業株式会社 Fire-resistant laminate and battery
JP2020139058A (en) * 2019-02-28 2020-09-03 積水化学工業株式会社 Refractory material
JP2021187974A (en) * 2020-06-01 2021-12-13 積水化学工業株式会社 Fire-resistant resin composition, fire-resistant sheet and fitting

Also Published As

Publication number Publication date
JP2022133982A (en) 2022-09-14
JP2022164721A (en) 2022-10-27
JP7127170B1 (en) 2022-08-29

Similar Documents

Publication Publication Date Title
JP7419459B2 (en) resin composition
JP6792026B2 (en) Thermally expandable refractory resin composition
JP6247368B2 (en) Fireproof resin composition
JP6200622B1 (en) Fireproof resin composition
JP6438623B1 (en) Thermal expansion fireproof sheet
JP2022164720A (en) Fire-resistant resin composition, and thermally expandable sheet
JP7127170B1 (en) Inflatable refractory material
JP7201465B2 (en) thermoplastic resin sheet
WO2021039013A1 (en) Heat-expanding fire retardant
JP2021195461A (en) Thermally expansive fire resistant material
WO2023145907A1 (en) Thermally expandable refractory material
JP2024035637A (en) thermally expandable fireproofing material
JP2021195460A (en) Thermally expansive fire resistant material
JP2024035638A (en) thermally expandable fireproofing material
JPH1136481A (en) Fire resistive composite plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763208

Country of ref document: EP

Kind code of ref document: A1