WO2022186113A1 - Optical transmission device and method for adjusting optical transmission device - Google Patents

Optical transmission device and method for adjusting optical transmission device Download PDF

Info

Publication number
WO2022186113A1
WO2022186113A1 PCT/JP2022/008182 JP2022008182W WO2022186113A1 WO 2022186113 A1 WO2022186113 A1 WO 2022186113A1 JP 2022008182 W JP2022008182 W JP 2022008182W WO 2022186113 A1 WO2022186113 A1 WO 2022186113A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmission device
light receiving
optical system
optical
Prior art date
Application number
PCT/JP2022/008182
Other languages
French (fr)
Japanese (ja)
Inventor
悠 宮島
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2022186113A1 publication Critical patent/WO2022186113A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum

Definitions

  • the present invention relates to an optical transmission device that is arranged facing a distance and performs information transmission, and an adjustment method for the optical transmission device.
  • An optical transmission device consists of a light projecting part that transmits communication light and a light receiving part that receives communication light. In order to perform communication, it is necessary to align the optical axes of the optical system of the light-projecting section and the optical system of the light-receiving section.
  • Japanese Unexamined Patent Application Publication No. 2002-100003 discloses a technique of mounting a camera on an optical transmission device and adjusting the orientation of the optical transmission device while viewing a captured image.
  • the above conventional technology has the following problems. Due to the fact that the optical axis of the light receiving optical system of one of the optical transmission devices and the optical axis of the camera attached to the one of the optical transmission devices do not completely match in principle, There is an essential problem that it is not easy to adjust the optical axis with sufficient accuracy.
  • An object of the present invention is to solve the above problems and to provide an optical transmission device capable of adjusting the directions of the light projecting optical system and the light receiving optical system with a simple configuration.
  • FIG. 1 is a configuration diagram of an optical transmission device according to an embodiment
  • FIG. 3 is a detailed configuration diagram of a light projecting section
  • FIG. FIG. 4 is an enlarged view of a main portion of a light projecting section
  • 3 is a detailed configuration diagram of a light receiving unit
  • FIG. FIG. 2 is an enlarged view of a main portion of a light receiving portion
  • It is the figure which removed the exchangeable holding member of the light-receiving part, and mounted the camera.
  • FIG. 4 is a longitudinal aberration diagram for a wavelength of 1550 nm when the light receiving optical system is focused at infinity.
  • FIG. 4 is a lateral aberration diagram for a wavelength of 1550 nm when the light receiving optical system is focused at infinity.
  • FIG. 4 is a longitudinal aberration diagram for the e-line when the light-receiving optical system is focused at infinity.
  • FIG. 4 is a lateral aberration diagram for the e-line when the light receiving optical system is
  • FIG. 1 is a schematic configuration diagram of a spatial optical transmission device (optical transmission device) showing an embodiment of the present invention. Although the description is for one-way communication, the same is true for reverse-direction communication.
  • a spatial optical transmission device in order to perform optical communication between a light-projecting unit that transmits communication light and a light-receiving unit that receives communication light, an optical system of the light-projecting unit and an optical system of the light-receiving unit are required. Axes must be aligned. Therefore, especially when the spatial optical transmission devices are installed, it is necessary to adjust the directions of the spatial optical transmission devices so that their optical axes are aligned. In the case of adjusting the orientation of the spatial light transmission device while looking at the photographed image by the method described in Patent Document 1, there are the following problems.
  • is the angular deviation between the optical axis of the receiving optical system of one of the spatial light transmission devices and the optical axis of the camera mounted on the one of the spatial light transmission devices
  • L is the distance between the transmitting and receiving spatial light transmission devices.
  • the present invention provides a spatial optical transmission device capable of adjusting the optical axis direction of the spatial optical transmission device with a simple configuration and method, and the optical axis direction of the spatial optical transmission device.
  • the purpose is to provide an adjustment method.
  • the communication light transmitted from the spatial optical transmission device 1000 on the transmitting side is received by the spatial optical transmission device 2000 on the receiving side at a distance, and communication is performed.
  • the spatial optical transmission device 1000 on the transmission side has a configuration in which a light projecting section 100 for emitting communication light is mounted on an angle adjustment base 101, and the direction of the light projecting section 100 can be adjusted along two axes.
  • the spatial optical transmission device 2000 on the receiving side has a configuration in which a light receiving unit 200 for receiving communication light is mounted on an angle adjustment base (angle adjusting unit) 201, and the orientation of the light receiving unit 200 can be adjusted along two axes.
  • the angle adjustment base 101 and the angle The angle is adjusted by the adjustment base 201 . This ensures communication once.
  • the free-space optical transmission devices 1000 and 2000 are continued to be used as they are, atmospheric fluctuations, vibrations of members (not shown) holding the angle adjustment base 101 and the light receiving optical system 220, environmental temperature fluctuations, and the like may occur.
  • the optical path of the communication light fluctuates, and the communication becomes unstable. Therefore, fluctuations in the communication light are grasped by the transmission light detection unit of the light projection unit 100 and the reception light detection unit of the light reception unit 200 (composed of a transmission wedge prism 231 and a position detection sensor 232, which will be described later). Then, the optical path of the communication light is corrected to stabilize the communication.
  • the transmission light control unit 140 and the focus mechanism in the light projection optical system 120 both not shown in FIG. 1
  • the angle adjustment table 201, the reception light control unit 240 and the light reception optical system 220 An image blur correction mechanism that moves an optical element to reduce image blur corrects the optical path of communication light and stabilizes communication.
  • FIG. 2A is a detailed configuration diagram of the light projecting unit 100.
  • the light projecting section 100 includes a communication light emitting section (projecting means) 110, a light projecting optical system 120, a transmission light detection section, a transmission light control section 140, and a holding section 150 (not shown).
  • a communication light emitting portion (ejecting means) 110 emits communication light
  • a light projecting optical system 120 substantially parallelizes the communication light emitted from the communication light emitting portion 110 and transmits it.
  • the transmitted light detection section detects the state of the communication light transmitted from the projection optical system 120, and the transmitted light control section 140 controls the communication light.
  • the communication light emitting section 110 is an optical fiber, and emits communication light with a wavelength of 1540 nm to 1560 nm incident from the other end (not shown).
  • a communication light receiving section (light receiving means) 210 (not shown in FIG. 2A), which will be described later, is also an optical fiber, and receives communication light at the other end (not shown).
  • the projection optical system 120 has a lens 121 , a lens 122 , a lens 123 , a secondary mirror (reflective curved surface) 124 and a primary mirror (reflective curved surface) 125 .
  • the lens 121 has an image blur correction mechanism (double-lined frame in the figure), and can finely adjust the direction of communication light by shifting (moving) in a direction perpendicular to the optical axis.
  • the lens 123 has a focus mechanism (double-lined frame in the figure), and by shifting it in the optical axis direction, it is possible to finely adjust the degree of divergence of the communication light.
  • the primary mirror 125 has an opening with a diameter of 30 mm at its center.
  • the transmitted light detection unit is composed of reflecting prisms 131a and 131b that return part of the transmitted communication light, and position detection sensors 132a and 132b that detect the imaging positions of the returned light flux.
  • FIG. 2B is an enlarged view of the reflecting prisms 131a and 131b.
  • the communication light is shifted by 0.2° and folded back (180.2° with respect to the original direction).
  • the folded light beam enters the light projecting optical system 120 again and is condensed on the position detection sensors 132a and 132b located at different positions from the communication light emitting section 110 because of the deviation of 0.2°. be done.
  • the direction of the light beam can be calculated from the imaging positions detected by the position detection sensors 132a and 132b.
  • the reflecting prisms 131a and 131b are installed so as to reflect communication light within a range of 1 mm at each end of the communication light beam and within a range of 5 mm in the circumferential direction around the optical axis in one cross section including the optical axis. , the divergence of the communication light can be calculated from the orientation of the rays at both ends.
  • the position detection sensors 132a and 132b have wavelength selection filters, and the light having the wavelength of the detection light emitted by the communication light emission unit 110 of the spatial light transmission device 1000 is transmitted therethrough. Light at the wavelength of the communication light or detection light coming from the device 2000 is blocked. Such a configuration reduces erroneous detection due to stray light.
  • the wavelength of the detection light is the same as the wavelength of the communication light.
  • the transmission light control unit 140 is connected to the position detection sensors 132a and 132b and performs the above calculations. Moreover, the calculation result is fed back to the focus mechanism of the projection optical system 120 .
  • the holding part 150 (not shown) has a replaceable holding member 151 and a fixed holding member 152 .
  • the communication light emitting section 110 , the position detection sensors 132 a and 132 b that are part of the transmission light detection section, and the transmission light control section 140 are held by a replaceable holding member 151 .
  • the projection optical system 120 and the reflecting prisms 131 a and 131 b that are part of the transmitted light detection section are held by a fixed holding member 152 together with a dustproof glass 153 .
  • the detachable portion 151a of the exchangeable holding member 151 and the detachable portion 152a of the fixed holding member 152 are detachable.
  • the control signal from the transmission light control unit 140 is transmitted to the light projection optical system 120 by signal transmission/reception by a mechanism (electrical contact, optical coupling, etc.) configured in the attachment/detachment unit 151a and the attachment/detachment unit 152a. is transmitted to the focusing mechanism.
  • the fixed holding member 152 is held by the angle adjustment table 101 , whereby the spatial optical transmission device 1000 is placed on the angle adjustment table 101 .
  • FIG. 3A is a detailed configuration diagram of the light receiving unit 200 on the receiving side.
  • the light receiving unit 200 includes a light receiving optical system 220 for receiving and condensing communication light, a communication light receiving unit 210 for receiving the communication light collected by the light receiving optical system 220, and a received light for detecting the state of the received communication light. It has a detection section, a received light control section 240 for controlling communication light, and a holding section.
  • the holding portion consists of a replaceable holding member (second holding member) 251 and a fixed holding member (first holding member) 252 .
  • the light receiving optical system 220 has a primary mirror (reflective curved surface) 225 , a secondary mirror (reflective curved surface) 224 , lenses 223 , 222 and 221 .
  • the lens 221 has an image blur correction mechanism (double frame in the figure), and by shifting in a direction perpendicular to the optical axis, the direction of communication light can be finely adjusted.
  • the lens 223 has a focus mechanism (double frame in the drawing), and by shifting it in the optical axis direction, it is possible to finely adjust the degree of divergence of the communication light.
  • the primary mirror 225 has an opening with a diameter of 30 mm at its center.
  • the communication light receiving unit 210 is an optical fiber as described above, and receives communication light at the other end (not shown).
  • the spot diameter of the communication light condensed by the light receiving optical system 220 is 44 ⁇ m, while the core diameter of the optical fiber of the communication light receiving unit 210 is 50 ⁇ m. ing.
  • the communication light receiving section 210 is arranged on the optical axis of the light receiving optical system 220 .
  • the received light detection unit is composed of a transmission wedge prism 231 that refracts part of the incoming communication light, and a position detection sensor (detection means) 232 that detects the imaging position of the refracted light beam.
  • FIG. 3B is an enlarged view of the transmission wedge prism 231.
  • the refracted light beam enters the light receiving optical system 220 and is condensed on the position detection sensor 232 at a different position from the communication light receiving section 210 because of the 0.2° deviation described above.
  • the direction of the light beam can be calculated from the imaging position detected by the position detection sensor 232 .
  • the transmission wedge prism 231 is installed so as to refract the communication light within a range of 3 mm at one end of the communication light and 5 mm in the circumferential direction around the optical axis in one cross section including the optical axis. From the ray orientation, the angle of arrival of the communication light can be calculated.
  • the position detection sensor 232 has a wavelength selection filter, and the light having the wavelength of the detection light emitted from the communication light emitting unit 110 of the spatial light transmission device 1000 passes through and comes from the other spatial light transmission device 2000. Light having the wavelength of the communication light or the detection light is blocked. Such a configuration reduces erroneous detection due to stray light.
  • the wavelength of the detection light is the same as the wavelength of the communication light.
  • the received light control unit 240 is connected to the position detection sensor 232 and performs the above calculations. Further, the calculation result is fed back to the image blur correction mechanism of the light receiving optical system 220 and the angle adjustment table 201 (the adjustment portion is indicated by a double-lined frame in the drawing). Specifically, when the fluctuation of the corrected angle of the communication light is low frequency, the angle adjustment table 201 corrects it, and when it is high frequency, the image blur correction mechanism of the light receiving optical system 220 corrects it.
  • a holding portion that holds the light receiving portion is composed of a replaceable holding member 251 and a fixed holding member 252 .
  • the communication light receiving section 210 and the position detecting sensor 232 which is part of the received light detecting section are held by a replaceable holding member 251 .
  • the light receiving optical system 220 , the transmission wedge prism 231 that is part of the received light detection section, and the received light control section 240 are held by a fixed holding member 252 together with a dustproof glass 253 .
  • the detachable portion 251a of the exchangeable holding member 251 and the detachable portion 252a of the fixed holding member 252 are detachably connected.
  • the control signal from the reception light control unit 240 is transmitted to and received from the light receiving optical system 220 by a mechanism (electrical contact, optical coupling, etc.) configured in the attachment/detachment part 151a and the attachment/detachment part 152a, which is capable of sending and receiving signals. It is transmitted to the focus mechanism and the angle adjustment base 201 .
  • the fixed holding member 252 is held by the angle adjustment table 201 , whereby the spatial optical transmission device 2000 is placed on the angle adjustment table 201 .
  • optical detailed values of the light receiving optical system 220 are shown below.
  • the optical details of the projection optics 120 are also similar.
  • surface number i which is the order of surfaces (optical surfaces) from the object side
  • r is the radius of curvature of the i-th surface from the object side
  • d is the i-th surface from the object side. It shows the interval (on the optical axis) of the (i+1)th surface.
  • nd and ⁇ d represent the refractive index and Abbe number of the medium (optical member) between the i-th surface and the (i+1)-th surface.
  • the symbol * attached to the right of the surface number indicates that the surface is an aspherical surface.
  • the aspheric shape is expressed by the following equation, where the X axis is in the direction of the optical axis, the H axis is in the direction perpendicular to the optical axis, the traveling direction of light is positive, R is the paraxial radius of curvature, and K is the conic constant. Also, “eZ” means “ ⁇ 10 ⁇ Z ”.
  • the detachable portion 251a of the exchangeable holding member 251 and the detachable portion 252a of the fixed holding member 252 are detachably connected.
  • the detachable portion 251a is a C-mount female type
  • the detachable portion 252a is a C-mount male type. Therefore, it is possible to remove the above coupling and couple a camera device 351 having a C-mount female mold 351a and an imaging element 352 capable of capturing a two-dimensional image as shown in FIG.
  • a solid line and a dotted line in the astigmatism diagram of the longitudinal aberration diagram and the lateral aberration diagram show aberrations on the meridional image plane and the sagittal image plane, respectively.
  • spherical aberration is drawn on a scale of 0.4 mm
  • astigmatism is drawn on a scale of 0.4 mm
  • distortion is drawn on a scale of 5%.
  • the lateral aberration diagrams of FIGS. 6 and 8 are (a) image height 14.8000 mm, (b) image height 11.1000 mm, (c) image height 7.4000 mm, (d) image height 3.7000 mm, (e) It is a lateral aberration diagram at an image height of 0.0000 mm.
  • the camera device 351 for visible light is attached instead of the replaceable holding member 251, and the The angle of the light receiving optical system 220 can be adjusted while viewing a two-dimensional image.
  • the optical axis of the camera and the optical axis of the light-receiving optical system 220 are the same, the problem of the adjustment error due to the deviation between the optical axis of the camera and the optical axis of the light-receiving optical system as in Patent Document 1 is eliminated. be canceled.
  • Step 1 Confirm with GPS or the like, and adjust the angle adjustment table 101 and the angle adjustment table 201 so that the light projecting unit 100 of the spatial light transmission device 1000 and the light receiving unit 200 of the spatial light transmission device 2000 are approximately facing each other.
  • Step 2 In the spatial optical transmission device 2000, the exchangeable holding member 251 is removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit, and the camera for visible light is fixedly held. It is attached to the detachable portion 252 a of the member 252 .
  • Step 3 While checking the two-dimensional image captured by the camera, adjust the angle adjustment table 201 again so that the spatial light transmission device 1000 is at the center of the captured image.
  • Step 4 Remove the camera for visible light from the attachment/detachment portion 252a of the fixed holding member 252, and attach the exchangeable holding member 251 to the attachment/detachment portion 252a.
  • the position of the sensor in the camera in the optical axis direction is the same as the tip of the fiber of the communication light receiving unit 210. Therefore, in terms of design, focus adjustment is performed after step 4 is performed. No need.
  • the spatial optical transmission device 2000 on the receiving side has been described, but the spatial optical transmission device 1000 on the transmitting side can be similarly adjusted. As a result, the directions of the bidirectional optical axes are aligned, and communication is established.
  • a fixed holding member 252 that holds the light receiving optical system 220 is fixed to the angle adjustment table 201, and a replaceable holding member 251 that holds the communication light receiving unit 210 is fixed to the fixed holding member 252. It has become.
  • the angle of the light receiving optical system 220 can be determined by the angle adjustment table 201, and the determined angle is prevented from changing due to attachment and detachment of the camera.
  • the optical space optical transmission device does not necessarily have to have an angle adjustment base.
  • an angle adjustment base it is conceivable to use a tool for adjusting the angle only at the time of installation, perform the angle adjustment of the present invention, fix the position of the light receiving optical system, and then remove the angle adjustment base. Even in this case, the effects of the present invention can be obtained.
  • a C mount is used as the detachable portion 251a and the detachable portion 252a.
  • general-purpose technology a mount part with multiple bayonet claws
  • it is easy to attach and detach, making it easier to attach a commercially available camera, avoiding the risk of high costs and difficulty in procurement. .
  • the camera device is attached only when the spatial light transmission device 2000 is installed, and once the setting of the optical axis direction is completed and the communication state is established, the camera device is always connected. does not require Such a configuration has the effect of reducing the cost of the spatial optical transmission device.
  • the exchangeable holding member 251 when a visible light camera is attached, the exchangeable holding member 251 can be removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit.
  • the exchangeable holding member 251 can be removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit.
  • the position of the communication light receiving section 210 slightly shifts each time the communication light receiving section 210 is attached to or detached from the fixed holding member 252 .
  • the shift in the optical axis direction is detected as divergence of the communication light from the spatial light transmission device 2000 when the direction of the communication light is reversed, and is corrected by the focusing mechanism of the light receiving optical system 220 .
  • the focusing mechanism has the effect of correcting the shift.
  • the position of the communication light receiving section 210 slightly shifts each time the communication light receiving section 210 is attached to or detached from the fixed holding member 252 .
  • a deviation in the direction perpendicular to the optical axis is detected as an angular deviation of the communication light and corrected by the image blur correction mechanism of the light receiving optical system 220 .
  • the effect of correcting the shift is obtained by the image blur correction mechanism.
  • the optical system by reducing the chromatic aberration in the visible light region from the communication wavelength (1540 to 1560 nm) of the light receiving optical system 220, it is possible to adjust the optical axis by visual recognition with a commercially available visible light camera, thereby improving workability. are improving. Also, in order to reduce chromatic aberration over a wide range from infrared wavelengths to visible light wavelengths, the optical system has a reflecting surface. If a refractive system were to be used, the number of lenses would increase.
  • the spatial optical transmission device 2000 on the receiving side has been mainly discussed for the purpose of explanation. The same is true for In particular, it should be noted that both devices have a transmitted light detector and a received light detector, although only one side is shown.
  • the reflective prism and the transmissive wedge prism are installed so as to be rotated by 90° around the optical axis (in FIGS. 2A and 3A, the front side of the page).
  • the light emitting optical system and the light receiving optical system of the spatial light transmission device have the same optical axis.
  • the "optical axis" discussed in the present invention means the central optical path of the communication light beam emitted from the emitting means and passing through the light projecting optical system, and the light receiving means passing through the light receiving optical system. It refers to the central optical path of the luminous flux of the communication light heading. Note that the definition is different from the optical axis of a general coaxial optical system. In this embodiment, for the sake of clarity, a mode is assumed in which the emitting means exists on the optical axis of the coaxial light projecting optical system, and the light receiving means exists on the optical axis of the coaxial light receiving optical system.
  • the communication light emitted from the optical fiber is received by the optical fiber, but it is not limited to this.
  • the communication light emitted from the semiconductor laser may be received by the sensor.
  • the light-receiving unit is configured only with an optical fiber
  • the camera device for adjustment is configured with only a sensor, but they are not limited to this, and each may have a lens.
  • a fiber with a collimator may be used as the receiver
  • a camera with a lens may be used as the camera for adjustment.
  • the distance from the attachment/detachment portion 252a to the sensor surface of the camera device for adjustment and the distance from the attachment/detachment portion 252a to the tip of the fiber of the communication light receiving portion 210 are the same, but the present invention is not limited to this. , it does not matter if it is off.
  • the angle of view of the communication light receiving unit 210 is matched with the central angle of view of the sensor of the camera device for adjustment, but the angle of view is not limited to this as long as it exists on the sensor surface. .
  • adjustment was performed using a visible light camera device, but the present invention is not limited to this. (wavelengths within the range of ). Adjustment with a camera device for visible light wavelengths has the advantage of being easy to recognize because it corresponds to visual observation. On the other hand, a camera device for wavelengths close to communication light has the advantage of easily reducing chromatic aberration in the design of the light receiving optical system 220 .
  • part of the communication light emitted from the communication light emitting section 110 is used for detection, but it is not limited to this.
  • a dedicated detection light may be used, for example, a light having a different wavelength from that of the communication light may be incident from the other end (not shown) of the optical fiber of the communication light emitting section 110 and used as the detection light.
  • an APS-C size sensor imaging device
  • the invention is not limited to this.
  • light projection unit 110 communication light emission unit (emission means) 120 projection optical system 121, 122, 123 lens (projection optical system) 124 secondary mirror (projection optical system) 125 primary mirror (light projection optical system) 200 light receiving section 210 communication light receiving section (light receiving means) 220 light receiving optical system 221, 222, 223 lens (light receiving optical system) 224 secondary mirror (light receiving optical system) 225 primary mirror (light receiving optical system) 251 replaceable holding member (second holding member) 252 fixed holding member (first holding member) 1000, 2000 Space optical transmission device (optical transmission device)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Focusing (AREA)
  • Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

The purpose of the present invention is provide an optical transmission device with which it is possible to adjust the orientations of a light-projecting optical system and a light-receiving optical system by using a simple structure. This optical transmission device performs optical communication between a light-projecting unit, which includes an emission means for emitting communication light and the light-projecting optical system, and a light-receiving unit, which includes the light-receiving optical system and a light-receiving means for receiving the communication light, the optical transmission device being characterized by having a first holding member that holds the light-receiving optical system, and a second holding member that holds the light-receiving means and that is detachably secured to the first holding member.

Description

光伝送装置及び光伝送装置の調整方法Optical transmission device and adjustment method for optical transmission device
 本発明は、距離を隔てて対向して配置され、情報伝送を行う光伝送装置及び光伝送装置の調整方法に関する。 The present invention relates to an optical transmission device that is arranged facing a distance and performs information transmission, and an adjustment method for the optical transmission device.
 光伝送装置は、通信光を送信する投光部と、通信光を受信する受光部とからなる。通信を行うためには、投光部の光学系と、受光部の光学系の光軸同士を揃える必要がある。 An optical transmission device consists of a light projecting part that transmits communication light and a light receiving part that receives communication light. In order to perform communication, it is necessary to align the optical axes of the optical system of the light-projecting section and the optical system of the light-receiving section.
 そのため、特に光伝送装置の設置時において、光軸同士を揃えるよう、光伝送装置同士の向きを調整することが一つの課題となる。特許文献1には、光伝送装置にカメラを装着し、撮影画像を見ながら光伝送装置の向きを調整する技術が開示されている。 Therefore, when installing optical transmission devices in particular, adjusting the orientation of the optical transmission devices so that the optical axes are aligned is an issue. Japanese Unexamined Patent Application Publication No. 2002-100003 discloses a technique of mounting a camera on an optical transmission device and adjusting the orientation of the optical transmission device while viewing a captured image.
特開2004-364208号公報Japanese Patent Application Laid-Open No. 2004-364208
 しかしながら上記の従来技術においては、次のような課題がある。
 一方の光伝送装置の受光光学系の光軸と、該一方の光伝送装置に装着されたカメラの光軸とが、原理的に完全には一致しないことに起因して、通信を行うために十分な精度の光軸調整を行うことは容易ではないという本質的な課題がある。
However, the above conventional technology has the following problems.
Due to the fact that the optical axis of the light receiving optical system of one of the optical transmission devices and the optical axis of the camera attached to the one of the optical transmission devices do not completely match in principle, There is an essential problem that it is not easy to adjust the optical axis with sufficient accuracy.
 本発明は、上記の問題点を解消し、簡易な構成で、投光光学系及び受光光学系の向きを調整することが可能な光伝送装置を提供することを目的とする。 An object of the present invention is to solve the above problems and to provide an optical transmission device capable of adjusting the directions of the light projecting optical system and the light receiving optical system with a simple configuration.
 上記目的を達成するための本発明に関わる光伝送装置は、通信光を射出する射出手段と投光光学系とを含む投光部と、受光光学系と前記通信光を受光する受光手段とを含む受光部と、の間で光通信を行う光伝送装置であって、前記受光光学系を保持する第1の保持部材と、前記受光手段を保持し、前記第1の保持部材に着脱可能に固定される第2の保持部材とを有することを特徴とする。 An optical transmission device according to the present invention for achieving the above object comprises a light projecting section including emitting means for emitting communication light and a light projecting optical system, a light receiving optical system, and light receiving means for receiving the communication light. and a light-receiving unit including a first holding member for holding the light-receiving optical system; and a fixed second holding member.
 以上のような構成により、簡易な構成で、投光光学系及び受光光学系の向きを調整することが可能な光伝送装置を提供することができる。 With the configuration as described above, it is possible to provide an optical transmission device capable of adjusting the directions of the light projecting optical system and the light receiving optical system with a simple configuration.
実施例の光伝送装置の構成図である。1 is a configuration diagram of an optical transmission device according to an embodiment; FIG. 投光部の構成詳細図である。3 is a detailed configuration diagram of a light projecting section; FIG. 投光部の要部拡大図である。FIG. 4 is an enlarged view of a main portion of a light projecting section; 受光部の構成詳細図である。3 is a detailed configuration diagram of a light receiving unit; FIG. 受光部の要部拡大図である。FIG. 2 is an enlarged view of a main portion of a light receiving portion; 受光部の可換保持部材を取り外し、カメラを装着した図である。It is the figure which removed the exchangeable holding member of the light-receiving part, and mounted the camera. 受光光学系の無限遠合焦時の波長1550nmに対する縦収差図である。FIG. 4 is a longitudinal aberration diagram for a wavelength of 1550 nm when the light receiving optical system is focused at infinity. 受光光学系の無限遠合焦時の波長1550nmに対する横収差図である。FIG. 4 is a lateral aberration diagram for a wavelength of 1550 nm when the light receiving optical system is focused at infinity. 受光光学系の無限遠合焦時のe線に対する縦収差図である。FIG. 4 is a longitudinal aberration diagram for the e-line when the light-receiving optical system is focused at infinity. 受光光学系の無限遠合焦時のe線に対する横収差図である。FIG. 4 is a lateral aberration diagram for the e-line when the light receiving optical system is focused at infinity.
 以下に、具体的な実施例を用いて、本発明について説明する。説明図においては、わかりやすさのため、実際の縮尺とは異なる場合がある。 The present invention will be described below using specific examples. In the explanatory diagrams, the scale may differ from the actual scale for the sake of clarity.
 図1は、本発明の実施例を示す空間光伝送装置(光伝送装置)の構成概要図である。説明は、一方向の通信について行うが、逆方向の通信についても同様である。 FIG. 1 is a schematic configuration diagram of a spatial optical transmission device (optical transmission device) showing an embodiment of the present invention. Although the description is for one-way communication, the same is true for reverse-direction communication.
 空間光伝送装置において、通信光を送信する投光部と、通信光を受信する受光部との間で光通信を行うためには、投光部の光学系と、受光部の光学系の光軸同士を揃える必要がある。そのため、特に空間光伝送装置の設置時において、光軸同士を揃えるよう、空間光伝送装置同士の向きを調整することが必要である。特許文献1に記載された方法で撮影画像を見ながら空間光伝送装置の向きを調整する場合においては、次のような課題がある。 In a spatial optical transmission device, in order to perform optical communication between a light-projecting unit that transmits communication light and a light-receiving unit that receives communication light, an optical system of the light-projecting unit and an optical system of the light-receiving unit are required. Axes must be aligned. Therefore, especially when the spatial optical transmission devices are installed, it is necessary to adjust the directions of the spatial optical transmission devices so that their optical axes are aligned. In the case of adjusting the orientation of the spatial light transmission device while looking at the photographed image by the method described in Patent Document 1, there are the following problems.
 一方の空間光伝送装置の受光光学系の光軸と、該一方の空間光伝送装置に装着されたカメラの光軸との角度ずれ量をθ、送受信する空間光伝送装置同士の離間量をLとする。該カメラの画像中心にもう一方の空間光伝送装置を捉えた時、該受光光学系の光軸は、送信側の空間光伝送装置の光軸位置から離間量Δ=Ltanθだけずれた位置に向けられていることになる。通常、空間光伝送装置同士の離間量Lは数百m~数十km程度であり、角度ずれ量θは数分~数度程度である。仮に、L=1km、θ=10’を仮定すると、離間量Δ=1km×tan(10’)=2.9mとなり、光通信を行うための光軸調整としては十分とは言い難い。通信光を平行光ではなく発散光にすることや、予め上記θを測定して光軸離間量分を補正すること等で対応することはできるが、前者では発散により受信される通信光の強度が減少するし、後者ではθを測定する工程が必要となってしまう。 θ is the angular deviation between the optical axis of the receiving optical system of one of the spatial light transmission devices and the optical axis of the camera mounted on the one of the spatial light transmission devices, and L is the distance between the transmitting and receiving spatial light transmission devices. and When the other spatial light transmission device is captured at the center of the image of the camera, the optical axis of the light receiving optical system is directed to a position deviated from the optical axis position of the transmission side spatial light transmission device by a separation amount Δ=Ltanθ. It is assumed that Normally, the distance L between the spatial optical transmission devices is about several hundred meters to several tens of kilometers, and the angle deviation θ is about several minutes to several degrees. Assuming L=1 km and .theta.=10', the distance .DELTA.=1 km.times.tan(10')=2.9 m, which is not sufficient for optical axis adjustment for optical communication. This can be dealt with by making the communication light divergent light instead of parallel light, or by measuring θ in advance and correcting the optical axis separation amount. decreases, and the latter requires a step of measuring θ.
 このような従来の課題に対し、本発明では、簡易な構成・手法で、空間光伝送装置の光軸の向きを調整することが可能な空間光伝送装置及び空間光伝送装置の光軸方向の調整方法を提供することを目的とする。 In order to solve such conventional problems, the present invention provides a spatial optical transmission device capable of adjusting the optical axis direction of the spatial optical transmission device with a simple configuration and method, and the optical axis direction of the spatial optical transmission device. The purpose is to provide an adjustment method.
 送信側の空間光伝送装置1000から送信された通信光は、距離を隔てた受信側の空間光伝送装置2000にて受信され、通信を行う。送信側の空間光伝送装置1000は、通信光を射出する投光部100が角度調整台101に積載された構成であり、投光部100の向きを2軸に調整できる。 The communication light transmitted from the spatial optical transmission device 1000 on the transmitting side is received by the spatial optical transmission device 2000 on the receiving side at a distance, and communication is performed. The spatial optical transmission device 1000 on the transmission side has a configuration in which a light projecting section 100 for emitting communication light is mounted on an angle adjustment base 101, and the direction of the light projecting section 100 can be adjusted along two axes.
 受信側の空間光伝送装置2000は、通信光を受信する受光部200が角度調整台(角度調整部)201に積載された構成であり、受光部200の向きを2軸に調整できる。 The spatial optical transmission device 2000 on the receiving side has a configuration in which a light receiving unit 200 for receiving communication light is mounted on an angle adjustment base (angle adjusting unit) 201, and the orientation of the light receiving unit 200 can be adjusted along two axes.
 設置時は、投光部100の有する投光光学系120(図1には記載なし)及び受光部200の有する受光光学系220の光軸同士を同軸に揃えるために、角度調整台101及び角度調整台201にて角度を調整する。これにより、一旦は通信が確保される。 At the time of installation, in order to align the optical axes of the light-projecting optical system 120 (not shown in FIG. 1) of the light-projecting unit 100 and the light-receiving optical system 220 of the light-receiving unit 200, the angle adjustment base 101 and the angle The angle is adjusted by the adjustment base 201 . This ensures communication once.
 しかし、そのままの状態で空間光伝送装置1000、2000を使用し続けると、大気の揺らぎや、角度調整台101及び受光光学系220を保持している部材(不図示)の振動、環境温度変動等により、通信光の光路等が変動し、通信が安定しない。そこで、投光部100が有する送信光検出部及び受光部200が有する受信光検出部(後述する、透過ウェッジプリズム231と位置検出センサ232とから構成される)にて、通信光の変動を把握し、通信光の光路等を補正して、通信を安定させている。具体的には、送信光制御部140と投光光学系120内のフォーカス機構(共に図1には記載なし)、及び、角度調整台201、受信光制御部240と受光光学系220内の、光学素子を移動させて像振れを低減する像振れ補正機構により、通信光の光路等を補正して、通信を安定させている。 However, if the free-space optical transmission devices 1000 and 2000 are continued to be used as they are, atmospheric fluctuations, vibrations of members (not shown) holding the angle adjustment base 101 and the light receiving optical system 220, environmental temperature fluctuations, and the like may occur. As a result, the optical path of the communication light fluctuates, and the communication becomes unstable. Therefore, fluctuations in the communication light are grasped by the transmission light detection unit of the light projection unit 100 and the reception light detection unit of the light reception unit 200 (composed of a transmission wedge prism 231 and a position detection sensor 232, which will be described later). Then, the optical path of the communication light is corrected to stabilize the communication. Specifically, the transmission light control unit 140 and the focus mechanism in the light projection optical system 120 (both not shown in FIG. 1), the angle adjustment table 201, the reception light control unit 240 and the light reception optical system 220, An image blur correction mechanism that moves an optical element to reduce image blur corrects the optical path of communication light and stabilizes communication.
 以下、図2A~図8を参照しながら構成の詳細を説明する。
 図2Aは、投光部100の構成詳細図である。
 投光部100は、通信光射出部(射出手段)110と、投光光学系120と、送信光検出部と、送信光制御部140と、保持部150(不図示)とを有する。通信光射出部(射出手段)110は通信光を射出し、投光光学系120は通信光射出部110から出射した通信光を略平行光化して送信する。送信光検出部は投光光学系120から送信された通信光の状態を検出し、送信光制御部140は通信光の制御を行う。
Details of the configuration will be described below with reference to FIGS. 2A to 8. FIG.
FIG. 2A is a detailed configuration diagram of the light projecting unit 100. FIG.
The light projecting section 100 includes a communication light emitting section (projecting means) 110, a light projecting optical system 120, a transmission light detection section, a transmission light control section 140, and a holding section 150 (not shown). A communication light emitting portion (ejecting means) 110 emits communication light, and a light projecting optical system 120 substantially parallelizes the communication light emitted from the communication light emitting portion 110 and transmits it. The transmitted light detection section detects the state of the communication light transmitted from the projection optical system 120, and the transmitted light control section 140 controls the communication light.
 本実施形態において、通信光射出部110は光ファイバであり、不図示の他端から入射した波長1540nm~1560nmの通信光を射出している。また、後述する通信光受光部(受光手段)210(図2Aには記載なし)も光ファイバであり、不図示の他端にて通信光を受信している。このように、送信側の空間光伝送装置1000と受信側の空間光伝送装置2000は、構造が略同一であり、光ファイバ内の通信光の向きを反転すれば、送信と受信の関係が逆になる。これにより、双方向通信が成立する。 In this embodiment, the communication light emitting section 110 is an optical fiber, and emits communication light with a wavelength of 1540 nm to 1560 nm incident from the other end (not shown). A communication light receiving section (light receiving means) 210 (not shown in FIG. 2A), which will be described later, is also an optical fiber, and receives communication light at the other end (not shown). Thus, the spatial optical transmission device 1000 on the transmitting side and the spatial optical transmission device 2000 on the receiving side have substantially the same structure, and if the direction of the communication light in the optical fiber is reversed, the relationship between transmission and reception is reversed. become. Thereby, two-way communication is established.
 投光光学系120はレンズ121、レンズ122、レンズ123と、副鏡(反射曲面)124、主鏡(反射曲面)125を有している。レンズ121は像振れ補正機構(図中二重線枠)を有しており、光軸に垂直な方向にシフト(可動)することで通信光の向きを微調整することができる。また、レンズ123はフォーカス機構(図中二重線枠)を有しており、光軸方向にシフトすることで、通信光の発散度を微調整することができる。主鏡125は、中心部に径30mmの開口を有している。 The projection optical system 120 has a lens 121 , a lens 122 , a lens 123 , a secondary mirror (reflective curved surface) 124 and a primary mirror (reflective curved surface) 125 . The lens 121 has an image blur correction mechanism (double-lined frame in the figure), and can finely adjust the direction of communication light by shifting (moving) in a direction perpendicular to the optical axis. Also, the lens 123 has a focus mechanism (double-lined frame in the figure), and by shifting it in the optical axis direction, it is possible to finely adjust the degree of divergence of the communication light. The primary mirror 125 has an opening with a diameter of 30 mm at its center.
 送信光検出部は、送信された通信光の一部を折り返す、反射プリズム131a及び131bと、折り返された光束の結像位置を検出する位置検出センサ132a及び132bから構成される。 The transmitted light detection unit is composed of reflecting prisms 131a and 131b that return part of the transmitted communication light, and position detection sensors 132a and 132b that detect the imaging positions of the returned light flux.
 図2Bは反射プリズム131a及び131bの拡大図である。頂角α=89.9°のプリズムとすることで、通信光を0.2°だけずらして折り返している(元の向きに対し、180.2°の向きとなる)。折り返された光線は、再び投光光学系120に入射し、前述の0.2°だけずれているために、通信光射出部110とは異なる位置にある位置検出センサ132a及び132b上に集光される。位置検出センサ132a及び132bにて検出された結像位置から、光線の向きを計算できる。反射プリズム131a及び131bは、光軸を含む1断面において、通信光の光束の両端1mmずつ、且つ、光軸を中心とする周方向に5mmの範囲の通信光を反射するように設置されており、両端の光線の向きから、通信光の発散度を計算することができる。 FIG. 2B is an enlarged view of the reflecting prisms 131a and 131b. By using a prism with an apex angle of α=89.9°, the communication light is shifted by 0.2° and folded back (180.2° with respect to the original direction). The folded light beam enters the light projecting optical system 120 again and is condensed on the position detection sensors 132a and 132b located at different positions from the communication light emitting section 110 because of the deviation of 0.2°. be done. The direction of the light beam can be calculated from the imaging positions detected by the position detection sensors 132a and 132b. The reflecting prisms 131a and 131b are installed so as to reflect communication light within a range of 1 mm at each end of the communication light beam and within a range of 5 mm in the circumferential direction around the optical axis in one cross section including the optical axis. , the divergence of the communication light can be calculated from the orientation of the rays at both ends.
 尚、位置検出センサ132a及び132bは、波長選択フィルターを有しており、空間光伝送装置1000の通信光射出部110にて射出した検出光の波長の光が透過し、もう一方の空間光伝送装置2000から来る通信光或いは検出光の波長の光は遮光される。このような構成とすることで、迷光による誤検出を低減している。本実施形態では、検出光の波長は通信光の波長と同じである。 Note that the position detection sensors 132a and 132b have wavelength selection filters, and the light having the wavelength of the detection light emitted by the communication light emission unit 110 of the spatial light transmission device 1000 is transmitted therethrough. Light at the wavelength of the communication light or detection light coming from the device 2000 is blocked. Such a configuration reduces erroneous detection due to stray light. In this embodiment, the wavelength of the detection light is the same as the wavelength of the communication light.
 送信光制御部140は、位置検出センサ132a及び132bに接続され、上記の計算を行う。また、その計算結果を、投光光学系120のフォーカス機構にフィードバックしている。 The transmission light control unit 140 is connected to the position detection sensors 132a and 132b and performs the above calculations. Moreover, the calculation result is fed back to the focus mechanism of the projection optical system 120 .
 保持部150(不図示)は、可換保持部材151と固定保持部材152とを有する。通信光射出部110と、送信光検出部の一部である位置検出センサ132a及び132b及び送信光制御部140は、可換保持部材151に保持されている。投光光学系120と送信光検出部の一部である反射プリズム131a及び131bは、防塵ガラス153と共に、固定保持部材152に保持されている。可換保持部材151の着脱部151aと固定保持部材152の着脱部152aが着脱可能な構成になっている。送信光制御部140からの制御信号は、着脱部151aと着脱部152aに構成された信号の授受が可能な機構(電気接点、光学カップリング等)による信号の授受によって、投光光学系120内のフォーカス機構に伝わる。固定保持部材152は角度調整台101に保持されており、これにより、空間光伝送装置1000が、角度調整台101に積載されている状態となる。 The holding part 150 (not shown) has a replaceable holding member 151 and a fixed holding member 152 . The communication light emitting section 110 , the position detection sensors 132 a and 132 b that are part of the transmission light detection section, and the transmission light control section 140 are held by a replaceable holding member 151 . The projection optical system 120 and the reflecting prisms 131 a and 131 b that are part of the transmitted light detection section are held by a fixed holding member 152 together with a dustproof glass 153 . The detachable portion 151a of the exchangeable holding member 151 and the detachable portion 152a of the fixed holding member 152 are detachable. The control signal from the transmission light control unit 140 is transmitted to the light projection optical system 120 by signal transmission/reception by a mechanism (electrical contact, optical coupling, etc.) configured in the attachment/detachment unit 151a and the attachment/detachment unit 152a. is transmitted to the focusing mechanism. The fixed holding member 152 is held by the angle adjustment table 101 , whereby the spatial optical transmission device 1000 is placed on the angle adjustment table 101 .
 図3Aは、受信側の受光部200の構成詳細図である。
 受光部200は、通信光を取り込み、集光する受光光学系220と受光光学系220により集光された通信光を受光する通信光受光部210と、到来した通信光の状態を検出する受信光検出部、通信光の制御を行う受信光制御部240、保持部とを有する。保持部は、可換保持部材(第2の保持部材)251と固定保持部材(第1の保持部材)252からなる。
FIG. 3A is a detailed configuration diagram of the light receiving unit 200 on the receiving side.
The light receiving unit 200 includes a light receiving optical system 220 for receiving and condensing communication light, a communication light receiving unit 210 for receiving the communication light collected by the light receiving optical system 220, and a received light for detecting the state of the received communication light. It has a detection section, a received light control section 240 for controlling communication light, and a holding section. The holding portion consists of a replaceable holding member (second holding member) 251 and a fixed holding member (first holding member) 252 .
 受光光学系220は主鏡(反射曲面)225と副鏡(反射曲面)224、レンズ223、レンズ222、レンズ221を有している。レンズ221は像振れ補正機構(図中二重枠)を有しており、光軸に垂直な方向にシフトすることで、通信光の向きを微調整することができる。また、レンズ223はフォーカス機構(図中二重枠)を有しており、光軸方向にシフトすることで、通信光の発散度を微調整することができる。主鏡225は、中心部に径30mmの開口を有している。 The light receiving optical system 220 has a primary mirror (reflective curved surface) 225 , a secondary mirror (reflective curved surface) 224 , lenses 223 , 222 and 221 . The lens 221 has an image blur correction mechanism (double frame in the figure), and by shifting in a direction perpendicular to the optical axis, the direction of communication light can be finely adjusted. Also, the lens 223 has a focus mechanism (double frame in the drawing), and by shifting it in the optical axis direction, it is possible to finely adjust the degree of divergence of the communication light. The primary mirror 225 has an opening with a diameter of 30 mm at its center.
 通信光受光部210は、前述の通り光ファイバであり、不図示の他端にて通信光を受信している。通信光受光部210の光ファイバのコア径50μmに対し、受光光学系220により集光された通信光のスポット径は44μmであり、設計称呼時性能として、通信光の取り込みロスが発生しないようにしている。尚、通信光受光部210は受光光学系220の光軸上に配置している。 The communication light receiving unit 210 is an optical fiber as described above, and receives communication light at the other end (not shown). The spot diameter of the communication light condensed by the light receiving optical system 220 is 44 μm, while the core diameter of the optical fiber of the communication light receiving unit 210 is 50 μm. ing. The communication light receiving section 210 is arranged on the optical axis of the light receiving optical system 220 .
 受信光検出部は、到来した通信光の一部を屈折させる、透過ウェッジプリズム231と、屈折された光束の結像位置を検出する位置検出センサ(検出手段)232とから構成される。 The received light detection unit is composed of a transmission wedge prism 231 that refracts part of the incoming communication light, and a position detection sensor (detection means) 232 that detects the imaging position of the refracted light beam.
 図3Bは透過ウェッジプリズム231の拡大図である。透過ウェッジプリズム231の材料はs-bls7(ohara社製、波長1550nmにおける屈折率n=1.500252)であり、頂角β=0.40°のプリズム形状とすることで、通信光を0.2°だけ屈折させている。屈折された光線は、受光光学系220に入射し、前述の0.2°だけずれているために、通信光受光部210とは異なる位置にある位置検出センサ232上に集光される。位置検出センサ232にて検出された結像位置から、光線の向きを計算できる。透過ウェッジプリズム231は、光軸を含む1断面において、通信光の光束の片端3mm、且つ、光軸を中心とする周方向に5mmの範囲の通信光を屈折するように設置されており、該光線の向きから、通信光の到来角度を計算することができる。 3B is an enlarged view of the transmission wedge prism 231. FIG. The material of the transmission wedge prism 231 is s-bls7 (manufactured by Ohara, refractive index n=1.500252 at a wavelength of 1550 nm). It is refracted by 2°. The refracted light beam enters the light receiving optical system 220 and is condensed on the position detection sensor 232 at a different position from the communication light receiving section 210 because of the 0.2° deviation described above. The direction of the light beam can be calculated from the imaging position detected by the position detection sensor 232 . The transmission wedge prism 231 is installed so as to refract the communication light within a range of 3 mm at one end of the communication light and 5 mm in the circumferential direction around the optical axis in one cross section including the optical axis. From the ray orientation, the angle of arrival of the communication light can be calculated.
 尚、位置検出センサ232は、波長選択フィルターを有し、空間光伝送装置1000の通信光射出部110にて射出した検出光の波長の光が透過し、もう一方の空間光伝送装置2000から来る通信光或いは検出光の波長の光は遮光される。このような構成とすることで、迷光による誤検出を低減している。本実施形態では、検出光の波長は通信光の波長と同じである。 The position detection sensor 232 has a wavelength selection filter, and the light having the wavelength of the detection light emitted from the communication light emitting unit 110 of the spatial light transmission device 1000 passes through and comes from the other spatial light transmission device 2000. Light having the wavelength of the communication light or the detection light is blocked. Such a configuration reduces erroneous detection due to stray light. In this embodiment, the wavelength of the detection light is the same as the wavelength of the communication light.
 受信光制御部240は、位置検出センサ232に繋がっており、上記の計算を行う。また、その計算結果を受光光学系220の像振れ補正機構と角度調整台201(調整部は図中二重線枠)にフィードバックしている。具体的には、通信光の補正角度の変動が低周波数の場合は、角度調整台201にて補正を行い、高周波の場合は、受光光学系220の像振れ補正機構にて補正を行う。 The received light control unit 240 is connected to the position detection sensor 232 and performs the above calculations. Further, the calculation result is fed back to the image blur correction mechanism of the light receiving optical system 220 and the angle adjustment table 201 (the adjustment portion is indicated by a double-lined frame in the drawing). Specifically, when the fluctuation of the corrected angle of the communication light is low frequency, the angle adjustment table 201 corrects it, and when it is high frequency, the image blur correction mechanism of the light receiving optical system 220 corrects it.
 受光部を保持する保持部は、可換保持部材251と固定保持部材252からなる。通信光受光部210と、受信光検出部の一部である位置検出センサ232は可換保持部材251に保持されている。受光光学系220と受信光検出部の一部である透過ウェッジプリズム231、受信光制御部240は、防塵ガラス253と共に、固定保持部材252に保持されている。可換保持部材251の有する着脱部251aと固定保持部材252の着脱部252aが着脱可能な状態で結合した構成になっている。受信光制御部240からの制御信号は、着脱部151aと着脱部152aに構成された信号の授受が可能な機構(電気接点、光学カップリング等)による信号の授受によって、受光光学系220内のフォーカス機構と角度調整台201に伝わる。固定保持部材252は角度調整台201に保持されており、これにより、空間光伝送装置2000が、角度調整台201に積載されている状態となる。 A holding portion that holds the light receiving portion is composed of a replaceable holding member 251 and a fixed holding member 252 . The communication light receiving section 210 and the position detecting sensor 232 which is part of the received light detecting section are held by a replaceable holding member 251 . The light receiving optical system 220 , the transmission wedge prism 231 that is part of the received light detection section, and the received light control section 240 are held by a fixed holding member 252 together with a dustproof glass 253 . The detachable portion 251a of the exchangeable holding member 251 and the detachable portion 252a of the fixed holding member 252 are detachably connected. The control signal from the reception light control unit 240 is transmitted to and received from the light receiving optical system 220 by a mechanism (electrical contact, optical coupling, etc.) configured in the attachment/detachment part 151a and the attachment/detachment part 152a, which is capable of sending and receiving signals. It is transmitted to the focus mechanism and the angle adjustment base 201 . The fixed holding member 252 is held by the angle adjustment table 201 , whereby the spatial optical transmission device 2000 is placed on the angle adjustment table 201 .
 ここで、受光光学系220の光学詳細値を以下に示す。前述の通り、対称なので、投光光学系120の光学詳細値も同様である。数値実施例において、物体側からの面(光学面)の順序である面番号iに対して、rは物体側より第i番目の面の曲率半径、dは物体側より第i番目の面と第i+1番目の面の間隔(光軸上)を示している。また、nd、νdは、第i番目の面と第i+1番目の面との間の媒質(光学部材)の屈折率、アッベ数を表している。面番号の右に付した記号*はその面が非球面であることを示す。 Here, optical detailed values of the light receiving optical system 220 are shown below. As mentioned above, due to the symmetry, the optical details of the projection optics 120 are also similar. In numerical examples, for surface number i which is the order of surfaces (optical surfaces) from the object side, r is the radius of curvature of the i-th surface from the object side, and d is the i-th surface from the object side. It shows the interval (on the optical axis) of the (i+1)th surface. Also, nd and νd represent the refractive index and Abbe number of the medium (optical member) between the i-th surface and the (i+1)-th surface. The symbol * attached to the right of the surface number indicates that the surface is an aspherical surface.
 非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、光の進行方向を正とし、Rを近軸曲率半径、Kを円錐常数としたとき、次式で表している。また、「e-Z」は「×10-Z」を意味する。
Figure JPOXMLDOC01-appb-M000001
The aspheric shape is expressed by the following equation, where the X axis is in the direction of the optical axis, the H axis is in the direction perpendicular to the optical axis, the traveling direction of light is positive, R is the paraxial radius of curvature, and K is the conic constant. Also, “eZ” means “×10 −Z ”.
Figure JPOXMLDOC01-appb-M000001
単位 mm
面データ
面番号       r         d       nd        νd         硝材
 1(絞り)  ∞        1.10   1.51633    64.1    s-bsl7 (ohara) 
 2          ∞      150.00                             
 3*      -385.051  -140.00                             
 4*      -133.630   155.00                             
 5       1644.588     2.00   1.56883    56.4    s-bal14 (ohara) 
 6       -104.907    20.00                             
 7       -152.756     0.80   1.61800    63.3    s-phm52 (ohara)
 8         29.125    16.70                             
 9         38.931     2.50   1.56883    56.4    s-bal14 (ohara)
10        100.000   100.00                             
像面        ∞   

非球面データ
第3面
 K =-1.00000e+000  
第4面
 K =-2.32216e+000  

各種データ
焦点距離     1600.00  
Fナンバー      16.00  
半画角          0.53  
像高           14.80  
レンズ全長    308.10
unit mm
Surface data Surface number r d nd νd Glass material 1 (Aperture) ∞ 1.10 1.51633 64.1 s-bsl7 (ohara)
2 ∞ 150.00
3* -385.051 -140.00
4* -133.630 155.00
5 1644.588 2.00 1.56883 56.4 s-bal14 (ohara)
6 -104.907 20.00
7 -152.756 0.80 1.61800 63.3 s-phm52 (ohara)
8 29.125 16.70
9 38.931 2.50 1.56883 56.4 s-bal14 (ohara)
10 100.000 100.00
Image plane ∞

Aspheric data 3rd surface K =-1.00000e+000
4th surface K =-2.32216e+000

Various data Focal length 1600.00
F number 16.00
Half angle of view 0.53
Image height 14.80
Lens length 308.10
(発明の特徴)
 以下、本発明の特徴構成について説明する。
 前述の通り、可換保持部材251の有する着脱部251aと固定保持部材252の有する着脱部252aが取り外し可能な状態で結合した構成になっている。具体的には、着脱部251aはCマウントのメス型、着脱部252aはCマウントのオス型になっている。そのため、上記の結合を外し、図4に示すようにCマウントのメス型351aを有し、2次元画像の撮像が可能な撮像素子352を有するカメラ装置351を結合させることが可能である。
(Features of the invention)
Characteristic configurations of the present invention will be described below.
As described above, the detachable portion 251a of the exchangeable holding member 251 and the detachable portion 252a of the fixed holding member 252 are detachably connected. Specifically, the detachable portion 251a is a C-mount female type, and the detachable portion 252a is a C-mount male type. Therefore, it is possible to remove the above coupling and couple a camera device 351 having a C-mount female mold 351a and an imaging element 352 capable of capturing a two-dimensional image as shown in FIG.
 受光光学系220の無限遠合焦時の光学性能値(投光光学系120も同様)として、図5および図6に通信波長(1540nm~1560nm)、焦点距離f=1599.999mmにおける縦収差図、横収差図を示す。また、図7および図8に可視光波長(e線:波長546nm)、焦点距離f=1602.968mmにおける縦収差図、横収差図を示す。縦収差図の非点収差図及び横収差図における実線と点線は、各々メリディオナル像面、サジタル像面における収差を示す。縦収差図では、球面収差は0.4mm、非点収差は0.4mm、歪曲は5%のスケールで描かれている。図6および図8の横収差図は、(a)像高14.8000mm、(b)像高11.1000mm、(c)像高7.4000mm、(d)像高3.7000mm、(e)像高0.0000mmにおける横収差図である。 5 and 6 are longitudinal aberration diagrams at a communication wavelength (1540 nm to 1560 nm) and a focal length f = 1599.999 mm as optical performance values of the light receiving optical system 220 when focused at infinity (the same applies to the light emitting optical system 120). , shows a lateral aberration diagram. 7 and 8 show longitudinal and lateral aberration diagrams at a visible light wavelength (e-line: wavelength 546 nm) and focal length f=1602.968 mm. A solid line and a dotted line in the astigmatism diagram of the longitudinal aberration diagram and the lateral aberration diagram show aberrations on the meridional image plane and the sagittal image plane, respectively. In the longitudinal aberration diagram, spherical aberration is drawn on a scale of 0.4 mm, astigmatism is drawn on a scale of 0.4 mm, and distortion is drawn on a scale of 5%. The lateral aberration diagrams of FIGS. 6 and 8 are (a) image height 14.8000 mm, (b) image height 11.1000 mm, (c) image height 7.4000 mm, (d) image height 3.7000 mm, (e) It is a lateral aberration diagram at an image height of 0.0000 mm.
 図5および図6より、通信波長(1540nm~1560nm)における、通信光受光部210のある中心画角にて収差を低減できていることが分かる。また、図7および図8より、APS-Cセンサ(撮像素子、二次元画像取得手段)352の画角(23.4×16.7mm=対角±14.2mm)において、可視光波長においても、十分に収差が取れていることが分かる。 From FIGS. 5 and 6, it can be seen that the aberration can be reduced at the central angle of view of the communication light receiving section 210 at the communication wavelength (1540 nm to 1560 nm). 7 and 8, at the angle of view (23.4 × 16.7 mm = diagonal ± 14.2 mm) of the APS-C sensor (imaging element, two-dimensional image acquisition means) 352, even at visible light wavelengths , it can be seen that the aberration is sufficiently removed.
 つまり、本実施形態では、空間光伝送装置1000の設置時において、可換保持部材251に代えて可視光用のカメラ装置351を取り付け、受光光学系220の光軸上にある撮像素子で捉えられる二次元画像を見ながら受光光学系220の角度の調整ができる。この場合、カメラの光軸と受光光学系220の光軸とが同一となるため、特許文献1のようにカメラの光軸と受光光学系の光軸とのずれに起因する調整誤差の課題は解消される。 That is, in this embodiment, when the spatial light transmission device 1000 is installed, the camera device 351 for visible light is attached instead of the replaceable holding member 251, and the The angle of the light receiving optical system 220 can be adjusted while viewing a two-dimensional image. In this case, since the optical axis of the camera and the optical axis of the light-receiving optical system 220 are the same, the problem of the adjustment error due to the deviation between the optical axis of the camera and the optical axis of the light-receiving optical system as in Patent Document 1 is eliminated. be canceled.
 具体的には、下記のような設置時の調整手順となる。
 ステップ1 GPS等で確認し、空間光伝送装置1000の投光部100及び空間光伝送装置2000の受光部200が凡そ向かい合うように、角度調整台101と角度調整台201を調整する。
Specifically, the adjustment procedure at the time of installation is as follows.
Step 1 Confirm with GPS or the like, and adjust the angle adjustment table 101 and the angle adjustment table 201 so that the light projecting unit 100 of the spatial light transmission device 1000 and the light receiving unit 200 of the spatial light transmission device 2000 are approximately facing each other.
 ステップ2 空間光伝送装置2000において、通信光受光部210と受信光検出部の一部である位置検出センサ232ごと可換保持部材251を固定保持部材252から取り外し、可視光用のカメラを固定保持部材252の着脱部252aに取り付ける。 Step 2 In the spatial optical transmission device 2000, the exchangeable holding member 251 is removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit, and the camera for visible light is fixedly held. It is attached to the detachable portion 252 a of the member 252 .
 ステップ3 カメラで撮像された2次元画像を確認しながら、空間光伝送装置1000が撮像画像の中心に来るように角度調整台201を再度調整する。 Step 3 While checking the two-dimensional image captured by the camera, adjust the angle adjustment table 201 again so that the spatial light transmission device 1000 is at the center of the captured image.
 ステップ4 可視光用のカメラを固定保持部材252の着脱部252aから取り外し、可換保持部材251を着脱部252aに取り付ける。 Step 4 Remove the camera for visible light from the attachment/detachment portion 252a of the fixed holding member 252, and attach the exchangeable holding member 251 to the attachment/detachment portion 252a.
 本実施形態では、カメラのセンサの光軸方向の位置は、通信光受光部210のファイバの先端と同じ位置になるようにしているため、設計上は、ステップ4を実施した後にフォーカス調整を行う必要がない。 In this embodiment, the position of the sensor in the camera in the optical axis direction is the same as the tip of the fiber of the communication light receiving unit 210. Therefore, in terms of design, focus adjustment is performed after step 4 is performed. No need.
 ここで、受信側の空間光伝送装置2000の説明をしたが、送信側の空間光伝送装置1000に対しても同様に調整を実施することができる。これにより、双方向の光軸の向きが揃い、通信が確立する。 Here, the spatial optical transmission device 2000 on the receiving side has been described, but the spatial optical transmission device 1000 on the transmitting side can be similarly adjusted. As a result, the directions of the bidirectional optical axes are aligned, and communication is established.
 以上の構成により、本発明の効果が得られる。
 本実施形態では、角度調整台201に対し受光光学系220を保持する固定保持部材252を固定し、固定保持部材252に対し、通信光受光部210を保持する可換保持部材251を固定する構成となっている。このような構成とすることで、角度調整台201で受光光学系220の角度を定めることができ、且つ、カメラの着脱によりその定めた角度が変化しにくいようにしている。
With the above configuration, the effects of the present invention can be obtained.
In this embodiment, a fixed holding member 252 that holds the light receiving optical system 220 is fixed to the angle adjustment table 201, and a replaceable holding member 251 that holds the communication light receiving unit 210 is fixed to the fixed holding member 252. It has become. With such a configuration, the angle of the light receiving optical system 220 can be determined by the angle adjustment table 201, and the determined angle is prevented from changing due to attachment and detachment of the camera.
 ここで、本発明において、光空間光伝送装置は、必ずしも角度調整台を有する必要はないことに注意されたい。例えば、設置時のみ角度を調整する工具を使用し、本発明の角度調整を行って受光光学系の位置を固定した後に、角度調整台を取り外すことも考えられる。この場合であっても、本発明の効果は得られる。但し、角度調整台を有していた方が、角度調整台の取り付け、取り外しの工数を低減でき、好ましい。 Here, it should be noted that in the present invention, the optical space optical transmission device does not necessarily have to have an angle adjustment base. For example, it is conceivable to use a tool for adjusting the angle only at the time of installation, perform the angle adjustment of the present invention, fix the position of the light receiving optical system, and then remove the angle adjustment base. Even in this case, the effects of the present invention can be obtained. However, it is preferable to have an angle adjusting base because the man-hours for attaching and removing the angle adjusting base can be reduced.
 本実施形態では、着脱部251a及び着脱部252aとしてCマウントを活用している。このように、汎用化している技術(複数のバヨネット爪部を備えるマウント部)を用いることで、着脱が容易で、市販品のカメラが装着しやすくなり、コスト高や調達難のリスクを回避できる。 In this embodiment, a C mount is used as the detachable portion 251a and the detachable portion 252a. In this way, by using general-purpose technology (a mount part with multiple bayonet claws), it is easy to attach and detach, making it easier to attach a commercially available camera, avoiding the risk of high costs and difficulty in procurement. .
 本実施形態では、空間光伝送装置2000の設置時のみ、カメラ装置を装着する構成であり、一度光軸方向の設定が完了して通信状態が確立すれば、常時カメラ装置が接続されていることを必要としない。このような構成により、空間光伝送装置のコストを低減できる効果を得ている。 In this embodiment, the camera device is attached only when the spatial light transmission device 2000 is installed, and once the setting of the optical axis direction is completed and the communication state is established, the camera device is always connected. does not require Such a configuration has the effect of reducing the cost of the spatial optical transmission device.
 本実施形態では、可視光用のカメラを取り付ける際に、通信光受光部210と受信光検出部の一部である位置検出センサ232ごと、可換保持部材251を固定保持部材252から取り外せる構成としている。このような構成とすることで、通信光受光部210のみを取り換える構成と比して、可換保持部材251の着脱作業性が向上する効果を得ている。また、通信光受光部210と位置検出センサ232の相対位置が担保されるため、前述の通信光受光部210の着脱に伴う光軸に垂直な方向のずれの悪影響を回避できる効果を得ている。 In this embodiment, when a visible light camera is attached, the exchangeable holding member 251 can be removed from the fixed holding member 252 together with the communication light receiving unit 210 and the position detection sensor 232 which is part of the received light detection unit. there is By adopting such a configuration, it is possible to obtain the effect of improving the attachment/detachment workability of the replaceable holding member 251 as compared with the configuration in which only the communication light receiving section 210 is replaced. In addition, since the relative positions of the communication light receiving unit 210 and the position detection sensor 232 are ensured, there is an effect of avoiding the adverse effect of deviation in the direction perpendicular to the optical axis due to attachment and detachment of the communication light receiving unit 210 described above. .
 本実施形態では、通信光受光部210を固定保持部材252から着脱する度に通信光受光部210の位置がわずかにずれる可能性がある。光軸方向のずれに関しては、通信光の向きを逆に考えた時の、空間光伝送装置2000からの通信光の発散として検出され、受光光学系220の有するフォーカス機構にて補正される。つまり、フォーカス機構により、該ずれを補正できる効果を得ている。 In this embodiment, there is a possibility that the position of the communication light receiving section 210 slightly shifts each time the communication light receiving section 210 is attached to or detached from the fixed holding member 252 . The shift in the optical axis direction is detected as divergence of the communication light from the spatial light transmission device 2000 when the direction of the communication light is reversed, and is corrected by the focusing mechanism of the light receiving optical system 220 . In other words, the focusing mechanism has the effect of correcting the shift.
 本実施形態では、通信光受光部210を固定保持部材252から着脱する度に通信光受光部210の位置がわずかにずれる可能性がある。光軸に垂直な方向のずれに関しては、通信光の角度ずれとして検出され、受光光学系220の有する像振れ補正機構にて補正される。つまり、像振れ補正機構により、該ずれを補正できる効果を得ている。 In this embodiment, there is a possibility that the position of the communication light receiving section 210 slightly shifts each time the communication light receiving section 210 is attached to or detached from the fixed holding member 252 . A deviation in the direction perpendicular to the optical axis is detected as an angular deviation of the communication light and corrected by the image blur correction mechanism of the light receiving optical system 220 . In other words, the effect of correcting the shift is obtained by the image blur correction mechanism.
 本実施形態では、受光光学系220の通信波長(1540~1560nm)から可視光領域における色収差を低減することにより、市販品の可視光カメラでの視認による光軸を揃える調整を可能として作業性を向上させている。また、赤外波長から可視光波長まで広域の色収差を低減するために、反射面を有する光学系としている。仮に屈折系で実施しようとすると、レンズの枚数が多くなってしまう。 In this embodiment, by reducing the chromatic aberration in the visible light region from the communication wavelength (1540 to 1560 nm) of the light receiving optical system 220, it is possible to adjust the optical axis by visual recognition with a commercially available visible light camera, thereby improving workability. are improving. Also, in order to reduce chromatic aberration over a wide range from infrared wavelengths to visible light wavelengths, the optical system has a reflecting surface. If a refractive system were to be used, the number of lenses would increase.
 これまで、説明のため、受信側の空間光伝送装置2000について主に議論してきたが、前述の通り、通信光の向きを逆転しても成り立つ構成であるため、送信側の空間光伝送装置1000についても同様である。特に、送信光検出部と受信光検出部は、片側ずつしか図示していないが、両装置とも有していることに注意されたい。本実施形態では、反射プリズムと透過ウェッジプリズムを、互いに光軸周りに90°回転させて設置している(図2A及び図3Aで言えば、紙面奥手前方向になる)。 Up to this point, the spatial optical transmission device 2000 on the receiving side has been mainly discussed for the purpose of explanation. The same is true for In particular, it should be noted that both devices have a transmitted light detector and a received light detector, although only one side is shown. In this embodiment, the reflective prism and the transmissive wedge prism are installed so as to be rotated by 90° around the optical axis (in FIGS. 2A and 3A, the front side of the page).
 本実施系形態では、空間光伝送装置の投光光学系と受光光学系の光軸が同一となる構成であったが、これに限られることはなく、別々の光学系や光軸を有していても構わない。
 ここで、本発明で議論している「光軸」とは、射出手段から射出されて投光光学系を通過する通信光の光束の中心光路、及び、受光光学系を通過して受光手段に向かう通信光の光束の中心光路を指す。一般的な共軸光学系の光軸とは定義が異なることに注意されたい。
 本実施形態では、わかりやすさのために、共軸系の投光光学系の光軸上に射出手段が存在し、共軸系の受光光学系の光軸上に受光手段が存在する形態とし、これまで説明をしていた。しかし、投光光学系、及び、受光光学系の光軸上に射出手段及び受光手段が存在しない場合などは、一般的な共軸光学系の光軸同士を揃えても、通信は確立されない。また、投光光学系、及び、受光光学系が偏芯光学系の場合などは、「光軸」の明確な定義が難しい。上記の理由から、「光軸」の定義を異ならせていることを理解されたい。
In this embodiment, the light emitting optical system and the light receiving optical system of the spatial light transmission device have the same optical axis. It doesn't matter if
Here, the "optical axis" discussed in the present invention means the central optical path of the communication light beam emitted from the emitting means and passing through the light projecting optical system, and the light receiving means passing through the light receiving optical system. It refers to the central optical path of the luminous flux of the communication light heading. Note that the definition is different from the optical axis of a general coaxial optical system.
In this embodiment, for the sake of clarity, a mode is assumed in which the emitting means exists on the optical axis of the coaxial light projecting optical system, and the light receiving means exists on the optical axis of the coaxial light receiving optical system. I was explaining. However, in cases such as when there are no emitting means and light receiving means on the optical axes of the light projecting optical system and the light receiving optical system, communication cannot be established even if the optical axes of a general coaxial optical system are aligned. Further, when the light projecting optical system and the light receiving optical system are decentered optical systems, it is difficult to clearly define the "optical axis". It should be appreciated that the definition of "optical axis" is different for the above reasons.
 本実施形態では、光ファイバから出射した通信光を光ファイバで受信する構成としたが、これに限られることはなく、例えば半導体レーザから出射した通信光をセンサで受信する構成としても構わない。 In this embodiment, the communication light emitted from the optical fiber is received by the optical fiber, but it is not limited to this. For example, the communication light emitted from the semiconductor laser may be received by the sensor.
 本実施形態では、受光部は光ファイバのみの構成であり、調整用のカメラ装置はセンサのみの構成としていたが、これに限られることはなく、それぞれがレンズを有していても良い。例えば、受信部としてコリメータ付きファイバの構成にし、調整用のカメラ装置として、レンズ付きのカメラ装置の構成としても構わない。 In this embodiment, the light-receiving unit is configured only with an optical fiber, and the camera device for adjustment is configured with only a sensor, but they are not limited to this, and each may have a lens. For example, a fiber with a collimator may be used as the receiver, and a camera with a lens may be used as the camera for adjustment.
 本実施形態では、着脱部252aから調整用のカメラ装置のセンサ面までの距離と、着脱部252aから通信光受光部210ファイバの先端までの距離を揃えているが、これに限られることはなく、ずれていても構わない。 In this embodiment, the distance from the attachment/detachment portion 252a to the sensor surface of the camera device for adjustment and the distance from the attachment/detachment portion 252a to the tip of the fiber of the communication light receiving portion 210 are the same, but the present invention is not limited to this. , it does not matter if it is off.
 本実施形態では、通信光受光部210の画角を、調整用のカメラ装置のセンサの中心画角に合わせているが、センサ面上に存在する画角であれば、それに限られることはない。 In this embodiment, the angle of view of the communication light receiving unit 210 is matched with the central angle of view of the sensor of the camera device for adjustment, but the angle of view is not limited to this as long as it exists on the sensor surface. .
 本実施形態では、可視光のカメラ装置にて調整を行っていたが、これに限られることはなく、通信光近傍の波長(本実施形態で言えば通信光の1550nmの波長に対して±200nmの範囲内にある波長)用のカメラ装置であっても構わない。可視光の波長用のカメラ装置で調整すると、目視と対応するため、認識しやすいメリットがある。一方、通信光近傍の波長用のカメラ装置であれば、受光光学系220の設計において、より容易に色収差を低減しやすいメリットがある。 In the present embodiment, adjustment was performed using a visible light camera device, but the present invention is not limited to this. (wavelengths within the range of ). Adjustment with a camera device for visible light wavelengths has the advantage of being easy to recognize because it corresponds to visual observation. On the other hand, a camera device for wavelengths close to communication light has the advantage of easily reducing chromatic aberration in the design of the light receiving optical system 220 .
 ここで、本実施形態では、通信光射出部110から出射した通信光の一部を活用し、検出を行っているが、これに限られることはない。例えば、通信光射出部110の光ファイバの不図示の他端から通信光と別の波長の光を入射させ、それを検出光として用いる等、専用の検出光を用いても良い。 Here, in the present embodiment, part of the communication light emitted from the communication light emitting section 110 is used for detection, but it is not limited to this. For example, a dedicated detection light may be used, for example, a light having a different wavelength from that of the communication light may be incident from the other end (not shown) of the optical fiber of the communication light emitting section 110 and used as the detection light.
 本実施形態では、センサ(撮像素子)としてAPS-Cサイズのものを活用している。センササイズはなるべく大きい方が視野を広く取れ、調整が有利になる。しかし、本発明はこれに限定されることはない。 In this embodiment, an APS-C size sensor (imaging device) is used. The larger the sensor size, the wider the field of view, which is advantageous for adjustment. However, the invention is not limited to this.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications are possible without departing from the spirit and scope of the present invention. Accordingly, the following claims are included to publicize the scope of the invention.
 本願は、2021年3月2日提出の日本国特許出願特願2021-032370を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2021-032370 filed on March 2, 2021, and the entire contents thereof are incorporated herein.
100 投光部
110 通信光射出部(射出手段)
120 投光光学系
121、122、123 レンズ(投光光学系)
124 副鏡(投光光学系)
125 主鏡(投光光学系)
200 受光部
210 通信光受光部(受光手段)
220 受光光学系
221、222、223 レンズ(受光光学系)
224 副鏡(受光光学系)
225 主鏡(受光光学系)
251 可換保持部材(第2の保持部材)
252 固定保持部材(第1の保持部材)
1000、2000 空間光伝送装置(光伝送装置)
100 light projection unit 110 communication light emission unit (emission means)
120 projection optical system 121, 122, 123 lens (projection optical system)
124 secondary mirror (projection optical system)
125 primary mirror (light projection optical system)
200 light receiving section 210 communication light receiving section (light receiving means)
220 light receiving optical system 221, 222, 223 lens (light receiving optical system)
224 secondary mirror (light receiving optical system)
225 primary mirror (light receiving optical system)
251 replaceable holding member (second holding member)
252 fixed holding member (first holding member)
1000, 2000 Space optical transmission device (optical transmission device)

Claims (12)

  1.  通信光を射出する射出手段と投光光学系とを含む投光部と、受光光学系と前記通信光を受光する受光手段とを含む受光部と、の間で光通信を行う光伝送装置であって、
     前記受光光学系を保持する第1の保持部材と、前記受光手段を保持し、前記第1の保持部材に着脱可能に固定される第2の保持部材とを有することを特徴とする光伝送装置。
    An optical transmission device for performing optical communication between a light projecting section including emitting means for emitting communication light and a light projecting optical system, and a light receiving section including a light receiving optical system and light receiving means for receiving the communication light. There is
    An optical transmission device comprising: a first holding member that holds the light receiving optical system; and a second holding member that holds the light receiving means and is detachably fixed to the first holding member. .
  2.  前記第1の保持部材は、前記受光光学系の向きを調整する角度調整部に結合されていることを特徴とする請求項1に記載の光伝送装置。 The optical transmission device according to claim 1, wherein the first holding member is coupled to an angle adjusting section that adjusts the orientation of the light receiving optical system.
  3.  前記第1及び第2の保持部材は、バヨネット爪部を備えるマウント部によって互いに接続されることを特徴とする請求項1又は2に記載の光伝送装置。 3. The optical transmission device according to claim 1, wherein the first and second holding members are connected to each other by a mount section having a bayonet claw section.
  4.  前記第2の保持部材は、前記通信光の向きや発散度を検出する検出手段を有することを特徴とする請求項1から3までのいずれか一項に記載の光伝送装置。 The optical transmission device according to any one of claims 1 to 3, wherein the second holding member has detection means for detecting the direction and divergence of the communication light.
  5.  前記受光光学系はフォーカス機構を有することを特徴とする請求項1から4までのいずれか一項に記載の光伝送装置。 The optical transmission device according to any one of claims 1 to 4, wherein the light receiving optical system has a focusing mechanism.
  6.  前記受光光学系は、光学素子を移動させて像振れを低減する像振れ補正機構を有することを特徴とする請求項1から5までのいずれか一項に記載の光伝送装置。 The optical transmission device according to any one of claims 1 to 5, wherein the light receiving optical system has an image blur correction mechanism that moves an optical element to reduce image blur.
  7.  前記受光光学系は反射曲面を有することを特徴とする請求項1から6までのいずれか一項に記載の光伝送装置。 The optical transmission device according to any one of claims 1 to 6, wherein the light receiving optical system has a reflecting curved surface.
  8.  前記射出手段及び前記受光手段は光ファイバで構成されることを特徴とする請求項1から7までのいずれか一項に記載の光伝送装置。 The optical transmission device according to any one of claims 1 to 7, characterized in that said emitting means and said receiving means are composed of optical fibers.
  9.  前記光伝送装置は、画像を取得するためのセンサを有さないことを特徴とする請求項1から8までのいずれか一項に記載の光伝送装置。 The optical transmission device according to any one of claims 1 to 8, characterized in that said optical transmission device does not have a sensor for acquiring an image.
  10.  投光部から通信光を射出し、互いに着脱可能に接続される受光光学系と受光手段とを含む受光部で受光して光通信を行う光伝送装置における前記投光部に対する前記受光光学系の向きの調整方法であって、
     前記受光部に代えて画像取得手段を前記受光光学系に装着し、
     前記画像取得手段により取得した画像に基づいて、前記受光光学系の向きを調整し、
     前記画像取得手段を前記受光部から取り外して、前記受光手段を前記受光部に装着する、
    ことを特徴とする光伝送装置の調整方法。
    In an optical transmission device in which communication light is emitted from a light projecting part and received by a light receiving part including a light receiving optical system and light receiving means that are detachably connected to each other and optical communication is performed, the light receiving optical system for the light projecting part An orientation adjustment method comprising:
    mounting an image acquisition means on the light receiving optical system instead of the light receiving unit;
    adjusting the orientation of the light receiving optical system based on the image acquired by the image acquisition means;
    removing the image acquisition means from the light receiving unit and attaching the light receiving unit to the light receiving unit;
    A method for adjusting an optical transmission device, characterized by:
  11.  前記画像取得手段は可視光の画像を取得することを特徴とする請求項10に記載の光伝送装置の調整方法。 11. The method for adjusting an optical transmission device according to claim 10, wherein the image acquiring means acquires an image of visible light.
  12.  前記画像取得手段は前記通信光の波長に対して±200nmの範囲の波長の光の画像を取得することを特徴とする請求項10に記載の光伝送装置の調整方法。 11. The method for adjusting an optical transmission device according to claim 10, wherein said image acquisition means acquires an image of light having a wavelength within a range of ±200 nm with respect to the wavelength of said communication light.
PCT/JP2022/008182 2021-03-02 2022-02-28 Optical transmission device and method for adjusting optical transmission device WO2022186113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021032370A JP2022133604A (en) 2021-03-02 2021-03-02 Optical transmission device and adjustment method of optical transmission device
JP2021-032370 2021-03-02

Publications (1)

Publication Number Publication Date
WO2022186113A1 true WO2022186113A1 (en) 2022-09-09

Family

ID=83153753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008182 WO2022186113A1 (en) 2021-03-02 2022-02-28 Optical transmission device and method for adjusting optical transmission device

Country Status (2)

Country Link
JP (1) JP2022133604A (en)
WO (1) WO2022186113A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307355A (en) * 1995-05-10 1996-11-22 Fujii Kogaku Kk Communication equipment in optical space transmission system
JP2005229253A (en) * 2004-02-12 2005-08-25 Olympus Corp Spatial light transmission apparatus
JP2006229734A (en) * 2005-02-18 2006-08-31 Victor Co Of Japan Ltd Optical axis adjusting method of optical wireless transmitting device, optical wireless transmitting device and optical wireless transmission system
JP2007324705A (en) * 2006-05-30 2007-12-13 Kyocera Corp Visible light receiver and method of detecting position of visible light communication light source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307355A (en) * 1995-05-10 1996-11-22 Fujii Kogaku Kk Communication equipment in optical space transmission system
JP2005229253A (en) * 2004-02-12 2005-08-25 Olympus Corp Spatial light transmission apparatus
JP2006229734A (en) * 2005-02-18 2006-08-31 Victor Co Of Japan Ltd Optical axis adjusting method of optical wireless transmitting device, optical wireless transmitting device and optical wireless transmission system
JP2007324705A (en) * 2006-05-30 2007-12-13 Kyocera Corp Visible light receiver and method of detecting position of visible light communication light source

Also Published As

Publication number Publication date
JP2022133604A (en) 2022-09-14

Similar Documents

Publication Publication Date Title
US10816778B2 (en) Image capture system and imaging optical system
US7672049B2 (en) Telescope and panfocal telescope comprising planoconvex of planoconcave lens and deflecting means connected thereto
JP2006065234A (en) Eccentric optical system and optical system using the same
RU2699312C1 (en) Optical system having a refracting surface and a reflecting surface, and an image capturing device and a projection device, which include it
US8085400B2 (en) Alignment device and method for optical system
JP5585122B2 (en) Imaging lens, twin stereo camera and distance measuring device
JP5905180B1 (en) Wide-angle optical system and endoscope
US10701251B2 (en) Imaging optical system, image projection apparatus, and camera system
US11805983B2 (en) Optical path deflecting prism for endoscope, oblique-viewing endoscope optical system having the same and endoscope
JP2007109923A (en) Photodetector and optical communication system using same
WO2022186113A1 (en) Optical transmission device and method for adjusting optical transmission device
US20060114576A1 (en) Panoramic attachment optical system, and panoramic optical system
US20160238854A1 (en) Focal Length Extender for Telescopic Imaging Systems
WO2022196337A1 (en) Optical transmission apparatus
US20060028737A1 (en) Windowed optical system having a tilted optical element to correct aberrations
WO2022186114A1 (en) Optical transmission device
EP3153905A2 (en) Image-forming optical component and optical system of surveying instrument
JP2007052366A (en) Catoptric system and optical system using the same
JP2007140013A (en) Photodetection optical system and optical system
JP2006113248A (en) Eccentric reflection optical system and optical system using the same
JP7379112B2 (en) Optical system and imaging device equipped with the same
CN116299983B (en) Near-to-eye display module detection lens
US20230288685A1 (en) Optical system, image projection apparatus, and imaging apparatus
WO2017068683A1 (en) Optical element
US20220229156A1 (en) Optical apparatus, and in-vehicle system and moving apparatus each including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763169

Country of ref document: EP

Kind code of ref document: A1