WO2022186047A1 - Particle analysis device - Google Patents

Particle analysis device Download PDF

Info

Publication number
WO2022186047A1
WO2022186047A1 PCT/JP2022/007647 JP2022007647W WO2022186047A1 WO 2022186047 A1 WO2022186047 A1 WO 2022186047A1 JP 2022007647 W JP2022007647 W JP 2022007647W WO 2022186047 A1 WO2022186047 A1 WO 2022186047A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
hole
inlet hole
particle analysis
analysis device
Prior art date
Application number
PCT/JP2022/007647
Other languages
French (fr)
Japanese (ja)
Inventor
巧 吉富
雄輝 室田
直広 藤澤
勇人 土岐
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Publication of WO2022186047A1 publication Critical patent/WO2022186047A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle

Definitions

  • the present invention relates to a particle analysis device for analyzing particles contained in liquid.
  • a detection method using nanopores has been proposed to detect and analyze single particles such as exosomes, pollen, viruses, bacteria, and DNA (see, for example, Patent Document 1).
  • a particle analysis apparatus using the detection method as described above has a hole connecting two spaces, one of which contains liquid, and the other of which contains particles to be analyzed. The contained liquid is pooled. Different potentials are applied to these spaces, and particles pass through the pores by electrophoresis. As the particles pass through the pores, the current through the liquid changes. By observing changes in the current value at this time, the characteristics (for example, type, shape, size, etc.) of the particles that have passed through the holes can be analyzed.
  • Various apparatuses and analysis methods for realizing these analyzes have been proposed (see Patent Document 2, for example).
  • the particle analysis device disclosed in Patent Document 2 has two inlet holes and two outlet holes for two types of liquids stored in two spaces.
  • particles pass through the pores by electrophoresis, but in the case of particles with a particle size of 1 ⁇ m or more and particles whose surfaces are not charged, sufficient driving force can be obtained only by electrophoresis. There was something I could't do.
  • a sufficient driving force cannot be obtained, there is a problem that the number of particles passing through the holes per second (in other words, particle frequency) decreases.
  • the frequency of the particles passing through the pores can be increased by using a driving force other than electrophoresis, and efficient.
  • the frequency at which particles pass through holes may be referred to as “particle passage frequency”.
  • the present invention provides a particle analysis device that improves the particle passage frequency and performs measurements efficiently.
  • the present invention provides the following particle analysis device.
  • the hydrophilized inner surface of the flow path of the inlet hole for injecting the liquid not containing the particles to be analyzed is the inner surface of the flow path in a certain area from the opening of the inlet hole for injecting the liquid containing the particles to be analyzed.
  • the inlet hole for injecting the liquid not containing the particles to be analyzed has a first large-diameter portion in which the channel diameter increases in a certain area from the opening, and the channel diameter decreases from the first large-diameter portion. a first reduced diameter portion with a diameter;
  • the inlet hole for injecting the liquid containing the particles to be analyzed has a second large-diameter portion in which the channel diameter increases in a certain area from the opening, and a second large-diameter portion in which the channel diameter decreases from the second large-diameter portion.
  • the first large-diameter portion of the inlet hole for injecting the liquid containing the particles to be analyzed consists of a countersunk hole provided in the opening of the inlet hole, and serves as the bottom surface of the countersunk hole.
  • a first lid positioned over said opening of said first outlet aperture and formed from an air permeable, liquid impermeable membrane;
  • the second lid according to any one of the above [1] to [4], further comprising a second lid disposed at the opening of the second outlet hole and formed of an air-permeable but liquid-impermeable membrane. Particle analyzer.
  • [7] comprising a plurality of laminated and joined plates,
  • [8] comprising a plurality of laminated and joined plates,
  • the particle analysis device of the present invention can improve the particle passage frequency and perform measurements efficiently. That is, in the particle analysis apparatus of the present invention, at least part of the inner surface of the channel in a certain area from the opening of the inlet hole for injecting the liquid not containing the particles to be analyzed is hydrophilized, and at least part of the channel in the area is made hydrophilic. It is configured such that the hydrophilicity of the inner surface is relatively high. By configuring in this way, it is possible to extremely effectively improve the particle passing frequency at the measurement site where the particles are measured.
  • the inlet hole for injecting the liquid containing no particles to be analyzed by the particle analysis device has a first large-diameter portion in which the channel diameter is enlarged on the opening side, and a channel diameter in which the channel diameter is reduced from the first large-diameter portion.
  • FIG. 2 is a side view of the particle analysis device shown in FIG. 1;
  • FIG. 2 is a plan view of the particle analysis device shown in FIG. 1;
  • FIG. 2 is a conceptual diagram showing the principle of particle analysis using the particle analysis apparatus shown in FIG. 1;
  • FIG. 2 is an exploded view of the particle analysis device shown in FIG. 1 as seen obliquely from above;
  • FIG. 2 is an enlarged plan view of the particle analysis device shown in FIG. 1;
  • FIG. 7 is a cross-sectional view taken along the line VI-VI of FIG. 6;
  • FIG. 7 is an enlarged plan view of the particle analysis device similar to FIG.
  • FIG. 6 showing liquid leaking from holes in which liquid is stored
  • FIG. 7 is an enlarged perspective view of a particle analysis device similar to FIG. 6 showing liquid leaking from a hole containing liquid
  • FIG. 5 is a plan view schematically showing another modification of the first embodiment
  • FIG. 8 is a plan view schematically showing still another modification of the first embodiment
  • It is a perspective view which shows typically 2nd Embodiment of the particle-analysis apparatus of this invention.
  • FIG. 14 is a side view of the particle analysis device shown in FIG. 13;
  • FIG. 14 is a plan view of the particle analysis device shown in FIG. 13;
  • FIG. 14 is an exploded view of the particle analysis device shown in FIG.
  • FIG. 14 is an enlarged plan view of the particle analysis device shown in FIG. 13;
  • FIG. 18 is a cross-sectional view taken along line VII-VII of FIG. 17; It is a perspective view which shows typically 3rd Embodiment of the particle-analysis apparatus of this invention.
  • FIG. 20 is an exploded view of the particle analysis device shown in FIG. 19;
  • FIG. 20 is a cross-sectional view of part of the particle analysis device shown in FIG. 19; It is a partial cross-sectional view of a fourth embodiment of the particle analysis device of the present invention.
  • It is a schematic diagram for demonstrating the process of manufacturing a particle-analysis apparatus. It is a schematic diagram for demonstrating the other process which manufactures a particle-analysis apparatus.
  • the particle analysis device 1 of the first embodiment has a rectangular parallelepiped shape and has four side surfaces 1A, 1B, 1C, and 1D.
  • the four side surfaces 1A, 1B, 1C, and 1D of the particle analysis device 1 may have the same length.
  • FIG. 1 is a perspective view schematically showing the first embodiment of the particle analysis device of the present invention.
  • 2 is a side view of the particle analysis apparatus shown in FIG. 1.
  • FIG. 3 is a plan view of the particle analysis apparatus shown in FIG. 1.
  • FIG. 1 is a perspective view schematically showing the first embodiment of the particle analysis device of the present invention.
  • 2 is a side view of the particle analysis apparatus shown in FIG. 1.
  • FIG. 3 is a plan view of the particle analysis apparatus shown in FIG. 1.
  • the particle analysis device 1 has an upper liquid space 20, a lower liquid space 22, and a connection hole 26.
  • the liquid spaces 20 and 22 each extend straight in the horizontal direction.
  • the first liquid space 20 stores a first liquid 37 and the lower liquid space 22 stores a second liquid 38 .
  • the first liquid 37 stored in the upper liquid space 20 and the second liquid 38 stored in the lower liquid space 22 are indicated by different hatching patterns.
  • a lower liquid space 22 is arranged below the upper liquid space 20 and the liquid spaces 20 , 22 are connected to each other by a connecting hole 26 .
  • the liquid spaces 20, 22 are perpendicular to each other.
  • the particle analysis device 1 also has a first inlet hole 20A, a first outlet hole 20B, a second inlet hole 22A and a second outlet hole 22B.
  • Each of the first inlet hole 20A, the first outlet hole 20B, the second inlet hole 22A, and the second outlet hole 22B has an opening that opens on the upper surface of the particle analysis device 1 .
  • the first inlet hole 20A and the first outlet hole 20B extend vertically from the upper surface of the particle analysis device 1 to the upper liquid space 20, and the first liquid 37 flows through these holes.
  • the first inlet hole 20A, the first outlet hole 20B and the upper liquid space 20 form one reservoir for the first liquid 37.
  • FIG. When supplying the first liquid 37 to the upper liquid space 20 , the first inlet hole 20A is used as an inlet for the first liquid 37 and the first outlet hole 20B is used as an inlet for the first liquid 37 . is used as an outlet for air pushed out of the liquid space 20 of the .
  • the term “vertical” refers to a direction perpendicular to the top surface of the particle analysis device 1 when the top surface is placed horizontally.
  • the second inlet hole 22A and the second outlet hole 22B extend vertically from the upper surface of the particle analysis device 1 to the liquid space 22 below, and the second liquid 38 flows through these holes.
  • the second inlet hole 22A, the second outlet hole 22B and the lower liquid space 22 form another reservoir for the second liquid 38.
  • FIG. When supplying the second liquid 38 to the lower liquid space 22, the second inlet hole 22A is used as an inlet for the second liquid 38, and the second outlet hole 22B is used by the second liquid 38 to It is used as an outlet for air forced out of the lower liquid space 22 .
  • the particle analysis device 1 has a first electrode 28 and a second electrode 30 .
  • the first electrode 28 applies a potential to the first liquid 37 in the upper liquid space 20 through the first exit hole 20B.
  • the second electrode 30 provides a different potential than the first electrode 28 to the second liquid 38 in the lower liquid space 22 through the second exit hole 22B.
  • the second electrode 30 is the anode and the first electrode 28 is the cathode. Since the liquid spaces 20 and 22 are in communication with each other through the connecting holes 26, current flows through the first liquid 37 and the second liquid 38 inside the liquid spaces 20 and 22.
  • FIG. 4 schematically shows the principle of particle analysis using the particle analysis device 1.
  • the upper liquid space 20 contains, for example, a first liquid 37 which originally does not contain the particles 40 to be analyzed.
  • a second liquid 38 containing particles 40 to be analyzed.
  • the liquid spaces 20 and 22 are connected to each other through connection holes 26 which are through holes formed in a chip (nanopore chip) 24 .
  • a DC power supply 35 and an ammeter 36 are connected to the first electrode 28 and the second electrode 30 .
  • the DC power supply 35 is, for example, a battery, but is not limited to a battery.
  • Electrophoresis caused by the potential difference applied to the electrodes 28 and 30 causes the particles 40 contained in the second liquid 38 in the lower liquid space 22 to pass through the connection hole 26 and move to the second liquid 38 in the upper liquid space 20 . 1 flows into the liquid 37 .
  • the current values flowing through the first liquid 37 and the second liquid 38 change.
  • a change in current value can be observed using an ammeter 36 .
  • the characteristics (for example, type, shape, size) of the particles 40 that have passed through the connection hole 26 are analyzed. For example, it is possible to count the number of certain types of particles 40 contained in the second liquid 38 .
  • Particle analyzer 1 can be used to analyze various particles such as exosomes, pollen, viruses, and bacteria.
  • the particle analysis device 1 includes a plurality of stacked square plates 2, 4, 6, 8, and 10.
  • some or all of these plates are made of a transparent or translucent material, and the cavities of the particle analysis device 1 (first inlet hole 20A, first outlet hole 20B, second inlet hole 22A and the second exit hole 22B, and the state of storage of the first liquid 37 and the second liquid 38 in the liquid spaces 20, 22) can be observed from the outside of the particle analysis device 1.
  • FIG. it is not necessary that the state of liquid storage is observable, and these plates may be opaque.
  • the plates 2, 4, 6, 8, 10 are made of an electrically and chemically inert and insulating material.
  • Each plate may be formed from a rigid or elastic material.
  • Preferred rigid materials include resinous materials such as polycarbonate, polyethylene terephthalate, acrylic, cyclic olefins, polypropylene, polystyrene, polyester, polyvinyl chloride, and the like.
  • Preferred elastic materials include elastomers such as silicone rubbers or urethane rubbers containing PDMS (polydimethylsiloxane).
  • a plate made of a rigid material may be overlaid on the plate made of an elastic material, or a plate made of an elastic material may be overlaid. All of the plates 2, 4, 6, 8, 10 may be made of elastic material.
  • FIG. 5 is an exploded view of the particle analysis apparatus shown in FIG. 1 as seen obliquely from above.
  • a horizontal groove 4g is formed in the center of the lower surface of the next plate 4.
  • the groove 4g forms a lower liquid space 22.
  • FIG. 4 t of communicating holes which penetrate in the perpendicular direction are formed in the center of 4 g of groove
  • the communication hole 4t communicates the lower liquid space 22 (groove 4g) and the connection hole 26 of the chip 24 with each other.
  • the plate 4 is formed with cylindrical through holes 4a and 4d penetrating in the vertical direction. Through holes 4a and 4d have the same diameter.
  • the through hole 4a communicates with one end of the groove 4g, and the through hole 4d communicates with the other end of the groove 4g.
  • a rectangular parallelepiped concave portion 6h is formed in the center of the lower surface of the next plate 6.
  • the recess 6h accommodates a chip 24 having a connection hole 26.
  • a chip 24 is fitted into the recess 6h.
  • the chip 24 may be removable (replaceable) from the recess 6h, or may be non-removable (non-replaceable).
  • a horizontal groove 6g is formed in the center of the upper surface of the plate 6. As shown in FIG. The groove 6g forms an upper liquid space 20 when the plates 6, 8 are joined.
  • a communication hole 6t is formed in the center of the groove 6g so as to penetrate in the vertical direction. The communication hole 6t allows the upper liquid space 20 (groove 6g) and the connection hole 26 of the chip 24 to communicate with each other.
  • the cross sections of the communication holes 4t, 6t and the connection hole 26 are circular, but they do not have to be circular.
  • the plate 6 is formed with cylindrical through holes 6a and 6d penetrating in the vertical direction.
  • the through holes 6a, 6d have the same diameter as the through holes 4a, 4d.
  • the through-hole 6a communicates with the through-hole 4a of the plate 4 immediately below and one end of the groove 4g, and the through-hole 6d communicates with the through-hole 4d and the other end of the groove 4g.
  • the tip (nanopore tip) 24 is a rectangular parallelepiped, for example, a square plate.
  • a connection hole 26 is formed through the center of the chip 24 in the vertical direction.
  • the tip 24 may be made of an electrically and chemically inert and insulating material such as glass, sapphire, ceramics, resin, elastomer, SiO2 , SiN , or Al2O3 .
  • the chip 24 is made of a material harder than the material of the plates 2, 4, 6, 8, 10, such as glass, sapphire, ceramics, SiO2 , SiN, or Al2O3 , but is made of resin or Tip 24 may be formed from an elastomer.
  • a user can select an appropriate tip 24 according to the application of the particle analysis device 1 .
  • the particle 40 to be analyzed can be varied by providing a plurality of tips 24 with different sizes or shapes of connection holes 26 and selecting the tip 24 to be fitted in the recess.
  • the chip 24 is preferably subjected to a hydrophilic treatment.
  • Hydrophilization includes, for example, irradiating the tip 24 with oxygen plasma or ultraviolet light.
  • the ultraviolet radiation may be applied in the form of laser beams.
  • hydrophilizing the chip 24 with vacuum ultraviolet rays or the like it is possible to decompose and remove organic matter on the surface of the chip 24, thereby suppressing adsorption of particles to the connection hole 26 itself or its surroundings.
  • the next plate 8 is formed with cylindrical through holes 8a, 8b, 8c, and 8d penetrating in the vertical direction.
  • Through holes 8a, 8b, 8c, 8d have the same diameter as through holes 4a, 4d, 6a, 6d.
  • the through hole 8 a communicates with the through hole 6 a of the plate 6 directly below, and the through hole 8 d communicates with the through hole 6 d of the plate 6 .
  • the through hole 8b communicates with one end of the groove 6g of the plate 6, and the through hole 8c communicates with the other end of the groove 6g.
  • Electrodes 28 and 30 are arranged in parallel on the upper surface of the plate 8.
  • the first electrode 28 applies an electric potential to the first liquid 37 in the through hole 8b, and the second electrode 30 in the through hole 8a. A potential is applied to the second liquid 38 of .
  • Through-holes 10a, 10b, 10c, and 10d are formed in the uppermost plate 10 so as to penetrate in the vertical direction.
  • the through holes 10a, 10b, 10c, and 10d respectively communicate with the through holes 8a, 8b, 8c, and 8d of the plate 8 directly below.
  • the through-holes 10c and 10d of the plate 10 of the uppermost layer may be formed with large-diameter portions in which the hole diameters of the through-holes 10c and 10d are enlarged in a certain area from the opening opening on the upper surface of the particle analysis device 1 .
  • the uppermost plate 10 has a first electrode rod insertion hole 32 through which the first electrode 28 below the plate 10 is exposed, and a second electrode rod insertion hole 34 through which the second electrode 30 is exposed. formed.
  • Each of the electrode rod insertion holes 32 and 34 has an opening that opens on the upper surface of the particle analysis device 1, penetrates the plate 10, and extends from the upper surface to the electrode 28 or the electrode 30.
  • Each of the electrode rod insertion holes 32 and 34 has a substantially semicircular contour, but the shape of the contour of the electrode rod insertion hole is not limited to the illustrated example.
  • the first inlet hole 20A is composed of through holes 10c and 8c, passes through the plates 10 and 8, and reaches the groove 6g of the plate 6, that is, one end of the liquid space 20 above.
  • the first exit hole 20B is composed of through holes 10b and 8b, passes through the plates 10 and 8, and reaches the groove 6g of the plate 6, that is, the other end of the liquid space 20 above.
  • a first electrode 28 is provided in the middle of the first outlet hole 20B.
  • the second inlet hole 22A consists of through-holes 10d, 8d, 6d, 4d and passes through the plates 10, 8, 6, 4 to reach the groove 4g in the plate 4, i.e. one end of the liquid space 22 below. do.
  • the second exit hole 22B is composed of through-holes 10a, 8a, 6a, 4a and passes through the plates 10, 8, 6, 4 and into the groove 4g of the plate 4, i.e. the other end of the liquid space 22 below. reach.
  • a second electrode 30 is provided in the middle of the second inlet hole 22A.
  • one of the first inlet hole 20A and the second inlet hole 22A shown in FIG. 5 serves as an inlet hole for injecting the liquid containing the particles to be analyzed. and the other of the first inlet hole 20A or the second inlet hole 22A is the inlet hole for injecting the liquid free of particles to be analyzed.
  • the inlet hole for injecting the liquid not containing the particles to be analyzed is referred to as the first inlet hole 20A
  • the inlet hole for injecting the liquid not including the particles to be analyzed is referred to as the second inlet hole 22A. explain.
  • the through hole 10c of the uppermost plate 10 may have a large diameter portion 10ca at the top and a small diameter portion 10cb at the bottom. Both the large-diameter portion 10ca and the small-diameter portion 10cb are cylindrical, but the diameter of the large-diameter portion 10ca is larger than that of the small-diameter portion 10cb. The diameter of the small diameter portion 10cb is equal to the diameter of the through hole 8c directly below the through hole 10c.
  • the large-diameter portion 10ca is the opening of the first inlet hole 20A and opens on the upper surface of the particle analysis device 1 . Accordingly, the large diameter portion 10ca of the first inlet hole 20A has a larger area than the other portions of the first inlet hole 20A.
  • a through hole 10d of the plate 10 has a large diameter portion 10da at the top and a small diameter portion 10db at the bottom. Both the large diameter portion 10da and the small diameter portion 10db are cylindrical, but the diameter of the large diameter portion 10da is larger than the diameter of the small diameter portion 10db. The diameter of the small diameter portion 10db is equal to the diameter of the through hole 8d directly below the through hole 10d.
  • the large-diameter portion 10da is the opening of the second inlet hole 22A and opens on the upper surface of the particle analysis device 1. As shown in FIG. Therefore, the large diameter portion 10da of the second inlet hole 22A has a larger area than the other portions of the second inlet hole 22A.
  • the through-hole 10c of the uppermost plate 10 serves as the opening of the first inlet hole 20A that opens on the upper surface of the particle analysis device 1, as described above.
  • the particle analysis apparatus 1 of the present embodiment at least a part of the inner surface of the flow channel in a certain area from the opening of the first inlet hole 20A, which is the inlet hole for injecting the liquid not containing the particles to be analyzed, is hydrophilized.
  • the "channel inner surface" of the first inlet hole 20A refers to the inner surface of the channel defined by the first inlet hole 20A (in other words, the surface of the channel).
  • At least a part of the inner surface of the flow path in a certain area from the opening of the first inlet hole 20A is made hydrophilic means that "at least a part of the inner surface of the flow path" has “affinity with water”. It means that it is denatured so that it becomes relatively high.
  • the "affinity with water” of at least a part of the inner surface of the flow channel in a certain area from the opening of the first inlet hole 20A is lower than the "affinity with water” of the inner surface of the flow path in other areas. can be denatured so that it is relatively high.
  • the first inlet hole 20A which is an inlet hole for injecting a liquid that does not contain particles to be analyzed, has a first large channel diameter in a certain region from the opening. It is preferable that at least the inner surface of the channel at the portion having the diameter portion 10ca and the channel diameter being reduced from the first large diameter portion 10ca is hydrophilized (that is, denatured).
  • the first inlet hole 20A includes a first large-diameter portion 10ca having a channel diameter enlarged from the opening and a first reduced-diameter portion 10cc having a channel diameter reduced from the first large-diameter portion 10ca.
  • At least the surface of the first reduced diameter portion 10cc of the first inlet hole 20A is made hydrophilic. Furthermore, when the first large-diameter portion 10ca of the first inlet hole 20A is a countersunk hole provided at the opening of the first inlet hole 20A, the bottom surface of the countersink hole It is preferable that at least the inner surface of the flow path of the reduced diameter portion 10cc is made hydrophilic.
  • the particle analysis apparatus 1 of the present embodiment performs hydrophilic treatment on at least a portion of the inner surface of the flow channel (for example, the first reduced diameter portion 10cc) in a certain area from the opening of the first inlet hole 20A. (In other words, modification treatment) is preferably applied.
  • modification treatment is preferably applied.
  • Examples of the hydrophilization treatment include a method of irradiating the inner surface of the channel with ultraviolet rays and a method of applying a predetermined hydrophilic coating to the inner surface of the channel.
  • a method of irradiating ultraviolet rays for example, a method of irradiating ultraviolet rays in the form of a laser beam can be mentioned.
  • Hydrophilic coating can be performed, for example, by the following method. First, it is preferable to perform a degreasing treatment as a pretreatment on the inner surface of the channel to be hydrophilized. Further, after that, as a pretreatment, the inner surface of the flow channel to be coated with a hydrophilic material may be subjected to surface treatment. For example, when performing a hydrophilic treatment with a hydrophilic coating agent or the like, which will be described later, a silica-based surface treatment agent (primer) is applied to the inner surface of the flow channel to be hydrophilic coated, and the inner surface of the flow channel is coated with a primer. may be treated.
  • a silica-based surface treatment agent primer
  • an optimum treatment can be appropriately selected according to the type of the hydrophilic coating agent and the like.
  • a hydrophilic coating agent is applied to the inner surface of the flow channel that has been appropriately pretreated, and the hydrophilic coating agent is dried to make the inner surface of the flow channel hydrophilic.
  • the type of hydrophilic coating agent is not particularly limited, but examples include a coating agent having a trisilanol group at least one terminal of a polymer chain and a plurality of hydrophilic groups in its side chain.
  • a hydrophilic coating agent "LAMBIC series (trade name)" manufactured by Osaka Organic Chemical Industry Co., Ltd., etc. can be mentioned.
  • the first reduced-diameter portion 10cc of the first inlet hole 20A which is an inlet hole for injecting a liquid that does not contain particles to be analyzed, is hydrophilized, as described above.
  • the hydrophilic inner surface of the channel in a certain area from the opening of the first inlet hole 20A is the second inlet hole for injecting the liquid containing the particles to be analyzed.
  • the hydrophilicity may be higher than the inner surface of the channel in a certain area from the opening of the inlet hole 22A.
  • the inner surface of the channel in a certain area from the opening of the second inlet hole 22A may not be subjected to the hydrophilization treatment as in the case of the first inlet hole 20A.
  • the inside of the flow path extending from the opening of the second inlet hole 22A is the first inlet hole 20A. is lower in hydrophilicity than the inner surface of the flow path made hydrophilic.
  • the plate 10 constituting the second inlet hole 22A is made of silicone rubber
  • the inner surface of the flow path of the second inlet hole 22A, which is not subjected to a special hydrophilic treatment is hydrophobic.
  • the inner surface of the channel in a certain area from the opening of the inlet hole 22A of No. 2 becomes a hydrophobized surface 23A.
  • a hydrophobizing treatment may be performed separately.
  • the contact angle of the inner surface of the channel with water is 45 degrees or less.
  • the contact angle of the inner surface of the channel with water is preferably 10 degrees or less.
  • the contact angle of the inner surface of the channel with water is 90 degrees or more.
  • the contact angle of the channel inner surface with water is 100 degrees or more. The contact angle with water on the inner surface of the channel can be measured by the following method.
  • the first inlet hole 20A which serves as an inlet hole for injecting a liquid that does not contain particles to be analyzed, has a first large-diameter portion 10ca in which the flow path diameter increases in a certain area from the opening, and the first large-diameter portion 10ca. It is preferable to have a first diameter-reduced portion 10cc in which the channel diameter is reduced from 10ca.
  • the second inlet hole 22A which serves as an inlet hole for injecting the liquid containing the particles to be analyzed, has a second large diameter portion 10da in which the flow path diameter is enlarged in a certain area from the opening, and the second large diameter portion 10da.
  • the first large-diameter portion 10ca of the first inlet hole 20A as the inlet hole for injecting the liquid not containing the particles to be analyzed consists of a counterbored hole provided at the opening of the first inlet hole 20A. It is preferable that the inner surface of the flow path of the first diameter-reduced portion 10cc, which serves as the bottom surface of the counterbore, is subjected to various hydrophilization treatments as described above.
  • the through holes 10a and 10b of the plate 10 are cylindrical with a uniform diameter.
  • the through hole 10 a is the opening of the second exit hole 22 B and opens on the upper surface of the particle analysis device 1 .
  • the through-hole 10b is the opening of the first exit hole 20B and opens on the upper surface of the particle analysis device 1 .
  • These plates 2, 4, 6, 8, 10 can be joined with an adhesive. However, it is preferred to bond the plates 2, 4, 6, 8, 10 using vacuum ultraviolet radiation or oxygen plasma irradiation to prevent or reduce unwanted influx of organics into the liquid spaces 20,22.
  • the tip 24 is made of a brittle material
  • at least one of the plates 4 and 6 surrounding the tip 24 is preferably made of the elastic material described above in order to prevent breakage of the tip 24.
  • the plate 6 in which the chip 24 is fitted is preferably made of the elastic material described above so that the liquid in the connection hole 26 of the chip 24 does not leak, and the recess 6h of the plate 6 allows the chip 24 to be tight. It preferably has dimensions (horizontal dimension) suitable for fitting.
  • the depth of the recess 6h is preferably equal to or slightly larger than the height of the tip 24 so that no gap is generated between the lower surface of the tip 24 and the upper surface of the plate 4.
  • the electrodes 28, 30 are made of a material with high electrical conductivity.
  • electrodes 28 and 30 can be formed from silver silver chloride (Ag/AgCl), platinum, and gold.
  • the electrodes 28, 30 may be formed from materials containing any or all of these metals and elastomers.
  • each of the electrodes 28,30 formed on the plate 8 is a flat thin plate sandwiched between the two plates 8,10.
  • each of the electrodes 28, 30 is an annular portion formed around a through hole 8b or 8a (part of the first exit hole 20B or the second exit hole 22B) of the plate 8. 42 and a rectangular extension 44 connected to the annular portion 42 .
  • the width of the extended portion 44 is smaller than the outer diameter of the annular portion 42 .
  • FIG. 6 is an enlarged plan view of the particle analysis apparatus shown in FIG.
  • the annular portion 42 has through holes having substantially the same diameter as the through holes 8a and 8b.
  • the annular portion 42 is formed substantially concentrically with the through-hole 8a or the through-hole 8b of the plate 8, and overlaps substantially concentrically with the through-hole 10a or the through-hole 10b of the plate 10 directly above.
  • the first electrode rod 46 inserted into the first electrode rod insertion hole 32 is brought into contact with the rectangular extension 44 of the first electrode 28, and is inserted into the second electrode rod insertion hole.
  • a second electrode rod 48 inserted into 34 is brought into contact with the rectangular extension 44 of the second electrode 30 .
  • the electrode rods 46, 48 are connected to a DC power source 35 and an ammeter 36 (see FIG. 2).
  • 7 is a sectional view taken along the line VI-VI in FIG. 6.
  • the first exit hole 20B has a through hole 10b above the first electrode 28 and a through hole 8b below the first electrode 28.
  • the through-hole 10b has a larger diameter and thus a larger area than the through-hole 8b.
  • the outer diameter of the annular portion 42 of the first electrode 28 is larger than the diameter of the through hole 10b directly above.
  • the second exit hole 22B has a through hole 10a above the second electrode 30 and a through hole 8a below the second electrode 30.
  • the through-hole 10a has a larger diameter and thus a larger area than the through-hole 8a.
  • the outer diameter of the annular portion 42 of the second electrode 30 is larger than the diameter of the directly above through hole 10a.
  • each electrode overlaps the through hole 10b or the through hole 10a having a larger opening area than the through holes 8b, 8a. Therefore, a large contact area is ensured between the liquid injected into the hole and the electrode, and the reliability of particle analysis can be improved.
  • the second electrode 30 is in contact with the second liquid 38 inside the second exit hole 22B (through holes 10a, 8a) over a large area, and the first electrode 28 is in contact with the second liquid. It contacts with the first liquid 37 inside one outlet hole 20B (through holes 10b, 8b) over a large area.
  • the annular portion 42 Since the outer diameter of the annular portion 42 is larger than the diameter of the through holes 10b and 10a directly above, even if the position of the annular portion 42 deviates slightly from the desired position, the annular portion 42 remains high. It reliably overlaps the small diameter portions 10bb, 10ab. For example, even if the positional accuracy of the annular portion 42 is inaccurate, the annular portion 42 overlaps the small diameter portions 10bb and 10ab with a high degree of certainty. Therefore, in a plurality of particle analysis devices 1, the contact area between the liquid injected into the hole and the electrode is constant, and it is possible to improve the certainty of particle analysis. A more detailed configuration of the electrodes 28, 30 and their periphery will be described below with reference to FIGS. 7 to 9. FIG.
  • FIG. 8 is an enlarged plan view of the particle analysis device similar to FIG. 6, showing liquid leaking from holes in which liquid is stored.
  • FIG. 9 is an enlarged perspective view of a particle analysis device similar to that of FIG. 6 showing liquid leaking from a hole in which the liquid is stored.
  • each of the electrodes 28, 30 is substantially orthogonal to the first exit aperture 20B or the second exit aperture 22B. Since each of the electrodes 28,30 is a flat thin plate, it can be compressed between the two plates 8,10 and deformed as shown. Since the plates 8,10 are made of a softer material than the electrodes 28,30, the plates 8,10 also deform and absorb the thickness of the electrodes 28,30. For example, FIG. 7 shows that the softer plate 8 deforms more than the plate 10 .
  • gaps between the plates 8 , 10 may occur around each of the electrodes 28 , 30 . Further, there is a possibility that the liquid in the first outlet hole 20B or the second outlet hole 22B may leak into such gaps between the plates 8 and 10 .
  • FIGS. 8 and 9 it is assumed that liquid has leaked from the first outlet hole 20B and the second outlet hole 22B, and the leaked liquid is indicated by imaginary lines.
  • the liquid that has been in contact with the upper surface of the annular portion 42 of each electrode may leak into the gap between the plates 8 and 10 around the electrodes 28 and 30 due to the thickness of the electrodes 28 and 30 as liquid leakage L1.
  • the range of liquid leakage L1 corresponds to the gap between the plates 8, 10 around the electrodes 28, 30.
  • the liquid leakage L1 travels from the side surface of the annular portion 42 of the electrodes 28 and 30 to the electrode rod insertion holes 32 and 34 along both side surfaces of the extension portion 44, and then flows into the electrode rod insertion holes 32 and 34 as liquid leakage L2. can appear.
  • the range of liquid leakage L2 is within the range of the electrode insertion holes 32 and 34 surrounded by the walls of the plates 8 and 10 . Since the electrodes 28 and 30 are not interposed between the plates 8 and 10 around most of the electrode rod insertion holes 32 and 34, there is almost no liquid leakage L2 outside the electrode rod insertion holes 32 and 34.
  • the width of the extensions 44 of the electrodes 28 and 30 is smaller than the width of the electrode rod insertion holes 32 and 34, and the ends of the extensions 44 of the electrodes 28 and 30 are the electrode rods. Since it is within the range of the insertion holes 32 and 34, there is almost no liquid leakage L2 outside the electrode rod insertion holes 32 and 34. It can be considered that the plate 10 and the plate 8 are joined in a liquid-tight manner in areas where there are no liquid leaks L1 and L2. In other words, the plate 10 directly above the first electrode 28 and the second electrode 30 is liquid-tight with the plate 8 directly below the first electrode 28 and the second electrode 30 over the entire circumference of the first electrode 28.
  • the plate 10 directly above the first electrode 28 and the second electrode 30 is joined to the plate 8 directly below the first electrode 28 and the second electrode 30 throughout the circumference of the second electrode 30. liquid-tightly bonded. Between the first electrode 28 and the second electrode 30, there is a region where the plate 10 is liquid-tightly joined to the plate 8. As shown in FIG. By configuring in this way, substantial liquid leakage from the first outlet hole 20B and the second outlet hole 22B can be effectively suppressed, and the liquid (for example, the first outlet hole 20B or Short-circuiting between the first electrode 28 and the second electrode 30 due to liquid leaking from the second exit hole 22B can be very effectively suppressed.
  • the particle analysis apparatus 1 of the present embodiment described so far has a flow in a certain region from the opening of an inlet hole (for example, the first inlet hole 20A in the present embodiment) for injecting a liquid that does not contain particles to be analyzed. It is particularly important that at least a portion of the inner surface of the road is made hydrophilic. For this reason, for example, when the inlet hole for injecting the liquid that does not contain the particles to be analyzed is the second inlet hole 22A, the configuration related to the hydrophilization of the first inlet hole 20A described above is the second inlet hole. will be applied to the inlet hole 22A.
  • the inlet hole for injecting the liquid not containing the particles to be analyzed is the second inlet hole 22A
  • at least a part of the inner surface of the channel in a certain area from the opening of the second inlet hole 22A is hydrophilized.
  • the "affinity with water” on the inner surface of the channel in a certain area from the opening of the inlet hole (for example, the first inlet hole 20A) for injecting the liquid not containing the particles to be analyzed Compared to the "affinity with water” on the inner surface of the channel in the region, it is relatively high, so that the particle passing frequency can be improved and measurement can be performed efficiently.
  • at least the first inlet hole 20A of the inner surface of the inlet hole 20A has a first inlet hole 20A whose diameter is reduced from the large diameter portion 10ca.
  • the "affinity with water” on the inner surface of the flow channel of the reduced diameter portion 10cc is the “affinity with water” on the inner surface of the flow channel in a certain area (for example, the large diameter portion 10da) from the opening of the second inlet hole 22A. , the particle passing frequency in the connection hole 26 at the center of the chip 24 can be more effectively improved.
  • the first large-diameter portion 10ca is a countersunk hole provided at the opening of the first inlet hole 20A
  • the first It is preferable that at least the inner surface of the flow path of the diameter-reduced portion 10cc of is hydrophilized.
  • the electrode rod insertion holes 32, 34 have a substantially semicircular contour.
  • the contours of the electrode rod insertion holes 32, 34 are not limited to such shapes.
  • the electrode rod insertion holes 32 and 34 may have, for example, a circular contour as shown in FIG. 10, or a rectangular contour as shown in FIG.
  • the width of the electrode rod insertion holes 32 and 34 may be smaller than the width of the extensions 44 of the electrodes 28, 30, and the electrode rod insertion holes 32, 34 may be located at the ends of the extensions 44. may be within the range of In this case, even if liquid leakage occurs in the gap between the plates 8 and 10 around the electrodes 28 and 30, the gap between the first electrode 28 and the second electrode 30 is sufficiently large and the first electrode rod insertion hole 32 is closed.
  • FIG. 10 is a plan view schematically showing a modification of the first embodiment.
  • FIG. 11 is a plan view schematically showing another modification of the first embodiment.
  • FIG. 12 is a plan view schematically showing still another modification of the first embodiment.
  • the particle analysis device 101 of the second embodiment has a hexagonal prism shape and has six side surfaces 1A, 1B, 1C, 1D, 1E, and 1F. As shown in the plan view of FIG. 15, the particle analysis device 101 has a hexagonal contour with two corners that are substantially square when viewed from above.
  • FIG. 13 is a perspective view schematically showing the second embodiment of the particle analysis device of the present invention.
  • 14 is a side view of the particle analysis device shown in FIG. 13.
  • FIG. 15 is a plan view of the particle analysis device shown in FIG. 13.
  • FIG. 13 is a perspective view schematically showing the second embodiment of the particle analysis device of the present invention.
  • FIG. 15 is a plan view of the particle analysis device shown in FIG. 13.
  • the particle analysis device 101 has an upper liquid space 20, a lower liquid space 22, and a connection hole .
  • the liquid spaces 20 and 22 each extend straight in the horizontal direction.
  • the first liquid space 20 stores a first liquid 37 and the lower liquid space 22 stores a second liquid 38 .
  • FIG. 14 the first liquid 37 stored in the upper liquid space 20 and the second liquid 38 stored in the lower liquid space 22 are indicated by different hatching patterns.
  • a lower liquid space 22 is arranged below the upper liquid space 20 and the liquid spaces 20 , 22 are connected to each other by a connecting hole 26 .
  • the liquid spaces 20, 22 are perpendicular to each other in plan view.
  • the particle analysis device 101 also has a first inlet hole 20A, a first outlet hole 20B, a second inlet hole 22A and a second outlet hole 22B.
  • Each of the first inlet hole 20A, the first outlet hole 20B, the second inlet hole 22A, and the second outlet hole 22B has an opening that opens on the top surface of the particle analysis device 101 .
  • the first inlet hole 20A and the first outlet hole 20B extend vertically from the upper surface of the particle analysis device 101 to the upper liquid space 20, and the first liquid 37 flows through these holes.
  • the first inlet hole 20A, the first outlet hole 20B and the upper liquid space 20 form one reservoir for the first liquid 37.
  • FIG. When supplying the first liquid 37 to the upper liquid space 20 , the first inlet hole 20A is used as an inlet for the first liquid 37 and the first outlet hole 20B is used as an inlet for the first liquid 37 . is used as an outlet for air pushed out of the liquid space 20 of the .
  • the second inlet hole 22A and the second outlet hole 22B extend vertically from the upper surface of the particle analysis device 101 to the liquid space 22 below, and the second liquid 38 flows through these holes.
  • the second inlet hole 22A, the second outlet hole 22B and the lower liquid space 22 form another reservoir for the second liquid 38.
  • FIG. When supplying the second liquid 38 to the lower liquid space 22, the second inlet hole 22A is used as an inlet for the second liquid 38, and the second outlet hole 22B is used by the second liquid 38 to It is used as an outlet for air forced out of the lower liquid space 22 .
  • the particle analysis device 101 has a first electrode 28 and a second electrode 30 .
  • the first electrode 28 applies a potential to the first liquid 37 in the upper liquid space 20 through the first exit hole 20B.
  • the second electrode 30 provides a different potential than the first electrode 28 to the second liquid 38 in the lower liquid space 22 through the second exit hole 22B.
  • the second electrode 30 is the anode and the first electrode 28 is the cathode. Since the liquid spaces 20 and 22 are in communication with each other through the connecting holes 26, current flows through the first liquid 37 and the second liquid 38 inside the liquid spaces 20 and 22.
  • a particle analysis device 101 as shown in FIGS. 13 to 15 is also formed on a chip (nanopore chip) 24 based on the same principle as the particle analysis device 1 (see FIG. 1) of the first embodiment described so far.
  • the characteristics (eg, type, shape, size) of particles 40 passing through connecting holes 26 can be analyzed.
  • the particle analysis device 101 includes stacked hexagonal plates 2, 4, 6, 8, and 10.
  • the plates 2, 4, 6, 8, and 10 in the particle analysis device 101 are components corresponding to the plates 2, 4, 6, 8, and 10 in the particle analysis device 1 (see FIG. 1) of the first embodiment, It can be configured in the same manner as the particle analysis device 1 (see FIG. 1) except that its shape is hexagonal.
  • the shape of the plates 2 , 4 , 6 , 8 , 10 is not limited to a hexagon, and can be changed appropriately according to the shape of the particle analysis device 101 .
  • FIG. 16 is an exploded view of the particle analysis device shown in FIG. 13 as seen obliquely from above.
  • a horizontal groove 4g is formed in the center of the lower surface of the next plate 4.
  • the groove 4g forms a lower liquid space 22.
  • FIG. 4 t of communicating holes which penetrate in the perpendicular direction are formed in the center of 4 g of groove
  • the communication hole 4t communicates the lower liquid space 22 (groove 4g) and the connection hole 26 of the chip 24 with each other.
  • the plate 4 is formed with cylindrical through holes 4a and 4d penetrating in the vertical direction. Through holes 4a and 4d have the same diameter.
  • the through hole 4a communicates with one end of the groove 4g, and the through hole 4d communicates with the other end of the groove 4g.
  • a rectangular parallelepiped concave portion 6h is formed in the center of the lower surface of the next plate 6.
  • the recess 6h accommodates a chip 24 having a connection hole 26.
  • a chip 24 is fitted into the recess 6h.
  • the chip 24 may be removable (replaceable) from the recess 6h, or may be non-removable (non-replaceable).
  • a horizontal groove 6g is formed in the center of the upper surface of the plate 6. As shown in FIG. The groove 6g forms an upper liquid space 20 when the plates 6, 8 are joined.
  • a communication hole 6t is formed in the center of the groove 6g so as to penetrate in the vertical direction. The communication hole 6t allows the upper liquid space 20 (groove 6g) and the connection hole 26 of the chip 24 to communicate with each other.
  • the cross sections of the communication holes 4t, 6t and the connection hole 26 are circular, but they do not have to be circular.
  • the plate 6 is formed with cylindrical through holes 6a and 6d penetrating in the vertical direction.
  • the through holes 6a, 6d have the same diameter as the through holes 4a, 4d.
  • the through-hole 6a communicates with the through-hole 4a of the plate 4 immediately below and one end of the groove 4g, and the through-hole 6d communicates with the through-hole 4d and the other end of the groove 4g.
  • the tip (nanopore tip) 24 is a rectangular parallelepiped, for example, a square plate.
  • a connection hole 26 is formed through the center of the chip 24 in the vertical direction.
  • the tip 24 may be made of an electrically and chemically inert and insulating material such as glass, sapphire, ceramics, resin, elastomer, SiO2 , SiN , or Al2O3 .
  • the chip 24 is made of a material harder than the material of the plates 2, 4, 6, 8, 10, such as glass, sapphire, ceramics, SiO2 , SiN, or Al2O3 , but is made of resin or Tip 24 may be formed from an elastomer.
  • a user can select an appropriate tip 24 according to the application of the particle analysis device 101 .
  • the particle 40 to be analyzed can be varied by providing a plurality of tips 24 with different sizes or shapes of connection holes 26 and selecting the tip 24 to be fitted in the recess.
  • the chip 24 is preferably subjected to a hydrophilic treatment.
  • Hydrophilization includes, for example, irradiating the tip 24 with oxygen plasma or ultraviolet light.
  • the ultraviolet radiation may be applied in the form of laser beams.
  • the next plate 8 is formed with cylindrical through holes 8a, 8b, 8c, and 8d penetrating in the vertical direction.
  • Through holes 8a, 8b, 8c, 8d have the same diameter as through holes 4a, 4d, 6a, 6d.
  • the through hole 8 a communicates with the through hole 6 a of the plate 6 directly below, and the through hole 8 d communicates with the through hole 6 d of the plate 6 .
  • the through hole 8b communicates with one end of the groove 6g of the plate 6, and the through hole 8c communicates with the other end of the groove 6g.
  • Electrodes 28 and 30 are arranged in parallel on the upper surface of the plate 8.
  • the first electrode 28 applies an electric potential to the first liquid 37 in the through hole 8b, and the second electrode 30 in the through hole 8a. A potential is applied to the second liquid 38 of .
  • Through-holes 10a, 10b, 10c, and 10d are formed in the uppermost plate 10 so as to penetrate in the vertical direction.
  • the through holes 10a, 10b, 10c, and 10d respectively communicate with the through holes 8a, 8b, 8c, and 8d of the plate 8 directly below.
  • the through holes 10 c and 10 d of the plate 10 of the uppermost layer may be formed with large-diameter portions in which the diameters of the through holes 10 c and 10 d are enlarged in a certain area from the opening opening on the upper surface of the particle analysis device 101 .
  • the uppermost plate 10 has a first electrode rod insertion hole 32 through which the first electrode 28 below the plate 10 is exposed, and a second electrode rod insertion hole 34 through which the second electrode 30 is exposed. formed.
  • Each of the electrode rod insertion holes 32 and 34 has an opening that opens on the upper surface of the particle analysis device 101, penetrates the plate 10, and extends from the upper surface to the electrode 28 or the electrode 30.
  • Each of the electrode rod insertion holes 32 and 34 has a rectangular contour, but the shape of the contour of the electrode rod insertion hole is not limited to the illustrated example.
  • the first inlet hole 20A is composed of through holes 10c and 8c, passes through the plates 10 and 8, and reaches the groove 6g of the plate 6, that is, one end of the liquid space 20 above.
  • the first exit hole 20B is composed of through holes 10b and 8b, passes through the plates 10 and 8, and reaches the groove 6g of the plate 6, that is, the other end of the liquid space 20 above.
  • a first electrode 28 is provided in the middle of the first outlet hole 20B.
  • the second inlet hole 22A consists of through-holes 10d, 8d, 6d, 4d and passes through the plates 10, 8, 6, 4 to reach the groove 4g in the plate 4, i.e. one end of the liquid space 22 below. do.
  • the second exit hole 22B is composed of through-holes 10a, 8a, 6a, 4a and passes through the plates 10, 8, 6, 4 and into the groove 4g of the plate 4, i.e. the other end of the liquid space 22 below. reach.
  • a second electrode 30 is provided in the middle of the second inlet hole 22A.
  • the through hole 10c of the uppermost plate 10 may have a large diameter portion 10ca at the top and a small diameter portion 10cb at the bottom. Both the large-diameter portion 10ca and the small-diameter portion 10cb are cylindrical, but the diameter of the large-diameter portion 10ca is larger than that of the small-diameter portion 10cb. The diameter of the small diameter portion 10cb is equal to the diameter of the through hole 8c directly below the through hole 10c.
  • the large-diameter portion 10ca is the opening of the first inlet hole 20A and opens on the upper surface of the particle analysis device 101. As shown in FIG.
  • a through hole 10d of the plate 10 has a large diameter portion 10da at the top and a small diameter portion 10db at the bottom. Both the large diameter portion 10da and the small diameter portion 10db are cylindrical, but the diameter of the large diameter portion 10da is larger than the diameter of the small diameter portion 10db. The diameter of the small diameter portion 10db is equal to the diameter of the through hole 8d directly below the through hole 10d.
  • the large-diameter portion 10 da is the opening of the second inlet hole 22 A and opens on the upper surface of the particle analysis device 101 .
  • the through hole 10c of the uppermost plate 10 serves as the opening of the first inlet hole 20A that opens on the upper surface of the particle analysis device 101, as described above. Also in the particle analysis apparatus 101 of the present embodiment, at least a part of the inner surface of the channel in a certain area from the opening of the first inlet hole 20A, which is the inlet hole for injecting the liquid not containing the particles to be analyzed, is hydrophilized. there is By configuring in this way, the frequency of particles passing through the connection hole 26 in the center of the chip 24 can be increased, and measurement can be performed efficiently.
  • the inner surface of the flow channel in a certain area from the opening of the first inlet hole 20A is subjected to hydrophilic treatment.
  • Hydrophilization treatment can include the same methods as those described above.
  • the hydrophilized inner surface of the first inlet hole 20A is preferably higher in hydrophilicity than the inner surface of the passage in a certain area from the opening of the second inlet hole 22A. That is, it is preferable that the inner surface of the flow path in a certain area from the opening of the second inlet hole 22A is not subjected to the hydrophilization treatment as in the case of the first inlet hole 20A.
  • the configuration of the flow path extending from the second inlet hole 22A the configuration similar to that of the particle analysis apparatus 1 (see FIG. 1 and the like) of the first embodiment described above can be adopted.
  • the first inlet hole 20A which is an inlet hole for injecting a liquid that does not contain particles to be analyzed, has a first large-diameter portion 10ca in which the flow path diameter increases in a certain area from the opening. It is preferable that at least the inner surface of the channel at a portion where the channel diameter is reduced from the diameter portion 10ca is made hydrophilic.
  • the first inlet hole 20A includes a first large-diameter portion 10ca having a channel diameter enlarged from the opening and a first reduced-diameter portion 10cc having a channel diameter reduced from the first large-diameter portion 10ca. It is preferable that at least the surface of the first reduced diameter portion 10cc of the first inlet hole 20A is made hydrophilic.
  • the second inlet hole 22A which serves as an inlet hole for injecting the liquid containing the particles to be analyzed, has a second large diameter portion 10da in which the flow path diameter is enlarged in a certain area from the opening, and the second large diameter portion 10da. It may also have a second diameter-reduced portion 10dc in which the channel diameter is reduced from that of the portion 10da.
  • the surface of the second reduced diameter portion 10dc is less hydrophilic than the surface of the first reduced diameter portion 10cc, for example, preferably hydrophobic.
  • the through-hole 10a of the plate 10 of the uppermost layer has a large-diameter portion 10aa in the upper portion and a small-diameter portion 10ab in the lower portion.
  • Both the large diameter portion 10aa and the small diameter portion 10ab are cylindrical, but the diameter of the large diameter portion 10aa is larger than the diameter of the small diameter portion 10ab.
  • the diameter of the small diameter portion 10ab is larger than the diameter of the through hole 8a directly below the through hole 10a.
  • the large-diameter portion 10aa is the opening of the second exit hole 22B and opens on the upper surface of the particle analysis device 101. As shown in FIG.
  • the through hole 10b of the plate 10 has a large diameter portion 10ba at the top and a small diameter portion 10bb at the bottom. Both the large-diameter portion 10ba and the small-diameter portion 10bb are cylindrical, but the diameter of the large-diameter portion 10ba is larger than that of the small-diameter portion 10bb. The diameter of the small diameter portion 10bb is larger than the diameter of the through hole 8b directly below the through hole 10b.
  • the large-diameter portion 10ba is the opening of the first exit hole 20B and opens on the upper surface of the particle analysis device 101. As shown in FIG.
  • the through holes 10a and 10b of the plate 10 are cylindrical with a uniform diameter.
  • the through-hole 10a is the opening of the second exit hole 22B and opens on the upper surface of the particle analysis device 101.
  • the through-hole 10b is the opening of the first exit hole 20B and opens on the upper surface of the particle analysis device 101 .
  • each of the electrodes 28,30 formed on the plate 8 is a flat thin plate sandwiched between the two plates 8,10.
  • each of the electrodes 28 and 30 is an annular portion formed around a through hole 8b or 8a (part of the first exit hole 20B or the second exit hole 22B) of the plate 8. 42 and a rectangular extension 44 connected to the annular portion 42 .
  • the width of the extended portion 44 is smaller than the outer diameter of the annular portion 42 .
  • FIG. 17 is an enlarged plan view of the particle analysis device shown in FIG.
  • the annular portion 42 has through holes having substantially the same diameter as the through holes 8a and 8b.
  • the annular portion 42 is formed substantially concentrically with the through-hole 8a or the through-hole 8b of the plate 8, and overlaps substantially concentrically with the through-hole 10a or the through-hole 10b of the plate 10 directly above.
  • the first electrode rod 46 inserted into the first electrode rod insertion hole 32 is brought into contact with the rectangular extension 44 of the first electrode 28, and is pushed into the second electrode rod insertion hole.
  • a second electrode rod 48 inserted into 34 is brought into contact with the rectangular extension 44 of the second electrode 30 .
  • the electrode rods 46, 48 are connected to a DC power source 35 and an ammeter 36 (see FIG. 2).
  • 18 is a cross-sectional view taken along line VII-VII of FIG. 17.
  • FIG. 1 is a cross-sectional view taken along line VII-VII of FIG. 17.
  • the first exit hole 20B has a through hole 10b above the first electrode 28 and a through hole 8b below the first electrode 28.
  • the small-diameter portion 10bb of the through-hole 10b has a larger diameter and thus an area larger than that of the through-hole 8b.
  • the outer diameter of the annular portion 42 of the first electrode 28 is larger than the diameter of the small-diameter portion 10bb of the through-hole 10b immediately above.
  • the second exit hole 22B has a through hole 10a above the second electrode 30 and a through hole 8a below the second electrode 30.
  • the small-diameter portion 10ab of the through-hole 10a has a larger diameter and thus an area larger than that of the through-hole 8a.
  • the outer diameter of the annular portion 42 of the second electrode 30 is larger than the diameter of the small-diameter portion 10ab of the directly above through hole 10a.
  • each electrode overlaps the through-hole 10b or 10a having a larger opening area than the through-holes 8b, 8a. Therefore, a large contact area is ensured between the liquid injected into the hole and the electrodes 28 and 30, and the reliability of particle analysis can be improved.
  • the second electrode 30 is in contact with the second liquid 38 inside the second exit holes 22B (through holes 10a and 8a) over a large area
  • the first electrode 28 is in contact with the second liquid. It contacts with the first liquid 37 inside one outlet hole 20B (through holes 10b, 8b) over a large area.
  • the ring portion 42 Since the outer diameter of the ring portion 42 is larger than the diameter of the small diameter portions 10bb and 10ab immediately above, the ring portion 42 is high even if the position of the ring portion 42 deviates slightly from the desired position. It reliably overlaps the small diameter portions 10bb, 10ab. Therefore, in a plurality of particle analysis devices 101, the contact area between the liquid injected into the hole and the electrode is constant, and the reliability of particle analysis can be improved.
  • the particle analysis device 101 further has a first lid 50 and a second lid 52 .
  • the first lid 50 is arranged on the large-diameter portion 10ba as the opening of the first outlet hole 20B to close it.
  • the second lid 52 is arranged on the large-diameter portion 10aa as the opening of the second outlet hole 22B to close it.
  • the lids 50, 52 are formed from an air permeable but liquid impermeable membrane. Therefore, "obstructing" means blocking the flow of liquid through the pores but allowing the passage of air.
  • the lids 50, 52 have areas larger than the large diameter portions 10ba, 10aa as the openings, and cover the entire large diameter portions 10ba, 10aa (that is, the openings), respectively.
  • lids 50 and 52 are shown in phantom lines. By having such lids 50 and 52, the amount of liquid in the first outlet hole 20B and the second outlet hole 22B can be made constant.
  • a membrane that allows air to pass through but does not allow liquid to pass through is a porous membrane made of a hydrophobic resin.
  • hydrophobic resins include PTFE (polytetrafluoroethylene) and PFA (perfluoroalkoxyalkane).
  • the diameter of the pores of the porous membrane is preferably in the range of 0.1 ⁇ m to 10 ⁇ m. If the pore diameter is less than 0.1 ⁇ m, air circulation is hindered. If the pore diameter is greater than 10 ⁇ m, liquid may permeate the membrane at high pressures.
  • the lids 50 and 52 are adhered to the upper surface of the plate 10 with a ring-shaped double-sided adhesive tape 53, particularly around the large diameter portions 10ba and 10aa as openings. Double-sided adhesive tape 53 facilitates deployment of lids 50 , 52 to particle analyzer 101 .
  • the first liquid 37 can be supplied to the upper liquid space 20 through the first inlet hole 20A.
  • a syringe or pipette can be used to supply the liquid.
  • the air in the upper liquid space 20 is exhausted through the first outlet holes 20B, and the first liquid 37 enters the upper liquid space 20 through the first inlet holes 20A.
  • the large diameter portion 10ba of the first outlet hole 20B is provided with a first lid 50 formed of an air permeable but liquid impermeable membrane. Therefore, even if the energy that introduces the first liquid 37 into the upper liquid space 20 is too strong, the first liquid 37 is blocked by the first lid 50 and does not scatter to the outside. Since the first lid 50 allows the passage of air, it does not prevent the first liquid 37 from entering the upper liquid space 20 through the first inlet hole 20A.
  • a second liquid 38 can be supplied to the lower liquid space 22 through the second inlet hole 22A.
  • a syringe or pipette can be used to supply the liquid.
  • the second liquid 38 When the second liquid 38 is supplied, the air in the lower liquid space 22 is expelled through the second outlet holes 22B, and the second liquid 38 enters the lower liquid space 22 through the second inlet holes 22A.
  • the large diameter portion 10aa of the second outlet hole 22B is provided with a second lid 52 formed of an air permeable but liquid impermeable membrane. Therefore, even if the energy for introducing the second liquid 38 into the lower liquid space 22 is too strong, the second liquid 38 is blocked by the second lid 52 and does not scatter to the outside. Since the second lid 52 allows air to pass through, it does not prevent the second liquid 38 from entering the lower liquid space 22 through the second inlet hole 22A.
  • the liquid contains viruses or bacteria, it is possible to prevent such liquid from being ejected from the particle analysis device 101. In addition, it is possible to prevent the first liquid and the second liquid that have leaked to the upper surface of the particle analysis device 101 from coming into contact with each other and lowering the accuracy of particle analysis.
  • S-NTF8031J (trade name) of the “TEMISH (registered trademark)” series, which is a PTFE porous membrane manufactured by Nitto Denko, can be used.
  • S-NTF8031J is a product provided with double-sided adhesive tape 53 .
  • Plate 10 can be formed from VMQ (silicone rubber) containing PDMS.
  • a particle analysis device of the third embodiment is a particle analysis device 201 as shown in FIG.
  • FIG. 19 is a perspective view schematically showing a third embodiment of the particle analysis device of the invention.
  • 20 is an exploded view of the particle analysis device shown in FIG. 19.
  • FIG. 21 is a cross-sectional view of part of the particle analysis device shown in FIG. 19.
  • FIG. 19 is a perspective view schematically showing a third embodiment of the particle analysis device of the invention.
  • the particle analysis device 201 shown in FIG. It has plates 12 that are joined together.
  • the lids 50, 52 are thus sandwiched between the plates 10 and 12 which are joined together and are firmly fixed to the device. That is, the separation of the lids 50,52 from the device is reduced when the lids 50,52 are subjected to the pressure and energy of the liquid introduced into the device.
  • the plate 12 has the same shape and size as the plate 10, and has through holes 12a, 12b, 12c, 12d, 12e, and 12f.
  • the through hole 12a is concentrically aligned with the through hole 10a of the plate 10 and the second lid 52.
  • the through hole 12a constitutes the second outlet hole 22B together with the through holes 10a, 8a, 6a and 4a.
  • air in the lower liquid space 22 is expelled through the second outlet holes 22B.
  • the through hole 12 a is the opening of the second exit hole 22 B and opens on the upper surface of the particle analysis device 201 . Since the through hole 12a has a smaller diameter than the diameter of the second lid 52, the second lid 52 is supported by the plate 12 in surface contact.
  • the through hole 12b is concentrically aligned with the through hole 10b of the plate 10 and the first lid 50.
  • the through hole 12b constitutes the first outlet hole 20B together with the through holes 10b and 8b.
  • the through-hole 12b is the opening of the first exit hole 20B and opens on the upper surface of the particle analysis device 201 . Since the through hole 12b has a smaller diameter than the diameter of the first lid 50, the first lid 50 is supported by the plate 12 in surface contact.
  • the through holes 12c, 12d have the same shape and size as the through holes 10c, 10d of the plate 10, and are aligned concentrically with the through holes 10c, 10d, respectively.
  • the through hole 12c constitutes the first inlet hole 20A together with the through holes 10c and 8c.
  • the through-hole 12c is the opening of the first inlet hole 20A and opens on the upper surface of the particle analysis device 201 .
  • the through hole 12d constitutes the second inlet hole 22A together with the through holes 10d, 8d, 6d and 4d.
  • the through hole 12 d is the opening of the second inlet hole 22 A and opens on the upper surface of the particle analysis device 201 .
  • the through holes 12e, 12f have the same shape and size as the electrode rod insertion holes 34, 32 of the plate 10, and are aligned with the electrode rod insertion holes 34, 32, respectively. Therefore, the first electrode rod 46 inserted into the through hole 12f and the first electrode rod insertion hole 32 is brought into contact with the rectangular extension 44 of the first electrode 28, and the through hole 12e and the second electrode are brought into contact with each other. A second electrode rod 48 inserted into the rod insertion hole 34 is brought into contact with the rectangular extension 44 of the second electrode 30 .
  • the plate 12 can be joined to the plate 10 with an adhesive. However, it is preferred to bond plate 12 to plate 10 using vacuum ultraviolet radiation or oxygen plasma irradiation to prevent or reduce undesirable incorporation of organics into liquids 37,38.
  • the plates 10 and 12 are manufactured from silicone rubber or urethane rubber containing PDMS, and the lids 50 and 52 are attached to the plate 10 with double-sided adhesive tape 53. Then, the plate 12 is exposed to vacuum ultraviolet rays or oxygen plasma irradiation. can be bonded to the plate 10 .
  • the particle analysis device of the fourth embodiment is a particle analysis device as shown in FIG.
  • FIG. 22 is a partial cross-sectional view of the fourth embodiment of the particle analysis device of the present invention.
  • lids 50 and 52 are adhered to plate 10 with double-sided adhesive tape 53 in particle analysis device 201 of the third embodiment.
  • the double-sided adhesive tape 53 is not used and the lids 50, 52 are in direct contact with the plate 10.
  • FIG. Even if the double-sided adhesive tape 53 is not used, the lids 50, 52 are sandwiched between the plates 10 and 12 which are joined together and are firmly fixed to the device. Thus, separation of the lids 50, 52 from the device is reduced when the lids 50, 52 are subjected to the pressure and energy of the liquid introduced into the device.
  • the double-sided adhesive tape 53 since the double-sided adhesive tape 53 is not used, it is possible to prevent undesirable contamination of the liquids 37 and 38 with organic matter and reduce the problem.
  • S-NTF8031 (trade name) manufactured by Nitto Denko Corporation can be used.
  • S-NTF8031 is the same as “S-NTF803J” above except that the double-sided adhesive tape 53 is not provided.
  • the particle analysis device shown in FIG. 22 is manufactured by a method comprising providing a plurality of plates 2, 4, 6, 8, 10, 12 and joining the plates 2, 4, 6, 8, 10, 12. can do.
  • they can be joined using vacuum ultraviolet rays or oxygen plasma irradiation.
  • FIG. 23 is a schematic diagram for explaining the steps of manufacturing the particle analysis device of the fourth embodiment.
  • a mold 70 for molding the plate 12 is prepared.
  • the mold 70 has an upper mold 70A and a lower mold 70B.
  • the upper mold 70A is a flat plate and the lower mold 70B has a cavity 72 that forms the plate 12.
  • columns 74a, 74b, 74c, 74d, 74e, and 74f are arranged for forming the through holes 12a, 12b, 12c, 12d, 12e, and 12f, respectively.
  • Lids 50 and 52 are arranged in the cavity 72 of the lower mold 70B. Lids 50 and 52 are placed on posts 74b and 74a, respectively.
  • the upper mold 70A is placed on the lower mold 70B.
  • the material of the plate 12 is then placed in the cavity 72 by injection molding or press molding.
  • the plate 12 is completed, and the plate 12 and the first lid 50 and the second lid 52 can be integrally joined.
  • the lids 50, 52 are sandwiched between the plates 10 and 12 and are firmly fixed to the device.
  • the first lid 50 and the second lid 52 are easily joined to the plate 12, and the particle analysis device can be manufactured easily.
  • the lids 50, 52 are integrally joined to the plate 12 so that they are securely attached to the device.
  • one plate corresponding to the plates 10 and 12 may be molded with a mold and the lids 50 and 52 may be embedded in the plate at the same time.
  • FIG. 24 is a schematic diagram for explaining another process for manufacturing a particle analysis device.
  • FIG. 24 shows the process of manufacturing one plate corresponding to the plates 10 and 12.
  • FIG. 24 shows the process of manufacturing one plate corresponding to the plates 10 and 12.
  • a mold 80 for molding the plate is prepared.
  • the mold 80 has an upper mold 80A and a lower mold 70B.
  • the lower mold 70B is the same as the lower mold 70B of the fourth embodiment.
  • the upper mold 80A has a cavity 82 forming a portion corresponding to the plate 10. Inside the cavity 82, pillars 84a, 84b, 84c, 84d, 84e and 84f are arranged for forming the through holes 10a, 10b, 12c and 12d and the electrode rod insertion holes 34 and 32, respectively.
  • Lids 50 and 52 are arranged in the cavity 72 of the lower mold 70B. Lids 50 and 52 are placed on posts 74b and 74a, respectively.
  • the upper mold 80A is placed on the lower mold 70B.
  • the plate material is then placed in the cavity formed by the combination of cavities 82, 72 by injection molding or press molding.
  • one plate corresponding to the plates 10 and 12 is completed, and the first lid 50 and the second lid 52 are integrally embedded in the plate.
  • the first lid 50 and the second lid 52 are easily joined to the plate, and the particle analysis device can be easily manufactured.
  • the lids 50, 52 are integrally joined to the plates and are thus securely attached to the device.
  • the sealing between plates of the particle analysis device may be improved by using a compression mechanism (eg, clamping mechanism, screw, pinch) that always compresses the particle analysis device in the vertical direction.
  • a compression mechanism eg, clamping mechanism, screw, pinch
  • the number of plates that the particle analysis device has is not limited to the above embodiment.
  • the upper liquid space 20 is formed by a groove 6g formed in a single plate 6, but the upper liquid space 20 may be formed in multiple plates (e.g. plates 6, 8). good.
  • the lower liquid space 22 is formed by a groove 4g formed in a single plate 4, but the lower liquid space 22 may be formed in multiple plates (e.g. plates 4, 2). good.
  • the chip 24 with the connection holes 26 is arranged inside a single plate 6, the chip 24 may be arranged inside multiple plates (eg plates 6, 4).
  • the extensions 44 of the electrodes 28, 30 are rectangular with a uniform width.
  • the extension 44 may have a wide portion and a narrow portion, or the width of the extension 44 may gradually decrease or increase toward the side surface 1A.
  • Example 1 In Example 1, a particle analysis device 101 having an upper liquid space 20, a lower liquid space 22, and a connecting hole 26 as shown in FIGS. 13 to 15 was produced.
  • the through holes 10c and 10d of the uppermost plate 10 constituting the particle analysis device 101 are counter-bored to form the opening of the first inlet hole 20A and the opening of the second inlet hole 22A.
  • Large diameter portions 10ca and 10da having a depth of 1 mm and a diameter of 4 mm were formed in the portion.
  • vacuum ultraviolet rays having a wavelength of 172 nm are irradiated for 1 minute to the reduced diameter portion 10cc in which the flow path diameter is reduced from the large diameter portion 10ca which is subjected to the counterbore processing of the opening of the first inlet hole 20A.
  • Hydrophilization treatment was applied to the surface of the reduced-diameter portion 10cc (that is, the inner surface of the flow path) where the flow path diameter is reduced from the large-diameter portion 10ca of the inlet hole 20A.
  • Other portions of the first inlet hole 20A and the second inlet hole 22A were not subjected to the above-described special hydrophilization treatment, and their flow path surfaces were made hydrophobic.
  • the surface of the diameter-reduced portion 10cc of the first inlet hole 20A that has been subjected to the hydrophilic treatment and the surface of the diameter-reduced portion 10dc of the second inlet hole 22A that has not been subjected to the hydrophilic treatment are each subjected to the following method:
  • the contact angle with water was measured. First, five test pieces having the same surface condition as each surface to be measured were produced. Then, 1 ⁇ L of ultrapure water was dropped onto three points on the surface of each test piece, and the contact angle was measured when the drops of the dropped ultrapure water stood still. The contact angles were measured on 5 test pieces at 3 points each for a total of 15 points, and the average value of the 15 contact angles was taken as the contact angle with water on each surface.
  • the surface of the diameter-reduced portion 10cc of the first inlet hole 20A that was subjected to the hydrophilic treatment had a contact angle with water of 6 degrees.
  • the surface of the diameter-reduced portion 10dc of the second inlet hole 22A, which was not subjected to the hydrophilic treatment had a contact angle with water of 119 degrees.
  • lids 50 and 52 made of a film that allows air to pass through but impermeable to liquid are arranged at the opening of the first outlet hole 20B and the opening of the second outlet hole 22B, respectively.
  • "S-NTF8031J (trade name)” of the “TEMISH (registered trademark)” series which is a PTFE porous membrane manufactured by Nitto Denko Corporation, was used.
  • “S-NTF8031J (trade name)” is a product provided with double-sided adhesive tape 53 .
  • Plate 10 was formed from VMQ (silicone rubber) containing PDMS.
  • the diameter of the lids 50 and 52 (the outer diameter of the double-sided adhesive tape 53) was set to 5.6 mm, and the inner diameter of the ring-shaped double-sided adhesive tape 53 was set to 3 mm.
  • particle passage frequency the frequency of particles passing through the connection hole in the center of the chip.
  • particle passage frequency the frequency of particles passing through the connection hole in the center of the chip.
  • a suspension was injected.
  • As the particle suspension a suspension obtained by dispersing 1% by mass of carboxy group-modified polystyrene particles having a particle size of 2 ⁇ m in 1 ⁇ PBS was used.
  • a voltage of 0.1 V was applied to electrodes provided in the particle analyzer to measure the particle passage frequency.
  • the particle passage frequency was measured three times in each of the particle analyzers of Example 1 and Comparative Example 1.
  • the particle analysis apparatus of Example 1 had an average value of about 3.5 particles/s in the measurement of the particle passage frequency.
  • the particle analysis apparatus of Comparative Example 1 had an average value of approximately 0.06 particles/s in the measurement of the particle passage frequency.
  • the particle analysis apparatus of Example 1 in which the inner surface of the flow channel in a certain area from the opening of the first inlet hole serving as the inlet hole for injecting the liquid not containing the particles to be analyzed, is made hydrophilic, Compared to the particle analysis apparatus of Comparative Example 1 in which the inner surface of the flow path is not hydrophilized, it was found that the particle passage frequency was high and the measurement could be performed efficiently.
  • the particle analysis device of the present invention can be used to analyze particles contained in liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Provided is a particle analysis device capable of improving particle passage frequency and thereby efficiently performing measurement. The particle analysis device capable comprises: an upper liquid space (20) for retaining a first liquid; a lower liquid space (22) for retaining a second liquid; a connecting hole (26) for connecting these liquid spaces; a first input hole (20A) for feeding the first liquid to the upper liquid space (20); a first discharge hole (20B) through which air is discharged from the upper liquid space (20); a second input hole (22A) for feeding the second liquid to the lower liquid space (22); a second discharge hole (22B) through which air is discharged from the lower liquid space (22); a first electrode (28) for imparting an electric potential to the first liquid inside the upper liquid space (20); and a second electrode (30) for imparting an electric potential to the second liquid inside the lower liquid space (22). The inner surface of a flow path in a certain region from an opening of the first input hole (20A) is hydrophilized.

Description

粒子解析装置Particle analyzer
 本発明は、液体に含有された粒子を解析するための粒子解析装置に関する。 The present invention relates to a particle analysis device for analyzing particles contained in liquid.
 エクソソーム、花粉、ウイルス、細菌、DNA等の一粒子を検出解析するために、ナノポアを用いた検出方法が提案されている(例えば、特許文献1参照)。また、上述したような検出方法を利用した粒子解析装置は、2つの空間を接続する孔を有しており、一方の空間には液体が貯留され、他方の空間には解析されるべき粒子を含有する液体が貯留される。これらの空間には異なる電位が与えられ、電気泳動によって、粒子が孔を通過する。粒子が孔を通過する時、液体を流れる電流値が変化する。この際の電流値の変化を観察することにより、孔を通過した粒子の特徴(例えば、種類、形状、サイズ等)が解析される。これらの解析を実現する種々の装置や解析方法が提案されている(例えば、特許文献2参照)。 A detection method using nanopores has been proposed to detect and analyze single particles such as exosomes, pollen, viruses, bacteria, and DNA (see, for example, Patent Document 1). In addition, a particle analysis apparatus using the detection method as described above has a hole connecting two spaces, one of which contains liquid, and the other of which contains particles to be analyzed. The contained liquid is pooled. Different potentials are applied to these spaces, and particles pass through the pores by electrophoresis. As the particles pass through the pores, the current through the liquid changes. By observing changes in the current value at this time, the characteristics (for example, type, shape, size, etc.) of the particles that have passed through the holes can be analyzed. Various apparatuses and analysis methods for realizing these analyzes have been proposed (see Patent Document 2, for example).
特開2014-174022号公報JP 2014-174022 A 特許第5866652号Patent No. 5866652
 例えば、特許文献2に開示された粒子解析装置は、2つの空間に貯留される2種の液体のために2つの入口孔と2つの出口孔を有する。このような粒子解析装置において、粒子は電気泳動によってポアを通過するが、特に粒径が1μm以上の粒子や粒子表面が帯電していない粒子の場合は、電気泳動のみでは十分な駆動力が得られないことがあった。そして、十分な駆動力が得られない場合には、1秒あたりに孔を通過する粒子数(別言すれば、粒子頻度)が低下してしまうという問題があった。このため、粒径が1μm以上の大きな粒子や表面状態が電気的に中性な粒子であっても、電気泳動以外の駆動力を利用して粒子が孔を通過する頻度を向上させ、効率的に計測を行う粒子解析装置の開発が望まれていた。以下、「粒子が孔を通過する頻度」のことを「粒子通過頻度」ということがある。 For example, the particle analysis device disclosed in Patent Document 2 has two inlet holes and two outlet holes for two types of liquids stored in two spaces. In such a particle analysis apparatus, particles pass through the pores by electrophoresis, but in the case of particles with a particle size of 1 μm or more and particles whose surfaces are not charged, sufficient driving force can be obtained only by electrophoresis. There was something I couldn't do. In addition, when a sufficient driving force cannot be obtained, there is a problem that the number of particles passing through the holes per second (in other words, particle frequency) decreases. For this reason, even for large particles with a particle size of 1 μm or more and particles with an electrically neutral surface, the frequency of the particles passing through the pores can be increased by using a driving force other than electrophoresis, and efficient The development of a particle analyzer that can measure the Hereinafter, "the frequency at which particles pass through holes" may be referred to as "particle passage frequency".
 上記の課題に鑑み、本発明によれば、粒子通過頻度を向上させ、効率的に計測を行う粒子解析装置が提供される。 In view of the above problems, the present invention provides a particle analysis device that improves the particle passage frequency and performs measurements efficiently.
 上述の課題を解決するため、本発明は、以下の粒子解析装置を提供する。 In order to solve the above problems, the present invention provides the following particle analysis device.
[1] 第1の液体が貯留される上方の液体空間と、
 前記上方の液体空間の下方に配置され、第2の液体が貯留される下方の液体空間と、
 前記上方の液体空間と前記下方の液体空間とを接続する接続孔と、
 粒子解析装置の上面で開口する開口部を有し、前記上面から前記上方の液体空間に延び、前記第1の液体を前記上方の液体空間に供給するための第1の入口孔と、
 前記上面で開口する開口部を有し、前記上面から前記上方の液体空間に延び、空気が前記上方の液体空間から排出される第1の出口孔と、
 前記上面で開口する開口部を有し、前記上面から前記下方の液体空間に延び、前記第2の液体を前記下方の液体空間に供給するための第2の入口孔と、
 前記上面で開口する開口部を有し、前記上面から前記下方の液体空間に延び、空気が前記下方の液体空間から排出される第2の出口孔と、
 前記上方の液体空間内の前記第1の液体に電位を与える第1の電極と、
 前記下方の液体空間内の前記第2の液体に電位を与える第2の電極と、を備え、
 前記第1の入口孔又は前記第2の入口孔のうちの一方が、解析する粒子を含む液体を注入する入口孔であり、且つ、前記第1の入口孔又は前記第2の入口孔のうちのもう一方が、解析する粒子を含まない液体を注入する入口孔であり、当該解析する粒子を含まない液体を注入する入口孔の前記開口部から一定領域における流路内面の少なくとも一部が親水化されている、粒子解析装置。
[1] an upper liquid space in which the first liquid is stored;
a lower liquid space disposed below the upper liquid space and storing a second liquid;
a connection hole connecting the upper liquid space and the lower liquid space;
a first inlet hole having an opening open at a top surface of the particle analysis device and extending from the top surface to the upper liquid space for supplying the first liquid to the upper liquid space;
a first outlet hole having an opening open at the top surface and extending from the top surface to the upper liquid space through which air is expelled from the upper liquid space;
a second inlet hole having an opening open at the top surface and extending from the top surface to the lower liquid space for supplying the second liquid to the lower liquid space;
a second outlet hole having an opening open at the top surface and extending from the top surface to the lower liquid space through which air is expelled from the lower liquid space;
a first electrode applying an electrical potential to the first liquid in the upper liquid space;
a second electrode applying an electrical potential to the second liquid in the lower liquid space;
one of the first inlet hole or the second inlet hole is an inlet hole for injecting a liquid containing particles to be analyzed, and one of the first inlet hole or the second inlet hole The other is an inlet hole for injecting a liquid that does not contain the particles to be analyzed, and at least a part of the inner surface of the channel in a certain area from the opening of the inlet hole for injecting the liquid that does not contain the particles to be analyzed is hydrophilic. particle analyzer.
[2] 前記解析する粒子を含まない液体を注入する入口孔の親水化された前記流路内面は、前記解析する粒子を含む液体を注入する入口孔の前記開口部から一定領域の流路内面よりも親水性が高い、前記[1]に記載の粒子解析装置。 [2] The hydrophilized inner surface of the flow path of the inlet hole for injecting the liquid not containing the particles to be analyzed is the inner surface of the flow path in a certain area from the opening of the inlet hole for injecting the liquid containing the particles to be analyzed. The particle analysis device according to [1] above, which has higher hydrophilicity than the above.
[3] 前記解析する粒子を含まない液体を注入する入口孔は、前記開口部から一定領域において流路径が拡径した第1の大径部分と前記第1の大径部分から流路径が縮径する第1の縮径部とを有し、
 前記解析する粒子を含む液体を注入する入口孔は、前記開口部から一定領域において流路径が拡径した第2の大径部分と前記第2の大径部分から流路径が縮径する第2の縮径部とを有し、
 前記解析する粒子を含まない液体を注入する入口孔の前記第1の縮径部の流路内面が少なくとも親水化されている、前記[1]又は[2]に記載の粒子解析装置。
[3] The inlet hole for injecting the liquid not containing the particles to be analyzed has a first large-diameter portion in which the channel diameter increases in a certain area from the opening, and the channel diameter decreases from the first large-diameter portion. a first reduced diameter portion with a diameter;
The inlet hole for injecting the liquid containing the particles to be analyzed has a second large-diameter portion in which the channel diameter increases in a certain area from the opening, and a second large-diameter portion in which the channel diameter decreases from the second large-diameter portion. and a reduced diameter portion of
The particle analysis device according to the above [1] or [2], wherein at least the inner surface of the channel of the first diameter-reduced portion of the inlet hole for injecting the liquid that does not contain the particles to be analyzed is hydrophilized.
[4] 前記解析する粒子を含む液体を注入する入口孔の前記第1の大径部分が、当該入口孔の前記開口部に設けられた座繰り穴からなり、前記座繰り穴の底面となる前記第1の縮径部の流路内面が親水化されている、前記[3]に記載の粒子解析装置。 [4] The first large-diameter portion of the inlet hole for injecting the liquid containing the particles to be analyzed consists of a countersunk hole provided in the opening of the inlet hole, and serves as the bottom surface of the countersunk hole. The particle analysis device according to [3], wherein the inner surface of the flow channel of the first diameter-reduced portion is hydrophilized.
[5] 前記第1の出口孔の前記開口部に配置され、空気を通すが液体を通さない膜から形成された第1の蓋と、
 前記第2の出口孔の前記開口部に配置され、空気を通すが液体を通さない膜から形成された第2の蓋と、更に備える、前記[1]~[4]のいずれかに記載の粒子解析装置。
[5] a first lid positioned over said opening of said first outlet aperture and formed from an air permeable, liquid impermeable membrane;
The second lid according to any one of the above [1] to [4], further comprising a second lid disposed at the opening of the second outlet hole and formed of an air-permeable but liquid-impermeable membrane. Particle analyzer.
[6] 前記第1の蓋及び前記第2の蓋は、疎水性樹脂製の多孔質膜からなる、前記[5]に記載の粒子解析装置。 [6] The particle analysis device according to [5], wherein the first lid and the second lid are made of a hydrophobic resin porous membrane.
[7] 積層されて接合された複数の板を備え、
 前記第1の蓋及び前記第2の蓋は、前記板の1つに両面テープによって固定されている、前記[5]又は[6]に記載の粒子解析装置。
[7] comprising a plurality of laminated and joined plates,
The particle analysis device according to [5] or [6], wherein the first lid and the second lid are fixed to one of the plates with double-sided tape.
[8] 積層されて接合された複数の板を備え、
 前記第1の蓋及び前記第2の蓋は、前記板の2つの間に挟まれている、前記[5]~[7]のいずれかに記載の粒子解析装置。
[8] comprising a plurality of laminated and joined plates,
The particle analysis device according to any one of [5] to [7], wherein the first lid and the second lid are sandwiched between two of the plates.
 本発明の粒子解析装置は、粒子通過頻度を向上させ、効率的に計測を行うことができる。即ち、本発明の粒子解析装置は、解析する粒子を含まない液体を注入する入口孔の開口部から一定領域における流路内面の少なくとも一部が親水化され、当該領域の少なくとも一部の流路内面の親水性が相対的に高くなるように構成されている。このように構成することによって、粒子の計測を行う計測部位の粒子通過頻度を極めて有効に向上させることができる。特に、粒子解析装置の解析する粒子を含まない液体を注入する入口孔は、その開口部側において流路径が拡径した第1の大径部分と、第1の大径部分から流路径が縮径する第1の縮径部とを有し、当該第1の縮径部の流路内面が親水化されていることにより、計測部位の粒子通過頻度を極めて有効に向上させることができる。 The particle analysis device of the present invention can improve the particle passage frequency and perform measurements efficiently. That is, in the particle analysis apparatus of the present invention, at least part of the inner surface of the channel in a certain area from the opening of the inlet hole for injecting the liquid not containing the particles to be analyzed is hydrophilized, and at least part of the channel in the area is made hydrophilic. It is configured such that the hydrophilicity of the inner surface is relatively high. By configuring in this way, it is possible to extremely effectively improve the particle passing frequency at the measurement site where the particles are measured. In particular, the inlet hole for injecting the liquid containing no particles to be analyzed by the particle analysis device has a first large-diameter portion in which the channel diameter is enlarged on the opening side, and a channel diameter in which the channel diameter is reduced from the first large-diameter portion. By having the first diameter-reduced portion, and the inner surface of the flow path of the first diameter-reduced portion is made hydrophilic, it is possible to extremely effectively improve the particle passing frequency of the measurement site.
本発明の粒子解析装置の第1実施形態を模式的に示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows typically 1st Embodiment of the particle-analysis apparatus of this invention. 図1に示す粒子解析装置の側面図である。FIG. 2 is a side view of the particle analysis device shown in FIG. 1; 図1に示す粒子解析装置の平面図である。FIG. 2 is a plan view of the particle analysis device shown in FIG. 1; 図1に示す粒子解析装置を用いた粒子の解析原理を示す概念図である。FIG. 2 is a conceptual diagram showing the principle of particle analysis using the particle analysis apparatus shown in FIG. 1; 図1に示す粒子解析装置を斜め上方から見た分解図である。FIG. 2 is an exploded view of the particle analysis device shown in FIG. 1 as seen obliquely from above; 図1に示す粒子解析装置の拡大平面図である。FIG. 2 is an enlarged plan view of the particle analysis device shown in FIG. 1; 図6のVI-VI線矢視断面図である。FIG. 7 is a cross-sectional view taken along the line VI-VI of FIG. 6; 液体が貯留された孔から漏れた液体を示す、図6と同様の粒子解析装置の拡大平面図である。FIG. 7 is an enlarged plan view of the particle analysis device similar to FIG. 6 showing liquid leaking from holes in which liquid is stored; 液体が貯留された孔から漏れた液体を示す、図6と同様の粒子解析装置の拡大斜視図である。FIG. 7 is an enlarged perspective view of a particle analysis device similar to FIG. 6 showing liquid leaking from a hole containing liquid; 第1実施形態の変形例を模式的に示す平面図である。It is a top view which shows the modification of 1st Embodiment typically. 第1実施形態の他の変形例を模式的に示す平面図である。FIG. 5 is a plan view schematically showing another modification of the first embodiment; 第1実施形態の更に他の変形例を模式的に示す平面図である。FIG. 8 is a plan view schematically showing still another modification of the first embodiment; 本発明の粒子解析装置の第2実施形態を模式的に示す斜視図である。It is a perspective view which shows typically 2nd Embodiment of the particle-analysis apparatus of this invention. 図13に示す粒子解析装置の側面図である。FIG. 14 is a side view of the particle analysis device shown in FIG. 13; 図13に示す粒子解析装置の平面図である。FIG. 14 is a plan view of the particle analysis device shown in FIG. 13; 図13に示す粒子解析装置を斜め上方から見た分解図である。FIG. 14 is an exploded view of the particle analysis device shown in FIG. 13 as viewed obliquely from above; 図13に示す粒子解析装置の拡大平面図である。FIG. 14 is an enlarged plan view of the particle analysis device shown in FIG. 13; 図17のVII-VII線矢視断面図である。FIG. 18 is a cross-sectional view taken along line VII-VII of FIG. 17; 本発明の粒子解析装置の第3実施形態を模式的に示す斜視図である。It is a perspective view which shows typically 3rd Embodiment of the particle-analysis apparatus of this invention. 図19に示す粒子解析装置の分解図である。FIG. 20 is an exploded view of the particle analysis device shown in FIG. 19; 図19に示す粒子解析装置の一部の断面図である。FIG. 20 is a cross-sectional view of part of the particle analysis device shown in FIG. 19; 本発明の粒子解析装置の第4実施形態の一部の断面図である。It is a partial cross-sectional view of a fourth embodiment of the particle analysis device of the present invention. 粒子解析装置を製造する工程を説明するための模式図である。It is a schematic diagram for demonstrating the process of manufacturing a particle-analysis apparatus. 粒子解析装置を製造する他の工程を説明するための模式図である。It is a schematic diagram for demonstrating the other process which manufactures a particle-analysis apparatus.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 Embodiments of the present invention will be described below. It should be noted that the present invention is not limited to the following embodiments, and it is understood that design changes, improvements, etc., can be made as appropriate based on the ordinary knowledge of those skilled in the art without departing from the scope of the present invention. It should be.
(第1実施形態)
 図1に示すように、第1実施形態の粒子解析装置1は、直方体の形状を有し、4つの側面1A,1B,1C,1Dを有する。粒子解析装置1の4つの側面1A,1B,1C,1Dは、それぞれの長さが等しくてもよく、例えば、図3の平面図に示すように、粒子解析装置1は正面における輪郭は正方形を有していてもよい。ここで、図1は、本発明の粒子解析装置の第1実施形態を模式的に示す斜視図である。図2は、図1に示す粒子解析装置の側面図である。図3は、図1に示す粒子解析装置の平面図である。
(First embodiment)
As shown in FIG. 1, the particle analysis device 1 of the first embodiment has a rectangular parallelepiped shape and has four side surfaces 1A, 1B, 1C, and 1D. The four side surfaces 1A, 1B, 1C, and 1D of the particle analysis device 1 may have the same length. For example, as shown in the plan view of FIG. may have. Here, FIG. 1 is a perspective view schematically showing the first embodiment of the particle analysis device of the present invention. 2 is a side view of the particle analysis apparatus shown in FIG. 1. FIG. 3 is a plan view of the particle analysis apparatus shown in FIG. 1. FIG.
 図1~図3に示すように、粒子解析装置1は、上方の液体空間20、下方の液体空間22、及び接続孔26を有する。液体空間20,22はそれぞれ水平方向に真っ直ぐに延びており、第1の液体空間20には第1の液体37が貯留され、下方の液体空間22には第2の液体38が貯留される。図2において、上方の液体空間20に貯留される第1の液体37と、下方の液体空間22に貯留される第2の液体38を異なるハッチングパターンで示す。下方の液体空間22は、上方の液体空間20の下方に配置されており、液体空間20,22は接続孔26で互いに接続されている。図3に示すように、平面図において、液体空間20,22は互いに直交する。 As shown in FIGS. 1 to 3, the particle analysis device 1 has an upper liquid space 20, a lower liquid space 22, and a connection hole 26. The liquid spaces 20 and 22 each extend straight in the horizontal direction. The first liquid space 20 stores a first liquid 37 and the lower liquid space 22 stores a second liquid 38 . In FIG. 2, the first liquid 37 stored in the upper liquid space 20 and the second liquid 38 stored in the lower liquid space 22 are indicated by different hatching patterns. A lower liquid space 22 is arranged below the upper liquid space 20 and the liquid spaces 20 , 22 are connected to each other by a connecting hole 26 . As shown in FIG. 3, in plan view, the liquid spaces 20, 22 are perpendicular to each other.
 また、粒子解析装置1は、第1の入口孔20A、第1の出口孔20B、第2の入口孔22A及び第2の出口孔22Bを有する。第1の入口孔20A、第1の出口孔20B、第2の入口孔22A及び第2の出口孔22Bの各々は、粒子解析装置1の上面で開口する開口部を有する。 The particle analysis device 1 also has a first inlet hole 20A, a first outlet hole 20B, a second inlet hole 22A and a second outlet hole 22B. Each of the first inlet hole 20A, the first outlet hole 20B, the second inlet hole 22A, and the second outlet hole 22B has an opening that opens on the upper surface of the particle analysis device 1 .
 第1の入口孔20A及び第1の出口孔20Bは、粒子解析装置1の上面から上方の液体空間20まで鉛直に延び、これらの孔内を第1の液体37が流通する。第1の入口孔20A、第1の出口孔20B及び上方の液体空間20は、第1の液体37のための1つの貯留槽を形成する。第1の液体37を上方の液体空間20に供給する際、第1の入口孔20Aは第1の液体37の導入口として使用され、第1の出口孔20Bは、第1の液体37により上方の液体空間20から押し出される空気の出口として使用される。ここで、本明細書において、「鉛直」とは、粒子解析装置1の上面が水平となるように載置された状態において、当該上面に対して垂直方向のことをいう。 The first inlet hole 20A and the first outlet hole 20B extend vertically from the upper surface of the particle analysis device 1 to the upper liquid space 20, and the first liquid 37 flows through these holes. The first inlet hole 20A, the first outlet hole 20B and the upper liquid space 20 form one reservoir for the first liquid 37. FIG. When supplying the first liquid 37 to the upper liquid space 20 , the first inlet hole 20A is used as an inlet for the first liquid 37 and the first outlet hole 20B is used as an inlet for the first liquid 37 . is used as an outlet for air pushed out of the liquid space 20 of the . Here, in this specification, the term “vertical” refers to a direction perpendicular to the top surface of the particle analysis device 1 when the top surface is placed horizontally.
 第2の入口孔22A及び第2の出口孔22Bは、粒子解析装置1の上面から下方の液体空間22まで鉛直に延び、これらの孔内を第2の液体38が流通する。第2の入口孔22A、第2の出口孔22B及び下方の液体空間22は、第2の液体38のための他の1つの貯留槽を形成する。第2の液体38を下方の液体空間22に供給する際、第2の入口孔22Aは、第2の液体38の導入口として使用され、第2の出口孔22Bは、第2の液体38により下方の液体空間22から押し出される空気の出口として使用される。 The second inlet hole 22A and the second outlet hole 22B extend vertically from the upper surface of the particle analysis device 1 to the liquid space 22 below, and the second liquid 38 flows through these holes. The second inlet hole 22A, the second outlet hole 22B and the lower liquid space 22 form another reservoir for the second liquid 38. FIG. When supplying the second liquid 38 to the lower liquid space 22, the second inlet hole 22A is used as an inlet for the second liquid 38, and the second outlet hole 22B is used by the second liquid 38 to It is used as an outlet for air forced out of the lower liquid space 22 .
 さらに、粒子解析装置1は、第1の電極28と第2の電極30を有する。第1の電極28は、第1の出口孔20Bを通じて上方の液体空間20内の第1の液体37に電位を与える。第2の電極30は、第2の出口孔22Bを通じて下方の液体空間22内の第2の液体38に、第1の電極28とは異なる電位を与える。例えば、第2の電極30は陽極であり、第1の電極28は陰極である。接続孔26を介して液体空間20,22は連通しているため、液体空間20,22の内部の第1の液体37及び第2の液体38に電流が流れる。 Furthermore, the particle analysis device 1 has a first electrode 28 and a second electrode 30 . The first electrode 28 applies a potential to the first liquid 37 in the upper liquid space 20 through the first exit hole 20B. The second electrode 30 provides a different potential than the first electrode 28 to the second liquid 38 in the lower liquid space 22 through the second exit hole 22B. For example, the second electrode 30 is the anode and the first electrode 28 is the cathode. Since the liquid spaces 20 and 22 are in communication with each other through the connecting holes 26, current flows through the first liquid 37 and the second liquid 38 inside the liquid spaces 20 and 22. FIG.
 図4は、粒子解析装置1を用いた粒子の解析原理を概略的に示す。上方の液体空間20には、例えば、解析する粒子40を元々含有していない第1の液体37が貯留される。下方の液体空間22には、解析されるべき粒子40を含有する第2の液体38が貯留される。液体空間20,22は、チップ(ナノポアチップ)24に形成された貫通孔である接続孔26で互いに接続されている。第1の電極28及び第2の電極30には、直流電源35及び電流計36が接続される。直流電源35は、例えば、電池であるが、電池には限定されない。 FIG. 4 schematically shows the principle of particle analysis using the particle analysis device 1. The upper liquid space 20 contains, for example, a first liquid 37 which originally does not contain the particles 40 to be analyzed. In the lower liquid space 22 is stored a second liquid 38 containing particles 40 to be analyzed. The liquid spaces 20 and 22 are connected to each other through connection holes 26 which are through holes formed in a chip (nanopore chip) 24 . A DC power supply 35 and an ammeter 36 are connected to the first electrode 28 and the second electrode 30 . The DC power supply 35 is, for example, a battery, but is not limited to a battery.
 電極28,30に与えられる電位差に起因する電気泳動によって、下方の液体空間22内の第2の液体38に含有される粒子40が接続孔26を通過して、上方の液体空間20内の第1の液体37に流入する。粒子40が接続孔26を通過する時、第1の液体37及び第2の液体38を流れる電流値が変化する。電流値の変化は電流計36を用いて観察することが可能である。電流値の変化を観察することにより、接続孔26を通過した粒子40の特徴(例えば、種類、形状、サイズ)が解析される。例えば、第2の液体38に含まれたある種類の粒子40の数を計測することが可能である。粒子解析装置1は、エクソソーム、花粉、ウイルス、細菌などの様々な粒子を解析するために使用されうる。 Electrophoresis caused by the potential difference applied to the electrodes 28 and 30 causes the particles 40 contained in the second liquid 38 in the lower liquid space 22 to pass through the connection hole 26 and move to the second liquid 38 in the upper liquid space 20 . 1 flows into the liquid 37 . When the particles 40 pass through the connection hole 26, the current values flowing through the first liquid 37 and the second liquid 38 change. A change in current value can be observed using an ammeter 36 . By observing changes in the current value, the characteristics (for example, type, shape, size) of the particles 40 that have passed through the connection hole 26 are analyzed. For example, it is possible to count the number of certain types of particles 40 contained in the second liquid 38 . Particle analyzer 1 can be used to analyze various particles such as exosomes, pollen, viruses, and bacteria.
 図1~図3に示すように、粒子解析装置1は、積層された複数の正方形の板2,4,6,8,10を備える。好ましくは、これらの板の一部又は全部は、透明又は半透明材料から形成されており、粒子解析装置1の空洞(第1の入口孔20A、第1の出口孔20B、第2の入口孔22A及び第2の出口孔22B、並びに液体空間20,22)内への第1の液体37及び第2の液体38の貯留状態が粒子解析装置1の外部から観察可能である。但し、必ずしも液体の貯留状態が観察可能でなくてもよく、これらの板が不透明であってもよい。 As shown in FIGS. 1 to 3, the particle analysis device 1 includes a plurality of stacked square plates 2, 4, 6, 8, and 10. Preferably, some or all of these plates are made of a transparent or translucent material, and the cavities of the particle analysis device 1 (first inlet hole 20A, first outlet hole 20B, second inlet hole 22A and the second exit hole 22B, and the state of storage of the first liquid 37 and the second liquid 38 in the liquid spaces 20, 22) can be observed from the outside of the particle analysis device 1. FIG. However, it is not necessary that the state of liquid storage is observable, and these plates may be opaque.
 板2,4,6,8,10は、電気的及び化学的に不活性で絶縁性の材料から形成されている。各板は、剛性材料から形成してもよいし、弾性材料から形成してもよい。好ましい剛性材料としては、樹脂材料、例えば、ポリカーボネート、ポリエチレンテレフタラート、アクリル、環状オレフィン、ポリプロピレン、ポリスチレン、ポリエステル、ポリ塩化ビニル等が含まれる。好ましい弾性材料としては、エラストマー、例えば、PDMS(ポリジメチルシロキサン)を含有するシリコーンゴム又はウレタンゴムが含まれる。 The plates 2, 4, 6, 8, 10 are made of an electrically and chemically inert and insulating material. Each plate may be formed from a rigid or elastic material. Preferred rigid materials include resinous materials such as polycarbonate, polyethylene terephthalate, acrylic, cyclic olefins, polypropylene, polystyrene, polyester, polyvinyl chloride, and the like. Preferred elastic materials include elastomers such as silicone rubbers or urethane rubbers containing PDMS (polydimethylsiloxane).
 但し、上の板と下の板の密着性を確保するため、剛性材料製の板の上に剛性材料製の板が重ねられるのは好ましくない。弾性材料製の板には、剛性材料製の板を重ねてもよいし、弾性材料製の板を重ねてもよい。板2,4,6,8,10のすべてが弾性材料から形成されてもよい。 However, in order to ensure the adhesion between the upper plate and the lower plate, it is not preferable to stack a plate made of a rigid material on top of another plate made of a rigid material. A plate made of a rigid material may be overlaid on the plate made of an elastic material, or a plate made of an elastic material may be overlaid. All of the plates 2, 4, 6, 8, 10 may be made of elastic material.
 図5に示すように、最下層の板2には溝も孔も形成されていない。図5は、図1に示す粒子解析装置を斜め上方から見た分解図である。 As shown in FIG. 5, the bottom plate 2 has neither grooves nor holes. FIG. 5 is an exploded view of the particle analysis apparatus shown in FIG. 1 as seen obliquely from above.
 次の板4の下面の中央には、水平な溝4gが形成されている。板2,4が接合されると、溝4gは下方の液体空間22を形成する。溝4gの中央には、鉛直方向に貫通する連通孔4tが形成されている。連通孔4tは、下方の液体空間22(溝4g)とチップ24の接続孔26とを連通させる。また、板4には、鉛直方向に貫通する円柱形の貫通孔4a,4dが形成されている。貫通孔4a,4dは同じ直径を有する。貫通孔4aは溝4gの一端部に連通し、貫通孔4dは溝4gの他端部に連通する。 A horizontal groove 4g is formed in the center of the lower surface of the next plate 4. When the plates 2, 4 are joined, the groove 4g forms a lower liquid space 22. FIG. 4 t of communicating holes which penetrate in the perpendicular direction are formed in the center of 4 g of groove|channels. The communication hole 4t communicates the lower liquid space 22 (groove 4g) and the connection hole 26 of the chip 24 with each other. Further, the plate 4 is formed with cylindrical through holes 4a and 4d penetrating in the vertical direction. Through holes 4a and 4d have the same diameter. The through hole 4a communicates with one end of the groove 4g, and the through hole 4d communicates with the other end of the groove 4g.
 次の板6の下面の中央には、直方体の凹部6hが形成されている。凹部6hは、接続孔26を有するチップ24を収容する。凹部6hには、チップ24が嵌め入れられる。チップ24は凹部6hに取り外し可能(交換可能)であってもよいし、取り外し不可能(交換不可能)であってもよい。板6の上面の中央には、水平な溝6gが形成されている。板6,8が接合されると、溝6gは上方の液体空間20を形成する。溝6gの中央には、鉛直方向に貫通する連通孔6tが形成されている。連通孔6tは、上方の液体空間20(溝6g)とチップ24の接続孔26とを連通させる。連通孔4t,6tと接続孔26の断面は円形であるが、円形でなくてもよい。 A rectangular parallelepiped concave portion 6h is formed in the center of the lower surface of the next plate 6. The recess 6h accommodates a chip 24 having a connection hole 26. As shown in FIG. A chip 24 is fitted into the recess 6h. The chip 24 may be removable (replaceable) from the recess 6h, or may be non-removable (non-replaceable). A horizontal groove 6g is formed in the center of the upper surface of the plate 6. As shown in FIG. The groove 6g forms an upper liquid space 20 when the plates 6, 8 are joined. A communication hole 6t is formed in the center of the groove 6g so as to penetrate in the vertical direction. The communication hole 6t allows the upper liquid space 20 (groove 6g) and the connection hole 26 of the chip 24 to communicate with each other. The cross sections of the communication holes 4t, 6t and the connection hole 26 are circular, but they do not have to be circular.
 また、板6には、鉛直方向に貫通する円柱形の貫通孔6a,6dが形成されている。貫通孔6a,6dは、貫通孔4a,4dと同じ直径を有する。貫通孔6aは、直下の板4の貫通孔4aひいては溝4gの一端部に連通し、貫通孔6dは、貫通孔4dひいては溝4gの他端部に連通する。 Also, the plate 6 is formed with cylindrical through holes 6a and 6d penetrating in the vertical direction. The through holes 6a, 6d have the same diameter as the through holes 4a, 4d. The through-hole 6a communicates with the through-hole 4a of the plate 4 immediately below and one end of the groove 4g, and the through-hole 6d communicates with the through-hole 4d and the other end of the groove 4g.
 チップ(ナノポアチップ)24は、直方体、例えば、正方形の板である。チップ24の中央には、鉛直方向に貫通する接続孔26が形成されている。チップ24は、電気的及び化学的に不活性で絶縁性の材料、例えば、ガラス、サファイア、セラミックス、樹脂、エラストマー、SiO、SiN、又はAlにより形成されてよい。好ましくは、チップ24は、板2,4,6,8,10の材料よりも硬い材料、例えば、ガラス、サファイア、セラミックス、SiO、SiN、又はAlから形成されるが、樹脂又はエラストマーでチップ24を形成してもよい。使用者は、粒子解析装置1の用途に応じて、適切なチップ24を選択することができる。例えば、異なる寸法又は形状の接続孔26を有する複数のチップ24を準備し、凹部に嵌め入れられるべきチップ24を選択することにより、解析対象の粒子40を変更することができる。 The tip (nanopore tip) 24 is a rectangular parallelepiped, for example, a square plate. A connection hole 26 is formed through the center of the chip 24 in the vertical direction. The tip 24 may be made of an electrically and chemically inert and insulating material such as glass, sapphire, ceramics, resin, elastomer, SiO2 , SiN , or Al2O3 . Preferably, the chip 24 is made of a material harder than the material of the plates 2, 4, 6, 8, 10, such as glass, sapphire, ceramics, SiO2 , SiN, or Al2O3 , but is made of resin or Tip 24 may be formed from an elastomer. A user can select an appropriate tip 24 according to the application of the particle analysis device 1 . For example, the particle 40 to be analyzed can be varied by providing a plurality of tips 24 with different sizes or shapes of connection holes 26 and selecting the tip 24 to be fitted in the recess.
 粒子が接続孔26で詰まることなく通過することを容易にするため、チップ24には親水化処理を施すことが好ましい。親水化処理は、例えば、酸素プラズマ又は紫外線をチップ24に照射することを有する。紫外線はレーザー光線の形式で照射してよい。上述したように、チップ24を真空紫外線などで親水化することによって、その表面の有機物を分解・除去して粒子が接続孔26自体あるいはその周囲に吸着することを抑制することができる。 In order to facilitate the passage of particles through the connection hole 26 without clogging it, the chip 24 is preferably subjected to a hydrophilic treatment. Hydrophilization includes, for example, irradiating the tip 24 with oxygen plasma or ultraviolet light. The ultraviolet radiation may be applied in the form of laser beams. As described above, by hydrophilizing the chip 24 with vacuum ultraviolet rays or the like, it is possible to decompose and remove organic matter on the surface of the chip 24, thereby suppressing adsorption of particles to the connection hole 26 itself or its surroundings.
 次の板8には、鉛直方向に貫通する円柱形の貫通孔8a,8b,8c,8dが形成されている。貫通孔8a,8b,8c,8dは、貫通孔4a,4d,6a,6dと同じ直径を有する。貫通孔8aは、直下の板6の貫通孔6aに連通し、貫通孔8dは、板6の貫通孔6dに連通する。貫通孔8bは、板6の溝6gの一端部に連通し、貫通孔8cは溝6gの他端部に連通する。板8の上面には、電極28,30が並列に配置されており、第1の電極28は貫通孔8b内の第1の液体37に電位を与え、第2の電極30は貫通孔8a内の第2の液体38に電位を与える。 The next plate 8 is formed with cylindrical through holes 8a, 8b, 8c, and 8d penetrating in the vertical direction. Through holes 8a, 8b, 8c, 8d have the same diameter as through holes 4a, 4d, 6a, 6d. The through hole 8 a communicates with the through hole 6 a of the plate 6 directly below, and the through hole 8 d communicates with the through hole 6 d of the plate 6 . The through hole 8b communicates with one end of the groove 6g of the plate 6, and the through hole 8c communicates with the other end of the groove 6g. Electrodes 28 and 30 are arranged in parallel on the upper surface of the plate 8. The first electrode 28 applies an electric potential to the first liquid 37 in the through hole 8b, and the second electrode 30 in the through hole 8a. A potential is applied to the second liquid 38 of .
 最上層の板10には、鉛直方向に貫通する貫通孔10a,10b,10c,10dが形成されている。貫通孔10a,10b,10c,10dは、直下の板8の貫通孔8a,8b,8c,8dにそれぞれ連通する。最上層の板10の貫通孔10c,10dは、粒子解析装置1の上面で開口する開口部から一定領域において貫通孔10c,10dの孔径が拡径した大径部分が形成されていてもよい。 Through- holes 10a, 10b, 10c, and 10d are formed in the uppermost plate 10 so as to penetrate in the vertical direction. The through holes 10a, 10b, 10c, and 10d respectively communicate with the through holes 8a, 8b, 8c, and 8d of the plate 8 directly below. The through- holes 10c and 10d of the plate 10 of the uppermost layer may be formed with large-diameter portions in which the hole diameters of the through- holes 10c and 10d are enlarged in a certain area from the opening opening on the upper surface of the particle analysis device 1 .
 また、最上層の板10には、板10の下方の第1の電極28が露出する第1の電極棒挿入孔32と、第2の電極30が露出する第2の電極棒挿入孔34が形成されている。電極棒挿入孔32,34の各々は、粒子解析装置1の上面で開口する開口部を有し、板10を貫通して、上面から電極28又は電極30に延びる。電極棒挿入孔32,34の各々は略半円形の輪郭を有するが、電極棒挿入孔の輪郭の形状は図示例には限定されない。 The uppermost plate 10 has a first electrode rod insertion hole 32 through which the first electrode 28 below the plate 10 is exposed, and a second electrode rod insertion hole 34 through which the second electrode 30 is exposed. formed. Each of the electrode rod insertion holes 32 and 34 has an opening that opens on the upper surface of the particle analysis device 1, penetrates the plate 10, and extends from the upper surface to the electrode 28 or the electrode 30. FIG. Each of the electrode rod insertion holes 32 and 34 has a substantially semicircular contour, but the shape of the contour of the electrode rod insertion hole is not limited to the illustrated example.
 電極棒挿入孔32,34の各々には電極棒が挿入される。これらの電極棒は、電極28,30にそれぞれ接触させられ、液体37,38に電位を与える。 An electrode rod is inserted into each of the electrode rod insertion holes 32 and 34 . These electrode bars are brought into contact with electrodes 28 and 30, respectively, and apply an electric potential to liquids 37 and 38. FIG.
 上記の第1の入口孔20Aは、貫通孔10c,8cから構成され、板10,8を貫通し、板6の溝6g、即ち上方の液体空間20の一端部に到達する。 The first inlet hole 20A is composed of through holes 10c and 8c, passes through the plates 10 and 8, and reaches the groove 6g of the plate 6, that is, one end of the liquid space 20 above.
 第1の出口孔20Bは、貫通孔10b,8bから構成され、板10,8を貫通し、板6の溝6g、即ち上方の液体空間20の他端部に到達する。第1の出口孔20Bの途中には、第1の電極28が設けられている。 The first exit hole 20B is composed of through holes 10b and 8b, passes through the plates 10 and 8, and reaches the groove 6g of the plate 6, that is, the other end of the liquid space 20 above. A first electrode 28 is provided in the middle of the first outlet hole 20B.
 第2の入口孔22Aは、貫通孔10d,8d,6d,4dから構成され、板10,8,6,4を貫通し、板4の溝4g、即ち下方の液体空間22の一端部に到達する。 The second inlet hole 22A consists of through- holes 10d, 8d, 6d, 4d and passes through the plates 10, 8, 6, 4 to reach the groove 4g in the plate 4, i.e. one end of the liquid space 22 below. do.
 第2の出口孔22Bは、貫通孔10a,8a,6a,4aから構成され、板10,8,6,4を貫通し、板4の溝4g、即ち下方の液体空間22の他端部に到達する。第2の入口孔22Aの途中には、第2の電極30が設けられている。 The second exit hole 22B is composed of through- holes 10a, 8a, 6a, 4a and passes through the plates 10, 8, 6, 4 and into the groove 4g of the plate 4, i.e. the other end of the liquid space 22 below. reach. A second electrode 30 is provided in the middle of the second inlet hole 22A.
 図1~図3に示すような粒子解析装置1において、図5に示す第1の入口孔20A又は第2の入口孔22Aのうちの一方が、解析する粒子を含む液体を注入する入口孔となり、且つ、第1の入口孔20A又は第2の入口孔22Aのうちのもう一方が、解析する粒子を含まない液体を注入する入口孔となる。以下の説明において、解析する粒子を含まない液体を注入する入口孔を、第1の入口孔20Aとし、且つ、解析する粒子を含まない液体を注入する入口孔を、第2の入口孔22Aとして説明する。 In the particle analysis apparatus 1 as shown in FIGS. 1 to 3, one of the first inlet hole 20A and the second inlet hole 22A shown in FIG. 5 serves as an inlet hole for injecting the liquid containing the particles to be analyzed. and the other of the first inlet hole 20A or the second inlet hole 22A is the inlet hole for injecting the liquid free of particles to be analyzed. In the following description, the inlet hole for injecting the liquid not containing the particles to be analyzed is referred to as the first inlet hole 20A, and the inlet hole for injecting the liquid not including the particles to be analyzed is referred to as the second inlet hole 22A. explain.
 最上層の板10の貫通孔10cは、上部に大径部分10ca、下部に小径部分10cbを有していてもよい。大径部分10caも小径部分10cbも円柱形であるが、大径部分10caの直径は小径部分10cbの直径より大きい。小径部分10cbの直径は、貫通孔10cの直下の貫通孔8cの直径と等しくなっている。大径部分10caは、第1の入口孔20Aの開口部であり、粒子解析装置1の上面で開口する。したがって、第1の入口孔20Aの大径部分10caは、第1の入口孔20Aの他の部分より大きい面積を有する。 The through hole 10c of the uppermost plate 10 may have a large diameter portion 10ca at the top and a small diameter portion 10cb at the bottom. Both the large-diameter portion 10ca and the small-diameter portion 10cb are cylindrical, but the diameter of the large-diameter portion 10ca is larger than that of the small-diameter portion 10cb. The diameter of the small diameter portion 10cb is equal to the diameter of the through hole 8c directly below the through hole 10c. The large-diameter portion 10ca is the opening of the first inlet hole 20A and opens on the upper surface of the particle analysis device 1 . Accordingly, the large diameter portion 10ca of the first inlet hole 20A has a larger area than the other portions of the first inlet hole 20A.
 板10の貫通孔10dは、上部に大径部分10da、下部に小径部分10dbを有する。大径部分10daも小径部分10dbも円柱形であるが、大径部分10daの直径は小径部分10dbの直径より大きい。小径部分10dbの直径は、貫通孔10dの直下の貫通孔8dの直径と等しくなっている。大径部分10daは、第2の入口孔22Aの開口部であり、粒子解析装置1の上面で開口する。したがって、第2の入口孔22Aの大径部分10daは、第2の入口孔22Aの他の部分より大きい面積を有する。 A through hole 10d of the plate 10 has a large diameter portion 10da at the top and a small diameter portion 10db at the bottom. Both the large diameter portion 10da and the small diameter portion 10db are cylindrical, but the diameter of the large diameter portion 10da is larger than the diameter of the small diameter portion 10db. The diameter of the small diameter portion 10db is equal to the diameter of the through hole 8d directly below the through hole 10d. The large-diameter portion 10da is the opening of the second inlet hole 22A and opens on the upper surface of the particle analysis device 1. As shown in FIG. Therefore, the large diameter portion 10da of the second inlet hole 22A has a larger area than the other portions of the second inlet hole 22A.
 最上層の板10の貫通孔10cは、上述したように、粒子解析装置1の上面で開口する第1の入口孔20Aの開口部となる。本実施形態の粒子解析装置1においては、解析する粒子を含まない液体を注入する入口孔である第1の入口孔20Aの開口部から一定領域における流路内面の少なくとも一部が親水化されている。ここで、第1の入口孔20Aにおける「流路内面」とは、第1の入口孔20Aによって画定される流路の内面(別言すれば、流路の表面)のことをいう。そして、「第1の入口孔20Aの開口部から一定領域における流路内面の少なくとも一部が親水化されている」とは、この流路内面の少なくとも一部における「水との親和性」が相対的に高くなるように変性されていることを意味する。例えば、第1の入口孔20Aの開口部から一定領域における流路内面の少なくとも一部における「水との親和性」が、その他の領域の流路内面における「水との親和性」に比して、相対的に高くなっているように変性されている場合を挙げることができる。特に、本実施形態の粒子解析装置1において、解析する粒子を含まない液体を注入する入口孔である第1の入口孔20Aは、開口部から一定領域において流路径が拡径した第1の大径部分10caを有し、当該第1の大径部分10caから流路径が縮径する部位の流路内面が少なくとも親水化(即ち、変性)されていることが好ましい。例えば、第1の入口孔20Aは、開口部から流路径が拡径した第1の大径部分10caと第1の大径部分10caから流路径が縮径する第1の縮径部10ccとを有し、第1の入口孔20Aの第1の縮径部10ccの表面が少なくとも親水化されていることが好ましい。更に、第1の入口孔20Aの第1の大径部分10caが、当該第1の入口孔20Aの開口部に設けられた座繰り穴からなる場合には、その座繰り穴の底面となる第1の縮径部10ccの流路内面が少なくとも親水化されていることが好ましい。このように構成することによって、チップ24中央の接続孔26を通過する粒子の頻度(即ち、粒子通過頻度)を向上させ、効率的に計測を行うことができる。例えば、本実施形態の粒子解析装置1は、第1の入口孔20Aの開口部から一定領域における流路内面の少なくとも一部(例えば、上記第1の縮径部10cc)に対して親水化処理(別言すれば、変性処理)が施されていることが好ましい。このように構成することによって、第1の入口孔20Aの開口部から一定領域の流路内面を、親水化表面21Aとすることができる。 The through-hole 10c of the uppermost plate 10 serves as the opening of the first inlet hole 20A that opens on the upper surface of the particle analysis device 1, as described above. In the particle analysis apparatus 1 of the present embodiment, at least a part of the inner surface of the flow channel in a certain area from the opening of the first inlet hole 20A, which is the inlet hole for injecting the liquid not containing the particles to be analyzed, is hydrophilized. there is Here, the "channel inner surface" of the first inlet hole 20A refers to the inner surface of the channel defined by the first inlet hole 20A (in other words, the surface of the channel). And "at least a part of the inner surface of the flow path in a certain area from the opening of the first inlet hole 20A is made hydrophilic" means that "at least a part of the inner surface of the flow path" has "affinity with water". It means that it is denatured so that it becomes relatively high. For example, the "affinity with water" of at least a part of the inner surface of the flow channel in a certain area from the opening of the first inlet hole 20A is lower than the "affinity with water" of the inner surface of the flow path in other areas. can be denatured so that it is relatively high. In particular, in the particle analysis apparatus 1 of the present embodiment, the first inlet hole 20A, which is an inlet hole for injecting a liquid that does not contain particles to be analyzed, has a first large channel diameter in a certain region from the opening. It is preferable that at least the inner surface of the channel at the portion having the diameter portion 10ca and the channel diameter being reduced from the first large diameter portion 10ca is hydrophilized (that is, denatured). For example, the first inlet hole 20A includes a first large-diameter portion 10ca having a channel diameter enlarged from the opening and a first reduced-diameter portion 10cc having a channel diameter reduced from the first large-diameter portion 10ca. It is preferable that at least the surface of the first reduced diameter portion 10cc of the first inlet hole 20A is made hydrophilic. Furthermore, when the first large-diameter portion 10ca of the first inlet hole 20A is a countersunk hole provided at the opening of the first inlet hole 20A, the bottom surface of the countersink hole It is preferable that at least the inner surface of the flow path of the reduced diameter portion 10cc is made hydrophilic. By configuring in this way, the frequency of particles passing through the connecting hole 26 in the center of the chip 24 (that is, the particle passing frequency) can be improved, and the measurement can be performed efficiently. For example, the particle analysis apparatus 1 of the present embodiment performs hydrophilic treatment on at least a portion of the inner surface of the flow channel (for example, the first reduced diameter portion 10cc) in a certain area from the opening of the first inlet hole 20A. (In other words, modification treatment) is preferably applied. By configuring in this way, the inner surface of the channel in a certain area from the opening of the first inlet hole 20A can be made the hydrophilic surface 21A.
 親水化処理は、例えば、紫外線を流路内面に照射する方法や、流路内面に所定の親水コーティングを行う方法を挙げることができる。紫外線を照射する方法としては、例えば、紫外線をレーザー光線の形式で照射する方法を挙げることができる。 Examples of the hydrophilization treatment include a method of irradiating the inner surface of the channel with ultraviolet rays and a method of applying a predetermined hydrophilic coating to the inner surface of the channel. As a method of irradiating ultraviolet rays, for example, a method of irradiating ultraviolet rays in the form of a laser beam can be mentioned.
 親水コーティングは、例えば、以下の方法で行うことができる。まず、親水化処理を行う流路内面に対して、前処理として脱脂処理を行うことが好ましい。また、その後、更に前処理として、親水コーティングを行う流路内面に対して下地処理を施してもよい。例えば、後述する親水コーティング剤等によって親水化処理を行う場合には、親水コーティングを行う流路内面に対してシリカ系の下地処理剤(プライマー)を塗工し、当該流路内面に対して下地処理を施してもよい。但し、このような下地処理については、親水コーティング剤等の種類に応じて、適宜最適な処理を選択することができる。そして、適宜前処理を施した流路内面に対して親水コーティング剤を塗布し、親水コーティング剤を乾燥させることにより、流路内面に対して親水化処理を行うことができる。親水コーティング剤の種類については特に制限はないが、例えば、高分子鎖の少なくとも片末端にトリシラノール基を有し、その側鎖に複数の親水基を有するコーティング剤等を挙げることができる。例えば、親水コーティング剤として、大阪有機化学工業社製の「LAMBICシリーズ(商品名)」等を挙げることができる。 Hydrophilic coating can be performed, for example, by the following method. First, it is preferable to perform a degreasing treatment as a pretreatment on the inner surface of the channel to be hydrophilized. Further, after that, as a pretreatment, the inner surface of the flow channel to be coated with a hydrophilic material may be subjected to surface treatment. For example, when performing a hydrophilic treatment with a hydrophilic coating agent or the like, which will be described later, a silica-based surface treatment agent (primer) is applied to the inner surface of the flow channel to be hydrophilic coated, and the inner surface of the flow channel is coated with a primer. may be treated. However, for such a base treatment, an optimum treatment can be appropriately selected according to the type of the hydrophilic coating agent and the like. Then, a hydrophilic coating agent is applied to the inner surface of the flow channel that has been appropriately pretreated, and the hydrophilic coating agent is dried to make the inner surface of the flow channel hydrophilic. The type of hydrophilic coating agent is not particularly limited, but examples include a coating agent having a trisilanol group at least one terminal of a polymer chain and a plurality of hydrophilic groups in its side chain. For example, as a hydrophilic coating agent, "LAMBIC series (trade name)" manufactured by Osaka Organic Chemical Industry Co., Ltd., etc. can be mentioned.
 本実施形態の粒子解析装置1は、解析する粒子を含まない液体を注入する入口孔である第1の入口孔20Aの第1の縮径部10ccが少なくとも親水化されていれば、上述したような作用効果を奏するものであるが、例えば、第1の入口孔20Aの開口部から一定領域における親水化された流路内面は、解析する粒子を含む液体を注入する入口孔である第2の入口孔22Aの開口部から一定領域の流路内面よりも親水性が高いものであってもよい。即ち、第2の入口孔22Aの開口部から一定領域の流路内面については、第1の入口孔20Aのような親水化処理が施されていないものであってもよい。例えば、第2の入口孔22Aの開口部から一定領域の流路内面が予め疎水性を有する場合には、第2の入口孔22Aの開口部から延びる流路内は、第1の入口孔20Aの親水化された流路内面よりも親水性が低くなる。例えば、第2の入口孔22Aを構成する板10などがシリコーンゴムからなる場合、特段の親水化処理を施していない第2の入口孔22Aの流路内面は、疎水性を有することとなり、第2の入口孔22Aの開口部から一定領域の流路内面は、疎水化表面23Aとなる。なお、第2の入口孔22Aの開口部から一定領域の流路内面に対しては、特に限定されることはないが、別途、疎水化処理が施されていてもよい。 In the particle analysis apparatus 1 of the present embodiment, if at least the first reduced-diameter portion 10cc of the first inlet hole 20A, which is an inlet hole for injecting a liquid that does not contain particles to be analyzed, is hydrophilized, as described above. However, for example, the hydrophilic inner surface of the channel in a certain area from the opening of the first inlet hole 20A is the second inlet hole for injecting the liquid containing the particles to be analyzed. The hydrophilicity may be higher than the inner surface of the channel in a certain area from the opening of the inlet hole 22A. That is, the inner surface of the channel in a certain area from the opening of the second inlet hole 22A may not be subjected to the hydrophilization treatment as in the case of the first inlet hole 20A. For example, when the inner surface of the flow path in a certain area from the opening of the second inlet hole 22A is previously hydrophobic, the inside of the flow path extending from the opening of the second inlet hole 22A is the first inlet hole 20A. is lower in hydrophilicity than the inner surface of the flow path made hydrophilic. For example, when the plate 10 constituting the second inlet hole 22A is made of silicone rubber, the inner surface of the flow path of the second inlet hole 22A, which is not subjected to a special hydrophilic treatment, is hydrophobic. The inner surface of the channel in a certain area from the opening of the inlet hole 22A of No. 2 becomes a hydrophobized surface 23A. Although there is no particular limitation on the inner surface of the flow path in a certain area from the opening of the second inlet hole 22A, a hydrophobizing treatment may be performed separately.
 特に、粒子解析装置1において、流路内面が親水性を有するという場合は、当該流路内面の水との接触角が45度以下であることを意味する。特に、流路内面が親水性を有する場合は、当該流路内面の水との接触角が10度以下であることが好ましい。また、粒子解析装置1において、流路内面が疎水性を有するという場合は、当該流路内面の水との接触角が90度以上であることを意味する。特に、流路内面が疎水性を有する場合は、当該流路内面の水との接触角が100度以上であることが好ましい。流路内面の水との接触角は、以下のような方法により測定することができる。以下では、第1の入口孔20Aの第1の縮径部10ccの流路内面の水との接触角を測定する場合の例により説明する。まず、測定対象となる縮径部10ccの流路内面(即ち、縮径部10ccの表面)と同一表面状態のテストピースを5枚作製する。そして、作製したそれぞれのテストピースの表面上の3点に、超純水を1μL滴下する。そして、滴下した超純水の水滴が静止したときの接触角を測定する。以上のようにして、測定対象の流路内面についての水との接触角の測定を、作製した5枚テストピースについて各3点ずつ合計15点行い、15点の接触角の測定の平均値を、測定対象についての接触角とする。 In particular, in the particle analysis device 1, when the inner surface of the channel is hydrophilic, it means that the contact angle of the inner surface of the channel with water is 45 degrees or less. In particular, when the inner surface of the channel is hydrophilic, the contact angle of the inner surface of the channel with water is preferably 10 degrees or less. In addition, in the particle analysis device 1, when the inner surface of the channel is said to be hydrophobic, it means that the contact angle of the inner surface of the channel with water is 90 degrees or more. In particular, when the channel inner surface is hydrophobic, it is preferable that the contact angle of the channel inner surface with water is 100 degrees or more. The contact angle with water on the inner surface of the channel can be measured by the following method. An example of measuring the contact angle with water on the inner surface of the flow path of the first reduced diameter portion 10cc of the first inlet hole 20A will be described below. First, five test pieces having the same surface condition as the flow path inner surface of the diameter-reduced portion 10cc to be measured (that is, the surface of the diameter-reduced portion 10cc) are produced. Then, 1 μL of ultrapure water is dropped onto three points on the surface of each test piece thus prepared. Then, the contact angle is measured when the drop of ultrapure water is stationary. As described above, the contact angle with water on the inner surface of the flow channel to be measured was measured for a total of 15 points, 3 points each for each of the 5 test pieces prepared, and the average value of the 15 point contact angle measurements was calculated. , the contact angle for the object to be measured.
 解析する粒子を含まない液体を注入する入口孔としての第1の入口孔20Aは、開口部から一定領域において流路径が拡径した第1の大径部分10caと、この第1の大径部分10caから流路径が縮径する第1の縮径部10ccとを有していることが好ましい。また、解析する粒子を含む液体を注入する入口孔としての第2の入口孔22Aは、開口部から一定領域において流路径が拡径した第2の大径部分10daと、この第2の大径部分10daから流路径が縮径する第2の縮径部10dcとを有していることが好ましい。そして、第1の入口孔20Aの第1の縮径部10ccの流路内面が少なくとも親水化されていることがより好ましい。例えば、解析する粒子を含まない液体を注入する入口孔としての第1の入口孔20Aの第1の大径部分10caが、第1の入口孔20Aの開口部に設けられた座繰り穴からなり、この座繰り穴の底面となる第1の縮径部10ccの流路内面に対して、上述したような各種親水化処理が施されていることが好ましい。 The first inlet hole 20A, which serves as an inlet hole for injecting a liquid that does not contain particles to be analyzed, has a first large-diameter portion 10ca in which the flow path diameter increases in a certain area from the opening, and the first large-diameter portion 10ca. It is preferable to have a first diameter-reduced portion 10cc in which the channel diameter is reduced from 10ca. The second inlet hole 22A, which serves as an inlet hole for injecting the liquid containing the particles to be analyzed, has a second large diameter portion 10da in which the flow path diameter is enlarged in a certain area from the opening, and the second large diameter portion 10da. It is preferable to have a second diameter-reduced portion 10dc in which the channel diameter is reduced from that of the portion 10da. More preferably, at least the inner surface of the flow path of the first diameter-reduced portion 10cc of the first inlet hole 20A is hydrophilized. For example, the first large-diameter portion 10ca of the first inlet hole 20A as the inlet hole for injecting the liquid not containing the particles to be analyzed consists of a counterbored hole provided at the opening of the first inlet hole 20A. It is preferable that the inner surface of the flow path of the first diameter-reduced portion 10cc, which serves as the bottom surface of the counterbore, is subjected to various hydrophilization treatments as described above.
 板10の貫通孔10a,10bは、直径が一様な円柱形である。貫通孔10aは、第2の出口孔22Bの開口部であり、粒子解析装置1の上面で開口する。貫通孔10bは、第1の出口孔20Bの開口部であり、粒子解析装置1の上面で開口する。 The through holes 10a and 10b of the plate 10 are cylindrical with a uniform diameter. The through hole 10 a is the opening of the second exit hole 22 B and opens on the upper surface of the particle analysis device 1 . The through-hole 10b is the opening of the first exit hole 20B and opens on the upper surface of the particle analysis device 1 .
 これらの板2,4,6,8,10は、接着剤で接合することが可能である。但し、液体空間20,22への有機物の望ましくない流入を防止又は低減するため、真空紫外線又は酸素プラズマ照射を用いて、板2,4,6,8,10を接合することが好ましい。 These plates 2, 4, 6, 8, 10 can be joined with an adhesive. However, it is preferred to bond the plates 2, 4, 6, 8, 10 using vacuum ultraviolet radiation or oxygen plasma irradiation to prevent or reduce unwanted influx of organics into the liquid spaces 20,22.
 チップ24が脆性材料で形成されている場合には、チップ24の破損を防止するため、チップ24の周囲の板4,6の少なくとも一方は、上記の弾性材料で形成されていることが好ましい。また、チップ24の接続孔26内の液体が漏れないように、チップ24が嵌め込まれる板6は、上記の弾性材料で形成されていることが好ましく、板6の凹部6hは、チップ24が締まり嵌めされるのに適した寸法(水平方向の寸法)を有するのが好ましい。更に、チップ24の下面と板4の上面との間に隙間が発生しないように、凹部6hの深さは、チップ24の高さと同じか、それよりも僅かに大きいことが好ましい。 When the tip 24 is made of a brittle material, at least one of the plates 4 and 6 surrounding the tip 24 is preferably made of the elastic material described above in order to prevent breakage of the tip 24. Also, the plate 6 in which the chip 24 is fitted is preferably made of the elastic material described above so that the liquid in the connection hole 26 of the chip 24 does not leak, and the recess 6h of the plate 6 allows the chip 24 to be tight. It preferably has dimensions (horizontal dimension) suitable for fitting. Furthermore, the depth of the recess 6h is preferably equal to or slightly larger than the height of the tip 24 so that no gap is generated between the lower surface of the tip 24 and the upper surface of the plate 4.
 電極28,30は、導電率が高い材料から形成されている。例えば、銀塩化銀(Ag/AgCl)、プラチナ、金で電極28,30を形成することができる。あるいは、これらの金属のいずれか又はすべてとエラストマーを含有する材料から電極28,30を形成してもよい。 The electrodes 28, 30 are made of a material with high electrical conductivity. For example, electrodes 28 and 30 can be formed from silver silver chloride (Ag/AgCl), platinum, and gold. Alternatively, the electrodes 28, 30 may be formed from materials containing any or all of these metals and elastomers.
 板8に形成された電極28,30の各々は、平坦な薄板であって、2つの板8,10の間に挟まれている。図6に示すように、電極28,30の各々は、板8の貫通孔8b又は8a(第1の出口孔20B又は第2の出口孔22Bの一部)の周囲に形成された円環部42と、円環部42に接続された矩形の延長部44を有する。延長部44の幅は円環部42の外径より小さい。ここで、図6は、図1に示す粒子解析装置の拡大平面図である。 Each of the electrodes 28,30 formed on the plate 8 is a flat thin plate sandwiched between the two plates 8,10. As shown in FIG. 6, each of the electrodes 28, 30 is an annular portion formed around a through hole 8b or 8a (part of the first exit hole 20B or the second exit hole 22B) of the plate 8. 42 and a rectangular extension 44 connected to the annular portion 42 . The width of the extended portion 44 is smaller than the outer diameter of the annular portion 42 . Here, FIG. 6 is an enlarged plan view of the particle analysis apparatus shown in FIG.
 円環部42は、貫通孔8a,8bとほぼ同じ直径を有する貫通孔を有する。円環部42は、板8の貫通孔8a又は貫通孔8bにほぼ同心に形成されており、直上の板10の貫通孔10a又は貫通孔10bにほぼ同心に重なる。 The annular portion 42 has through holes having substantially the same diameter as the through holes 8a and 8b. The annular portion 42 is formed substantially concentrically with the through-hole 8a or the through-hole 8b of the plate 8, and overlaps substantially concentrically with the through-hole 10a or the through-hole 10b of the plate 10 directly above.
 円環部42と反対側の延長部44の端部は、直上の板10の電極棒挿入孔32又は電極棒挿入孔34に重なる。図7に示すように、第1の電極棒挿入孔32に挿入された第1の電極棒46は、第1の電極28の矩形の延長部44に接触させられ、第2の電極棒挿入孔34に挿入された第2の電極棒48は、第2の電極30の矩形の延長部44に接触させられる。電極棒46,48は、直流電源35及び電流計36(図2参照)に接続されている。図7は、図6のVI-VI線矢視断面図である。 The end of the extended portion 44 opposite to the annular portion 42 overlaps the electrode rod insertion hole 32 or the electrode rod insertion hole 34 of the plate 10 directly above. As shown in FIG. 7, the first electrode rod 46 inserted into the first electrode rod insertion hole 32 is brought into contact with the rectangular extension 44 of the first electrode 28, and is inserted into the second electrode rod insertion hole. A second electrode rod 48 inserted into 34 is brought into contact with the rectangular extension 44 of the second electrode 30 . The electrode rods 46, 48 are connected to a DC power source 35 and an ammeter 36 (see FIG. 2). 7 is a sectional view taken along the line VI-VI in FIG. 6. FIG.
 第1の出口孔20Bは、第1の電極28より上方にある貫通孔10bと、第1の電極28より下方にある貫通孔8bとを有する。貫通孔10bは貫通孔8bよりも大きな直径ひいては面積を有する。第1の電極28の円環部42の外径は、直上の貫通孔10bの直径より大きい。 The first exit hole 20B has a through hole 10b above the first electrode 28 and a through hole 8b below the first electrode 28. The through-hole 10b has a larger diameter and thus a larger area than the through-hole 8b. The outer diameter of the annular portion 42 of the first electrode 28 is larger than the diameter of the through hole 10b directly above.
 第2の出口孔22Bは、第2の電極30より上方にある貫通孔10aと、第2の電極30より下方にある貫通孔8aとを有する。貫通孔10aは貫通孔8aよりも大きな直径ひいては面積を有する。第2の電極30の円環部42の外径は、直上の貫通孔10aの直径より大きい。 The second exit hole 22B has a through hole 10a above the second electrode 30 and a through hole 8a below the second electrode 30. The through-hole 10a has a larger diameter and thus a larger area than the through-hole 8a. The outer diameter of the annular portion 42 of the second electrode 30 is larger than the diameter of the directly above through hole 10a.
 このように、各電極の円環部42は、貫通孔8b,8aよりも大きな開口面積を有する貫通孔10b又は貫通孔10aに重なる。したがって、孔に注入された液体と電極の接触面積が大きく確保され、粒子の解析の確実性を向上することが可能である。図7に示すように、第2の電極30は、第2の出口孔22B(貫通孔10a,8a)の内部の第2の液体38と大きな面積で接触し、第1の電極28は、第1の出口孔20B(貫通孔10b,8b)の内部の第1の液体37と大きな面積で接触する。 Thus, the annular portion 42 of each electrode overlaps the through hole 10b or the through hole 10a having a larger opening area than the through holes 8b, 8a. Therefore, a large contact area is ensured between the liquid injected into the hole and the electrode, and the reliability of particle analysis can be improved. As shown in FIG. 7, the second electrode 30 is in contact with the second liquid 38 inside the second exit hole 22B (through holes 10a, 8a) over a large area, and the first electrode 28 is in contact with the second liquid. It contacts with the first liquid 37 inside one outlet hole 20B (through holes 10b, 8b) over a large area.
 円環部42の外径は、直上の貫通孔10b,10aの直径よりも大きいため、円環部42の位置が所望の位置からわずかに逸脱していたとしても、円環部42は、高い確実性で小径部分10bb,10abに重なる。例えば、円環部42の位置の精度が不正確であるような場合であっても、円環部42は、高い確実性で小径部分10bb,10abに重なる。したがって、複数の粒子解析装置1において、孔に注入された液体と電極の接触面積が一定であり、粒子の解析の確実性を向上することが可能である。以下、電極28,30及びその周辺に関するより詳細な構成について、図7~図9を参照しつつ説明する。ここで、図8は、液体が貯留された孔から漏れた液体を示す、図6と同様の粒子解析装置の拡大平面図である。図9は、液体が貯留された孔から漏れた液体を示す、図6と同様の粒子解析装置の拡大斜視図である。 Since the outer diameter of the annular portion 42 is larger than the diameter of the through holes 10b and 10a directly above, even if the position of the annular portion 42 deviates slightly from the desired position, the annular portion 42 remains high. It reliably overlaps the small diameter portions 10bb, 10ab. For example, even if the positional accuracy of the annular portion 42 is inaccurate, the annular portion 42 overlaps the small diameter portions 10bb and 10ab with a high degree of certainty. Therefore, in a plurality of particle analysis devices 1, the contact area between the liquid injected into the hole and the electrode is constant, and it is possible to improve the certainty of particle analysis. A more detailed configuration of the electrodes 28, 30 and their periphery will be described below with reference to FIGS. 7 to 9. FIG. Here, FIG. 8 is an enlarged plan view of the particle analysis device similar to FIG. 6, showing liquid leaking from holes in which liquid is stored. FIG. 9 is an enlarged perspective view of a particle analysis device similar to that of FIG. 6 showing liquid leaking from a hole in which the liquid is stored.
 図7に示すように、電極28,30の各々は、第1の出口孔20B又は第2の出口孔22Bにほぼ直交する。電極28,30の各々は、平坦な薄板であるので、2つの板8,10の間で圧縮されて図示のように変形することがある。板8,10は、電極28,30より軟らかい材料から形成されているため、板8,10も変形し、電極28,30の厚さを吸収する。例えば、図7は、より軟らかい板8が板10より大きく変形していることを示す。 As shown in FIG. 7, each of the electrodes 28, 30 is substantially orthogonal to the first exit aperture 20B or the second exit aperture 22B. Since each of the electrodes 28,30 is a flat thin plate, it can be compressed between the two plates 8,10 and deformed as shown. Since the plates 8,10 are made of a softer material than the electrodes 28,30, the plates 8,10 also deform and absorb the thickness of the electrodes 28,30. For example, FIG. 7 shows that the softer plate 8 deforms more than the plate 10 .
 例えば、電極28,30の厚さのため、電極28,30の各々の周囲には、板8,10の隙間が発生することがある。そして、このような板8,10の隙間には、第1の出口孔20Bや第2の出口孔22B内の液体が漏出するおそれがある。 For example, due to the thickness of the electrodes 28 , 30 , gaps between the plates 8 , 10 may occur around each of the electrodes 28 , 30 . Further, there is a possibility that the liquid in the first outlet hole 20B or the second outlet hole 22B may leak into such gaps between the plates 8 and 10 .
 ここで、図8及び図9においては、第1の出口孔20B及び第2の出口孔22Bから液体が漏れた想定し、その漏れた液体を仮想線で示している。各電極の円環部42の上面に接触していた液体は、電極28,30の厚さに起因する電極の周囲における板8,10の隙間に、液漏れL1として漏出すことがある。液漏れL1の範囲は、電極28,30の周囲における板8,10の隙間に相当する。 Here, in FIGS. 8 and 9, it is assumed that liquid has leaked from the first outlet hole 20B and the second outlet hole 22B, and the leaked liquid is indicated by imaginary lines. The liquid that has been in contact with the upper surface of the annular portion 42 of each electrode may leak into the gap between the plates 8 and 10 around the electrodes 28 and 30 due to the thickness of the electrodes 28 and 30 as liquid leakage L1. The range of liquid leakage L1 corresponds to the gap between the plates 8, 10 around the electrodes 28, 30. FIG.
 液漏れL1は、電極28,30の円環部42の側面から延長部44の両側面を伝って電極棒挿入孔32,34に到達し、液漏れL2として電極棒挿入孔32,34内に現れうる。液漏れL2の範囲は、板8,10の壁で囲まれた電極棒挿入孔32,34の範囲内にある。電極棒挿入孔32,34の大部分の周囲には、板8,10の間に電極28,30が介在しないため、電極棒挿入孔32,34の外側には液漏れL2はほとんどない。つまり、本実施形態の粒子解析装置1においては、電極28,30の延長部44の幅が電極棒挿入孔32,34の幅より小さく、電極28,30の延長部44の端部が電極棒挿入孔32,34の範囲内にあるため、電極棒挿入孔32,34の外側には液漏れL2はほとんどない。そして、液漏れL1,L2のない領域では、板10と板8は液密に接合されているとみなすことができる。つまり、第1の電極28の周囲の全体にわたって、第1の電極28と第2の電極30の直上の板10が第1の電極28と第2の電極30の直下の板8に液密に接合されており、第2の電極30の周囲の全体にわたって、第1の電極28と第2の電極30の直上の板10が第1の電極28と第2の電極30の直下の板8に液密に接合されている。そして、第1の電極28と第2の電極30の間には、板10が板8に液密に接合されている領域が介在する。このように構成することによって、第1の出口孔20B及び第2の出口孔22Bからの実質的な液体の漏出しを有効に抑制することができ、液体(例えば、第1の出口孔20B又は第2の出口孔22Bから漏出した液体)による第1の電極28と第2の電極30の短絡を極めて有効に抑制することができる。 The liquid leakage L1 travels from the side surface of the annular portion 42 of the electrodes 28 and 30 to the electrode rod insertion holes 32 and 34 along both side surfaces of the extension portion 44, and then flows into the electrode rod insertion holes 32 and 34 as liquid leakage L2. can appear. The range of liquid leakage L2 is within the range of the electrode insertion holes 32 and 34 surrounded by the walls of the plates 8 and 10 . Since the electrodes 28 and 30 are not interposed between the plates 8 and 10 around most of the electrode rod insertion holes 32 and 34, there is almost no liquid leakage L2 outside the electrode rod insertion holes 32 and 34. That is, in the particle analysis apparatus 1 of the present embodiment, the width of the extensions 44 of the electrodes 28 and 30 is smaller than the width of the electrode rod insertion holes 32 and 34, and the ends of the extensions 44 of the electrodes 28 and 30 are the electrode rods. Since it is within the range of the insertion holes 32 and 34, there is almost no liquid leakage L2 outside the electrode rod insertion holes 32 and 34. It can be considered that the plate 10 and the plate 8 are joined in a liquid-tight manner in areas where there are no liquid leaks L1 and L2. In other words, the plate 10 directly above the first electrode 28 and the second electrode 30 is liquid-tight with the plate 8 directly below the first electrode 28 and the second electrode 30 over the entire circumference of the first electrode 28. The plate 10 directly above the first electrode 28 and the second electrode 30 is joined to the plate 8 directly below the first electrode 28 and the second electrode 30 throughout the circumference of the second electrode 30. liquid-tightly bonded. Between the first electrode 28 and the second electrode 30, there is a region where the plate 10 is liquid-tightly joined to the plate 8. As shown in FIG. By configuring in this way, substantial liquid leakage from the first outlet hole 20B and the second outlet hole 22B can be effectively suppressed, and the liquid (for example, the first outlet hole 20B or Short-circuiting between the first electrode 28 and the second electrode 30 due to liquid leaking from the second exit hole 22B can be very effectively suppressed.
 これまでに説明した本実施形態の粒子解析装置1は、解析する粒子を含まない液体を注入する入口孔(例えば、本実施形態においては第1の入口孔20A)の開口部から一定領域における流路内面の少なくとも一部が親水化されていることを特に主要な構成としている。このため、例えば、解析する粒子を含まない液体を注入する入口孔が第2の入口孔22Aである場合には、これまでに説明した第1の入口孔20Aの親水化に関する構成が、第2の入口孔22Aに対して適用されることとなる。即ち、解析する粒子を含まない液体を注入する入口孔が第2の入口孔22Aである場合は、第2の入口孔22Aの開口部から一定領域における流路内面の少なくとも一部(例えば、第2の大径部分10daから流路径が縮径する第2の縮径部10dc)が親水化されていることとなる。粒子解析装置1は、解析する粒子を含まない液体を注入する入口孔(例えば、第1の入口孔20A)の開口部から一定領域の流路内面における「水との親和性」が、その他の領域の流路内面における「水との親和性」に比して、相対的に高くなっており、粒子通過頻度を向上させ、効率的に計測を行うことができる。特に、本実施形態の粒子解析装置1のように、第1の入口孔20Aの流路内面のうちの、少なくとも、第1の入口孔20Aの大径部分10caから流路径が縮径する第1の縮径部10ccの流路内面における「水との親和性」が、第2の入口孔22Aの開口部から一定領域(例えば、大径部分10da)の流路内面における「水との親和性」に比して相対的に高いことにより、チップ24中央の接続孔26における粒子通過頻度をより有効に向上させることができる。なお、これまでに説明したように、第1の大径部分10caが、第1の入口孔20Aの開口部に設けられた座繰り穴からなる場合には、座繰り穴の底面となる第1の縮径部10ccの流路内面が少なくとも親水化されていることが好ましい。 The particle analysis apparatus 1 of the present embodiment described so far has a flow in a certain region from the opening of an inlet hole (for example, the first inlet hole 20A in the present embodiment) for injecting a liquid that does not contain particles to be analyzed. It is particularly important that at least a portion of the inner surface of the road is made hydrophilic. For this reason, for example, when the inlet hole for injecting the liquid that does not contain the particles to be analyzed is the second inlet hole 22A, the configuration related to the hydrophilization of the first inlet hole 20A described above is the second inlet hole. will be applied to the inlet hole 22A. That is, when the inlet hole for injecting the liquid not containing the particles to be analyzed is the second inlet hole 22A, at least a part of the inner surface of the channel in a certain area from the opening of the second inlet hole 22A (for example, the second The second reduced-diameter portion 10dc) in which the channel diameter is reduced from the large-diameter portion 10da of 2 is hydrophilized. In the particle analysis apparatus 1, the "affinity with water" on the inner surface of the channel in a certain area from the opening of the inlet hole (for example, the first inlet hole 20A) for injecting the liquid not containing the particles to be analyzed Compared to the "affinity with water" on the inner surface of the channel in the region, it is relatively high, so that the particle passing frequency can be improved and measurement can be performed efficiently. In particular, as in the particle analysis apparatus 1 of the present embodiment, at least the first inlet hole 20A of the inner surface of the inlet hole 20A has a first inlet hole 20A whose diameter is reduced from the large diameter portion 10ca. The "affinity with water" on the inner surface of the flow channel of the reduced diameter portion 10cc is the "affinity with water" on the inner surface of the flow channel in a certain area (for example, the large diameter portion 10da) from the opening of the second inlet hole 22A. , the particle passing frequency in the connection hole 26 at the center of the chip 24 can be more effectively improved. As described above, when the first large-diameter portion 10ca is a countersunk hole provided at the opening of the first inlet hole 20A, the first It is preferable that at least the inner surface of the flow path of the diameter-reduced portion 10cc of is hydrophilized.
 これまでに説明した粒子解析装置1において、電極棒挿入孔32,34は、ほぼ半円形の輪郭を有する。しかしながら、電極棒挿入孔32,34の輪郭は、このような形状に限定されない。電極棒挿入孔32,34は、例えば、図10に示すように、円形の輪郭を有してもよいし、図11に示すように、矩形の輪郭を有してもよい。 In the particle analysis device 1 described so far, the electrode rod insertion holes 32, 34 have a substantially semicircular contour. However, the contours of the electrode rod insertion holes 32, 34 are not limited to such shapes. The electrode rod insertion holes 32 and 34 may have, for example, a circular contour as shown in FIG. 10, or a rectangular contour as shown in FIG.
 さらに、電極棒挿入孔32,34の幅は、電極28,30の延長部44の幅より大きい場合の例について説明したが、電極28,30の延長部44に対する電極棒挿入孔32,34の相対的大きさは、このような例に限定されない。例えば、図12に示すように、電極棒挿入孔32,34の幅は、電極28,30の延長部44の幅より小さくてもよく、電極棒挿入孔32,34が延長部44の端部の範囲内にあってもよい。この場合、電極28,30の周囲における板8,10の隙間に液漏れが発生しても、第1の電極28と第2の電極30の間隔が十分大きく、第1の電極棒挿入孔32と第2の電極棒挿入孔34の間隔が十分大きければ、液体が第1の電極28と第2の電極30の短絡を引き起こすおそれが小さい。ここで、図10は、第1実施形態の変形例を模式的に示す平面図である。図11は、第1実施形態の他の変形例を模式的に示す平面図である。図12は、第1実施形態の更に他の変形例を模式的に示す平面図である。 Furthermore, although the example in which the width of the electrode rod insertion holes 32 and 34 is larger than the width of the extensions 44 of the electrodes 28 and 30 has been described, Relative magnitudes are not limited to such examples. For example, as shown in FIG. 12, the width of the electrode rod insertion holes 32, 34 may be smaller than the width of the extensions 44 of the electrodes 28, 30, and the electrode rod insertion holes 32, 34 may be located at the ends of the extensions 44. may be within the range of In this case, even if liquid leakage occurs in the gap between the plates 8 and 10 around the electrodes 28 and 30, the gap between the first electrode 28 and the second electrode 30 is sufficiently large and the first electrode rod insertion hole 32 is closed. and the second electrode rod insertion hole 34 is sufficiently large, the risk of the liquid causing a short circuit between the first electrode 28 and the second electrode 30 is small. Here, FIG. 10 is a plan view schematically showing a modification of the first embodiment. FIG. 11 is a plan view schematically showing another modification of the first embodiment. FIG. 12 is a plan view schematically showing still another modification of the first embodiment.
(第2実施形態)
 図13に示すように、第2実施形態の粒子解析装置101は、六角柱の形状を有し、6つの側面1A,1B,1C,1D,1E,1Fを有する。図15の平面図に示すように、粒子解析装置101は、上方から見て、ほぼ正方形の2つのコーナーが切り欠かれた六角形の輪郭を有する。ここで、図13は、本発明の粒子解析装置の第2実施形態を模式的に示す斜視図である。図14は、図13に示す粒子解析装置の側面図である。図15は、図13に示す粒子解析装置の平面図である。
(Second embodiment)
As shown in FIG. 13, the particle analysis device 101 of the second embodiment has a hexagonal prism shape and has six side surfaces 1A, 1B, 1C, 1D, 1E, and 1F. As shown in the plan view of FIG. 15, the particle analysis device 101 has a hexagonal contour with two corners that are substantially square when viewed from above. Here, FIG. 13 is a perspective view schematically showing the second embodiment of the particle analysis device of the present invention. 14 is a side view of the particle analysis device shown in FIG. 13. FIG. 15 is a plan view of the particle analysis device shown in FIG. 13. FIG.
 図13~図15に示すように、粒子解析装置101は、上方の液体空間20、下方の液体空間22、及び接続孔26を有する。液体空間20,22はそれぞれ水平方向に真っ直ぐに延びており、第1の液体空間20には第1の液体37が貯留され、下方の液体空間22には第2の液体38が貯留される。図14において、上方の液体空間20に貯留される第1の液体37と、下方の液体空間22に貯留される第2の液体38を異なるハッチングパターンで示す。下方の液体空間22は、上方の液体空間20の下方に配置されており、液体空間20,22は接続孔26で互いに接続されている。図15に示すように、平面図において、液体空間20,22は互いに直交する。  As shown in FIGS. 13 to 15, the particle analysis device 101 has an upper liquid space 20, a lower liquid space 22, and a connection hole . The liquid spaces 20 and 22 each extend straight in the horizontal direction. The first liquid space 20 stores a first liquid 37 and the lower liquid space 22 stores a second liquid 38 . In FIG. 14, the first liquid 37 stored in the upper liquid space 20 and the second liquid 38 stored in the lower liquid space 22 are indicated by different hatching patterns. A lower liquid space 22 is arranged below the upper liquid space 20 and the liquid spaces 20 , 22 are connected to each other by a connecting hole 26 . As shown in FIG. 15, the liquid spaces 20, 22 are perpendicular to each other in plan view.
 また、粒子解析装置101は、第1の入口孔20A、第1の出口孔20B、第2の入口孔22A及び第2の出口孔22Bを有する。第1の入口孔20A、第1の出口孔20B、第2の入口孔22A及び第2の出口孔22Bの各々は、粒子解析装置101の上面で開口する開口部を有する。 The particle analysis device 101 also has a first inlet hole 20A, a first outlet hole 20B, a second inlet hole 22A and a second outlet hole 22B. Each of the first inlet hole 20A, the first outlet hole 20B, the second inlet hole 22A, and the second outlet hole 22B has an opening that opens on the top surface of the particle analysis device 101 .
 第1の入口孔20A及び第1の出口孔20Bは、粒子解析装置101の上面から上方の液体空間20まで鉛直に延び、これらの孔内を第1の液体37が流通する。第1の入口孔20A、第1の出口孔20B及び上方の液体空間20は、第1の液体37のための1つの貯留槽を形成する。第1の液体37を上方の液体空間20に供給する際、第1の入口孔20Aは第1の液体37の導入口として使用され、第1の出口孔20Bは、第1の液体37により上方の液体空間20から押し出される空気の出口として使用される。 The first inlet hole 20A and the first outlet hole 20B extend vertically from the upper surface of the particle analysis device 101 to the upper liquid space 20, and the first liquid 37 flows through these holes. The first inlet hole 20A, the first outlet hole 20B and the upper liquid space 20 form one reservoir for the first liquid 37. FIG. When supplying the first liquid 37 to the upper liquid space 20 , the first inlet hole 20A is used as an inlet for the first liquid 37 and the first outlet hole 20B is used as an inlet for the first liquid 37 . is used as an outlet for air pushed out of the liquid space 20 of the .
 第2の入口孔22A及び第2の出口孔22Bは、粒子解析装置101の上面から下方の液体空間22まで鉛直に延び、これらの孔内を第2の液体38が流通する。第2の入口孔22A、第2の出口孔22B及び下方の液体空間22は、第2の液体38のための他の1つの貯留槽を形成する。第2の液体38を下方の液体空間22に供給する際、第2の入口孔22Aは、第2の液体38の導入口として使用され、第2の出口孔22Bは、第2の液体38により下方の液体空間22から押し出される空気の出口として使用される。 The second inlet hole 22A and the second outlet hole 22B extend vertically from the upper surface of the particle analysis device 101 to the liquid space 22 below, and the second liquid 38 flows through these holes. The second inlet hole 22A, the second outlet hole 22B and the lower liquid space 22 form another reservoir for the second liquid 38. FIG. When supplying the second liquid 38 to the lower liquid space 22, the second inlet hole 22A is used as an inlet for the second liquid 38, and the second outlet hole 22B is used by the second liquid 38 to It is used as an outlet for air forced out of the lower liquid space 22 .
 更に、粒子解析装置101は、第1の電極28と第2の電極30を有する。第1の電極28は、第1の出口孔20Bを通じて上方の液体空間20内の第1の液体37に電位を与える。第2の電極30は、第2の出口孔22Bを通じて下方の液体空間22内の第2の液体38に、第1の電極28とは異なる電位を与える。例えば、第2の電極30は陽極であり、第1の電極28は陰極である。接続孔26を介して液体空間20,22は連通しているため、液体空間20,22の内部の第1の液体37及び第2の液体38に電流が流れる。 Furthermore, the particle analysis device 101 has a first electrode 28 and a second electrode 30 . The first electrode 28 applies a potential to the first liquid 37 in the upper liquid space 20 through the first exit hole 20B. The second electrode 30 provides a different potential than the first electrode 28 to the second liquid 38 in the lower liquid space 22 through the second exit hole 22B. For example, the second electrode 30 is the anode and the first electrode 28 is the cathode. Since the liquid spaces 20 and 22 are in communication with each other through the connecting holes 26, current flows through the first liquid 37 and the second liquid 38 inside the liquid spaces 20 and 22. FIG.
 図13~図15に示すような粒子解析装置101も、これまでに説明した第1実施形態の粒子解析装置1(図1参照)と同様の原理により、チップ(ナノポアチップ)24に形成された接続孔26を通過した粒子40の特徴(例えば、種類、形状、サイズ)を解析することができる。 A particle analysis device 101 as shown in FIGS. 13 to 15 is also formed on a chip (nanopore chip) 24 based on the same principle as the particle analysis device 1 (see FIG. 1) of the first embodiment described so far. The characteristics (eg, type, shape, size) of particles 40 passing through connecting holes 26 can be analyzed.
 粒子解析装置101は、積層された六角形の板2,4,6,8,10を備える。粒子解析装置101における板2,4,6,8,10は、第1実施形態の粒子解析装置1(図1参照)における板2,4,6,8,10に該当する構成要素であり、その形状が六角形であること以外は、粒子解析装置1(図1参照)と同様に構成することができる。板2,4,6,8,10の形状については、六角形に限定されることはなく、粒子解析装置101に形状に応じて適宜変更することができる。 The particle analysis device 101 includes stacked hexagonal plates 2, 4, 6, 8, and 10. The plates 2, 4, 6, 8, and 10 in the particle analysis device 101 are components corresponding to the plates 2, 4, 6, 8, and 10 in the particle analysis device 1 (see FIG. 1) of the first embodiment, It can be configured in the same manner as the particle analysis device 1 (see FIG. 1) except that its shape is hexagonal. The shape of the plates 2 , 4 , 6 , 8 , 10 is not limited to a hexagon, and can be changed appropriately according to the shape of the particle analysis device 101 .
 図16に示すように、最下層の板2には溝も孔も形成されていない。図16は、図13に示す粒子解析装置を斜め上方から見た分解図である。 As shown in FIG. 16, the bottom plate 2 has neither grooves nor holes. FIG. 16 is an exploded view of the particle analysis device shown in FIG. 13 as seen obliquely from above.
 次の板4の下面の中央には、水平な溝4gが形成されている。板2,4が接合されると、溝4gは下方の液体空間22を形成する。溝4gの中央には、鉛直方向に貫通する連通孔4tが形成されている。連通孔4tは、下方の液体空間22(溝4g)とチップ24の接続孔26とを連通させる。また、板4には、鉛直方向に貫通する円柱形の貫通孔4a,4dが形成されている。貫通孔4a,4dは同じ直径を有する。貫通孔4aは溝4gの一端部に連通し、貫通孔4dは溝4gの他端部に連通する。 A horizontal groove 4g is formed in the center of the lower surface of the next plate 4. When the plates 2, 4 are joined, the groove 4g forms a lower liquid space 22. FIG. 4 t of communicating holes which penetrate in the perpendicular direction are formed in the center of 4 g of groove|channels. The communication hole 4t communicates the lower liquid space 22 (groove 4g) and the connection hole 26 of the chip 24 with each other. Further, the plate 4 is formed with cylindrical through holes 4a and 4d penetrating in the vertical direction. Through holes 4a and 4d have the same diameter. The through hole 4a communicates with one end of the groove 4g, and the through hole 4d communicates with the other end of the groove 4g.
 次の板6の下面の中央には、直方体の凹部6hが形成されている。凹部6hは、接続孔26を有するチップ24を収容する。凹部6hには、チップ24が嵌め入れられる。チップ24は凹部6hに取り外し可能(交換可能)であってもよいし、取り外し不可能(交換不可能)であってもよい。板6の上面の中央には、水平な溝6gが形成されている。板6,8が接合されると、溝6gは上方の液体空間20を形成する。溝6gの中央には、鉛直方向に貫通する連通孔6tが形成されている。連通孔6tは、上方の液体空間20(溝6g)とチップ24の接続孔26とを連通させる。連通孔4t,6tと接続孔26の断面は円形であるが、円形でなくてもよい。 A rectangular parallelepiped concave portion 6h is formed in the center of the lower surface of the next plate 6. The recess 6h accommodates a chip 24 having a connection hole 26. As shown in FIG. A chip 24 is fitted into the recess 6h. The chip 24 may be removable (replaceable) from the recess 6h, or may be non-removable (non-replaceable). A horizontal groove 6g is formed in the center of the upper surface of the plate 6. As shown in FIG. The groove 6g forms an upper liquid space 20 when the plates 6, 8 are joined. A communication hole 6t is formed in the center of the groove 6g so as to penetrate in the vertical direction. The communication hole 6t allows the upper liquid space 20 (groove 6g) and the connection hole 26 of the chip 24 to communicate with each other. The cross sections of the communication holes 4t, 6t and the connection hole 26 are circular, but they do not have to be circular.
 また、板6には、鉛直方向に貫通する円柱形の貫通孔6a,6dが形成されている。貫通孔6a,6dは、貫通孔4a,4dと同じ直径を有する。貫通孔6aは、直下の板4の貫通孔4aひいては溝4gの一端部に連通し、貫通孔6dは、貫通孔4dひいては溝4gの他端部に連通する。 Also, the plate 6 is formed with cylindrical through holes 6a and 6d penetrating in the vertical direction. The through holes 6a, 6d have the same diameter as the through holes 4a, 4d. The through-hole 6a communicates with the through-hole 4a of the plate 4 immediately below and one end of the groove 4g, and the through-hole 6d communicates with the through-hole 4d and the other end of the groove 4g.
 チップ(ナノポアチップ)24は、直方体、例えば、正方形の板である。チップ24の中央には、鉛直方向に貫通する接続孔26が形成されている。チップ24は、電気的及び化学的に不活性で絶縁性の材料、例えば、ガラス、サファイア、セラミックス、樹脂、エラストマー、SiO、SiN、又はAlにより形成されてよい。好ましくは、チップ24は、板2,4,6,8,10の材料よりも硬い材料、例えば、ガラス、サファイア、セラミックス、SiO、SiN、又はAlから形成されるが、樹脂又はエラストマーでチップ24を形成してもよい。使用者は、粒子解析装置101の用途に応じて、適切なチップ24を選択することができる。例えば、異なる寸法又は形状の接続孔26を有する複数のチップ24を準備し、凹部に嵌め入れられるべきチップ24を選択することにより、解析対象の粒子40を変更することができる。 The tip (nanopore tip) 24 is a rectangular parallelepiped, for example, a square plate. A connection hole 26 is formed through the center of the chip 24 in the vertical direction. The tip 24 may be made of an electrically and chemically inert and insulating material such as glass, sapphire, ceramics, resin, elastomer, SiO2 , SiN , or Al2O3 . Preferably, the chip 24 is made of a material harder than the material of the plates 2, 4, 6, 8, 10, such as glass, sapphire, ceramics, SiO2 , SiN, or Al2O3 , but is made of resin or Tip 24 may be formed from an elastomer. A user can select an appropriate tip 24 according to the application of the particle analysis device 101 . For example, the particle 40 to be analyzed can be varied by providing a plurality of tips 24 with different sizes or shapes of connection holes 26 and selecting the tip 24 to be fitted in the recess.
 粒子が接続孔26で詰まることなく通過することを容易にするため、チップ24には親水化処理を施すことが好ましい。親水化処理は、例えば、酸素プラズマ又は紫外線をチップ24に照射することを有する。紫外線はレーザー光線の形式で照射してよい。 In order to facilitate the passage of particles through the connection hole 26 without clogging it, the chip 24 is preferably subjected to a hydrophilic treatment. Hydrophilization includes, for example, irradiating the tip 24 with oxygen plasma or ultraviolet light. The ultraviolet radiation may be applied in the form of laser beams.
 次の板8には、鉛直方向に貫通する円柱形の貫通孔8a,8b,8c,8dが形成されている。貫通孔8a,8b,8c,8dは、貫通孔4a,4d,6a,6dと同じ直径を有する。貫通孔8aは、直下の板6の貫通孔6aに連通し、貫通孔8dは、板6の貫通孔6dに連通する。貫通孔8bは、板6の溝6gの一端部に連通し、貫通孔8cは溝6gの他端部に連通する。板8の上面には、電極28,30が並列に配置されており、第1の電極28は貫通孔8b内の第1の液体37に電位を与え、第2の電極30は貫通孔8a内の第2の液体38に電位を与える。 The next plate 8 is formed with cylindrical through holes 8a, 8b, 8c, and 8d penetrating in the vertical direction. Through holes 8a, 8b, 8c, 8d have the same diameter as through holes 4a, 4d, 6a, 6d. The through hole 8 a communicates with the through hole 6 a of the plate 6 directly below, and the through hole 8 d communicates with the through hole 6 d of the plate 6 . The through hole 8b communicates with one end of the groove 6g of the plate 6, and the through hole 8c communicates with the other end of the groove 6g. Electrodes 28 and 30 are arranged in parallel on the upper surface of the plate 8. The first electrode 28 applies an electric potential to the first liquid 37 in the through hole 8b, and the second electrode 30 in the through hole 8a. A potential is applied to the second liquid 38 of .
 最上層の板10には、鉛直方向に貫通する貫通孔10a,10b,10c,10dが形成されている。貫通孔10a,10b,10c,10dは、直下の板8の貫通孔8a,8b,8c,8dにそれぞれ連通する。最上層の板10の貫通孔10c,10dは、粒子解析装置101の上面で開口する開口部から一定領域において貫通孔10c,10dの孔径が拡径した大径部分が形成されていてもよい。 Through- holes 10a, 10b, 10c, and 10d are formed in the uppermost plate 10 so as to penetrate in the vertical direction. The through holes 10a, 10b, 10c, and 10d respectively communicate with the through holes 8a, 8b, 8c, and 8d of the plate 8 directly below. The through holes 10 c and 10 d of the plate 10 of the uppermost layer may be formed with large-diameter portions in which the diameters of the through holes 10 c and 10 d are enlarged in a certain area from the opening opening on the upper surface of the particle analysis device 101 .
 また、最上層の板10には、板10の下方の第1の電極28が露出する第1の電極棒挿入孔32と、第2の電極30が露出する第2の電極棒挿入孔34が形成されている。電極棒挿入孔32,34の各々は、粒子解析装置101の上面で開口する開口部を有し、板10を貫通して、上面から電極28又は電極30に延びる。電極棒挿入孔32,34の各々は矩形の輪郭を有するが、電極棒挿入孔の輪郭の形状は図示例には限定されない。 The uppermost plate 10 has a first electrode rod insertion hole 32 through which the first electrode 28 below the plate 10 is exposed, and a second electrode rod insertion hole 34 through which the second electrode 30 is exposed. formed. Each of the electrode rod insertion holes 32 and 34 has an opening that opens on the upper surface of the particle analysis device 101, penetrates the plate 10, and extends from the upper surface to the electrode 28 or the electrode 30. FIG. Each of the electrode rod insertion holes 32 and 34 has a rectangular contour, but the shape of the contour of the electrode rod insertion hole is not limited to the illustrated example.
 電極棒挿入孔32,34の各々には電極棒が挿入される。これらの電極棒は、電極28,30にそれぞれ接触させられ、液体37,38に電位を与える。 An electrode rod is inserted into each of the electrode rod insertion holes 32 and 34 . These electrode bars are brought into contact with electrodes 28 and 30, respectively, and apply an electric potential to liquids 37 and 38. FIG.
 上記の第1の入口孔20Aは、貫通孔10c,8cから構成され、板10,8を貫通し、板6の溝6g、即ち上方の液体空間20の一端部に到達する。 The first inlet hole 20A is composed of through holes 10c and 8c, passes through the plates 10 and 8, and reaches the groove 6g of the plate 6, that is, one end of the liquid space 20 above.
 第1の出口孔20Bは、貫通孔10b,8bから構成され、板10,8を貫通し、板6の溝6g、即ち上方の液体空間20の他端部に到達する。第1の出口孔20Bの途中には、第1の電極28が設けられている。 The first exit hole 20B is composed of through holes 10b and 8b, passes through the plates 10 and 8, and reaches the groove 6g of the plate 6, that is, the other end of the liquid space 20 above. A first electrode 28 is provided in the middle of the first outlet hole 20B.
 第2の入口孔22Aは、貫通孔10d,8d,6d,4dから構成され、板10,8,6,4を貫通し、板4の溝4g、即ち下方の液体空間22の一端部に到達する。 The second inlet hole 22A consists of through- holes 10d, 8d, 6d, 4d and passes through the plates 10, 8, 6, 4 to reach the groove 4g in the plate 4, i.e. one end of the liquid space 22 below. do.
 第2の出口孔22Bは、貫通孔10a,8a,6a,4aから構成され、板10,8,6,4を貫通し、板4の溝4g、即ち下方の液体空間22の他端部に到達する。第2の入口孔22Aの途中には、第2の電極30が設けられている。 The second exit hole 22B is composed of through- holes 10a, 8a, 6a, 4a and passes through the plates 10, 8, 6, 4 and into the groove 4g of the plate 4, i.e. the other end of the liquid space 22 below. reach. A second electrode 30 is provided in the middle of the second inlet hole 22A.
 最上層の板10の貫通孔10cは、上部に大径部分10ca、下部に小径部分10cbを有していてもよい。大径部分10caも小径部分10cbも円柱形であるが、大径部分10caの直径は小径部分10cbの直径より大きい。小径部分10cbの直径は、貫通孔10cの直下の貫通孔8cの直径と等しくなっている。大径部分10caは、第1の入口孔20Aの開口部であり、粒子解析装置101の上面で開口する。 The through hole 10c of the uppermost plate 10 may have a large diameter portion 10ca at the top and a small diameter portion 10cb at the bottom. Both the large-diameter portion 10ca and the small-diameter portion 10cb are cylindrical, but the diameter of the large-diameter portion 10ca is larger than that of the small-diameter portion 10cb. The diameter of the small diameter portion 10cb is equal to the diameter of the through hole 8c directly below the through hole 10c. The large-diameter portion 10ca is the opening of the first inlet hole 20A and opens on the upper surface of the particle analysis device 101. As shown in FIG.
 板10の貫通孔10dは、上部に大径部分10da、下部に小径部分10dbを有する。大径部分10daも小径部分10dbも円柱形であるが、大径部分10daの直径は小径部分10dbの直径より大きい。小径部分10dbの直径は、貫通孔10dの直下の貫通孔8dの直径と等しくなっている。大径部分10daは、第2の入口孔22Aの開口部であり、粒子解析装置101の上面で開口する。 A through hole 10d of the plate 10 has a large diameter portion 10da at the top and a small diameter portion 10db at the bottom. Both the large diameter portion 10da and the small diameter portion 10db are cylindrical, but the diameter of the large diameter portion 10da is larger than the diameter of the small diameter portion 10db. The diameter of the small diameter portion 10db is equal to the diameter of the through hole 8d directly below the through hole 10d. The large-diameter portion 10 da is the opening of the second inlet hole 22 A and opens on the upper surface of the particle analysis device 101 .
 最上層の板10の貫通孔10cは、上述したように、粒子解析装置101の上面で開口する第1の入口孔20Aの開口部となる。本実施形態の粒子解析装置101においても、解析する粒子を含まない液体を注入する入口孔である第1の入口孔20Aの開口部から一定領域における流路内面の少なくとも一部が親水化されている。このように構成することによって、チップ24中央の接続孔26を通過する粒子の頻度を向上させ、効率的に計測を行うことができる。 The through hole 10c of the uppermost plate 10 serves as the opening of the first inlet hole 20A that opens on the upper surface of the particle analysis device 101, as described above. Also in the particle analysis apparatus 101 of the present embodiment, at least a part of the inner surface of the channel in a certain area from the opening of the first inlet hole 20A, which is the inlet hole for injecting the liquid not containing the particles to be analyzed, is hydrophilized. there is By configuring in this way, the frequency of particles passing through the connection hole 26 in the center of the chip 24 can be increased, and measurement can be performed efficiently.
 本実施形態の粒子解析装置101においても、第1の入口孔20Aの開口部から一定領域の流路内面に対して親水化処理が施されていることが好ましい。親水化処理は、これまでに説明した方法と同様の方法を挙げることができる。 Also in the particle analysis device 101 of the present embodiment, it is preferable that the inner surface of the flow channel in a certain area from the opening of the first inlet hole 20A is subjected to hydrophilic treatment. Hydrophilization treatment can include the same methods as those described above.
 第1の入口孔20Aの親水化された流路内面は、第2の入口孔22Aの開口部から一定領域の流路内面よりも親水性が高いことが好ましい。即ち、第2の入口孔22Aの開口部から一定領域の流路内面については、第1の入口孔20Aのような親水化処理が施されていないことが好ましい。第2の入口孔22Aから延びる流路の構成については、これまでに説明した第1実施形態の粒子解析装置1(図1等参照)と同様の構成を採用することができる。 The hydrophilized inner surface of the first inlet hole 20A is preferably higher in hydrophilicity than the inner surface of the passage in a certain area from the opening of the second inlet hole 22A. That is, it is preferable that the inner surface of the flow path in a certain area from the opening of the second inlet hole 22A is not subjected to the hydrophilization treatment as in the case of the first inlet hole 20A. As for the configuration of the flow path extending from the second inlet hole 22A, the configuration similar to that of the particle analysis apparatus 1 (see FIG. 1 and the like) of the first embodiment described above can be adopted.
 解析する粒子を含まない液体を注入する入口孔である第1の入口孔20Aは、開口部から一定領域において流路径が拡径した第1の大径部分10caを有し、当該第1の大径部分10caから流路径が縮径する部位の流路内面が少なくとも親水化されていることが好ましい。例えば、第1の入口孔20Aは、開口部から流路径が拡径した第1の大径部分10caと第1の大径部分10caから流路径が縮径する第1の縮径部10ccとを有し、第1の入口孔20Aの第1の縮径部10ccの表面が少なくとも親水化されていることが好ましい。また、解析する粒子を含む液体を注入する入口孔としての第2の入口孔22Aは、開口部から一定領域において流路径が拡径した第2の大径部分10daと、この第2の大径部分10daから流路径が縮径する第2の縮径部10dcとを有していてもよい。第2の縮径部10dcの表面は、第1の縮径部10ccの表面よりも親水性が低く、例えば、疎水性を有するものであることが好ましい。 The first inlet hole 20A, which is an inlet hole for injecting a liquid that does not contain particles to be analyzed, has a first large-diameter portion 10ca in which the flow path diameter increases in a certain area from the opening. It is preferable that at least the inner surface of the channel at a portion where the channel diameter is reduced from the diameter portion 10ca is made hydrophilic. For example, the first inlet hole 20A includes a first large-diameter portion 10ca having a channel diameter enlarged from the opening and a first reduced-diameter portion 10cc having a channel diameter reduced from the first large-diameter portion 10ca. It is preferable that at least the surface of the first reduced diameter portion 10cc of the first inlet hole 20A is made hydrophilic. The second inlet hole 22A, which serves as an inlet hole for injecting the liquid containing the particles to be analyzed, has a second large diameter portion 10da in which the flow path diameter is enlarged in a certain area from the opening, and the second large diameter portion 10da. It may also have a second diameter-reduced portion 10dc in which the channel diameter is reduced from that of the portion 10da. The surface of the second reduced diameter portion 10dc is less hydrophilic than the surface of the first reduced diameter portion 10cc, for example, preferably hydrophobic.
 また、最上層の板10の貫通孔10aは、上部に大径部分10aa、下部に小径部分10abを有する。大径部分10aaも小径部分10abも円柱形であるが、大径部分10aaの直径は小径部分10abの直径より大きい。小径部分10abの直径は、貫通孔10aの直下の貫通孔8aの直径より大きい。大径部分10aaは、第2の出口孔22Bの開口部であり、粒子解析装置101の上面で開口する。 Also, the through-hole 10a of the plate 10 of the uppermost layer has a large-diameter portion 10aa in the upper portion and a small-diameter portion 10ab in the lower portion. Both the large diameter portion 10aa and the small diameter portion 10ab are cylindrical, but the diameter of the large diameter portion 10aa is larger than the diameter of the small diameter portion 10ab. The diameter of the small diameter portion 10ab is larger than the diameter of the through hole 8a directly below the through hole 10a. The large-diameter portion 10aa is the opening of the second exit hole 22B and opens on the upper surface of the particle analysis device 101. As shown in FIG.
 板10の貫通孔10bは、上部に大径部分10ba、下部に小径部分10bbを有する。大径部分10baも小径部分10bbも円柱形であるが、大径部分10baの直径は小径部分10bbの直径より大きい。小径部分10bbの直径は、貫通孔10bの直下の貫通孔8bの直径より大きい。大径部分10baは、第1の出口孔20Bの開口部であり、粒子解析装置101の上面で開口する。 The through hole 10b of the plate 10 has a large diameter portion 10ba at the top and a small diameter portion 10bb at the bottom. Both the large-diameter portion 10ba and the small-diameter portion 10bb are cylindrical, but the diameter of the large-diameter portion 10ba is larger than that of the small-diameter portion 10bb. The diameter of the small diameter portion 10bb is larger than the diameter of the through hole 8b directly below the through hole 10b. The large-diameter portion 10ba is the opening of the first exit hole 20B and opens on the upper surface of the particle analysis device 101. As shown in FIG.
 板10の貫通孔10a,10bは、直径が一様な円柱形である。貫通孔10aは、第2の出口孔22Bの開口部であり、粒子解析装置101の上面で開口する。貫通孔10bは、第1の出口孔20Bの開口部であり、粒子解析装置101の上面で開口する。 The through holes 10a and 10b of the plate 10 are cylindrical with a uniform diameter. The through-hole 10a is the opening of the second exit hole 22B and opens on the upper surface of the particle analysis device 101. As shown in FIG. The through-hole 10b is the opening of the first exit hole 20B and opens on the upper surface of the particle analysis device 101 .
 板2,4,6,8,10、電極28,30、チップ24等の詳細な構成についても、これまでに説明した第1実施形態の粒子解析装置1(図1参照)における各構成要素と同様の構成を採用することができる。このため、図1に示す粒子解析装置1の構成要素と同様の構成要素については、同一の符号を付し、その説明を省略することがある。 The detailed configurations of the plates 2, 4, 6, 8, 10, the electrodes 28, 30, the tip 24, etc. are the same as the components of the particle analysis apparatus 1 (see FIG. 1) of the first embodiment described above. A similar configuration can be employed. For this reason, components similar to those of the particle analysis apparatus 1 shown in FIG.
 板8に形成された電極28,30の各々は、平坦な薄板であって、2つの板8,10の間に挟まれている。図17に示すように、電極28,30の各々は、板8の貫通孔8b又は8a(第1の出口孔20B又は第2の出口孔22Bの一部)の周囲に形成された円環部42と、円環部42に接続された矩形の延長部44を有する。延長部44の幅は円環部42の外径より小さい。ここで、図17は、図13に示す粒子解析装置の拡大平面図である。 Each of the electrodes 28,30 formed on the plate 8 is a flat thin plate sandwiched between the two plates 8,10. As shown in FIG. 17, each of the electrodes 28 and 30 is an annular portion formed around a through hole 8b or 8a (part of the first exit hole 20B or the second exit hole 22B) of the plate 8. 42 and a rectangular extension 44 connected to the annular portion 42 . The width of the extended portion 44 is smaller than the outer diameter of the annular portion 42 . Here, FIG. 17 is an enlarged plan view of the particle analysis device shown in FIG.
 円環部42は、貫通孔8a,8bとほぼ同じ直径を有する貫通孔を有する。円環部42は、板8の貫通孔8a又は貫通孔8bにほぼ同心に形成されており、直上の板10の貫通孔10a又は貫通孔10bにほぼ同心に重なる。 The annular portion 42 has through holes having substantially the same diameter as the through holes 8a and 8b. The annular portion 42 is formed substantially concentrically with the through-hole 8a or the through-hole 8b of the plate 8, and overlaps substantially concentrically with the through-hole 10a or the through-hole 10b of the plate 10 directly above.
 円環部42と反対側の延長部44の端部は、直上の板10の電極棒挿入孔32又は電極棒挿入孔34に重なる。図18に示すように、第1の電極棒挿入孔32に挿入された第1の電極棒46は、第1の電極28の矩形の延長部44に接触させられ、第2の電極棒挿入孔34に挿入された第2の電極棒48は、第2の電極30の矩形の延長部44に接触させられる。電極棒46,48は、直流電源35及び電流計36(図2参照)に接続されている。図18は、図17のVII-VII線矢視断面図である。 The end of the extended portion 44 opposite to the annular portion 42 overlaps the electrode rod insertion hole 32 or the electrode rod insertion hole 34 of the plate 10 directly above. As shown in FIG. 18, the first electrode rod 46 inserted into the first electrode rod insertion hole 32 is brought into contact with the rectangular extension 44 of the first electrode 28, and is pushed into the second electrode rod insertion hole. A second electrode rod 48 inserted into 34 is brought into contact with the rectangular extension 44 of the second electrode 30 . The electrode rods 46, 48 are connected to a DC power source 35 and an ammeter 36 (see FIG. 2). 18 is a cross-sectional view taken along line VII-VII of FIG. 17. FIG.
 第1の出口孔20Bは、第1の電極28より上方にある貫通孔10bと、第1の電極28より下方にある貫通孔8bとを有する。貫通孔10bの小径部分10bbは、貫通孔8bよりも大きな直径ひいては面積を有する。第1の電極28の円環部42の外径は、直上の貫通孔10bの小径部分10bbの直径より大きい。 The first exit hole 20B has a through hole 10b above the first electrode 28 and a through hole 8b below the first electrode 28. The small-diameter portion 10bb of the through-hole 10b has a larger diameter and thus an area larger than that of the through-hole 8b. The outer diameter of the annular portion 42 of the first electrode 28 is larger than the diameter of the small-diameter portion 10bb of the through-hole 10b immediately above.
 第2の出口孔22Bは、第2の電極30より上方にある貫通孔10aと、第2の電極30より下方にある貫通孔8aとを有する。貫通孔10aの小径部分10abは、貫通孔8aよりも大きな直径ひいては面積を有する。第2の電極30の円環部42の外径は、直上の貫通孔10aの小径部分10abの直径より大きい。 The second exit hole 22B has a through hole 10a above the second electrode 30 and a through hole 8a below the second electrode 30. The small-diameter portion 10ab of the through-hole 10a has a larger diameter and thus an area larger than that of the through-hole 8a. The outer diameter of the annular portion 42 of the second electrode 30 is larger than the diameter of the small-diameter portion 10ab of the directly above through hole 10a.
 このように、各電極の円環部42は、貫通孔8b,8aよりも大きな開口面積を有する貫通孔10b又は10aに重なる。したがって、孔に注入された液体と電極28,30の接触面積が大きく確保され、粒子の解析の確実性を向上することが可能である。図18に示すように、第2の電極30は、第2の出口孔22B(貫通孔10a,8a)の内部の第2の液体38と大きな面積で接触し、第1の電極28は、第1の出口孔20B(貫通孔10b,8b)の内部の第1の液体37と大きな面積で接触する。 Thus, the annular portion 42 of each electrode overlaps the through- hole 10b or 10a having a larger opening area than the through- holes 8b, 8a. Therefore, a large contact area is ensured between the liquid injected into the hole and the electrodes 28 and 30, and the reliability of particle analysis can be improved. As shown in FIG. 18, the second electrode 30 is in contact with the second liquid 38 inside the second exit holes 22B (through holes 10a and 8a) over a large area, and the first electrode 28 is in contact with the second liquid. It contacts with the first liquid 37 inside one outlet hole 20B (through holes 10b, 8b) over a large area.
 円環部42の外径は、直上の小径部分10bb,10abの直径よりも大きいため、円環部42の位置が所望の位置からわずかに逸脱していたとしても、円環部42は、高い確実性で小径部分10bb,10abに重なる。したがって、複数の粒子解析装置101において、孔に注入された液体と電極の接触面積が一定であり、粒子の解析の確実性を向上することが可能である。 Since the outer diameter of the ring portion 42 is larger than the diameter of the small diameter portions 10bb and 10ab immediately above, the ring portion 42 is high even if the position of the ring portion 42 deviates slightly from the desired position. It reliably overlaps the small diameter portions 10bb, 10ab. Therefore, in a plurality of particle analysis devices 101, the contact area between the liquid injected into the hole and the electrode is constant, and the reliability of particle analysis can be improved.
 粒子解析装置101は、第1の蓋50と第2の蓋52を更に有する。第1の蓋50は、第1の出口孔20Bの開口部としての大径部分10baに配置されて、これを閉塞する。第2の蓋52は、第2の出口孔22Bの開口部としての大径部分10aaに配置されて、これを閉塞する。蓋50,52は、空気を通すが液体を通さない膜から形成されている。したがって、「閉塞する」とは、孔での液体の流通を阻害するが、空気の通過を許容することを意味する。 The particle analysis device 101 further has a first lid 50 and a second lid 52 . The first lid 50 is arranged on the large-diameter portion 10ba as the opening of the first outlet hole 20B to close it. The second lid 52 is arranged on the large-diameter portion 10aa as the opening of the second outlet hole 22B to close it. The lids 50, 52 are formed from an air permeable but liquid impermeable membrane. Therefore, "obstructing" means blocking the flow of liquid through the pores but allowing the passage of air.
 蓋50,52は、開口部としての大径部分10ba,10aaより大きい面積を有し、それぞれ大径部分10ba,10aa(即ち、開口部)の全体を覆う。図17では、蓋50,52を仮想線で示す。このような蓋50,52を有することにより、第1の出口孔20Bと第2の出口孔22Bの液量を一定にすることができる。 The lids 50, 52 have areas larger than the large diameter portions 10ba, 10aa as the openings, and cover the entire large diameter portions 10ba, 10aa (that is, the openings), respectively. In FIG. 17, lids 50 and 52 are shown in phantom lines. By having such lids 50 and 52, the amount of liquid in the first outlet hole 20B and the second outlet hole 22B can be made constant.
 空気を通すが液体を通さない膜の一例は、疎水性樹脂から形成された多孔質膜である。疎水性樹脂としては、例えば、PTFE(ポリテトラフルオロエチレン)、PFA(ペルフルオロアルコキシアルカン)等を挙げることができる。多孔質膜の孔の直径は、好ましくは、0.1μm~10μmの範囲にある。孔の直径が0.1μmより小さいと、空気の流通が阻害される。孔の直径が10μmより大きいと、高い圧力で液体が膜を透過するおそれがある。 An example of a membrane that allows air to pass through but does not allow liquid to pass through is a porous membrane made of a hydrophobic resin. Examples of hydrophobic resins include PTFE (polytetrafluoroethylene) and PFA (perfluoroalkoxyalkane). The diameter of the pores of the porous membrane is preferably in the range of 0.1 μm to 10 μm. If the pore diameter is less than 0.1 μm, air circulation is hindered. If the pore diameter is greater than 10 μm, liquid may permeate the membrane at high pressures.
 図18に示すように、蓋50,52は、リング形状の両面接着テープ53で板10の上面、特に,開口部としての大径部分10ba,10aaの周辺に接着されている。両面接着テープ53は、蓋50,52を粒子解析装置101に配備するのを容易にする。 As shown in FIG. 18, the lids 50 and 52 are adhered to the upper surface of the plate 10 with a ring-shaped double-sided adhesive tape 53, particularly around the large diameter portions 10ba and 10aa as openings. Double-sided adhesive tape 53 facilitates deployment of lids 50 , 52 to particle analyzer 101 .
 本実施形態においては、第1の入口孔20Aを通じて第1の液体37を上方の液体空間20に供給することができる。液体の供給にはシリンジ又はピペットを用いることができる。第1の液体37の供給時、上方の液体空間20にあった空気は第1の出口孔20Bを通じて排出され、第1の液体37が第1の入口孔20Aから上方の液体空間20に進入するのを容易にする。第1の出口孔20Bの大径部分10baには、空気を通すが液体を通さない膜から形成された第1の蓋50が設けられている。したがって、第1の液体37を上方の液体空間20に導入するエネルギーが強すぎても、第1の液体37は第1の蓋50に遮られて外部に散乱しない。第1の蓋50は空気の通過を許容するので、第1の液体37が第1の入口孔20Aから上方の液体空間20に進入するのを妨げない。 In this embodiment, the first liquid 37 can be supplied to the upper liquid space 20 through the first inlet hole 20A. A syringe or pipette can be used to supply the liquid. When the first liquid 37 is supplied, the air in the upper liquid space 20 is exhausted through the first outlet holes 20B, and the first liquid 37 enters the upper liquid space 20 through the first inlet holes 20A. to facilitate The large diameter portion 10ba of the first outlet hole 20B is provided with a first lid 50 formed of an air permeable but liquid impermeable membrane. Therefore, even if the energy that introduces the first liquid 37 into the upper liquid space 20 is too strong, the first liquid 37 is blocked by the first lid 50 and does not scatter to the outside. Since the first lid 50 allows the passage of air, it does not prevent the first liquid 37 from entering the upper liquid space 20 through the first inlet hole 20A.
 同様に、第2の入口孔22Aを通じて第2の液体38を下方の液体空間22に供給することができる。液体の供給にはシリンジ又はピペットを用いることができる。第2の液体38の供給時、下方の液体空間22にあった空気は第2の出口孔22Bを通じて排出され、第2の液体38が第2の入口孔22Aから下方の液体空間22に進入するのを容易にする。第2の出口孔22Bの大径部分10aaには、空気を通すが液体を通さない膜から形成された第2の蓋52が設けられている。したがって、第2の液体38を下方の液体空間22に導入するエネルギーが強すぎても、第2の液体38は第2の蓋52に遮られて外部に散乱しない。第2の蓋52は空気の通過を許容するので、第2の液体38が第2の入口孔22Aから下方の液体空間22に進入するのを妨げない。 Similarly, a second liquid 38 can be supplied to the lower liquid space 22 through the second inlet hole 22A. A syringe or pipette can be used to supply the liquid. When the second liquid 38 is supplied, the air in the lower liquid space 22 is expelled through the second outlet holes 22B, and the second liquid 38 enters the lower liquid space 22 through the second inlet holes 22A. to facilitate The large diameter portion 10aa of the second outlet hole 22B is provided with a second lid 52 formed of an air permeable but liquid impermeable membrane. Therefore, even if the energy for introducing the second liquid 38 into the lower liquid space 22 is too strong, the second liquid 38 is blocked by the second lid 52 and does not scatter to the outside. Since the second lid 52 allows air to pass through, it does not prevent the second liquid 38 from entering the lower liquid space 22 through the second inlet hole 22A.
 したがって、液体がウイルス又は細菌を含む場合に、そのような液体が粒子解析装置101から噴出することを防止することができる。また、粒子解析装置101の上面に漏れた第1の液体と第2の液体が互いに接触してしまい、粒子の解析の精度を低下させることを防止することができる。 Therefore, if the liquid contains viruses or bacteria, it is possible to prevent such liquid from being ejected from the particle analysis device 101. In addition, it is possible to prevent the first liquid and the second liquid that have leaked to the upper surface of the particle analysis device 101 from coming into contact with each other and lowering the accuracy of particle analysis.
 蓋50,52としては、例えば、日東電工社製のPTFEの多孔質膜である「TEMISH(登録商標)」シリーズの「S-NTF8031J(商品名)」を使用することができる。「S-NTF8031J」は、両面接着テープ53が設けられた商品である。板10は、PDMSを含有するVMQ(シリコーンゴム)から形成することができる。 For the lids 50 and 52, for example, "S-NTF8031J (trade name)" of the "TEMISH (registered trademark)" series, which is a PTFE porous membrane manufactured by Nitto Denko, can be used. “S-NTF8031J” is a product provided with double-sided adhesive tape 53 . Plate 10 can be formed from VMQ (silicone rubber) containing PDMS.
(第3実施形態)
 次に、第3実施形態の粒子解析装置について説明する。第3実施形態の粒子解析装置は、図19に示すような粒子解析装置201である。図19は、本発明の粒子解析装置の第3実施形態を模式的に示す斜視図である。図20は、図19に示す粒子解析装置の分解図である。図21は、図19に示す粒子解析装置の一部の断面図である。
(Third Embodiment)
Next, a particle analysis device of a third embodiment will be described. A particle analysis device of the third embodiment is a particle analysis device 201 as shown in FIG. FIG. 19 is a perspective view schematically showing a third embodiment of the particle analysis device of the invention. 20 is an exploded view of the particle analysis device shown in FIG. 19. FIG. 21 is a cross-sectional view of part of the particle analysis device shown in FIG. 19. FIG.
 図19に示す粒子解析装置201は、図20及び図21に示すように、これまでに説明した第2実施形態の粒子解析装置101(例えば、図13参考)と、粒子解析装置101の上面に接合された板12を有する。したがって、蓋50,52は、互いに接合された板10と板12の間に挟まれており、装置にしっかりと固定されている。即ち、蓋50,52が装置に導入される液体の圧力及びエネルギーを受けても、蓋50,52が装置から離されることが低減される。 20 and 21, the particle analysis device 201 shown in FIG. It has plates 12 that are joined together. The lids 50, 52 are thus sandwiched between the plates 10 and 12 which are joined together and are firmly fixed to the device. That is, the separation of the lids 50,52 from the device is reduced when the lids 50,52 are subjected to the pressure and energy of the liquid introduced into the device.
 板12は、板10と同形同大であり、貫通孔12a,12b,12c,12d,12e,12fを有する。 The plate 12 has the same shape and size as the plate 10, and has through holes 12a, 12b, 12c, 12d, 12e, and 12f.
 貫通孔12aは、板10の貫通孔10aと第2の蓋52に同心に揃えられている。貫通孔12aは、貫通孔10a,8a,6a,4aとともに第2の出口孔22Bを構成する。第2の液体38の供給時、下方の液体空間22にあった空気は第2の出口孔22Bを通じて排出される。貫通孔12aは、第2の出口孔22Bの開口部であり、粒子解析装置201の上面で開口する。貫通孔12aは、第2の蓋52の直径より小さい直径を有するので、第2の蓋52は板12に面接触して支持される。 The through hole 12a is concentrically aligned with the through hole 10a of the plate 10 and the second lid 52. The through hole 12a constitutes the second outlet hole 22B together with the through holes 10a, 8a, 6a and 4a. During supply of the second liquid 38, air in the lower liquid space 22 is expelled through the second outlet holes 22B. The through hole 12 a is the opening of the second exit hole 22 B and opens on the upper surface of the particle analysis device 201 . Since the through hole 12a has a smaller diameter than the diameter of the second lid 52, the second lid 52 is supported by the plate 12 in surface contact.
 貫通孔12bは、板10の貫通孔10bと第1の蓋50に同心に揃えられている。貫通孔12bは、貫通孔10b,8bとともに第1の出口孔20Bを構成する。第1の液体37の供給時、上方の液体空間20にあった空気は第1の出口孔20Bを通じて排出される。貫通孔12bは、第1の出口孔20Bの開口部であり、粒子解析装置201の上面で開口する。貫通孔12bは、第1の蓋50の直径より小さい直径を有するので、第1の蓋50は板12に面接触して支持される。 The through hole 12b is concentrically aligned with the through hole 10b of the plate 10 and the first lid 50. The through hole 12b constitutes the first outlet hole 20B together with the through holes 10b and 8b. When the first liquid 37 is supplied, the air in the upper liquid space 20 is discharged through the first outlet holes 20B. The through-hole 12b is the opening of the first exit hole 20B and opens on the upper surface of the particle analysis device 201 . Since the through hole 12b has a smaller diameter than the diameter of the first lid 50, the first lid 50 is supported by the plate 12 in surface contact.
 貫通孔12c,12dは、板10の貫通孔10c,10dと同形同大を有し、それぞれ貫通孔10c,10dに同心に揃えられている。貫通孔12cは、貫通孔10c,8cとともに第1の入口孔20Aを構成する。貫通孔12cは、第1の入口孔20Aの開口部であり、粒子解析装置201の上面で開口する。貫通孔12dは、貫通孔10d,8d,6d,4dとともに第2の入口孔22Aを構成する。貫通孔12dは、第2の入口孔22Aの開口部であり、粒子解析装置201の上面で開口する。 The through holes 12c, 12d have the same shape and size as the through holes 10c, 10d of the plate 10, and are aligned concentrically with the through holes 10c, 10d, respectively. The through hole 12c constitutes the first inlet hole 20A together with the through holes 10c and 8c. The through-hole 12c is the opening of the first inlet hole 20A and opens on the upper surface of the particle analysis device 201 . The through hole 12d constitutes the second inlet hole 22A together with the through holes 10d, 8d, 6d and 4d. The through hole 12 d is the opening of the second inlet hole 22 A and opens on the upper surface of the particle analysis device 201 .
 貫通孔12e,12fは、板10の電極棒挿入孔34,32と同形同大を有し、それぞれ電極棒挿入孔34,32に揃えられている。したがって、貫通孔12fと第1の電極棒挿入孔32に挿入された第1の電極棒46は、第1の電極28の矩形の延長部44に接触させられ、貫通孔12eと第2の電極棒挿入孔34に挿入された第2の電極棒48は、第2の電極30の矩形の延長部44に接触させられる。 The through holes 12e, 12f have the same shape and size as the electrode rod insertion holes 34, 32 of the plate 10, and are aligned with the electrode rod insertion holes 34, 32, respectively. Therefore, the first electrode rod 46 inserted into the through hole 12f and the first electrode rod insertion hole 32 is brought into contact with the rectangular extension 44 of the first electrode 28, and the through hole 12e and the second electrode are brought into contact with each other. A second electrode rod 48 inserted into the rod insertion hole 34 is brought into contact with the rectangular extension 44 of the second electrode 30 .
 板12は、接着剤で板10に接合することが可能である。但し、液体37,38への有機物の望ましくない混入を防止又は低減するため、真空紫外線又は酸素プラズマ照射を用いて、板12を板10に接合することが好ましい。例えば、PDMSを含有するシリコーンゴム又はウレタンゴムから板10,12を製造し、両面接着テープ53で蓋50,52を板10に貼り付けた後、真空紫外線又は酸素プラズマ照射を用いて、板12を板10に接合することができる。 The plate 12 can be joined to the plate 10 with an adhesive. However, it is preferred to bond plate 12 to plate 10 using vacuum ultraviolet radiation or oxygen plasma irradiation to prevent or reduce undesirable incorporation of organics into liquids 37,38. For example, the plates 10 and 12 are manufactured from silicone rubber or urethane rubber containing PDMS, and the lids 50 and 52 are attached to the plate 10 with double-sided adhesive tape 53. Then, the plate 12 is exposed to vacuum ultraviolet rays or oxygen plasma irradiation. can be bonded to the plate 10 .
(第4実施形態)
 次に、第4実施形態の粒子解析装置について説明する。第4実施形態の粒子解析装置は、図22に示すような粒子解析装置である。図22は、本発明の粒子解析装置の第4実施形態の一部の断面図である。
(Fourth embodiment)
Next, a particle analysis device according to a fourth embodiment will be described. The particle analysis device of the fourth embodiment is a particle analysis device as shown in FIG. FIG. 22 is a partial cross-sectional view of the fourth embodiment of the particle analysis device of the present invention.
 図19~図21に示すように、第3実施形態の粒子解析装置201では、蓋50,52は両面接着テープ53によって板10に接着されている。しかし、第4実施形態では、両面接着テープ53は使用されておらず、蓋50,52は板10に直接接触する。両面接着テープ53が使用されていなくても、蓋50,52は、互いに接合された板10と板12の間に挟まれており、装置にしっかりと固定されている。したがって、蓋50,52が装置に導入される液体の圧力及びエネルギーを受けても、蓋50,52が装置から離されることが低減される。 As shown in FIGS. 19 to 21, lids 50 and 52 are adhered to plate 10 with double-sided adhesive tape 53 in particle analysis device 201 of the third embodiment. However, in the fourth embodiment, the double-sided adhesive tape 53 is not used and the lids 50, 52 are in direct contact with the plate 10. FIG. Even if the double-sided adhesive tape 53 is not used, the lids 50, 52 are sandwiched between the plates 10 and 12 which are joined together and are firmly fixed to the device. Thus, separation of the lids 50, 52 from the device is reduced when the lids 50, 52 are subjected to the pressure and energy of the liquid introduced into the device.
 第4実施形態によれば、両面接着テープ53が使用されないため、液体37,38への有機物の望ましくない混入を防止股は低減することができる。 According to the fourth embodiment, since the double-sided adhesive tape 53 is not used, it is possible to prevent undesirable contamination of the liquids 37 and 38 with organic matter and reduce the problem.
 蓋50,52としては、例えば、日東電工株式会社製の「S-NTF8031(商品名)」を使用することができる。「S-NTF8031」は、両面接着テープ53が設けられていないことを除き、上記の「S-NTF803J」と同じである。 For the lids 50 and 52, for example, "S-NTF8031 (trade name)" manufactured by Nitto Denko Corporation can be used. “S-NTF8031” is the same as “S-NTF803J” above except that the double-sided adhesive tape 53 is not provided.
 次に、第4実施形態の粒子解析装置を製造する方法について説明する。図22に示す粒子解析装置は、複数の板2,4,6,8,10,12を準備することと、板2,4,6,8,10,12を接合することを有する方法で製造することができる。板2,4,6,8,10,12を接合する際には、例えば、真空紫外線又は酸素プラズマ照射を用いて接合することができる。 Next, a method for manufacturing the particle analysis device of the fourth embodiment will be described. The particle analysis device shown in FIG. 22 is manufactured by a method comprising providing a plurality of plates 2, 4, 6, 8, 10, 12 and joining the plates 2, 4, 6, 8, 10, 12. can do. When joining the plates 2, 4, 6, 8, 10 and 12, for example, they can be joined using vacuum ultraviolet rays or oxygen plasma irradiation.
 ここで、板2,4,6,8,10,12を準備することは、下記のように板12を製造すると同時に、板12に蓋50,52を一体的に接合することを有する。図23は、第4実施形態の粒子解析装置を製造する工程を説明するための模式図である。 Preparing the plates 2, 4, 6, 8, 10, 12 now comprises manufacturing the plate 12 and integrally joining the lids 50, 52 to the plate 12, as described below. FIG. 23 is a schematic diagram for explaining the steps of manufacturing the particle analysis device of the fourth embodiment.
 まず、板12を成形する型70を準備する。型70は、上型70Aと下型70Bを有する。上型70Aは平坦な板であり、下型70Bは板12を形成するキャビティ72を有する。キャビティ72の内部には、それぞれ貫通孔12a,12b,12c,12d,12e,12fを形成するための柱74a,74b,74c,74d,74e,74fが配置されている。 First, a mold 70 for molding the plate 12 is prepared. The mold 70 has an upper mold 70A and a lower mold 70B. The upper mold 70A is a flat plate and the lower mold 70B has a cavity 72 that forms the plate 12. As shown in FIG. Inside the cavity 72, columns 74a, 74b, 74c, 74d, 74e, and 74f are arranged for forming the through holes 12a, 12b, 12c, 12d, 12e, and 12f, respectively.
 下型70Bのキャビティ72には、蓋50,52を配置する。蓋50,52は柱74b,74aにそれぞれ載せる。 Lids 50 and 52 are arranged in the cavity 72 of the lower mold 70B. Lids 50 and 52 are placed on posts 74b and 74a, respectively.
 次に、上型70Aを下型70Bに載せる。そして、射出成形又はプレス成形によって、キャビティ72に板12の材料を配置する。 Next, the upper mold 70A is placed on the lower mold 70B. The material of the plate 12 is then placed in the cavity 72 by injection molding or press molding.
 板12の材料を硬化させることによって、板12が完成し、板12と第1の蓋50及び第2の蓋52を一体的に接合することができる。 By curing the material of the plate 12, the plate 12 is completed, and the plate 12 and the first lid 50 and the second lid 52 can be integrally joined.
 蓋50,52が接合された板12を板10に接合することによって、蓋50,52は板10と板12の間に挟まれ、装置にしっかりと固定される。 By joining the plate 12 with the joined lids 50, 52 to the plate 10, the lids 50, 52 are sandwiched between the plates 10 and 12 and are firmly fixed to the device.
 この方法によれば、第1の蓋50及び第2の蓋52は板12に簡単に接合され、粒子解析装置を簡単に製造することができる。蓋50,52は板12に一体的に接合されるので、装置にしっかりと固定される。 According to this method, the first lid 50 and the second lid 52 are easily joined to the plate 12, and the particle analysis device can be manufactured easily. The lids 50, 52 are integrally joined to the plate 12 so that they are securely attached to the device.
 また、粒子解析装置を製造する別の方法として、例えば、板10,12に相当する1枚の板を型で成形し、同時にその板に蓋50,52を埋設してもよい。 As another method of manufacturing the particle analysis device, for example, one plate corresponding to the plates 10 and 12 may be molded with a mold and the lids 50 and 52 may be embedded in the plate at the same time.
 図24は、粒子解析装置を製造する他の工程を説明するための模式図である。図24においては、板10,12に相当する1枚の板を製造する工程を示す。 FIG. 24 is a schematic diagram for explaining another process for manufacturing a particle analysis device. FIG. 24 shows the process of manufacturing one plate corresponding to the plates 10 and 12. FIG.
 まず、その板を成形する型80を準備する。型80は、上型80Aと下型70Bを有する。下型70Bは第4実施形態の下型70Bと同じである。 First, a mold 80 for molding the plate is prepared. The mold 80 has an upper mold 80A and a lower mold 70B. The lower mold 70B is the same as the lower mold 70B of the fourth embodiment.
 上型80Aは、板10に相当する部分を形成するキャビティ82を有する。キャビティ82の内部には、それぞれ貫通孔10a,10b,12c,12d及び電極棒挿入孔34,32を形成するための柱84a,84b,84c,84d,84e,84fが配置されている。 The upper mold 80A has a cavity 82 forming a portion corresponding to the plate 10. Inside the cavity 82, pillars 84a, 84b, 84c, 84d, 84e and 84f are arranged for forming the through holes 10a, 10b, 12c and 12d and the electrode rod insertion holes 34 and 32, respectively.
 下型70Bのキャビティ72には、蓋50,52を配置する。蓋50,52は柱74b,74aにそれぞれ載せる。 Lids 50 and 52 are arranged in the cavity 72 of the lower mold 70B. Lids 50 and 52 are placed on posts 74b and 74a, respectively.
 次に、上型80Aを下型70Bに載せる。そして、射出成形又はプレス成形によって、キャビティ82,72の組み合わせで形成されたキャビティに板の材料を配置する。 Next, the upper mold 80A is placed on the lower mold 70B. The plate material is then placed in the cavity formed by the combination of cavities 82, 72 by injection molding or press molding.
 板の材料を硬化させることによって、板10,12に相当する1枚の板が完成し、その板に第1の蓋50及び第2の蓋52が一体的に埋設される。 By curing the plate material, one plate corresponding to the plates 10 and 12 is completed, and the first lid 50 and the second lid 52 are integrally embedded in the plate.
 この方法によれば、第1の蓋50及び第2の蓋52は板に簡単に接合され、粒子解析装置を簡単に製造することができる。蓋50,52は板に一体的に接合されるので、装置にしっかりと固定される。 According to this method, the first lid 50 and the second lid 52 are easily joined to the plate, and the particle analysis device can be easily manufactured. The lids 50, 52 are integrally joined to the plates and are thus securely attached to the device.
 以上、本発明の好ましい実施形態を参照しながら本発明を図示して説明したが、当業者にとって特許請求の範囲に記載された発明の範囲から逸脱することなく、形式及び詳細の変更が可能であることが理解されるであろう。このような変更、改変及び修正は本発明の範囲に包含されるはずである。 Although the invention has been illustrated and described with reference to preferred embodiments thereof, it will be appreciated by those skilled in the art that changes in form and detail can be made without departing from the scope of the invention as set forth in the claims. One thing will be understood. Such changes, alterations and modifications are intended to fall within the scope of the present invention.
 例えば、粒子解析装置を常に鉛直方向に圧縮する圧縮機構(例えば、クランプ機構、ネジ、ピンチ)を使用することによって、粒子解析装置の板間の封止性を向上させてもよい。 For example, the sealing between plates of the particle analysis device may be improved by using a compression mechanism (eg, clamping mechanism, screw, pinch) that always compresses the particle analysis device in the vertical direction.
 粒子解析装置が有する板の数は、上記の実施形態には限定されない。実施形態では、上方の液体空間20が単一の板6に形成された溝6gによって形成されているが、上方の液体空間20が複数の板(例えば、板6,8)に形成されてもよい。実施形態では、下方の液体空間22が単一の板4に形成された溝4gによって形成されているが、下方の液体空間22が複数の板(例えば、板4,2)に形成されてもよい。実施形態では、接続孔26を有するチップ24が単一の板6の内部に配置されているが、チップ24が複数の板(例えば、板6,4)の内部に配置されてもよい。 The number of plates that the particle analysis device has is not limited to the above embodiment. In the embodiment, the upper liquid space 20 is formed by a groove 6g formed in a single plate 6, but the upper liquid space 20 may be formed in multiple plates (e.g. plates 6, 8). good. In the embodiment, the lower liquid space 22 is formed by a groove 4g formed in a single plate 4, but the lower liquid space 22 may be formed in multiple plates (e.g. plates 4, 2). good. Although in the embodiment the chip 24 with the connection holes 26 is arranged inside a single plate 6, the chip 24 may be arranged inside multiple plates (eg plates 6, 4).
 実施形態では、電極28,30の延長部44は一様な幅を有する矩形である。しかし、延長部44が幅の広い部分と幅の狭い部分を有してもよいし、延長部44の幅が側面1Aに向かうほど漸減又は漸増してもよい。 In the embodiment, the extensions 44 of the electrodes 28, 30 are rectangular with a uniform width. However, the extension 44 may have a wide portion and a narrow portion, or the width of the extension 44 may gradually decrease or increase toward the side surface 1A.
 以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[実施例1]
 実施例1においては、図13~図15に示すような、上方の液体空間20、下方の液体空間22、及び接続孔26を有する粒子解析装置101を作製した。粒子解析装置101を構成する最上層の板10の貫通孔10c,10dに対しては、その上部に座繰り加工を施し、第1の入口孔20Aの開口部及び第2の入口孔22Aの開口部に、深さ1mm、直径4mmの大径部分10ca,10daを形成した。
[Example 1]
In Example 1, a particle analysis device 101 having an upper liquid space 20, a lower liquid space 22, and a connecting hole 26 as shown in FIGS. 13 to 15 was produced. The through holes 10c and 10d of the uppermost plate 10 constituting the particle analysis device 101 are counter-bored to form the opening of the first inlet hole 20A and the opening of the second inlet hole 22A. Large diameter portions 10ca and 10da having a depth of 1 mm and a diameter of 4 mm were formed in the portion.
 そして、第1の入口孔20Aの開口部の座繰り加工を施した大径部分10caから流路径が縮径する縮径部10ccに対して、波長172nmの真空紫外線を1分間照射して、第1の入口孔20Aの大径部分10caから流路径が縮径する縮径部10ccの表面(即ち、流路内面)に親水化処理を施した。第1の入口孔20Aのその他の部分及び第2の入口孔22Aに対しては、上述したような特段の親水化処理を施さず、これらの流路表面は、疎水性を有する状態とした。 Then, vacuum ultraviolet rays having a wavelength of 172 nm are irradiated for 1 minute to the reduced diameter portion 10cc in which the flow path diameter is reduced from the large diameter portion 10ca which is subjected to the counterbore processing of the opening of the first inlet hole 20A. Hydrophilization treatment was applied to the surface of the reduced-diameter portion 10cc (that is, the inner surface of the flow path) where the flow path diameter is reduced from the large-diameter portion 10ca of the inlet hole 20A. Other portions of the first inlet hole 20A and the second inlet hole 22A were not subjected to the above-described special hydrophilization treatment, and their flow path surfaces were made hydrophobic.
 親水化処理を施した第1の入口孔20Aの縮径部10ccの表面、及び親水化処理を施していない第2の入口孔22Aの縮径部10dcの表面のそれぞれについて、以下の方法で、水との接触角を測定した。まず、測定対象となる各表面と同一表面状態のテストピースを5枚作製した。そして、それぞれのテストピースの表面上の3点に、超純水を1μL滴下し、滴下した超純水の水滴が静止したときの接触角を測定した。接触角の測定は、5枚のテストピースに対して上述したように各3点ずつ合計15点行い、15点の接触角の平均値をそれぞれの表面についての水との接触角とした。親水化処理を施した第1の入口孔20Aの縮径部10ccの表面は、水との接触角が6度であった。一方で、親水化処理を施していない第2の入口孔22Aの縮径部10dcの表面は、水との接触角が119度であった。 The surface of the diameter-reduced portion 10cc of the first inlet hole 20A that has been subjected to the hydrophilic treatment and the surface of the diameter-reduced portion 10dc of the second inlet hole 22A that has not been subjected to the hydrophilic treatment are each subjected to the following method: The contact angle with water was measured. First, five test pieces having the same surface condition as each surface to be measured were produced. Then, 1 μL of ultrapure water was dropped onto three points on the surface of each test piece, and the contact angle was measured when the drops of the dropped ultrapure water stood still. The contact angles were measured on 5 test pieces at 3 points each for a total of 15 points, and the average value of the 15 contact angles was taken as the contact angle with water on each surface. The surface of the diameter-reduced portion 10cc of the first inlet hole 20A that was subjected to the hydrophilic treatment had a contact angle with water of 6 degrees. On the other hand, the surface of the diameter-reduced portion 10dc of the second inlet hole 22A, which was not subjected to the hydrophilic treatment, had a contact angle with water of 119 degrees.
 また、第1の出口孔20Bの開口部及び第2の出口孔22Bの開口部には、空気を通すが液体を通さない膜から形成された蓋50,52をそれぞれ配置した。蓋50,52としては、日東電工社製のPTFEの多孔質膜である「TEMISH(登録商標)」シリーズの「S-NTF8031J(商品名)」を用いた。「S-NTF8031J(商品名)」は、両面接着テープ53が設けられた商品である。板10は、PDMSを含有するVMQ(シリコーンゴム)から形成した。蓋50,52の直径(両面接着テープ53の外径)は5.6mmとし、リング形状の両面接着テープ53の内径は3mmとした。開口部となる大径部分10ba,10aaの直径は4mmとした。 In addition, lids 50 and 52 made of a film that allows air to pass through but impermeable to liquid are arranged at the opening of the first outlet hole 20B and the opening of the second outlet hole 22B, respectively. As the lids 50 and 52, "S-NTF8031J (trade name)" of the "TEMISH (registered trademark)" series, which is a PTFE porous membrane manufactured by Nitto Denko Corporation, was used. “S-NTF8031J (trade name)” is a product provided with double-sided adhesive tape 53 . Plate 10 was formed from VMQ (silicone rubber) containing PDMS. The diameter of the lids 50 and 52 (the outer diameter of the double-sided adhesive tape 53) was set to 5.6 mm, and the inner diameter of the ring-shaped double-sided adhesive tape 53 was set to 3 mm. The diameter of the large-diameter portions 10ba and 10aa, which serve as openings, was set to 4 mm.
[比較例1]
 第1の入口孔20Aの開口部の座繰り加工を施した大径部分10caから流路径が縮径する縮径部10ccに対して、実施例1のような親水化処理を施さないこと以外は、実施例1と同様の方法で、比較例1の粒子解析装置を作製した。比較例1の粒子解析装置についても、第1の入口孔20Aの縮径部10ccの表面、及び第2の入口孔22Aの縮径部10dcの表面について、実施例1と同様の方法で、水との接触角を測定した。比較例1の粒子解析装置においては、第1の入口孔20Aの縮径部10ccの表面、及び第2の入口孔22Aの縮径部10dcの表面は、それぞれ共に水との接触角が119度であった。
[Comparative Example 1]
Except that the reduced diameter portion 10cc in which the flow path diameter is reduced from the large diameter portion 10ca subjected to counterbore processing of the opening of the first inlet hole 20A is not subjected to the hydrophilic treatment as in Example 1. A particle analysis device of Comparative Example 1 was produced in the same manner as in Example 1. Regarding the particle analysis apparatus of Comparative Example 1, the surface of the diameter-reduced portion 10cc of the first inlet hole 20A and the surface of the diameter-reduced portion 10dc of the second inlet hole 22A were treated in the same manner as in Example 1. The contact angle with was measured. In the particle analysis apparatus of Comparative Example 1, the surface of the reduced diameter portion 10cc of the first inlet hole 20A and the surface of the reduced diameter portion 10dc of the second inlet hole 22A both had a contact angle with water of 119 degrees. Met.
[粒子通過頻度の計測]
 以上のようにして作製された実施例1及び比較例1の粒子解析装置について、以下の方法で、チップ中央の接続孔を通過する粒子の頻度(以下、「粒子通過頻度」という)を計測した。上方の液体空間に連通する第1の入口孔の大径部分に、25μLの1×PBSを注入し、且つ、下方の液体空間に連通する第2の入口孔の大径部分に、25μLの粒子懸濁液を注入した。粒子懸濁液は、1×PBSに粒径2μmのカルボキシ基修飾ポリスチレン粒子を1質量%分散させた懸濁液を用いた。そして、粒子解析装置に設けられた電極に0.1Vの電圧を印加して、粒子通過頻度の計測を行った。粒子通過頻度の計測については、実施例1及び比較例1の粒子解析装置において、それぞれ3回行った。
[Measurement of particle passing frequency]
For the particle analysis devices of Example 1 and Comparative Example 1 fabricated as described above, the frequency of particles passing through the connection hole in the center of the chip (hereinafter referred to as "particle passage frequency") was measured by the following method. . Inject 25 μL of 1×PBS into the large diameter portion of the first inlet hole communicating with the upper liquid space and 25 μL of particles into the large diameter portion of the second inlet hole communicating with the lower liquid space. A suspension was injected. As the particle suspension, a suspension obtained by dispersing 1% by mass of carboxy group-modified polystyrene particles having a particle size of 2 μm in 1×PBS was used. Then, a voltage of 0.1 V was applied to electrodes provided in the particle analyzer to measure the particle passage frequency. The particle passage frequency was measured three times in each of the particle analyzers of Example 1 and Comparative Example 1.
[結果]
 実施例1の粒子解析装置は、1回目の計測の粒子通過頻度が3.40個/sであり、2回目の計測の粒子通過頻度が3.19個/sであり、3回目の計測の粒子通過頻度が4.05個/sであった。このため、実施例1の粒子解析装置は、粒子通過頻度の計測において、その平均値が約3.5個/sであった。
[result]
In the particle analysis apparatus of Example 1, the particle passage frequency in the first measurement was 3.40/s, the particle passage frequency in the second measurement was 3.19/s, and the particle passage frequency in the third measurement was 3.40/s. The particle passing frequency was 4.05/s. For this reason, the particle analysis apparatus of Example 1 had an average value of about 3.5 particles/s in the measurement of the particle passage frequency.
 一方で、比較例1の粒子解析装置は、1回目の計測の粒子通過頻度が0.03個/sであり、2回目の計測の粒子通過頻度が0.09個/sであり、3回目の計測の粒子通過頻度が0.06個/sであった。このため、比較例1の粒子解析装置は、粒子通過頻度の計測において、その平均値が約0.06個/sであった。 On the other hand, in the particle analysis apparatus of Comparative Example 1, the particle passage frequency in the first measurement was 0.03/s, the particle passage frequency in the second measurement was 0.09/s, and the particle passage frequency in the third measurement was 0.09/s. was 0.06 particles/s. For this reason, the particle analysis apparatus of Comparative Example 1 had an average value of approximately 0.06 particles/s in the measurement of the particle passage frequency.
 以上の結果により、解析する粒子を含まない液体を注入する入口孔となる第1の入口孔の開口部から一定領域の流路内面が親水化されている実施例1の粒子解析装置は、当該流路内面が親水化されていない比較例1の粒子解析装置に比して、粒子通過頻度が高く、効率的に計測を行うことができることが分かった。 From the above results, the particle analysis apparatus of Example 1, in which the inner surface of the flow channel in a certain area from the opening of the first inlet hole serving as the inlet hole for injecting the liquid not containing the particles to be analyzed, is made hydrophilic, Compared to the particle analysis apparatus of Comparative Example 1 in which the inner surface of the flow path is not hydrophilized, it was found that the particle passage frequency was high and the measurement could be performed efficiently.
 本発明の粒子解析装置は、液体に含有された粒子を解析するために利用することができる。 The particle analysis device of the present invention can be used to analyze particles contained in liquid.
1,101,201:粒子解析装置
1A,1B,1C,1D,1E,1F:側面
2,4,6,8,10,12:板
4a,4d,6a,6d,8a,8b,8c,8d:貫通孔
4g,6g:溝
6h:凹部
4t,6t:連通孔
10a:貫通孔
10aa:大径部分
10ab:小径部分
10b:貫通孔
10ba:大径部分
10bb:小径部分
10c:貫通孔
10ca:大径部分
10cb:小径部分
10cc:縮径部
10d:貫通孔
10da:大径部分
10db:小径部分
10dc:縮径部
20:液体空間(上方の液体空間)
20A:第1の入口孔
20B:第1の出口孔
21A:親水化表面
22:液体空間(下方の液体空間)
22A:第2の入口孔
22B:第2の出口孔
23A:疎水化表面
24:チップ(ナノポアチップ)
26:接続孔
28:電極(第1の電極)
30:電極(第2の電極)
32:電極棒挿入孔(第1の電極棒挿入孔)
34:電極棒挿入孔(第2の電極棒挿入孔)
37:液体(第1の液体)
38:液体(第2の液体)
40:粒子
46:電極棒(第1の電極棒)
48:電極棒(第2の電極棒)
50:蓋(第1の蓋)
52:蓋(第2の蓋)
53:両面接着テープ
70,80:型
L1:液漏れ
L2:液漏れ
1, 101, 201: Particle analysis devices 1A, 1B, 1C, 1D, 1E, 1F: Sides 2, 4, 6, 8, 10, 12: Plates 4a, 4d, 6a, 6d, 8a, 8b, 8c, 8d : through holes 4g, 6g: grooves 6h: recesses 4t, 6t: communication hole 10a: through hole 10aa: large diameter portion 10ab: small diameter portion 10b: through hole 10ba: large diameter portion 10bb: small diameter portion 10c: through hole 10ca: large Diameter portion 10cb: Small diameter portion 10cc: Diameter reduction portion 10d: Through hole 10da: Large diameter portion 10db: Small diameter portion 10dc: Diameter reduction portion 20: Liquid space (upper liquid space)
20A: first inlet hole 20B: first outlet hole 21A: hydrophilic surface 22: liquid space (lower liquid space)
22A: Second inlet hole 22B: Second outlet hole 23A: Hydrophobized surface 24: Tip (nanopore tip)
26: Connection hole 28: Electrode (first electrode)
30: Electrode (second electrode)
32: Electrode rod insertion hole (first electrode rod insertion hole)
34: Electrode rod insertion hole (second electrode rod insertion hole)
37: Liquid (first liquid)
38: Liquid (second liquid)
40: Particle 46: Electrode rod (first electrode rod)
48: Electrode rod (second electrode rod)
50: Lid (first lid)
52: lid (second lid)
53: double-sided adhesive tape 70, 80: type L1: liquid leakage L2: liquid leakage

Claims (8)

  1.  第1の液体が貯留される上方の液体空間と、
     前記上方の液体空間の下方に配置され、第2の液体が貯留される下方の液体空間と、
     前記上方の液体空間と前記下方の液体空間とを接続する接続孔と、
     粒子解析装置の上面で開口する開口部を有し、前記上面から前記上方の液体空間に延び、前記第1の液体を前記上方の液体空間に供給するための第1の入口孔と、
     前記上面で開口する開口部を有し、前記上面から前記上方の液体空間に延び、空気が前記上方の液体空間から排出される第1の出口孔と、
     前記上面で開口する開口部を有し、前記上面から前記下方の液体空間に延び、前記第2の液体を前記下方の液体空間に供給するための第2の入口孔と、
     前記上面で開口する開口部を有し、前記上面から前記下方の液体空間に延び、空気が前記下方の液体空間から排出される第2の出口孔と、
     前記上方の液体空間内の前記第1の液体に電位を与える第1の電極と、
     前記下方の液体空間内の前記第2の液体に電位を与える第2の電極と、を備え、
     前記第1の入口孔又は前記第2の入口孔のうちの一方が、解析する粒子を含む液体を注入する入口孔であり、且つ、前記第1の入口孔又は前記第2の入口孔のうちのもう一方が、解析する粒子を含まない液体を注入する入口孔であり、当該解析する粒子を含まない液体を注入する入口孔の前記開口部から一定領域における流路内面の少なくとも一部が親水化されている、粒子解析装置。
    an upper liquid space in which the first liquid is stored;
    a lower liquid space disposed below the upper liquid space and storing a second liquid;
    a connection hole connecting the upper liquid space and the lower liquid space;
    a first inlet hole having an opening open at a top surface of the particle analysis device and extending from the top surface to the upper liquid space for supplying the first liquid to the upper liquid space;
    a first outlet hole having an opening open at the top surface and extending from the top surface to the upper liquid space through which air is expelled from the upper liquid space;
    a second inlet hole having an opening open at the top surface and extending from the top surface to the lower liquid space for supplying the second liquid to the lower liquid space;
    a second outlet hole having an opening open at the top surface and extending from the top surface to the lower liquid space through which air is expelled from the lower liquid space;
    a first electrode applying an electrical potential to the first liquid in the upper liquid space;
    a second electrode applying an electrical potential to the second liquid in the lower liquid space;
    one of the first inlet hole or the second inlet hole is an inlet hole for injecting a liquid containing particles to be analyzed, and one of the first inlet hole or the second inlet hole The other is an inlet hole for injecting a liquid that does not contain the particles to be analyzed, and at least a part of the inner surface of the channel in a certain area from the opening of the inlet hole for injecting the liquid that does not contain the particles to be analyzed is hydrophilic. particle analyzer.
  2.  前記解析する粒子を含まない液体を注入する入口孔の親水化された前記流路内面は、前記解析する粒子を含む液体を注入する入口孔の前記開口部から一定領域の流路内面よりも親水性が高い、請求項1に記載の粒子解析装置。 The hydrophilic inner surface of the inlet hole for injecting the liquid not containing the particles to be analyzed is more hydrophilic than the inner surface of the channel in a certain area from the opening of the inlet hole for injecting the liquid containing the particles to be analyzed. 2. The particle analysis device according to claim 1, which has a high property.
  3.  前記解析する粒子を含まない液体を注入する入口孔は、前記開口部から一定領域において流路径が拡径した第1の大径部分と前記第1の大径部分から流路径が縮径する第1の縮径部とを有し、
     前記解析する粒子を含む液体を注入する入口孔は、前記開口部から一定領域において流路径が拡径した第2の大径部分と前記第2の大径部分から流路径が縮径する第2の縮径部とを有し、
     前記解析する粒子を含まない液体を注入する入口孔の前記第1の縮径部の内面が少なくとも親水化されている、請求項1又は2に記載の粒子解析装置。
    The inlet hole for injecting the liquid that does not contain the particles to be analyzed has a first large-diameter portion in which the channel diameter increases in a certain area from the opening, and a second large-diameter portion in which the channel diameter decreases from the first large-diameter portion. 1 reduced diameter portion;
    The inlet hole for injecting the liquid containing the particles to be analyzed has a second large-diameter portion in which the channel diameter increases in a certain area from the opening, and a second large-diameter portion in which the channel diameter decreases from the second large-diameter portion. and a reduced diameter portion of
    3. The particle analysis apparatus according to claim 1, wherein at least the inner surface of said first reduced diameter portion of said inlet hole for injecting said liquid not containing said particles to be analyzed is hydrophilized.
  4.  前記解析する粒子を含む液体を注入する入口孔の前記第1の大径部分が、当該入口孔の前記開口部に設けられた座繰り穴からなり、前記座繰り穴の底面となる前記第1の縮径部の内面が親水化 されている、請求項3に記載の粒子解析装置。 The first large-diameter portion of the inlet hole into which the liquid containing the particles to be analyzed is injected is a counterbore provided in the opening of the inlet hole, and the first 4. The particle analysis device according to claim 3, wherein the inner surface of the diameter-reduced portion of is hydrophilized.
  5.  前記第1の出口孔の前記開口部に配置され、空気を通すが液体を通さない膜から形成された第1の蓋と、
     前記第2の出口孔の前記開口部に配置され、空気を通すが液体を通さない膜から形成された第2の蓋と、更に備える、請求項1~4のいずれか一項に記載の粒子解析装置。
    a first lid positioned over the opening of the first exit aperture and formed from an air permeable, liquid impermeable membrane;
    A particle according to any one of claims 1 to 4, further comprising a second lid positioned over said opening of said second exit hole and formed from an air permeable but liquid impermeable membrane. analysis equipment.
  6.  前記第1の蓋及び前記第2の蓋は、疎水性樹脂製の多孔質膜からなる、請求項5に記載の粒子解析装置。 The particle analysis device according to claim 5, wherein the first lid and the second lid are made of a hydrophobic resin porous membrane.
  7.  積層されて接合された複数の板を備え、
     前記第1の蓋及び前記第2の蓋は、前記板の1つに両面テープによって固定されている、請求項5又は6に記載の粒子解析装置。
    comprising a plurality of plates laminated and joined,
    7. The particle analysis device according to claim 5, wherein said first lid and said second lid are fixed to one of said plates with double-sided tape.
  8.  積層されて接合された複数の板を備え、
     前記第1の蓋及び前記第2の蓋は、前記板の2つの間に挟まれている、請求項5~7のいずれか一項に記載の粒子解析装置。
    comprising a plurality of plates laminated and joined,
    The particle analysis device according to any one of claims 5 to 7, wherein said first lid and said second lid are sandwiched between two of said plates.
PCT/JP2022/007647 2021-03-03 2022-02-24 Particle analysis device WO2022186047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021033529 2021-03-03
JP2021-033529 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022186047A1 true WO2022186047A1 (en) 2022-09-09

Family

ID=83155063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007647 WO2022186047A1 (en) 2021-03-03 2022-02-24 Particle analysis device

Country Status (1)

Country Link
WO (1) WO2022186047A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100109686A1 (en) * 2008-10-31 2010-05-06 The University Of Akron Metal wear detection apparatus and method employing microfluidic electronic device
JP2013518268A (en) * 2010-01-27 2013-05-20 アイゾン・サイエンス・リミテッド Control of particle flow in apertures.
US20150060276A1 (en) * 2012-03-13 2015-03-05 Peking University Nanopore Control With Pressure and Voltage
JP2019045261A (en) * 2017-08-31 2019-03-22 株式会社東芝 Detector and detection method
JP2020046314A (en) * 2018-09-19 2020-03-26 株式会社アドバンテスト Pore device and fine particle measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100109686A1 (en) * 2008-10-31 2010-05-06 The University Of Akron Metal wear detection apparatus and method employing microfluidic electronic device
JP2013518268A (en) * 2010-01-27 2013-05-20 アイゾン・サイエンス・リミテッド Control of particle flow in apertures.
US20150060276A1 (en) * 2012-03-13 2015-03-05 Peking University Nanopore Control With Pressure and Voltage
JP2019045261A (en) * 2017-08-31 2019-03-22 株式会社東芝 Detector and detection method
JP2020046314A (en) * 2018-09-19 2020-03-26 株式会社アドバンテスト Pore device and fine particle measurement system

Similar Documents

Publication Publication Date Title
US8252163B2 (en) Analysis apparatus for capillary electrophoresis
KR100482285B1 (en) Fluid-type multiple electrochemical system and the preparation thereof
JP4469024B2 (en) Artificial lipid film forming method and artificial lipid film forming apparatus
US7776193B2 (en) Cell electrophysiological sensor
US20050009171A1 (en) Device and method for analyzing ion channels in membranes
KR20170103829A (en) Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown
KR20150039051A (en) Blood filter device separating plasma or serum from blood and the use thereof
WO2022186047A1 (en) Particle analysis device
US20080206828A1 (en) Device For Introducing Substance Into Cell, Cell Clamping Device and Flow Path Forming Method
WO2022070669A1 (en) Particle analysis device and method for producing same
JP4661539B2 (en) Cell electrophysiological sensor and manufacturing method thereof
CN110749636B (en) Diaphragm sensor, liquid analyzer, and liquid analyzing method
US20230074523A1 (en) Particle analysis device
US20220260524A1 (en) Particle analysis device
US20230077021A1 (en) Particle analysis device
JP2015230172A (en) Membrane-type sensor and liquid analyzer
KR20150101316A (en) Fluid analysis cartridge
GB2371626A (en) Positioning cells with high resistance seal
WO2020095849A1 (en) Cell culturing chip and production method therefor
JP4425892B2 (en) Cell electrophysiological sensor and manufacturing method thereof
JP2005055320A (en) Electrophoresis chip
JP2021131239A (en) Particle analyzer
US20230037375A1 (en) Electrical property measuring device including non-uniform microchannels
US20220341840A1 (en) Method for manufacturing particle analyzer and the particle analyzer
CN114174798A (en) Method for storing particle analyzer and method for manufacturing particle analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP