WO2022186014A1 - Ultrafine bubble liquid generation method and ultrafine bubble liquid generation device - Google Patents

Ultrafine bubble liquid generation method and ultrafine bubble liquid generation device Download PDF

Info

Publication number
WO2022186014A1
WO2022186014A1 PCT/JP2022/007365 JP2022007365W WO2022186014A1 WO 2022186014 A1 WO2022186014 A1 WO 2022186014A1 JP 2022007365 W JP2022007365 W JP 2022007365W WO 2022186014 A1 WO2022186014 A1 WO 2022186014A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ultra
ufb
concentration
additive
Prior art date
Application number
PCT/JP2022/007365
Other languages
French (fr)
Japanese (ja)
Inventor
秀彰 小林
Original Assignee
Idec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec株式会社 filed Critical Idec株式会社
Publication of WO2022186014A1 publication Critical patent/WO2022186014A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • B01F23/2375Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons

Definitions

  • Ultra-fine bubbles (hereinafter also referred to as “UFB”) are different from millibubbles, which are bubbles with a diameter of 1 mm or more, and microbubbles, which are bubbles with a diameter of 1 ⁇ m to 1 mm, and float and disappear due to buoyancy. can exist for long periods of time in liquids.
  • UFB liquids liquids containing UFB
  • UFB liquids liquids containing UFB
  • substances such as the above-mentioned hydrocarbons, which may be harmful to the human body when taken orally, should be used as additives for promoting the generation of UFB. can't.
  • the liquid for generating the UFB liquid is water or the like, it is not easy to evenly dissolve or disperse the hydrophobic additive in the liquid.
  • the present invention is directed to a method for producing an ultra-fine bubble liquid, and aims to produce a UFB liquid that is safe for the human body, contains a high concentration of UFB, and has high long-term stability of UFB. .
  • a method for producing an ultra-fine bubble liquid comprises: a) a step of dispersing an additive, which is a hydrophilic food additive, in water to produce a target liquid; and mixing with the target liquid to generate ultra-fine bubbles of the gas in the target liquid to generate an ultra-fine bubble liquid containing the ultra-fine bubbles.
  • Said additive is polyglycerol fatty acid ester or sucrose fatty acid ester.
  • UFB liquid that is safe for the human body, contains a high concentration of UFB, and has high long-term stability of UFB.
  • the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more.
  • the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation. be.
  • the HLB value of the additive is 9.0 or higher.
  • the concentration of the additive in the target liquid is 10 mg/L or less.
  • a method for producing an ultra-fine bubble liquid according to another preferred embodiment of the present invention includes the steps of: a) dispersing an additive, which is a hydrophilic food additive, in water to produce a target liquid; and mixing with the target liquid to generate ultra-fine bubbles of the gas in the target liquid to generate an ultra-fine bubble liquid containing the ultra-fine bubbles.
  • the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more.
  • the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation.
  • the gas is pressurized and dissolved in the target liquid to generate a pressurized liquid, and the ultrafine bubbles are precipitated from the pressurized liquid to generate the ultrafine bubble liquid.
  • the ultra-fine bubble liquid is supplied into the oral cavity during tooth whitening.
  • An ultra-fine bubble liquid generating apparatus includes a mixing unit that mixes a gas and a pressurized target liquid to generate a mixed fluid, and in the mixed fluid, the target liquid contains the gas and a generation unit that generates an ultra-fine bubble liquid containing the ultra-fine bubbles by generating the ultra-fine bubbles.
  • the target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water. Said additive is polyglycerol fatty acid ester or sucrose fatty acid ester.
  • An ultra-fine bubble liquid generating device includes a mixing unit that mixes a gas and a pressurized target liquid to generate a mixed fluid, and in the mixed fluid, the gas in the target liquid and a generation unit that generates an ultra-fine bubble liquid containing the ultra-fine bubbles by generating the ultra-fine bubbles.
  • the target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water.
  • the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more.
  • the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation.
  • FIG. 1 is a cross-sectional view of an ultra-fine bubble liquid generator according to one embodiment
  • FIG. FIG. 4 is a diagram showing the flow of generation of ultra-fine bubble liquid.
  • FIG. 4 is an enlarged cross-sectional view of the mixing nozzle;
  • FIG. 4 is an enlarged cross-sectional view of an ultra-fine bubble generating nozzle;
  • FIG. 1 is a diagram showing the configuration of an ultra-fine bubble liquid generator 1 according to one embodiment of the present invention.
  • the configuration of a part of the ultra-fine bubble liquid generating device 1 is drawn in cross section.
  • Ultra-fine bubbles are bubbles with a diameter of less than 1 ⁇ m (micrometers), and are also called nanobubbles.
  • ultra-fine bubbles are also referred to as “UFB”.
  • the ultra-fine bubble liquid which is a liquid containing UFB, is also called “UFB liquid”
  • the ultra-fine bubble liquid generator is also called “UFB liquid generator”.
  • the UFB liquid generation device 1 is a device that mixes liquid and gas to generate UFB liquid, which is a liquid containing UFB of the gas.
  • the UFB liquid generated by the UFB liquid generation device 1 is supplied, for example, into the human oral cavity and used for tooth whitening. In tooth whitening, generally, the higher the concentration of UFB in the UFB solution, the better the whitening effect.
  • the UFB liquid may be supplied to humans for purposes other than tooth whitening, and may be supplied to non-human objects (for example, food).
  • the UFB liquid generation device 1 includes a mixing section 31, a pressurized liquid generation container 32, a liquid delivery section 2, a storage section 5, a pump 33, a circulation section 6, and a gas supply section 34.
  • the mixing section 31 is connected to the upper portion of the pressurized liquid generation container 32 .
  • a gas supply unit 34 is connected to the mixing unit 31 .
  • the liquid delivery section 2 is connected to the lower portion of the pressurized liquid generation container 32 .
  • the liquid delivery unit 2 is connected to the storage tank 51 of the storage unit 5 via the first pipe 52 .
  • a pump 33 is attached to the reservoir 51 .
  • the pump 33 is connected to the mixing section 31 via the second pipe 61 of the circulation section 6 .
  • a reservoir 51 of the reservoir 5 stores a liquid for which UFB is to be generated (hereinafter referred to as "target liquid").
  • the target liquid is a liquid in which additives, which are hydrophilic food additives, are dispersed in water.
  • water for example, tap water, pure water, deionized water (DIW), or the like can be used.
  • Hydrophilic food additives are those that are approved for use as food additives safe for the human body by the Ministry of Health, Labor and Welfare and have hydrophilic properties.
  • a hydrophilic food additive for example, has a hydrophilic group and can be dispersed in water at room temperature or in a state heated above room temperature. The state in which the hydrophilic food additive is dispersed in water also includes the state in which the hydrophilic food additive is dissolved in water.
  • Commercially available hydrophilic food additives are usually marketed with a statement that they are hydrophilic. Hydrophobic food additives are generally difficult to disperse even in water that is heated above room temperature.
  • the HLB (Hydrophilic-Lipophilic Balance) value of the additive is preferably 9.0 or higher.
  • the HLB value is a value that indicates the degree of affinity for water and oil, and the higher the HLB value, the higher the affinity for water. In the case of food additives, if the HLB value is 9.0 or more, it can be generally said to be a hydrophilic food additive. Also, the HLB value of the additive is preferably 14.0 or less, more preferably 12.0 or less.
  • polyglycerin fatty acid ester or sucrose fatty acid ester can be used as the additive.
  • a polyglycerin fatty acid ester comprises a hydrophilic group, polyglycerin, and a hydrophobic group, a fatty acid.
  • a sucrose fatty acid ester comprises sucrose, which is a hydrophilic group, and fatty acid, which is a hydrophobic group.
  • Examples of polyglycerin fatty acid esters that can be used include hexaglycerin monostearate, hexaglycerin monomyristate, decaglycerin monostearate, decaglycerin monomyristate, and the like.
  • the concentration of the additive in the target liquid (that is, the amount of additive per unit volume of the target liquid) is, for example, 0.1 mg/L (milligram/liter) or more and 10 mg/L or less.
  • the concentration of the additive in the target liquid is 1 mg/L or more and 10 mg/L or less.
  • a target liquid in which UFB is to be generated is generated (step S11).
  • the target liquid is stored in the storage tank 51 of the UFB liquid generator 1 .
  • the target liquid may be generated outside the storage tank 51 and supplied to the storage tank 51 , and by adding an additive to water previously stored in the storage tank 51 , may be generated.
  • the target liquid stored in the storage tank 51 is pressure-fed to the mixing section 31 via the second pipe 61 by the pump 33 .
  • gas for example, air
  • the gas supply unit 34 is, for example, a compressor that pressure-feeds air pressurized to a pressure higher than the atmospheric pressure to the mixing unit 31 .
  • the target liquid supplied under pressure from the pump 33 and the gas supplied under pressure from the gas supply unit 34 are mixed to generate a mixed fluid (step S12). ).
  • the mixed fluid generated by the mixing section 31 is ejected (that is, supplied) into the pressurized liquid generation container 32 .
  • the inside of the pressurized liquid generation container 32 is a pressurized environment having a pressure higher than the atmospheric pressure.
  • the gas in the mixed fluid is pressurized and dissolved in the target liquid to generate a pressurized liquid (step S13).
  • the pressurized liquid generated in the pressurized liquid generation container 32 (that is, the mixed fluid obtained by pressurizing and dissolving the gas in the target liquid) is supplied to the liquid delivery section 2 .
  • the gaseous UFB is generated in the pressurized liquid supplied from the pressurized liquid generation container 32, and the UFB liquid containing the UFB is generated (step S14).
  • the UFB liquid is delivered from the liquid delivery section 2 to the storage tank 51 of the storage section 5 via the first pipe 52 and is temporarily stored in the storage tank 51 .
  • the liquid delivery unit 2 is a generation unit that generates UFB liquid by generating UFB in the target liquid. It should be noted that the generating unit may be construed as including the pressurized liquid generating container 32 as well.
  • the target liquid stored in the storage tank 51 is continuously supplied to the mixing section 31 via the circulation section 6 by the pump 33, and the pressurized liquid generation container 32 and the liquid delivery section are supplied. 2 back into the reservoir 51 . That is, the UFB liquid delivered from the liquid delivery section 2 in step S14 is returned (that is, circulated) to the mixing section 31 by the circulation section 6, and steps S12 to S14 are performed again (steps S15 and S16).
  • steps S12 to S16 are repeated to increase the concentration of UFB in the UFB liquid and to generate a UFB liquid containing a predetermined concentration of UFB (step S15).
  • the pump 33 is stopped, and the liquid circulation in the UFB liquid generator 1 is stopped. Since UFB can exist in the liquid for a long period of time, it continues to exist in the UFB liquid in the storage tank 51 for a long period of time even after stopping the circulation (that is, after stopping the generation of UFB).
  • the “concentration” of UFB in the UFB liquid refers to the number of UFB contained per unit volume of the UFB liquid (that is, number concentration).
  • concentration of UFB in the UFB liquid can be measured, for example, by nanoparticle tracking analysis.
  • Nanosite "NS500” manufactured by Malvern Panalytical is used as a measuring device to measure the concentration of UFB in the UFB liquid.
  • the concentration of UFB in the UFB liquid generated by the UFB liquid generator 1 is, for example, 100 million/mL (milliliter) or more when measured immediately after the generation of the UFB liquid.
  • the measurement immediately after the generation of the UFB liquid means measurement at a predetermined timing within 36 hours from when the UFB liquid generation operation is stopped (that is, when the UFB liquid generation device 1 finishes generating the UFB liquid). .
  • the diameter of UFBs contained in the UFB liquid is mainly 200 nm (nanometers) or less.
  • the number of UFBs with a diameter of 50 nm or more and 200 nm or less is, for example, 80% or more and 100% or less of the total number of UFBs.
  • the concentration of UFB in the UFB liquid remains at a relatively high concentration even after several days have passed since the UFB liquid was produced.
  • the concentration of UFB in the UFB solution 5 days after the above-described measurement immediately after production is the concentration of UFB in the UFB solution measured immediately after production. 50% or more of It should be noted that the "concentration of UFB in the UFB liquid 5 days after the measurement immediately after generation” means the measurement of the concentration of UFB immediately after the above generation (i.e., at a predetermined point within 36 hours after the UFB liquid generation operation was stopped). , means the concentration of UFB measured after 5 days (ie 120 hours). During the 5 days, the UFB liquid is stored in a sealed container at room temperature.
  • step S15 for example, the relationship between the number of circulations of the UFB liquid in the UFB liquid generator 1 and the concentration of UFB in the UFB liquid is obtained in advance, and the number of circulations reaches a predetermined number (for example, 10 times). When it reaches, it is determined that the concentration of UFB has reached the predetermined concentration.
  • the total amount of liquid delivered from the pump 33 obtained based on the flow rate and operating time of the pump 33 is the above-mentioned predetermined number times (for example, 10 times) the total amount of liquid in the UFB liquid generator 1 times), it is determined that the number of circulations has reached a predetermined number, and that the concentration of UFB has reached a predetermined concentration.
  • the total amount of liquid in the UFB liquid generator 1 is the volume of the liquid in the storage tank 51 and the liquid circulating outside the storage tank 51 (that is, the second pipe 61, the mixing section 31, the pressure It is the sum of the volumes of the liquid generation container 32, the liquid delivery section 2, and the liquid in the first pipe 52).
  • part of the liquid in the storage tank 51 may be taken out as a sample, and the concentration of UFB in the sample may be measured by the above-described measuring device or the like.
  • FIG. 3 is a cross-sectional view showing the mixing section 31 in an enlarged manner.
  • the mixing unit 31 is a mixing nozzle that mixes liquid and gas to generate a mixed fluid, as described above.
  • the mixing section 31 includes a liquid inlet 311 , a gas inlet 319 and a mixed fluid jet 312 .
  • the liquid inlet 311 is connected to the pump 33 via the second pipe 61 (see FIG. 1).
  • the gas inlet 319 is connected to the gas supply section 34 .
  • the mixed fluid jet 312 is connected to the upper end of the pressurized liquid generation container 32 .
  • the pressurized liquid supplied by the pump 33 flows from the liquid inlet 311 .
  • a pressurized gas supplied from the gas supply unit 34 flows in from the gas inlet 319 .
  • Mixed fluid 72 (see FIG. 1) in which the liquid flowing in from liquid inlet 311 and the gas flowing in from gas inlet 319 are mixed is ejected from mixed fluid ejection port 312 .
  • Liquid inlet 311, gas inlet 319 and mixed fluid outlet 312 are each substantially circular.
  • the channel cross section of the nozzle channel 310 from the liquid inlet 311 to the mixed fluid jet 312 and the channel cross section of the gas channel 3191 from the gas inlet 319 to the nozzle channel 310 are also substantially circular.
  • a channel cross section means a cross section perpendicular to the central axis of the channel such as the nozzle channel 310 or the gas channel 3191, that is, a cross section perpendicular to the flow of the fluid flowing through the channel.
  • the area of the channel cross section is referred to as "channel area”.
  • the nozzle channel 310 has a venturi tubular shape with a smaller channel area in the middle of the channel.
  • the mixing section 31 includes an introduction section 313, a first taper section 314, a throat section 315, a gas mixing section 316, a second A tapered portion 317 and a lead-out portion 318 are provided.
  • the mixing section 31 also includes a gas inlet section 3192 in which a gas flow path 3191 is provided.
  • the channel area is substantially constant at each position of the nozzle channel 310 in the central axis J1 direction.
  • the flow passage area gradually decreases in the direction in which the liquid flows (that is, toward the downstream).
  • the throat 315 the flow area is substantially constant.
  • the flow area of the throat 315 is the smallest in the nozzle flow channel 310 .
  • the gas mixing portion 316 has a substantially constant flow area, which is slightly larger than the flow area of the throat portion 315 .
  • the flow passage area gradually increases toward the downstream side.
  • the channel area is substantially constant.
  • the flow channel area of the gas flow channel 3191 is also substantially constant, and the gas flow channel 3191 is connected to the gas mixing section 316 of the nozzle flow channel 310 .
  • the liquid that has flowed into the nozzle channel 310 from the liquid inlet 311 is accelerated in the throat section 315 to reduce the static pressure. is lower than the pressure in gas inlet 319 .
  • the gas that has flowed into the gas flow path 3191 from the gas inlet 319 is accelerated by the pressure drop and flows into the gas mixing section 316, where it is mixed with the liquid to generate a mixed fluid.
  • the mixed fluid is decelerated at the second taper portion 317 and the lead-out portion 318 to increase the static pressure, and is ejected into the pressurized liquid generation container 32 shown in FIG. be.
  • the pressurized liquid and gas are ejected from the mixing section 31 into the pressurized liquid generation container 32 . Further, the outlet of the pressurized liquid generation container 32 is throttled by the liquid delivery section 2 . For this reason, the inside of the pressurized liquid generation container 32 is pressurized and is in a state where the pressure is higher than the atmospheric pressure (hereinafter referred to as "pressurized environment"). In other words, the liquid delivery section 2 has a function of making the inside of the pressurized liquid generation container 32 a pressurized environment. In the pressurized liquid generation container 32, as described above, while the mixed fluid 72 ejected from the mixing section 31 flows under the pressurized environment, the gas is pressurized and dissolved in the liquid to generate the pressurized liquid. .
  • the pressurized liquid generating container 32 includes a first channel 321, a second channel 322, a third channel 323, a fourth channel 324, and a 5 channel 325 .
  • the first flow path 321, the second flow path 322, the third flow path 323, the fourth flow path 324 and the fifth flow path 325 are collectively referred to as "flow paths 321 to 325".
  • the channels 321 to 325 are pipelines extending in the horizontal direction, and cross sections perpendicular to the longitudinal direction of the channels 321 to 325 are substantially rectangular.
  • the mixing section 31 described above is attached to the upstream end of the first flow path 321 (that is, the left end in FIG. 1), and the mixed fluid 72 ejected from the mixing section 31 is , in a pressurized environment towards the right in FIG.
  • the mixed fluid 72 is ejected from the mixing section 31 above the liquid surface of the mixed fluid 72 in the first channel 321 .
  • the mixed fluid 72 immediately after ejected from the mixing section 31 collides directly with the liquid surface before colliding with the wall surface on the downstream side of the first flow path 321 (that is, the wall surface on the right side in FIG. 1).
  • part or the whole of the mixed fluid ejection port 312 (see FIG. 3) of the mixing section 31 is positioned below the liquid level of the mixed fluid 72 in the first flow path 321. good too.
  • the mixed fluid 72 immediately after being ejected from the mixing section 31 directly collides with the mixed fluid 72 flowing in the first channel 321 , as described above.
  • a substantially circular opening 321 a is provided on the lower surface of the downstream end of the first flow path 321 , and the mixed fluid 72 flowing through the first flow path 321 flows through the first flow path 321 located below the first flow path 321 . It drops into the second channel 322 through the opening 321a.
  • the mixed fluid 72 dropped from the first channel 321 flows from the right side to the left side in FIG.
  • the liquid drops into the third flow path 323 positioned below the second flow path 322 .
  • the mixed fluid 72 dropped from the second channel 322 flows from the left side to the right side in FIG.
  • the liquid drops into the fourth channel 324 positioned below the third channel 323 .
  • the mixed fluid 72 is divided into a liquid layer containing air bubbles and a gas layer positioned above the liquid layer.
  • the mixed fluid 72 dropped from the third flow path 323 flows from the right side to the left side in FIG. It flows into (that is, falls into) the fifth channel 325 positioned below the fourth channel 324 through the provided substantially circular opening 324a.
  • the fifth flow path 325 unlike the first flow path 321 to the fourth flow path 324, there is no gas layer. A few bubbles are present in the vicinity of the upper surface of the .
  • the mixed fluid 72 flowing from the fourth flow path 324 flows from the left side to the right side in FIG. 1 under a pressurized environment.
  • the flow paths 321 to 325 flow down from top to bottom while repeating slowness and speed in stages (that is, the mixture flows while alternating between the horizontal flow and the downward flow).
  • the gas is gradually pressurized and dissolved in the liquid.
  • the concentration of dissolved gas in the liquid is approximately equal to 60% to 90% of the (saturated) solubility of the gas under pressure. Excess gas that is not dissolved in the liquid exists as bubbles of a visible size inside the fifth channel 325 . Since the direction of flow of the mixed fluid 72 in the vertically adjacent channels 321 to 325 is opposite, the size of the pressurized liquid generating container 32 can be reduced. In addition, in the pressurized liquid generation container 32, the number of vertically stacked flow paths may be changed as appropriate.
  • the pressurized liquid generation container 32 further includes a surplus gas separation section 326 extending upward from the upper surface of the fifth flow path 325 on the downstream side.
  • the excess gas separation section 326 is filled with the mixed fluid 72 .
  • the cross section perpendicular to the vertical direction of the surplus gas separation section 326 is substantially rectangular, and the upper end of the surplus gas separation section 326 is open to the atmosphere via a throttle section 327 for pressure adjustment. Bubbles of the mixed fluid 72 flowing through the fifth channel 325 rise inside the surplus gas separation section 326 and are released into the atmosphere.
  • the excess gas of the mixed fluid 72 is separated along with a portion of the mixed fluid 72 to produce a pressurized liquid substantially free of bubbles of at least readily visible size and a fifth
  • the liquid is supplied to the liquid delivery section 2 directly connected to the downstream end of the channel 325 .
  • the pressurized liquid contains approximately twice or more the (saturated) solubility of gas dissolved in the pressurized liquid.
  • the liquid of the mixed fluid 72 flowing through the channels 321 to 325 in the pressurized liquid generation container 32 can also be regarded as the pressurized liquid in the process of being generated.
  • FIG. 4 is a cross-sectional view showing the liquid delivery part 2 in an enlarged manner.
  • the liquid delivery unit 2 is a UFB generation nozzle that generates UFB in the liquid (that is, the pressurized liquid) flowing through the internal nozzle channel 20 .
  • the liquid delivery section 2 is a multistage nozzle in which three nozzles 28 are connected in series. The number of stages of the nozzles 28 of the liquid delivery section 2 may be one or plural.
  • the liquid delivery section 2 includes a liquid inlet 21 and a liquid delivery port 22 . Pressurized liquid flows from the fifth channel 325 (see FIG. 1) of the pressurized liquid generation container 32 through the liquid inlet 21 .
  • the liquid delivery port 22 is connected through a first pipe 52 to the reservoir 51 (see FIG. 1) of the reservoir 5 .
  • the liquid inlet 21 and the liquid delivery port 22 are each substantially circular, and the channel cross-section of the nozzle channel 20 from the liquid inlet 21 to the liquid delivery port 22 is also approximately circular.
  • the liquid delivery portion 2 includes three sets of tapered portions 24 and a throat portion 25 that are successively arranged in order from the liquid inlet 21 toward the liquid delivery port 22 (that is, from upstream to downstream of the nozzle channel 20). and an enlarged portion 26 .
  • the channel area gradually decreases in the direction in which the pressurized liquid flows (that is, from upstream to downstream of the nozzle channel 20).
  • the inner surface of the tapered portion 24 is part of a substantially conical surface centered on the central axis J2 of the nozzle flow path 20 . In a cross section including the central axis J2, the angle formed by the inner surface of the tapered portion 24 is preferably 10° or more and 90° or less.
  • the throat portion 25 connects to the downstream end of the tapered portion 24 and connects the tapered portion 24 and the enlarged portion 26 .
  • the inner surface of the throat portion 25 is a substantially cylindrical surface, and the flow passage area of the throat portion 25 is substantially constant.
  • the diameter of the channel cross section in the throat portion 25 is the smallest in the nozzle channel 20
  • the channel area of the throat portion 25 is the smallest in the nozzle channel 20 .
  • the length of the throat portion 25 is preferably 1.1 to 10 times the diameter of the throat portion 25, more preferably 1.5 to 2 times. In the nozzle channel 20 , even if the channel area of the throat portion 25 changes slightly, the entire portion with the smallest channel area can be regarded as the throat portion 25 .
  • the enlarged portion 26 is connected to a spout 29 that is the downstream end of the throat portion 25 .
  • the enlarged portion 26 connects the throat portion 25 on the upstream side and the tapered portion 24 on the downstream side.
  • the inner surface of the enlarged portion 26 is a substantially cylindrical surface, and the flow area of the enlarged portion 26 is substantially constant.
  • the diameter of enlarged portion 26 is greater than the diameter of throat portion 25 .
  • the flow passage area is rapidly enlarged as compared with the throat portion 25.
  • the angle between the substantially annular surface 27 between the downstream end of the throat portion 25 and the upstream end of the enlarged portion 26 and the central axis J2 is about 90°.
  • the surface 27 is substantially perpendicular to the central axis J2.
  • the angle is, for example, 45° or more and 90° or less.
  • the pressurized liquid that has flowed into the nozzle flow path 20 from the liquid inlet 21 is gradually accelerated in the tapered portion 24 and flows to the throat portion 25, whereupon it flows into the throat portion 25, and the jet port 29, which is the downstream end of the throat portion 25, flows. , to the enlarged portion 26 as a jet.
  • the flow velocity of the pressurized liquid in the throat 25 is preferably 10 m to 30 m/s.
  • the static pressure of the pressurized liquid decreases, so the gas in the pressurized liquid becomes supersaturated and precipitates in the liquid as UFB. Precipitation of UFB also occurs while the pressurized liquid passes through the enlarged portion 26 .
  • the pressurized liquid sequentially passes through the three sets of taper part 24, throat part 25 and enlarged part 26, thereby generating a UFB liquid containing high-concentration UFB, which is supplied to the first pipe shown in FIG. 52 to reservoir 51 .
  • Example 1 tap water was used as water, and hexaglycerin monostearate was used as an additive to generate the target liquid.
  • concentration of the additive in the subject liquid is 1 mg/L.
  • the HLB value of the additive is 9.0.
  • the number of carbon atoms (ie the number of C atoms) in the hydrophilic group of the additive is 18 and the number of carbon atoms in the hydrophobic group of the additive is 18.
  • the UFB liquid was generated with the number of times of circulation set to 10 times.
  • the concentration of UFB in the UFB liquid was determined using the above-mentioned measuring device. Specifically, first, a predetermined amount of UFB liquid was taken out from the storage tank 51, and the concentration of nanoparticles (that is, fine particles having a particle size of less than 1 ⁇ m) in the UFB liquid was measured by the measuring device. Since the measurement results may contain minute foreign substances other than UFB, after forcibly erasing UFB by irradiating the UFB liquid with ultrasonic waves, ultrasonic defoaming is performed by the measuring device. The concentration of nanoparticles in the UFB liquid after being soaked was measured. Then, by subtracting the measurement result after ultrasonic defoaming from the measurement result before ultrasonic defoaming, the concentration of UFB present in the UFB liquid (that is, ultrasonically defoamed) was obtained.
  • Example 1 the concentration of UFB in the UFB liquid measured immediately after generation (that is, within 36 hours after the end of generation of the UFB liquid) (hereinafter also referred to as “UFB concentration immediately after generation”) was 1.3 billion/mL. A UFB liquid containing a high concentration of UFB was produced. In addition, the concentration of UFB in the UFB liquid 5 days after the measurement immediately after the production (hereinafter also referred to as “UFB concentration after 5 days”) was 1.2 billion/mL. The value obtained by dividing the UFB concentration after 5 days by the UFB concentration immediately after production (hereinafter also referred to as "UFB residual rate”) was as high as about 90%, and a UFB liquid with high long-term UFB stability was obtained.
  • Example 2 is the same as Example 1, except that hexaglycerin monomyristate was used as an additive.
  • the HLB value of the additive is 11.0.
  • the number of carbon atoms in the hydrophilic group of the additive is 18, and the number of carbon atoms in the hydrophobic group of the additive is 14.
  • the UFB concentration immediately after production was 500 million/mL, and a UFB liquid containing a high concentration of UFB was produced. Moreover, the UFB concentration after 5 days was 400 million cells/mL.
  • the UFB residual rate was as high as about 80%, and a UFB liquid with high long-term UFB stability was obtained.
  • Example 3 is the same as Example 1, except that decaglycerin monostearate was used as an additive.
  • the HLB value of the additive is 12.0.
  • the number of carbon atoms in the hydrophilic group of the additive is 30, and the number of carbon atoms in the hydrophobic group of the additive is 18.
  • the UFB concentration immediately after production was 900 million/mL, and a UFB liquid containing a high concentration of UFB was produced. Moreover, the UFB concentration after 5 days was 900 million cells/mL.
  • the UFB residual rate was as high as about 100%, and a UFB liquid with high long-term UFB stability was obtained.
  • Example 4 is the same as Example 1, except that decaglycerin monomyristate was used as an additive.
  • the HLB value of the additive is 14.0.
  • the number of carbon atoms in the hydrophilic group of the additive is 30, and the number of carbon atoms in the hydrophobic group of the additive is 14.
  • the UFB concentration immediately after production was 200 million/mL, and a UFB liquid containing a high concentration of UFB was produced. Moreover, the UFB concentration after 5 days was 100 million cells/mL.
  • the UFB residual rate was as high as about 50%, and a UFB liquid with high long-term UFB stability was obtained.
  • Comparative Example 1 is the same as Example 1, except that the UFB liquid was produced only from water without using additives as described above.
  • the UFB concentration immediately after production was 100 million/mL, and a UFB liquid containing a relatively high concentration of UFB was produced.
  • the UFB concentration after 5 days was about 30 million/mL.
  • the UFB residual rate was as low as about 30%, and the long-term stability of UFB was low.
  • the UFB residual rate is about 50% in Example 4
  • the UFB residual rate is 80% to 100% in Examples 1 to 3, which is higher than that in Example 4. From this, it can be said that the HLB value of the additive is more preferably smaller than 14.0, and more preferably 12.0 or less.
  • Example 1 when comparing Example 1 and Example 2 in which the number of carbon atoms in the hydrophilic group of the additive is the same, Example 1 in which the number of carbon atoms in the hydrophobic group of the additive is 18 has 14 carbon atoms in the hydrophobic group.
  • the UFB concentration immediately after production and the UFB residual rate were higher than in Example 2.
  • Example 3 when comparing Example 3 and Example 4 in which the number of carbon atoms in the hydrophilic group of the additive is the same, Example 3 in which the number of carbon atoms in the hydrophobic group of the additive is 18 has 14 carbon atoms in the hydrophobic group.
  • the UFB concentration immediately after production and the UFB residual rate were higher. From this, it can be said that the number of carbon atoms in the hydrophobic group of the additive is more preferably greater than 14, and more preferably 18 or more.
  • Example 1 is as described above, and in Examples 5 and 6, the amount of additive added to water when the target liquid is generated (ie, the concentration of the additive in the target liquid) was changed.
  • Example 5 is the same as Example 1, except that the concentration of the additive (hexaglycerol monostearate) in the subject liquid was 0.1 mg/L.
  • the UFB concentration immediately after production was 100 million/mL, and a UFB liquid containing a relatively high concentration of UFB was produced.
  • Example 6 is the same as Example 1, except that the concentration of the additive (hexaglycerol monostearate) in the subject liquid was 10 mg/L.
  • the UFB concentration immediately after production was 1.4 billion/mL, and a UFB liquid containing a high concentration of UFB was produced.
  • Example 6 a phenomenon was observed in which the target liquid foamed during the generation of UFB.
  • the concentration of the additive in the target liquid is preferably 10 mg/L or less.
  • the concentration of the additive in the subject liquid is preferably 0.1 mg/L or more.
  • the concentration of the additive in the subject liquid is more preferably 1 mg/L or more.
  • polyglycerin fatty acid ester was used as an additive, but when sucrose fatty acid ester was used as an additive, it contained a high concentration of UFB in substantially the same manner, and the long-term stability of UFB A UFB liquid with high resistance was obtained.
  • the UFB liquid generation method includes a step of dispersing an additive, which is a hydrophilic food additive, in water to generate a target liquid (step S11); and generating a UFB liquid containing UFB by mixing and generating the gaseous UFB in the target liquid (steps S12 to S14).
  • the additive is polyglycerin fatty acid ester or sucrose fatty acid ester. This makes it possible to produce a UFB liquid that is safe to the human body, contains a high concentration of UFB, and has high long-term stability of UFB.
  • the concentration of UFB in the UFB liquid measured immediately after generation is 100 million/mL or more, and the concentration of UFB in the UFB liquid 5 days after the measurement immediately after generation is the UFB measured immediately after generation. It is preferably 50% or more of the concentration of UFB in the liquid. This makes it possible to provide a UFB liquid with higher long-term UFB stability.
  • the HLB value of the additive is preferably 9.0 or higher. This makes it easier to disperse the additive in water. As a result, the UFB liquid described above can be easily produced.
  • the additive concentration in the target liquid is preferably 10 mg/L or less.
  • a UFB liquid containing a high concentration of UFB and having high long-term stability of UFB can be produced while reducing the amount of additive used.
  • the gas is pressurized and dissolved in the target liquid to generate a pressurized liquid, and the UFB is precipitated from the pressurized liquid to generate the UFB liquid.
  • steps S12 to S14 are performed again for the UFB liquid generated in steps S12 to S14. This can increase the concentration of UFB in the UFB liquid.
  • the UFB liquid is preferably supplied into the oral cavity during tooth whitening. Since the UFB liquid is safe for the human body, it can be used for tooth whitening. In addition, since the UFB liquid contains UFB at a high concentration, it is possible to improve the teeth whitening effect. Furthermore, since the UFB liquid has high long-term stability, it is possible to generate and store in advance the amount of UFB liquid necessary for whitening a plurality of subjects. Therefore, whitening can be performed more efficiently than in the case where the long-term stability of UFB is low and UFB liquid needs to be generated every time one subject is whitened.
  • the UFB liquid generation device 1 described above includes a mixing section 31 and a generation section (that is, the liquid delivery section 2).
  • the mixing unit 31 mixes the gas and the pressurized target liquid to generate a mixed fluid.
  • the generation unit generates a UFB liquid containing UFB by generating gaseous UFB in the target liquid in the mixed fluid.
  • the target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water.
  • the additive is polyglycerin fatty acid ester or sucrose fatty acid ester.
  • the UFB liquid generation method includes a step of dispersing an additive, which is a hydrophilic food additive, in water to generate a target liquid (step S11), mixing the gas and the pressurized target liquid, and and generating a UFB liquid containing UFB by generating the gaseous UFB in the liquid (steps S12 to S14).
  • the concentration of UFB in the UFB liquid measured immediately after generation is 100 million/mL or more, and the concentration of UFB in the UFB liquid 5 days after the measurement immediately after generation is equal to the concentration of UFB in the UFB liquid measured immediately after generation 50% or more of This makes it possible to provide a UFB liquid that is safe to the human body, contains a high concentration of UFB, and has high long-term stability of UFB.
  • the UFB liquid generation device 1 described above includes a mixing section 31 and a generation section (that is, the liquid delivery section 2).
  • the mixing unit 31 mixes the gas and the pressurized target liquid to generate a mixed fluid.
  • the generation unit generates a UFB liquid containing UFB by generating gaseous UFB in the target liquid in the mixed fluid.
  • the target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water.
  • the concentration of UFB in the UFB liquid measured immediately after generation is 100 million/mL or more, and the concentration of UFB in the UFB liquid 5 days after the measurement immediately after generation is equal to the concentration of UFB in the UFB liquid measured immediately after generation 50% or more of As a result, it is possible to provide a UFB liquid that is safe to the human body, contains a high concentration of UFB, and has high long-term UFB stability.
  • the gas supplied to the mixing section 31 by the gas supply section 34 may be various gases other than air (for example, nitrogen gas).
  • Gas supply 34 is not limited to a compressor and may be modified in various ways.
  • the gas supply unit 34 may be a gas cylinder filled with nitrogen gas or the like having a pressure higher than atmospheric pressure.
  • the gas supply section 34 may be omitted. good.
  • the gas mixed with the pressurized target liquid in the mixing section 31 has substantially the same pressure as the atmospheric pressure, instead of being in a pressurized state.
  • water and additives may be supplied to the mixing section 31 or the pressurized liquid generation container 32 through separate paths and mixed. Further, the structure and shape of the pressurized liquid generation container 32 may be changed variously.
  • the structure of the liquid delivery unit 2 is not limited to the one described above, and may be modified in various ways.
  • the UFB generation nozzle of the liquid delivery part 2 may be provided with two sets, or four or more sets of the taper part 24, the throat part 25 and the enlarged part 26 that are continuous from upstream to downstream.
  • the UFB generation nozzle may have only one set of tapered portion 24, throat portion 25 and enlarged portion 26 that are continuous from upstream to downstream.
  • the liquid delivery part 2 does not necessarily have the taper part 24, the throat part 25 and the enlarged part 26, and may be a UFB generation nozzle with other structure.
  • the liquid delivery unit 2 does not necessarily have to be a UFB generation nozzle that generates UFB in the pressurized liquid by ejecting the pressurized liquid, and may generate UFB by various known generation methods.
  • the UFB may be generated by applying ultrasonic waves in the liquid delivery unit 2 to the mixed fluid generated by the mixing unit 31, or by applying shear force by the internal structure of the liquid delivery unit 2.
  • the pressurized liquid generation container 32 may be omitted from the UFB liquid generation device 1 .
  • the circulation of the UFB liquid via the circulation unit 6 may not be performed.
  • the circulation unit 6 may be omitted from the UFB liquid generator 1 .
  • the additive used to generate the target liquid may be a hydrophilic food additive other than polyglycerin fatty acid ester and sucrose fatty acid ester. Also, the HLB value of the additive may be less than 9.0. The concentration of the additive in the subject liquid may be higher than 10 mg/L.
  • the concentration of UFBs in the UFB liquid immediately after production may be less than 100 million/mL. Also, the UFB survival rate described above may be less than 50%.

Abstract

This ultrafine bubble (UFB) liquid generation method comprises: a step (step S11) for dispersing, in water, an additive that is a hydrophilic food additive to generate a subject liquid; and a step (steps S12 to S14) for mixing air with the pressurized subject liquid to generate UFBs of the air within the subject liquid, thereby generating a UFB liquid that contains UFBs. The additive is a polyglycerin fatty acid ester or a sucrose fatty acid ester. This makes it possible to generate a UFB liquid that is safe for humans, that contains UFBs in a high concentration, and that has high long-term stability of UFBs.

Description

ウルトラファインバブル液生成方法およびウルトラファインバブル液生成装置ULTRAFINE BUBBLE LIQUID GENERATION METHOD AND ULTRAFINE BUBBLE LIQUID GENERATOR
 本発明は、ウルトラファインバブル液を生成する技術に関する。
[関連出願の参照]
 本願は、2021年3月4日に出願された日本国特許出願JP2021-034222からの優先権の利益を主張し、当該出願の全ての開示は、本願に組み込まれる。
TECHNICAL FIELD The present invention relates to a technology for generating ultrafine bubble liquid.
[Reference to related application]
This application claims the benefit of priority from Japanese Patent Application JP2021-034222 filed on March 4, 2021, the entire disclosure of which is incorporated herein.
 近年、直径が1mm(ミリメートル)以下の気泡を含む液体が多様な分野で利用されている。また、最近では、直径が1μm(マイクロメートル)未満の気泡(ウルトラファインバブル)を含む液体が、多様な分野において注目されている。ウルトラファインバブル(以下、「UFB」とも呼ぶ。)は、直径が1mm以上の気泡であるミリバブル、および、直径が1μm~1mmの気泡であるマイクロバブルとは異なり、浮力により浮上して消滅することなく、液体中において長期間存在することが可能である。 In recent years, liquids containing bubbles with a diameter of 1 mm (millimeter) or less have been used in various fields. Recently, liquids containing bubbles (ultra-fine bubbles) with a diameter of less than 1 μm (micrometers) have attracted attention in various fields. Ultra-fine bubbles (hereinafter also referred to as “UFB”) are different from millibubbles, which are bubbles with a diameter of 1 mm or more, and microbubbles, which are bubbles with a diameter of 1 μm to 1 mm, and float and disappear due to buoyancy. can exist for long periods of time in liquids.
 近年の研究では、UFBが生成される液体の種類によっては、UFBを高濃度に生成することが難しい場合があることがわかってきている。本願発明者等は、研削加工に利用される研削液等において、電気伝導率が高い液体中にはUFBが比較的生成されにくいことを見いだし、当該液体中に微量の界面活性剤を添加することでUFBを好適に生成する技術を提案した(特開2020-99862号公報(文献1))。また、国際公開第2018/097019号(文献2)では、UFBの生成を促進するために、脂肪酸または脂肪性ビタミンと、炭化水素とを、生成促進剤として水に添加する技術が提案されている。 Recent research has found that depending on the type of liquid in which UFB is generated, it may be difficult to generate UFB at a high concentration. The inventors of the present application have found that UFB is relatively difficult to generate in liquids with high electrical conductivity, such as grinding liquids used for grinding, and added a small amount of surfactant to the liquid. proposed a technique for suitably generating UFB (Japanese Patent Application Laid-Open No. 2020-99862 (Document 1)). In addition, International Publication No. 2018/097019 (Document 2) proposes a technique of adding fatty acids or fatty vitamins and hydrocarbons to water as production accelerators in order to promote the production of UFB. .
 ところで、UFBを含む液体(以下、「UFB液」とも呼ぶ。)は、近年、シャワーや美容等の人の肌に触れたり、口に入る用途にも用いられている。このようにUFB液を人体等に対して用いる場合、UFBの生成を促進するための添加剤として、上述の炭化水素のような経口摂取により人体に害を及ぼす可能性がある物質を使用することはできない。また、疎水性の添加剤は、UFB液を生成するための液体が水等の場合、液体中に均等に溶解または分散させることが容易ではない。 By the way, in recent years, liquids containing UFB (hereinafter also referred to as "UFB liquids") have also been used for applications such as showers and beauty treatments that come in contact with the human skin or enter the mouth. When the UFB liquid is used for the human body or the like in this way, substances such as the above-mentioned hydrocarbons, which may be harmful to the human body when taken orally, should be used as additives for promoting the generation of UFB. can't. Further, when the liquid for generating the UFB liquid is water or the like, it is not easy to evenly dissolve or disperse the hydrophobic additive in the liquid.
 一方、炭酸飲料の泡感を向上する等の目的で経口摂取可能な親水性の食品添加物を添加することは知られているが、炭酸飲料の気泡はミリバブルであり、すぐに液面に浮上して消滅するものであるため、UFBを高濃度にて生成して液体中に長期間存在させる目的で当該技術を用いることは想定されていない。 On the other hand, it is known to add orally ingestible hydrophilic food additives for the purpose of improving the foaminess of carbonated beverages. Therefore, it is not envisaged to use this technology for the purpose of producing UFB in high concentration and allowing it to exist in liquids for a long period of time.
 本発明は、ウルトラファインバブル液生成方法に向けられており、人体に対して安全であり、高濃度のUFBを含み、かつ、UFBの長期安定性が高いUFB液を生成することを目的としている。 The present invention is directed to a method for producing an ultra-fine bubble liquid, and aims to produce a UFB liquid that is safe for the human body, contains a high concentration of UFB, and has high long-term stability of UFB. .
 本発明の好ましい一の形態に係るウルトラファインバブル液生成方法は、a)親水性食品添加物である添加剤を水に分散させて対象液を生成する工程と、b)気体と加圧された前記対象液とを混合し、前記対象液中に前記気体のウルトラファインバブルを生成することにより、前記ウルトラファインバブルを含むウルトラファインバブル液を生成する工程とを備える。前記添加剤は、ポリグリセリン脂肪酸エステルまたはショ糖脂肪酸エステルである。 A method for producing an ultra-fine bubble liquid according to a preferred embodiment of the present invention comprises: a) a step of dispersing an additive, which is a hydrophilic food additive, in water to produce a target liquid; and mixing with the target liquid to generate ultra-fine bubbles of the gas in the target liquid to generate an ultra-fine bubble liquid containing the ultra-fine bubbles. Said additive is polyglycerol fatty acid ester or sucrose fatty acid ester.
 本発明によれば、人体に対して安全であり、高濃度のUFBを含み、かつ、UFBの長期安定性が高いUFB液を生成することができる。 According to the present invention, it is possible to produce a UFB liquid that is safe for the human body, contains a high concentration of UFB, and has high long-term stability of UFB.
 好ましくは、生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は1億個/mL以上である。好ましくは、前記生成直後の測定から5日経過後の前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は、前記生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度の50%以上である。 Preferably, the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more. Preferably, the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation. be.
 好ましくは、前記添加剤のHLB値は9.0以上である。 Preferably, the HLB value of the additive is 9.0 or higher.
 好ましくは、前記対象液における前記添加剤の濃度は、10mg/L以下である。 Preferably, the concentration of the additive in the target liquid is 10 mg/L or less.
 本発明の好ましい他の形態に係るウルトラファインバブル液生成方法は、a)親水性食品添加物である添加剤を水に分散させて対象液を生成する工程と、b)気体と加圧された前記対象液とを混合し、前記対象液中に前記気体のウルトラファインバブルを生成することにより、前記ウルトラファインバブルを含むウルトラファインバブル液を生成する工程とを備える。生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は1億個/mL以上である。前記生成直後の測定から5日経過後の前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は、前記生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度の50%以上である。 A method for producing an ultra-fine bubble liquid according to another preferred embodiment of the present invention includes the steps of: a) dispersing an additive, which is a hydrophilic food additive, in water to produce a target liquid; and mixing with the target liquid to generate ultra-fine bubbles of the gas in the target liquid to generate an ultra-fine bubble liquid containing the ultra-fine bubbles. The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more. The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation.
 好ましくは、前記b)工程において、前記気体を前記対象液に加圧溶解させて加圧液を生成し、前記加圧液から前記ウルトラファインバブルを析出させて前記ウルトラファインバブル液を生成する。 Preferably, in the step b), the gas is pressurized and dissolved in the target liquid to generate a pressurized liquid, and the ultrafine bubbles are precipitated from the pressurized liquid to generate the ultrafine bubble liquid.
 好ましくは、前記ウルトラファインバブル液は、歯のホワイトニングの際に口腔内に供給される。 Preferably, the ultra-fine bubble liquid is supplied into the oral cavity during tooth whitening.
 本発明は、ウルトラファインバブル液生成装置にも向けられている。本発明の好ましい一の形態に係るウルトラファインバブル液生成装置は、気体および加圧された対象液を混合して混合流体を生成する混合部と、前記混合流体において、前記対象液中に前記気体のウルトラファインバブルを生成することにより、前記ウルトラファインバブルを含むウルトラファインバブル液を生成する生成部とを備える。前記対象液は、親水性食品添加物である添加剤が水に分散された液体である。前記添加剤は、ポリグリセリン脂肪酸エステルまたはショ糖脂肪酸エステルである。 The present invention is also directed to an ultra-fine bubble liquid generator. An ultra-fine bubble liquid generating apparatus according to a preferred embodiment of the present invention includes a mixing unit that mixes a gas and a pressurized target liquid to generate a mixed fluid, and in the mixed fluid, the target liquid contains the gas and a generation unit that generates an ultra-fine bubble liquid containing the ultra-fine bubbles by generating the ultra-fine bubbles. The target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water. Said additive is polyglycerol fatty acid ester or sucrose fatty acid ester.
 本発明の好ましい他の形態に係るウルトラファインバブル液生成装置は、気体および加圧された対象液を混合して混合流体を生成する混合部と、前記混合流体において、前記対象液中に前記気体のウルトラファインバブルを生成することにより、前記ウルトラファインバブルを含むウルトラファインバブル液を生成する生成部とを備える。前記対象液は、親水性食品添加物である添加剤が水に分散された液体である。生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は1億個/mL以上である。前記生成直後の測定から5日経過後の前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は、前記生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度の50%以上である。 An ultra-fine bubble liquid generating device according to another preferred embodiment of the present invention includes a mixing unit that mixes a gas and a pressurized target liquid to generate a mixed fluid, and in the mixed fluid, the gas in the target liquid and a generation unit that generates an ultra-fine bubble liquid containing the ultra-fine bubbles by generating the ultra-fine bubbles. The target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water. The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more. The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above-mentioned and other objects, features, aspects and advantages will become apparent from the detailed description of the present invention given below with reference to the accompanying drawings.
一の実施の形態に係るウルトラファインバブル液生成装置の断面図である。1 is a cross-sectional view of an ultra-fine bubble liquid generator according to one embodiment; FIG. ウルトラファインバブル液の生成の流れを示す図である。FIG. 4 is a diagram showing the flow of generation of ultra-fine bubble liquid. 混合ノズルの拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the mixing nozzle; ウルトラファインバブル生成ノズルの拡大断面図である。FIG. 4 is an enlarged cross-sectional view of an ultra-fine bubble generating nozzle;
 図1は、本発明の一の実施の形態に係るウルトラファインバブル液生成装置1の構成を示す図である。図1では、ウルトラファインバブル液生成装置1の一部の構成を断面にて描いている。「ウルトラファインバブル」とは、直径が1μm(マイクロメートル)未満の気泡であり、ナノバブルとも呼ばれる。以下の説明では、ウルトラファインバブルを「UFB」とも呼ぶ。また、UFBを含む液体であるウルトラファインバブル液を「UFB液」とも呼び、ウルトラファインバブル液生成装置を「UFB液生成装置」とも呼ぶ。 FIG. 1 is a diagram showing the configuration of an ultra-fine bubble liquid generator 1 according to one embodiment of the present invention. In FIG. 1, the configuration of a part of the ultra-fine bubble liquid generating device 1 is drawn in cross section. "Ultra-fine bubbles" are bubbles with a diameter of less than 1 µm (micrometers), and are also called nanobubbles. In the following description, ultra-fine bubbles are also referred to as "UFB". Further, the ultra-fine bubble liquid, which is a liquid containing UFB, is also called "UFB liquid", and the ultra-fine bubble liquid generator is also called "UFB liquid generator".
 UFB液生成装置1は、液体と気体とを混合して、当該気体のUFBを含む液体であるUFB液を生成する装置である。UFB液生成装置1により生成されたUFB液は、例えば、人間の口腔内に供給され、歯のホワイトニングに利用される。歯のホワイトニングでは、一般的に、UFB液中のUFBの濃度が高いとホワイトニングの効果が向上する。当該UFB液は、歯のホワイトニング以外の目的で、人に対して供給されてもよく、人以外の対象物(例えば、食品)に対して供給されてもよい。 The UFB liquid generation device 1 is a device that mixes liquid and gas to generate UFB liquid, which is a liquid containing UFB of the gas. The UFB liquid generated by the UFB liquid generation device 1 is supplied, for example, into the human oral cavity and used for tooth whitening. In tooth whitening, generally, the higher the concentration of UFB in the UFB solution, the better the whitening effect. The UFB liquid may be supplied to humans for purposes other than tooth whitening, and may be supplied to non-human objects (for example, food).
 UFB液生成装置1は、混合部31と、加圧液生成容器32と、液送出部2と、貯溜部5と、ポンプ33と、循環部6と、気体供給部34とを備える。 The UFB liquid generation device 1 includes a mixing section 31, a pressurized liquid generation container 32, a liquid delivery section 2, a storage section 5, a pump 33, a circulation section 6, and a gas supply section 34.
 混合部31は、加圧液生成容器32の上部に接続される。混合部31には、気体供給部34が接続される。液送出部2は、加圧液生成容器32の下部に接続される。また、液送出部2は、第1配管52を介して貯溜部5の貯溜槽51に接続される。貯溜槽51にはポンプ33が取り付けられる。ポンプ33は、循環部6の第2配管61を介して混合部31に接続される。貯溜部5の貯溜槽51には、UFBが生成される対象である液体(以下、「対象液」と呼ぶ。)が貯溜されている。 The mixing section 31 is connected to the upper portion of the pressurized liquid generation container 32 . A gas supply unit 34 is connected to the mixing unit 31 . The liquid delivery section 2 is connected to the lower portion of the pressurized liquid generation container 32 . Also, the liquid delivery unit 2 is connected to the storage tank 51 of the storage unit 5 via the first pipe 52 . A pump 33 is attached to the reservoir 51 . The pump 33 is connected to the mixing section 31 via the second pipe 61 of the circulation section 6 . A reservoir 51 of the reservoir 5 stores a liquid for which UFB is to be generated (hereinafter referred to as "target liquid").
 対象液は、親水性食品添加物である添加剤が水に分散された液体である。当該水として、例えば、水道水、純水または脱イオン水(DIW)等が利用可能である。親水性食品添加物とは、厚生労働省により人体に対して安全な食品添加物として使用が認められているもののうち、親水性を有するものである。親水性食品添加物は、例えば、親水基を備えており、常温または常温よりも加熱した状態の水に分散可能である。親水性食品添加物が水に分散した状態とは、親水性食品添加物が水に溶解している状態も含む。市販の親水性食品添加物は、通常、親水性であることが明記されて販売されている。なお、疎水性食品添加物は、通常、常温よりも加熱した状態の水であっても分散しにくい。 The target liquid is a liquid in which additives, which are hydrophilic food additives, are dispersed in water. As the water, for example, tap water, pure water, deionized water (DIW), or the like can be used. Hydrophilic food additives are those that are approved for use as food additives safe for the human body by the Ministry of Health, Labor and Welfare and have hydrophilic properties. A hydrophilic food additive, for example, has a hydrophilic group and can be dispersed in water at room temperature or in a state heated above room temperature. The state in which the hydrophilic food additive is dispersed in water also includes the state in which the hydrophilic food additive is dissolved in water. Commercially available hydrophilic food additives are usually marketed with a statement that they are hydrophilic. Hydrophobic food additives are generally difficult to disperse even in water that is heated above room temperature.
 添加剤のHLB(Hydrophilic-Lipophilic Balance)値は、9.0以上であることが好ましい。HLB値は、水および油への親和性の程度を示す値であり、大きいほど水に対する親和性が高いことを示す。食品添加物の場合、HLB値が9.0以上であれば、概ね親水性食品添加物といえる。また、添加剤のHLB値は、14.0以下であることが好ましく、12.0以下であることがさらに好ましい。 The HLB (Hydrophilic-Lipophilic Balance) value of the additive is preferably 9.0 or higher. The HLB value is a value that indicates the degree of affinity for water and oil, and the higher the HLB value, the higher the affinity for water. In the case of food additives, if the HLB value is 9.0 or more, it can be generally said to be a hydrophilic food additive. Also, the HLB value of the additive is preferably 14.0 or less, more preferably 12.0 or less.
 当該添加剤として、例えば、ポリグリセリン脂肪酸エステル、または、ショ糖脂肪酸エステルが利用可能である。ポリグリセリン脂肪酸エステルは、親水基であるポリグリセリンと、疎水基である脂肪酸とを備える。ショ糖脂肪酸エステルは、親水基であるショ糖と、疎水基である脂肪酸とを備える。ポリグリセリン脂肪酸エステルとして、例えば、ヘキサグリセリンモノステアリン酸エステル、ヘキサグリセリンモノミリスチン酸エステル、デカグリセリンモノステアリン酸エステル、または、デカグリセリンモノミリスチン酸エステル等が利用可能である。 For example, polyglycerin fatty acid ester or sucrose fatty acid ester can be used as the additive. A polyglycerin fatty acid ester comprises a hydrophilic group, polyglycerin, and a hydrophobic group, a fatty acid. A sucrose fatty acid ester comprises sucrose, which is a hydrophilic group, and fatty acid, which is a hydrophobic group. Examples of polyglycerin fatty acid esters that can be used include hexaglycerin monostearate, hexaglycerin monomyristate, decaglycerin monostearate, decaglycerin monomyristate, and the like.
 対象液における添加剤の濃度(すなわち、対象液の単位体積当たりの添加剤の量)は、例えば、0.1mg/L(ミリグラム/リットル)以上、かつ、10mg/L以下である。好ましくは、対象液における添加剤の濃度は、1mg/L以上かつ10mg/L以下である。 The concentration of the additive in the target liquid (that is, the amount of additive per unit volume of the target liquid) is, for example, 0.1 mg/L (milligram/liter) or more and 10 mg/L or less. Preferably, the concentration of the additive in the target liquid is 1 mg/L or more and 10 mg/L or less.
 次に、図2を参照しつつ、UFB液生成装置1によるUFB液の生成の流れについて説明する。UFB液生成装置1の各構成の詳細については後述する。まず、上述の添加剤を水に添加して分散させることにより、UFBが生成される予定の対象液が生成される(ステップS11)。当該対象液は、UFB液生成装置1の貯溜槽51に貯溜される。対象液は、貯溜槽51の外部にて生成されて貯溜槽51に供給されてもよく、貯溜槽51内に予め貯溜されている水に添加剤が添加されることにより、貯溜槽51内で生成されてもよい。 Next, the flow of UFB liquid generation by the UFB liquid generation device 1 will be described with reference to FIG. Details of each configuration of the UFB liquid generation device 1 will be described later. First, by adding the above additive to water and dispersing it, a target liquid in which UFB is to be generated is generated (step S11). The target liquid is stored in the storage tank 51 of the UFB liquid generator 1 . The target liquid may be generated outside the storage tank 51 and supplied to the storage tank 51 , and by adding an additive to water previously stored in the storage tank 51 , may be generated.
 続いて、ポンプ33により、貯溜槽51に貯溜されている対象液が、第2配管61を介して混合部31へと圧送される。また、気体供給部34により、混合部31に気体(例えば、空気)が供給される。気体供給部34は、例えば、大気圧よりも高圧に加圧された状態の空気を混合部31へと圧送するコンプレッサである。混合部31では、ポンプ33から加圧された状態で供給される対象液と、気体供給部34から加圧された状態で供給される気体とが混合され、混合流体が生成される(ステップS12)。 Subsequently, the target liquid stored in the storage tank 51 is pressure-fed to the mixing section 31 via the second pipe 61 by the pump 33 . Further, gas (for example, air) is supplied to the mixing unit 31 by the gas supply unit 34 . The gas supply unit 34 is, for example, a compressor that pressure-feeds air pressurized to a pressure higher than the atmospheric pressure to the mixing unit 31 . In the mixing unit 31, the target liquid supplied under pressure from the pump 33 and the gas supplied under pressure from the gas supply unit 34 are mixed to generate a mixed fluid (step S12). ).
 混合部31により生成された混合流体は、加圧液生成容器32内へと噴出(すなわち、供給)される。加圧液生成容器32内は、大気圧よりも圧力が高い加圧環境である。加圧液生成容器32では、混合流体中の上記気体が対象液中に加圧溶解し、加圧液が生成される(ステップS13)。 The mixed fluid generated by the mixing section 31 is ejected (that is, supplied) into the pressurized liquid generation container 32 . The inside of the pressurized liquid generation container 32 is a pressurized environment having a pressure higher than the atmospheric pressure. In the pressurized liquid generation container 32, the gas in the mixed fluid is pressurized and dissolved in the target liquid to generate a pressurized liquid (step S13).
 加圧液生成容器32内において生成された加圧液(すなわち、対象液中に気体が加圧溶解した混合流体)は、液送出部2に供給される。液送出部2では、加圧液生成容器32から供給された加圧液中に上記気体のUFBが生成され、当該UFBを含むUFB液が生成される(ステップS14)。当該UFB液は、液送出部2から第1配管52を介して貯溜部5の貯溜槽51へと送出され、貯溜槽51にて一時的に貯溜される。液送出部2は、対象液中にUFBを生成することによりUFB液を生成する生成部である。なお、当該生成部には、加圧液生成容器32も含まれると解釈されてもよい。 The pressurized liquid generated in the pressurized liquid generation container 32 (that is, the mixed fluid obtained by pressurizing and dissolving the gas in the target liquid) is supplied to the liquid delivery section 2 . In the liquid delivery unit 2, the gaseous UFB is generated in the pressurized liquid supplied from the pressurized liquid generation container 32, and the UFB liquid containing the UFB is generated (step S14). The UFB liquid is delivered from the liquid delivery section 2 to the storage tank 51 of the storage section 5 via the first pipe 52 and is temporarily stored in the storage tank 51 . The liquid delivery unit 2 is a generation unit that generates UFB liquid by generating UFB in the target liquid. It should be noted that the generating unit may be construed as including the pressurized liquid generating container 32 as well.
 UFB液生成装置1では、貯溜槽51に貯溜されている対象液が、ポンプ33により、循環部6を介して連続的に混合部31へと供給され、加圧液生成容器32および液送出部2を通過して、貯溜槽51へと戻される。すなわち、ステップS14において液送出部2から送出されたUFB液は、循環部6により混合部31へと戻され(すなわち、循環され)、再度ステップS12~S14が行われる(ステップS15,S16)。UFB液生成装置1では、ステップS12~S16が繰り返されることにより、UFB液中のUFBの濃度が増大し、所定濃度のUFBを含むUFB液が生成される(ステップS15)。そして、ポンプ33が停止され、UFB液生成装置1における液体の循環が停止される。UFBは、液体中において長期間存在可能であるため、上記循環の停止後(すなわち、UFBの生成停止後)も、貯溜槽51内のUFB液中に長期間存在し続ける。 In the UFB liquid generation device 1, the target liquid stored in the storage tank 51 is continuously supplied to the mixing section 31 via the circulation section 6 by the pump 33, and the pressurized liquid generation container 32 and the liquid delivery section are supplied. 2 back into the reservoir 51 . That is, the UFB liquid delivered from the liquid delivery section 2 in step S14 is returned (that is, circulated) to the mixing section 31 by the circulation section 6, and steps S12 to S14 are performed again (steps S15 and S16). In the UFB liquid generator 1, steps S12 to S16 are repeated to increase the concentration of UFB in the UFB liquid and to generate a UFB liquid containing a predetermined concentration of UFB (step S15). Then, the pump 33 is stopped, and the liquid circulation in the UFB liquid generator 1 is stopped. Since UFB can exist in the liquid for a long period of time, it continues to exist in the UFB liquid in the storage tank 51 for a long period of time even after stopping the circulation (that is, after stopping the generation of UFB).
 UFB液中のUFBの「濃度」とは、UFB液が単位体積当たりに含有するUFBの個数(すなわち、数濃度)を指す。UFB液中のUFBの濃度は、例えば、ナノ粒子トラッキング解析法により測定可能である。本実施の形態では、Malvern Panalytical社製のナノサイト「NS500」を測定装置として使用して、UFB液中のUFBの濃度を測定する。 The "concentration" of UFB in the UFB liquid refers to the number of UFB contained per unit volume of the UFB liquid (that is, number concentration). The concentration of UFB in the UFB liquid can be measured, for example, by nanoparticle tracking analysis. In this embodiment, Nanosite "NS500" manufactured by Malvern Panalytical is used as a measuring device to measure the concentration of UFB in the UFB liquid.
 UFB液生成装置1にて生成されたUFB液中のUFBの濃度は、UFB液の生成直後における測定では、例えば1億個/mL(ミリリットル)以上である。UFB液の生成直後の測定とは、UFB液の生成動作を停止したとき(すなわち、UFB液生成装置1によるUFB液の生成終了時点)から、36時間以内の所定のタイミングでの測定を意味する。以下の説明においても同様である。UFB液に含まれるUFBの直径は、主に200nm(ナノメートル)以下である。単位体積当たりのUFB液に含まれるUFBの個数に注目すると、直径が50nm以上かつ200nm以下のUFBの個数は、例えば、全UFBの個数の80%以上かつ100%以下である。 The concentration of UFB in the UFB liquid generated by the UFB liquid generator 1 is, for example, 100 million/mL (milliliter) or more when measured immediately after the generation of the UFB liquid. The measurement immediately after the generation of the UFB liquid means measurement at a predetermined timing within 36 hours from when the UFB liquid generation operation is stopped (that is, when the UFB liquid generation device 1 finishes generating the UFB liquid). . The same applies to the following description. The diameter of UFBs contained in the UFB liquid is mainly 200 nm (nanometers) or less. Focusing on the number of UFBs contained in the UFB liquid per unit volume, the number of UFBs with a diameter of 50 nm or more and 200 nm or less is, for example, 80% or more and 100% or less of the total number of UFBs.
 UFB液中のUFBは、UFB液の生成から数日経過した後においても、比較的高濃度にて残存している。例えば、上述の生成直後の測定から5日経過後(すなわち、生成終了時点を1日目としたときの6日目)のUFB液におけるUFBの濃度は、生成直後に測定したUFB液におけるUFBの濃度の50%以上である。なお、「生成直後の測定から5日経過後のUFB液におけるUFBの濃度」とは、上述の生成直後(すなわち、UFB液の生成動作の停止から36時間以内の所定の時点)のUFBの濃度測定から、5日間(すなわち、120時間)が経過した時点で測定したUFBの濃度を意味する。なお、当該5日の間、UFB液は室温にて密閉容器内に保管される。 The UFB in the UFB liquid remains at a relatively high concentration even after several days have passed since the UFB liquid was produced. For example, the concentration of UFB in the UFB solution 5 days after the above-described measurement immediately after production (that is, on the 6th day when the production end point is defined as day 1) is the concentration of UFB in the UFB solution measured immediately after production. 50% or more of It should be noted that the "concentration of UFB in the UFB liquid 5 days after the measurement immediately after generation" means the measurement of the concentration of UFB immediately after the above generation (i.e., at a predetermined point within 36 hours after the UFB liquid generation operation was stopped). , means the concentration of UFB measured after 5 days (ie 120 hours). During the 5 days, the UFB liquid is stored in a sealed container at room temperature.
 上述のステップS15では、例えば、UFB液生成装置1におけるUFB液の循環回数と、UFB液中のUFBの濃度との関係が予め求められており、循環回数が所定数(例えば、10回)に達すると、UFBの濃度が所定濃度に到達したと判断される。具体的には、例えば、ポンプ33の流量および稼働時間に基づいて求められたポンプ33からの液体の総送出量が、UFB液生成装置1内の液体の総量の上記所定数倍(例えば、10倍)におよそ等しくなったときに、循環回数が所定数に達したと判断され、UFBの濃度が所定濃度に到達したと判断される。なお、UFB液生成装置1内の液体の総量とは、貯溜槽51内の液体の体積と、貯溜槽51の外部を循環している液体(すなわち、第2配管61、混合部31、加圧液生成容器32、液送出部2および第1配管52内の液体)の体積との合計である。なお、ステップS15では、貯溜槽51内の液体の一部が試料として取り出され、当該試料中のUFBの濃度が、上述の測定装置等により測定されてもよい。 In step S15 described above, for example, the relationship between the number of circulations of the UFB liquid in the UFB liquid generator 1 and the concentration of UFB in the UFB liquid is obtained in advance, and the number of circulations reaches a predetermined number (for example, 10 times). When it reaches, it is determined that the concentration of UFB has reached the predetermined concentration. Specifically, for example, the total amount of liquid delivered from the pump 33 obtained based on the flow rate and operating time of the pump 33 is the above-mentioned predetermined number times (for example, 10 times) the total amount of liquid in the UFB liquid generator 1 times), it is determined that the number of circulations has reached a predetermined number, and that the concentration of UFB has reached a predetermined concentration. The total amount of liquid in the UFB liquid generator 1 is the volume of the liquid in the storage tank 51 and the liquid circulating outside the storage tank 51 (that is, the second pipe 61, the mixing section 31, the pressure It is the sum of the volumes of the liquid generation container 32, the liquid delivery section 2, and the liquid in the first pipe 52). In step S15, part of the liquid in the storage tank 51 may be taken out as a sample, and the concentration of UFB in the sample may be measured by the above-described measuring device or the like.
 次に、UFB液生成装置1の構成について詳細に説明する。図3は、混合部31を拡大して示す断面図である。混合部31は、上述のように、液体と気体とを混合して混合流体を生成する混合ノズルである。混合部31は、液体流入口311と、気体流入口319と、混合流体噴出口312とを備える。液体流入口311は、第2配管61(図1参照)を介してポンプ33に接続される。気体流入口319は、気体供給部34に接続される。混合流体噴出口312は、加圧液生成容器32の上端部に接続される。 Next, the configuration of the UFB liquid generation device 1 will be described in detail. FIG. 3 is a cross-sectional view showing the mixing section 31 in an enlarged manner. The mixing unit 31 is a mixing nozzle that mixes liquid and gas to generate a mixed fluid, as described above. The mixing section 31 includes a liquid inlet 311 , a gas inlet 319 and a mixed fluid jet 312 . The liquid inlet 311 is connected to the pump 33 via the second pipe 61 (see FIG. 1). The gas inlet 319 is connected to the gas supply section 34 . The mixed fluid jet 312 is connected to the upper end of the pressurized liquid generation container 32 .
 液体流入口311からは、ポンプ33により供給される加圧された状態の液体(すなわち、対象液)が流入する。気体流入口319からは、気体供給部34により供給される加圧された状態の気体が流入する。混合流体噴出口312からは、液体流入口311から流入した液体と、気体流入口319から流入した気体とが混合された混合流体72(図1参照)が噴出する。液体流入口311、気体流入口319および混合流体噴出口312はそれぞれ略円形である。 The pressurized liquid supplied by the pump 33 (that is, the target liquid) flows from the liquid inlet 311 . A pressurized gas supplied from the gas supply unit 34 flows in from the gas inlet 319 . Mixed fluid 72 (see FIG. 1) in which the liquid flowing in from liquid inlet 311 and the gas flowing in from gas inlet 319 are mixed is ejected from mixed fluid ejection port 312 . Liquid inlet 311, gas inlet 319 and mixed fluid outlet 312 are each substantially circular.
 混合部31では、液体流入口311から混合流体噴出口312に向かうノズル流路310の流路断面、および、気体流入口319からノズル流路310に向かう気体流路3191の流路断面も略円形である。流路断面とは、ノズル流路310や気体流路3191等の流路の中心軸に垂直な断面、すなわち、流路を流れる流体の流れに垂直な断面を意味する。また、以下の説明では、流路断面の面積を「流路面積」という。ノズル流路310は、流路面積が流路の中間部で小さくなるベンチュリ管状である。 In the mixing section 31, the channel cross section of the nozzle channel 310 from the liquid inlet 311 to the mixed fluid jet 312 and the channel cross section of the gas channel 3191 from the gas inlet 319 to the nozzle channel 310 are also substantially circular. is. A channel cross section means a cross section perpendicular to the central axis of the channel such as the nozzle channel 310 or the gas channel 3191, that is, a cross section perpendicular to the flow of the fluid flowing through the channel. In addition, in the following description, the area of the channel cross section is referred to as "channel area". The nozzle channel 310 has a venturi tubular shape with a smaller channel area in the middle of the channel.
 混合部31は、液体流入口311から混合流体噴出口312に向かって順に連続して配置される導入部313と、第1テーパ部314と、喉部315と、気体混合部316と、第2テーパ部317と、導出部318とを備える。混合部31は、また、内部に気体流路3191が設けられた気体流入部3192を備える。 The mixing section 31 includes an introduction section 313, a first taper section 314, a throat section 315, a gas mixing section 316, a second A tapered portion 317 and a lead-out portion 318 are provided. The mixing section 31 also includes a gas inlet section 3192 in which a gas flow path 3191 is provided.
 導入部313では、流路面積は、ノズル流路310の中心軸J1方向の各位置においてほぼ一定である。第1テーパ部314では、液体の流れる方向に向かって(すなわち、下流に向かって)流路面積が漸次減少する。喉部315では、流路面積はほぼ一定である。喉部315の流路面積は、ノズル流路310において最も小さい。なお、ノズル流路310では、喉部315において流路面積が僅かに変化する場合であっても、流路面積がおよそ最も小さい部分全体が喉部315と捉えられる。気体混合部316では、流路面積はほぼ一定であり、喉部315の流路面積よりも少し大きい。第2テーパ部317では、下流に向かって流路面積が漸次増大する。導出部318では、流路面積はほぼ一定である。気体流路3191の流路面積もほぼ一定であり、気体流路3191は、ノズル流路310の気体混合部316に接続される。 In the introduction part 313, the channel area is substantially constant at each position of the nozzle channel 310 in the central axis J1 direction. In the first tapered portion 314, the flow passage area gradually decreases in the direction in which the liquid flows (that is, toward the downstream). In the throat 315, the flow area is substantially constant. The flow area of the throat 315 is the smallest in the nozzle flow channel 310 . In the nozzle channel 310 , even if the channel area of the throat portion 315 changes slightly, the entire portion having the smallest channel area can be regarded as the throat portion 315 . The gas mixing portion 316 has a substantially constant flow area, which is slightly larger than the flow area of the throat portion 315 . In the second tapered portion 317, the flow passage area gradually increases toward the downstream side. In the lead-out portion 318, the channel area is substantially constant. The flow channel area of the gas flow channel 3191 is also substantially constant, and the gas flow channel 3191 is connected to the gas mixing section 316 of the nozzle flow channel 310 .
 混合部31では、液体流入口311からノズル流路310に流入した液体が、喉部315で加速されて静圧が低下し、喉部315および気体混合部316において、ノズル流路310内の圧力が気体流入口319内の圧力よりも低くなる。また、気体流入口319から気体流路3191に流入した気体は、当該圧力低下により加速されつつ気体混合部316に流入し、液体と混合されて混合流体が生成される。当該混合流体は、第2テーパ部317および導出部318において減速されて静圧が増大し、混合流体噴出口312を介して上述のように図1に示す加圧液生成容器32内に噴出される。 In the mixing section 31 , the liquid that has flowed into the nozzle channel 310 from the liquid inlet 311 is accelerated in the throat section 315 to reduce the static pressure. is lower than the pressure in gas inlet 319 . Also, the gas that has flowed into the gas flow path 3191 from the gas inlet 319 is accelerated by the pressure drop and flows into the gas mixing section 316, where it is mixed with the liquid to generate a mixed fluid. The mixed fluid is decelerated at the second taper portion 317 and the lead-out portion 318 to increase the static pressure, and is ejected into the pressurized liquid generation container 32 shown in FIG. be.
 UFB液生成装置1では、混合部31から、加圧された液体および気体が加圧液生成容器32内に噴出される。また、加圧液生成容器32の出口は、液送出部2により絞られている。このため、加圧液生成容器32内が加圧されて、大気圧よりも圧力が高い状態(以下、「加圧環境」という。)となっている。換言すれば、液送出部2は、加圧液生成容器32内を加圧環境とする機能を有している。加圧液生成容器32では、上述のように、混合部31から噴出された混合流体72が加圧環境下にて流れる間に、気体が液体に加圧溶解して加圧液が生成される。 In the UFB liquid generation device 1 , the pressurized liquid and gas are ejected from the mixing section 31 into the pressurized liquid generation container 32 . Further, the outlet of the pressurized liquid generation container 32 is throttled by the liquid delivery section 2 . For this reason, the inside of the pressurized liquid generation container 32 is pressurized and is in a state where the pressure is higher than the atmospheric pressure (hereinafter referred to as "pressurized environment"). In other words, the liquid delivery section 2 has a function of making the inside of the pressurized liquid generation container 32 a pressurized environment. In the pressurized liquid generation container 32, as described above, while the mixed fluid 72 ejected from the mixing section 31 flows under the pressurized environment, the gas is pressurized and dissolved in the liquid to generate the pressurized liquid. .
 図1に示す例では、加圧液生成容器32は、上下方向に積層される第1流路321と、第2流路322と、第3流路323と、第4流路324と、第5流路325とを備える。以下の説明では、第1流路321、第2流路322、第3流路323、第4流路324および第5流路325をまとめて指す場合、「流路321~325」と呼ぶ。流路321~325は、水平方向に延びる管路であり、流路321~325の長手方向に垂直な断面は略矩形である。 In the example shown in FIG. 1, the pressurized liquid generating container 32 includes a first channel 321, a second channel 322, a third channel 323, a fourth channel 324, and a 5 channel 325 . In the following description, the first flow path 321, the second flow path 322, the third flow path 323, the fourth flow path 324 and the fifth flow path 325 are collectively referred to as "flow paths 321 to 325". The channels 321 to 325 are pipelines extending in the horizontal direction, and cross sections perpendicular to the longitudinal direction of the channels 321 to 325 are substantially rectangular.
 第1流路321の上流側の端部(すなわち、図1中の左側の端部)には、上述の混合部31が取り付けられており、混合部31から噴出された後の混合流体72は、加圧環境下にて図1中の右側に向かって流れる。図1に示す例では、第1流路321内の混合流体72の液面より上方にて、混合部31から混合流体72が噴出される。混合部31から噴出された直後の混合流体72は、第1流路321の下流側の壁面(すなわち、図1中の右側の壁面)に衝突する前に上記液面に直接衝突する。 The mixing section 31 described above is attached to the upstream end of the first flow path 321 (that is, the left end in FIG. 1), and the mixed fluid 72 ejected from the mixing section 31 is , in a pressurized environment towards the right in FIG. In the example shown in FIG. 1 , the mixed fluid 72 is ejected from the mixing section 31 above the liquid surface of the mixed fluid 72 in the first channel 321 . The mixed fluid 72 immediately after ejected from the mixing section 31 collides directly with the liquid surface before colliding with the wall surface on the downstream side of the first flow path 321 (that is, the wall surface on the right side in FIG. 1).
 加圧液生成容器32では、混合部31の混合流体噴出口312(図3参照)の一部または全体が、第1流路321内の混合流体72の液面よりも下側に位置してもよい。これにより、上述と同様に、第1流路321内において、混合部31から噴出された直後の混合流体72が、第1流路321内を流れる混合流体72に直接衝突する。 In the pressurized liquid generation container 32, part or the whole of the mixed fluid ejection port 312 (see FIG. 3) of the mixing section 31 is positioned below the liquid level of the mixed fluid 72 in the first flow path 321. good too. As a result, in the first channel 321 , the mixed fluid 72 immediately after being ejected from the mixing section 31 directly collides with the mixed fluid 72 flowing in the first channel 321 , as described above.
 第1流路321の下流側の端部の下面には、略円形の開口321aが設けられており、第1流路321を流れる混合流体72は、第1流路321の下方に位置する第2流路322へと開口321aを介して落下する。第2流路322では、第1流路321から落下した混合流体72が加圧環境下にて図1中の右側から左側へと流れ、第2流路322の下流側の端部の下面に設けられた略円形の開口322aを介して、第2流路322の下方に位置する第3流路323へと落下する。第3流路323では、第2流路322から落下した混合流体72が加圧環境下にて図1中の左側から右側へと流れ、第3流路323の下流側の端部の下面に設けられた略円形の開口323aを介して、第3流路323の下方に位置する第4流路324へと落下する。図1に示すように、第1流路321~第4流路324では、混合流体72は、気泡を含む液体の層と、その上方に位置する気体の層に分かれている。 A substantially circular opening 321 a is provided on the lower surface of the downstream end of the first flow path 321 , and the mixed fluid 72 flowing through the first flow path 321 flows through the first flow path 321 located below the first flow path 321 . It drops into the second channel 322 through the opening 321a. In the second channel 322, the mixed fluid 72 dropped from the first channel 321 flows from the right side to the left side in FIG. Through the provided substantially circular opening 322a, the liquid drops into the third flow path 323 positioned below the second flow path 322 . In the third channel 323, the mixed fluid 72 dropped from the second channel 322 flows from the left side to the right side in FIG. Through the provided substantially circular opening 323 a , the liquid drops into the fourth channel 324 positioned below the third channel 323 . As shown in FIG. 1, in the first flow path 321 to the fourth flow path 324, the mixed fluid 72 is divided into a liquid layer containing air bubbles and a gas layer positioned above the liquid layer.
 第4流路324では、第3流路323から落下した混合流体72が加圧環境下にて図1中の右側から左側へと流れ、第4流路324の下流側の端部の下面に設けられた略円形の開口324aを介して、第4流路324の下方に位置する第5流路325へと流入(すなわち、落下)する。第5流路325では、第1流路321~第4流路324とは異なり、気体の層は存在しておらず、第5流路325内に充満する液体内において、第5流路325の上面近傍に気泡が僅かに存在する状態となっている。第5流路325では、第4流路324から流入した混合流体72が加圧環境下にて図1中の左側から右側へと流れる。 In the fourth flow path 324, the mixed fluid 72 dropped from the third flow path 323 flows from the right side to the left side in FIG. It flows into (that is, falls into) the fifth channel 325 positioned below the fourth channel 324 through the provided substantially circular opening 324a. In the fifth flow path 325, unlike the first flow path 321 to the fourth flow path 324, there is no gas layer. A few bubbles are present in the vicinity of the upper surface of the . In the fifth flow path 325, the mixed fluid 72 flowing from the fourth flow path 324 flows from the left side to the right side in FIG. 1 under a pressurized environment.
 加圧液生成容器32では、流路321~325を、段階的に緩急を繰り返しつつ上から下に流れ落ちる(すなわち、水平方向への流れと下方向への流れとを交互に繰り返しつつ流れる)混合流体72において、気体が液体に徐々に加圧溶解する。第5流路325においては、液体中に溶解している気体の濃度は、加圧環境下における当該気体の(飽和)溶解度の60%~90%にほぼ等しい。そして、液体に溶解しなかった余剰の気体が、第5流路325内において、視認可能な大きさの気泡として存在している。上下に隣接する流路321~325における混合流体72の流れの方向が逆向きであることにより、加圧液生成容器32の小型化が実現される。なお、加圧液生成容器32では、上下に積層される流路の数は適宜変更されてよい。 In the pressurized liquid generation container 32, the flow paths 321 to 325 flow down from top to bottom while repeating slowness and speed in stages (that is, the mixture flows while alternating between the horizontal flow and the downward flow). In the fluid 72, the gas is gradually pressurized and dissolved in the liquid. In the fifth channel 325, the concentration of dissolved gas in the liquid is approximately equal to 60% to 90% of the (saturated) solubility of the gas under pressure. Excess gas that is not dissolved in the liquid exists as bubbles of a visible size inside the fifth channel 325 . Since the direction of flow of the mixed fluid 72 in the vertically adjacent channels 321 to 325 is opposite, the size of the pressurized liquid generating container 32 can be reduced. In addition, in the pressurized liquid generation container 32, the number of vertically stacked flow paths may be changed as appropriate.
 加圧液生成容器32は、第5流路325の下流側の上面から上方へと延びる余剰気体分離部326をさらに備える。余剰気体分離部326には混合流体72が充満している。余剰気体分離部326の上下方向に垂直な断面は略矩形であり、余剰気体分離部326の上端部は、圧力調整用の絞り部327を介して大気開放されている。第5流路325を流れる混合流体72の気泡は、余剰気体分離部326内を上昇して大気中に放出される。 The pressurized liquid generation container 32 further includes a surplus gas separation section 326 extending upward from the upper surface of the fifth flow path 325 on the downstream side. The excess gas separation section 326 is filled with the mixed fluid 72 . The cross section perpendicular to the vertical direction of the surplus gas separation section 326 is substantially rectangular, and the upper end of the surplus gas separation section 326 is open to the atmosphere via a throttle section 327 for pressure adjustment. Bubbles of the mixed fluid 72 flowing through the fifth channel 325 rise inside the surplus gas separation section 326 and are released into the atmosphere.
 このようにして、混合流体72の余剰な気体が混合流体72の一部と共に分離されることにより、少なくとも容易に視認できる大きさの気泡を実質的に含まない加圧液が生成され、第5流路325の下流側の端部に直接的に接続された液送出部2へと供給される。本実施の形態では、加圧液には、大気圧下における気体の(飽和)溶解度の約2倍以上の気体が溶解している。加圧液生成容器32において流路321~325を流れる混合流体72の液体は、生成途上の加圧液と捉えることもできる。 In this manner, the excess gas of the mixed fluid 72 is separated along with a portion of the mixed fluid 72 to produce a pressurized liquid substantially free of bubbles of at least readily visible size and a fifth The liquid is supplied to the liquid delivery section 2 directly connected to the downstream end of the channel 325 . In the present embodiment, the pressurized liquid contains approximately twice or more the (saturated) solubility of gas dissolved in the pressurized liquid. The liquid of the mixed fluid 72 flowing through the channels 321 to 325 in the pressurized liquid generation container 32 can also be regarded as the pressurized liquid in the process of being generated.
 図4は、液送出部2を拡大して示す断面図である。液送出部2は、内部のノズル流路20を流れる液体(すなわち、加圧液)中にUFBを生成するUFB生成ノズルである。図4に示す例では、液送出部2は、3つのノズル28が直列に接続された多段ノズルである。なお、液送出部2のノズル28の段数は、1段であってもよく、複数段であってもよい。液送出部2は、液体流入口21と、液体送出口22とを備える。液体流入口21からは、加圧液生成容器32の第5流路325(図1参照)から加圧液が流入する。液体送出口22は、第1配管52を介して貯溜部5の貯溜槽51(図1参照)へと接続される。液体流入口21および液体送出口22はそれぞれ略円形であり、液体流入口21から液体送出口22に向かうノズル流路20の流路断面も略円形である。 FIG. 4 is a cross-sectional view showing the liquid delivery part 2 in an enlarged manner. The liquid delivery unit 2 is a UFB generation nozzle that generates UFB in the liquid (that is, the pressurized liquid) flowing through the internal nozzle channel 20 . In the example shown in FIG. 4, the liquid delivery section 2 is a multistage nozzle in which three nozzles 28 are connected in series. The number of stages of the nozzles 28 of the liquid delivery section 2 may be one or plural. The liquid delivery section 2 includes a liquid inlet 21 and a liquid delivery port 22 . Pressurized liquid flows from the fifth channel 325 (see FIG. 1) of the pressurized liquid generation container 32 through the liquid inlet 21 . The liquid delivery port 22 is connected through a first pipe 52 to the reservoir 51 (see FIG. 1) of the reservoir 5 . The liquid inlet 21 and the liquid delivery port 22 are each substantially circular, and the channel cross-section of the nozzle channel 20 from the liquid inlet 21 to the liquid delivery port 22 is also approximately circular.
 液送出部2は、液体流入口21から液体送出口22に向かって(すなわち、ノズル流路20の上流から下流に向かって)順に連続して配置される3組のテーパ部24、喉部25および拡大部26を備える。テーパ部24では、加圧液の流れる方向に向かって(すなわち、ノズル流路20の上流から下流に向かって)流路面積が漸次減少する。テーパ部24の内面は、ノズル流路20の中心軸J2を中心とする略円錐面の一部である。当該中心軸J2を含む断面において、テーパ部24の内面の成す角度は、10°以上90°以下であることが好ましい。 The liquid delivery portion 2 includes three sets of tapered portions 24 and a throat portion 25 that are successively arranged in order from the liquid inlet 21 toward the liquid delivery port 22 (that is, from upstream to downstream of the nozzle channel 20). and an enlarged portion 26 . In the tapered portion 24, the channel area gradually decreases in the direction in which the pressurized liquid flows (that is, from upstream to downstream of the nozzle channel 20). The inner surface of the tapered portion 24 is part of a substantially conical surface centered on the central axis J2 of the nozzle flow path 20 . In a cross section including the central axis J2, the angle formed by the inner surface of the tapered portion 24 is preferably 10° or more and 90° or less.
 喉部25は、テーパ部24の下流端に接続し、テーパ部24と拡大部26とを連絡する。喉部25の内面は略円筒面であり、喉部25では、流路面積はほぼ一定である。喉部25における流路断面の直径は、ノズル流路20において最も小さく、喉部25の流路面積は、ノズル流路20において最も小さい。喉部25の長さは、好ましくは、喉部25の直径の1.1倍以上10倍以下であり、より好ましくは、1.5倍以上2倍以下である。なお、ノズル流路20では、喉部25において流路面積が僅かに変化する場合であっても、流路面積がおよそ最も小さい部分全体が喉部25と捉えられる。 The throat portion 25 connects to the downstream end of the tapered portion 24 and connects the tapered portion 24 and the enlarged portion 26 . The inner surface of the throat portion 25 is a substantially cylindrical surface, and the flow passage area of the throat portion 25 is substantially constant. The diameter of the channel cross section in the throat portion 25 is the smallest in the nozzle channel 20 , and the channel area of the throat portion 25 is the smallest in the nozzle channel 20 . The length of the throat portion 25 is preferably 1.1 to 10 times the diameter of the throat portion 25, more preferably 1.5 to 2 times. In the nozzle channel 20 , even if the channel area of the throat portion 25 changes slightly, the entire portion with the smallest channel area can be regarded as the throat portion 25 .
 拡大部26は、喉部25の下流端である噴出口29に接続される。拡大部26は、上流側の喉部25と下流側のテーパ部24とを連絡する。拡大部26の内面は略円筒面であり、拡大部26では、流路面積はほぼ一定である。拡大部26の直径は、喉部25の直径よりも大きい。拡大部26では、喉部25に比べて流路面積が急激に拡大される。中心軸J2を含む断面において、喉部25の下流端と拡大部26の上流端との間の略円環状の面27と、中心軸J2との成す角度は約90°である。換言すれば、面27は中心軸J2に略垂直である。当該角度は、例えば、45°以上かつ90°以下である。 The enlarged portion 26 is connected to a spout 29 that is the downstream end of the throat portion 25 . The enlarged portion 26 connects the throat portion 25 on the upstream side and the tapered portion 24 on the downstream side. The inner surface of the enlarged portion 26 is a substantially cylindrical surface, and the flow area of the enlarged portion 26 is substantially constant. The diameter of enlarged portion 26 is greater than the diameter of throat portion 25 . At the enlarged portion 26, the flow passage area is rapidly enlarged as compared with the throat portion 25. As shown in FIG. In a cross section including the central axis J2, the angle between the substantially annular surface 27 between the downstream end of the throat portion 25 and the upstream end of the enlarged portion 26 and the central axis J2 is about 90°. In other words, the surface 27 is substantially perpendicular to the central axis J2. The angle is, for example, 45° or more and 90° or less.
 液送出部2では、液体流入口21からノズル流路20に流入した加圧液が、テーパ部24において徐々に加速されつつ喉部25へと流れ、喉部25の下流端である噴出口29から、拡大部26へと噴流として噴出される。喉部25における加圧液の流速は、好ましくは秒速10m~30mである。喉部25では、加圧液の静圧が低下するため、加圧液中の気体が過飽和となってUFBとして液中に析出する。また、加圧液が拡大部26を通過する間にも、UFBの析出が生じる。液送出部2では、3組のテーパ部24、喉部25および拡大部26を加圧液が順に通過することにより、高濃度のUFBを含むUFB液が生成され、図1に示す第1配管52を介して貯溜槽51へと送出される。 In the liquid delivery portion 2, the pressurized liquid that has flowed into the nozzle flow path 20 from the liquid inlet 21 is gradually accelerated in the tapered portion 24 and flows to the throat portion 25, whereupon it flows into the throat portion 25, and the jet port 29, which is the downstream end of the throat portion 25, flows. , to the enlarged portion 26 as a jet. The flow velocity of the pressurized liquid in the throat 25 is preferably 10 m to 30 m/s. In the throat portion 25, the static pressure of the pressurized liquid decreases, so the gas in the pressurized liquid becomes supersaturated and precipitates in the liquid as UFB. Precipitation of UFB also occurs while the pressurized liquid passes through the enlarged portion 26 . In the liquid delivery part 2, the pressurized liquid sequentially passes through the three sets of taper part 24, throat part 25 and enlarged part 26, thereby generating a UFB liquid containing high-concentration UFB, which is supplied to the first pipe shown in FIG. 52 to reservoir 51 .
 次に、表1を参照しつつ、対象液の生成に利用される添加剤の種類と、UFB液生成装置1により生成されるUFB液中のUFBの濃度との関係について説明する。実施例1~4では、対象液の生成時に水に添加される添加剤の種類を変更した。比較例1では、添加剤を使用せず、UFB液生成装置1において水に対してUFBの生成を行った。 Next, with reference to Table 1, the relationship between the type of additive used to generate the target liquid and the concentration of UFB in the UFB liquid generated by the UFB liquid generator 1 will be described. In Examples 1 to 4, the type of additive added to water during the generation of the subject liquid was changed. In Comparative Example 1, UFB was generated from water in the UFB liquid generator 1 without using an additive.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1では、水として水道水を用い、添加剤としてヘキサグリセリンモノステアリン酸エステルを用いて対象液を生成した。対象液における添加剤の濃度は、1mg/Lである。添加剤のHLB値は9.0である。添加剤の親水基における炭素数(すなわち、C原子の数)は18であり、添加剤の疎水基における炭素数は18である。UFB液生成装置1では、上述の循環回数を10回としてUFB液を生成した。 In Example 1, tap water was used as water, and hexaglycerin monostearate was used as an additive to generate the target liquid. The concentration of the additive in the subject liquid is 1 mg/L. The HLB value of the additive is 9.0. The number of carbon atoms (ie the number of C atoms) in the hydrophilic group of the additive is 18 and the number of carbon atoms in the hydrophobic group of the additive is 18. In the UFB liquid generator 1, the UFB liquid was generated with the number of times of circulation set to 10 times.
 UFB液におけるUFBの濃度は、上述の測定装置を用いて求めた。具体的には、まず、貯溜槽51から所定量のUFB液を取り出し、当該測定装置により当該UFB液中のナノ粒子(すなわち、粒径が1μm未満の微粒子)の濃度を測定した。測定結果には、UFB以外の微少な異物も含まれている可能性があるため、当該UFB液に超音波を照射してUFBを強制的に消去した後、当該測定装置により、超音波消泡された後のUFB液中のナノ粒子の濃度を測定した。そして、超音波消泡前の測定結果から超音波消泡後の測定結果を減算することにより、当該UFB液中に存在した(すなわち、超音波消泡された)UFBの濃度を求めた。 The concentration of UFB in the UFB liquid was determined using the above-mentioned measuring device. Specifically, first, a predetermined amount of UFB liquid was taken out from the storage tank 51, and the concentration of nanoparticles (that is, fine particles having a particle size of less than 1 μm) in the UFB liquid was measured by the measuring device. Since the measurement results may contain minute foreign substances other than UFB, after forcibly erasing UFB by irradiating the UFB liquid with ultrasonic waves, ultrasonic defoaming is performed by the measuring device. The concentration of nanoparticles in the UFB liquid after being soaked was measured. Then, by subtracting the measurement result after ultrasonic defoaming from the measurement result before ultrasonic defoaming, the concentration of UFB present in the UFB liquid (that is, ultrasonically defoamed) was obtained.
 実施例1では、生成直後(すなわち、UFB液の生成終了から36時間以内)に測定したUFB液におけるUFBの濃度(以下、「生成直後のUFB濃度」とも呼ぶ。)は13億個/mLであり、高濃度のUFBを含むUFB液が生成された。また、当該生成直後の測定から5日経過後のUFB液におけるUFBの濃度(以下、「5日経過後のUFB濃度」とも呼ぶ。)は、12億個/mLであった。5日経過後のUFB濃度を生成直後のUFB濃度で除算した値(以下、「UFB残存率」とも呼ぶ。)は約90%と高く、UFBの長期安定性が高いUFB液が得られた。 In Example 1, the concentration of UFB in the UFB liquid measured immediately after generation (that is, within 36 hours after the end of generation of the UFB liquid) (hereinafter also referred to as “UFB concentration immediately after generation”) was 1.3 billion/mL. A UFB liquid containing a high concentration of UFB was produced. In addition, the concentration of UFB in the UFB liquid 5 days after the measurement immediately after the production (hereinafter also referred to as "UFB concentration after 5 days") was 1.2 billion/mL. The value obtained by dividing the UFB concentration after 5 days by the UFB concentration immediately after production (hereinafter also referred to as "UFB residual rate") was as high as about 90%, and a UFB liquid with high long-term UFB stability was obtained.
 実施例2は、添加剤としてヘキサグリセリンモノミリスチン酸エステルを用いた点を除き、実施例1と同様である。添加剤のHLB値は11.0である。添加剤の親水基における炭素数は18であり、添加剤の疎水基における炭素数は14である。生成直後のUFB濃度は、5億個/mLであり、高濃度のUFBを含むUFB液が生成された。また、5日経過後のUFB濃度は、4億個/mLであった。UFB残存率は約80%と高く、UFBの長期安定性が高いUFB液が得られた。 Example 2 is the same as Example 1, except that hexaglycerin monomyristate was used as an additive. The HLB value of the additive is 11.0. The number of carbon atoms in the hydrophilic group of the additive is 18, and the number of carbon atoms in the hydrophobic group of the additive is 14. The UFB concentration immediately after production was 500 million/mL, and a UFB liquid containing a high concentration of UFB was produced. Moreover, the UFB concentration after 5 days was 400 million cells/mL. The UFB residual rate was as high as about 80%, and a UFB liquid with high long-term UFB stability was obtained.
 実施例3は、添加剤としてデカグリセリンモノステアリン酸エステルを用いた点を除き、実施例1と同様である。添加剤のHLB値は12.0である。添加剤の親水基における炭素数は30であり、添加剤の疎水基における炭素数は18である。生成直後のUFB濃度は、9億個/mLであり、高濃度のUFBを含むUFB液が生成された。また、5日経過後のUFB濃度は、9億個/mLであった。UFB残存率は約100%と高く、UFBの長期安定性が高いUFB液が得られた。 Example 3 is the same as Example 1, except that decaglycerin monostearate was used as an additive. The HLB value of the additive is 12.0. The number of carbon atoms in the hydrophilic group of the additive is 30, and the number of carbon atoms in the hydrophobic group of the additive is 18. The UFB concentration immediately after production was 900 million/mL, and a UFB liquid containing a high concentration of UFB was produced. Moreover, the UFB concentration after 5 days was 900 million cells/mL. The UFB residual rate was as high as about 100%, and a UFB liquid with high long-term UFB stability was obtained.
 実施例4は、添加剤としてデカグリセリンモノミリスチン酸エステルを用いた点を除き、実施例1と同様である。添加剤のHLB値は14.0である。添加剤の親水基における炭素数は30であり、添加剤の疎水基における炭素数は14である。生成直後のUFB濃度は、2億個/mLであり、高濃度のUFBを含むUFB液が生成された。また、5日経過後のUFB濃度は、1億個/mLであった。UFB残存率は約50%と高く、UFBの長期安定性が高いUFB液が得られた。 Example 4 is the same as Example 1, except that decaglycerin monomyristate was used as an additive. The HLB value of the additive is 14.0. The number of carbon atoms in the hydrophilic group of the additive is 30, and the number of carbon atoms in the hydrophobic group of the additive is 14. The UFB concentration immediately after production was 200 million/mL, and a UFB liquid containing a high concentration of UFB was produced. Moreover, the UFB concentration after 5 days was 100 million cells/mL. The UFB residual rate was as high as about 50%, and a UFB liquid with high long-term UFB stability was obtained.
 比較例1は、上述のように添加剤を使用せず、水のみからUFB液を生成した点を除き、実施例1と同様である。生成直後のUFB濃度は、1億個/mLであり、比較的高濃度のUFBを含むUFB液が生成された。一方、5日経過後のUFB濃度は、約3000万個/mLであった。UFB残存率は約30%と低く、UFBの長期安定性は低かった。 Comparative Example 1 is the same as Example 1, except that the UFB liquid was produced only from water without using additives as described above. The UFB concentration immediately after production was 100 million/mL, and a UFB liquid containing a relatively high concentration of UFB was produced. On the other hand, the UFB concentration after 5 days was about 30 million/mL. The UFB residual rate was as low as about 30%, and the long-term stability of UFB was low.
 表1において、添加剤のHLB値が14.0である実施例4と、添加剤のHLB値が12.0以下である実施例1~3(HLB値=9.0~12.0)とを比較すると、実施例4ではUFB残存率が約50%であるのに対し、実施例1~3では、UFB残存率は80%~100%であり、実施例4よりも高かった。このことから、添加剤のHLB値は、14.0よりも小さいことがより好ましく、12.0以下であることがさらに好ましいといえる。 In Table 1, Example 4 in which the HLB value of the additive is 14.0, and Examples 1 to 3 in which the HLB value of the additive is 12.0 or less (HLB value = 9.0 to 12.0) , the UFB residual rate is about 50% in Example 4, while the UFB residual rate is 80% to 100% in Examples 1 to 3, which is higher than that in Example 4. From this, it can be said that the HLB value of the additive is more preferably smaller than 14.0, and more preferably 12.0 or less.
 表1において、添加剤の親水基の炭素数が同じ実施例1と実施例2とを比較すると、添加剤の疎水基の炭素数が18である実施例1は、疎水基の炭素数が14である実施例2に比べて、生成直後のUFB濃度、および、UFB残存率が高かった。また、添加剤の親水基の炭素数が同じ実施例3と実施例4とを比較すると、添加剤の疎水基の炭素数が18である実施例3は、疎水基の炭素数が14である実施例4に比べて、生成直後のUFB濃度、および、UFB残存率が高かった。このことから、添加剤の疎水基の炭素数は14よりも大きいことがより好ましく、18以上であることがさらに好ましいといえる。 In Table 1, when comparing Example 1 and Example 2 in which the number of carbon atoms in the hydrophilic group of the additive is the same, Example 1 in which the number of carbon atoms in the hydrophobic group of the additive is 18 has 14 carbon atoms in the hydrophobic group. The UFB concentration immediately after production and the UFB residual rate were higher than in Example 2. In addition, when comparing Example 3 and Example 4 in which the number of carbon atoms in the hydrophilic group of the additive is the same, Example 3 in which the number of carbon atoms in the hydrophobic group of the additive is 18 has 14 carbon atoms in the hydrophobic group. Compared to Example 4, the UFB concentration immediately after production and the UFB residual rate were higher. From this, it can be said that the number of carbon atoms in the hydrophobic group of the additive is more preferably greater than 14, and more preferably 18 or more.
 次に、表2を参照しつつ、対象液における添加剤の濃度と、UFB液生成装置1により生成されるUFB液中のUFBの濃度との関係について説明する。実施例1は、上述の通りであり、実施例5~6では、対象液の生成時に水に添加される添加剤の量(すなわち、対象液中の添加剤の濃度)を変更した。 Next, with reference to Table 2, the relationship between the additive concentration in the target liquid and the UFB concentration in the UFB liquid generated by the UFB liquid generation device 1 will be described. Example 1 is as described above, and in Examples 5 and 6, the amount of additive added to water when the target liquid is generated (ie, the concentration of the additive in the target liquid) was changed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例5は、対象液における添加剤(ヘキサグリセリンモノステアリン酸エステル)の濃度を0.1mg/Lとした点を除き、実施例1と同様である。実施例5では、生成直後のUFB濃度は、1億個/mLであり、比較的高濃度のUFBを含むUFB液が生成された。 Example 5 is the same as Example 1, except that the concentration of the additive (hexaglycerol monostearate) in the subject liquid was 0.1 mg/L. In Example 5, the UFB concentration immediately after production was 100 million/mL, and a UFB liquid containing a relatively high concentration of UFB was produced.
 実施例6は、対象液における添加剤(ヘキサグリセリンモノステアリン酸エステル)の濃度を10mg/Lとした点を除き、実施例1と同様である。実施例6では、生成直後のUFB濃度は、14億個/mLであり、高濃度のUFBを含むUFB液が生成された。 Example 6 is the same as Example 1, except that the concentration of the additive (hexaglycerol monostearate) in the subject liquid was 10 mg/L. In Example 6, the UFB concentration immediately after production was 1.4 billion/mL, and a UFB liquid containing a high concentration of UFB was produced.
 実施例6では、UFBの生成時に対象液が泡立つ現象が見られた。当該泡立ちを抑制するという観点から、対象液における添加剤の濃度は10mg/L以下であることが好ましい。また、生成直後のUFB濃度を1億個/mL以上とするという観点から、対象液における添加剤の濃度は0.1mg/L以上であることが好ましい。さらに、生成直後のUFB濃度を増大させるという観点から、対象液における添加剤の濃度は1mg/L以上であることがより好ましい。 In Example 6, a phenomenon was observed in which the target liquid foamed during the generation of UFB. From the viewpoint of suppressing the foaming, the concentration of the additive in the target liquid is preferably 10 mg/L or less. Moreover, from the viewpoint of achieving a UFB concentration of 100 million/mL or more immediately after production, the concentration of the additive in the subject liquid is preferably 0.1 mg/L or more. Furthermore, from the viewpoint of increasing the UFB concentration immediately after production, the concentration of the additive in the subject liquid is more preferably 1 mg/L or more.
 なお、上述の実施例1~6では、添加剤としてポリグリセリン脂肪酸エステルを用いたが、ショ糖脂肪酸エステルを添加剤として用いた場合も略同様に、高濃度のUFBを含み、UFBの長期安定性が高いUFB液が得られた。 In Examples 1 to 6 described above, polyglycerin fatty acid ester was used as an additive, but when sucrose fatty acid ester was used as an additive, it contained a high concentration of UFB in substantially the same manner, and the long-term stability of UFB A UFB liquid with high resistance was obtained.
 以上に説明したように、UFB液生成方法は、親水性食品添加物である添加剤を水に分散させて対象液を生成する工程(ステップS11)と、気体と加圧された当該対象液とを混合し、対象液中に当該気体のUFBを生成することにより、UFBを含むUFB液を生成する工程(ステップS12~S14)と、を備える。添加剤は、ポリグリセリン脂肪酸エステルまたはショ糖脂肪酸エステルである。これにより、人体に対して安全であり、高濃度のUFBを含み、かつ、UFBの長期安定性が高いUFB液を生成することができる。 As described above, the UFB liquid generation method includes a step of dispersing an additive, which is a hydrophilic food additive, in water to generate a target liquid (step S11); and generating a UFB liquid containing UFB by mixing and generating the gaseous UFB in the target liquid (steps S12 to S14). The additive is polyglycerin fatty acid ester or sucrose fatty acid ester. This makes it possible to produce a UFB liquid that is safe to the human body, contains a high concentration of UFB, and has high long-term stability of UFB.
 上述のように、生成直後に測定したUFB液におけるUFBの濃度は1億個/mL以上であり、当該生成直後の測定から5日経過後のUFB液におけるUFBの濃度は、生成直後に測定したUFB液におけるUFBの濃度の50%以上であることが好ましい。これにより、UFBの長期安定性がより高いUFB液を提供することができる。 As described above, the concentration of UFB in the UFB liquid measured immediately after generation is 100 million/mL or more, and the concentration of UFB in the UFB liquid 5 days after the measurement immediately after generation is the UFB measured immediately after generation. It is preferably 50% or more of the concentration of UFB in the liquid. This makes it possible to provide a UFB liquid with higher long-term UFB stability.
 上述のように、添加剤のHLB値は9.0以上であることが好ましい。これにより、添加剤の水への分散を容易とすることができる。その結果、上述のUFB液を容易に生成することができる。 As described above, the HLB value of the additive is preferably 9.0 or higher. This makes it easier to disperse the additive in water. As a result, the UFB liquid described above can be easily produced.
 上述のように、対象液における添加剤の濃度は、10mg/L以下であることが好ましい。これにより、添加剤の使用量を低減しつつ、高濃度のUFBを含み、かつ、UFBの長期安定性が高いUFB液を生成することができる。 As described above, the additive concentration in the target liquid is preferably 10 mg/L or less. As a result, a UFB liquid containing a high concentration of UFB and having high long-term stability of UFB can be produced while reducing the amount of additive used.
 UFB液生成方法では、好ましくは、ステップS12~S14において、気体を対象液に加圧溶解させて加圧液を生成し、加圧液からUFBを析出させてUFB液を生成する。これにより、高濃度のUFBを含むUFB液を好適に生成することができる。より好ましくは、ステップS12~S14にて生成されたUFB液に対して、再度ステップS12~S14が行われる。これにより、UFB液中のUFBの濃度を増大させることができる。 In the UFB liquid generation method, preferably, in steps S12 to S14, the gas is pressurized and dissolved in the target liquid to generate a pressurized liquid, and the UFB is precipitated from the pressurized liquid to generate the UFB liquid. This makes it possible to suitably produce a UFB liquid containing UFB at a high concentration. More preferably, steps S12 to S14 are performed again for the UFB liquid generated in steps S12 to S14. This can increase the concentration of UFB in the UFB liquid.
 上述のように、UFB液は、歯のホワイトニングの際に口腔内に供給されることが好ましい。当該UFB液は、人体に対して安全であるため、歯のホワイトニングに利用可能である。また、当該UFB液は高濃度のUFBを含むため、歯のホワイトニング効果を向上することができる。さらに、当該UFB液ではUFBの長期安定性が高いため、複数の対象者のホワイトニングに必要な量のUFB液を予め生成して保存しておくことができる。したがって、UFBの長期安定性が低く、1人の対象者にホワイトニングを行う毎にUFB液の生成が必要な場合に比べて、効率良くホワイトニングを行うことができる。 As described above, the UFB liquid is preferably supplied into the oral cavity during tooth whitening. Since the UFB liquid is safe for the human body, it can be used for tooth whitening. In addition, since the UFB liquid contains UFB at a high concentration, it is possible to improve the teeth whitening effect. Furthermore, since the UFB liquid has high long-term stability, it is possible to generate and store in advance the amount of UFB liquid necessary for whitening a plurality of subjects. Therefore, whitening can be performed more efficiently than in the case where the long-term stability of UFB is low and UFB liquid needs to be generated every time one subject is whitened.
 上述のUFB液生成装置1は、混合部31と、生成部(すなわち、液送出部2)とを備える。混合部31は、気体および加圧された対象液を混合して混合流体を生成する。生成部は、当該混合流体において、対象液中に気体のUFBを生成することにより、UFBを含むUFB液を生成する。当該対象液は、親水性食品添加物である添加剤が水に分散された液体である。添加剤は、ポリグリセリン脂肪酸エステルまたはショ糖脂肪酸エステルである。これにより、上述のように、人体に対して安全であり、高濃度のUFBを含み、かつ、UFBの長期安定性が高いUFB液を生成することができる。 The UFB liquid generation device 1 described above includes a mixing section 31 and a generation section (that is, the liquid delivery section 2). The mixing unit 31 mixes the gas and the pressurized target liquid to generate a mixed fluid. The generation unit generates a UFB liquid containing UFB by generating gaseous UFB in the target liquid in the mixed fluid. The target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water. The additive is polyglycerin fatty acid ester or sucrose fatty acid ester. Thereby, as described above, it is possible to produce a UFB liquid that is safe to the human body, contains a high concentration of UFB, and has high long-term stability of UFB.
 また、UFB液生成方法は、親水性食品添加物である添加剤を水に分散させて対象液を生成する工程(ステップS11)と、気体と加圧された当該対象液とを混合し、対象液中に当該気体のUFBを生成することにより、UFBを含むUFB液を生成する工程(ステップS12~S14)と、を備える。生成直後に測定したUFB液におけるUFBの濃度は1億個/mL以上であり、当該生成直後の測定から5日経過後のUFB液におけるUFBの濃度は、生成直後に測定したUFB液におけるUFBの濃度の50%以上である。これにより、人体に対して安全であり、高濃度のUFBを含み、かつ、UFBの長期安定性が高いUFB液を提供することができる。 In addition, the UFB liquid generation method includes a step of dispersing an additive, which is a hydrophilic food additive, in water to generate a target liquid (step S11), mixing the gas and the pressurized target liquid, and and generating a UFB liquid containing UFB by generating the gaseous UFB in the liquid (steps S12 to S14). The concentration of UFB in the UFB liquid measured immediately after generation is 100 million/mL or more, and the concentration of UFB in the UFB liquid 5 days after the measurement immediately after generation is equal to the concentration of UFB in the UFB liquid measured immediately after generation 50% or more of This makes it possible to provide a UFB liquid that is safe to the human body, contains a high concentration of UFB, and has high long-term stability of UFB.
 また、上述のUFB液生成装置1は、混合部31と、生成部(すなわち、液送出部2)とを備える。混合部31は、気体および加圧された対象液を混合して混合流体を生成する。生成部は、当該混合流体において、対象液中に気体のUFBを生成することにより、UFBを含むUFB液を生成する。当該対象液は、親水性食品添加物である添加剤が水に分散された液体である。生成直後に測定したUFB液におけるUFBの濃度は1億個/mL以上であり、当該生成直後の測定から5日経過後のUFB液におけるUFBの濃度は、生成直後に測定したUFB液におけるUFBの濃度の50%以上である。これにより、上記と同様に、人体に対して安全であり、高濃度のUFBを含み、かつ、UFBの長期安定性が高いUFB液を提供することができる。 In addition, the UFB liquid generation device 1 described above includes a mixing section 31 and a generation section (that is, the liquid delivery section 2). The mixing unit 31 mixes the gas and the pressurized target liquid to generate a mixed fluid. The generation unit generates a UFB liquid containing UFB by generating gaseous UFB in the target liquid in the mixed fluid. The target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water. The concentration of UFB in the UFB liquid measured immediately after generation is 100 million/mL or more, and the concentration of UFB in the UFB liquid 5 days after the measurement immediately after generation is equal to the concentration of UFB in the UFB liquid measured immediately after generation 50% or more of As a result, it is possible to provide a UFB liquid that is safe to the human body, contains a high concentration of UFB, and has high long-term UFB stability.
 上述のUFB液生成方法およびUFB液生成装置1では、様々な変更が可能である。 Various modifications are possible in the UFB liquid generation method and the UFB liquid generation device 1 described above.
 例えば、UFB液生成装置1において、気体供給部34により混合部31に供給される気体は、空気以外の様々な気体(例えば、窒素ガス)であってもよい。気体供給部34は、コンプレッサには限定されず、様々に変更されてよい。例えば、気体供給部34は、大気圧よりも高圧の窒素ガス等が充填されたガスボンベであってもよい。 For example, in the UFB liquid generation device 1, the gas supplied to the mixing section 31 by the gas supply section 34 may be various gases other than air (for example, nitrogen gas). Gas supply 34 is not limited to a compressor and may be modified in various ways. For example, the gas supply unit 34 may be a gas cylinder filled with nitrogen gas or the like having a pressure higher than atmospheric pressure.
 UFB液生成装置1では、混合部31のノズル流路310を流れる液体により生じる負圧によって、気体流入口319から空気等の気体が必要量吸引される場合、気体供給部34は省略されてもよい。この場合、混合部31において加圧された対象液に混合される気体は、加圧された状態ではなく、大気圧と略同じ圧力を有する。 In the UFB liquid generation device 1, when the required amount of gas such as air is sucked from the gas inlet 319 by the negative pressure generated by the liquid flowing through the nozzle channel 310 of the mixing section 31, the gas supply section 34 may be omitted. good. In this case, the gas mixed with the pressurized target liquid in the mixing section 31 has substantially the same pressure as the atmospheric pressure, instead of being in a pressurized state.
 UFB液生成装置1では、例えば、水と添加剤とが別々の経路にて混合部31または加圧液生成容器32に供給されて混合されてもよい。また、加圧液生成容器32の構造や形状は様々に変更されてよい。 In the UFB liquid generation device 1, for example, water and additives may be supplied to the mixing section 31 or the pressurized liquid generation container 32 through separate paths and mixed. Further, the structure and shape of the pressurized liquid generation container 32 may be changed variously.
 液送出部2の構造は上述のものには限定されず、様々に変更されてよい。例えば、液送出部2のUFB生成ノズルでは、上流から下流に向かって連続するテーパ部24、喉部25および拡大部26が2組、または、4組以上設けられてもよい。あるいは、UFB生成ノズルでは、上流から下流に向かって連続するテーパ部24、喉部25および拡大部26が、1組のみ設けられていてもよい。液送出部2は、必ずしもテーパ部24、喉部25および拡大部26を備える必要はなく、他の構造のUFB生成ノズルであってもよい。 The structure of the liquid delivery unit 2 is not limited to the one described above, and may be modified in various ways. For example, the UFB generation nozzle of the liquid delivery part 2 may be provided with two sets, or four or more sets of the taper part 24, the throat part 25 and the enlarged part 26 that are continuous from upstream to downstream. Alternatively, the UFB generation nozzle may have only one set of tapered portion 24, throat portion 25 and enlarged portion 26 that are continuous from upstream to downstream. The liquid delivery part 2 does not necessarily have the taper part 24, the throat part 25 and the enlarged part 26, and may be a UFB generation nozzle with other structure.
 液送出部2は、必ずしも、加圧液を噴出することにより加圧液中にUFBを生成するUFB生成ノズルである必要はなく、公知の様々な生成方法によりUFBを生成してもよい。例えば、混合部31により生成された混合流体に、液送出部2において超音波を付与したり、あるいは、液送出部2の内部構造により剪断力を付与することにより、UFBが生成されてもよい。この場合、UFB液生成装置1から加圧液生成容器32が省略されてもよい。 The liquid delivery unit 2 does not necessarily have to be a UFB generation nozzle that generates UFB in the pressurized liquid by ejecting the pressurized liquid, and may generate UFB by various known generation methods. For example, the UFB may be generated by applying ultrasonic waves in the liquid delivery unit 2 to the mixed fluid generated by the mixing unit 31, or by applying shear force by the internal structure of the liquid delivery unit 2. . In this case, the pressurized liquid generation container 32 may be omitted from the UFB liquid generation device 1 .
 UFB液生成装置1では、例えば、循環部6を介したUFB液の上記循環は行われなくてもよい。この場合、UFB液生成装置1から循環部6が省略されてもよい。 In the UFB liquid generator 1, for example, the circulation of the UFB liquid via the circulation unit 6 may not be performed. In this case, the circulation unit 6 may be omitted from the UFB liquid generator 1 .
 対象液の生成に用いられる添加剤は、ポリグリセリン脂肪酸エステルおよびショ糖脂肪酸エステル以外の親水性食品添加物であってもよい。また、添加剤のHLB値は、9.0未満であってもよい。対象液における添加剤の濃度は、10mg/Lよりも高くてもよい。 The additive used to generate the target liquid may be a hydrophilic food additive other than polyglycerin fatty acid ester and sucrose fatty acid ester. Also, the HLB value of the additive may be less than 9.0. The concentration of the additive in the subject liquid may be higher than 10 mg/L.
 生成直後のUFB液におけるUFBの濃度は、1億個/mL未満であってもよい。また、上述のUFB残存率は50%未満であってもよい。 The concentration of UFBs in the UFB liquid immediately after production may be less than 100 million/mL. Also, the UFB survival rate described above may be less than 50%.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modification may be combined as appropriate as long as they do not contradict each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is illustrative and not limiting. Accordingly, many modifications and variations are possible without departing from the scope of the present invention.
 1  UFB液生成装置
 2  液送出部
 31  混合部
 32  加圧液生成容器
 S11~S16  ステップ
1 UFB liquid generation device 2 liquid delivery unit 31 mixing unit 32 pressurized liquid generation container S11 to S16 steps

Claims (9)

  1.  ウルトラファインバブル液生成方法であって、
     a)親水性食品添加物である添加剤を水に分散させて対象液を生成する工程と、
     b)気体と加圧された前記対象液とを混合し、前記対象液中に前記気体のウルトラファインバブルを生成することにより、前記ウルトラファインバブルを含むウルトラファインバブル液を生成する工程と、
    を備え、
     前記添加剤は、ポリグリセリン脂肪酸エステルまたはショ糖脂肪酸エステルである。
    A method for generating an ultra-fine bubble liquid,
    a) dispersing an additive, which is a hydrophilic food additive, in water to generate a target liquid;
    b) mixing a gas with the pressurized target liquid to generate ultra-fine bubbles of the gas in the target liquid to generate an ultra-fine bubble liquid containing the ultra-fine bubbles;
    with
    Said additive is polyglycerol fatty acid ester or sucrose fatty acid ester.
  2.  請求項1に記載のウルトラファインバブル液生成方法であって、
     生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は1億個/mL以上であり、
     前記生成直後の測定から5日経過後の前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は、前記生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度の50%以上である。
    The ultra-fine bubble liquid generation method according to claim 1,
    The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more,
    The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation.
  3.  請求項1または2に記載のウルトラファインバブル液生成方法であって、
     前記添加剤のHLB値は9.0以上である。
    The method for generating an ultrafine bubble liquid according to claim 1 or 2,
    The HLB value of the additive is 9.0 or more.
  4.  請求項1ないし3のいずれか1つに記載のウルトラファインバブル液生成方法であって、
     前記対象液における前記添加剤の濃度は、10mg/L以下である。
    The method for generating an ultra-fine bubble liquid according to any one of claims 1 to 3,
    The concentration of the additive in the target liquid is 10 mg/L or less.
  5.  ウルトラファインバブル液生成方法であって、
     a)親水性食品添加物である添加剤を水に分散させて対象液を生成する工程と、
     b)気体と加圧された前記対象液とを混合し、前記対象液中に前記気体のウルトラファインバブルを生成することにより、前記ウルトラファインバブルを含むウルトラファインバブル液を生成する工程と、
    を備え、
     生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は1億個/mL以上であり、
     前記生成直後の測定から5日経過後の前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は、前記生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度の50%以上である。
    A method for generating an ultra-fine bubble liquid,
    a) dispersing an additive, which is a hydrophilic food additive, in water to generate a target liquid;
    b) mixing a gas with the pressurized target liquid to generate ultra-fine bubbles of the gas in the target liquid to generate an ultra-fine bubble liquid containing the ultra-fine bubbles;
    with
    The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more,
    The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation.
  6.  請求項1ないし5のいずれか1つに記載のウルトラファインバブル液生成方法であって、
     前記b)工程において、前記気体を前記対象液に加圧溶解させて加圧液を生成し、前記加圧液から前記ウルトラファインバブルを析出させて前記ウルトラファインバブル液を生成する。
    The method for generating an ultra-fine bubble liquid according to any one of claims 1 to 5,
    In the step b), the gas is pressurized and dissolved in the target liquid to generate a pressurized liquid, and the ultrafine bubbles are precipitated from the pressurized liquid to generate the ultrafine bubble liquid.
  7.  請求項1ないし6のいずれか1つに記載のウルトラファインバブル液生成方法であって、
     前記ウルトラファインバブル液は、歯のホワイトニングの際に口腔内に供給される。
    The ultra-fine bubble liquid generation method according to any one of claims 1 to 6,
    The ultra-fine bubble liquid is supplied into the oral cavity during tooth whitening.
  8.  ウルトラファインバブル液生成装置であって、
     気体および加圧された対象液を混合して混合流体を生成する混合部と、
     前記混合流体において、前記対象液中に前記気体のウルトラファインバブルを生成することにより、前記ウルトラファインバブルを含むウルトラファインバブル液を生成する生成部と、
    を備え、
     前記対象液は、親水性食品添加物である添加剤が水に分散された液体であり、
     前記添加剤は、ポリグリセリン脂肪酸エステルまたはショ糖脂肪酸エステルである。
    An ultra-fine bubble liquid generator,
    a mixing unit that mixes the gas and the pressurized target liquid to generate a mixed fluid;
    a generation unit that generates an ultra-fine bubble liquid containing the ultra-fine bubbles by generating ultra-fine bubbles of the gas in the target liquid in the mixed fluid;
    with
    The target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water,
    Said additive is polyglycerol fatty acid ester or sucrose fatty acid ester.
  9.  ウルトラファインバブル液生成装置であって、
     気体および加圧された対象液を混合して混合流体を生成する混合部と、
     前記混合流体において、前記対象液中に前記気体のウルトラファインバブルを生成することにより、前記ウルトラファインバブルを含むウルトラファインバブル液を生成する生成部と、
    を備え、
     前記対象液は、親水性食品添加物である添加剤が水に分散された液体であり、
     生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は1億個/mL以上であり、
     前記生成直後の測定から5日経過後の前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度は、前記生成直後に測定した前記ウルトラファインバブル液における前記ウルトラファインバブルの濃度の50%以上である。
    An ultra-fine bubble liquid generator,
    a mixing unit that mixes the gas and the pressurized target liquid to generate a mixed fluid;
    a generation unit that generates an ultra-fine bubble liquid containing the ultra-fine bubbles by generating ultra-fine bubbles of the gas in the target liquid in the mixed fluid;
    with
    The target liquid is a liquid in which an additive, which is a hydrophilic food additive, is dispersed in water,
    The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after generation is 100 million/mL or more,
    The concentration of the ultra-fine bubbles in the ultra-fine bubble liquid 5 days after the measurement immediately after the generation is 50% or more of the concentration of the ultra-fine bubbles in the ultra-fine bubble liquid measured immediately after the generation.
PCT/JP2022/007365 2021-03-04 2022-02-22 Ultrafine bubble liquid generation method and ultrafine bubble liquid generation device WO2022186014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-034222 2021-03-04
JP2021034222A JP2022134808A (en) 2021-03-04 2021-03-04 Ultra fine bubble liquid generation method and ultra fine bubble liquid generation device

Publications (1)

Publication Number Publication Date
WO2022186014A1 true WO2022186014A1 (en) 2022-09-09

Family

ID=83155078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007365 WO2022186014A1 (en) 2021-03-04 2022-02-22 Ultrafine bubble liquid generation method and ultrafine bubble liquid generation device

Country Status (2)

Country Link
JP (1) JP2022134808A (en)
WO (1) WO2022186014A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169359A (en) * 2003-12-15 2005-06-30 Miyazaki Prefecture Method of preparing monodisperse air bubble
JP2011235207A (en) * 2010-05-06 2011-11-24 Toyo Seikan Kaisha Ltd Method of producing mixed bubbles, method of replacing gas in container using the mixed bubbles, and apparatus for producing mixed bubbles
JP2013154342A (en) * 2012-01-05 2013-08-15 Idec Corp Apparatus and method for producing smell-imparted liquid, smel-imparted liquid, alcoholic drink and apparatus for producing substance-imparted liquid
WO2015182647A1 (en) * 2014-05-28 2015-12-03 武田薬品工業株式会社 Antibacterial water
JP2017149651A (en) * 2016-02-22 2017-08-31 株式会社ニイタカ Bactericide composition and detergent bactericidal method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169359A (en) * 2003-12-15 2005-06-30 Miyazaki Prefecture Method of preparing monodisperse air bubble
JP2011235207A (en) * 2010-05-06 2011-11-24 Toyo Seikan Kaisha Ltd Method of producing mixed bubbles, method of replacing gas in container using the mixed bubbles, and apparatus for producing mixed bubbles
JP2013154342A (en) * 2012-01-05 2013-08-15 Idec Corp Apparatus and method for producing smell-imparted liquid, smel-imparted liquid, alcoholic drink and apparatus for producing substance-imparted liquid
WO2015182647A1 (en) * 2014-05-28 2015-12-03 武田薬品工業株式会社 Antibacterial water
JP2017149651A (en) * 2016-02-22 2017-08-31 株式会社ニイタカ Bactericide composition and detergent bactericidal method

Also Published As

Publication number Publication date
JP2022134808A (en) 2022-09-15

Similar Documents

Publication Publication Date Title
EP2946829B1 (en) Method for generating high density micro-bubble liquid and device for generating high density micro-bubble liquid
KR0173996B1 (en) Apparatus for dissolving a gas into and mixing the same with a liquid
JP6169749B1 (en) Microbubble generator
US6821438B2 (en) Apparatus and method for increasing oxygen levels in a liquid
TWI639464B (en) Fine bubble liquid generating apparatus
CN109562336B (en) System and method for supplying gas into liquid
WO2015072461A1 (en) Microbicidal liquid-generating device
JP5825852B2 (en) Fine bubble generating nozzle and fine bubble generating device
WO2022186014A1 (en) Ultrafine bubble liquid generation method and ultrafine bubble liquid generation device
JP2010037257A (en) Method for producing micro-bubble contrast medium and apparatus therefor
JP2013146714A (en) Microscopic bubble generation device
KR20080105008A (en) Apparatus and method for generating micro bubbles
KR100854687B1 (en) Micro bubble system
JP7287777B2 (en) Ultra fine bubble generation method
JPS5916527A (en) Method for generating fine foam at high density
JP2015077570A (en) Structure of nozzle to be used in gas dissolution liquid manufacturing system
JP3467302B2 (en) Flotation device
JP2024039736A (en) Nano bubble water production device
JP2016155073A (en) Fine bubble generating device
Suñol Galofre et al. On ground study of bubble jets collision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763070

Country of ref document: EP

Kind code of ref document: A1