WO2022185853A1 - 端末装置、基地局装置及び通信方法 - Google Patents

端末装置、基地局装置及び通信方法 Download PDF

Info

Publication number
WO2022185853A1
WO2022185853A1 PCT/JP2022/004831 JP2022004831W WO2022185853A1 WO 2022185853 A1 WO2022185853 A1 WO 2022185853A1 JP 2022004831 W JP2022004831 W JP 2022004831W WO 2022185853 A1 WO2022185853 A1 WO 2022185853A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
sidelink
slot
information
communication
Prior art date
Application number
PCT/JP2022/004831
Other languages
English (en)
French (fr)
Inventor
寿之 示沢
博允 内山
直紀 草島
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/547,736 priority Critical patent/US20240147503A1/en
Priority to EP22762910.2A priority patent/EP4304269A4/en
Priority to CN202280017257.0A priority patent/CN116889056A/zh
Publication of WO2022185853A1 publication Critical patent/WO2022185853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to terminal devices, base station devices, and communication methods.
  • D2D (device-to-device) communication that directly communicates between terminals (UE) is standardized as sidelink communication for 4G LTE (Long Term Evolution) and 5G NR (New Radio) respectively.
  • V2X (Vehicle-to-everything) communication is one of the main use cases of sidelink communication.
  • V2X communication V2V (Vehicle-to-vehicle), V2I (Vehicle-to-infrastructure), V2P (Vehicle-to-pedestrian), and V2N (Vehicle-to-network) are assumed.
  • sidelink communication is not limited to V2X communication, and can be used in various use cases.
  • Automation Factory is one of the use cases where sidelink communication can be utilized. In such factories, many devices such as sensors and cameras are installed and are being considered to communicate directly with each other.
  • intra-vehicle communication has been considered in V2X communication so far, but intra-vehicle communication can be proposed as a technical extension of sidelink communication in the future.
  • sensors and camera modules that have been connected to each other by wires can be connected to each other by wireless communication as wireless communication devices.
  • wireless communication devices For example, it is expected that the number of such devices such as sensors and camera modules will increase rapidly as the realization of automatic driving progresses in the future. Therefore, it is thought that there will be an increasing demand for connecting such sensors and camera modules to each other by wireless communication.
  • the present disclosure provides a mechanism capable of realizing sidelink communication with lower delay.
  • a terminal device performs sidelink communication with another terminal device.
  • the terminal device includes a control unit.
  • the control unit acquires resource pool information regarding a resource pool allocated by the base station device to the sidelink communication with the other terminal device.
  • the control unit uses at least one of a plurality of sidelink control channels allocated in the time axis direction of the slot in one slot included in the resource pool to transmit control information to the other terminal device. do.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a communication system according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing an example of a configuration of a base station device according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing an example of a configuration of a terminal device according to an embodiment of the present disclosure
  • FIG. FIG. 3 is a diagram showing a configuration example of sub-slots according to an embodiment of the present disclosure
  • FIG. FIG. 3 is a diagram showing a configuration example of sub-slots according to an embodiment of the present disclosure
  • FIG. FIG. 3 is a diagram showing a configuration example of sub-slots according to an embodiment of the present disclosure
  • FIG. 3 is a diagram showing a configuration example of sub-slots according to an embodiment of the present disclosure
  • FIG. FIG. 3 is a diagram showing a configuration example of sub-slots according to an embodiment of the present disclosure
  • Figure 4 illustrates an example of HARQ feedback according to embodiments of the present disclosure
  • Figure 4 illustrates an example of HARQ feedback according to embodiments of the present disclosure
  • FIG. 4 is a diagram for explaining an example of a method of notifying assist information according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram for explaining an example of a sensing method according to an embodiment of the present disclosure
  • 1 and 2 are diagrams showing an example of a frame configuration in sidelink communication.
  • sidelink communication so far has mainly assumed V2X communication as a use case, and the delay condition (delay requirement) required for sidelink communication so far is 10 milliseconds. there were. Therefore, there is no problem even if the frame structure adopted in the sidelink communication is a frame structure with one slot as the minimum unit as shown in FIGS. 1 and 2 .
  • the communication system performs sidelink communication based on subslots configured with symbols shorter than slots.
  • one slot includes a plurality of subslots.
  • Each subslot may be assigned a respective sidelink control channel. That is, in the technique proposed in the present disclosure, multiple sidelink control channels can be assigned to one slot. In other words, multiple sidelink control channels can be non-contiguously assigned to one slot.
  • a terminal device that transmits a control signal using sidelink communication acquires resource pool information about the resource pool used for sidelink communication from the base station device. Based on the acquired resource pool information, the terminal device transmits control information using at least one of a plurality of sidelink control channels that can be assigned to one slot.
  • the terminal device uses at least one of a plurality of sidelink control channels that can be assigned to one slot to transmit control information, so that the Short subslots can be used for sidelink communication.
  • the communication system can further shorten the delay of sidelink communication.
  • a sidelink channel and/or transmitted from a terminal device (Tx UE) on the transmitting side to a terminal device (Rx UE) on the receiving side by unicast, groupcast, or broadcast
  • a group of signals is defined as one sidelink communication.
  • AGC Auto Gain Control
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • DMRS DeModulation Reference Signal
  • AGC, PSCCH, PSSCH, DMRS, and GUARD transmitted in the 1st to 11th symbols in one slot are defined as one sidelink transmission.
  • AGC, PSFCH (Physical Sidelink Feedback CHannel), and GUARD transmitted in the 12th to 14th symbols in one slot are defined as one sidelink transmission.
  • one slot may contain multiple sidelink transmissions.
  • the same Tx UE can continuously perform multiple sidelink transmissions.
  • the multiple sidelink transmissions are assumed to be different sidelink transmissions.
  • FIG. 3 is a diagram showing an example of a schematic configuration of the communication system 1 according to the embodiment of the present disclosure.
  • the communication system 1 includes a base station device 100 , a terminal device 200 , a Core Network 20 and a PDN (Packet Data Network) 30 .
  • PDN Packet Data Network
  • the communication system 1 may be a cellular communication system such as W-CDMA (Wideband Code Division Multiple Access), cdma2000 (Code Division Multiple Access 2000), LTE, and NR.
  • LTE includes LTE-A (LTE-Advanced), LTE-A Pro (LTE-Advanced Pro), and EUTRA (Evolved Universal Terrestrial Radio Access).
  • NR includes NRAT (New Radio Access Technology) and FEUTRA (Further EUTRA).
  • NR is the radio access technology (RAT) of the next generation (5th generation) of LTE.
  • RAT radio access technology
  • NR is a radio access technology that can support various use cases including eMBB (Enhanced Mobile Broadband), mMTC (Massive Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communications).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • the communication system 1 is not limited to a cellular communication system.
  • the communication system 2 may be another wireless communication system such as a wireless LAN (Local Area Network) system, television broadcasting system, aviation wireless system, or space wireless communication system.
  • a wireless LAN Local Area Network
  • the communication system 2 may be another wireless communication system such as a wireless LAN (Local Area Network) system, television broadcasting system, aviation wireless system, or space wireless communication system.
  • the base station device 100 is a communication device that operates the cell 11 and provides wireless services to one or more terminal devices 200 located within the coverage of the cell 11 .
  • Cell 11 may be operated according to any wireless communication scheme, such as LTE or NR.
  • Base station apparatus 100 is connected to core network 20 .
  • Core network 20 is connected to PDN 30 .
  • the base station device 100 may be composed of a set of multiple physical or logical devices.
  • the base station device 100 may be classified into a plurality of BBU (Baseband Unit) and RU (Radio Unit) devices, and interpreted as an aggregate of these plurality of devices.
  • the base station apparatus 100 may be either or both of BBU and RU.
  • BBU and RU may be connected by a predetermined interface (e.g., eCPRI).
  • a RU may be referred to as a Remote Radio Unit (RRU) or Radio DoT (RD).
  • the RUs may correspond to gNB-DUs as described below.
  • the BBU may correspond to a gNB-CU as described below.
  • the RU may be a unit integrally formed with the antenna.
  • the antennas of the base station apparatus 100 may adopt an Advanced Antenna System and support MIMO (for example, FD-MIMO) and beamforming.
  • the antennas of the base station apparatus 100 may have, for example, 64 transmitting antenna ports and 64 receiving antenna ports. .
  • a plurality of base station apparatuses 100 may be connected to each other.
  • One or more base station devices 100 may be included in a radio access network (RAN). That is, the base station apparatus 100 may simply be referred to as RAN, RAN node, AN (Access Network), or AN node.
  • RAN in LTE is called EUTRAN (Enhanced Universal Terrestrial RAN).
  • RAN in NR is called NGRAN.
  • the RAN in W-CDMA (UMTS) is called UTRAN.
  • the LTE base station device 100 is called eNodeB (Evolved Node B) or eNB. That is, EUTRAN includes one or more eNodeBs (eNBs).
  • the NR base station apparatus 100 is called gNodeB or gNB.
  • NGRAN includes one or more gNBs.
  • the EUTRAN may include gNBs (en-gNBs) connected to the core network (EPC) in the LTE communication system (EPS).
  • NGRAN may include an ng-eNB connected to a core network 5GC in a 5G communication system (5GS).
  • EPC LTE communication system
  • NGRAN may include an ng-eNB connected to a core network 5GC in a 5G communication system (5GS).
  • 3GPP Access when the base station apparatus 100 is eNB, gNB, etc., it may be referred to as 3GPP Access.
  • the base station device 100 is a wireless access point (Access Point), it may be referred to as Non-3GPP Access.
  • the base station device 100 may be an optical extension device called RRH (Remote Radio Head).
  • RRH Remote Radio Head
  • the base station device 100 may be referred to as a combination of the gNB CU (Central Unit) and gNB DU (Distributed Unit), or any of these.
  • the gNB CU Central Unit
  • hosts multiple upper layers for example, RRC, SDAP, PDCP
  • gNB-DU hosts multiple lower layers (eg, RLC, MAC, PHY) of Access Stratum.
  • RRC signaling (for example, MIB, various SIBs including SIB1, RRCSetup message, RRC Reconfiguration message) is generated by gNB CU, while DCI and various Physical Channels described later (for example, PDCCH, PBCH) may be generated by gNB-DU.
  • DCI and various Physical Channels described later for example, PDCCH, PBCH
  • part of the RRC signaling such as IE:cellGroupConfig, may be generated in the gNB-DU, and the rest of the configuration may be generated in the gNB-CU.
  • These configurations may be transmitted and received through the F1 interface, which will be described later.
  • a base station apparatus 100 may be configured to be able to communicate with another base station apparatus 100 .
  • the base station apparatuses 100 may be connected via the X2 interface.
  • the apparatuses may be connected by an Xn interface.
  • the devices may be connected by the F1 interface described above. Messages and information described later (RRC signaling or DCI information, physical channel) may be communicated between multiple base stations (for example, via X2, Xn, F1 interfaces).
  • the base station device 100 may be configured to manage multiple cells.
  • a cell provided by the base station device 100 is called a serving cell.
  • Serving cells include PCell (Primary Cell) and SCell (Secondary Cell).
  • Dual Connectivity for example, EUTRA-EUTRA Dual Connectivity, EUTRA-NR Dual Connectivity (ENDC), EUTRA-NR Dual Connectivity with 5GC, NR-EUTRA Dual Connectivity (NEDC), NR-NR Dual Connectivity
  • UE for example, a terminal device 200
  • the PCell and zero or more SCell(s) provided by the MN Master Node
  • the Serving cell may include a PS Cell (Primary Secondary Cell or Primary SCG Cell).
  • the PSCell and zero or more SCell(s) provided by the SN are called a Secondary Cell Group (SCG).
  • SCG Secondary Cell Group
  • PUCCH physical uplink control channel
  • PUCCH physical uplink control channel
  • Radio Link Failure is also detected in PCell and PSCell, but not detected in SCell (it does not have to be detected).
  • PCell and PSCell are also called Special Cells (SpCells) because they have special roles in Serving Cell(s).
  • One cell may be associated with one Downlink Component Carrier and one Uplink Component Carrier.
  • the system bandwidth corresponding to one cell may be divided into a plurality of bandwidth parts (Bandwidth Parts).
  • Bandwidth Parts may be set for the UE, and one Bandwidth Part may be used for the UE as an Active BWP.
  • radio resources for example, frequency band, numerology (subcarrier spacing), slot format (Slot configuration)
  • the core network 120 When the core network 120 is an NR core network (5G Core (5GC)), the core network 120 includes AMF (Access and Mobility Management Function), SMF (Session Management Function), UPF (User Plane Function), PCF (Policy Control Function) and UDM (Unified Data Management).
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • UDM Unified Data Management
  • the core network 120 When the core network 120 is an LTE core network (Evolved Packet Core (EPC)), the core network 120 includes MME (Mobility Management Entity), S-GW (Serving gateway), P-GW (PDN gateway), PCRF (Policy and Charging Rule Function) and HSS (Home Subscriber Server).
  • the AMF and MME are control nodes that handle control plane signals and manage the mobility of the terminal device 40 .
  • UPF and S-GW/P-GW are nodes that handle user plane signals.
  • the PCF/PCRF is a control node that controls policies such as QoS (Quality of Service) for PDU sessions or bearers and charging.
  • UDM/HSS is a control node that handles subscriber data and performs service control.
  • the terminal device 200 is a wireless communication device that wirelessly communicates with other devices.
  • the terminal device 110 is, for example, a sensor or camera device having a communication function, a mobile phone, a smart device (smartphone or tablet), a PDA (Personal Digital Assistant), or a personal computer.
  • the terminal device 110 may be a head-mounted display, VR goggles, or the like that has a function of transmitting and receiving data wirelessly.
  • the terminal device 200 wirelessly communicates with another terminal device 200 based on control by the base station device 100 or autonomously. In that case, the terminal device 200 transmits the sidelink signal to the other terminal device 200 and receives the sidelink signal from the other terminal device 200 in the PC5 link.
  • transmission and reception of a sidelink signal by the terminal device 200 are collectively referred to as sidelink communication.
  • the terminal device 200 may be able to use an automatic retransmission technique such as HARQ (Hybrid Automatic Repeat reQuest) when performing sidelink communication.
  • HARQ Hybrid Automatic Repeat reQuest
  • the terminal device 200 may be capable of NOMA (Non Orthogonal Multiple Access) communication with the base station device 100 .
  • the terminal device 200 may be capable of NOMA communication also in communication (sidelink) with another terminal device 200 .
  • the terminal device 200 may be capable of LPWA (Low Power Wide Area) communication with other communication devices (for example, the base station device 100 and other terminal devices 200).
  • the wireless communication used by the terminal device 200 may be wireless communication using millimeter waves or terahertz waves.
  • Wireless communication (including side link communication) used by the terminal device 200 may be wireless communication using radio waves, or wireless communication using infrared rays or visible light (optical wireless). good.
  • FIG. 4 is a block diagram showing an example of the configuration of the base station apparatus 100 according to the embodiment of the present disclosure.
  • base station apparatus 100 includes antenna section 110 , radio communication section 120 , network communication section 130 , storage section 140 and control section 150 .
  • Antenna section 110 radiates the signal output from wireless communication section 120 into space as radio waves. Antenna section 110 also converts radio waves in space into signals and outputs the signals to wireless communication section 120 . Note that the antenna unit 110 of this embodiment has a plurality of antenna elements and can form a beam.
  • the wireless communication unit 120 transmits and receives signals.
  • the wireless communication unit 120 transmits downlink signals to the terminal device 200 and receives uplink signals from the terminal device 200 .
  • the wireless communication unit 120 of the present embodiment can form a plurality of beams using the antenna unit 110 and communicate with the terminal device 200 .
  • Network communication unit 130 transmits and receives information.
  • network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base station apparatuses 100 and core network nodes.
  • Storage unit 140 temporarily or permanently stores programs and various data for operation of base station apparatus 100 .
  • Control unit 150 controls the overall operation of the base station device 100 and provides various functions of the base station device 100 .
  • Control unit 150 includes determination unit 151 and notification unit 152 .
  • the determining unit 151 determines a resource pool that the terminal device 200 uses for sidelink communication. Also, the determining unit 151 may determine whether or not the terminal device 200 performs sidelink communication using sub-slots. In this case, the determining unit 151 determines whether or not the terminal device 200 uses the sub-slot based on, for example, delay conditions required for sidelink communication. Alternatively, the determining unit 151 determines whether the terminal device 200 uses the subslot based on the capability information of the terminal device 200 including whether sidelink communication using the subslot is possible. good.
  • the notification unit 152 notifies the terminal device 200 of the determination result of the determination unit 151 .
  • the terminal device 200 notifies the resource pool information about the resource pool used for sidelink communication.
  • the notification unit 152 notifies information indicating whether or not the terminal device 200 uses a sub-slot.
  • the notification unit 152 may notify setting information related to sensing performed by the terminal device 200 during sidelink communication.
  • the notification unit 152 notifies the terminal device 200 of information related to the sidelink communication performed by the terminal device 200.
  • the information concerned shall be determined by the determination part 151, for example.
  • the control unit 150 may further include components other than these components. That is, the control unit 150 can perform operations other than those of these components.
  • FIG. 5 is a block diagram showing an example of the configuration of the terminal device 200 according to the embodiment of the present disclosure.
  • terminal device 200 includes antenna section 210 , wireless communication section 220 , storage section 230 and control section 240 .
  • Antenna section 210 radiates the signal output from wireless communication section 220 into space as radio waves. Antenna section 210 also converts radio waves in space into signals and outputs the signals to wireless communication section 220 . Note that the antenna unit 210 of this embodiment has a plurality of antenna elements and can form a beam.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives downlink signals from the base station device 100 and transmits uplink signals to the base station device 100 .
  • the wireless communication unit 220 of this embodiment can form a plurality of beams using the antenna unit 210 and communicate with the base station apparatus 100 .
  • Storage unit 230 The storage unit 230 temporarily or permanently stores programs and various data for operating the terminal device 200 .
  • Control unit 240 controls the overall operation of the terminal device 200 and provides various functions of the terminal device 200 .
  • Control unit 240 includes acquisition unit 241 , sensing unit 242 , transmission unit 243 , and reception unit 244 .
  • the acquisition unit 241 acquires information related to sidelink communication transmitted by the base station device 100 .
  • information includes information about resource pools used in sidelink communication and information indicating whether or not to use subslots in sidelink communication.
  • the acquisition unit 241 acquires information related to sidelink communication from the base station device 100
  • the present invention is not limited to this.
  • the acquisition unit 241 may acquire these pieces of information from other terminal devices 200 .
  • the other terminal device 200 can be a master terminal device that controls the sidelink communication of the terminal device 200.
  • the base station apparatus 100 determines whether or not to use a sub-slot for sidelink communication of the terminal apparatus 200, but the present invention is not limited to this.
  • the terminal device 200 may determine whether to use subslots for sidelink communication.
  • the acquiring unit 241 can acquire from the base station apparatus 100 information (for example, Rx UE capability information) for determining whether to use subslots for sidelink communication.
  • the acquisition unit 241 may acquire the information from the Rx UE or another terminal device 200 .
  • the sensing unit 242 performs sensing for the transmission unit 243 to perform sidelink transmission.
  • the sensing unit 242 performs sensing based on the setting information regarding sensing acquired by the acquiring unit 242 .
  • the sensing unit 242 outputs sensing results to the transmission unit 243 .
  • (4-3) Transmitter 243 For example, when the terminal device 200 operates as a Tx UE, the transmission section 243 performs sidelink transmission using the information acquired by the acquisition section 241 based on the sensing result of the sensing section 242 . The transmission unit 243 performs sidelink transmission via the wireless communication unit 220 .
  • Receiver 244 For example, when the terminal device 200 operates as an Rx UE, the receiver 244 receives signals from the Tx UE. Receiving section 244 receives signals via wireless communication section 220 .
  • the control unit 240 may further include components other than these components. That is, the control unit 240 can perform operations other than those of these components.
  • subslots common to a plurality of terminal devices 200 are set.
  • the plurality of terminal devices 200 may be all terminal devices 200 included in the cell of the base station device 100, or may be terminal devices 200 belonging to a predetermined group (UE group). Alternatively, multiple terminal devices 200 may be multiple terminal devices 200 to which the same resource pool is set.
  • FIGS. 6 and 7 are diagrams showing configuration examples of sub-slots according to the embodiment of the present disclosure.
  • a sub-slot configuration when sub-slots are explicitly set for the terminal device 200 is shown.
  • a slot (Slot#n) consisting of 14 symbols includes two subslots (Subslot#m, Subslot#m+1) each consisting of 7 symbols.
  • multiple sub-slots of the same size (number of symbols) can be arranged in one slot.
  • a slot (Slot#n) composed of 14 symbols includes three subslots (Subslot#m, Subslot#m+1, Subslot#m+2).
  • Subslot#m and Subslot#m+1 are composed of 5 symbols, and
  • Subslot#m+2 is composed of 4 symbols. In this way, a plurality of sub-slots of different sizes (number of symbols) may be arranged in one slot.
  • the numbers of symbols in the subslots are assumed to be 5, 5, and 4, respectively, but are not limited to this.
  • the number of symbols in a subslot may be 3 or less or 6 or more. Also, for example, the number of symbols in a subslot may be a predetermined number less than 14.
  • FIGS. 6 and 7 show the case where AGC, PSCCH, PSSCH, DMRS, and GUARD are transmitted as subslot transmission, the present invention is not limited to this.
  • AGC, PSFCH and GUARD may be transmitted in one subslot.
  • the subslot configuration shown in FIG. 6 or 7 can be set, for example, in the following manner.
  • base station apparatus 100 or a predetermined UE sends setting information indicating a predetermined sub-slot configuration to terminal apparatus 200. to notify. Thereby, sidelink communication using a predetermined subslot configuration is set.
  • (c) Method of setting one of a plurality of sub-slot configurations
  • a plurality of sub-slot configurations are defined in advance.
  • the base station apparatus 100 or the master UE notifies information (for example, index information) indicating one of a plurality of subslot configurations. This sets up sidelink communication using one of a plurality of subslot configurations.
  • multiple sub-slot configurations may be defined in advance by the specifications, or may be defined by the base station apparatus 100 or the master UE.
  • Channels and/or signals in one sidelink transmission are mapped into one subslot.
  • the sidelink transmission is done on a subslot basis.
  • each sidelink transmission is performed in units of subslots, it is not necessary to use all the symbols in the subslots for transmission.
  • the terminal device 200 can perform sidelink transmission using at least some symbols of the subslots. For example, when one sub-slot is composed of 7 symbols, the terminal device 200 may perform sidelink transmission using 5 of the 7 symbols.
  • AGC or PSCCH shall be assigned to a predetermined symbol within the subslot.
  • AGC is mapped to the first symbol in a subslot regardless of the number of symbols used for sidelink transmission.
  • the PSCCH is mapped to the second symbol in the subslot regardless of the number of symbols used for sidelink transmission.
  • a symbol to which AGC or PSCCH is allocated can be semi-statically configured by the base station apparatus 100 or the master UE.
  • the base station apparatus 100 or the master UE configures symbols for allocating AGC or PSCCH, for example, through higher layer signaling (for example, RRC, MAC, etc.) when viewed from the physical layer.
  • the base station apparatus 100 or the master UE may perform the setting through physical layer signaling (for example, SCI (Sidelink Control Information), DCI (Downlink Control Information)).
  • Implicit setting of subslots Next, a case of implicitly setting (or defining) based on resource allocation of a predetermined channel or signal will be described.
  • the base station apparatus 100 or the master UE transmits allocation information regarding resource allocation of predetermined sidelink channels or signals to certain terminal apparatuses 200 .
  • Sidelink transmission using subslots is implicitly performed by the terminal device 200 performing sidelink transmission based on this allocation information.
  • FIGS. 8 and 9 are diagrams showing configuration examples of sub-slots according to the embodiment of the present disclosure.
  • a sub-slot configuration when sub-slots are implicitly set for the terminal device 200 is shown.
  • FIGS. 8 and 9 show bitmap information indicating symbols to which the PSCCH is mapped in a 14-bit slot (slot#n).
  • Bitmap information is an example of allocation information transmitted by the base station apparatus 100 or the master UE.
  • the number of symbols for the entire sidelink transmission is arbitrarily determined by the terminal device 200 (Tx UE) that performs sidelink transmission for each sidelink transmission.
  • the number of symbols may be implicitly determined based on bitmap information for each sidelink transmission.
  • the second and ninth bits of bitmap information are "1". This means that the 2nd and 9th symbols in the slot are set as symbols for mapping the PSCCH.
  • the terminal device 200 that performs sidelink transmission maps the PSCCH to the 2nd and 9th symbols in the slot based on the bitmap information shown in FIG. 8, and performs two sidelink transmissions in one slot.
  • the terminal device 200 determines the maximum number of symbols to be used for one sidelink transmission based on the bitmap information. Therefore, in the example of FIG. 8, the number of symbols for one entire sidelink transmission is implicitly determined based on the bitmap information.
  • FIG. 9 shows the case where the bitmap information indicates whether or not the PSCCH can be mapped. That is, the number of symbols for sidelink transmission does not need to be limited by the bitmap information, and the terminal device 200, for example, performs one sidelink transmission beyond the symbol indicated as "1" in the bitmap information. can be mapped. In other words, terminal device 200 does not necessarily map the PSCCH to the symbol indicated as "1" in the bitmap information.
  • the 2nd, 6th, and 10th bits of the bitmap information are "1", but the terminal device 200 maps the PSCCH to the 2nd and 10th symbols in the slot, and uses two symbols in one slot. Send a sidelink.
  • the PSSCH is mapped to the 6th symbol in the slot.
  • one sidelink transmission may not exceed the slot, that is, the sidelink transmission may be limited within the slot.
  • one sidelink transmission may be transmitted over a slot.
  • this bitmap information may be set individually.
  • the Tx UE can perform sidelink transmission that maps the PSCCH to the symbol indicating "1" in the bitmap information.
  • the Rx UE assumes that the PSCCH may be mapped to the symbol indicating "1" in the bitmap information (irrespective of whether it is actually transmitted). , PSCCH reception processing (monitoring).
  • bitmap information indicates PSCCH symbols, it is not limited to this.
  • the bitmap information may indicate the symbol of AGC or the leading symbol of sidelink transmission.
  • the bitmap information can be semi-statically set by the base station apparatus 100 or the master UE.
  • the base station apparatus 100 or the master UE sets bitmap information, for example, through higher layer signaling (for example, RRC, MACb, etc.) when viewed from the physical layer.
  • the base station apparatus 100 or the master UE may perform the setting through physical layer signaling (for example, SCI, DCI).
  • allocation information is not limited to bitmap information.
  • the allocation information may be information related to PSCCH allocation, and may be information indicating the position of PSCCH (or AGC). For example, in the case of the sub-slot configuration as shown in FIG. 8, the allocation information may be information including "2" and "9" indicating symbols to which PSCCH is allocated.
  • PSCCH sidelink control channel: channel for transmitting sidelink control information (SCI)
  • SCI sidelink control information
  • Number of symbols of PSCCH For example, a predetermined number of symbols (1, 2, or 3 symbols) is set as the number of symbols of PSCCH.
  • the number of PSCCH symbols could be set to 2 or 3, but the minimum number of symbols for sidelink transmission is limited by the number of PSCCH symbols. It had been.
  • the communication system 1 supports PSCCH with one symbol, thereby eliminating this limitation.
  • the number of symbols for one sidelink transmission is smaller than in the conventional sidelink communication, so a higher effect can be obtained.
  • the number of PSCCH symbols can be set to a different number depending on whether it is conventional slot-based sidelink transmission or sub-slot-based sidelink transmission according to this embodiment.
  • the number of symbols to be set is 2 or 3 symbols.
  • the number of symbols to be set is 1, 2, or 3.
  • the number of PSCCH symbols to be set may be one.
  • the number of PSCCH symbols may be implicitly determined to be one.
  • Start symbol of PSCCH When the base station apparatus 100 or the master UE explicitly configures subslots and AGC is included in sidelink transmission, the symbol next to AGC becomes the start symbol of the PSCCH. Specifically, for example, the second symbol in the subslot becomes the start symbol of the PSCCH.
  • the first symbol in the subslot becomes the start symbol of the PSCCH.
  • the base station apparatus 100 or the master UE When the base station apparatus 100 or the master UE indicates the position of the PSCCH using bitmap information, the symbol corresponding to "1" in the bitmap information becomes the PSCCH start symbol.
  • the base station apparatus 100 or the master UE indicates the position of AGC by bitmap information
  • the symbol next to the symbol corresponding to "1" in the bitmap information becomes the PSCCH start symbol.
  • Frequency domain The frequency domain of PSCCH can be set in units of predetermined resources.
  • the starting frequency resource and frequency bandwidth are set. For example, a frequency bandwidth is set in units of starting subcarriers and resource blocks.
  • the starting frequency resource is the subcarrier with the smallest index (that is, the lowest frequency) in each subchannel.
  • a predetermined number of resource blocks eg, 10, 15, 20 resource blocks
  • the number of resource blocks for PSCCH can be similarly limited to the number of resource blocks for subchannels for which a predetermined number of resource blocks is set. That is, the frequency resource of PSCCH is mapped within one subchannel.
  • the number of PSCCH resource blocks may be mapped within one or more predetermined subchannels.
  • the number of PSCCH symbols is small (for example, the number of symbols is 1), restrictions on the frequency domain of PSCCH transmission resources are relaxed.
  • whether or not the number of resource blocks that can be set for the PSCCH is limited within one subchannel depends on the conventional sidelink transmission in slot units or the sidelink transmission in subslot units according to the present embodiment. It may be different depending on whether it is transmission or not.
  • resource blocks that can be set are limited to within one subchannel.
  • resource blocks that can be configured are mapped across a plurality of subchannels.
  • PSSCH sidelink shared channel: channel for transmitting data
  • 2-1 Time Domain
  • the start symbol and the number of symbols of PSSCH are set and/or defined, respectively.
  • the setting is performed by the base station apparatus 100 or the master UE using RRC or physical layer control information, for example.
  • the start symbol of PSSCH is the same as the start symbol of PSCCH described above.
  • the number of PSSCH symbols is explicitly notified by SCI.
  • the number of symbols may be up to the last symbol of PSSCH, or may include Guard symbols. This allows the base station apparatus 100 or the master UE to flexibly determine the number of symbols for each sidelink transmission.
  • the last symbol indicated by the number of symbols may be restricted within the subslot to which the first symbol of sidelink transmission is mapped.
  • the last symbol indicated by the number of symbols may be the subslot next to the subslot to which the first symbol of sidelink transmission is mapped. That is, the terminal device 200 may perform sidelink transmission over a plurality of subslots. Even in this case, the sidelink transmission may be limited within one slot.
  • the number of PSSCH symbols is implicitly determined based on the subslot configuration and bitmap information explicitly reported from the base station apparatus 100 or the master UE. This eliminates the need for base station apparatus 100 or master UE to notify the number of symbols by SCI, and can reduce the overhead of control information.
  • the last symbol of the sub-slot is Guard and the penultimate symbol is the last symbol of PSSCH.
  • the number of symbols is determined. Note that the number of symbols is determined so that the last symbol of the subslot is the last symbol of the PSSCH when there is no Guard symbol in the sidelink transmission.
  • the number of PSSCH symbols is determined so that there are no empty symbols other than Guard symbols.
  • the number of PSSCH symbols is determined based on the explicitly notified subslot configuration and bitmap information
  • the number of symbols of PSSCH (assignment of PSSCH) according to the number of symbols to which AGC, PSCCH and Guard are assigned can be said to be determined.
  • the PSSCH frequency domain is mapped in units of subchannels, but other predetermined resource units (eg, resource blocks, subcarriers) may be used.
  • the starting frequency resource is the same as the starting frequency resource of the PSCCH. However, in the symbols to which the PSCCH is mapped, the frequency resource to which the PSCCH is not mapped is the start of the PSSCH.
  • the frequency bandwidth of the PSSCH is notified to the terminal device 200 by SCI or RRC by the base station device 100 or the master UE as, for example, the number of subchannels.
  • PSFCH sidelink feedback channel: channel for transmitting HARQ feedback (Ack/Nack) for PSSCH
  • a sidelink transmission including a PSFCH is a sidelink transmission to which AGC, PSFCH, and Guard are mapped. Note that this is determined regardless of whether the sidelink transmission containing the PSFCH is a subslot-based transmission.
  • the predetermined slot is set by RRC.
  • the sidelink transmission including the PSFCH is mapped to the end of a given subslot.
  • the predetermined subslots are set by RRC, for example, by the base station apparatus 100 or the master UE.
  • subslot configuration used for sidelink transmission including the PSFCH may differ from the subslot configuration used for sidelink transmission including the PSSCH.
  • the number of symbols of the PSFCH is defined in advance as a predetermined number of symbols.
  • the number of symbols of the PSFCH may be set by the base station apparatus 100 or the master UE using SCI or RRC.
  • the number of PSFCH symbols is fixed to 1, but in the sub-slot-based sidelink transmission according to the present embodiment, the number of PSFCH symbols can be set to 1 or more. . This increases the amount of information that can be transmitted on the PSFCH.
  • the terminal device 200 can copy and transmit the same PSFCH as the conventional slot-based sidelink transmission to a plurality of symbols. This improves the reliability of the PSFCH.
  • the setting (or regulation) of the number of symbols of the PSFCH may differ depending on whether it is a conventional slot-based sidelink transmission or a sub-slot-based sidelink transmission according to the present embodiment. .
  • the number of symbols of the PSFCH is set to 1 in advance.
  • the number of symbols of the PSFCH is set by the base station apparatus 100 or the master UE using SCI or RRC.
  • the starting frequency resource is notified by SCI or RRC.
  • the starting frequency resource is implicitly determined based on the PSSCH targeted for HARQ feedback or resource mapping of the PSSCH.
  • the frequency resource of the PSFCH for HARQ feedback is determined based on the resource block index to which the PSSCH is mapped and a predefined formula.
  • the frequency bandwidth of the PSFCH is defined in advance as, for example, the number of resource blocks.
  • the PSSCH frequency bandwidth is notified to the terminal device 200 by SCI or RRC by the base station device 100 or the master UE, for example, as the number of resource blocks.
  • the number of PSFCH resource blocks is fixed to 1, but in the sub-slot-based sidelink transmission according to the present embodiment, the number of PSFCH resource blocks is set to 1 or more. can be This increases the amount of information that can be transmitted on the PSFCH.
  • the terminal device 200 can also copy and transmit the same PSFCH as the conventional slot-based sidelink transmission to a plurality of resource blocks. This improves the reliability of the PSFCH.
  • the setting (or regulation) of the number of resource blocks of the PSFCH may differ depending on whether it is a conventional slot-based sidelink transmission or a sub-slot-based sidelink transmission according to the present embodiment. good.
  • the number of PSFCH resource blocks is preset as one.
  • the number of PSFCH resource blocks is set by the base station apparatus 100 or the master UE using SCI or RRC.
  • a resource pool for performing sidelink transmission in units of subslots according to the present embodiment can be set for the terminal device 200 that performs sidelink transmission in units of subslots. That is, a resource pool dedicated to sidelink transmission can be set in units of subslots. Alternatively, the same resource pool may be set for the terminal device 200 that performs sidelink transmission in conventional slot units and the terminal device 200 that performs sidelink transmission in subslot units according to the present embodiment.
  • a resource pool for reception and a resource pool for transmission can be individually set for a given terminal device 200 .
  • the parameters and controls described above are set individually for each resource pool, but some parameters and controls may be set in common for reception and transmission.
  • the resource allocation described above can be performed dynamically according to resource usage. For example, when a plurality of resource pools are assigned to the terminal device 200 and some of them are congested, the terminal device 200 excludes the congested resource pool (i.e., other Prioritize resource pools) to allocate resources.
  • the congested resource pool i.e., other Prioritize resource pools
  • the terminal device 200 can dynamically select PSFCH resources according to resource usage.
  • the subslot configuration for sidelink transmissions including the PSFCH may be set independently of the subslot configuration for sidelink transmissions including the PSSCH.
  • the number of symbols in each subslot configuration can be set differently.
  • the terminal device 200 may use a 7-symbol subslot configuration for sidelink transmission including the PSSCH and use a conventional slot configuration for sidelink transmission including the PSFCH.
  • 10 and 11 show an example of HARQ feedback according to embodiments of the present disclosure.
  • 10 and 11 show the case where the terminal device 200 uses a 7-symbol subslot configuration for sidelink transmission including the PSFCH.
  • the base station apparatus 100 or the master UE notifies the timing of HARQ feedback by SCI.
  • the timing reference is then based on the last symbol of the sidelink transmission containing the PSSCH. This last symbol may be a PSSCH symbol or a Guard symbol.
  • sidelink transmission including PSSCH is performed in Subslot#m.
  • base station apparatus 100 or master UE has notified via SCI that HARQ feedback will be transmitted after two subslots.
  • sidelink transmission including the PSFCH is performed in Subslot#m+2.
  • sidelink transmission including PSSCH is performed over two subslots, Subslot#m and Subslot#m+1.
  • base station apparatus 100 or master UE has notified via SCI that HARQ feedback will be transmitted after two subslots.
  • sidelink transmission including the PSFCH is performed in Subslot#m+3.
  • the PSFCH may be transmitted in different subslots. This is because the last symbols of sidelink transmissions containing the PSSCH are assigned to different subslots.
  • resource sharing includes, for example, sharing using frequency division multiplexing or code division multiplexing.
  • the PSFCH is transmitted in subslot units.
  • the base station apparatus 100 sets the number of symbols in subslots for transmitting the PSFCH, so that the base station apparatus 100 can flexibly determine the balance between low delay in PSFCH transmission and overhead. become.
  • the PSCCH is used for notifying scheduling information for the terminal device 200 that receives the PSSCH and for other terminal devices 200 to grasp (sense) the usage status of PSSCH resources. That is, the PSCCH is received by all terminal devices 200 that perform sidelink transmission.
  • the other terminal device 200 can obtain resources for the periodic data transmission. It is possible to grasp the usage status of
  • PSCCH can also transmit resource reservation information for the next PSSCH (for example, 100 ms later). With this resource reservation information, other terminal devices 200 can grasp the resource usage status even for aperiodic data traffic.
  • the transmitting terminal device 200 performs sensing and grasps the resource usage status in the resource pool.
  • the transmitting terminal device 200 selects a resource to be used for sidelink transmission based on the grasped information. This reduces the occurrence of data (that is, PSSCH) collisions with other terminal devices 200 .
  • the terminal device 200 when the sidelink transmission is extended, particularly when the configuration of the PSCCH is extended, the terminal device 200 that does not perform sub-slot communication like the conventional terminal device 200, It becomes difficult to receive the extended PSCCH.
  • the usage status (reservation status) of resources used in sub-slot communication for the terminal device 200 that does not support side link communication in units of sub-slots shall be notified separately as assist information.
  • FIG. 12 is a diagram for explaining an example of a method of notifying assist information according to the embodiment of the present disclosure.
  • the base station apparatus 100 or a predetermined terminal apparatus 200 provides assistance information regarding resource usage status (reservation status) notified in the previous slot through the PSCCH of the next and subsequent slots. to notify you.
  • the assist information relating to the resource usage status in sub-slot communication may be the usage status itself, or may be information about resources that can be used based on the status. The said assist information is notified by conventional PSCCH.
  • the resource usage status of the sidelink transmission scheduled (notified) in the new PSCCH in Slot#n is notified in the next Slot#n+1 using the conventional PSCCH.
  • the new PSCCH means a PSCCH included in sidelink transmission performed in units of subslots.
  • the resource pool shown in FIG. 12 is a resource pool shared by a UE (terminal device 200) capable of receiving the conventional PSCCH and a UE (terminal device 200) capable of receiving the new PSCCH in addition to the conventional PSCCH. is. That is, the resource pool shown in FIG. 12 is used by both the terminal device 200 that performs sidelink communication in slot units and the terminal device 200 that performs sidelink communication in subslot units.
  • the terminal device 200 on the transmission side performs sensing to reduce data collision. Conventional sensing has been performed in units of slots in the time domain. In this case, the terminal device 200 also selects resources to be used for transmission on a slot-by-slot basis.
  • FIG. 13 is a diagram for explaining an example of a sensing method according to an embodiment of the present disclosure.
  • the terminal device 200 determines the sensing window based on control information set (or pre-configured) from the base station. The determination can be made flexibly by the terminal device 200 within the range indicated by the control information. For example, the terminal device 200 can change the window width according to data delay requirements.
  • the terminal device 200 determines the first slot and the last slot for sensing as the sensing window.
  • the sensing window may be limited to be determined in units of slots. Note that the sensing window may also be determined in units of sub-slots.
  • the terminal device 200 senses each of the resources made up of one subchannel and one subslot within the determined sensing window. As described above, the sensing here includes grasping the resource usage status from the scheduling information obtained from the PSCCH transmitted by the other terminal device 200 . Furthermore, the sensing here also includes grasping the usage status of resources according to the received power of the resources (for example, RSRP (Reference Signals Received Power), etc.). In this case, the terminal device 200 measures the received power of the resource, and if it detects received power equal to or greater than a predetermined threshold value, the terminal device 200 recognizes that the resource is being used.
  • RSRP Reference Signals Received Power
  • the terminal device 200 determines that the resource is being used when even part of the sidelink transmission is using the resource. Therefore, the sidelink transmission transmitted in Subchannel#3 in FIG. 13 is transmitted using some resources of Subslot#m+1 in addition to Subslot#m. In this case, the terminal device 200 recognizes that the resources of Subslot#m and Subslot#m+1 of Subchannel#3 are being used.
  • the terminal device 200 selects resources to be used for sidelink transmission from resources other than the resources recognized to be in use (that is, in units of resources consisting of one subchannel and one subslot).
  • sensing based on sub-slot communication may be performed under predetermined conditions.
  • the predetermined condition is one or a combination of the following.
  • sensing based on subslot communication is set to Explicit. This setting regarding sensing may be notified to the terminal device 200 separately from the setting for performing sidelink transmission based on subslots.
  • the resource pool for sensing is dedicated to terminal devices that perform sidelink transmission based on subslots.
  • Information for recognizing whether the resource pool is dedicated to the terminal device can be notified from the base station device 100 to the terminal device 200 .
  • the terminal device 200 may perform conventional slot-based sensing.
  • the configuration of subslots used in actual sidelink transmission and the configuration of subslots for sensing may be different.
  • the configuration of each subslot can be set individually. It should be noted that sensing may be based on conventional slots even if the actual sidelink transmission is based on subslots. Also, sensing may be based on sub-slots even though the actual sidelink transmission is based on conventional slots.
  • the sensing unit in the frequency domain may be changed to a unit different from the conventional one.
  • the terminal device 200 can treat two consecutive sub-channels as one sensing unit.
  • the size of a subchannel that is, the number of resource blocks forming one subchannel
  • a terminal device that performs sidelink communication with another terminal device Acquiring resource pool information related to the resource pool assigned to the sidelink communication with the other terminal device by the base station device, In one slot included in the resource pool, out of a plurality of sidelink control channels allocated in the time axis direction of the slot, at least one of which is used to transmit control information to the other terminal device, a control unit , terminal device.
  • the control unit Acquiring allocation information about allocation of the sidelink control channel; Transmitting the control information using the sidelink control channel allocated based on the allocation information; The terminal device according to (1).
  • the terminal device (4) The terminal device according to (2), wherein the allocation information includes information about symbols to which AGC (Automatic Gain Control) is allocated. (5) The terminal device according to (1), wherein the sidelink control channel is assigned to each subslot set in the one slot. (6) The terminal device according to any one of (1) to (5), wherein the number of symbols of the sidelink control channel is one or more. (7) The terminal device according to (6), wherein the number of symbols to which the sidelink control channels can be assigned differs depending on the number of the sidelink control channels assigned in the time axis direction of the slot.
  • AGC Automatic Gain Control
  • the number of subchannels to which the number of resource blocks that can be set as the sidelink control channel is mapped differs according to the number of the sidelink control channels allocated in the time axis direction of the slot, (1) to (9)
  • the terminal device according to any one of. (11)
  • the number of sidelink control channels allocated in the time axis direction of the slot is 1, the number of resource blocks that can be set as the sidelink control channel is mapped to one subchannel,
  • the number of sidelink control channels allocated in the time axis direction of the slot is plural, the number of resource blocks that can be set as the sidelink control channel can be mapped to a plurality of consecutive subchannels.
  • the terminal device according to any one of (1) to (11), wherein a sidelink shared channel is assigned according to a symbol to which the sidelink control channel is assigned. (13) Any of (1) to (12), in which at least one of the number of symbols and the number of resource blocks set as a sidelink feedback channel is different according to the number of the sidelink control channels allocated in the time axis direction of the slot or the terminal device according to one. (14) The terminal device according to any one of (1) to (13), wherein the channel configuration of the transmission unit including the sidelink shared channel is different from the channel configuration of the transmission unit including the sidelink feedback channel. (15) The terminal device according to any one of (1) to (14), wherein the control unit acquires timing information regarding timing to perform HARQ feedback.
  • the terminal device wherein the timing is determined based on the last symbol of the sidelink shared channel.
  • the control unit receives second control information,
  • the second control information is Information on the control information transmitted using at least one of the plurality of sidelink control channels allocated in the time axis direction of one slot in the slot transmitted before the predetermined slot including transmitted using one of the sidelink control channels allocated in the time axis direction of one of the slots;
  • the terminal device according to any one of (1) to (16).
  • the control unit performs sensing based on sensing windows in units of sub-slots included in one slot.
  • the predetermined condition is set to perform the sensing for determining whether or not the sub-slot is used, to perform the sidelink communication using the sub-slot, and
  • (23) The terminal device according to any one of (19) to (22), wherein the configuration of the sub-slots in which the control unit performs the sensing is different from the configuration of the sub-slots used for transmission by the control unit.
  • a terminal device that performs sidelink communication with another terminal device, Acquiring resource pool information related to the resource pool assigned to the sidelink communication with the other terminal device by the base station device, A control unit that receives control information transmitted using at least one of a plurality of sidelink control channels allocated in the time axis direction of the slot in one slot included in the resource pool, terminal device.
  • a base station device that controls sidelink communication by a terminal device, Sending resource pool information about the resource pool used by the terminal device for the sidelink communication to the terminal device, a control unit that transmits information on allocation of a plurality of sidelink control channels allocated in the time axis direction of one slot included in the resource pool to the terminal device;
  • a base station device comprising: (26) A communication method in side link communication with a terminal device, Acquiring resource pool information about a resource pool allocated to the sidelink communication with the terminal device by the base station device, In one slot included in the resource pool, at least one of a plurality of sidelink control channels allocated in the time axis direction of the slot is used to transmit control information to the terminal device. Communication method.
  • REFERENCE SIGNS LIST 100 base station device 200 terminal device 110, 210 antenna section 120, 220 wireless communication section 130 network communication section 140, 230 storage section 150, 240 control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置(200)は、他の端末装置とサイドリンク通信を行う。端末装置(200)は、制御部(240)を備える。制御部(240)は、基地局装置(100)によって他の端末装置とのサイドリンク通信に割り当てられたリソースプールに関するリソースプール情報を取得する。制御部(240)は、リソースプールに含まれる1つのスロットにおいて、当該スロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルのうち、少なくとも1つを用いて制御情報を他の端末装置に送信する。

Description

端末装置、基地局装置及び通信方法
 本開示は、端末装置、基地局装置及び通信方法に関する。
 3GPPでは、端末(UE)間で直接通信を行うD2D(device-to-device)通信がサイドリンク(sidelink)通信として4G LTE(Long Term Evolution)および5G NR(New Radio)でそれぞれ規格化されている。サイドリンク通信では、V2X(Vehicle-to-everything)通信が主なユースケースの一つである。V2X通信として、V2V(Vehicle-to-vehicle)、V2I(Vehicle-to-infrastructure)、V2P(Vehicle-to-pedestrian)、V2N(Vehicle-to-network)が想定されている。
 特に、5G NRにおけるV2X通信の具体的なユースケースとして、Platooning、Advanced driving、Extended sensor、Remote drivingが検討されている。また、V2X通信でのURLLCに関する要求条件として、10ミリ秒以下の遅延および99.999%の信頼性を実現するように規格策定が行われている。
 さらに、サイドリンク通信は、V2X通信に限られず、様々なユースケースで活用することができる。例えば、Automation factoryは、サイドリンク通信が活用できるユースケースの一つである。そのような工場内では、多数のセンサーやカメラなどのデバイスが設置され、互いに直接通信することが検討されている。
"3GPP TS22.186 version 16.2.0 Release 16"、[online]、[令和3年2月19日検索]、インターネット<https://www.3gpp.org/ftp//Specs/archive/22_series/22.186/22186-g20.zip> "3GPP TS22.104 version 17.4.0 Release 17"、[online]、[令和3年2月19日検索]、インターネット<https://www.3gpp.org/ftp//Specs/archive/22_series/22.104/22104-h40.zip>
 上述したように、これまでのV2X通信では、Inter-vehicle通信が検討されてきたが、今後のサイドリンク通信における技術拡張として、Intra-vehicle通信が提案され得る。Intra-vehicle通信では、例えば、これまで有線で互いに接続されていたセンサーやカメラモジュールが、それぞれ無線通信デバイスとして無線通信により互いに接続され得る。特に、今後、自動運転などの実現が進むにつれて、このようなセンサーやカメラモジュールなどのようなデバイスの数が急激に増えると見込まれる。そのため、このようなセンサーやカメラモジュールを無線通信によって互いに接続することへの要求が高まってくると考えられる。
 ここで自動運転を考えると、基本的に自車内のセンサーやカメラからのデータを基に自動車を制御することが重要であり、Inter-vehicle通信(つまり、これまでのV2X通信)で得られる情報を補助情報として活用する。そのため、Intra-vehicle通信は、Inter-vehicle通信に比べて、さらなる低遅延が要求されることになる。
 また、上述したAutomation factoryにおいても、特に、製造するものに合わせて生産ラインを頻繁に変更するような場合において、さらなる低遅延が要求される。
 このように、サイドリンク通信において、さらなる低遅延が求められている。
 そこで、本開示では、より低遅延なサイドリンク通信を実現することができる仕組みを提供する。
 なお、上記課題又は目的は、本明細書に開示される複数の実施形態が解決し得、又は達成し得る複数の課題又は目的の1つに過ぎない。
 本開示によれば、端末装置が提供される。端末装置は、他の端末装置とサイドリンク通信を行う。端末装置は、制御部を備える。制御部は、基地局装置によって前記他の端末装置との前記サイドリンク通信に割り当てられたリソースプールに関するリソースプール情報を取得する。制御部は、前記リソースプールに含まれる1つのスロットにおいて、当該スロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルのうち、少なくとも1つを用いて制御情報を前記他の端末装置に送信する。
サイドリンク通信におけるフレーム構成の一例を示す図である。 サイドリンク通信におけるフレーム構成の一例を示す図である。 本開示の実施形態に係る通信システムの概略的な構成の一例を示す図である。 本開示の実施形態に係る基地局装置の構成の一例を示すブロック図である。 本開示の実施形態に係る端末装置の構成の一例を示すブロック図である。 本開示の実施形態に係るサブスロットの構成例を示す図である。 本開示の実施形態に係るサブスロットの構成例を示す図である。 本開示の実施形態に係るサブスロットの構成例を示す図である。 本開示の実施形態に係るサブスロットの構成例を示す図である。 本開示の実施形態に係るHARQフィードバックの一例を示す図である。 本開示の実施形態に係るHARQフィードバックの一例を示す図である。 本開示の実施形態に係るアシスト情報の通知方法の一例について説明するための図である。 本開示の実施形態に係るセンシング方法の一例を説明するための図である。
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実施形態の類似する構成要素については、同一の符号の後に異なるアルファベット又は数字を付して区別する場合がある。ただし、類似する構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
 以下に説明される1又は複数の実施形態(実施例、変形例を含む)は、各々が独立に実施されることが可能である。一方で、以下に説明される複数の実施形態は少なくとも一部が他の実施形態の少なくとも一部と適宜組み合わせて実施されてもよい。これら複数の実施形態は、互いに異なる新規な特徴を含み得る。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し得、互いに異なる効果を奏し得る。
 なお、説明は以下の順序で行うものとする。
  1.はじめに
   1.1.課題
   1.2.提案技術の概要
   1.3.定義
  2.通信システムの構成
   2.1.通信システムの全体構成
   2.2.基地局装置の構成
   2.3.端末装置の構成
  3.サブスロットを使用したサイドリンク通信
   3.1.サブスロットの定義
   3.2.リソース割り当て方法
   3.3.HARQフィードバック
   3.4.センシング情報の共有
   3.5.センシング方法
  4.まとめ
 <<1.はじめに>>
 <1.1.課題>
 まず、従来のサイドリンク通信におけるフレーム構成について説明する。図1及び図2は、サイドリンク通信におけるフレーム構成の一例を示す図である。
 図1及び図2に示すように、これまでの3GPPにおけるサイドリンク通信では、14シンボルで構成されるスロットを最小単位としたフレーム構成に基づいて、信号の送受信が行われる。ここで、サブキャリア間隔が15kHzの場合、1スロットの時間長は1ミリ秒である。
 上述したように、これまでのサイドリンク通信は、主にV2X通信をユースケースとして想定しており、これまでのサイドリンク通信で要求される遅延の条件(遅延の要求条件)は10ミリ秒であった。そのため、サイドリンク通信で採用されるフレーム構成が、図1及び図2に示すような1スロットを最小単位としたフレーム構成であっても問題はなかった。
 しかしながら、これからのサイドリンク通信では、例えば1ミリ秒未満のように、超低遅延が要求されることが考えられる。そのため、これまでのサイドリンク通信に採用されているフレーム構成では、低遅延が要求されるユースケースに対応することができない。
 <1.2.提案技術の概要>
 そこで、本開示の提案技術では、通信システムが、スロットよりも短いシンボルで構成されるサブスロットに基づき、サイドリンク通信を行うものとする。本開示の提案技術では、1つのスロットに複数のサブスロットが含まれる。各サブスロットには、それぞれサイドリンク制御チャネルが割り当てられ得る。すなわち、本開示の提案技術では、1つのスロットに複数のサイドリンク制御チャネルが割り当てられ得る。換言すると、1つのスロットに複数のサイドリンク制御チャネルが不連続に割り当てられ得る。
 サイドリンク通信を使用して制御信号を送信する端末装置は、基地局装置からサイドリンク通信に使用するリソースプールに関するリソースプール情報を取得する。端末装置は、取得したリソースプール情報に基づき、1つのスロットに割り当てられ得る複数のサイドリンク制御チャネルのうち、少なくとも1つを使用して制御情報を送信する。
 このように、本開示の提案技術に係る端末装置は、1つのスロットに割り当てられ得る複数のサイドリンク制御チャネルのうち、少なくとも1つを使用して制御情報を送信することで、1スロットよりも短いサブスロットを使用してサイドリンク通信を行える。これにより、本開示の提案技術に係る通信システムは、サイドリンク通信の遅延をより短くすることができる。
 <1.3.定義>
 本開示の提案技術におけるサイドリンク通信は、LTE V2X、及び、NR V2Xの無線アクセス方式に基づいており、そのoverall descriptionは、3GPP TR37.985に記載されている。
 ここで、本開示の提案技術では、ある送信側の端末装置(Tx UE)から受信側の端末装置(Rx UE)にユニキャスト、グループキャスト、又は、ブロードキャストで送信されるサイドリンクのチャネル及び/又は信号のまとまりを1つのサイドリンク通信と定義する。
 すなわち、図1の例では、1スロット内の全てのシンボルで送信されるAGC(Auto Gain Control)、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、DMRS(DeModulation Reference Signal)、及び、GUARDが1つのサイドリンク送信であると定義する。
 また、図2の例では、1スロット内の1番目から11番目のシンボルで送信されるAGC、PSCCH、PSSCH、DMRS、及び、GUARDが1つのサイドリンク送信であると定義する。また、図2の例では、1スロット内の12番目から14番目のシンボルで送信されるAGC、PSFCH(Physical Sidelink Feedback CHannel)、及び、GUARDが1つのサイドリンク送信であると定義する。このように、1つのスロットに複数のサイドリンク送信が含まれ得る。
 なお、同じTx UEは、連続して複数のサイドリンク送信を行うことができる。この場合、複数のサイドリンク送信は、それぞれ別のサイドリンク送信であるものとする。
<<2.通信システムの構成>>
<2.1.通信システムの全体構成>
 続いて、図3を参照しながら、提案技術が適用される通信システム1の概略的な構成の一例を説明する。図3は、本開示の実施形態に係る通信システム1の概略的な構成の一例を示す図である。図3に示すように、通信システム1は、基地局装置100、端末装置200、コアネットワーク(Core Network)20、およびPDN(Packet Data Network)30を含む。
 ここで、通信システム1は、W-CDMA(Wideband Code Division Multiple Access)、cdma2000(Code Division Multiple Access 2000)、LTE、NR等のセルラー通信システムであってもよい。以下の説明では、「LTE」には、LTE-A(LTE-Advanced)、LTE-A Pro(LTE-Advanced Pro)、及びEUTRA(Evolved Universal Terrestrial Radio Access)が含まれるものとする。また、「NR」には、NRAT(New Radio Access Technology)、及びFEUTRA(Further EUTRA)が含まれるものとする。
 NRは、LTEの次の世代(第5世代)の無線アクセス技術(RAT)である。NRは、eMBB(Enhanced Mobile Broadband)、mMTC(Massive Machine Type Communications)及びURLLC(Ultra-Reliable and Low Latency Communications)を含む様々なユースケースに対応できる無線アクセス技術である。
 なお、通信システム1は、セルラー通信システムに限られない。例えば、通信システム2は、無線LAN(Local Area Network)システム、テレビジョン放送システム、航空無線システム、宇宙無線通信システム等の他の無線通信システムであってもよい。
 基地局装置100は、セル11を運用し、セル11のカバレッジ内部に位置する1つ以上の端末装置200へ無線サービスを提供する通信装置である。セル11は、例えばLTEまたはNR等の任意の無線通信方式に従って運用され得る。基地局装置100は、コアネットワーク20に接続される。コアネットワーク20は、PDN30に接続される。
 なお、基地局装置100は、複数の物理的又は論理的装置の集合で構成されていてもよい。例えば、本開示の実施形態において基地局装置100は、BBU(Baseband Unit)及びRU(Radio Unit)の複数の装置に区別され、これら複数の装置の集合体として解釈されてもよい。さらに又はこれに代えて、本開示の実施形態において基地局装置100は、BBU及びRUのうちいずれか又は両方であってもよい。BBUとRUとは所定のインタフェース(例えば、eCPRI)で接続されていてもよい。さらに又はこれに代えて、RUはRemote Radio Unit(RRU)又は Radio DoT(RD)と称されていてもよい。さらに又はこれに代えて、RUは後述するgNB-DUに対応していてもよい。さらに又はこれに代えてBBUは、後述するgNB-CUに対応していてもよい。さらに又はこれに代えて、RUはアンテナと一体的に形成された装置であってもよい。基地局装置100が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)はAdvanced Antenna Systemを採用し、MIMO(例えば、FD-MIMO)やビームフォーミングをサポートしていてもよい。 Advanced Antenna Systemは、基地局装置100が有するアンテナ(例えば、RUと一体的に形成されたアンテナ)は、例えば、64個の送信用アンテナポート及び64個の受信用アンテナポートを備えていてもよい。
 また、基地局装置100は、複数が互いに接続されていてもよい。1つ又は複数の基地局装置100は無線アクセスネットワーク(Radio Access Network: RAN)に含まれていてもよい。すなわち、基地局装置100は単にRAN、RANノード、AN(Access Network)、ANノードと称されてもよい。LTEにおけるRANはEUTRAN(Enhanced Universal Terrestrial RAN)と呼ばれる。NRにおけるRANはNGRANと呼ばれる。W-CDMA(UMTS)におけるRANはUTRANと呼ばれる。LTEの基地局装置100は、eNodeB(Evolved Node B)又はeNBと称される。すなわち、EUTRANは1又は複数のeNodeB(eNB)を含む。また、NRの基地局装置100は、gNodeB又はgNBと称される。すなわち、NGRANは1又は複数のgNBを含む。さらに、EUTRANは、LTEの通信システム(EPS)におけるコアネットワーク(EPC)に接続されたgNB(en-gNB)を含んでいてもよい。同様にNGRANは5G通信システム(5GS)におけるコアネットワーク5GCに接続されたng-eNBを含んでいてもよい。さらに又はこれに代えて、基地局装置100がeNB、gNBなどである場合、3GPP Accessと称されてもよい。さらに又はこれに代えて、基地局装置100が無線アクセスポイント(Access Point)である場合、Non-3GPP Accessと称されてもよい。さらに又はこれに代えて、さらに又はこれに代えて、基地局装置100は、RRH(Remote Radio Head)と呼ばれる光張り出し装置であってもよい。さらに又はこれに代えて、基地局装置100がgNBである場合、基地局装置100は前述したgNB CU(Central Unit)とgNB DU(Distributed Unit)の組み合わせ又はこれらのうちいずれかと称されてもよい。gNB CU(Central Unit)は、UEとの通信のために、Access Stratumのうち、複数の上位レイヤ(例えば、RRC、SDAP、PDCP)をホストする。一方、gNB-DUは、Access Stratumのうち、複数の下位レイヤ(例えば、RLC、MAC、PHY)をホストする。すなわち、後述されるメッセージ・情報のうち、RRC signalling(例えば、MIB、SIB1を含む各種SIB、RRCSetup message、RRCReconfiguration message)はgNB CUで生成され、一方で後述されるDCIや各種Physical Channel(例えば、PDCCH、PBCH)はgNB-DUは生成されてもよい。又はこれに代えて、RRC signallingのうち、例えばIE:cellGroupConfigなど一部のconfigurationについてはgNB-DUで生成され、残りのconfigurationはgNB-CUで生成されてもよい。これらのconfigurationは、後述されるF1インタフェースで送受信されてもよい。基地局装置100は、他の基地局装置100と通信可能に構成されていてもよい。例えば、複数の基地局装置100がeNB同士又はeNBとen-gNBの組み合わせである場合、当該基地局装置100間はX2インタフェースで接続されてもよい。さらに又はこれに代えて、複数の基地局装置100がgNB同士又はgn-eNBとgNBの組み合わせである場合、当該装置間はXnインタフェースで接続されてもよい。さらに又はこれに代えて、複数の基地局装置100がgNB CU(Central Unit)とgNB DU(Distributed Unit)の組み合わせである場合、当該装置間は前述したF1インタフェースで接続されてもよい。後述されるメッセージ・情報(RRC signalling又はDCIの情報、Physical Channel)は複数基地局間で(例えばX2、Xn、F1インタフェースを介して)通信されてもよい。
 さらに、前述の通り、基地局装置100は、複数のセルを管理するように構成されていてもよい。基地局装置100により提供されるセルはServing cellと呼ばれる。Serving cellはPCell(Primary Cell)及びSCell(Secondary Cell)を含む。Dual Connectivity (例えば、EUTRA-EUTRA Dual Connectivity、EUTRA-NR Dual Connectivity(ENDC)、EUTRA-NR Dual Connectivity with 5GC、NR-EUTRA Dual Connectivity(NEDC)、NR-NR Dual Connectivity)がUE(例えば、端末装置200)に提供される場合、MN(Master Node)によって提供されるPCell及びゼロ又は1以上のSCell(s)はMaster Cell Groupと呼ばれる。さらに、Serving cellはPSCell(Primary Secondary Cell又はPrimary SCG Cell)を含んでもよい。すなわち、Dual Connectivity がUEに提供される場合、SN(Secondary Node)によって提供されるPSCell及びゼロ又は1以上のSCell(s)はSecondary Cell Group(SCG)と呼ばれる。特別な設定(例えば、PUCCH on SCell)がされていない限り、物理上りリンク制御チャネル(PUCCH)はPCell及びPSCellで送信されるが、SCellでは送信されない。また、Radio Link FailureもPCell及びPSCellでは検出されるが、SCellでは検出されない(検出しなくてよい)。このようにPCell及びPSCellは、Serving Cell(s)の中で特別な役割を持つため、Special Cell(SpCell)とも呼ばれる。1つのセルには、1つのDownlink Component Carrierと1つのUplink Component Carrier が対応付けられてもよい。また、1つのセルに対応するシステム帯域幅は、複数の帯域幅部分(Bandwidth Part)に分割されてもよい。この場合、1又は複数のBandwidth PartがUEに設定され、1つのBandwidth PartがActive BWPとして、UEに使用されてもよい。また、セル毎、コンポーネントキャリア毎又はBWP毎に、端末装置200が使用できる無線資源(例えば、周波数帯域、ヌメロロジー(サブキャリアスペーシング)、スロットフォーマット(Slot configuration))が異なっていてもよい。
 コアネットワーク120がNRのコアネットワーク(5G Core(5GC))の場合、コアネットワーク120は、AMF (Access and Mobility Management Function)、SMF (Session Management Function)、UPF(User Plane Function)、PCF(Policy Control Function)及びUDM(Unified Data Management)を含みうる。
 コアネットワーク120がLTEのコアネットワーク(Evolved Packet Core (EPC) )の場合、コアネットワーク120は、MME(Mobility Management Entity)、S-GW(Serving gateway)、P-GW(PDN gateway)、PCRF(Policy and Charging Rule Function)およびHSS(Home Subscriber Server)を含み得る。AMF及びMMEは、制御プレーンの信号を取り扱う制御ノードであり、端末装置40の移動状態(Mobility)を管理する。UPF及びS-GW/P-GWは、ユーザプレーンの信号を取り扱うノードである。PCF/PCRFは、PDUセッション又はベアラに対するQoS(Quality of Service)等のポリシーおよび課金に関する制御を行う制御ノードである。UDM/HSSは、加入者データを取り扱い、サービス制御を行う制御ノードである。
 端末装置200は、他の装置と無線通信する無線通信装置である。端末装置110は、例えば、通信機能を有するセンサーやカメラデバイス、携帯電話、スマートデバイス(スマートフォン、又はタブレット)、PDA(Personal Digital Assistant)、パーソナルコンピュータである。端末装置110は、無線を介してデータを送受信する機能を有するヘッドマウントディスプレイ(Head Mounted Display)やVRゴーグル等であってもよい。
 例えば、端末装置200は、基地局装置100による制御に基づいて、または自律的に、他の端末装置200と無線通信する。その場合、端末装置200は、PC5リンクにおいて、他の端末装置200にサイドリンク信号を送信して、他の端末装置200からサイドリンク信号を受信する。以下、端末装置200によるサイドリンク信号の送信及び受信をまとめてサイドリンク通信と記載する。端末装置200は、サイドリンク通信を行う際、HARQ(Hybrid Automatic Repeat reQuest)等の自動再送技術を使用可能であってもよい。
 端末装置200は、基地局装置100とNOMA(Non Orthogonal Multiple Access)通信が可能であってもよい。なお、端末装置200は、他の端末装置200との通信(サイドリンク)においてもNOMA通信が可能であってもよい。また、端末装置200は、他の通信装置(例えば、基地局装置100、及び他の端末装置200)とLPWA(Low Power Wide Area)通信が可能であってもよい。その他、端末装置200が使用する無線通信は、ミリ波またはテラヘルツ波を使った無線通信であってもよい。なお、端末装置200が使用する無線通信(サイドリンク通信を含む。)は、電波を使った無線通信であってもよいし、赤外線や可視光を使った無線通信(光無線)であってもよい。
<2.2.基地局装置の構成>
 図4は、本開示の実施形態に係る基地局装置100の構成の一例を示すブロック図である。図4を参照すると、基地局装置100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び制御部150を備える。
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。なお、本実施形態のアンテナ部110は、複数のアンテナ素子を有し、ビームを形成し得る。
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置200へのダウンリンク信号を送信し、端末装置200からのアップリンク信号を受信する。なお、本実施形態の無線通信部120は、アンテナ部110により複数のビームを形成して端末装置200と通信し得る。
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局装置100及びコアネットワークノードを含む。
 (4)記憶部140
 記憶部140は、基地局装置100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (5)制御部150
 制御部150は、基地局装置100全体の動作を制御して、基地局装置100の様々な機能を提供する。制御部150は、決定部151及び通知部152を含む。
 (5-1)決定部151
 例えば、決定部151は、端末装置200がサイドリンク通信に使用するリソースプールを決定する。また、決定部151は、端末装置200がサブスロットを使用したサイドリンク通信を行うか否かを決定してもよい。この場合、決定部151は、例えば、サイドリンク通信で要求される遅延条件に基づき、端末装置200がサブスロットを使用するか否かを決定する。あるいは、決定部151は、サブスロットを使用したサイドリンク通信が可能であるか否かを含む端末装置200のケイパビリティ情報に基づき、端末装置200がサブスロットを使用するか否かを決定してもよい。
 (5-2)通知部152
 通知部152は、決定部151の決定結果を端末装置200に通知する。例えば、端末装置200がサイドリンク通信に使用するリソースプールに関するリソースプール情報を通知する。また、通知部152は、端末装置200がサブスロットを使用するか否かを示す情報を通知する。これ以外にも、通知部152は、端末装置200がサイドリンク通信時に行うセンシングに関する設定情報を通知してもよい。
 このように、通知部152は、端末装置200が行うサイドリンク通信に関する情報を端末装置200に通知する。なお、当該情報は、例えば、決定部151によって決定されるものとする。
 制御部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、制御部150は、これらの構成要素の動作以外の動作も行い得る。
 <2.3.端末装置の構成>
 図5は、本開示の実施形態に係る端末装置200の構成の一例を示すブロック図である。図5を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び制御部240を備える。
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。なお、本実施形態のアンテナ部210は、複数のアンテナ素子を有し、ビームを形成し得る。
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局装置100からのダウンリンク信号を受信し、基地局装置100へのアップリンク信号を送信する。なお、本実施形態の無線通信部220は、アンテナ部210により複数のビームを形成して基地局装置100と通信し得る。
 (3)記憶部230
 記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (4)制御部240
 制御部240は、端末装置200全体の動作を制御して、端末装置200の様々な機能を提供する。制御部240は、取得部241、センシング部242、送信部243、及び、受信部244を含む。
 (4-1)取得部241
 例えば、取得部241は、基地局装置100が送信するサイドリンク通信に関する情報を取得する。かかる情報には、サイドリンク通信で使用するリソースプールに関する情報や、サイドリンク通信でサブスロットを使用するか否かを指示する情報が含まれる。
 なお、ここでは、取得部241がサイドリンク通信に関する情報を基地局装置100から取得するとしたが、これに限定されない。例えば、取得部241は、他の端末装置200からこれらの情報を取得してもよい。この場合、他の端末装置200は、端末装置200のサイドリンク通信を制御するマスター端末装置であり得る。
 また、ここでは、基地局装置100が、端末装置200のサイドリンク通信にサブスロットを使用するか否かを決定するとしたが、これに限定されない。例えば、端末装置200が、サイドリンク通信にサブスロットを使用するか否かを決定してもよい。この場合、取得部241は、サイドリンク通信にサブスロットを使用するか否かを決定するための情報(例えば、Rx UEのケイパビリティ情報)を基地局装置100から取得し得る。あるいは、取得部241が、当該情報を、Rx UEや他の端末装置200から取得してもよい。
 (4-2)センシング部242
 センシング部242は、送信部243がサイドリンク送信を行うためのセンシングを行う。センシング部242は、取得部242が取得したセンシングに関する設定情報に基づき、センシングを行う。センシング部242は、センシング結果を送信部243に出力する。
 (4-3)送信部243
 例えば、端末装置200が、Tx UEとして動作する場合、送信部243は、センシング部242のセンシング結果に基づき、取得部241が取得した情報を用いて、サイドリンク送信を行う。送信部243は、無線通信部220を介してサイドリンク送信を行う。
 なお、サブスロットを使用したサイドリンク送信の詳細については後述する。
 (4-4)受信部244
 例えば、端末装置200が、Rx UEとして動作する場合、受信部244は、Tx UEから信号を受信する。受信部244は、無線通信部220を介して信号を受信する。
 制御部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、制御部240は、これらの構成要素の動作以外の動作も行い得る。
 <<3.サブスロットを使用したサイドリンク通信>>
 続いて、サブスロットを使用したサイドリンク送信(サイドリンク通信)の詳細について説明する。
 <3.1.サブスロットの定義>
 (1)サブスロットを明示的に設定する
 まず、複数の端末装置200で共通のサブスロットを明示的(explicit)に設定(又は規定)する場合について説明する。
 この方法では、複数の端末装置200で共通したサブスロットが設定される。複数の端末装置200は、基地局装置100のセル内に含まれる全ての端末装置200であってもよく、所定のグループ(UEグループ)に属する端末装置200であってもよい。あるいは、複数の端末装置200が、同じリソースプールが設定される複数の端末装置200であってもよい。
 ここで、図6及び図7を用いて、本開示の実施形態に係るサブスロットの構成の一例について説明する。図6及び図7は、本開示の実施形態に係るサブスロットの構成例を示す図である。ここでは、端末装置200に対して、サブスロットが明示的に設定される場合のサブスロット構成について示している。
 図6では、14シンボルで構成されるスロット(Slot#n)は、それぞれ7シンボルで構成される2つのサブスロット(Subslot#m、Subslot# m +1)を含む。このように、本開示の実施形態では、1つのスロットに同じサイズ(シンボル数)のサブスロットが複数配置され得る。
 図7では、14シンボルで構成されるスロット(Slot#n)は、3つのサブスロット(Subslot#m、Subslot#m+1、Subslot#m+2)を含む。Subslot#m及びSubslot#m+1は、5シンボルで構成され、Subslot#m+2は、4シンボルで構成される。このように、1つのスロットに異なるサイズ(シンボル数)のサブスロットが複数配置されてもよい。
 なお、図7では、サブスロット(Subslot#m、Subslot#m+1、Subslot#m+2)のシンボル数が、それぞれ5、5、4であるとしたが、これに限定されない。サブスロットのシンボル数は、3以下であっても6以上であってもよい。また、例えば、サブスロットのシンボル数は、14未満の所定数であるとすることができる。
 また、図6及び図7では、サブスロット送信として、AGC、PSCCH、PSSCH、DMRS、及び、GUARDが送信される場合について示しているが、これに限定されない。1つのサブスロットで、AGC、PSFCH、及び、GUARDが送信されても良い。
 図6又は図7に示すサブスロット構成は、例えば、以下の方法で設定され得る。
 (a)仕様で予め規定される方法
 (b)基地局装置又はマスターUEによって設定される方法
 (c)複数のサブスロット構成のうちの1つが設定される方法
 (a)仕様で予め規定される方法
 この場合、例えば、仕様で予め1つのサブスロット構成が規定される。基地局装置100又はマスターUEは、仕様で規定されたサブスロット構成を用いてサイドリンク通信を行う旨の通知を行う。これにより、当該サブスロット構成を用いたサイドリンク通信が設定される。
 (b)基地局装置又はマスターUEによって設定される方法
 この場合、基地局装置100又は所定のUE(以下、マスターUEとも記載する)は、所定のサブスロット構成を示す設定情報を、端末装置200に通知する。これにより、所定のサブスロット構成を用いたサイドリンク通信が設定される。
 (c)複数のサブスロット構成のうちの1つが設定される方法
 この場合、予め複数のサブスロット構成が規定される。基地局装置100又はマスターUEは、複数のサブスロット構成のうちの1つを示す情報(例えば、インデックス情報)を通知する。これにより、複数のサブスロット構成のうちの1つを用いたサイドリンク通信が設定される。
 なお、複数のサブスロット構成は、仕様で予め規定されてもよく、基地局装置100又はマスターUEによって規定されてもよい。
 1つのサイドリンク送信におけるチャネル及び/又は信号は、1つのサブスロット内にマッピングされる。換言すると、サイドリンク送信は、サブスロットに基づいて行われる。
 なお、それぞれのサイドリンク送信は、サブスロット単位で行われるが、サブスロット内の全てのシンボルを用いて送信する必要はない。端末装置200は、サブスロットの少なくとも一部のシンボルを用いてサイドリンク送信を行い得る。例えば、1つのサブスロットが7シンボルで構成される場合、端末装置200は、7シンボルのうちの5シンボルを用いてサイドリンク送信を行ってもよい。
 この場合、AGC又はPSCCHは、サブスロット内の所定のシンボルに割り当てられるものとする。例えば、AGCは、サイドリンク送信に使用されるシンボル数によらず、サブスロット内の最初のシンボルにマッピングされる。また、例えば、PSCCHは、サイドリンク送信に使用されるシンボル数によらず、サブスロット内の2番目のシンボルにマッピングされる。
 AGC又はPSCCHが割り当てられるシンボルは、基地局装置100又はマスターUEによってsemi-staticに設定され得る。この場合、基地局装置100又はマスターUEは、例えば、物理レイヤーから見て上位レイヤーのシグナリング(例えば、RRCやMACなど)を通じて、AGC又はPSCCHを割り当てるシンボルに関する設定を行う。あるいは、基地局装置100又はマスターUEが、物理レイヤーのシグナリング(例えば、SCI(Sidelink Control Information)、DCI(Downlink Control Information))を通じて当該設定を行ってもよい。
 (2)サブスロットを黙示的に設定する
 次に、所定のチャネル又は信号のリソース割り当てに基づいて黙示的(implicit)に設定(又は規定)する場合について説明する。
 この方法では、基地局装置100又はマスターUEが、ある端末装置200に対して所定のサイドリンクチャネル又は信号のリソース割り当てに関する割り当て情報を送信する。端末装置200がこの割り当て情報に基づいてサイドリンク送信を行うことでサブスロットを用いたサイドリンク送信が黙示的に行われる。
 なお、この方法では、サブスロットは、明示的に定義されていなくともよい。この方法の従来との異なる点として、1つのスロット内で、異なるシンボルを用いた複数のサイドリンク送信を行える点がある。
 ここで、図8及び図9を用いて、本開示の実施形態に係るサブスロットの構成の一例について説明する。図8及び図9は、本開示の実施形態に係るサブスロットの構成例を示す図である。ここでは、端末装置200に対して、サブスロットが黙示的に設定される場合のサブスロット構成について示している。
 図8及び図9の例では、14ビットのスロット(slot#n)内にPSCCHがマッピングされるシンボルを示すビットマップ情報を示している。ビットマップ情報は、基地局装置100又はマスターUEが送信する割り当て情報の一例である。
 なお、サイドリンク送信全体のシンボル数(例えば、AGCのシンボルからGuardのシンボルまで)は、サイドリンク送信を行う端末装置200(Tx UE)が、サイドリンク送信ごとに任意に決定する。あるいは、当該シンボル数は、サイドリンク送信ごとにビットマップ情報に基づいて黙示的に決定されてもよい。
 図8の例では、ビットマップ情報の2番目及び9番目が「1」である。これは、スロット内の2、9番目のシンボルがPSCCHをマッピングするシンボルとして設定されることを意味する。サイドリンク送信を行う端末装置200は、図8に示すビットマップ情報に基づいて、スロット内の2、9番目のシンボルにPSCCHをマッピングし、1つのスロットで2つのサイドリンク送信を行う。
 また、ここでは、端末装置200は、ビットマップ情報に基づき、1つのサイドリンク送信に使用する最大シンボル数を決定する。そのため、図8の例では、1つのサイドリンク送信全体のシンボル数が、ビットマップ情報に基づいて黙示的に決定される。
 図9の例では、ビットマップ情報が、PSCCHをマッピングすることができるか否かを示すものである場合について示している。すなわち、サイドリンク送信のシンボル数は、ビットマップ情報に制限される必要はなく、端末装置200は、例えば、ビットマップ情報で「1」と示されたシンボルを超えて、1つのサイドリンク送信をマッピングすることができる。換言すると、端末装置200は、ビットマップ情報で「1」と示されたシンボルにPSCCHを必ずしもマッピングしなくても良い。
 図9の例では、ビットマップ情報の2、6、10番目が「1」であるが、端末装置200は、スロット内の2、10番目のシンボルにPSCCHをマッピングし、1つのスロットで2つのサイドリンク送信を行う。図9では、スロット内の6番目のシンボルにはPSSCHがマッピングされる。
 なお、この場合であっても、1つのサイドリンク送信がスロットを超えないように、すなわち、サイドリンク送信がスロット内に制限されるようにしてもよい。なお、1つのサイドリンク送信がスロットを超えるように送信されても良い。
 また、受信側のリソースプールと送信側のリソースプールとがそれぞれ個別に設定される場合、このビットマップ情報はそれぞれ個別に設定されてもよい。この場合、Tx UEから見た送信側のリソースプールでは、Tx UEは、ビットマップ情報の「1」を示すシンボルにPSCCHをマッピングするサイドリンク送信を行い得る。
 一方、Rx UEから見た受信側のリソースプール、Rx UEは、ビットマップ情報の「1」を示すシンボルにPSCCHがマッピングされる可能性があるものとして(実際に送信されているかは関係なく)、PSCCHの受信処理(モニタリング)を行う。
 なお、ここでは、ビットマップ情報がPSCCHのシンボルを示すことを説明したが、これに限定されるものではない。例えば、ビットマップ情報が、AGCのシンボル、または、サイドリンク送信の先頭シンボルを示すものであってもよい。
 ビットマップ情報は、基地局装置100又はマスターUEによってsemi-staticに設定され得る。この場合、基地局装置100又はマスターUEは、例えば、物理レイヤーから見て上位レイヤーのシグナリング(例えば、RRCやMACbなど)を通じて、ビットマップ情報の設定を行う。あるいは、基地局装置100又はマスターUEが、物理レイヤーのシグナリング(例えば、SCI、DCI)を通じて当該設定を行ってもよい。
 なお、ここでは割り当て情報の一例としてビットマップ情報について説明したが、割り当て情報は、ビットマップ情報に限定されない。割り当て情報は、PSCCHの割り当てに関する情報であればよく、PSCCH(あるいはAGC)の位置を示す情報であればよい。例えば、図8のようなサブスロット構成の場合、割り当て情報が、PSCCHが割り当てられるシンボルを示す「2」及び「9」を含む情報であってもよい。
 なお、以下の説明では、特に記載がない限り、上述した(1)、(2)のどちらかのサブスロット構成が適用され得る。
 <3.2.リソース割り当て方法>
 (1)PSCCH(サイドリンク制御チャネル:サイドリンク制御情報(SCI)を送信するチャネル)
 (1-1)時間領域
 PSCCHのスタートシンボル、及び、シンボル数が、それぞれ設定及び/又は規定される。当該設定は、例えば、基地局装置100又はマスターUEが、RRCまたは物理レイヤーの制御情報を用いて行う。
 (PSCCHのシンボル数)
 PSCCHのシンボル数は、例えば所定のシンボル数(1、2、又は、3シンボル)が設定される。
 ここで、サブスロットを使用しない従来のスロット単位での送信の場合、PSCCHのシンボル数は2又は3が設定可能であったが、サイドリンク送信の最小シンボル数は、そのPSCCHのシンボル数によって制限されていた。本実施形態では、通信システム1が、シンボル数が1のPSCCHをサポートすることで、この制限がなくなる。特に、サブスロットを使用した本実施形態のサイドリンク通信では、従来のサイドリンク通信と比較して1つのサイドリンク送信のシンボル数が少なくなるため、より高い効果が得られる。
 また、PSCCHのシンボル数は、従来のスロット単位のサイドリンク送信であるか、本実施形態に係るサブスロット単位のサイドリンク送信であるかに応じて、異なる数に設定され得る。
 例えば、従来のスロット単位でのサイドリンク送信の場合、設定されるシンボル数は2又は3シンボルである。一方、本実施形態に係るサブスロット単位でのサイドリンク送信の場合、設定されるシンボル数は、1、2又は3である。
 また、本実施形態に係るサブスロット単位でのサイドリンク送信の場合、設定されるPSCCHのシンボル数は、1としてもよい。この場合、例えば、基地局装置100又はマスターUEがサブスロット単位でのサイドリンク通信を行うと決定すると、PSCCHのシンボル数は、黙示的に1に決定されても良い。
 (PSCCHのスタートシンボル)
 基地局装置100又はマスターUEがサブスロットを明示的に設定する場合において、サイドリンク送信にAGCが含まれる場合、AGCの次のシンボルがPSCCHのスタートシンボルとなる。具体的には、例えばサブスロット内の2番目のシンボルがPSCCHのスタートシンボルとなる。
 一方、サイドリンク送信にAGCが含まれない場合、サブスロット内の最初のシンボルがPSCCHのスタートシンボルとなる。
 基地局装置100又はマスターUEが、ビットマップ情報によってPSCCHの位置を指示する場合、ビットマップ情報の「1」に対応するシンボルが、PSCCHのスタートシンボルとなる。
 一方、基地局装置100又はマスターUEが、ビットマップ情報によってAGCの位置を指示する場合、ビットマップ情報の「1」に対応するシンボルの次のシンボルが、PSCCHのスタートシンボルとなる。
 (1-2)周波数領域
 PSCCHの周波数領域は、所定のリソース単位で設定され得る。所定のリソース単位として、例えば、リソースブロック(=12サブキャリア)、サブチャネル(サイドリンク送信の周波数領域における最小単位)、サブキャリアなどが挙げられる。
 そのリソース単位に基づいて、スタートとなる周波数リソースと周波数帯域幅が設定される。例えば、スタートとなるサブキャリアとリソースブロックを単位とした周波数帯域幅が設定される。
 スタートとなる周波数リソースは、それぞれのサブチャネルにおいて、最も小さいインデックス(すなわち、最も低い周波数)のサブキャリアである。
 PSCCHの周波数帯域幅は、例えば、所定のリソースブロック数(例えば、10、15、20リソースブロック)が設定される。ただし、PSCCHのリソースブロック数は、同様に所定のリソースブロック数が設定されるサブチャネルのリソースブロック数以下に制限され得る。すなわち、PSCCHの周波数リソースは、1つのサブチャネル以内にマッピングされる。
 また、例えば、PSCCHのリソースブロック数は、1以上の所定のサブチャネル以内にマッピングされるようにしてもよい。これにより、特にサブスロット通信を行う場合やPSCCHのシンボル数が少ない(例えば、シンボル数が1)場合に、PSCCHの送信リソースの周波数領域に対する制限が緩和される。
 また、PSCCHに対して設定され得るリソースブロック数が1つのサブチャネル以内に限定されるか否かは、従来のスロット単位のサイドリンク送信であるか、本実施形態に係るサブスロット単位のサイドリンク送信であるかに応じて異なるようにしてもよい。
 例えば、従来のスロット単位でのサイドリンク送信の場合、設定され得るリソースブロックが1つのサブチャネル以内に限定される。一方、本実施形態に係るサブスロット単位でのサイドリンク送信の場合、設定され得るリソースブロックは、複数のサブチャネルにわたってマッピングされる。
 (2)PSSCH(サイドリンク共有チャネル:データを送信するチャネル)
 (2-1)時間領域
 PSSCHのスタートシンボル、及び、シンボル数が、それぞれ設定及び/又は規定される。当該設定は、例えば、基地局装置100又はマスターUEが、RRCまたは物理レイヤーの制御情報を用いて行う。
 (PSSCHのスタートシンボル)
 PSSCHのスタートシンボルは、上述したPSCCHのスタートシンボルと同じである。
 (PSSCHのシンボル数)
 (明示的に通知)
 PSSCHのシンボル数は、SCIで明示的(Explicit)に通知される。そのシンボル数は、PSSCHの最後のシンボルまででもよいし、Guardシンボルも含めてもよい。これにより、基地局装置100又はマスターUEは、シンボル数をサイドリンク送信毎にフレキシブルに決定することができる。
 なお、そのシンボル数が示す最後のシンボルは、サイドリンク送信の最初のシンボルがマッピングされるサブスロット内に制限されてもよい。
 また、そのシンボル数が示す最後のシンボルは、サイドリンク送信の最初のシンボルがマッピングされるサブスロットの次のサブスロットであってもよい。つまり、端末装置200は、複数のサブスロットにまたがってサイドリンク送信を行ってもよい。この場合であっても、サイドリンク送信が、1つのスロット内に制限されるようにしてもよい。
 (黙示的に決定される)
 PSSCHのシンボル数は、基地局装置100又はマスターUEから明示的に通知されるサブスロット構成やビットマップ情報に基づいて、黙示的(Implicit)に決定される。これにより、基地局装置100又はマスターUEは、シンボル数をSCIで通知する必要がなくなり、制御情報のオーバーヘッドを削減することができる。
 基地局装置100又はマスターUEから明示的に通知されるサブスロット構成によってシンボル数が決まる場合、サブスロットの最後のシンボルがGuardで、最後から2番目のシンボルがPSSCHの最後のシンボルとなるように、シンボル数が決まる。なお、サイドリンク送信に、Guardシンボルがない場合、サブスロットの最後のシンボルがPSSCHの最後のシンボルとなるように、シンボル数が決まる。
 ビットマップ情報によってシンボル数が決まる場合、例えば、図8に示すように、Guardシンボルを除く空きのシンボルがでないようにPSSCHのシンボル数が決まる。
 このように、明示的に通知されるサブスロット構成やビットマップ情報に基づいてPSSCHのシンボル数が決まる場合、AGC、PSCCHやGuardが割り当てられるシンボル数に応じてPSSCHのシンボル数(PSSCHの割り当て)が決まると言える。
 (2-2)周波数領域
 PSSCHの周波数領域は、サブチャネルを単位としてマッピングされるが、他の所定のリソース単位(例えば、リソースブロック、サブキャリア)を用いてもよい。
 スタートとなる周波数リソースは、PSCCHのスタートとなる周波数リソースと同じである。ただし、PSCCHがマッピングされるシンボルでは、PSCCHがマッピングされない周波数リソースが、PSSCHのスタートとなる。
 PSSCHの周波数帯域幅は、例えばサブチャネル数として基地局装置100又マスターUEによって、SCI又はRRCで端末装置200に通知される。
 (3)PSFCH(サイドリンクフィードバックチャネル:PSSCHに対するHARQフィードバック(Ack/Nack)を送信するチャネル)
 (3-1)時間領域
 PSFCHを含むサイドリンク送信は、所定のスロットの最後にマッピングされるように決定される。PSFCHを含むサイドリンク送信は、AGC、PSFCH、Guardがマッピングされるサイドリンク送信である。なお、これは、PSFCHを含むサイドリンク送信がサブスロットに基づく送信を行うか否かにかかわらず決定される。なお、所定のスロットは、RRCで設定される。
 あるいは、PSFCHを含むサイドリンク送信が所定のサブスロットの最後にマッピングされるように決定されてもよい。この場合、所定のサブスロットは、例えば基地局装置100又マスターUEによってRRCで設定される。
 なお、PSFCHを含むサイドリンク送信に用いられるサブスロット構成は、PSSCHを含むサイドリンク送信に用いられるサブスロット構成と異なってもよい。
 PSFCHのシンボル数は、予め所定のシンボル数に規定される。あるいは、PSFCHのシンボル数を、基地局装置100又マスターUEがSCI又はRRCで設定するようにしてもよい。
 なお、従来のスロット単位のサイドリンク送信では、PSFCHのシンボル数は1に固定されていたが、本実施形態に係るサブスロット単位のサイドリンク送信では、PSFCHのシンボル数は1以上に設定され得る。これにより、PSFCHで送信され得る情報量が増える。また、PSFCHのシンボル数が2以上に設定されることで、端末装置200は、従来のスロット単位のサイドリンク送信と同じPSFCHを複数のシンボルにコピーして送信することもできる。これにより、PSFCHに対する信頼性が向上する。
 また、PSFCHのシンボル数の設定(又は規定)は、従来のスロット単位のサイドリンク送信であるか、本実施形態に係るサブスロット単位のサイドリンク送信であるかに応じて異なるようにしてもよい。
 例えば、従来のスロット単位でのサイドリンク送信の場合、PSFCHのシンボル数は1として予め設定される。一方、本実施形態に係るサブスロット単位でのサイドリンク送信の場合、PSFCHのシンボル数は、基地局装置100又マスターUEによってSCI又はRRCで設定される。
 (3-2)周波数領域
 スタートとなる周波数リソースは、SCI又はRRCで通知される。あるいは、スタートとなる周波数リソースは、HARQフィードバックの対象となるPSSCH、又は、そのPSSCHのリソースマッピングに基づいて黙示的(Implicit)に決定される。
 例えば、PSSCHがマッピングされるリソースブロックのインデックス、及び、予め規定された数式、に基づいてHARQフィードバックを行うPSFCHの周波数リソースが決まる。
 PSFCHの周波数帯域幅は、例えばリソースブロック数として予め規定される。あるいは、PSSCHの周波数帯域幅は、例えばリソースブロック数として基地局装置100又マスターUEによって、SCI又はRRCで端末装置200に通知される。
 なお、従来のスロット単位のサイドリンク送信では、PSFCHのリソースブロック数は1に固定されていたが、本実施形態に係るサブスロット単位のサイドリンク送信では、PSFCHのリソースブロック数は1以上に設定され得る。これにより、PSFCHで送信され得る情報量が増える。また、PSFCHのリソースブロック数が2以上に設定されることで、端末装置200は、従来のスロット単位のサイドリンク送信と同じPSFCHを複数のリソースブロックにコピーして送信することもできる。これにより、PSFCHに対する信頼性が向上する。
 また、PSFCHのリソースブロック数の設定(又は規定)は、従来のスロット単位のサイドリンク送信であるか、本実施形態に係るサブスロット単位のサイドリンク送信であるかに応じて異なるようにしてもよい。
 例えば、従来のスロット単位でのサイドリンク送信の場合、PSFCHのリソースブロック数は1として予め設定される。一方、本実施形態に係るサブスロット単位でのサイドリンク送信の場合、PSFCHのリソースブロック数は、基地局装置100又マスターUEによってSCI又はRRCで設定される。
 (4)リソースプール
 本実施形態に係るサブスロット単位でのサイドリンク送信を行うリソースプールは、サブスロット単位でのサイドリンク送信を行う端末装置200に対して設定され得る。すなわち、サブスロット単位でのサイドリンク送信専用のリソースプールが設定され得る。あるいは、従来のスロット単位でのサイドリンク送信を行う端末装置200、及び、本実施形態に係るサブスロット単位でのサイドリンク送信を行う端末装置200に対して同じリソースプールが設定されてもよい。
 ある端末装置200に対して、受信用のリソースプールと、送信用のリソースプールとが、それぞれ個別に設定され得る。この場合、上述したパラメータや制御などが、各リソースプールで個別に設定されるが、一部のパラメータや制御が受信、送信で共通して設定されてもよい。
 なお、上述したリソース割り当ては、リソースの使用状況に応じて動的に行われ得る。例えば、端末装置200に複数のリソースプールが割り当てられており、そのうちの一部のリソースプールが混雑している場合、端末装置200は、混雑しているリソースプールを除外して(すなわち、他のリソースプールを優先して)、リソース割り当てを行う。
 例えば、PSFCHのリソースが、PSSCH、又は、そのPSSCHのリソースマッピングに基づいて黙示的(Implicit)に決定される場合、その候補となるPSFCHが複数決まるようにしておく。これにより、端末装置200は、リソースの利用状況に応じて動的にPSFCHのリソースを選択することができる。
 <3.3.HARQフィードバック>
 上述したように、PSFCHを含むサイドリンク送信のサブスロット構成は、PSSCHを含むサイドリンク送信のサブスロット構成とは個別に設定され得る。例えば、それぞれのサブスロット構成のシンボル数は、それぞれ異なるように設定され得る。あるいは、例えば、端末装置200が、PSSCHを含むサイドリンク送信には7シンボルのサブスロット構成を用い、PSFCHを含むサイドリンク送信は従来のスロット構成を用いるようにしてもよい。
 図10及び図11は、本開示の実施形態に係るHARQフィードバックの一例を示している。図10及び図11では、端末装置200が、PSFCHを含むサイドリンク送信に7シンボルのサブスロット構成を用いる場合について示している。ここでは、HARQフィードバックを行うタイミングを基地局装置100又はマスターUEがSCIで通知するものとする。このとき、当該タイミングの基準は、PSSCHを含むサイドリンク送信の最後のシンボルに基づいて決まる。なお、この最後のシンボルは、PSSCHのシンボルでもよく、あるいは、Guardシンボルでもよい。
 図10に示す例では、PSSCHを含むサイドリンク送信がSubslot#mで行われる。ここで、基地局装置100又はマスターUEによって、SCIを通じて、HARQフィードバックを2サブスロット後に送信することが通知されたとする。この場合、PSFCHを含むサイドリンク送信は、Subslot#m+2で行われる。
 図11に示す例では、PSSCHを含むサイドリンク送信がSubslot#m及びSubslot#m+1の2つのサブスロットに渡って行われる。ここで、基地局装置100又はマスターUEによって、SCIを通じて、HARQフィードバックを2サブスロット後に送信することが通知されたとする。この場合、PSFCHを含むサイドリンク送信は、Subslot#m+3で行われる。
 図10及び図11では、いずれもPSSCHを含むサイドリンク送信の2サブスロット後にHARQフィードバックを送信する場合を例に示しているが、PSFCHが送信されるサブスロットがそれぞれ異なる。
 このように、PSFCHが割り当てられるサブスロットが、サイドリンク送信の最後のシンボルを送信するサブスロットに基づいて黙示的(implicit)に決まる場合、PSFCHがそれぞれ異なるサブスロットで送信される場合がある。これは、PSSCHを含むサイドリンク送信の最後のシンボルがそれぞれ異なるサブスロットに割り当てられているためである。
 サブスロット単位のサイドリンク通信に基づき、HARQフィードバックを行うことで、これまでスロット単位でしか送信できなかったHARQフィードバックをサブスロット単位で送信することができるようになる。これにより、PSFCHを含むサイドリンク送信の遅延をより短くすることができる。
 ここで、例えば、PSFCHをシンボル単位で送信することで、PSFCHの低遅延化を実現することはできるが、PSFCHを送信するためのリソース(時間リソース及び/又は周波数リソース)を他の端末装置200と共有することが困難となり、PSFCHの送信のオーバーヘッドが大きくなる。ここで、リソースの共有とは、例えば、周波数分割多重や符号分割多重を用いた共有を含む。
 そこで、本開示の実施形態では、PSFCHをサブスロット単位で送信する。このとき、例えばPSFCHを送信するサブスロットのシンボル数を基地局装置100が設定することで、基地局装置100は、PSFCHの送信の低遅延化とオーバーヘッドとのバランスをフレキシブルに決定することができるようになる。
 <3.4.センシング情報の共有>
 サイドリンク通信では、PSCCHは、PSSCHを受信する端末装置200のためのスケジューリング情報の通知、及び、その他の端末装置200がPSSCHのリソースの利用状況を把握(センシング)するために使用される。すなわち、PSCCHは、サイドリンク送信を行う全ての端末装置200によって受信される。
 端末装置200が、PSCCHをセンシングすることで、例えば、同じリソースプール内の端末装置200が周期的なデータトラフィックでデータ送信を行う場合、他の端末装置200は、その周期的なデータ送信に対するリソースの使用状況を把握することができる。
 また、PSCCHでは、同じスロット内のPSSCHに対するスケジューリング情報を通知することに加えて、その次のPSSCH(例えば、100ms後)のリソース予約情報を送信し得る。このリソース予約情報によって、他の端末装置200は、非周期的なデータトラフィックに対してもリソースの利用状況を把握することができる。
 このように、従来のサイドリンク通信では、送信する端末装置200は、センシングを行い、リソースプール内のリソースの利用状況を把握する。送信する端末装置200は、把握した情報に基づいてサイドリンク送信に利用するリソースを選択する。これにより、他の端末装置200とのデータ(つまりPSSCH)の衝突(collision)の発生を軽減する。
 しかしながら、本実施形態のように、サイドリンク送信の拡張が行われた場合、特にPSCCHの構成などが拡張された場合、従来の端末装置200のようなサブスロット通信を行わない端末装置200は、拡張されたPSCCHの受信が困難となる。
 そこで、本実施形態では、サブスロット単位のサイドリンク通信(以下、サブスロット通信とも記載する)に対応していない端末装置200のために、サブスロット通信で用いられるリソースの使用状況(予約状況)をアシスト情報として別途通知するものとする。
 図12は、本開示の実施形態に係るアシスト情報の通知方法の一例について説明するための図である。
 例えば、基地局装置100又は所定の端末装置200(例えばRx UEやマスターUE等)が、次以降のスロットのPSCCHを通じて、それ以前のスロットで通知されたリソースの使用状況(予約状況)に関するアシスト情報を通知する。なお、サブスロット通信におけるリソース使用状況に関するアシスト情報は、使用状況そのものでもよいし、その状況に基づいて使用可能なリソースの情報としてもよい。当該アシスト情報は、従来のPSCCHで通知される。
 図12の例では、Slot#nの新PSCCHでスケジュール(通知)されたサイドリンク送信のリソース使用状況が、次のSlot#n+1で従来のPSCCHを用いて通知される。なお、新PSCCHは、サブスロット単位で行われるサイドリンク送信に含まれるPSCCHを意味する。
 また、図12に示すリソースプールは、従来のPSCCHを受信可能なUE(端末装置200)、及び、従来のPSCCHに加えて新PSCCHも受信可能なUE(端末装置200)、が共有するリソースプールである。すなわち、図12に示すリソースプールは、スロット単位のサイドリンク通信を行う端末装置200と、サブスロット単位のサイドリンク通信を行う端末装置200と、の両方によって使用される。
 <3.5.センシング方法>
 上述したように、サイドリンク通信では、送信側の端末装置200がセンシングを行うことで、データの衝突を軽減している。従来のセンシングは、時間領域においてスロットを単位として行われていた。この場合、端末装置200は、送信に用いるリソースの選択もスロット単位で行うことになる。
 そのため、従来のセンシング方法では、仮にあるスロット内の一部のサブスロットが利用可能であっても、同じスロット内の他のサブスロットが利用できない場合、そのサブスロットのリソースは利用することができない。これは、送信機会の損失、レイテンシーの増加やリソースの利用効率の低下を招く恐れがある。
 そこで、本実施形態では、スロット内の一部のサブスロットが利用可能である場合に、そのサブスロットが利用できるようにする。具体的には、端末装置200は、サブスロットとサブチャネルのリソース単位でセンシングを行う。以下、図13を用いて、具体的なセンシング方法の一例について説明する。図13は、本開示の実施形態に係るセンシング方法の一例を説明するための図である。
 端末装置200は、基地局から設定(または事前に設定(pre-configured))される制御情報に基づいてセンシングウィンドウを決定する。当該決定は、その制御情報が示す範囲において、端末装置200がフレキシブルに行い得る。例えば、端末装置200は、データの遅延に対する要求条件などによってウィンドウ幅を変更することができる。
 具体的には、端末装置200は、センシングウィンドウとして、センシングを行う最初のスロットと最後のスロットを決定する。ここで、サブスロット通信に基づいてセンシングを行う場合でも、センシングウィンドウは、スロットを単位として決定されるように制限され得る。なお、センシングウィンドウも、サブスロットを単位として決定されるようにしてもよい。
 端末装置200は、決定したセンシングウィンドウ内において、1つのサブチャネルと1つのサブスロットで構成されるリソースのそれぞれをセンシングする。ここでいうセンシングには、上述したように、他の端末装置200が送信するPSCCHから得られるスケジューリング情報でリソースの利用状況を把握することが含まれる。さらに、ここでいうセンシングには、そのリソースの受信電力(例えば、RSRP(Reference signals received power)など)に応じてリソースの利用状況を把握することも含まれる。この場合、端末装置200は、リソースの受信電力を測定し、所定の閾値以上の受信電力を検出した場合にそのリソースは利用されているものとして把握する。
 ここで、図13に示すセンシングウィンドウ内の最初の2つのスロットに注目して説明する。この例では、4つのサブチャネルと4つのサブスロット内のリソースのうち、図13に示すようなサイドリンク送信が行われるものとする。なお、1つのスロットは2つのサブスロットで構成される。
 ここで、端末装置200は、サイドリンク送信の一部でもリソースを使用している場合、当該リソースは使用しているものと判断する。そのため、図13のSubchannel#3で送信されているサイドリンク送信は、Subslot#mに加えて、Subslot#m+1の一部のリソースを用いて送信される。この場合、端末装置200は、Subchannel#3のSubslot#mとSubslot#m+1のリソースが使用されていると認識する。
 端末装置200は、使用されていると認識したリソース(すなわち、1つのサブチャネルと1つのサブスロットで構成されるリソースを単位として)以外のリソースから、サイドリンク送信に用いるリソースを選択する。
 さらに、サブスロット通信に基づくセンシングは、所定の条件で行うようにしてもよい。所定の条件は、以下のいずれかまたはそれらの組み合わせである。
 ・サブスロット通信に基づくセンシングを行うことがExplicitに設定された場合。このセンシングに関する設定は、サブスロットに基づくサイドリンク送信を行うための設定とは別に端末装置200に通知されてもよい。
 ・サブスロットに基づくサイドリンク送信が設定された場合。つまり、サイドリンク通信が設定された場合、端末装置200は、黙示的(Implicit)にサブスロット通信に基づくセンシングを行う。
 ・センシングを行うリソースプールがサブスロットに基づくサイドリンク送信を行う端末装置専用である場合。なお、リソースプールが端末装置専用であるか否かを認識するための情報は、基地局装置100から端末装置200に通知され得る。この場合、所定の(センシングを行う)リソースプールが、サブスロットに基づくサイドリンク送信を行う端末装置専用でない場合は、端末装置200が従来のスロットに基づくセンシングを行うようにしてもよい。
 また、実際のサイドリンク送信で使用されるサブスロットの構成と、センシングを行うサブスロットの構成は、異なっていてもよい。この場合、それぞれのサブスロットの構成は、個別に設定され得る。なお、実際のサイドリンク送信はサブスロットに基づいて行われる場合でも、センシングは従来のスロットに基づいて行われてもよい。また、実際のサイドリンク送信は従来のスロットに基づいて行われる場合でも、センシングはサブスロットに基づいて行われてもよい。
 また、サブスロット通信に基づくセンシングを行う場合、周波数領域のセンシング単位が、従来と異なる単位に変更されるようにしてもよい。例えば、端末装置200は、サブスロット通信に基づくセンシングを行う場合、連続する2つのサブチャネルを1つのセンシング単位とし得る。また、サブチャネルのサイズ(すなわち、1つのサブチャネルを構成するリソースブロックの数)は、サイドリンク送信とセンシングでそれぞれ独立に設定することができる。
 <<4.まとめ>>
 本明細書の各装置に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した各装置の構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供されることが可能である。また、機能ブロック図で示したそれぞれの機能ブロックをハードウェアで構成することで、一連の処理をハードウェアで実現することもできる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、本技術は以下のような構成も取ることができる。
(1)
 他の端末装置とサイドリンク通信を行う端末装置であって、
 基地局装置によって前記他の端末装置との前記サイドリンク通信に割り当てられたリソースプールに関するリソースプール情報を取得し、
 前記リソースプールに含まれる1つのスロットにおいて、当該スロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルのうち、少なくとも1つを用いて制御情報を前記他の端末装置に送信する、制御部、
 を備える端末装置。
(2)
 前記制御部は、
 前記サイドリンク制御チャネルの割り当てに関する割り当て情報を取得し、
 前記割り当て情報に基づいて割り当てられた前記サイドリンク制御チャネルを用いて前記制御情報を送信する、
 (1)に記載の端末装置。
(3)
 前記割り当て情報は、前記サイドリンク制御チャネルを割り当てるシンボルに関する情報を含む、(2)に記載の端末装置。
(4)
 前記割り当て情報は、AGC(Automatic Gain Control)を割り当てるシンボルに関する情報を含む、(2)に記載の端末装置。
(5)
 前記サイドリンク制御チャネルは、前記1つのスロットに設定されるサブスロットごとに割り当てられる、(1)に記載の端末装置。
(6)
 前記サイドリンク制御チャネルのシンボル数は、1以上である、(1)~(5)のいずれか1つに記載の端末装置。
(7)
 前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数に応じて、前記サイドリンク制御チャネルが割り当てられ得るシンボル数が異なる、(6)に記載の端末装置。
(8)
 前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数が1の場合、前記サイドリンク制御チャネルのシンボル数は、2以上であり、
 前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数が複数の場合、前記サイドリンク制御チャネルのシンボル数は、1以上である、
 (7)に記載の端末装置。
(9)
 前記の時間軸方向において割り当てられた前記サイドリンク制御チャネルの数が複数の場合、前記サイドリンク制御チャネルのシンボル数は、1である、
 (5)~(8)のいずれか1つに記載の端末装置。
(10)
 前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数に応じて、前記サイドリンク制御チャネルとして設定され得るリソースブロック数がマッピングされるサブチャネル数が異なる、(1)~(9)のいずれか1つに記載の端末装置。
(11)
 前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数が1の場合、前記サイドリンク制御チャネルとして設定され得るリソースブロック数は、1つのサブチャネルにマッピングされ、
 前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数が複数の場合、前記サイドリンク制御チャネルとして設定され得るリソースブロック数は、連続する複数のサブチャネルにマッピングされ得る、
 (10)に記載の端末装置。
(12)
 前記サイドリンク制御チャネルが割り当てられたシンボルに応じて、サイドリンク共有チャネルが割り当てられる、(1)~(11)のいずれか1つに記載の端末装置。
(13)
 前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数に応じて、サイドリンクフィードバックチャネルとして設定されるシンボル数及びリソースブロック数の少なくとも1つが異なる、(1)~(12)のいずれか1つに記載の端末装置。
(14)
 サイドリンク共有チャネルを含む送信単位のチャネル構成は、サイドリンクフィードバックチャネルを含む送信単位のチャネル構成と異なる、(1)~(13)のいずれか1つに記載の端末装置。
(15)
 制御部は、HARQフィードバックを行うタイミングに関するタイミング情報を取得する、(1)~(14)のいずれか1つに記載の端末装置。
(16)
 前記タイミングは、サイドリンク共有チャネルの最後のシンボルに基づいて決定される(15)に記載の端末装置。
(17)
 前記制御部は、第2の制御情報を受信し、
 前記第2の制御情報は、
 所定の前記スロットより前に送信される前記スロットにおいて、1つの前記スロットの時間軸方向において割り当てられた複数の前記サイドリンク制御チャネルのうちの少なくとも1つを用いて送信された前記制御情報に関する情報を含み、
 1つの前記スロットの時間軸方向において1つ割り当てられる前記サイドリンク制御チャネルを用いて送信される、
 (1)~(16)のいずれか1つに記載の端末装置。
(18)
 前記制御部は、1つの前記スロットに複数含まれるサブスロットを単位としたセンシングウィンドウに基づいてセンシングを行う、(1)~(17)のいずれか1つに記載の端末装置。
(19)
 前記制御部は、複数の前記サイドリンク制御チャネルが割り当てられた前記スロットを単位としたセンシングウィンドウに基づいてセンシングを行う、(18)に記載の端末装置。
(20)
 前記制御部は、1つの前記スロットに複数含まれるサブスロットにおいて、当該サブスロットの少なくとも一部が使用されている場合、当該サブスロットは使用されていると判断する、(18)又は(19)に記載の端末装置。
(21)
 前記制御部は、所定条件を満たす場合に、前記サブスロットの使用の有無を判断する前記センシングを行う、(20)に記載の端末装置。
(22)
 前記所定条件は、前記サブスロットの使用の有無を判断する前記センシングを行うことが設定されていること、前記サブスロットを用いた前記サイドリンク通信を行うことが設定されていること、及び、前記センシングを行うリソースが前記サブスロットを用いた前記サイドリンク通信のために割り当てられていること、の少なくとも1つを含む、(21)に記載の端末装置。
(23)
 前記制御部が前記センシングを行う前記サブスロットの構成は、前記制御部が送信に使用する前記サブスロットの構成と異なる、(19)~(22)のいずれか1つに記載の端末装置。
(24)
 他の端末装置とサイドリンク通信を行う端末装置であって、
 基地局装置によって前記他の端末装置との前記サイドリンク通信に割り当てられたリソースプールに関するリソースプール情報を取得し、
 前記リソースプールに含まれる1つのスロットにおいて、当該スロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルのうち、少なくとも1つを用いて送信される制御情報を受信する、制御部、
 を備える端末装置。
(25)
 端末装置によるサイドリンク通信を制御する基地局装置であって、
 前記端末装置が前記サイドリンク通信に使用するリソースプールに関するリソースプール情報を、当該端末装置に送信し、
 前記リソースプールに含まれる1つのスロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルの割り当てに関する情報を、前記端末装置に送信する、制御部、
 を備える基地局装置。
(26)
 端末装置とサイドリンク通信における通信方法であって、
 基地局装置によって前記端末装置との前記サイドリンク通信に割り当てられたリソースプールに関するリソースプール情報を取得し、
 前記リソースプールに含まれる1つのスロットにおいて、当該スロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルのうち、少なくとも1つを用いて制御情報を前記端末装置に送信する、
 通信方法。
 100 基地局装置
 200 端末装置
 110、210 アンテナ部
 120、220 無線通信部
 130 ネットワーク通信部
 140、230 記憶部
 150、240 制御部

Claims (17)

  1.  他の端末装置とサイドリンク通信を行う端末装置であって、
     基地局装置によって前記他の端末装置との前記サイドリンク通信に割り当てられたリソースプールに関するリソースプール情報を取得し、
     前記リソースプールに含まれる1つのスロットにおいて、当該スロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルのうち、少なくとも1つを用いて制御情報を前記他の端末装置に送信する、制御部、
     を備える端末装置。
  2.  前記制御部は、
     前記サイドリンク制御チャネルの割り当てに関する割り当て情報を取得し、
     前記割り当て情報に基づいて割り当てられた前記サイドリンク制御チャネルを用いて前記制御情報を送信する、
     請求項1に記載の端末装置。
  3.  前記サイドリンク制御チャネルは、前記1つのスロットに設定されるサブスロットごとに割り当てられる、請求項1に記載の端末装置。
  4.  前記サイドリンク制御チャネルのシンボル数は、1以上である、請求項1に記載の端末装置。
  5.  前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数に応じて、前記サイドリンク制御チャネルのシンボル数が異なる、請求項4に記載の端末装置。
  6.  前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数に応じて、前記サイドリンク制御チャネルとして設定されたリソースブロック数がマッピングされるサブチャネル数が異なる、請求項5に記載の端末装置。
  7.  前記サイドリンク制御チャネルが割り当てられたシンボルに応じて、サイドリンク共有チャネルが割り当てられる、請求項1に記載の端末装置。
  8.  前記スロットの時間軸方向において割り当てられた前記サイドリンク制御チャネルの数に応じて、サイドリンクフィードバックチャネルとして設定されるシンボル数及びリソースブロック数の少なくとも1つが異なる、請求項1に記載の端末装置。
  9.  サイドリンク共有チャネルを含む送信単位のチャネル構成は、サイドリンクフィードバックチャネルを含む送信単位のチャネル構成と異なる、請求項1に記載の端末装置。
  10.  前記制御部は、HARQフィードバックを行うタイミングに関するタイミング情報を取得する、請求項1に記載の端末装置。
  11.  前記制御部は、第2の制御情報を受信し、
     前記第2の制御情報は、
     所定の前記スロットより前に送信される前記スロットにおいて、1つの前記スロットの時間軸方向において割り当てられた複数の前記サイドリンク制御チャネルのうちの少なくとも1つを用いて送信された前記制御情報に関する情報を含み、
     1つの前記スロットの時間軸方向において1つ割り当てられる前記サイドリンク制御チャネルを用いて送信される、
     請求項1に記載の端末装置。
  12.  前記制御部は、1つの前記スロットに複数含まれるサブスロットを単位としたセンシングウィンドウに基づいてセンシングを行う、請求項1に記載の端末装置。
  13.  前記制御部は、複数の前記サイドリンク制御チャネルが割り当てられた前記スロットを単位としたセンシングウィンドウに基づいてセンシングを行う、請求項12に記載の端末装置。
  14.  前記制御部は、1つの前記スロットに複数含まれるサブスロットにおいて、当該サブスロットの少なくとも一部が使用されている場合、当該サブスロットは使用されていると判断する、請求項13に記載の端末装置。
  15.  他の端末装置とサイドリンク通信を行う端末装置であって、
     基地局装置によって前記他の端末装置との前記サイドリンク通信に割り当てられたリソースプールに関するリソースプール情報を取得し、
     前記リソースプールに含まれる1つのスロットにおいて、当該スロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルのうち、少なくとも1つを用いて送信される制御情報を受信する、制御部、
     を備える端末装置。
  16.  端末装置によるサイドリンク通信を制御する基地局装置であって、
     前記端末装置が前記サイドリンク通信に使用するリソースプールに関するリソースプール情報を、当該端末装置に送信し、
     前記リソースプールに含まれる1つのスロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルの割り当てに関する情報を、前記端末装置に送信する、制御部、
     を備える基地局装置。
  17.  端末装置とサイドリンク通信における通信方法であって、
     基地局装置によって前記端末装置との前記サイドリンク通信に割り当てられたリソースプールに関するリソースプール情報を取得し、
     前記リソースプールに含まれる1つのスロットにおいて、当該スロットの時間軸方向において割り当てられた複数のサイドリンク制御チャネルのうち、少なくとも1つを用いて制御情報を前記端末装置に送信する、
     通信方法。
PCT/JP2022/004831 2021-03-01 2022-02-08 端末装置、基地局装置及び通信方法 WO2022185853A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/547,736 US20240147503A1 (en) 2021-03-01 2022-02-08 Terminal device, base station device, and communication method
EP22762910.2A EP4304269A4 (en) 2021-03-01 2022-02-08 TERMINAL DEVICE, BASE STATION DEVICE AND COMMUNICATION METHOD
CN202280017257.0A CN116889056A (zh) 2021-03-01 2022-02-08 终端装置、基站装置和通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021031593 2021-03-01
JP2021-031593 2021-03-01

Publications (1)

Publication Number Publication Date
WO2022185853A1 true WO2022185853A1 (ja) 2022-09-09

Family

ID=83154992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004831 WO2022185853A1 (ja) 2021-03-01 2022-02-08 端末装置、基地局装置及び通信方法

Country Status (4)

Country Link
US (1) US20240147503A1 (ja)
EP (1) EP4304269A4 (ja)
CN (1) CN116889056A (ja)
WO (1) WO2022185853A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230189265A1 (en) * 2021-12-15 2023-06-15 Qualcomm Incorporated Orthogonal time frequency space precoding of control channel and shared channel communications
US20230262702A1 (en) * 2022-02-16 2023-08-17 Qualcomm Incorporated Slot structure for automatic gain control for high subcarrier spacing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033088A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Resource management for 5g ev2x
US20210050956A1 (en) * 2019-08-16 2021-02-18 Samsung Electronics Co., Ltd. Apparatus and method for managing soft buffer in wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220216956A1 (en) * 2019-05-10 2022-07-07 Ntt Docomo, Inc. User equipment and communication method
US20220304032A1 (en) * 2019-08-16 2022-09-22 Hyundai Motor Company Method for configuring sidelink resource in communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033088A1 (en) * 2018-08-09 2020-02-13 Convida Wireless, Llc Resource management for 5g ev2x
US20210050956A1 (en) * 2019-08-16 2021-02-18 Samsung Electronics Co., Ltd. Apparatus and method for managing soft buffer in wireless communication system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP TR37.985
3GPP TS22.104, 19 February 2021 (2021-02-19)
3GPP TS22.186, 19 February 2021 (2021-02-19)
LG ELECTRONICS: "Additional SLS results for dense scenario", 3GPP DRAFT; R1-1714558 ADDITIONAL SLS RESULTS FOR DENSE SCENARIO_LG, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170825, 26 August 2017 (2017-08-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051328157 *
See also references of EP4304269A4

Also Published As

Publication number Publication date
CN116889056A (zh) 2023-10-13
US20240147503A1 (en) 2024-05-02
EP4304269A1 (en) 2024-01-10
EP4304269A4 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
US11582723B2 (en) Method and apparatus for performing communication on basis of DCI in NR V2X
EP3723434B1 (en) Method and apparatus for reconfiguring bandwidth part in sidelink communication
US12035390B2 (en) Method and apparatus for performing SL DRX operation based on a default DRX configuration in NR V2X
WO2022185853A1 (ja) 端末装置、基地局装置及び通信方法
EP4188000A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
KR20220148199A (ko) Nr 사용자 디바이스를 위한 다이나믹 프로세싱 시간 및 다이나믹 블라인드 디코딩 성능
US20230292348A1 (en) Beam-based sidelink communication method and apparatus
EP3834580B1 (en) Network-assisted clear channel assessment bandwidth adaptation mechanism
KR20190113423A (ko) 이동통신 시스템에서 스케줄링 요청을 전송하는 방법 및 장치
KR20200054034A (ko) Nr v2x 시스템에서 사이드링크 피드백 절차 수행 방법 및 그 장치
US11889477B2 (en) Method and device for selecting candidate resource during SL DRX operation in NR V2X
US20240267892A1 (en) Method and device for selecting resource in nr v2x on basis of partial sensing
US20240089999A1 (en) Method and device for performing sl communication on basis of aggregated resources in nr v2x
CN118215135A (zh) 通信设备和通信方法
WO2023106067A1 (ja) 通信方法、通信装置及び通信システム
WO2023095539A1 (ja) 通信装置及び通信方法
US20220287084A1 (en) Method and apparatus for selecting resources based on partial sensing in nr v2x
WO2024032565A1 (zh) 资源排除方法和相关产品
EP4415446A1 (en) Method and device for performing wireless communication related to sl drx in nr v2x
US20230363052A1 (en) Drx operation method and device in wireless communication system
EP4451769A1 (en) Method and device for delivering resource information in consideration of drx active time by means of iuc mac ce in nr v2x
US20230292289A1 (en) Method and device for paging in sidelink communication
US20230171741A1 (en) Method and apparatus for measuring cbr related to partial sensing in nr v2x
WO2022230309A1 (ja) 通信装置、基地局及び通信方法
US20230299838A1 (en) Method and device for discovery resource allocation in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18547736

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280017257.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022762910

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762910

Country of ref document: EP

Effective date: 20231002

NENP Non-entry into the national phase

Ref country code: JP