WO2022185830A1 - Motor system - Google Patents

Motor system Download PDF

Info

Publication number
WO2022185830A1
WO2022185830A1 PCT/JP2022/004334 JP2022004334W WO2022185830A1 WO 2022185830 A1 WO2022185830 A1 WO 2022185830A1 JP 2022004334 W JP2022004334 W JP 2022004334W WO 2022185830 A1 WO2022185830 A1 WO 2022185830A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
switch
motor driver
control unit
driver
Prior art date
Application number
PCT/JP2022/004334
Other languages
French (fr)
Japanese (ja)
Inventor
良行 東
大祐 福島
敦雄 長澤
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Publication of WO2022185830A1 publication Critical patent/WO2022185830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the present invention mainly relates to a motor system including a plurality of motors.
  • Patent Document 1 discloses a system that includes a linear motor, an arithmetic processing unit, a driver group, a coil array, and an FET-SW group.
  • a linear motor has a plurality of movers.
  • the arithmetic processing unit calculates a drive command value corresponding to each mover included in the linear motor.
  • the driver comprises multiple drivers and the coil array comprises multiple coils.
  • the processing unit selects the driver and coil according to the current position of the mover.
  • the FET-SW group has a plurality of switches.
  • the arithmetic processing unit switches the switches of the FET-SW group so that the drive command value is supplied to the selected driver and coil.
  • Patent Document 1 does not disclose the connection method of the arithmetic processing unit, the driver group, and the FET-SW group. Depending on the connection method, delays in signal transmission may easily occur.
  • the present invention has been made in view of the above circumstances, and its main object is to provide a motor system having a plurality of motors, in which real-time transmission of signals is enhanced to achieve appropriate control. to provide.
  • the motor system includes a motor driver, a plurality of motors, a switch section, a control section, and an industrial network.
  • the motor generates a driving force by electric power supplied by the motor driver.
  • the switch unit switches circuits so that the electric power supplied by the motor driver is supplied to any one of the plurality of motors.
  • the control unit transmits an output control signal for controlling the power supplied by the motor driver and a switching signal for the switching unit to switch circuits, thereby time-sharing the power supplied by the motor driver. performs control for distribution to the plurality of motors.
  • the industrial network is connected to the motor driver, the switch unit, and the control unit, transmits the output control signal transmitted by the control unit to the motor driver, and transmits the output control signal transmitted by the control unit The switching signal is transmitted to the switch section.
  • industrial networks have a high degree of real-time signal transmission, so delays in switching signals are less likely to occur. As a result, it is possible to supply electric power to an appropriate motor to drive it, so that appropriate control can be achieved.
  • the motor system described above preferably has the following configuration. That is, the industrial network includes a daisy chain network.
  • the output control signal transmitted by the control section is supplied to the motor driver via the switch section, or the switching signal transmitted by the control section is supplied to the switch section via the motor driver.
  • control unit the motor driver, and the switch unit communicate by a broadcast polling method with the control unit as a master.
  • the motor system includes a plurality of motor drivers and a plurality of switch units.
  • the motor driver and the switch section are connected one-to-one, and the switch section supplies the electric power supplied by the corresponding motor driver to the motor.
  • the motor driver and the switch section are connected in a one-to-many correspondence, and the switch section selected from among the plurality of switch sections is supplied by the corresponding motor driver.
  • power is preferably supplied to the motor.
  • the motor drivers and the switch units are connected in a many-to-one correspondence, and the switch units supply power supplied by the motor driver selected from among the plurality of motor drivers. is preferably supplied to the motor.
  • the motor is preferably a linear motor.
  • the motor is preferably a rotary motor.
  • FIG. 1 is a block diagram of a motor system according to one embodiment of the present invention
  • FIG. FIG. 4 is a block diagram of a motor system with another network configuration
  • 1 is a perspective view showing an outline of a vehicle and rails driven by a motor system
  • FIG. 1 is a block diagram of a motor system 1 of this embodiment.
  • the motor system 1 is a system for controlling multiple motors. As shown in FIG. 1 , the motor system 1 includes a controller 10 , multiple motor drivers 21 , multiple switch units 22 , multiple motors 23 , and multiple encoders 24 . As will be described later, the motor system 1 may be configured to include only one motor driver 21 or may be configured to include only one switch section 22 . Although FIG. 1 and the like exemplify a configuration in which one encoder 24 is provided corresponding to one motor 23, even in a configuration in which a plurality of encoders 24 are provided corresponding to one motor 23, Alternatively, one encoder 24 may be provided for a plurality of motors 23 .
  • the control unit 10 is an information processing device, and includes an arithmetic device such as a CPU, and a storage device such as an HDD, an SSD, and a flash memory.
  • the control unit 10 can perform various controls related to the motor system 1 by reading and executing the program stored in the storage device by the arithmetic device. Representative controls performed by the control unit 10 include output control, switching control, position control, and speed control (details will be described later).
  • a section 12, a position control section 13, and a speed control section 14 are called. Note that the control unit 10 may be capable of executing controls other than those described above.
  • a part or all of the output control section 11 , the switching control section 12 , the position control section 13 and the speed control section 14 included in the control section 10 may be provided in the motor driver 21 . That is, the control unit 10 may be provided as a separate control device from the motor driver 21 or may be incorporated in the motor driver 21 .
  • the motor driver 21 supplies power to the motor 23 to operate the motor.
  • the motor driver 21 is, for example, a servo amplifier or an inverter.
  • the motor driver 21 is controlled by the controller 10 .
  • the output control unit 11 of the control unit 10 generates an output control signal (preferably a current command) for determining the power supplied by the motor driver 21 and transmits it to the motor driver 21 .
  • the motor driver 21 generates power having a waveform corresponding to the received output control signal and supplies the power to the switch section 22 . That is, the control section 10 can control the power output from the motor driver 21 according to the output control signal. In other words, the power waveform output from one motor driver 21 can be changed according to the output control signal.
  • the control unit 10 can set the destination of the output control signal.
  • the switch unit 22 supplies the electric power input from the motor driver 21 to the motor 23 .
  • the motor driver 21 and the switch section 22 are provided in one-to-one correspondence. Therefore, the power supplied by the motor driver 21 is always input to the corresponding switch section 22 .
  • the motor driver 21 and the switch unit 22 may correspond not one-to-one but one-to-many or many-to-one.
  • a motor driver 21 is connected to the input side of the switch section 22, and a plurality of motors 23 are connected to the output side.
  • the switch section 22 is, for example, a switch substrate, and is configured as a circuit including a plurality of switches. By switching the switch included in the switch unit 22, the motor 23 to which power is supplied is switched. The motor 23 to which electric power is supplied is only one motor 23 among the plurality of motors 23 connected to the switch section 22 .
  • the switch section 22 is controlled by the control section 10 . Specifically, the switching control section 12 of the control section 10 generates a switching signal for switching the switch of the switching section 22 and transmits the switching signal to the switching section 22 . The switch unit 22 switches one or more switches according to the received switching signal. As a result, power is supplied to the motor 23 specified by the control unit 10 . Note that the control unit 10 can set the transmission destination of the switching signal. Therefore, the open/closed states of the switches of the plurality of switch units 22 can be made different.
  • the motor 23 has a stator and a mover.
  • One of the stator and mover contains permanent magnets and the other contains coils.
  • the coil becomes an electromagnet.
  • a repulsive force or an attractive force acts between the stator and the mover, and as a result, the mover moves relative to the stator.
  • the motor 23 of this embodiment is a linear motor in which the movable element linearly moves (sliding) with respect to the stator.
  • the motor 23 may be a rotary motor in which a mover (rotor) rotates with respect to a stator (stator).
  • the encoder 24 is provided for each motor 23 and detects the operating state of the motor 23, specifically the relative displacement of the mover with respect to the stator. Since the motor 23 is a linear motor in this embodiment, the encoder 24 detects the position of the mover with respect to the stator (position on the moving path of the mover). The encoder 24 is, for example, a magnetic sensor provided on the movement path of the mover. If the motor 23 is a rotary motor, the encoder 24 is preferably a Hall element that detects the rotation angle of the mover, for example. A detection result of the encoder 24 is transmitted to the control unit 10 .
  • the control unit 10 performs position control and speed control of the mover based on the detection result of the encoder 24 .
  • the position control unit 13 of the control unit 10 identifies the position and movement amount of each of the movers provided in the motor system 1 based on the detection result of the encoder 24 and other information.
  • the other information includes the transportation status of the article (transportation command, destination of the article) and the like.
  • the speed control unit 14 of the control unit 10 identifies the target speed of each of the movers provided in the motor system 1 based on the detection result of the encoder 24 and other information.
  • the other information includes a predetermined set speed, upper limit speed, and the like.
  • the switching control unit 12 outputs a switching signal (in other words, the output side of the switch unit 22 corresponds to a switching signal for supplying power to the motor 23 of the mover specified by the position control unit 13 and the speed control unit 14). A switching signal for connecting to the motor 23 of .
  • the switching control unit 12 transmits a switching signal to the switch unit 22 corresponding to the motor 23 in question.
  • the output control unit 11 determines the power (specifically, the power waveform) to be supplied to the motor 23 based on the calculation results of the position control unit 13 and the speed control unit 14, and the motor driver 21 An output control signal is generated to supply this power.
  • the output control unit 11 transmits an output control signal to the motor driver 21 corresponding to the motor 23 in question.
  • the corresponding motor 23 can be driven at an appropriate direction and speed. Also, the motor 23 to which power is supplied is changed according to changes in the situation.
  • a plurality of motors 23 correspond to one motor driver 21, and the switch unit 22 performs switching so that power is distributed to the corresponding motors 23 in a time-sharing manner. Therefore, the number of motor drivers 21 can be reduced compared to a configuration in which a motor driver 21 is provided individually for each motor 23 . As a result, the installation cost of the motor system 1 can be reduced.
  • the motor driver 21 switches from supplying power to a specific motor 23 (hereinafter referred to as motor A1) to supplying power to another motor 23 (hereinafter referred to as motor A2).
  • the control unit 10 transmits to the switch unit 22 a switching signal for connecting the output side of the switch unit 22 to the motor A2, and transmits an output control signal for the motor A2 to the motor driver 21.
  • the arrival of the switching signal is delayed due to, for example, a communication delay, electric power based on the output control signal for the motor A2 is supplied to the motor A1. As a result, it may become impossible to realize appropriate control.
  • the motor system 1 of this embodiment uses a configuration with high real-time communication.
  • the control section 10, the plurality of motor drivers 21, and the plurality of switch sections 22 are connected to each other via an industrial network.
  • the industrial network in this embodiment is a network mainly used in factories and the like and used to control industrial machines.
  • An industrial network is a network in which, for example, three or more devices are connected and can communicate with each other, so it differs from a standard in which two devices are connected to each other and only two devices communicate with each other.
  • Industrial networks are different from networks commonly used in homes and offices, such as general-purpose Ethernet.
  • the industrial network is a standard network with high real-time performance compared to general-purpose Ethernet.
  • the industrial network 100 of this embodiment is EtherCAT (registered trademark). As shown in FIG. 1, the industrial network 100 consists of a daisy chain network. Specifically, when the control unit 10, the motor driver 21, and the switch unit 22 are collectively referred to as a network constituent device, the second network constituent device is connected to the first network constituent device, and two network constituent devices are connected. All network constituent devices are connected in such a manner that the third network constituent device is connected to the first network constituent device.
  • the industrial network 100 preferably constitutes a ring network, but may partially include branches.
  • control unit 10 functions as a master, and the motor driver 21 and switch unit 22 function as slaves.
  • the motor driver 21 and the switch section 22 may be collectively referred to as slave devices.
  • Control-related commands are transmitted from the control unit 10, which is a master.
  • the control unit 10 transmits a control command (such as the switching signal and the output control signal described above) in a standard frame.
  • the standard frame is returned to the control unit 10 after being sequentially transmitted to all slave devices at regular intervals.
  • bit positions and bit widths are associated in advance for each slave device.
  • the first control command for the motor driver 21 is associated with columns N to M of the standard frame.
  • each slave device stores in advance the bit position and bit width corresponding to the time. Therefore, each slave device specifies and executes the control command corresponding to itself among the control commands included in the standard frame.
  • the information transmitted from the slave device to the control unit 10 (the operation status of the slave device, the detection result of the sensor, etc.) is associated in advance with the bit position and bit width for each slave device. Therefore, information to be transmitted from the slave device to the control unit 10 can also be transmitted in this standard frame.
  • the encoder 24 is not directly connected to the industrial network 100.
  • the detection result of the encoder 24 is transmitted to the switch section 22, and the switch section 22 carries out processing to put the detection result of the encoder 24 on the standard frame.
  • the encoder 24 may be connected to the industrial network 100 if the specifications allow the encoder 24 to be connected to the industrial network.
  • Industrial networks are not limited to EtherCAT, and may be of other communication standards.
  • Other communication standards include, for example, CC-Link (registered trademark).
  • CC-Link registered trademark
  • a branched network such as a star type may be used.
  • CC-Link like EtherCAT, communication is performed by a master-slave system.
  • CC-Link communication is performed by a broadcast polling method.
  • the broadcast polling method is a method that combines broadcasting to which all network constituent devices are destinations and polling in which data communication is performed after an inquiry about communication is made. More specifically, the master device first polls the slave devices individually, and the polled slave devices respond by broadcasting.
  • the master device After one cycle of polling slave devices, the master device transmits data to all slave devices at the same time as polling the next slave device.
  • the communication timing is managed by the control unit 10, so communication collisions rarely occur.
  • the industrial network using CC-Link has high real-time communication.
  • FIG. 3 is a perspective view showing an outline of a vehicle 30 and rails 35 driven by the motor system 1. As shown in FIG. 3
  • the vehicle 30 conveys articles by traveling along rails 35 .
  • the vehicle 30 includes a base portion 31 , wheels 32 and a mover 33 .
  • the base portion 31 is a portion to which various members constituting the vehicle 30 are attached.
  • the wheels 32 are attached to the base portion 31 .
  • the mover 33 is attached to the base portion 31 and moves together with the base portion 31 .
  • the mover 33 includes permanent magnets or coils as described above.
  • the rail 35 is formed along the moving route of the vehicle 30.
  • a plurality of stators 36 and sensor pedestals 37 are attached to the rail 35 at regular intervals.
  • Stator 36 includes permanent magnets or coils as described above.
  • the sensor pedestal 37 is a member for mounting a magnetic sensor (not shown).
  • FIG. 4 is a block diagram of the motor system 1 of the first modified example.
  • members that are the same as or similar to those of the above-described embodiment are denoted by the same reference numerals in the drawings, and descriptions thereof may be omitted.
  • the motor driver 21 and the switch section 22 are in one-to-one correspondence.
  • the motor driver 21 and the switch section 22 are in one-to-many correspondence.
  • one switch unit 22 among the plurality of switch units 22 corresponding to the motor driver 21 is connected to the motor 23 . Therefore, electric power generated by one motor driver 21 is supplied to one motor 23 via one switch section 22 .
  • the motor driver 21 in the first modified example there may be a plurality of them. That is, a plurality of switch units 22 may correspond to a plurality of motor drivers 21, respectively.
  • the number of motors 23 to which the motor driver 21 can supply power is large.
  • the first variant is therefore particularly suitable, for example, for systems in which only a few of a large number of motors operate simultaneously.
  • the motor system 1 of the first modified example can reduce the number of motor drivers 21 compared to the motor system 1 of the above embodiment. Therefore, the installation cost of the motor system 1 can be reduced.
  • FIG. 5 is a block diagram of the motor system 1 of the second modified example.
  • the motor driver 21 and the switch section 22 are in many-to-one correspondence.
  • the switch unit 22 of the second modification can supply electric power to the same number of motors 23 as the corresponding motor drivers 21 .
  • two motor drivers 21 correspond to one switch section 22 , so the motor driver 21 can supply power to two motors 23 .
  • the configuration of the switch unit 22 may become complicated, but the power supply destination can be switched more flexibly.
  • the motor system 1 includes the motor driver 21, the plurality of motors 23, the switch section 22, the control section 10, and the industrial network 100.
  • the motor 23 generates a driving force by electric power supplied by the motor driver 21 .
  • the switch unit 22 switches circuits so that the electric power supplied by the motor driver 21 is supplied to any one of the plurality of motors 23 .
  • the control unit 10 transmits an output control signal for controlling the power supplied by the motor driver 21 and a switching signal for the switch unit 22 to switch circuits, thereby time-sharing the power supplied by the motor driver 21. , the control for distribution to the plurality of motors 23 is performed.
  • the industrial network 100 is connected to the motor driver 21, the switch unit 22, and the control unit 10, transmits the output control signal transmitted by the control unit 10 to the motor driver 21, and transmits the switching signal transmitted by the control unit 10. A signal is transmitted to the switch section 22 .
  • the industrial network 100 has a high degree of real-time signal transmission, so delays in switching signals are less likely to occur. As a result, it is possible to supply electric power to an appropriate motor 23 to drive it, so that appropriate control can be achieved.
  • the industrial network 100 includes a daisy chain network.
  • the output control signal transmitted by the control section 10 is supplied to the motor driver 21 via the switch section 22 , or the switching signal transmitted by the control section 10 is supplied to the switch section 22 via the motor driver 21 .
  • control unit 10 the motor driver 21, and the switch unit 22 may communicate by a broadcast polling method with the control unit 10 as a master.
  • the motor system 1 of the above embodiment includes a plurality of motor drivers 21 and a plurality of switch units 22 .
  • the motor driver 21 and the switch section 22 are connected in a one-to-one correspondence, and the switch section 22 supplies electric power supplied by the corresponding motor driver 21 to the motor 23. supply.
  • the motor driver 21 and the switch section 22 are connected in a one-to-many correspondence, and the switch section 22 selected from among the plurality of switch sections 22 corresponds Electric power supplied by the motor driver 21 is supplied to the motor 23 .
  • the motor drivers 21 and the switch units 22 are connected in many-to-one correspondence, and the switch unit 22 is supplied by the motor driver 21 selected from among the plurality of motor drivers 21. Power is supplied to motor 23 .
  • the motor 23 is a linear motor.
  • the motor 23 may be a rotary motor.
  • the motor driver 21 is connected to the control section 10 and the switch section 22 is connected to the motor driver 21 . Therefore, the output control signal is transmitted from the control unit 10 directly or via another motor driver 21 to the corresponding motor driver 21 .
  • the switching signal is transmitted to the switch section 22 via the motor driver 21 .
  • the switch section 22 may be connected to the control section 10 and the motor driver 21 may be connected to the switch section 22 . In this case, the output control signal is sent to the motor driver 21 via the switch section 22 .
  • the switching signal is transmitted from the control section 10 directly or via another switch section 22 to the corresponding switch section 22 .
  • the motor driver 21 and the switch section 22 are separate devices, but instead of this, one device having the functions of both the motor driver 21 and the switch section 22 may be provided in the motor system 1. .
  • the motor 23 was a linear motor and the motor system 1 was applied as a drive system for the vehicle 30 for transportation.
  • linear motors can be applied to other devices, such as processing equipment or measuring equipment having parts that move linearly.
  • the motor system 1 may be applied to a drive system of a vehicle, or may be applied to processing equipment or measuring equipment having a portion that rotates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

A motor system (1) comprises: a motor driver (21); a plurality of motors (23); a switch unit (22); a control unit (10); and an industrial network (100). The motors (23) generate drive power through electrical power supplied by the motor driver (21). The switch unit (22) switches circuits so that the electrical power supplied by the motor driver (21) is supplied to any one of the plurality of motors (23). The control unit (10) controls the distribution of the electrical power supplied by the motor driver (21) to the plurality of motors (23) by time division. The industrial network (100) is connected to the motor driver (21), the switch unit (22), and the control unit (10), and an output control signal transmitted by the control unit (10) is transmitted to the motor driver (21), and a switching signal transmitted by the control unit (10) is transmitted to the switch unit (22).

Description

モータシステムmotor system
 本発明は、主として、複数のモータを備えるモータシステムに関する。 The present invention mainly relates to a motor system including a plurality of motors.
 特許文献1は、リニアモータと、演算処理装置と、ドライバ群と、コイル列と、FET-SW群と、を備えるシステムを開示する。リニアモータは複数の可動子を備える。演算処理装置は、リニアモータが備えるそれぞれの可動子に対応した駆動指令値を算出する。ドライバは複数のドライバを備え、コイル列は複数のコイルを備える。演算処理装置は、現在の可動子の位置に応じたドライバ及びコイルを選択する。FET-SW群は複数のスイッチを備える。演算処理装置は、選択したドライバ及びコイルに駆動指令値が供給されるように、FET-SW群のスイッチを切り替える。以上の構成により、現在の可動子の位置に応じたドライバ及びコイルに駆動指令値を供給して、可動子を駆動することができる。 Patent Document 1 discloses a system that includes a linear motor, an arithmetic processing unit, a driver group, a coil array, and an FET-SW group. A linear motor has a plurality of movers. The arithmetic processing unit calculates a drive command value corresponding to each mover included in the linear motor. The driver comprises multiple drivers and the coil array comprises multiple coils. The processing unit selects the driver and coil according to the current position of the mover. The FET-SW group has a plurality of switches. The arithmetic processing unit switches the switches of the FET-SW group so that the drive command value is supplied to the selected driver and coil. With the above configuration, it is possible to drive the mover by supplying drive command values to the driver and the coil corresponding to the current position of the mover.
特開2004-159385号公報JP 2004-159385 A
 特許文献1では、演算処理装置、ドライバ群、及び、FET-SW群の接続方式について開示されていない。接続方式によっては、信号の伝達に遅延が発生し易くなることがある。 Patent Document 1 does not disclose the connection method of the arithmetic processing unit, the driver group, and the FET-SW group. Depending on the connection method, delays in signal transmission may easily occur.
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、複数のモータを備えるモータシステムにおいて、信号の伝送のリアルタイム性を高くすることで、適切な制御を実現できる構成を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its main object is to provide a motor system having a plurality of motors, in which real-time transmission of signals is enhanced to achieve appropriate control. to provide.
課題を解決するための手段及び効果Means and Effects for Solving Problems
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problem to be solved by the present invention is as described above. Next, the means for solving this problem and its effect will be explained.
 本発明の観点によれば、以下の構成のモータシステムが提供される。即ち、モータシステムは、モータドライバと、複数のモータと、スイッチ部と、制御部と、産業用ネットワークと、を備える。前記モータは、前記モータドライバが供給する電力により駆動力を発生させる。前記スイッチ部は、前記モータドライバが供給する電力が複数の前記モータのうち何れか1つの前記モータに供給されるように回路を切り替える。前記制御部は、前記モータドライバが供給する電力を制御するための出力制御信号、及び、前記スイッチ部が回路を切り替えるための切替信号を送信することにより、前記モータドライバが供給する電力を時分割で複数の前記モータに分配する制御を行う。前記産業用ネットワークは、前記モータドライバ、前記スイッチ部、及び、前記制御部に接続されており、前記制御部が送信する前記出力制御信号を前記モータドライバに伝送するとともに、前記制御部が送信する前記切替信号を前記スイッチ部に伝送する。 According to the aspect of the present invention, a motor system with the following configuration is provided. Specifically, the motor system includes a motor driver, a plurality of motors, a switch section, a control section, and an industrial network. The motor generates a driving force by electric power supplied by the motor driver. The switch unit switches circuits so that the electric power supplied by the motor driver is supplied to any one of the plurality of motors. The control unit transmits an output control signal for controlling the power supplied by the motor driver and a switching signal for the switching unit to switch circuits, thereby time-sharing the power supplied by the motor driver. performs control for distribution to the plurality of motors. The industrial network is connected to the motor driver, the switch unit, and the control unit, transmits the output control signal transmitted by the control unit to the motor driver, and transmits the output control signal transmitted by the control unit The switching signal is transmitted to the switch section.
 一般的に産業用ネットワークは信号の伝送のリアルタイム性が高いので、切替信号に遅延が発生しにくい。その結果、適切なモータに電力を供給して駆動することができるので、適切な制御を実現できる。 In general, industrial networks have a high degree of real-time signal transmission, so delays in switching signals are less likely to occur. As a result, it is possible to supply electric power to an appropriate motor to drive it, so that appropriate control can be achieved.
 前記のモータシステムにおいては、以下の構成とすることが好ましい。即ち、前記産業用ネットワークはデイジーチェーンネットワークを含んでいる。前記制御部が送信した前記出力制御信号が前記スイッチ部を介して前記モータドライバに供給されるか、前記制御部が送信した前記切替信号が前記モータドライバを介して前記スイッチ部に供給される。 The motor system described above preferably has the following configuration. That is, the industrial network includes a daisy chain network. The output control signal transmitted by the control section is supplied to the motor driver via the switch section, or the switching signal transmitted by the control section is supplied to the switch section via the motor driver.
 これにより、デイジーチェーンで接続された機器を順番に経由して信号が伝送されるため、信号の衝突が生じにくくなり、高いリアルタイム性を実現できる。 As a result, signals are transmitted sequentially through the devices connected in a daisy chain, so signal collisions are less likely to occur and high real-time performance can be achieved.
 前記のモータシステムにおいては、前記制御部、前記モータドライバ、及び、前記スイッチ部は、前記制御部をマスタとしたブロードキャストポーリング方式で通信を行うことが好ましい。 In the above motor system, it is preferable that the control unit, the motor driver, and the switch unit communicate by a broadcast polling method with the control unit as a master.
 これにより、通信の衝突が発生しにくいので、高いリアルタイム性を実現できる。 As a result, communication collisions are less likely to occur, so high real-time performance can be achieved.
 前記のモータシステムにおいては、前記モータドライバを複数備えるとともに、前記スイッチ部を複数備えることが好ましい。 It is preferable that the motor system includes a plurality of motor drivers and a plurality of switch units.
 これにより、複数のモータドライバ及び複数のスイッチ部の制御に関し、高いリアルタイム性を実現できる。 As a result, it is possible to achieve high real-time performance in controlling multiple motor drivers and multiple switch units.
 前記のモータシステムにおいては、前記モータドライバと前記スイッチ部が1対1で接続されており、スイッチ部は、対応する前記モータドライバが供給する電力を前記モータに供給することが好ましい。 In the motor system, it is preferable that the motor driver and the switch section are connected one-to-one, and the switch section supplies the electric power supplied by the corresponding motor driver to the motor.
 前記のモータシステムにおいては、前記モータドライバと前記スイッチ部が1対多で対応するように接続されており、複数の前記スイッチ部のうち選択された前記スイッチ部は、対応する前記モータドライバが供給する電力を前記モータに供給することが好ましい。 In the motor system, the motor driver and the switch section are connected in a one-to-many correspondence, and the switch section selected from among the plurality of switch sections is supplied by the corresponding motor driver. power is preferably supplied to the motor.
 前記のモータシステムにおいては、前記モータドライバと前記スイッチ部が多対1で対応するように接続されており、前記スイッチ部は、複数の前記モータドライバのうち選択された前記モータドライバが供給する電力を前記モータに供給することが好ましい。 In the above motor system, the motor drivers and the switch units are connected in a many-to-one correspondence, and the switch units supply power supplied by the motor driver selected from among the plurality of motor drivers. is preferably supplied to the motor.
 前記のモータシステムにおいては、前記モータがリニアモータであることが好ましい。 In the above motor system, the motor is preferably a linear motor.
 前記のモータシステムにおいては、前記モータが回転モータであることが好ましい。 In the motor system described above, the motor is preferably a rotary motor.
 以上により、様々な構成のシステムにおいて本発明の効果を発揮できる。 As described above, the effects of the present invention can be exhibited in systems with various configurations.
本発明の一実施形態に係るモータシステムのブロック図。1 is a block diagram of a motor system according to one embodiment of the present invention; FIG. 別のネットワーク構成のモータシステムのブロック図。FIG. 4 is a block diagram of a motor system with another network configuration; モータシステムで駆動される車両及びレールの概要を示す斜視図。1 is a perspective view showing an outline of a vehicle and rails driven by a motor system; FIG. 第1変形例のモータシステムのブロック図。The block diagram of the motor system of a 1st modification. 第2変形例のモータシステムのブロック図。The block diagram of the motor system of a 2nd modification.
 次に、図面を参照して本発明の実施形態を説明する。図1は、本実施形態のモータシステム1のブロック図である。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a motor system 1 of this embodiment.
 モータシステム1は、複数のモータを制御するためのシステムである。図1に示すように、モータシステム1は、制御部10と、複数のモータドライバ21と、複数のスイッチ部22と、複数のモータ23と、複数のエンコーダ24と、を備える。なお、後述するように、モータシステム1は、モータドライバ21を1つのみ備える構成であってもよいし、スイッチ部22を1つのみ備える構成であってもよい。図1等では、1つのモータ23に対応して1つのエンコーダ24が設けられた構成を例示しているが、1つのモータ23に対応して複数のエンコーダ24が設けられた構成であってもよいし、複数のモータ23に対応して1つのエンコーダ24が設けられた構成であってもよい。 The motor system 1 is a system for controlling multiple motors. As shown in FIG. 1 , the motor system 1 includes a controller 10 , multiple motor drivers 21 , multiple switch units 22 , multiple motors 23 , and multiple encoders 24 . As will be described later, the motor system 1 may be configured to include only one motor driver 21 or may be configured to include only one switch section 22 . Although FIG. 1 and the like exemplify a configuration in which one encoder 24 is provided corresponding to one motor 23, even in a configuration in which a plurality of encoders 24 are provided corresponding to one motor 23, Alternatively, one encoder 24 may be provided for a plurality of motors 23 .
 制御部10は、情報処理装置であり、CPU等の演算装置と、HDD、SSD、フラッシュメモリ等の記憶装置と、を備える。記憶装置に記憶されたプログラムを演算装置が読み出して実行することにより、制御部10は、モータシステム1に関する様々な制御を行うことができる。制御部10が行う代表的な制御としては、出力制御、切替制御、位置制御、速度制御があり(詳細は後述)、これらの制御を行う機能的な要素をそれぞれ、出力制御部11、切替制御部12、位置制御部13、速度制御部14と称する。なお、制御部10は、上述した制御以外を実行可能であってもよい。制御部10に含まれる出力制御部11、切替制御部12、位置制御部13、及び速度制御部14の一部又は全部が、モータドライバ21に設けられたものであってもよい。即ち、制御部10は、モータドライバ21と別体の制御装置として設けられたものであってもよいし、モータドライバ21に内蔵されたものであってもよい。 The control unit 10 is an information processing device, and includes an arithmetic device such as a CPU, and a storage device such as an HDD, an SSD, and a flash memory. The control unit 10 can perform various controls related to the motor system 1 by reading and executing the program stored in the storage device by the arithmetic device. Representative controls performed by the control unit 10 include output control, switching control, position control, and speed control (details will be described later). A section 12, a position control section 13, and a speed control section 14 are called. Note that the control unit 10 may be capable of executing controls other than those described above. A part or all of the output control section 11 , the switching control section 12 , the position control section 13 and the speed control section 14 included in the control section 10 may be provided in the motor driver 21 . That is, the control unit 10 may be provided as a separate control device from the motor driver 21 or may be incorporated in the motor driver 21 .
 モータドライバ21は、モータ23に電力を供給してモータを動作させる。モータドライバ21は、例えばサーボアンプ又はインバータである。モータドライバ21は制御部10に制御されている。詳細には、制御部10の出力制御部11は、モータドライバ21が供給する電力を定めるための出力制御信号(好ましくは電流指令)を生成して、モータドライバ21に送信する。モータドライバ21は、受信した出力制御信号に応じた波形の電力を生成してスイッチ部22に供給する。即ち、制御部10は、モータドライバ21から出力される電力を当該出力制御信号に応じて制御できる。換言すれば、1つのモータドライバ21から出力される電力波形を出力制御信号に応じて変更できる。なお、制御部10は、出力制御信号の送信先を設定できる。 The motor driver 21 supplies power to the motor 23 to operate the motor. The motor driver 21 is, for example, a servo amplifier or an inverter. The motor driver 21 is controlled by the controller 10 . Specifically, the output control unit 11 of the control unit 10 generates an output control signal (preferably a current command) for determining the power supplied by the motor driver 21 and transmits it to the motor driver 21 . The motor driver 21 generates power having a waveform corresponding to the received output control signal and supplies the power to the switch section 22 . That is, the control section 10 can control the power output from the motor driver 21 according to the output control signal. In other words, the power waveform output from one motor driver 21 can be changed according to the output control signal. Note that the control unit 10 can set the destination of the output control signal.
 スイッチ部22は、モータドライバ21から入力された電力をモータ23に供給する。本実施形態では、モータドライバ21とスイッチ部22は1対1で対応するように設けられている。従って、モータドライバ21が供給した電力は常に対応するスイッチ部22に入力される。詳細は後述するが、モータドライバ21とスイッチ部22は1対1ではなく、1対多又は多対1に対応していてもよい。 The switch unit 22 supplies the electric power input from the motor driver 21 to the motor 23 . In this embodiment, the motor driver 21 and the switch section 22 are provided in one-to-one correspondence. Therefore, the power supplied by the motor driver 21 is always input to the corresponding switch section 22 . Although the details will be described later, the motor driver 21 and the switch unit 22 may correspond not one-to-one but one-to-many or many-to-one.
 スイッチ部22には、入力側にモータドライバ21が接続されているとともに、出力側に複数のモータ23が接続されている。スイッチ部22は、例えばスイッチ基板であり、複数のスイッチを含む回路として構成されている。スイッチ部22に含まれるスイッチを切り替えることにより、電力の供給先のモータ23が切り替わる。電力が供給されるモータ23は、スイッチ部22に接続されている複数のモータ23のうち1つのモータ23のみである。スイッチ部22は制御部10に制御されている。詳細には、制御部10の切替制御部12は、スイッチ部22のスイッチを切り替えるための切替信号を生成して、スイッチ部22に送信する。スイッチ部22は、受信した切替信号に応じて1又は複数のスイッチを切り替える。これにより、制御部10が指定したモータ23に電力が供給される。なお、制御部10は、切替信号の送信先を設定できる。従って、複数のスイッチ部22のスイッチの開閉状態をそれぞれ異ならせることもできる。 A motor driver 21 is connected to the input side of the switch section 22, and a plurality of motors 23 are connected to the output side. The switch section 22 is, for example, a switch substrate, and is configured as a circuit including a plurality of switches. By switching the switch included in the switch unit 22, the motor 23 to which power is supplied is switched. The motor 23 to which electric power is supplied is only one motor 23 among the plurality of motors 23 connected to the switch section 22 . The switch section 22 is controlled by the control section 10 . Specifically, the switching control section 12 of the control section 10 generates a switching signal for switching the switch of the switching section 22 and transmits the switching signal to the switching section 22 . The switch unit 22 switches one or more switches according to the received switching signal. As a result, power is supplied to the motor 23 specified by the control unit 10 . Note that the control unit 10 can set the transmission destination of the switching signal. Therefore, the open/closed states of the switches of the plurality of switch units 22 can be made different.
 モータ23は、固定子と可動子とを備えている。固定子と可動子の何れか一方は永久磁石を含んでおり、もう一方はコイルを含んでいる。モータドライバ21からコイルに電力が供給されることにより、コイルは電磁石となる。これにより、固定子と可動子の間に斥力又は引力が働き、その結果、固定子に対して可動子が相対運動する。本実施形態のモータ23は、固定子に対して可動子が直線運動(スライド)するリニアモータである。これに代えて、モータ23は、固定子(ステータ)に対して可動子(回転子、ロータ)が回転運動する回転モータであってもよい。 The motor 23 has a stator and a mover. One of the stator and mover contains permanent magnets and the other contains coils. When electric power is supplied to the coil from the motor driver 21, the coil becomes an electromagnet. As a result, a repulsive force or an attractive force acts between the stator and the mover, and as a result, the mover moves relative to the stator. The motor 23 of this embodiment is a linear motor in which the movable element linearly moves (sliding) with respect to the stator. Alternatively, the motor 23 may be a rotary motor in which a mover (rotor) rotates with respect to a stator (stator).
 エンコーダ24は、モータ23毎に設けられており、モータ23の動作状態、詳細には固定子に対する可動子の相対変位を検出する。本実施形態ではモータ23がリニアモータであるため、エンコーダ24は固定子に対する可動子の位置(可動子の移動経路上の位置)を検出する。エンコーダ24は、例えば可動子の移動経路上に設けられた磁気センサである。モータ23が回転モータである場合、エンコーダ24は、例えば可動子の回転角度を検出するホール素子であることが好ましい。エンコーダ24の検出結果は、制御部10へ送信される。 The encoder 24 is provided for each motor 23 and detects the operating state of the motor 23, specifically the relative displacement of the mover with respect to the stator. Since the motor 23 is a linear motor in this embodiment, the encoder 24 detects the position of the mover with respect to the stator (position on the moving path of the mover). The encoder 24 is, for example, a magnetic sensor provided on the movement path of the mover. If the motor 23 is a rotary motor, the encoder 24 is preferably a Hall element that detects the rotation angle of the mover, for example. A detection result of the encoder 24 is transmitted to the control unit 10 .
 制御部10は、エンコーダ24の検出結果に基づいて、可動子の位置制御及び速度制御を行う。詳細には、制御部10の位置制御部13は、エンコーダ24の検出結果及び他の情報に基づいて、モータシステム1に備えられた複数の可動子のそれぞれの位置及び移動量を特定する。他の情報とは、例えばモータシステム1を運搬に用いる場合は、物品の搬送状況(搬送指令、物品の搬送先)等である。制御部10の速度制御部14は、エンコーダ24の検出結果及び他の情報に基づいて、モータシステム1に備えられた複数の可動子のそれぞれの目標速度を特定する。他の情報とは、例えばモータシステム1を運搬に用いる場合は、予め定められた設定速度及び上限速度等である。 The control unit 10 performs position control and speed control of the mover based on the detection result of the encoder 24 . Specifically, the position control unit 13 of the control unit 10 identifies the position and movement amount of each of the movers provided in the motor system 1 based on the detection result of the encoder 24 and other information. For example, when the motor system 1 is used for transportation, the other information includes the transportation status of the article (transportation command, destination of the article) and the like. The speed control unit 14 of the control unit 10 identifies the target speed of each of the movers provided in the motor system 1 based on the detection result of the encoder 24 and other information. For example, when the motor system 1 is used for transportation, the other information includes a predetermined set speed, upper limit speed, and the like.
 次に、切替制御部12は、位置制御部13及び速度制御部14が特定した可動子のモータ23に電力が供給されるようにするための切替信号(言い換えれば、スイッチ部22の出力側が該当のモータ23と接続されるようにするための切替信号)を生成する。切替制御部12は該当のモータ23に対応するスイッチ部22に切替信号を送信する。 Next, the switching control unit 12 outputs a switching signal (in other words, the output side of the switch unit 22 corresponds to a switching signal for supplying power to the motor 23 of the mover specified by the position control unit 13 and the speed control unit 14). A switching signal for connecting to the motor 23 of . The switching control unit 12 transmits a switching signal to the switch unit 22 corresponding to the motor 23 in question.
 次に、出力制御部11は、位置制御部13及び速度制御部14の算出結果に基づいて、該当のモータ23に供給すべき電力(詳細には電力の波形)を決定し、モータドライバ21がこの電力を供給するための出力制御信号を生成する。出力制御部11は、該当のモータ23に対応するモータドライバ21に出力制御信号を送信する。 Next, the output control unit 11 determines the power (specifically, the power waveform) to be supplied to the motor 23 based on the calculation results of the position control unit 13 and the speed control unit 14, and the motor driver 21 An output control signal is generated to supply this power. The output control unit 11 transmits an output control signal to the motor driver 21 corresponding to the motor 23 in question.
 以上の制御を行うことにより、該当のモータ23を適当な方向及び速度で駆動することができる。また、状況の変化に応じて、電力が供給されるモータ23が変更される。 By performing the above control, the corresponding motor 23 can be driven at an appropriate direction and speed. Also, the motor 23 to which power is supplied is changed according to changes in the situation.
 本実施形態では、1つのモータドライバ21に対して複数のモータ23が対応しており、該当のモータ23に時分割で電力が分配されるようにスイッチ部22が切替えを行う。そのため、モータ23毎に個別にモータドライバ21を設ける構成と比較して、モータドライバ21の個数を低減することができる。その結果、モータシステム1の設置コストを低減できる。 In this embodiment, a plurality of motors 23 correspond to one motor driver 21, and the switch unit 22 performs switching so that power is distributed to the corresponding motors 23 in a time-sharing manner. Therefore, the number of motor drivers 21 can be reduced compared to a configuration in which a motor driver 21 is provided individually for each motor 23 . As a result, the installation cost of the motor system 1 can be reduced.
 ここで、例えばモータドライバ21が特定のモータ23(以下モータA1)に電力を供給している状態から別のモータ23(以下モータA2)に電力を供給する状態に切り替えるとする。この場合、制御部10は、スイッチ部22の出力側がモータA2に接続されるようにするための切替信号をスイッチ部22送信するとともに、モータA2のための出力制御信号をモータドライバ21に送信する。このとき、例えば通信の遅延等により切替信号の到着が遅延した場合、モータA2のための出力制御信号に基づく電力がモータA1に供給されることになる。その結果、適切な制御が実現できなくなることがある。 Here, for example, it is assumed that the motor driver 21 switches from supplying power to a specific motor 23 (hereinafter referred to as motor A1) to supplying power to another motor 23 (hereinafter referred to as motor A2). In this case, the control unit 10 transmits to the switch unit 22 a switching signal for connecting the output side of the switch unit 22 to the motor A2, and transmits an output control signal for the motor A2 to the motor driver 21. . At this time, if the arrival of the switching signal is delayed due to, for example, a communication delay, electric power based on the output control signal for the motor A2 is supplied to the motor A1. As a result, it may become impossible to realize appropriate control.
 この事態を抑制するために、本実施形態のモータシステム1は、通信のリアルタイム性が高い構成を用いている。具体的には、制御部10、複数のモータドライバ21、及び複数のスイッチ部22を産業用ネットワークで互いに接続している。本実施形態における産業用ネットワークとは、主に工場等で用いられ、産業機械を制御するために用いられるネットワークである。産業用ネットワークは、例えば3以上の機器が接続されて相互に通信が可能なネットワークであるため、2つの機器を互いに接続して2つの機器間のみで通信を行う規格とは異なる。産業用ネットワークは、家庭やオフィスで一般的に用いられているネットワーク、例えば汎用のイーサネット(登録商標)とは異なる。産業用ネットワークは、汎用のイーサネットと比較して、リアルタイム性が高い規格のネットワークである。 In order to prevent this situation, the motor system 1 of this embodiment uses a configuration with high real-time communication. Specifically, the control section 10, the plurality of motor drivers 21, and the plurality of switch sections 22 are connected to each other via an industrial network. The industrial network in this embodiment is a network mainly used in factories and the like and used to control industrial machines. An industrial network is a network in which, for example, three or more devices are connected and can communicate with each other, so it differs from a standard in which two devices are connected to each other and only two devices communicate with each other. Industrial networks are different from networks commonly used in homes and offices, such as general-purpose Ethernet. The industrial network is a standard network with high real-time performance compared to general-purpose Ethernet.
 本実施形態の産業用ネットワーク100はEtherCAT(登録商標)である。図1に示すように、産業用ネットワーク100は、デイジーチェーンネットワークで構成されている。具体的には、制御部10、モータドライバ21、及びスイッチ部22をまとめてネットワーク構成機器と称したときに、1つ目のネットワーク構成機器に2つ目のネットワーク構成機器を接続し、2つ目のネットワーク構成機器に3つ目のネットワーク構成機器を接続するようにして、全てのネットワーク構成機器を接続する。産業用ネットワーク100は、環状ネットワークを構成することが好ましいが、一部に分岐を含んでいてもよい。 The industrial network 100 of this embodiment is EtherCAT (registered trademark). As shown in FIG. 1, the industrial network 100 consists of a daisy chain network. Specifically, when the control unit 10, the motor driver 21, and the switch unit 22 are collectively referred to as a network constituent device, the second network constituent device is connected to the first network constituent device, and two network constituent devices are connected. All network constituent devices are connected in such a manner that the third network constituent device is connected to the first network constituent device. The industrial network 100 preferably constitutes a ring network, but may partially include branches.
 産業用ネットワーク100では、マスタスレーブ方式で通信を行う。制御部10がマスタとして機能し、モータドライバ21及びスイッチ部22がスレーブとして機能する。以下では、モータドライバ21及びスイッチ部22をまとめてスレーブ機器と称することがある。制御に関する指令はマスタである制御部10から送信される。制御部10は、制御指令(上述の切替信号及び出力制御信号等)を標準フレームに載せて送信する。標準フレームは、一定周期で全てのスレーブ機器に順次伝達された後に、制御部10に戻る。標準フレームでは、スレーブ機器毎にビット位置とビット幅が予め対応付けられている。例えば、1つ目のモータドライバ21に関する制御指令は、標準フレームのN列からM列に対応付けられている。また、それぞれのスレーブ機器は、予め時期に対応するビット位置とビット幅を記憶している。従って、それぞれのスレーブ機器は、標準フレームに含まれる制御指令のうち自機に対応する制御指令を特定して実行する。 In the industrial network 100, communication is performed using a master-slave method. The control unit 10 functions as a master, and the motor driver 21 and switch unit 22 function as slaves. Hereinafter, the motor driver 21 and the switch section 22 may be collectively referred to as slave devices. Control-related commands are transmitted from the control unit 10, which is a master. The control unit 10 transmits a control command (such as the switching signal and the output control signal described above) in a standard frame. The standard frame is returned to the control unit 10 after being sequentially transmitted to all slave devices at regular intervals. In the standard frame, bit positions and bit widths are associated in advance for each slave device. For example, the first control command for the motor driver 21 is associated with columns N to M of the standard frame. Further, each slave device stores in advance the bit position and bit width corresponding to the time. Therefore, each slave device specifies and executes the control command corresponding to itself among the control commands included in the standard frame.
 また、制御指令だけでなく、スレーブ機器から制御部10に送信する情報(自機の動作状況、センサ等の検出結果)についてもスレーブ機器毎にビット位置とビット幅が予め対応付けられている。従って、スレーブ機器から制御部10に送信する情報に関しても、この標準フレームに載せて送信できる。 In addition to the control commands, the information transmitted from the slave device to the control unit 10 (the operation status of the slave device, the detection result of the sensor, etc.) is associated in advance with the bit position and bit width for each slave device. Therefore, information to be transmitted from the slave device to the control unit 10 can also be transmitted in this standard frame.
 本実施形態では、エンコーダ24は直接的に産業用ネットワーク100に接続されていない。エンコーダ24の検出結果は、スイッチ部22に伝達されており、スイッチ部22がエンコーダ24の検出結果を標準フレームに載せる処理を行う。ただし、エンコーダ24が産業用ネットワークに接続できる仕様である場合は、エンコーダ24を産業用ネットワーク100に接続してもよい。 In this embodiment, the encoder 24 is not directly connected to the industrial network 100. The detection result of the encoder 24 is transmitted to the switch section 22, and the switch section 22 carries out processing to put the detection result of the encoder 24 on the standard frame. However, the encoder 24 may be connected to the industrial network 100 if the specifications allow the encoder 24 to be connected to the industrial network.
 汎用のイーサネットは宛先毎にパケットが生成されて宛先まで転送される。そのため、汎用のイーサネットでは通信の衝突が発生することがある(通信の衝突があることを前提としている)。その結果、通信の遅延が不規則に発生することがあり、通信のリアルタイム性が低くなることがある。これに対し、本実施形態の産業用ネットワーク100では、全ての宛先に関する制御指令が1つのパケットに格納されているため、通信の衝突が殆ど発生しない。その結果、本実施形態の産業用ネットワーク100は、通信のリアルタイム性が高い。以上により、本実施形態では、モータA1のための電力がモータA2に供給される等の事態が発生しにくい。 With general-purpose Ethernet, packets are generated for each destination and transferred to the destination. Therefore, communication collisions may occur in general-purpose Ethernet (assuming that there are communication collisions). As a result, communication delays may occur irregularly, and the real-time nature of communication may deteriorate. On the other hand, in the industrial network 100 of the present embodiment, control commands for all destinations are stored in one packet, so communication collisions rarely occur. As a result, the industrial network 100 of this embodiment has high real-time communication. As described above, in the present embodiment, a situation such as the electric power for the motor A1 being supplied to the motor A2 is unlikely to occur.
 産業用ネットワークはEtherCATに限られず、他の通信規格であってもよい。他の通信規格としては、例えばCC-Link(登録商標)を挙げることができる。CC-Linkを用いる場合は、デイジーチェーンネットワークである必要がないため、例えば図2に示すようにスター型等の分岐をネットワークであってもよい。CC-Linkでは、EtherCATと同様にマスタスレーブ方式で通信を行う。また、CC-Linkでは、ブロードキャストポーリング方式で通信を行う。ブロードキャストポーリング方式とは、ネットワーク構成機器の全てが送信先となるブロードキャストと、通信に関する問合せを行った後にデータ通信を行うポーリングと、を組み合わせた方式である。より詳細には、初めにマスタ機器がスレーブ機器に対して個別にポーリングを行い、ポーリングを受けたスレーブ機器はブロードキャストでそれに対して返信する。スレーブ機器に対するポーリングが一巡した後に、マスタ機器は、次のスレーブ機器へのポーリングと同時に、全てのスレーブ機器に対してデータを送信する。CC-Linkでは、通信を行うタイミングは制御部10によって管理されているので、通信の衝突が殆ど発生しない。その結果、CC-Linkを用いた産業用ネットワークは、通信のリアルタイム性が高い。  Industrial networks are not limited to EtherCAT, and may be of other communication standards. Other communication standards include, for example, CC-Link (registered trademark). When CC-Link is used, it is not necessary to be a daisy chain network. For example, as shown in FIG. 2, a branched network such as a star type may be used. In CC-Link, like EtherCAT, communication is performed by a master-slave system. Also, in CC-Link, communication is performed by a broadcast polling method. The broadcast polling method is a method that combines broadcasting to which all network constituent devices are destinations and polling in which data communication is performed after an inquiry about communication is made. More specifically, the master device first polls the slave devices individually, and the polled slave devices respond by broadcasting. After one cycle of polling slave devices, the master device transmits data to all slave devices at the same time as polling the next slave device. In CC-Link, the communication timing is managed by the control unit 10, so communication collisions rarely occur. As a result, the industrial network using CC-Link has high real-time communication.
 次に、本実施形態のモータシステム1を物品の搬送に適用した例について図3を参照して簡単に説明する。図3は、モータシステム1で駆動される車両30及びレール35の概要を示す斜視図である。 Next, an example in which the motor system 1 of this embodiment is applied to conveying an article will be briefly described with reference to FIG. FIG. 3 is a perspective view showing an outline of a vehicle 30 and rails 35 driven by the motor system 1. As shown in FIG.
 車両30には図略の物品が載せられる。車両30は、レール35に沿って走行することで物品を搬送する。車両30は、ベース部31と、車輪32と、可動子33と、を備える。ベース部31は、車両30を構成する様々な部材が取り付けられる部分である。車輪32は、ベース部31に取り付けられている。可動子33は、ベース部31に取り付けられており、ベース部31と一体的に移動する。可動子33は、上述したように永久磁石又はコイルを含んでいる。 Items not shown are placed on the vehicle 30. The vehicle 30 conveys articles by traveling along rails 35 . The vehicle 30 includes a base portion 31 , wheels 32 and a mover 33 . The base portion 31 is a portion to which various members constituting the vehicle 30 are attached. The wheels 32 are attached to the base portion 31 . The mover 33 is attached to the base portion 31 and moves together with the base portion 31 . The mover 33 includes permanent magnets or coils as described above.
 レール35は車両30の移動経路に沿って形成されている。レール35には、固定子36とセンサ台座37が一定間隔で複数取り付けられている。固定子36は、上述したように永久磁石又はコイルを含んでいる。センサ台座37は、図略の磁気センサを取り付けるための部材である。以上の構成により、適切なコイルに電力を供給してコイルから磁力を発生させ、電力を供給するコイルを適切なタイミングで切り替えることにより、固定子36に対して可動子33を移動させる力が発生する。その結果、レール35に沿って車両30を走行させることができる。 The rail 35 is formed along the moving route of the vehicle 30. A plurality of stators 36 and sensor pedestals 37 are attached to the rail 35 at regular intervals. Stator 36 includes permanent magnets or coils as described above. The sensor pedestal 37 is a member for mounting a magnetic sensor (not shown). With the above configuration, power is supplied to appropriate coils to generate magnetic force from the coils, and by switching the coils to which power is supplied at appropriate timing, a force is generated to move the mover 33 with respect to the stator 36. do. As a result, the vehicle 30 can run along the rails 35 .
 次に、図4を参照して、上記実施形態の第1変形例を説明する。図4は、第1変形例のモータシステム1のブロック図である。以後の第1変形例及び第2変形例の説明においては、上記実施形態と同一又は類似の部材には図面に同一の符号を付し、説明を省略する場合がある。 Next, a first modification of the above embodiment will be described with reference to FIG. FIG. 4 is a block diagram of the motor system 1 of the first modified example. In the following description of the first modification and the second modification, members that are the same as or similar to those of the above-described embodiment are denoted by the same reference numerals in the drawings, and descriptions thereof may be omitted.
 上記実施形態では、モータドライバ21とスイッチ部22が1対1で対応している。これに対し、第1変形例では、モータドライバ21とスイッチ部22が1対多で対応している。第1変形例では、モータドライバ21に対応する複数のスイッチ部22のうち、1つのスイッチ部22がモータ23に接続される。従って、1つのモータドライバ21で発生した電力は、1つのスイッチ部22を介して、1つのモータ23に供給される。 In the above embodiment, the motor driver 21 and the switch section 22 are in one-to-one correspondence. On the other hand, in the first modified example, the motor driver 21 and the switch section 22 are in one-to-many correspondence. In the first modification, one switch unit 22 among the plurality of switch units 22 corresponding to the motor driver 21 is connected to the motor 23 . Therefore, electric power generated by one motor driver 21 is supplied to one motor 23 via one switch section 22 .
 第1変形例では、モータドライバ21が1つであるが、複数であってもよい。つまり、複数のモータドライバ21について、それぞれ複数のスイッチ部22が対応していてもよい。第1変形例では、モータドライバ21が電力を供給可能なモータ23の数が多い。従って、第1変形例は、例えば多数のモータのうち少数のみが同時に動作するシステムに特に適している。第1変形例のモータシステム1は、上記実施形態のモータシステム1と比較して、モータドライバ21の数を減らすことができる。従って、モータシステム1の設置コストを削減できる。 Although there is one motor driver 21 in the first modified example, there may be a plurality of them. That is, a plurality of switch units 22 may correspond to a plurality of motor drivers 21, respectively. In the first modified example, the number of motors 23 to which the motor driver 21 can supply power is large. The first variant is therefore particularly suitable, for example, for systems in which only a few of a large number of motors operate simultaneously. The motor system 1 of the first modified example can reduce the number of motor drivers 21 compared to the motor system 1 of the above embodiment. Therefore, the installation cost of the motor system 1 can be reduced.
 次に、図5を参照して、上記実施形態の第2変形例を説明する。図5は、第2変形例のモータシステム1のブロック図である。 Next, a second modification of the above embodiment will be described with reference to FIG. FIG. 5 is a block diagram of the motor system 1 of the second modified example.
 第2変形例では、モータドライバ21とスイッチ部22が多対1で対応している。第2変形例のスイッチ部22は、対応するモータドライバ21と同数のモータ23に電力を供給可能である。図5に示すように第2変形例では、2つのモータドライバ21が1つのスイッチ部22に対応しているため、モータドライバ21は2つのモータ23に電力を供給可能である。 In the second modified example, the motor driver 21 and the switch section 22 are in many-to-one correspondence. The switch unit 22 of the second modification can supply electric power to the same number of motors 23 as the corresponding motor drivers 21 . As shown in FIG. 5 , in the second modification, two motor drivers 21 correspond to one switch section 22 , so the motor driver 21 can supply power to two motors 23 .
 第2変形例では、スイッチ部22の構成が複雑になる可能性があるが、電力の供給先をより柔軟に切り替えることができる。 In the second modified example, the configuration of the switch unit 22 may become complicated, but the power supply destination can be switched more flexibly.
 以上に説明したように、モータシステム1は、モータドライバ21と、複数のモータ23と、スイッチ部22と、制御部10と、産業用ネットワーク100と、を備える。モータ23は、モータドライバ21が供給する電力により駆動力を発生させる。スイッチ部22は、モータドライバ21が供給する電力が複数のモータ23のうち何れか1つのモータ23に供給されるように回路を切り替える。制御部10は、モータドライバ21が供給する電力を制御するための出力制御信号、及び、スイッチ部22が回路を切り替えるための切替信号を送信することにより、モータドライバ21が供給する電力を時分割で複数のモータ23に分配する制御を行う。産業用ネットワーク100は、モータドライバ21、スイッチ部22、及び、制御部10に接続されており、制御部10が送信する出力制御信号をモータドライバ21に伝送するとともに、制御部10が送信する切替信号をスイッチ部22に伝送する。 As described above, the motor system 1 includes the motor driver 21, the plurality of motors 23, the switch section 22, the control section 10, and the industrial network 100. The motor 23 generates a driving force by electric power supplied by the motor driver 21 . The switch unit 22 switches circuits so that the electric power supplied by the motor driver 21 is supplied to any one of the plurality of motors 23 . The control unit 10 transmits an output control signal for controlling the power supplied by the motor driver 21 and a switching signal for the switch unit 22 to switch circuits, thereby time-sharing the power supplied by the motor driver 21. , the control for distribution to the plurality of motors 23 is performed. The industrial network 100 is connected to the motor driver 21, the switch unit 22, and the control unit 10, transmits the output control signal transmitted by the control unit 10 to the motor driver 21, and transmits the switching signal transmitted by the control unit 10. A signal is transmitted to the switch section 22 .
 一般的に産業用ネットワーク100は信号の伝送のリアルタイム性が高いので、切替信号に遅延が発生しにくい。その結果、適切なモータ23に電力を供給して駆動することができるので、適切な制御を実現できる。 In general, the industrial network 100 has a high degree of real-time signal transmission, so delays in switching signals are less likely to occur. As a result, it is possible to supply electric power to an appropriate motor 23 to drive it, so that appropriate control can be achieved.
 また、上記実施形態及び変形例のモータシステム1において、産業用ネットワーク100はデイジーチェーンネットワークを含んでいる。制御部10が送信した出力制御信号がスイッチ部22を介してモータドライバ21に供給されるか、制御部10が送信した切替信号がモータドライバ21を介してスイッチ部22に供給される。 In addition, in the motor systems 1 of the above embodiments and modifications, the industrial network 100 includes a daisy chain network. The output control signal transmitted by the control section 10 is supplied to the motor driver 21 via the switch section 22 , or the switching signal transmitted by the control section 10 is supplied to the switch section 22 via the motor driver 21 .
 これにより、デイジーチェーンで接続された機器を順番に経由して信号が伝送されるため、信号の衝突が生じにくくなり、高いリアルタイム性を実現できる。 As a result, signals are transmitted sequentially through the devices connected in a daisy chain, so signal collisions are less likely to occur and high real-time performance can be achieved.
 また、モータシステム1は、制御部10、モータドライバ21、及び、スイッチ部22は、制御部10をマスタとしたブロードキャストポーリング方式で通信を行ってもよい。 In addition, in the motor system 1, the control unit 10, the motor driver 21, and the switch unit 22 may communicate by a broadcast polling method with the control unit 10 as a master.
 これにより、通信の衝突が発生しにくいので、高いリアルタイム性を実現できる。 As a result, communication collisions are less likely to occur, so high real-time performance can be achieved.
 また、上記実施形態のモータシステム1では、モータドライバ21を複数備えるとともに、スイッチ部22を複数備える。 In addition, the motor system 1 of the above embodiment includes a plurality of motor drivers 21 and a plurality of switch units 22 .
 これにより、複数のモータドライバ21及び複数のスイッチ部22の制御に関し、高いリアルタイム性を実現できる。 As a result, it is possible to achieve high real-time performance in controlling the plurality of motor drivers 21 and the plurality of switch units 22 .
 また、上記実施形態のモータシステム1では、モータドライバ21とスイッチ部22が1対1で対応するように接続されており、スイッチ部22は、対応するモータドライバ21が供給する電力をモータ23に供給する。 Further, in the motor system 1 of the above embodiment, the motor driver 21 and the switch section 22 are connected in a one-to-one correspondence, and the switch section 22 supplies electric power supplied by the corresponding motor driver 21 to the motor 23. supply.
 また、第1変形例のモータシステム1において、モータドライバ21とスイッチ部22が1対多で対応するように接続されており、複数のスイッチ部22のうち選択されたスイッチ部22は、対応するモータドライバ21が供給する電力をモータ23に供給する。 Further, in the motor system 1 of the first modified example, the motor driver 21 and the switch section 22 are connected in a one-to-many correspondence, and the switch section 22 selected from among the plurality of switch sections 22 corresponds Electric power supplied by the motor driver 21 is supplied to the motor 23 .
 また、第2変形例のモータシステム1では、モータドライバ21とスイッチ部22が多対1で接続されており、スイッチ部22は、複数のモータドライバ21のうち選択されたモータドライバ21が供給する電力をモータ23に供給する。 In addition, in the motor system 1 of the second modified example, the motor drivers 21 and the switch units 22 are connected in many-to-one correspondence, and the switch unit 22 is supplied by the motor driver 21 selected from among the plurality of motor drivers 21. Power is supplied to motor 23 .
 また、上記実施形態及び変形例のモータシステム1において、モータ23がリニアモータである。 Also, in the motor system 1 of the above embodiment and modification, the motor 23 is a linear motor.
 また、モータシステム1は、モータ23が回転モータであってもよい。 Also, in the motor system 1, the motor 23 may be a rotary motor.
 以上により、様々な構成のシステムにおいて本発明の効果を発揮できる。 As described above, the effects of the present invention can be exhibited in systems with various configurations.
 以上に本発明の好適な実施の形態及び変形例を説明したが、上記の構成は例えば以下のように変更することができる。 Although the preferred embodiment and modification of the present invention have been described above, the above configuration can be modified as follows, for example.
 上記実施形態では、制御部10にモータドライバ21が接続され、モータドライバ21にスイッチ部22が接続されている。そのため、出力制御信号は制御部10から直接又は別のモータドライバ21を介して該当のモータドライバ21に伝送される。切替信号は、モータドライバ21を介してスイッチ部22に送信される。これに代えて、制御部10にスイッチ部22が接続され、スイッチ部22にモータドライバ21が接続されてもよい。この場合、出力制御信号はスイッチ部22を介してモータドライバ21に送信される。切替信号は、制御部10から直接又は別のスイッチ部22を介して該当のスイッチ部22に伝送される。 In the above embodiment, the motor driver 21 is connected to the control section 10 and the switch section 22 is connected to the motor driver 21 . Therefore, the output control signal is transmitted from the control unit 10 directly or via another motor driver 21 to the corresponding motor driver 21 . The switching signal is transmitted to the switch section 22 via the motor driver 21 . Alternatively, the switch section 22 may be connected to the control section 10 and the motor driver 21 may be connected to the switch section 22 . In this case, the output control signal is sent to the motor driver 21 via the switch section 22 . The switching signal is transmitted from the control section 10 directly or via another switch section 22 to the corresponding switch section 22 .
 上記実施形態では、モータドライバ21とスイッチ部22は個別の装置であるが、これに代えて、モータドライバ21とスイッチ部22の両方の機能を有する1つの装置をモータシステム1に設けてもよい。 In the above embodiment, the motor driver 21 and the switch section 22 are separate devices, but instead of this, one device having the functions of both the motor driver 21 and the switch section 22 may be provided in the motor system 1. .
 上記実施形態では、モータ23がリニアモータであり、モータシステム1を運搬用の車両30の駆動システムとして適用する例を説明した。これに代えて、リニアモータを別の装置(例えば直線運動する部分を有する加工機器や計測機器)に適用することもできる。また、モータ23が回転モータである場合、モータシステム1を車両の駆動システムに適用してもよいし、回転運動する部分を有する加工機器や計測機器に適用してもよい。 In the above embodiment, an example was described in which the motor 23 was a linear motor and the motor system 1 was applied as a drive system for the vehicle 30 for transportation. Alternatively, linear motors can be applied to other devices, such as processing equipment or measuring equipment having parts that move linearly. Further, when the motor 23 is a rotary motor, the motor system 1 may be applied to a drive system of a vehicle, or may be applied to processing equipment or measuring equipment having a portion that rotates.
 1 モータシステム
 10 制御部
 21 モータドライバ
 22 スイッチ部
 23 モータ
 24 エンコーダ
Reference Signs List 1 motor system 10 control unit 21 motor driver 22 switch unit 23 motor 24 encoder

Claims (9)

  1.  モータドライバと、
     前記モータドライバが供給する電力により駆動力を発生させる複数のモータと、
     前記モータドライバが供給する電力が複数の前記モータのうち何れか1つの前記モータに供給されるように回路を切り替えるスイッチ部と、
     前記モータドライバが供給する電力を制御するための出力制御信号、及び、前記スイッチ部が回路を切り替えるための切替信号を送信することにより、前記モータドライバが供給する電力を時分割で複数の前記モータに分配する制御を行う制御部と、
     前記モータドライバ、前記スイッチ部、及び、前記制御部に接続されており、前記制御部が送信する前記出力制御信号を前記モータドライバに伝送するとともに、前記制御部が送信する前記切替信号を前記スイッチ部に伝送する産業用ネットワークと、
    を備えることを特徴とするモータシステム。
    a motor driver;
    a plurality of motors that generate driving force from electric power supplied by the motor driver;
    a switch unit for switching a circuit so that the electric power supplied by the motor driver is supplied to one of the plurality of motors;
    By transmitting an output control signal for controlling the power supplied by the motor driver and a switching signal for the switching unit to switch circuits, the power supplied by the motor driver is time-divided to the plurality of motors. A control unit that controls distribution to
    It is connected to the motor driver, the switch unit, and the control unit, transmits the output control signal transmitted by the control unit to the motor driver, and transmits the switching signal transmitted by the control unit to the switch. an industrial network that transmits to
    A motor system comprising:
  2.  請求項1に記載のモータシステムであって、
     前記産業用ネットワークはデイジーチェーンネットワークを含んでおり、
    前記制御部が送信した前記出力制御信号が前記スイッチ部を介して前記モータドライバに供給されるか、前記制御部が送信した前記切替信号が前記モータドライバを介して前記スイッチ部に供給されることを特徴とするモータシステム。
    The motor system according to claim 1,
    the industrial network includes a daisy chain network;
    The output control signal transmitted by the control section is supplied to the motor driver via the switch section, or the switching signal transmitted by the control section is supplied to the switch section via the motor driver. A motor system characterized by:
  3.  請求項1に記載のモータシステムであって、
     前記制御部、前記モータドライバ、及び、前記スイッチ部は、前記制御部をマスタとしたブロードキャストポーリング方式で通信を行うことを特徴とするモータシステム。
    The motor system according to claim 1,
    A motor system according to claim 1, wherein said control unit, said motor driver, and said switch unit communicate with each other by a broadcast polling method using said control unit as a master.
  4.  請求項1から3までの何れか一項に記載のモータシステムであって、
     前記モータドライバを複数備えるとともに、前記スイッチ部を複数備えることを特徴とするモータシステム。
    A motor system according to any one of claims 1 to 3,
    A motor system comprising a plurality of the motor drivers and a plurality of the switch units.
  5.  請求項1から4までの何れか一項に記載のモータシステムであって、
     前記モータドライバと前記スイッチ部が1対1で接続されており、スイッチ部は、対応する前記モータドライバが供給する電力を前記モータに供給することを特徴とするモータシステム。
    A motor system according to any one of claims 1 to 4,
    1. A motor system according to claim 1, wherein said motor driver and said switch section are connected in a one-to-one correspondence, and said switch section supplies power supplied by said corresponding motor driver to said motor.
  6.  請求項1から4までの何れか一項に記載のモータシステムであって、
     前記モータドライバと前記スイッチ部が1対多で対応するように接続されており、複数の前記スイッチ部のうち選択された前記スイッチ部は、対応する前記モータドライバが供給する電力を前記モータに供給することを特徴とするモータシステム。
    A motor system according to any one of claims 1 to 4,
    The motor drivers and the switch units are connected in a one-to-many correspondence, and the switch unit selected from among the plurality of switch units supplies power supplied by the corresponding motor driver to the motor. A motor system characterized by:
  7.  請求項1から4までの何れか一項に記載のモータシステムであって、
     前記モータドライバと前記スイッチ部が多対1で対応するように接続されており、前記スイッチ部は、複数の前記モータドライバのうち選択された前記モータドライバが供給する電力を前記モータに供給することを特徴とするモータシステム。
    A motor system according to any one of claims 1 to 4,
    The motor drivers and the switch units are connected in a many-to-one correspondence, and the switch unit supplies electric power supplied by the motor driver selected from among the plurality of motor drivers to the motor. A motor system characterized by:
  8.  請求項1から7までの何れか一項に記載のモータシステムであって、
     前記モータがリニアモータであることを特徴とするモータシステム。
    A motor system according to any one of claims 1 to 7,
    A motor system, wherein the motor is a linear motor.
  9.  請求項1から7までの何れか一項に記載のモータシステムであって、
     前記モータが回転モータであることを特徴とするモータシステム。
    A motor system according to any one of claims 1 to 7,
    A motor system, wherein the motor is a rotary motor.
PCT/JP2022/004334 2021-03-03 2022-02-03 Motor system WO2022185830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021033285 2021-03-03
JP2021-033285 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022185830A1 true WO2022185830A1 (en) 2022-09-09

Family

ID=83155019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004334 WO2022185830A1 (en) 2021-03-03 2022-02-03 Motor system

Country Status (2)

Country Link
TW (1) TW202243388A (en)
WO (1) WO2022185830A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128215A (en) * 1973-04-12 1974-12-09
JPS59198895A (en) * 1983-04-22 1984-11-10 Aida Eng Ltd Time division control circuit of motor
JP2008098908A (en) * 2006-10-11 2008-04-24 Mitsubishi Electric Corp Field network system
JP2010114512A (en) * 2008-11-04 2010-05-20 Mitsubishi Electric Corp Field network system
WO2012124145A1 (en) * 2011-03-15 2012-09-20 オムロン株式会社 Computation unit, assistance unit, assistance program, recording medium storing assistance program, and operation method in assistance device
JP2012194670A (en) * 2011-03-15 2012-10-11 Omron Corp Cpu unit for plc, system program for plc and recording medium for storing system program for plc
WO2018117221A1 (en) * 2016-12-22 2018-06-28 日本電産株式会社 Motor unit and multi-motor system
JP2018144145A (en) * 2017-03-03 2018-09-20 オムロン株式会社 Control system, setting device, setting method, and setting program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49128215A (en) * 1973-04-12 1974-12-09
JPS59198895A (en) * 1983-04-22 1984-11-10 Aida Eng Ltd Time division control circuit of motor
JP2008098908A (en) * 2006-10-11 2008-04-24 Mitsubishi Electric Corp Field network system
JP2010114512A (en) * 2008-11-04 2010-05-20 Mitsubishi Electric Corp Field network system
WO2012124145A1 (en) * 2011-03-15 2012-09-20 オムロン株式会社 Computation unit, assistance unit, assistance program, recording medium storing assistance program, and operation method in assistance device
JP2012194670A (en) * 2011-03-15 2012-10-11 Omron Corp Cpu unit for plc, system program for plc and recording medium for storing system program for plc
WO2018117221A1 (en) * 2016-12-22 2018-06-28 日本電産株式会社 Motor unit and multi-motor system
JP2018144145A (en) * 2017-03-03 2018-09-20 オムロン株式会社 Control system, setting device, setting method, and setting program

Also Published As

Publication number Publication date
TW202243388A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US20220085700A1 (en) Track connection module for linear motor tracks
CN108706307B (en) Method for operating a long stator linear motor
US8334669B2 (en) Multi-axis driver control method, multi-axis driver and multi-axis drive control system having the same
EP3148904B1 (en) System and method for controlling a moving element in a linear motor conveyor
US10967892B2 (en) Independent cart system and method of operating the same
KR101286977B1 (en) Moving magnet track utilizing linear motor and method for controlling thereof
JP2018068094A (en) Multiaxial motor control system, motor controller, and motor control method
CN109217768A (en) The method of long stator linear motor and the delivery unit for moving long stator linear motor
KR101345278B1 (en) Moving body system and moving body control method
US11855557B2 (en) Device and method for preventing a collision when driving at least two movers on a drive surface
US20190265675A1 (en) Drive controller and drive system
WO2020225862A1 (en) Linear conveyor system, linear module, and linear module control method
JP6733170B2 (en) Linear motor system
WO2022185830A1 (en) Motor system
US20230322506A1 (en) Electromagnetic transport system
KR102447060B1 (en) Transport device and transport method for transporting a fragile object
JP5623039B2 (en) Conveying device having a dynamically variable driving range
JP2010064897A6 (en) Conveying device having a dynamically variable driving range
CN113168151B (en) Device and method for avoiding collisions when driving at least two movers on a drive face
JP2013176214A (en) Linear motor and linear transport device
JP2015213394A (en) Conveyance system
JP2009130990A (en) Drive unit for plural motors and control method for the unit
WO2022185831A1 (en) Motor system and motor drive method
US20170077845A1 (en) Positioning arrangement for moving an object that is to be positioned
WO2023127252A1 (en) Motor system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22761938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22761938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP