WO2022185593A1 - Sound wave generation device - Google Patents

Sound wave generation device Download PDF

Info

Publication number
WO2022185593A1
WO2022185593A1 PCT/JP2021/037862 JP2021037862W WO2022185593A1 WO 2022185593 A1 WO2022185593 A1 WO 2022185593A1 JP 2021037862 W JP2021037862 W JP 2021037862W WO 2022185593 A1 WO2022185593 A1 WO 2022185593A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound wave
power
circuit
switching element
capacitor
Prior art date
Application number
PCT/JP2021/037862
Other languages
French (fr)
Japanese (ja)
Inventor
晋一 佐々木
隆昭 浅田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to DE112021007200.5T priority Critical patent/DE112021007200T5/en
Priority to CN202180091300.3A priority patent/CN116762363A/en
Priority to JP2023503359A priority patent/JPWO2022185593A1/ja
Publication of WO2022185593A1 publication Critical patent/WO2022185593A1/en
Priority to US18/215,327 priority patent/US20230338989A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/40Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups with testing, calibrating, safety devices, built-in protection, construction details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/51Electrostatic transducer

Definitions

  • the present disclosure generally relates to sound wave generators. More specifically, the present disclosure relates to a sound wave generator that supplies power from a capacitor to a sound wave source that generates heat and generates sound waves when energized.
  • Patent Document 1 discloses a sound wave generator.
  • the sound wave generator of Patent Document 1 includes a sound wave source, a switching element, a capacitor, and a limiting resistor.
  • the sound wave source generates heat by current supplied from the DC power supply and generates sound waves.
  • a limiting resistor is inserted between the DC power supply and the acoustic wave source to limit the current flowing from the DC power supply to the acoustic wave source.
  • the switching element is connected in series with the acoustic wave source and is turned on/off to control the inflow/interruption of current flowing through the acoustic wave source.
  • a capacitor is connected in parallel with the series circuit of the sound wave source and the switching element.
  • the present disclosure provides a sound wave generation circuit capable of stabilizing the sound pressure of a series of sound waves.
  • One aspect of the present disclosure is a sound wave generator that includes a drive circuit and a power auxiliary circuit.
  • the drive circuit has a capacitor charged by a DC power supply, and a drive switching element that supplies power from the capacitor to a sound wave source that generates heat and generates sound waves when energized.
  • the power auxiliary circuit provides power to the drive circuit such that switching of the drive switching element does not reduce the power provided to the source in the operation of generating a series of acoustic waves from the source.
  • the drive circuit has a capacitor charged by a DC power supply, and a drive switching element that supplies power from the capacitor to a sound wave source that generates heat and generates sound waves when energized.
  • the power auxiliary circuit has an inductor electrically connected between the DC power supply and the capacitor, and a charging switching element electrically connected in parallel with the series circuit of the inductor and the DC power supply. The power auxiliary circuit supplies power to the drive circuit during off periods of the drive switching element in operation to generate a series of acoustic waves from the source by switching the drive switching element.
  • the aspect of the present disclosure can stabilize the sound pressure of a series of sound waves.
  • FIG. 1 is a block diagram of a configuration example of an object detection system including a sound wave generator according to a first embodiment
  • FIG. A circuit diagram of a configuration example of the sound wave generator in FIG. Timing chart for explaining the operation of the sound wave generator of FIG. Graph of simulated voltage decay rate against capacitance of capacitor Graph showing measurement results of sound pressure of a series of sound waves output from the sound wave generator of FIG. Graph showing measurement results of sound pressure of a series of sound waves output from the sound wave generator of the comparative example
  • Block diagram of a configuration example of an object detection system provided with a sound wave generator according to a second embodiment A circuit diagram of a configuration example of the sound wave generator in FIG. Timing diagram for explaining the operation of the sound wave generator of FIG.
  • Block diagram of a configuration example of an object detection system provided with a sound wave generator according to a third embodiment A circuit diagram of a configuration example of the sound wave generator of FIG. Waveform diagram for explaining the operation of the sound wave generator of FIG. Waveform diagram for explaining the operation of the sound wave generator of the modified example
  • FIG. 1 is a block diagram of a configuration example of an object detection system 1 including a sound wave generator 10 according to a first embodiment.
  • the object detection system 1 can detect an object in the target space using the sound wave P1.
  • the object detection system 1 is used, for example, to detect an object such as an obstacle in a mobile object.
  • mobile objects include vehicles such as automobiles, unmanned aircraft such as drones, and autonomous mobile robots.
  • Autonomous mobile robots include robot cleaners.
  • the sound wave generator 10 generates sound waves P1.
  • the sound wave P1 is used in the object detection system 1 to detect an object and measure the distance to the object.
  • the sound wave generator 10 includes a sound wave source 11 , a drive circuit 12 and a power auxiliary circuit 13 .
  • FIG. 2 is a circuit diagram of a configuration example of the sound wave generator 10.
  • the driving circuit 12 includes a capacitor C1 charged by a DC power source V1, and a driving switching element T1 that supplies power from the capacitor C1 to the sound wave source 11 that generates sound waves by generating heat when energized. have.
  • the power auxiliary circuit 13 is designed so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. to power the
  • the sound wave generator 10 of FIG. 1 includes the power auxiliary circuit 13, sufficient electric power is supplied to the sound wave source 11 even in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. supply becomes possible. This makes it possible to suppress, or possibly prevent, a decrease in the sound pressure of the sound waves due to a decrease in the power supplied to the sound wave source 11 . As a result, a series of sound waves P1 can be output from the sound wave source 11 while suppressing a drop in sound pressure. As described above, according to the sound wave generator 10, the sound pressure of a series of sound waves P1 can be stabilized. For example, it is possible to output a series of sound waves P1 with the same sound pressure.
  • the object detection system 1 includes a sound wave generator 10 , a wave receiver 20 and a processing circuit 30 .
  • the sound wave generator 10 of FIG. 1 includes a sound wave source 11, a drive circuit 12, a power auxiliary circuit 13, and a control circuit .
  • the sound wave source 11 generates heat when energized and generates sound waves P1. More specifically, the sound wave source 11 is a thermally excited element that heats air to generate sound waves P1.
  • the sound wave source 11 is a so-called thermophone.
  • the sound wave source 11 includes, for example, a heating element, a substrate, a pair of electrodes, and a heat insulating layer.
  • a heating element is a resistor that generates heat when an electric current is passed through it.
  • the heating element for example, is arranged on the substrate so as to be in contact with the air. The air around the heating element expands or contracts due to the temperature change of the heating element. This generates air pressure waves or sound waves.
  • the heat insulating layer suppresses heat conduction from the heating element to the substrate.
  • the pair of electrodes are electrodes for applying current to the heating element from the outside of the sound wave source 11 .
  • a pair of electrodes are provided on both sides of the heating element. Since the sound wave source 11 may have a conventionally well-known configuration, detailed description of the sound wave source 11 is omitted.
  • the sound wave source 11 is electrically connected between the DC power supply V1 and ground.
  • the DC power supply V1 is composed of various power supply circuits and/or batteries.
  • Various power supply circuits include, for example, AC/DC converters, DC/DC converters, regulators, and batteries.
  • a voltage value of the DC power supply V1 is, for example, 5V.
  • the drive circuit 12 supplies power to the sound wave source 11 so that the sound wave source 11 generates the sound wave P1.
  • the drive circuit 12, as shown in FIG. 2, includes a capacitor C1, a drive switching element T1, and a resistor R1.
  • the capacitor C1 is used to power the sound wave source 11.
  • the capacitor C1 is electrically connected between the connection point between the DC power source V1 and the acoustic wave source 11 and the ground.
  • Capacitor C1 is charged by DC power supply V1. It may be considered that the steady-state voltage value across the capacitor C1 is equal to the voltage value of the DC power supply V1.
  • Capacitor C1 is, for example, an electrolytic capacitor or a ceramic capacitor.
  • the driving switching element T1 is used to drive the sound wave source 11 by controlling power supply to the sound wave source 11.
  • the driving switching element T1 is electrically connected between the sound wave source 11 and ground.
  • the driving switching element T1 is, for example, an n-type MOSFET. Power is supplied to the sound wave source 11 when the driving switching element T1 is on. In FIG. 2, current flows from the capacitor C1 to the sound wave source 11 as indicated by the arrow A1, and the sound wave source 11 is supplied with electric power. If the drive switching element T1 is off, no power is supplied to the sound wave source 11 .
  • the sound wave source 11 generates a sound wave P1 by turning on and off the driving switching element T1.
  • a "sound wave” is one cycle of a sine wave.
  • a “series of sound waves” is a sine wave with multiple cycles.
  • the resistor R1 constitutes an overcurrent protection element electrically connected between the capacitor C1 and the DC power supply V1. Resistor R1 limits the current flowing from DC power supply V1 directly to sound wave source 11 . Excessive heat generation of the sound wave source 11 can be prevented by the resistor R1.
  • the resistance value of the resistor R1 is, for example, 50 ⁇ or more and 5 k ⁇ or less.
  • the power auxiliary circuit 13 is provided separately from the DC power supply V1.
  • the power auxiliary circuit 13 supplies power to the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. Used.
  • the power auxiliary circuit 13 is a circuit for supplementing the lack of power supplied to the sound wave source 11 .
  • the power auxiliary circuit 13 includes an inductor L1, a charging switching element T2, and a diode D1, as shown in FIG.
  • Inductor L1 is electrically connected between DC power supply V1 and capacitor C1.
  • inductor L1 is electrically connected between resistor R1, which is an overcurrent protection element, and DC power supply V1.
  • Charging switching element T2 is electrically connected in parallel to a series circuit of inductor L1 and DC power supply V1.
  • the charging switching element T2 is, for example, an n-type MOSFET.
  • Inductor L1, DC power supply V1, and charging switching element T2 form a closed loop. When the charging switching element T2 is on, energy is stored in the inductor L1.
  • diode D1 is electrically connected to inductor L1
  • the cathode of diode D1 is electrically connected to capacitor C1.
  • Diode D1 reduces the possibility of inadvertently discharging capacitor C1 by allowing current to flow from capacitor C1 to inductor L1.
  • the control circuit 14 is configured to control the drive circuit 12 and the power auxiliary circuit 13 .
  • the control circuit 14 has, for example, an oscillator for outputting drive signals S1 and S2, which will be described later.
  • the control circuit 14 is, for example, an integrated circuit such as an FPGA (field-programmable gate array).
  • the control circuit 14 controls the switching of the driving switching element T1 of the drive circuit 12 so that the sound wave source 11 generates a series of sound waves P1, while the control circuit 14 controls the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease.
  • the power auxiliary circuit 13 is controlled to supply power to the .
  • the control circuit 14 controls switching (on/off) of the drive switching element T1 of the drive circuit 12.
  • the control circuit 14 controls the driving switching element T1 of the driving circuit 12 to cause the sound wave source 11 to generate a series of sound waves P1.
  • the control circuit 14 outputs a driving signal S1 for controlling switching of the driving switching element T1.
  • the driving switching element T1 is a MOSFET, and the driving signal S1 is input to the gate of the driving switching element T1. While the driving signal S1 is at high level, the driving switching element T1 is turned on. While the driving signal S1 is at low level, the driving switching element T1 is turned off.
  • the drive signal S1 is illustrated as a DC power supply.
  • the control circuit 14 controls switching (on/off) of the charging switching element T2 of the power auxiliary circuit 13.
  • the control circuit 14 controls the charging switching element T2 of the power auxiliary circuit 13 to supply power to the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease.
  • the control circuit 14 outputs a driving signal S2 for controlling switching of the charging switching element T2.
  • the charging switching element T2 is a MOSFET, and the drive signal S2 is input to the gate of the charging switching element T2. While the driving signal S2 is at high level, the charging switching element T2 is turned on. While the driving signal S2 is at low level, the charging switching element T2 is turned off.
  • the drive signal S2 is illustrated as a DC power supply.
  • FIG. 3 is a timing chart for explaining the operation of the sound wave generator 10. As shown in FIG.
  • the control circuit 14 outputs a drive signal S1 to the driving switching element T1 in order to control the drive circuit 12 to generate a series of sound waves P1 from the sound wave source 11.
  • the switching frequency of the driving switching element T1 corresponds to the frequency of the series of sound waves P1.
  • the switching frequency of the driving switching element T1 is, for example, 20 kHz or higher.
  • the switching frequency of the driving switching element T1 is, for example, 150 kHz or less.
  • the drive signal S1 is a pulse train signal.
  • the period T of the pulse train of the driving signal S1 is set according to the target switching frequency of the driving switching element T1. In FIG. 3, the period T of the drive signal S1 is constant.
  • the length of the driving signal S1 can be, for example, 5 ms to 30 ms.
  • the pulse width of the driving signal S1 is set according to the target duty ratio of the driving switching element T1.
  • a period T in FIG. 3 includes an ON period T1on and an OFF period T1off of the driving switching element T1.
  • the ON period T1on is a period during which the driving switching element T1 is ON. During the ON period T1on, current flows from the capacitor C1 to the sound wave source 11, and power is supplied to the sound wave source 11.
  • the off period T1off is a period in which the driving switching element T1 is off. During the off period T1off, no current flows from the capacitor C1 to the sound wave source 11 and power is not supplied to the sound wave source 11 .
  • the control circuit 14 charges the capacitor C1 by the power auxiliary circuit 13 in order to eliminate the decrease in the voltage V2 of the capacitor C1 due to the ON period T1on, that is, the decrease in the charge amount of the capacitor C1.
  • the control circuit 14 outputs the driving signal S2 to the charging switching element T2 in order to control the power auxiliary circuit 13 and charge the capacitor C1.
  • the drive signal S2 is a pulse train signal with a period T.
  • the drive signal S2 is a pulse train signal having the same period (here, T) as that of the corresponding drive signal S1.
  • the period T is constant.
  • the pulse width is set according to the target duty ratio of the charging switching element T2.
  • a period T of the drive signal S2 in FIG. 3 includes an ON period T2on and an OFF period T2off of the charging switching element T2.
  • the ON period T2on is a period during which the charging switching element T2 is ON. During the ON period T2on, current flows from the DC power supply V1 to the inductor L1, and energy is stored in the inductor L1.
  • the off period T2off is a period in which the charging switching element T2 is off.
  • the control circuit 14 outputs the driving signal S2 so that the power auxiliary circuit 13 supplies power to the driving circuit 12 during the OFF period T1off of the driving switching element T1.
  • electric power can be supplied each time the sound wave P1 is generated, and the sound pressure of a series of sound waves P1 can be stabilized.
  • the control circuit 14 outputs the driving signal S2 so that the power auxiliary circuit 13 charges the capacitor C1 during the OFF period T1off of the driving switching element T1.
  • the capacitor C1 of the driving circuit 12 is used as the destination of power supply from the power auxiliary circuit 13, so that the sound pressure of the series of sound waves P1 can be stabilized.
  • the ON period T1on of the driving switching element T1 is set to a period from time t11 to time t12.
  • the OFF period T1off of the driving switching element T1 is set to a period from time t12 to time t14.
  • the ON period T2on of the charging switching element T2 is set to a period from time t11 to time t13 after time t12.
  • the charging switching element T2 is turned on during the ON period T1on of the driving switching element T1 and turned off during the OFF period T1off of the driving switching element T1. Thereby, the energy stored in the inductor L1 can be increased.
  • the driving switching element T1 and the charging switching element T2 are turned on at the same time (see time t11). As a result, the control of the driving switching element T1 and the charging switching element T2 can be simplified.
  • the charging switching element T2 is turned off after the driving switching element T1 is turned off. Thereby, the energy stored in the inductor L1 can be increased.
  • the sound wave generator 10 turns on the charging switching element T2 while the capacitor C1 is supplying charge to the sound wave source 11, and during the pulses of the drive signal S1 for the sound wave source 11, to turn off.
  • the sound wave generator 10 stores energy in the inductor L1 while driving the sound wave source 11, and charges the capacitor C1 with the energy of the inductor L1 after the end of driving the sound wave source 11.
  • FIG. This makes it possible to charge the capacitor C1 for each sound wave P1. Therefore, even when a series of sound waves P1 are output from the sound wave source 11, the series of sound waves P1 can be generated with stable sound pressure without lowering the voltage of the capacitor C1.
  • the power auxiliary circuit 13 is provided to the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. Used to supply power.
  • “no decrease” includes not only no decrease in the strict sense, but also no substantial decrease, that is, a negligible decrease as a whole.
  • the power auxiliary circuit 13 is configured so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1.
  • the specified value corresponds to the magnitude of power supplied to the sound wave source 11 during the ON period T1on when the voltage V2 of the capacitor C1 is the voltage value Vc in the steady state.
  • "supplying power to the drive circuit 12 so that the power supplied to the sound wave source 11 is equal to or greater than a specified value” means that the power greater than or equal to the power consumed by the sound wave source 11 due to the generation of the sound wave P1 is supplied to the drive circuit. to supply 12. In this embodiment, this is to supply the capacitor C1 with energy equal to or greater than the energy of the capacitor C1 consumed by the generation of the sound wave P1.
  • the sound wave generator 10 provides the same amount of energy as the energy consumed by the sound wave source 11 in the capacitor C1 from the inductor L1 to the capacitor C1 every time the sound wave source 11 outputs the sound wave P1. It is set so that That is, the energy released from the capacitor C1 and the energy stored in the inductor L1 are set to match. Below is an example of such a setting.
  • Vc the voltage value in a steady state across the capacitor C1.
  • Rth the resistance value of the sound wave source 11 .
  • tAon the length of the ON period T1on of the driving switching element T1.
  • imax the maximum value of the current IL output from the inductor L1 during the OFF period T2off of the charging switching element T2.
  • L the self-inductance of the inductor L1.
  • L is set so as to satisfy the following equation. As a result, the sound pressure of the series of sound waves P1 can be stabilized.
  • a DC power supply with a large current capability is used as the DC power supply V1
  • a DC power supply with a large current capacity is generally large and expensive.
  • the current capability of the DC power supply must also be increased, and there is a limit to the current capability.
  • a DC power supply with a large current capacity is used as the DC power supply V1. I can do without it. For example, let V be the voltage value of the DC power supply V1.
  • tBon be the length of the ON period T2on of the charging switching element T2.
  • imax be the maximum value of the current IL output from the inductor L1 during the OFF period T2off of the charging switching element T2.
  • L be the self-inductance of the inductor L1.
  • the DC power supply V1 may be set so as to satisfy the following equation. As a result, the size of the DC power supply V1 can be reduced.
  • capacitor C1 If a capacitor with a large capacitance is used as the capacitor C1, it is possible to store sufficient energy and reduce the drop in sound pressure. However, capacitors with large capacitance are generally large and expensive. In particular, as the number of series of sound waves P1 increases, the capacitance of the capacitor must also increase, and there is a limit to the capacitance. On the other hand, as described above, the current flows from the DC power supply V1 to the inductor L1 during the ON period T2on of the charging switching element T2 to store energy.
  • FIG. 4 is a graph showing simulation results of the voltage decay rate ([%]) with respect to the capacitance ([ ⁇ F]) of the capacitor C1 when the current time is changed.
  • the voltage decay rate indicates, for example, the ratio of the value of the voltage V2 that has decreased in one cycle T to the steady-state value Vc of the voltage V2 of the capacitor C1.
  • the voltage decay rate tends to decrease as the capacitance increases, and the voltage decay rate greatly depends on the current time.
  • the voltage decay rate is 0% even if the capacitance is 100 ⁇ F or less. Therefore, by setting the current time, the voltage attenuation rate can be set to 0% regardless of the capacitance of the capacitor C1, and the size of the capacitor C1 can be reduced.
  • the wave receiving device 20 receives a sound wave and outputs a received wave signal indicating the received sound wave to the processing circuit 30 .
  • 1 includes a plurality of (two in the illustrated example) microphones 21, a plurality of (two in the illustrated example) amplifier circuits 22, a plurality of (two in the illustrated example) filters 23, an AD It comprises a converter 24 and a control circuit 25 .
  • the microphone 21 is an electroacoustic conversion element that converts sound waves into electrical signals. Upon receiving a sound wave, the microphone 21 outputs an analog received wave signal indicating the received sound wave. The microphone 21 is used to detect the sound waves P1 that are reflected by the object after being output from the sound wave source 11 .
  • the amplifier circuit 22 amplifies the received signal in analog format from the microphone 21 and outputs the amplified signal.
  • the filter 23 passes signals in a passband including the frequency band of the sound wave P1. Filter 23 is, for example, a bandpass filter.
  • the AD converter 24 converts the analog received wave signal that has passed through the filter 23 into a digital received wave signal and outputs the digital received wave signal to the control circuit 25 .
  • the microphone 21, the amplifier circuit 22, the filter 23, and the AD converter 24 may have conventionally well-known configurations, so detailed description thereof will be omitted.
  • the control circuit 25 controls the AD converter 24 so that the AD converter 24 outputs a digital received wave signal to the control circuit 25 .
  • the control circuit 25 outputs the digital received signal from the AD converter 24 to the processing circuit 30 .
  • the control circuit 25 is, for example, an integrated circuit such as FPGA. Note that the control circuit 14 and the control circuit 25 may be integrated into one chip. For example, control circuit 14 and control circuit 25 may be implemented in a single FPGA.
  • the processing circuit 30 is a circuit that controls the operation of the object detection system 1 .
  • the processing circuitry 30 may be implemented by, for example, a computer system including one or more processors (microprocessors) and one or more memories.
  • the functions of the processing circuit 30 are realized by one or more processors executing programs.
  • the processing circuit 30 uses the sound wave P1 from the sound wave generator 10 to execute object detection processing for detecting an object in the target space.
  • the object detection processing includes wave transmission processing and determination processing.
  • the wave transmission process controls the sound wave generator 10 so that the sound wave generator 10 generates the sound wave P1.
  • the wave transmission process causes the sound wave generator 10 to output a series of sound waves P1 by, for example, sending a measurement start signal to the sound wave generator 10 .
  • the determination process acquires a received wave signal indicating the sound wave received by the wave receiving device 20 from the wave receiving device 20 that receives the sound wave from the target space. In the determination process, for example, a received wave signal in digital format from the wave receiving device 20 is obtained.
  • Determination processing determines whether or not there is an object in the target space based on the acquired received wave signal. In the determination process, for example, if the peak value of the cross-correlation function between the transmitted wave signal and the received wave signal representing the series of sound waves P1 is equal to or greater than a threshold value, it is determined that an object exists in the target space. For example, the main lobe of the cross-correlation function is used as the peak of the cross-correlation function. Further, in the determination processing, when it is determined that there is an object in the target space, the distance to the object is determined based on the received wave signal.
  • the distance to the object is obtained by TOF (Time of Flight) technology based on the time at which the peak of the cross-correlation function between the transmitted wave signal and the received wave signal appears.
  • TOF Time of Flight
  • Conventionally well-known techniques can be applied to the detection of an object and the measurement of the distance to the object using sound waves, so a detailed description thereof will be omitted.
  • the processing circuit 30 has a function of setting the drive signals S1 and S2 of the control circuit 14 of the sound wave generator 10 .
  • FIG. 5 is a graph showing measurement results of the sound pressure of a series of sound waves P1 output from the sound wave generator 10.
  • FIG. 6 is a graph showing measurement results of sound pressure of a series of sound waves output from the sound wave generator of the comparative example.
  • the envelope of the sound pressure of a series of sound waves decreases over time. This is because, in the sound wave generator of the comparative example, a series of sound waves are output from the sound wave source 11 by switching the driving switching element T1, and the charging of the capacitor C1 is insufficient during the OFF period T1off of the driving switching element T1. This is thought to be because When the capacitor C1 is insufficiently charged, the amount of electric charge stored in the capacitor C1 decreases, and the power supplied to the sound wave source 11 decreases. A decrease in the power supplied to the sound wave source 11 contributes to a decrease in the sound pressure of the sound wave, so the sound pressure becomes unstable.
  • the sound pressure envelope of the series of sound waves P1 does not decrease.
  • the sound wave generator 10 since the sound wave generator 10 includes the power auxiliary circuit 13, even in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1, the sound wave source 11 Sufficient electric power can be supplied to the sound wave source 11, and a series of sound waves P1 can be output from the sound wave source 11 while suppressing a decrease in sound pressure.
  • the sound pressure of a series of sound waves P1 can be stabilized.
  • the sound wave generator 10 described above includes a drive circuit 12 and a power auxiliary circuit 13 .
  • the driving circuit 12 has a capacitor C1 charged by a DC power source V1, and a driving switching element T1 that supplies electric power from the capacitor C1 to the sound wave source 11 that generates heat when energized and generates a sound wave P1.
  • the power auxiliary circuit 13 supplies power to the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1.
  • the power auxiliary circuit 13 supplies the driving circuit 12 with power equal to or greater than the power consumed for generating the sound wave P1 each time the sound wave P1 is generated. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • the power auxiliary circuit 13 supplies power to the drive circuit 12 during the OFF period T1off of the drive switching element T1. According to this configuration, electric power can be supplied each time the sound wave P1 is generated, and the sound pressure of a series of sound waves P1 can be stabilized.
  • the power auxiliary circuit 13 charges the capacitor C1 during the OFF period T1off of the driving switching element T1. According to this configuration, since the capacitor C1 of the driving circuit 12 is used as the destination of power supply from the power auxiliary circuit 13, the sound pressure of the series of sound waves P1 can be stabilized.
  • the auxiliary power circuit 13 includes an inductor L1 electrically connected between the DC power supply V1 and the capacitor C1, and an inductor L1 electrically connected in parallel with the series circuit of the inductor L1 and the DC power supply V1. It has a charging switching element T2 to be connected. With this configuration, the circuit configuration can be simplified.
  • the power auxiliary circuit 13 has a diode D1.
  • the anode of diode D1 is electrically connected to inductor L1 and the cathode of diode D1 is electrically connected to capacitor C1. According to this configuration, it is possible to reduce the possibility that the current flows from the capacitor C1 to the inductor L1 and the capacitor C1 unintentionally discharges.
  • the charging switching element T2 is turned on during the ON period T1on of the driving switching element T1, and turned off during the OFF period T1off of the driving switching element T1.
  • the driving switching element T1 and the charging switching element T2 are turned on at the same time. With this configuration, the control of the driving switching element T1 and the charging switching element T2 can be simplified.
  • the charging switching element T2 is turned off after the driving switching element T1 is turned off. With this configuration, the energy stored in inductor L1 can be increased.
  • the voltage value across the capacitor C1 in a steady state is Vc
  • the resistance value of the sound wave source 11 is Rth
  • the length of the ON period of the driving switching element T1 is tAon
  • the charging switching element If the maximum value of the current IL output from the inductor L1 during the off period T2off of T2 is imax, and the self-inductance of the inductor L1 is L, then L is meet. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • the voltage value of the DC power source V1 is V
  • the length of the ON period T2on of the charging switching element T2 is tBon
  • the current IL output from the inductor L1 during the OFF period T2off of the charging switching element T2 If imax is the maximum value of and L is the self-inductance of the inductor L1, the DC power supply V1 and the inductor L1 are is set to satisfy According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • the drive circuit 12 includes an overcurrent protection element (resistor R1) electrically connected between the capacitor C1 and the DC power supply V1. According to this configuration, excessive heat generation of the sound wave source 11 can be prevented.
  • the switching frequency of the drive switching element T1 is 20 kHz or higher. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • the sound wave generator 10 also includes a control circuit 14 that controls the drive circuit 12 and the power auxiliary circuit 13 .
  • the control circuit 14 controls the switching of the driving switching element T1 of the drive circuit 12 so that the sound wave source 11 generates a series of sound waves P1, while the control circuit 14 controls the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease.
  • the power auxiliary circuit 13 is controlled to supply power to the . According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • the sound wave generator 10 also includes a drive circuit 12 and a power auxiliary circuit 13 .
  • the driving circuit 12 has a capacitor C1 charged by a DC power source V1, and a driving switching element T1 that supplies electric power from the capacitor C1 to the sound wave source 11 that generates heat when energized and generates a sound wave P1.
  • the power auxiliary circuit 13 includes an inductor L1 electrically connected between the DC power supply V1 and the capacitor C1, and a charging switching element electrically connected in parallel to the series circuit of the inductor L1 and the DC power supply V1. have T2.
  • the power auxiliary circuit 13 supplies power to the drive circuit 12 during the OFF period T1off of the drive switching element T1 in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the drive switching element T1.
  • the power auxiliary circuit 13 generates a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. can be supplied to the drive circuit 12 . Therefore, the sound pressure of the series of sound waves P1 can be stabilized.
  • FIG. 7 is a block diagram of a configuration example of an object detection system 1A including the sound wave generator 10A according to the second embodiment.
  • the object detection system 1A includes a sound wave generator 10A, a wave receiver 20, and a processing circuit 30.
  • the object detection system 1A includes a sound wave generator 10A, a wave receiver 20, and a processing circuit 30.
  • FIG. 7 shows that the object detection system 1A includes a sound wave generator 10A, a wave receiver 20, and a processing circuit 30.
  • FIG. 8 is a circuit diagram of a configuration example of the sound wave generator 10A.
  • the sound wave generator 10A includes a sound wave source 11 and a plurality of (two in the illustrated example) drive circuits 12-1 and 12-2 (hereinafter collectively denoted by reference numeral 12). , a plurality of (two in the illustrated example) power auxiliary circuits 13-1 and 13-2 (hereinafter collectively denoted by reference numeral 13), and a control circuit 14A. 8, illustration of the control circuit 14A is omitted.
  • each of the drive circuits 12-1 and 12-2 includes a capacitor C1 and a drive switching element T1.
  • the capacitor C1 is electrically connected between the connection point between the DC power source V1 and the acoustic wave source 11 and the ground.
  • Capacitor C1 is charged by DC power supply V1.
  • the capacitors C1 of the drive circuits 12-1 and 12-2 are electrically connected in parallel with each other.
  • the driving switching element T1 is electrically connected between the sound wave source 11 and ground.
  • the driving switching elements T1 of the driving circuits 12-1 and 12-2 are electrically connected in parallel with each other.
  • each of the power auxiliary circuits 13-1 and 13-2 correspond to the drive circuits 12-1 and 12-2, respectively.
  • each of the power auxiliary circuits 13-1 and 13-2 includes an inductor L1, a charging switching element T2, and a diode D1.
  • Inductor L1 is electrically connected between DC power supply V1 and capacitor C1.
  • the inductors L1 of the power auxiliary circuits 13-1 and 13-2 are electrically connected in parallel with each other.
  • the charging switching element T2 is electrically connected in parallel to the series circuit of the inductor L1 and the DC power supply V1.
  • Inductor L1, DC power supply V1, and charging switching element T2 form a closed loop.
  • Diode D1 of power auxiliary circuit 13-1 is electrically connected between inductor L1 of power auxiliary circuit 13-1 and capacitor C1 of drive circuit 12-1 corresponding to power auxiliary circuit 13-1.
  • Diode D1 of power auxiliary circuit 13-2 is electrically connected between inductor L1 of power auxiliary circuit 13-2 and capacitor C1 of drive circuit 12-2 corresponding to power auxiliary circuit 13-2.
  • the control circuit 14A is configured to control the drive circuits 12-1 and 12-2 and the power auxiliary circuits 13-1 and 13-2.
  • the control circuit 14 controls the switching of the driving switching elements T1 of the drive circuits 12-1 and 12-2 so as to cause the sound wave source 11 to generate a series of sound waves P1, while the power supplied to the sound wave source 11 decreases.
  • the auxiliary power circuits 13-1 and 13-2 are controlled so as to supply power to the driving circuits 12-1 and 12-2 so as not to cause the power failure.
  • the control circuit 14A sequentially uses the set of drive circuit 12-1 and power auxiliary circuit 13-1 and the set of drive circuit 12-2 and power auxiliary circuit 13-2.
  • the control circuit 14 outputs a plurality of drive signals S1-1 and S1-2 (hereinafter collectively referred to as S1) for controlling switching of the drive switching elements T1 of the drive circuits 12-1 and 12-2. ).
  • the driving switching element T1 is a MOSFET, and the driving signal S1 is input to the gate of the driving switching element T1.
  • drive signals S1-1 and S1-2 are illustrated as DC power sources.
  • the control circuit 14 outputs a plurality of drive signals S2-1 and S2-2 (hereinafter collectively referred to as S2) for controlling switching of the charging switching elements T2 of the power auxiliary circuits 13-1 and 13-2. attached) is output.
  • the charging switching element T2 is a MOSFET, and the drive signal S2 is input to the gate of the charging switching element T2.
  • drive signals S2-1 and S2-2 are illustrated as DC power sources.
  • FIG. 9 is a timing chart for explaining the operation of the sound wave generator 10A.
  • the control circuit 14A applies a plurality of drive signals S1-1, S1-2 to the plurality of drive circuits 12-1, 12-2 to control the drive circuit 12 to generate a series of sound waves P1 from the sound wave source 11. Output to the driving switching element T1.
  • the plurality of drive signals S1-1 and S1-2 are set so that the drive switching elements T1 of the plurality of drive circuits 12-1 and 12-2 cooperate to generate a series of sound waves P1 from the sound wave source 11. be done.
  • the control circuit 14A generates a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the drive circuits 12-1 and 12-2. -1, S1-2 are set. In FIG.
  • S0 indicates a composite drive signal obtained by combining a plurality of drive signals S1-1 and S1-2, and the period and length of the composite drive signal S0 correspond to the period and length of the series of sound waves P1.
  • the combined drive signal S0 is a pulse train signal with a period T.
  • the period T corresponds to the period of the series of sound waves P1.
  • the combined drive signal S0 is a combined drive signal obtained by combining a plurality of drive signals S1-1 and S1-2.
  • each of drive signals S1-1 and S1-2 is a pulse train having a period twice (2T) the period of combined drive signal S0.
  • the drive signals S1-1 and S1-2 are shifted by the period T of the combined drive signal S0, thereby obtaining the combined drive signal S0 shown in FIG. It should be noted that the periods of the plurality of drive signals S1 and the phase shifts of the plurality of drive signals S1 may be appropriately set, and are not limited to the example shown in FIG.
  • the cycle of the driving signal S1-1 includes an ON period T1on-1 and an OFF period T1off-1 of the driving switching element T1 of the driving circuit 12-1.
  • a current flows from the capacitor C1 of the driving circuit 12-1 to the sound wave source 11, and the sound wave source 11 is supplied with power.
  • the off period T1off-1 no current flows from the capacitor C1 of the drive circuit 12-1 to the sound wave source 11, and power is not supplied from the drive circuit 12-1 to the sound wave source 11.
  • the period of the driving signal S1-2 includes an ON period T1on-2 and an OFF period T1off-2 of the driving switching element T1 of the driving circuit 12-2.
  • the control circuit 14A alternately supplies power to the sound wave source 11 from the capacitors C1 of the drive circuits 12-1 and 12-2.
  • the control circuit 14A controls the power auxiliary circuits 13-1 and 13-2 to eliminate the drop in the voltage V2 of the capacitors C1 of the drive circuits 12-1 and 12-2 due to the on-periods T1on-1 and T1on-2. Charge the corresponding capacitor C1.
  • the control circuit 14A applies drive signals S2-1 and S2-2 to the power auxiliary circuits 13-1 and 13-2 to control the power auxiliary circuits 13-1 and 13-2 to charge the corresponding capacitors C1. is output to the charging switching element T2.
  • the control circuit 14A controls the power supplied to the sound wave source 11 in the operation of generating a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12-1 and 12-2.
  • the plurality of drive signals S2-1 and S2-2 are set so that the plurality of power auxiliary circuits 13-1 and 13-2 supply power to the corresponding plurality of drive circuits 12, respectively, so as not to decrease the power.
  • each of the plurality of power auxiliary circuits 13-1 and 13-2 sequentially switches the driving switching elements T1 of the plurality of drive circuits 12-1 and 12-2 to generate a series of sound waves from the sound wave source 11. is supplied to the corresponding driving circuit 12 of the plurality of driving circuits 12-1 and 12-2 during the off period T1off of the driving switching element T1 of the corresponding driving circuit 12.
  • the drive signals S2-1 and S2-2 are pulse train signals having the same period (here, 2T) as the corresponding drive signals S1-1 and S1-2.
  • the pulse width is set according to the target duty ratio of the charging switching element T2.
  • the period of the drive signal S2-1 includes an ON period T2on-1 and an OFF period T2off-1 of the charging switching element T2 of the power auxiliary circuit 13-1.
  • a current flows from the DC power supply V1 to the inductor L1 of the power auxiliary circuit 13-1, and energy is stored in the inductor L1 of the power auxiliary circuit 13-1.
  • the cycle of the driving signal S2-2 includes an ON period T2on-2 and an OFF period T2off-2 of the charging switching element T2 of the power auxiliary circuit 13-2.
  • the ON period T2on-2 current flows from the DC power supply V1 to the inductor L1 of the power auxiliary circuit 13-2, and energy is stored in the inductor L1 of the power auxiliary circuit 13-2.
  • a current flows from the inductor L1 of the power auxiliary circuit 13-2 to the capacitor C1 of the drive circuit 12-2, and the capacitor C1 of the drive circuit 12-2 is charged.
  • the control circuit 14A controls the power auxiliary circuits 13-1 and 13-2 to supply power to the driving circuits 12-1 and 12-2 during the OFF periods T1off-1 and T1off-2. It outputs drive signals S2-1 and S2-2. As a result, electric power can be supplied each time the sound wave P1 is generated, and the sound pressure can be stabilized. In addition, it is possible to prevent power from fluctuating while power is being supplied to the sound wave source 11, thereby stabilizing the sound pressure.
  • the control circuit 14A outputs the drive signal S2-1 so that the power auxiliary circuits 13-1 and 13-2 charge the capacitors C1 of the drive circuits 12-1 and 12-2 during the off periods T1on-1 and T1on-2, respectively. , S2-2. As a result, the capacitor C1 of the drive circuit 12 corresponding to the power supply destination from the power auxiliary circuit 13 is used, so that the sound pressure can be stabilized.
  • the ON period T1on-1 is set to the period from time t21 to t22
  • the OFF period T1off-1 is set to the period from time t22 to time t26.
  • the ON period T2on-1 is set to a period from time t21 to time t24 after time t22.
  • the ON period T2on-1 can be made longer than the period of the combined drive signal S0. Therefore, the energy stored in the inductor L1 of the power auxiliary circuit 13-1 can be further increased.
  • the ON period T1on-2 is set to the period from time t23 to time t25
  • the OFF period T1off-2 is set to the period from time t25 to time t28.
  • the ON period T2on-2 is set to a period from time t23 to time t27 after time t25.
  • the charging switching element T2 of the power auxiliary circuit 13-2 is turned on during the on period T1on-2 and turned off during the off period T1off-2. Thereby, the energy stored in the inductor L1 of the power auxiliary circuit 13-2 can be increased.
  • the ON period T2on-2 can be made longer than the period of the combined drive signal S0. Therefore, the energy stored in the inductor L1 of the power auxiliary circuit 13-2 can be further increased.
  • the sound wave generator 10A operates to generate a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12 .
  • the sound wave generator 10A includes two drive circuits 12-1 and 12-2, and alternately supplies power to the sound wave source 11 from the two drive circuits 12-1 and 12-2.
  • the power auxiliary circuits 13 supply power to the corresponding drive circuits 12 such that the power supplied to the sound wave source 11 is not reduced.
  • the auxiliary power circuit 13-1 supplies power to the driving circuit 12-1, and the auxiliary power circuit 13-2 supplies power to the driving circuit 12-2.
  • the driving switching elements T1 of the plurality of driving circuits 12 are switched in order, thereby causing the sound wave source 11 to generate a series of sound waves P1. Therefore, the ON period T2on of the charging switching element T2 in each power auxiliary circuit 13 can be made longer than the cycle of the series of sound waves P1. That is, by providing a plurality of sets of the drive circuit 12 and the power auxiliary circuit 13, the ON period T2on of the charging switching element T2 can be made longer than the period of the series of sound waves P1, and the ON period T2on of the charging switching element T2 can be increased. In addition, the energy that can be stored in inductor L1 can be increased.
  • the sound wave generator 10A described above includes a plurality of drive circuits 12 and a plurality of power auxiliary circuits 13 corresponding to the plurality of drive circuits 12, respectively.
  • the plurality of power auxiliary circuits 13 do not reduce the power supplied to the sound wave source 11 in the operation of generating a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12. , power is supplied to a plurality of drive circuits 12 corresponding to each other. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • the sound wave generator 10A includes a plurality of drive circuits 12 and a plurality of power auxiliary circuits 13 corresponding to the plurality of drive circuits 12, respectively.
  • Each of the plurality of power auxiliary circuits 13 is operated to generate a series of sound waves from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12.
  • the power is supplied to the corresponding drive circuit 12 during the OFF period T1off of the drive switching element T1 of the corresponding drive circuit 12 . According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • FIG. 10 is a block diagram of a configuration example of an object detection system 1B including a sound wave generator 10B according to the third embodiment.
  • the object detection system 1B includes a sound wave generator 10B, a wave receiver 20, and a processing circuit 30.
  • the object detection system 1B includes a sound wave generator 10B, a wave receiver 20, and a processing circuit 30.
  • FIG. 10 shows that the object detection system 1B includes a sound wave generator 10B, a wave receiver 20, and a processing circuit 30.
  • FIG. 11 is a circuit diagram of a configuration example of the sound wave generator 10B.
  • the sound wave generator 10B includes a sound wave source 11, a drive circuit 12, a power auxiliary circuit 13B, and a control circuit 14B. 11, illustration of the control circuit 14B is omitted.
  • the power auxiliary circuit 13B supplies power to the driving circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. Used.
  • the power auxiliary circuit 13B includes a plurality of auxiliary capacitors C2-1 to C2-n, a switching circuit 131, and a plurality of auxiliary resistors R2-1 to R2-n.
  • a plurality of auxiliary capacitors C2-1 to C2-n are charged by a plurality of auxiliary DC power supplies V2-1 to V2-n, respectively.
  • Auxiliary capacitors C2-1 to C2-n are used to power the acoustic wave source 11 instead of the capacitor C1.
  • the auxiliary capacitors C2-1 to C2-n are electrically connected between the connection points between the auxiliary DC power sources V2-1 to V2-n and the sound wave source 11 and the ground.
  • Auxiliary capacitors C2-1 to C2-n are charged by auxiliary DC power supplies V2-1 to V2-n. It can be considered that the voltage values across the auxiliary capacitors C2-1 to C2-n in the steady state are equal to the voltage values of the auxiliary DC power supplies C2-1 to C2-n.
  • the auxiliary capacitors C2-1 to C2-n are, for example, electrolytic capacitors or ceramic capacitors.
  • the auxiliary DC power supplies V2-1 to V2-n are composed of various power supply circuits and/or batteries.
  • Various power supply circuits include, for example, AC/DC converters, DC/DC converters, regulators, and batteries.
  • the voltage value of the auxiliary DC power supply V2 is, for example, 5V.
  • the auxiliary resistors R2-1 to R2-n constitute overcurrent protection elements electrically connected between the auxiliary capacitors C2-1 to C2-n and the auxiliary DC power supplies V2-1 to V2-n.
  • Auxiliary resistors R2-1 to R2-n limit the current that flows directly to sound wave source 11 from auxiliary DC power supplies V2-1 to V2-n. Excessive heat generation of the sound wave source 11 can be prevented by the auxiliary resistors R2-1 to R2-n.
  • the resistance values of the auxiliary resistors R2-1 to R2-n are, for example, 50 ⁇ or more and 5 k ⁇ or less.
  • the switching circuit 131 selects the power supply source for the sound wave source 11 from the capacitor C1 of the drive circuit 12 and the plurality of auxiliary capacitors C2-1 to C2-n of the power auxiliary circuit 13B. More specifically, the switching circuit 131 controls the capacitor of the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. At least one of the one or more auxiliary capacitors C2-1 to C2-n is electrically connected to the acoustic wave source 11 instead of C1. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • the switching circuit 131 includes a main switch SW1 and a plurality of auxiliary switches SW2-1 to SW2-n.
  • Main switch SW1 is electrically connected between sound wave source 11 and capacitor C1.
  • the plurality of auxiliary switches SW2-1 to SW2-n are electrically connected between the sound wave source 11 and the plurality of auxiliary capacitors C2-1 to C2-n, respectively.
  • one of the main switch SW1 and the plurality of auxiliary switches SW2-1 to SW2-n is turned on, and the rest are turned off.
  • the capacitor C1 of the drive circuit 12 and one of the auxiliary capacitors C2-1 to C2-n of the power auxiliary circuit 13B are electrically connected to the sound wave source 11.
  • the control circuit 14B is configured to control the drive circuit 12 and the power auxiliary circuit 13B.
  • the control circuit 14B controls switching (on/off) of the drive switching element T1 of the drive circuit 12.
  • the control circuit 14B controls the driving switching element T1 of the driving circuit 12, thereby causing the sound wave source 11 to generate a series of sound waves P1.
  • the control circuit 14 outputs a driving signal S1 for controlling switching of the driving switching element T1.
  • the driving switching element T1 is a MOSFET, and the driving signal S1 is input to the gate of the driving switching element T1.
  • the drive signal S1 is illustrated as a DC power supply.
  • the control circuit 14B controls the switching circuit 131 of the power auxiliary circuit 13B.
  • the control circuit 14B supplies power to the driving circuit 12 by controlling the main switch SW1 and the plurality of auxiliary switches SW2-1 to SW2-n of the switching circuit 131 so that the power supplied to the sound wave source 11 does not decrease. perform the action to be performed.
  • the control circuit 14B includes one or more auxiliary capacitors C2-1 to C2-n instead of the capacitor C1 of the drive circuit 12 so that the voltage VT applied to the sound wave source 11 does not fall below a predetermined value. are electrically connected to the acoustic wave source 11 .
  • control circuit 14B controls the capacitor C1 of the drive circuit 12 and the plurality of auxiliary capacitors C2-1 to C2- n are electrically connected to the acoustic wave source 11 .
  • the predetermined value is set so that the power supplied to the sound wave source 11 does not decrease. That is, the control circuit 14B sequentially uses the capacitor C1 of the drive circuit 12 and the plurality of auxiliary capacitors C2-1 to C2-n of the power auxiliary circuit 13B so that the power supplied to the sound wave source 11 does not decrease.
  • FIG. 12 is a timing chart for explaining the operation of the sound wave generator 10.
  • the control circuit 14B provides a drive signal S31 for controlling the main switch SW1 of the switching circuit 131 and a drive signal S31 for controlling the plurality of auxiliary switches SW2-1 to SW2-n of the switching circuit 131. It outputs drive signals S32-1 to S32-n (hereinafter collectively referred to as S32). While the drive signal S31 is at high level, the main switch SW1 is turned on. While the drive signal S31 is at low level, the main switch SW1 is turned off. While the drive signal S32 is at high level, the auxiliary switch SW2 is turned on. While the drive signal S32 is at low level, the auxiliary switch SW2 is turned off.
  • the control circuit 14B sets the drive signal S31 to high level, sets the drive signals S32-1 to S32-n to low level, and turns on only the main switch SW1.
  • the capacitor C1 of the drive circuit 12 is electrically connected to the sound wave source 11, and power can be supplied from the capacitor C1 to the sound wave source 11.
  • FIG. The voltage VT applied to the sound wave source 11 at time t31 is equal to the voltage across the capacitor C1. While the driving switching element T1 is switched to generate a series of sound waves P1 from the sound wave source 11, the energy stored in the capacitor C1 is consumed and the voltage VT drops.
  • the control circuit 14B sets the drive signal S32-1 to high level and sets the drive signals S31, S32-2 to S32-n to low level at time t32-1 before the voltage VT becomes equal to or lower than a predetermined value, Only the auxiliary switch SW2-1 is turned on. As a result, only the auxiliary capacitor C2-1 of the power auxiliary circuit 13 is electrically connected to the sound wave source 11, and power can be supplied to the sound wave source 11 from the auxiliary capacitor C2-1. Therefore, the voltage VT applied to the sound wave source 11 at time t32-1 becomes equal to the voltage across the auxiliary capacitor C2-1. While the driving switching element T1 is switched to generate a series of sound waves P1 from the sound wave source 11, the energy accumulated in the auxiliary capacitor C2-1 is consumed and the voltage VT drops.
  • the control circuit 14B sets the drive signal S32-2 to a high level at time t32-2 before the voltage VT becomes equal to or lower than a predetermined value, and sets the drive signals S31, S32-1, S32-3 to S32. -n is set to low level, and only the auxiliary switch SW2-2 is turned on.
  • the auxiliary capacitor C2-2 of the power auxiliary circuit 13 is electrically connected to the sound wave source 11, and electric power can be supplied to the sound wave source 11 from the auxiliary capacitor C2-2. Therefore, the voltage VT applied to the sound wave source 11 at time t32-2 becomes equal to the voltage across the auxiliary capacitor C2-2. While the driving switching element T1 is switched to generate a series of sound waves P1 from the sound wave source 11, the energy accumulated in the auxiliary capacitor C2-2 is consumed, and the voltage VT decreases.
  • the control circuit 14B controls the drive signals S32-3, . -n is set to a high level, and only the auxiliary switches SW2-3, . . . , SW2-n-1 and SW2-n are turned on.
  • control circuit 14B turns on one of the main switch SW1 and the plurality of auxiliary switches SW2-1 to SW2-n so that the voltage VT applied to the sound wave source 11 does not fall below a predetermined value.
  • drive signals 31, 32-1, 32-n are output so that
  • the sound wave generator 10B outputs a series of sound waves P1 from the sound wave source 11, the power supplied to the sound wave source 11 can be prevented from decreasing, and the series of sound waves P1 can be generated at a stable sound pressure. can be generated.
  • the power auxiliary circuit 13B includes a plurality of auxiliary capacitors C2-1 to C2-n charged by a plurality of auxiliary DC power sources V2-1 to V2-n, respectively, and a switching circuit 131.
  • the switching circuit 131 replaces the capacitor C1 of the drive circuit 12 with a plurality of capacitors C1 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1.
  • at least one of the auxiliary capacitors C2-1 to C2-n is electrically connected to the acoustic wave source 11; According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • the frequency of the series of sound waves P is constant, but the frequency does not necessarily have to be constant.
  • the series of sound waves P may vary in frequency (eg, increase or decrease) over time.
  • FIG. 12 is a waveform diagram for explaining the operation of the sound wave generator of one modification.
  • the driving signal S1 is a pulse signal whose frequency decreases (period increases) with time.
  • the cycle of the drive signal S1 increases to T41, T42, T43, .
  • the ON period T1on is constant, but the OFF period T1off increases as the cycle increases.
  • the drive signal S1 may be a pulse signal whose frequency increases (period decreases) with time.
  • the drive signal S1 may be a pulse signal whose frequency increases or decreases with time.
  • a signal is called, for example, a chirp signal.
  • Using a chirp signal can reduce the side lobes of the cross-correlation function compared to using a pulse signal whose frequency does not change with time. Therefore, the main lobe of the cross-correlation function can be easily distinguished from the side lobes, and the accuracy of object detection can be improved.
  • the drive signal S2 is synchronized with the drive signal S1. Therefore, the period of the drive signal S2 is equal to the period of the drive signal S1. If the ON period T2on of the drive signal S2 is long, more energy can be stored in the inductor L1 of the power auxiliary circuit 13. FIG. From this point, the ON period T2on of the drive signal S2 may be set according to the cycle of the drive signal S1. In FIG. 12, since the cycle of the drive signal S1 is increased, the ON period T2on of the drive signal S2 is also increased. Thus, the ON period T2on of the drive signal S2 may not be constant, and may be set according to the cycle of the drive signal S1.
  • the sound wave generator 10A includes two sets of drive circuit 12 and power auxiliary circuit 13, but the number of sets of drive circuit 12 and power auxiliary circuit 13 may be three or more. .
  • the sound wave generator 10A may operate to generate a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12 . Then, in the operation of generating a series of sound waves P1, the plurality of power auxiliary circuits 13 may supply power to the corresponding plurality of drive circuits 12 so that the power supplied to the sound wave source 11 does not decrease.
  • the number of auxiliary DC power supplies V2-1 to V2-n and the number of auxiliary capacitors C2-1 to C2-n are not particularly limited.
  • the power auxiliary circuit 13B includes one or more auxiliary capacitors C2-1 to C2-n charged by one or more auxiliary DC power supplies V2-1 to V2-n, respectively, and a switching circuit 131. good.
  • the switching circuit 131 replaces the capacitor C1 of the drive circuit 12 with 1 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1.
  • At least one of the above auxiliary capacitors C2-1 to C2-n may be electrically connected to the sound wave source 11. FIG. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
  • overcurrent protection element may be used instead of resistor R1.
  • overcurrent protection elements include current fuses, fuse resistors, bimetals, and the like.
  • an overcurrent protection device is not essential.
  • a first aspect is a sound wave generator (10; 10A; 10B) comprising a drive circuit (12) and a power auxiliary circuit (13; 13B).
  • the drive circuit (12) supplies electric power from the capacitor (C1) to a capacitor (C1) charged by a DC power supply (V1) and to a sound wave source (11) that generates heat by energization and generates a sound wave (P1). It has a driving switching element (T1) for supplying power.
  • the power auxiliary circuit (13; 13B) is supplied to the sound wave source (11) in operation to generate a series of sound waves (P1) from the sound wave source (11) by switching the driving switching element (T1).
  • the drive circuit (12) is powered so that the power does not decrease. According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
  • the second aspect is a sound wave generator (10; 10A) based on the first aspect.
  • the power auxiliary circuit (13) supplies power to the drive circuit (12) during an OFF period (T1off) of the driving switching element (T1). According to this aspect, electric power can be supplied each time the sound wave (P1) is generated, and the sound pressure can be stabilized.
  • a third aspect is a sound wave generator (10; 10A) based on the second aspect.
  • the power auxiliary circuit (13) charges the capacitor (C1) during an OFF period (T1off) of the driving switching element (T1).
  • the capacitor (C1) of the drive circuit (12) is used as the destination of power supply from the power auxiliary circuit (13)
  • power is supplied to the sound wave source (11) via the capacitor (C1). It is possible to stabilize the sound pressure.
  • a fourth aspect is a sound wave generator (10; 10A) based on the third aspect.
  • the power auxiliary circuit (13) includes an inductor (L1) electrically connected between the DC power supply (V1) and the capacitor (C1), the inductor (L1) and the and a charging switching element (T2) electrically connected in parallel to a series circuit with the DC power supply (V1). According to this aspect, the circuit configuration can be simplified.
  • a fifth aspect is a sound wave generator (10; 10A) comprising a drive circuit (12) and a power auxiliary circuit (13).
  • the drive circuit (12) supplies electric power from the capacitor (C1) to a capacitor (C1) charged by a DC power supply (V1) and to a sound wave source (11) that generates heat by energization and generates a sound wave (P1). It has a driving switching element (T1) for supplying power.
  • the power auxiliary circuit (13) includes an inductor (L1) electrically connected between the DC power supply (V1) and the capacitor (C1), and the inductor (L1) and the DC power supply (V1). and a charging switching element (T2) electrically connected in parallel to the series circuit of .
  • the power auxiliary circuit (13) generates a series of sound waves (P1) from the sound wave source (11) by switching the driving switching element (T1) during an OFF period ( T1off) powers the drive circuit (12). According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
  • a sixth aspect is a sound wave generator (10; 10A) based on the fourth or fifth aspect.
  • said power auxiliary circuit (13) comprises a diode (D1).
  • the anode of the diode (D1) is electrically connected to the inductor (L1) and the cathode of the diode (D1) is electrically connected to the capacitor (C1). According to this aspect, it is possible to reduce the possibility that a current flows from the capacitor (C1) to the inductor (L1) and the capacitor (C1) is unintentionally discharged.
  • a seventh aspect is a sound wave generator (10; 10A) based on any one of the fourth to sixth aspects.
  • the charging switching element (T2) is turned on during an ON period (T1on) of the driving switching element (T1), and an OFF period (T1off) of the driving switching element (T1). turned off at According to this aspect, the energy stored in the inductor (L1) can be increased.
  • An eighth aspect is a sound wave generator (10; 10A) based on the seventh aspect.
  • the driving switching element (T1) and the charging switching element (T2) are turned on at the same time. According to this aspect, the control of the driving switching element (T1) and the charging switching element (T2) can be simplified.
  • a ninth aspect is a sound wave generator (10; 10A) based on the eighth aspect.
  • the charging switching element (T2) is turned off after the driving switching element (T1) is turned off. According to this aspect, the energy stored in the inductor (L1) can be increased.
  • a tenth aspect is a sound wave generator (10; 10A) according to any one of the fourth to ninth aspects.
  • the voltage value in a steady state across the capacitor (C1) is Vc
  • the resistance value of the sound wave source (11) is Rth
  • the length of the ON period of the driving switching element (T1) is tAon
  • the maximum value of the current (IL) output from the inductor (L1) during the OFF period (T2off) of the charging switching element (T2) is imax
  • the self-inductance of the inductor (L1) is L, L is meet.
  • the sound pressure of the series of sound waves (P1) can be stabilized.
  • An eleventh aspect is a sound wave generator (10; 10A) according to any one of the fourth to tenth aspects.
  • the voltage value of the DC power supply (V1) is V
  • the length of the ON period (T2on) of the charging switching element (T2) is tBon
  • the OFF period (T2) of the charging switching element (T2) is T2off
  • the maximum value of the current (IL) output from the inductor (L1) is imax
  • the self-inductance of the inductor (L1) is L
  • the DC power supply (V1) and the inductor (L1) are: is set to satisfy According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
  • a twelfth aspect is a sound wave generator (10) based on any one of the first to eleventh aspects.
  • the drive circuit (12) comprises an overcurrent protection element (R1) electrically connected between the capacitor (C1) and the DC power supply (V1). According to this aspect, excessive heat generation of the sound wave source (11) can be prevented.
  • a thirteenth aspect is a sound wave generator (10A) based on any one of the first to twelfth aspects.
  • the sound wave generator (10A) includes a plurality of the drive circuits (12) and a plurality of the power auxiliary circuits (13; 13B) respectively corresponding to the plurality of drive circuits (12).
  • the plurality of power auxiliary circuits (13; 13B) generate a series of sound waves (P1) from the sound wave source (11) by sequentially switching the driving switching elements (T1) of the plurality of drive circuits (12). Power is supplied to each of the plurality of drive circuits (12) so that the power supplied to the sound wave source (11) does not decrease in the generating operation.
  • the sound pressure of the series of sound waves (P1) can be stabilized.
  • a fourteenth aspect is a sound wave generator (10A) based on the fifth aspect.
  • the sound wave generator (10A) includes a plurality of the drive circuits (12) and a plurality of the power auxiliary circuits (13; 13B) respectively corresponding to the plurality of drive circuits (12).
  • Each of the plurality of power auxiliary circuits (13; 13B) generates a series of sound waves (P1 ) in the driving circuit (12) corresponding to the plurality of driving circuits (12), during the OFF period (T1off) of the driving switching element (T1) of the corresponding driving circuit (12), supply power.
  • the sound pressure of the series of sound waves (P1) can be stabilized.
  • a fifteenth aspect is a sound wave generator (10B) based on the first aspect.
  • the power auxiliary circuit (13B) includes one or more auxiliary capacitors (C2-1 to C2-n) each charged by one or more auxiliary DC power supplies (V2-1 to V2-n) and , and a switching circuit (131).
  • the switching circuit (131) reduces the power supplied to the sound wave source (11) in the operation of generating a series of sound waves (P1) from the sound wave source (11) by switching the driving switching element (T1).
  • At least one of the one or more auxiliary capacitors (C2-1 to C2-n) is electrically connected to the sound wave source (11) instead of the capacitor (C1) of the drive circuit (12) so as not to . According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
  • a sixteenth aspect is a sound wave generator (10; 10A; 10B) based on any one of the first to fifteenth aspects.
  • the switching frequency of the driving switching element (T1) is 20 kHz or more. According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
  • a seventeenth aspect is a sound wave generator (10; 10A; 10B) based on any one of the first to sixteenth aspects.
  • the sound wave generator (10; 10A; 10B) comprises a control circuit (14; 14A) that controls the drive circuit (12) and the power auxiliary circuit (13; 13B).
  • the control circuit (14; 14A) controls the switching of the driving switching element (T1) of the driving circuit (12) so as to cause the sound wave source (11) to generate a series of sound waves (P1), while the The power auxiliary circuit (13; 13B) is controlled to supply power to the driving circuit (12) so that the power supplied to the sound wave source (11) does not decrease.
  • the sound pressure of the series of sound waves (P1) can be stabilized.
  • the present disclosure is applicable to sound wave generators. Specifically, the present disclosure is applicable to a sound wave generator that supplies power from a capacitor to a sound wave source that generates heat and generates sound waves when energized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This sound wave generation device (10) comprises a drive circuit (12) and a power auxiliary circuit (13). The drive circuit (12) has: a capacitor (C1) charged by a DC power source (V1); and a drive switching element (T1) that supplies power from the capacitor (C1) to a sound wave source (11) that generates heat by being powered, and generates sound waves. The power auxiliary circuit (13) supplies power to the drive circuit (12) so that the power supplied to the sound wave source (1) is not reduced due to switching of the drive switching element (T1) during an operation for generating a series of sound waves from the sound wave source.

Description

音波発生装置sound wave generator
 本開示は、一般に、音波発生装置に関する。本開示は、より詳細には、通電により発熱して音波を発生させる音波源にキャパシタから電力を供給する音波発生装置に関する。 The present disclosure generally relates to sound wave generators. More specifically, the present disclosure relates to a sound wave generator that supplies power from a capacitor to a sound wave source that generates heat and generates sound waves when energized.
 特許文献1は、音波発生装置を開示する。特許文献1の音波発生装置は、音波源と、スイッチング素子と、キャパシタと、制限抵抗とを備える。音波源は、直流電源から供給される電流により発熱して音波を発生する。制限抵抗は、直流電源と音波源の間に挿入され、直流電源から音波源に流入する電流を制限する。スイッチング素子は、音波源に直列に接続され、オン/オフして音波源を流れる電流の流入/遮断を制御する。キャパシタは、音波源とスイッチング素子の直列回路に並列に接続される。 Patent Document 1 discloses a sound wave generator. The sound wave generator of Patent Document 1 includes a sound wave source, a switching element, a capacitor, and a limiting resistor. The sound wave source generates heat by current supplied from the DC power supply and generates sound waves. A limiting resistor is inserted between the DC power supply and the acoustic wave source to limit the current flowing from the DC power supply to the acoustic wave source. The switching element is connected in series with the acoustic wave source and is turned on/off to control the inflow/interruption of current flowing through the acoustic wave source. A capacitor is connected in parallel with the series circuit of the sound wave source and the switching element.
国際公開第2019/159395号WO2019/159395
 本開示は、一連の音波の音圧の安定化が図れる音波発生回路を提供する。 The present disclosure provides a sound wave generation circuit capable of stabilizing the sound pressure of a series of sound waves.
 本開示の一態様は、音波発生装置であって、駆動回路と、電力補助回路とを備える。駆動回路は、直流電源により充電されるキャパシタ、及び、通電により発熱して音波を発生させる音波源にキャパシタから電力を供給する駆動用スイッチング素子を有する。電力補助回路は、駆動用スイッチング素子のスイッチングによって音波源から一連の音波を発生させる動作において音波源に供給される電力が減少しないように、駆動回路に電力を供給する。 One aspect of the present disclosure is a sound wave generator that includes a drive circuit and a power auxiliary circuit. The drive circuit has a capacitor charged by a DC power supply, and a drive switching element that supplies power from the capacitor to a sound wave source that generates heat and generates sound waves when energized. The power auxiliary circuit provides power to the drive circuit such that switching of the drive switching element does not reduce the power provided to the source in the operation of generating a series of acoustic waves from the source.
 本開示の一態様は、音波発生装置であって、駆動回路と、電力補助回路とを備える。駆動回路は、直流電源により充電されるキャパシタ、及び、通電により発熱して音波を発生させる音波源に前記キャパシタから電力を供給する駆動用スイッチング素子を有する。電力補助回路は、直流電源とキャパシタとの間に電気的に接続されるインダクタ、及び、インダクタと直流電源との直列回路に並列に電気的に接続される充電用スイッチング素子を有する。電力補助回路は、駆動用スイッチング素子のスイッチングによって音波源から一連の音波を発生させる動作において駆動用スイッチング素子のオフ期間に駆動回路に電力を供給する。 One aspect of the present disclosure is a sound wave generator that includes a drive circuit and a power auxiliary circuit. The drive circuit has a capacitor charged by a DC power supply, and a drive switching element that supplies power from the capacitor to a sound wave source that generates heat and generates sound waves when energized. The power auxiliary circuit has an inductor electrically connected between the DC power supply and the capacitor, and a charging switching element electrically connected in parallel with the series circuit of the inductor and the DC power supply. The power auxiliary circuit supplies power to the drive circuit during off periods of the drive switching element in operation to generate a series of acoustic waves from the source by switching the drive switching element.
 本開示の態様は、一連の音波の音圧の安定化が図れる。 The aspect of the present disclosure can stabilize the sound pressure of a series of sound waves.
実施の形態1にかかる音波発生装置を備える物体検知システムの構成例のブロック図1 is a block diagram of a configuration example of an object detection system including a sound wave generator according to a first embodiment; FIG. 図1の音波発生装置の構成例の回路図A circuit diagram of a configuration example of the sound wave generator in FIG. 図1の音波発生装置の動作を説明するタイミング図Timing chart for explaining the operation of the sound wave generator of FIG. キャパシタの静電容量に対する電圧減衰率をシミュレーションした結果のグラフGraph of simulated voltage decay rate against capacitance of capacitor 図1の音波発生装置から出力される一連の音波の音圧の測定結果を示すグラフGraph showing measurement results of sound pressure of a series of sound waves output from the sound wave generator of FIG. 比較例の音波発生装置から出力される一連の音波の音圧の測定結果を示すグラフGraph showing measurement results of sound pressure of a series of sound waves output from the sound wave generator of the comparative example 実施の形態2にかかる音波発生装置を備える物体検知システムの構成例のブロック図Block diagram of a configuration example of an object detection system provided with a sound wave generator according to a second embodiment 図7の音波発生装置の構成例の回路図A circuit diagram of a configuration example of the sound wave generator in FIG. 図7の音波発生装置の動作を説明するタイミング図Timing diagram for explaining the operation of the sound wave generator of FIG. 実施の形態3にかかる音波発生装置を備える物体検知システムの構成例のブロック図Block diagram of a configuration example of an object detection system provided with a sound wave generator according to a third embodiment 図10の音波発生装置の構成例の回路図A circuit diagram of a configuration example of the sound wave generator of FIG. 図11の音波発生装置の動作を説明する波形図Waveform diagram for explaining the operation of the sound wave generator of FIG. 変形例の音波発生装置の動作を説明する波形図Waveform diagram for explaining the operation of the sound wave generator of the modified example
(実施の形態)
 [1.実施の形態1]
 [1-1.概要]
 図1は、実施の形態1にかかる音波発生装置10を備える物体検知システム1の構成例のブロック図である。物体検知システム1は、音波P1を利用して対象空間にある物体の検知を行うことができる。物体検知システム1は、例えば、移動体において障害物等の物体の検知に用いられる。移動体の例としては、自動車等の乗り物、ドローン等の無人飛行機、自律移動ロボット等が挙げられる。自律移動ロボットとしては、ロボットクリーナが挙げられる。
(Embodiment)
[1. Embodiment 1]
[1-1. Overview]
FIG. 1 is a block diagram of a configuration example of an object detection system 1 including a sound wave generator 10 according to a first embodiment. The object detection system 1 can detect an object in the target space using the sound wave P1. The object detection system 1 is used, for example, to detect an object such as an obstacle in a mobile object. Examples of mobile objects include vehicles such as automobiles, unmanned aircraft such as drones, and autonomous mobile robots. Autonomous mobile robots include robot cleaners.
 図1に示すように、音波発生装置10は、音波P1を発生させる。音波P1は、物体検知システム1において、物体の検知及び物体までの距離の測定に利用される。音波発生装置10は、音波源11と、駆動回路12と、電力補助回路13とを備える。 As shown in FIG. 1, the sound wave generator 10 generates sound waves P1. The sound wave P1 is used in the object detection system 1 to detect an object and measure the distance to the object. The sound wave generator 10 includes a sound wave source 11 , a drive circuit 12 and a power auxiliary circuit 13 .
 図2は、音波発生装置10の構成例の回路図である。駆動回路12は、図2に示すように、直流電源V1により充電されるキャパシタC1、及び、通電により発熱して音波を発生させる音波源11にキャパシタC1から電力を供給する駆動用スイッチング素子T1を有する。電力補助回路13は、電力補助回路13は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように、駆動回路12に電力を供給する。 FIG. 2 is a circuit diagram of a configuration example of the sound wave generator 10. As shown in FIG. As shown in FIG. 2, the driving circuit 12 includes a capacitor C1 charged by a DC power source V1, and a driving switching element T1 that supplies power from the capacitor C1 to the sound wave source 11 that generates sound waves by generating heat when energized. have. The power auxiliary circuit 13 is designed so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. to power the
 図1の音波発生装置10は、電力補助回路13を備えているから、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作においても、音波源11に十分な電力を供給することが可能となる。これによって、音波源11に供給される電力の低下に起因する音波の音圧の低下を抑制、又は場合によっては低下を防止できる。これによって、音波源11から一連の音波P1を音圧の低下を抑制しながら出力させることができる。以上述べたように、音波発生装置10によれば、一連の音波P1の音圧の安定化が図れる。例えば、一連の音波P1を同じ音圧で出力させることが可能となる。 Since the sound wave generator 10 of FIG. 1 includes the power auxiliary circuit 13, sufficient electric power is supplied to the sound wave source 11 even in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. supply becomes possible. This makes it possible to suppress, or possibly prevent, a decrease in the sound pressure of the sound waves due to a decrease in the power supplied to the sound wave source 11 . As a result, a series of sound waves P1 can be output from the sound wave source 11 while suppressing a drop in sound pressure. As described above, according to the sound wave generator 10, the sound pressure of a series of sound waves P1 can be stabilized. For example, it is possible to output a series of sound waves P1 with the same sound pressure.
 [1-2.詳細]
 以下、音波発生装置10及び物体検知システム1について図面を参照して説明する。図1に示すように、物体検知システム1は、音波発生装置10と、受波装置20と、処理回路30とを備える。
[1-2. detail]
The sound wave generator 10 and the object detection system 1 will be described below with reference to the drawings. As shown in FIG. 1 , the object detection system 1 includes a sound wave generator 10 , a wave receiver 20 and a processing circuit 30 .
 [1-2-1.音波発生装置]
 図1の音波発生装置10は、音波源11と、駆動回路12と、電力補助回路13と、制御回路14とを備える。
[1-2-1. Sound wave generator]
The sound wave generator 10 of FIG. 1 includes a sound wave source 11, a drive circuit 12, a power auxiliary circuit 13, and a control circuit .
 音波源11は、通電により発熱して音波P1を発生させる。より詳細には、音波源11は、空気を加熱して音波P1を発生させる熱励起型の素子である。音波源11は、いわゆるサーモホンである。音波源11は、例えば、発熱体と、基板と、一対の電極と、断熱層とを備える。発熱体は、電流を流すことによって発熱する抵抗体である。発熱体は、例えば、空気に接触するように基板に配置される。発熱体の周囲の空気は、発熱体の温度変化によって膨張又は収縮する。これにより、空気の圧力波即ち音波が発生する。断熱層は、発熱体から基板への熱伝導を抑制する。一対の電極は、音波源11の外部から発熱体に電流を流すための電極である。一対の電極は、発熱体の両側に設けられる。音波源11は、従来周知の構成を有していてよいから、音波源11の詳細な説明は省略する。 The sound wave source 11 generates heat when energized and generates sound waves P1. More specifically, the sound wave source 11 is a thermally excited element that heats air to generate sound waves P1. The sound wave source 11 is a so-called thermophone. The sound wave source 11 includes, for example, a heating element, a substrate, a pair of electrodes, and a heat insulating layer. A heating element is a resistor that generates heat when an electric current is passed through it. The heating element, for example, is arranged on the substrate so as to be in contact with the air. The air around the heating element expands or contracts due to the temperature change of the heating element. This generates air pressure waves or sound waves. The heat insulating layer suppresses heat conduction from the heating element to the substrate. The pair of electrodes are electrodes for applying current to the heating element from the outside of the sound wave source 11 . A pair of electrodes are provided on both sides of the heating element. Since the sound wave source 11 may have a conventionally well-known configuration, detailed description of the sound wave source 11 is omitted.
 図2に示すように、音波源11は、直流電源V1とグラウンドとの間に電気的に接続される。 As shown in FIG. 2, the sound wave source 11 is electrically connected between the DC power supply V1 and ground.
 直流電源V1は、各種の電源回路及び/又はバッテリ等で構成される。各種の電源回路は、例えばAC/DCコンバータ、DC/DCコンバータ、レギュレータ、バッテリを含む。直流電源V1の電圧値は、例えば、5Vである。 The DC power supply V1 is composed of various power supply circuits and/or batteries. Various power supply circuits include, for example, AC/DC converters, DC/DC converters, regulators, and batteries. A voltage value of the DC power supply V1 is, for example, 5V.
 駆動回路12は、音波源11から音波P1を発生させるように音波源11に電力を供給する。駆動回路12は、図2に示すように、キャパシタC1と、駆動用スイッチング素子T1と、抵抗器R1とを備える。 The drive circuit 12 supplies power to the sound wave source 11 so that the sound wave source 11 generates the sound wave P1. The drive circuit 12, as shown in FIG. 2, includes a capacitor C1, a drive switching element T1, and a resistor R1.
 キャパシタC1は、音波源11に電力を供給するために用いられる。キャパシタC1は、直流電源V1と音波源11との接続点とグラウンドとの間に電気的に接続される。キャパシタC1は、直流電源V1により充電される。キャパシタC1の両端間の定常状態での電圧値は、直流電源V1の電圧値に等しいと考えてよい。キャパシタC1は、例えば電解コンデンサ又はセラミックコンデンサである。 The capacitor C1 is used to power the sound wave source 11. The capacitor C1 is electrically connected between the connection point between the DC power source V1 and the acoustic wave source 11 and the ground. Capacitor C1 is charged by DC power supply V1. It may be considered that the steady-state voltage value across the capacitor C1 is equal to the voltage value of the DC power supply V1. Capacitor C1 is, for example, an electrolytic capacitor or a ceramic capacitor.
 駆動用スイッチング素子T1は、音波源11への電力の供給を制御することにより音波源11を駆動するために用いられる。駆動用スイッチング素子T1は、音波源11とグラウンドとの間に電気的に接続される。駆動用スイッチング素子T1は、例えば、n型のMOSFETである。駆動用スイッチング素子T1がオンであれば、音波源11に電力が供給される。図2では、矢印A1で示すように、キャパシタC1から音波源11に電流が流れ、音波源11に電力が供給される。駆動用スイッチング素子T1がオフであれば、音波源11に電力が供給されない。駆動用スイッチング素子T1がオンオフすることで、音波源11は音波P1を発生させる。本開示において、「音波」は、1周期分の正弦波である。これに対して「一連の音波」は、複数周期分の正弦波である。 The driving switching element T1 is used to drive the sound wave source 11 by controlling power supply to the sound wave source 11. The driving switching element T1 is electrically connected between the sound wave source 11 and ground. The driving switching element T1 is, for example, an n-type MOSFET. Power is supplied to the sound wave source 11 when the driving switching element T1 is on. In FIG. 2, current flows from the capacitor C1 to the sound wave source 11 as indicated by the arrow A1, and the sound wave source 11 is supplied with electric power. If the drive switching element T1 is off, no power is supplied to the sound wave source 11 . The sound wave source 11 generates a sound wave P1 by turning on and off the driving switching element T1. In the present disclosure, a "sound wave" is one cycle of a sine wave. A "series of sound waves", on the other hand, is a sine wave with multiple cycles.
 抵抗器R1は、キャパシタC1と直流電源V1との間に電気的に接続される過電流保護素子を構成する。抵抗器R1は、直流電源V1から直接的に音波源11に流れる電流を制限する。抵抗器R1によれば、音波源11の過剰な発熱を防止できる。抵抗器R1の抵抗値は、例えば、50Ω以上5kΩ以下である。 The resistor R1 constitutes an overcurrent protection element electrically connected between the capacitor C1 and the DC power supply V1. Resistor R1 limits the current flowing from DC power supply V1 directly to sound wave source 11 . Excessive heat generation of the sound wave source 11 can be prevented by the resistor R1. The resistance value of the resistor R1 is, for example, 50Ω or more and 5 kΩ or less.
 電力補助回路13は、直流電源V1とは別に設けられる。電力補助回路13は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように駆動回路12に電力を供給するために用いられる。換言すれば、電力補助回路13は、音波源11に供給される電力の不足を補うための回路である。 The power auxiliary circuit 13 is provided separately from the DC power supply V1. The power auxiliary circuit 13 supplies power to the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. Used. In other words, the power auxiliary circuit 13 is a circuit for supplementing the lack of power supplied to the sound wave source 11 .
 電力補助回路13は、図2に示すように、インダクタL1と、充電用スイッチング素子T2と、ダイオードD1とを備える。インダクタL1は、直流電源V1とキャパシタC1との間に電気的に接続される。図2では、インダクタL1は、過電流保護素子である抵抗器R1と直流電源V1との間に電気的に接続される。充電用スイッチング素子T2は、インダクタL1と直流電源V1との直列回路に並列に電気的に接続される。充電用スイッチング素子T2は、例えば、n型のMOSFETである。インダクタL1、直流電源V1、及び充電用スイッチング素子T2は閉ループを構成する。充電用スイッチング素子T2がオンであれば、インダクタL1にエネルギが蓄積される。図2では、矢印A2に示すように、直流電源V1、インダクタL1、及び充電用スイッチング素子T2の閉ループに電流が流れ、インダクタL1にエネルギが蓄積される。充電用スイッチング素子T2がオンからオフになると、インダクタL1に誘導起電力が生じる。これにより、矢印A3に示すように、インダクタL1からキャパシタC1に電流が流れて、キャパシタC1が充電される。図2の電力補助回路13は、キャパシタC1を充電することが可能であり、これにより、駆動回路12に電力を供給可能である。図2の電力補助回路13は、充電回路であるともいえる。ダイオードD1は、インダクタL1とキャパシタC1との間に電気的に接続される。特に、ダイオードD1のアノードはインダクタL1に電気的に接続され、ダイオードD1のカソードはキャパシタC1に電気的に接続される。ダイオードD1は、キャパシタC1からインダクタL1に電流が流れて意図せずにキャパシタC1が放電してしまう可能性を低減する。 The power auxiliary circuit 13 includes an inductor L1, a charging switching element T2, and a diode D1, as shown in FIG. Inductor L1 is electrically connected between DC power supply V1 and capacitor C1. In FIG. 2, inductor L1 is electrically connected between resistor R1, which is an overcurrent protection element, and DC power supply V1. Charging switching element T2 is electrically connected in parallel to a series circuit of inductor L1 and DC power supply V1. The charging switching element T2 is, for example, an n-type MOSFET. Inductor L1, DC power supply V1, and charging switching element T2 form a closed loop. When the charging switching element T2 is on, energy is stored in the inductor L1. In FIG. 2, current flows through the closed loop of the DC power supply V1, the inductor L1, and the charging switching element T2, and energy is stored in the inductor L1, as indicated by an arrow A2. When the charging switching element T2 is turned off from on, an induced electromotive force is generated in the inductor L1. As a result, current flows from inductor L1 to capacitor C1 as indicated by arrow A3, and capacitor C1 is charged. The power auxiliary circuit 13 of FIG. 2 can charge the capacitor C1 and thereby supply power to the drive circuit 12 . It can also be said that the power auxiliary circuit 13 of FIG. 2 is a charging circuit. Diode D1 is electrically connected between inductor L1 and capacitor C1. Specifically, the anode of diode D1 is electrically connected to inductor L1, and the cathode of diode D1 is electrically connected to capacitor C1. Diode D1 reduces the possibility of inadvertently discharging capacitor C1 by allowing current to flow from capacitor C1 to inductor L1.
 制御回路14は、駆動回路12及び電力補助回路13を制御するように構成される。制御回路14は、例えば、後述する駆動信号S1,S2を出力するための発振器を有する。制御回路14は、例えば、FPGA(field-programmable gate array)等の集積回路である。制御回路14は、音波源11から一連の音波P1を発生させるように駆動回路12の駆動用スイッチング素子T1のスイッチングを制御しながら、音波源11に供給される電力が減少しないように駆動回路12に電力を供給するように電力補助回路13を制御する。 The control circuit 14 is configured to control the drive circuit 12 and the power auxiliary circuit 13 . The control circuit 14 has, for example, an oscillator for outputting drive signals S1 and S2, which will be described later. The control circuit 14 is, for example, an integrated circuit such as an FPGA (field-programmable gate array). The control circuit 14 controls the switching of the driving switching element T1 of the drive circuit 12 so that the sound wave source 11 generates a series of sound waves P1, while the control circuit 14 controls the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease. The power auxiliary circuit 13 is controlled to supply power to the .
 制御回路14は、駆動回路12の駆動用スイッチング素子T1のスイッチング(オンオフ)を制御する。制御回路14は、駆動回路12の駆動用スイッチング素子T1を制御することによって、音波源11から一連の音波P1を発生させる動作を実行する。図1に示すように、制御回路14は、駆動用スイッチング素子T1のスイッチングを制御するための駆動信号S1を出力する。本実施の形態において、駆動用スイッチング素子T1はMOSFETであり、駆動信号S1は駆動用スイッチング素子T1のゲートに入力される。駆動信号S1がハイレベルである間は、駆動用スイッチング素子T1がオンとなる。駆動信号S1がロウレベルである間は、駆動用スイッチング素子T1がオフとなる。図2では、駆動信号S1が直流電源として図示されている。 The control circuit 14 controls switching (on/off) of the drive switching element T1 of the drive circuit 12. The control circuit 14 controls the driving switching element T1 of the driving circuit 12 to cause the sound wave source 11 to generate a series of sound waves P1. As shown in FIG. 1, the control circuit 14 outputs a driving signal S1 for controlling switching of the driving switching element T1. In this embodiment, the driving switching element T1 is a MOSFET, and the driving signal S1 is input to the gate of the driving switching element T1. While the driving signal S1 is at high level, the driving switching element T1 is turned on. While the driving signal S1 is at low level, the driving switching element T1 is turned off. In FIG. 2, the drive signal S1 is illustrated as a DC power supply.
 制御回路14は、電力補助回路13の充電用スイッチング素子T2のスイッチング(オンオフ)を制御する。制御回路14は、電力補助回路13の充電用スイッチング素子T2を制御することによって、音波源11に供給される電力が減少しないように駆動回路12に電力を供給する動作を実行する。図1に示すように、制御回路14は、充電用スイッチング素子T2のスイッチングを制御するための駆動信号S2を出力する。本実施の形態において、充電用スイッチング素子T2はMOSFETであり、駆動信号S2は充電用スイッチング素子T2のゲートに入力される。駆動信号S2がハイレベルである間は、充電用スイッチング素子T2がオンとなる。駆動信号S2がロウレベルである間は、充電用スイッチング素子T2がオフとなる。図2では、駆動信号S2が直流電源として図示されている。 The control circuit 14 controls switching (on/off) of the charging switching element T2 of the power auxiliary circuit 13. The control circuit 14 controls the charging switching element T2 of the power auxiliary circuit 13 to supply power to the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease. As shown in FIG. 1, the control circuit 14 outputs a driving signal S2 for controlling switching of the charging switching element T2. In this embodiment, the charging switching element T2 is a MOSFET, and the drive signal S2 is input to the gate of the charging switching element T2. While the driving signal S2 is at high level, the charging switching element T2 is turned on. While the driving signal S2 is at low level, the charging switching element T2 is turned off. In FIG. 2, the drive signal S2 is illustrated as a DC power supply.
 次に、制御回路14による駆動回路12及び電力補助回路13の制御について図3を参照して詳細に説明する。図3は、音波発生装置10の動作を説明するタイミング図である。 Next, the control of the drive circuit 12 and power auxiliary circuit 13 by the control circuit 14 will be described in detail with reference to FIG. FIG. 3 is a timing chart for explaining the operation of the sound wave generator 10. As shown in FIG.
 制御回路14は、駆動回路12を制御して音波源11から一連の音波P1を発生させるために、駆動信号S1を駆動用スイッチング素子T1に出力する。駆動用スイッチング素子T1のスイッチング周波数が、一連の音波P1の周波数に対応する。駆動用スイッチング素子T1のスイッチング周波数は、例えば、20kHz以上である。駆動用スイッチング素子T1のスイッチング周波数は、例えば、150kHz以下である。図3に示すように、駆動信号S1は、パルス列の信号である。駆動信号S1のパルス列の周期Tは、駆動用スイッチング素子T1の目標のスイッチング周波数に応じて設定される。図3では、駆動信号S1の周期Tは一定である。駆動信号S1の長さは、例えば、5ms~30msとすることができる。駆動信号S1において、パルス幅は、駆動用スイッチング素子T1の目標のデューティ比に応じて設定される。図3の周期Tは、駆動用スイッチング素子T1のオン期間T1on及びオフ期間T1offを含む。オン期間T1onは、駆動用スイッチング素子T1がオンの期間である。オン期間T1onにおいては、キャパシタC1から音波源11に電流が流れ、音波源11に電力が供給される。図3では、オン期間T1onにおいて、キャパシタC1の電圧V2が低下している。オフ期間T1offは、駆動用スイッチング素子T1がオフの期間である。オフ期間T1offにおいては、キャパシタC1から音波源11に電流が流れず、音波源11に電力が供給されない。 The control circuit 14 outputs a drive signal S1 to the driving switching element T1 in order to control the drive circuit 12 to generate a series of sound waves P1 from the sound wave source 11. The switching frequency of the driving switching element T1 corresponds to the frequency of the series of sound waves P1. The switching frequency of the driving switching element T1 is, for example, 20 kHz or higher. The switching frequency of the driving switching element T1 is, for example, 150 kHz or less. As shown in FIG. 3, the drive signal S1 is a pulse train signal. The period T of the pulse train of the driving signal S1 is set according to the target switching frequency of the driving switching element T1. In FIG. 3, the period T of the drive signal S1 is constant. The length of the driving signal S1 can be, for example, 5 ms to 30 ms. The pulse width of the driving signal S1 is set according to the target duty ratio of the driving switching element T1. A period T in FIG. 3 includes an ON period T1on and an OFF period T1off of the driving switching element T1. The ON period T1on is a period during which the driving switching element T1 is ON. During the ON period T1on, current flows from the capacitor C1 to the sound wave source 11, and power is supplied to the sound wave source 11. FIG. In FIG. 3, the voltage V2 of the capacitor C1 is lowered during the ON period T1on. The off period T1off is a period in which the driving switching element T1 is off. During the off period T1off, no current flows from the capacitor C1 to the sound wave source 11 and power is not supplied to the sound wave source 11 .
 図3に示すように、オン期間T1onによりキャパシタC1の電圧V2が低下する。キャパシタC1の電圧V2が低下したままであると、次のオン期間T1onでは、音波源11に十分な電力が供給できず、所望の音圧の音波P1が得られない。そこで、制御回路14は、オン期間T1onによるキャパシタC1の電圧V2の低下、つまり、キャパシタC1の電荷量の低下を解消するために、電力補助回路13によりキャパシタC1を充電する。制御回路14は、電力補助回路13を制御してキャパシタC1を充電するために、駆動信号S2を充電用スイッチング素子T2に出力する。図3に示すように、駆動信号S2は、周期Tのパルス列の信号である。特に、駆動信号S2は、対応する駆動信号S1と同じ周期(ここではT)のパルス列の信号である。図3では、周期Tは一定である。パルス幅は、充電用スイッチング素子T2の目標のデューティ比に応じて設定される。図3の駆動信号S2の周期Tは、充電用スイッチング素子T2のオン期間T2on及びオフ期間T2offを含む。オン期間T2onは、充電用スイッチング素子T2がオンの期間である。オン期間T2onにおいては、直流電源V1からインダクタL1に電流が流れ、インダクタL1にエネルギが蓄積される。オフ期間T2offは、充電用スイッチング素子T2がオフの期間である。オフ期間T2offにおいては、インダクタL1からキャパシタC1に電流が流れ、キャパシタC1が充電される。図3の例では、キャパシタC1の電圧V2は時刻t13から増加し、周期Tの終わりの時刻t14には、周期Tの始まりの時刻t11と同じ値になっている。 As shown in FIG. 3, the voltage V2 of the capacitor C1 decreases due to the ON period T1on. If the voltage V2 of the capacitor C1 continues to drop, sufficient power cannot be supplied to the sound wave source 11 in the next ON period T1on, and the sound wave P1 having the desired sound pressure cannot be obtained. Therefore, the control circuit 14 charges the capacitor C1 by the power auxiliary circuit 13 in order to eliminate the decrease in the voltage V2 of the capacitor C1 due to the ON period T1on, that is, the decrease in the charge amount of the capacitor C1. The control circuit 14 outputs the driving signal S2 to the charging switching element T2 in order to control the power auxiliary circuit 13 and charge the capacitor C1. As shown in FIG. 3, the drive signal S2 is a pulse train signal with a period T. As shown in FIG. In particular, the drive signal S2 is a pulse train signal having the same period (here, T) as that of the corresponding drive signal S1. In FIG. 3, the period T is constant. The pulse width is set according to the target duty ratio of the charging switching element T2. A period T of the drive signal S2 in FIG. 3 includes an ON period T2on and an OFF period T2off of the charging switching element T2. The ON period T2on is a period during which the charging switching element T2 is ON. During the ON period T2on, current flows from the DC power supply V1 to the inductor L1, and energy is stored in the inductor L1. The off period T2off is a period in which the charging switching element T2 is off. During the off period T2off, current flows from the inductor L1 to the capacitor C1, and the capacitor C1 is charged. In the example of FIG. 3, the voltage V2 of the capacitor C1 increases from time t13 and reaches the same value at time t14 at the end of cycle T as at time t11 at the beginning of cycle T. In the example of FIG.
 図3に示すように、制御回路14は、電力補助回路13が駆動用スイッチング素子T1のオフ期間T1offに駆動回路12に電力を供給するように、駆動信号S2を出力する。これにより、音波P1の発生毎に電力を供給できて、一連の音波P1の音圧の安定化が図れる。また、音波源11への給電中に電力が変動することを防止できて、一連の音波P1の音圧の安定化が図れる。特に、制御回路14は、電力補助回路13が駆動用スイッチング素子T1のオフ期間T1offにキャパシタC1を充電するように、駆動信号S2を出力する。これにより、電力補助回路13からの電力の供給先に駆動回路12のキャパシタC1を利用するから、一連の音波P1の音圧の安定化が図れる。具体的には、図3に示すように、駆動用スイッチング素子T1のオン期間T1onは時刻t11から時刻t12までの期間に設定される。駆動用スイッチング素子T1のオフ期間T1offは時刻t12から時刻t14までの期間に設定される。充電用スイッチング素子T2のオン期間T2onは時刻t11から、時刻t12より後の時刻t13までの期間に設定される。このように、充電用スイッチング素子T2は、駆動用スイッチング素子T1のオン期間T1on中はオンにされ、駆動用スイッチング素子T1のオフ期間T1offにオフにされる。これにより、インダクタL1に蓄積されるエネルギを増やすことができる。図3の例では、駆動用スイッチング素子T1及び充電用スイッチング素子T2は同時にオンにされる(時刻t11参照)。これにより、駆動用スイッチング素子T1及び充電用スイッチング素子T2の制御の簡素化が図れる。図3の例では、充電用スイッチング素子T2は、駆動用スイッチング素子T1がオフになった後にオフにされる。これにより、インダクタL1に蓄積されるエネルギを増やすことができる。 As shown in FIG. 3, the control circuit 14 outputs the driving signal S2 so that the power auxiliary circuit 13 supplies power to the driving circuit 12 during the OFF period T1off of the driving switching element T1. As a result, electric power can be supplied each time the sound wave P1 is generated, and the sound pressure of a series of sound waves P1 can be stabilized. In addition, it is possible to prevent the power from fluctuating while supplying power to the sound wave source 11, thereby stabilizing the sound pressure of the series of sound waves P1. In particular, the control circuit 14 outputs the driving signal S2 so that the power auxiliary circuit 13 charges the capacitor C1 during the OFF period T1off of the driving switching element T1. As a result, the capacitor C1 of the driving circuit 12 is used as the destination of power supply from the power auxiliary circuit 13, so that the sound pressure of the series of sound waves P1 can be stabilized. Specifically, as shown in FIG. 3, the ON period T1on of the driving switching element T1 is set to a period from time t11 to time t12. The OFF period T1off of the driving switching element T1 is set to a period from time t12 to time t14. The ON period T2on of the charging switching element T2 is set to a period from time t11 to time t13 after time t12. Thus, the charging switching element T2 is turned on during the ON period T1on of the driving switching element T1 and turned off during the OFF period T1off of the driving switching element T1. Thereby, the energy stored in the inductor L1 can be increased. In the example of FIG. 3, the driving switching element T1 and the charging switching element T2 are turned on at the same time (see time t11). As a result, the control of the driving switching element T1 and the charging switching element T2 can be simplified. In the example of FIG. 3, the charging switching element T2 is turned off after the driving switching element T1 is turned off. Thereby, the energy stored in the inductor L1 can be increased.
 図2に示すように音波発生装置10は、キャパシタC1が音波源11に電荷を供給している間は、充電用スイッチング素子T2をオンにし、音波源11のための駆動信号S1のパルスの間でオフにする。このように、音波発生装置10は、音波源11を駆動させる時間においてインダクタL1にエネルギを蓄え、音波源11の駆動終了後にインダクタL1のエネルギでキャパシタC1を充電する。これにより、音波P1毎にキャパシタC1を充電することが可能である。よって、音波源11から一連の音波P1を出力させる場合でも、キャパシタC1の電圧を低下させることなく安定した音圧で一連の音波P1を発生させることが可能となる。 As shown in FIG. 2, the sound wave generator 10 turns on the charging switching element T2 while the capacitor C1 is supplying charge to the sound wave source 11, and during the pulses of the drive signal S1 for the sound wave source 11, to turn off. Thus, the sound wave generator 10 stores energy in the inductor L1 while driving the sound wave source 11, and charges the capacitor C1 with the energy of the inductor L1 after the end of driving the sound wave source 11. FIG. This makes it possible to charge the capacitor C1 for each sound wave P1. Therefore, even when a series of sound waves P1 are output from the sound wave source 11, the series of sound waves P1 can be generated with stable sound pressure without lowering the voltage of the capacitor C1.
 音波発生装置10において、電力補助回路13は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように駆動回路12に電力を供給するために用いられる。ここで、「減少しない」とは厳密な意味で減少しないことだけではなく、実質的に減少していないこと、つまり、全体的に見て無視できる程度の減少も含む。本実施の形態の音波発生装置10において、電力補助回路13は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないようにするために、音波源11に供給される電力が規定値以上となるように駆動回路12に電力を供給する。本実施の形態において、規定値は、キャパシタC1の電圧V2が定常状態での電圧値Vcである場合に、オン期間T1onに音波源11に供給される電力の大きさに対応する。つまり、「音波源11に供給される電力が規定値以上となるように駆動回路12に電力を供給する」とは、音波P1の発生により音波源11で消費された電力以上の電力を駆動回路12に供給することである。これは、本実施の形態においては、音波P1の発生により消費されたキャパシタC1のエネルギ以上のエネルギをキャパシタC1に供給することである。 In the sound wave generator 10, the power auxiliary circuit 13 is provided to the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. Used to supply power. Here, "no decrease" includes not only no decrease in the strict sense, but also no substantial decrease, that is, a negligible decrease as a whole. In the sound wave generator 10 of the present embodiment, the power auxiliary circuit 13 is configured so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. In order to achieve this, power is supplied to the drive circuit 12 so that the power supplied to the sound wave source 11 is equal to or higher than a specified value. In the present embodiment, the specified value corresponds to the magnitude of power supplied to the sound wave source 11 during the ON period T1on when the voltage V2 of the capacitor C1 is the voltage value Vc in the steady state. In other words, "supplying power to the drive circuit 12 so that the power supplied to the sound wave source 11 is equal to or greater than a specified value" means that the power greater than or equal to the power consumed by the sound wave source 11 due to the generation of the sound wave P1 is supplied to the drive circuit. to supply 12. In this embodiment, this is to supply the capacitor C1 with energy equal to or greater than the energy of the capacitor C1 consumed by the generation of the sound wave P1.
 特に、本実施の形態において、音波発生装置10は、音波源11が音波P1を出力する毎に、音波源11が消費したキャパシタC1のエネルギと同じ大きさのエネルギをインダクタL1からキャパシタC1に与えるように、設定されている。つまり、キャパシタC1から放出されるエネルギとインダクタL1に蓄えられるエネルギとが一致するように設定している。以下に、このような設定の一例を示す。 In particular, in the present embodiment, the sound wave generator 10 provides the same amount of energy as the energy consumed by the sound wave source 11 in the capacitor C1 from the inductor L1 to the capacitor C1 every time the sound wave source 11 outputs the sound wave P1. It is set so that That is, the energy released from the capacitor C1 and the energy stored in the inductor L1 are set to match. Below is an example of such a setting.
 例えば、キャパシタC1の両端間の定常状態での電圧値をVcとする。音波源11の抵抗値をRthとする。駆動用スイッチング素子T1のオン期間T1onの長さをtAonとする。充電用スイッチング素子T2のオフ期間T2offにインダクタL1から出力される電流ILの最大値をimaxとする。インダクタL1の自己インダクタンスをLとする。キャパシタC1から放出されるエネルギとインダクタL1に蓄えられるエネルギとが一致する場合、次式が成立する。 For example, let Vc be the voltage value in a steady state across the capacitor C1. Let Rth be the resistance value of the sound wave source 11 . Let tAon be the length of the ON period T1on of the driving switching element T1. Let imax be the maximum value of the current IL output from the inductor L1 during the OFF period T2off of the charging switching element T2. Let L be the self-inductance of the inductor L1. When the energy released from capacitor C1 and the energy stored in inductor L1 match, the following equation holds.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、imax、Vc、Rth、tAonが決定されている場合、Lは次式を満たすように設定される。これにより、一連の音波P1の音圧の安定化が図れる。 Here, when imax, Vc, Rth, and tAon are determined, L is set so as to satisfy the following equation. As a result, the sound pressure of the series of sound waves P1 can be stabilized.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 直流電源V1として電流能力の大きい直流電源を使用すれば、キャパシタC1の充電速度を向上できて、音圧の低下を低減できる可能性がある。しかしながら、電流能力の大きい直流電源は、一般に、大型であり、高価である。特に、一連の音波P1の数が増えるほど、直流電源の電流能力も高くする必要があり、電流能力にも限度がある。特に、本実施の形態において、音波発生装置10では、電力補助回路13により音波P1の発生のための電力を補助することが可能であるから、直流電源V1として電流能力の大きい直流電源を使用しなくても済む。例えば、直流電源V1の電圧値をVとする。充電用スイッチング素子T2のオン期間T2onの長さをtBonとする。充電用スイッチング素子T2のオフ期間T2offにインダクタL1から出力される電流ILの最大値をimaxとする。インダクタL1の自己インダクタンスをLとする。この場合、直流電源V1は次式を満たすように設定されればよい。これにより、直流電源V1の小型化が図れる。 If a DC power supply with a large current capability is used as the DC power supply V1, it is possible to improve the charging speed of the capacitor C1 and reduce the drop in sound pressure. However, a DC power supply with a large current capacity is generally large and expensive. In particular, as the number of series of sound waves P1 increases, the current capability of the DC power supply must also be increased, and there is a limit to the current capability. In particular, in the sound wave generator 10 of the present embodiment, since the electric power for generating the sound wave P1 can be assisted by the power auxiliary circuit 13, a DC power supply with a large current capacity is used as the DC power supply V1. I can do without it. For example, let V be the voltage value of the DC power supply V1. Let tBon be the length of the ON period T2on of the charging switching element T2. Let imax be the maximum value of the current IL output from the inductor L1 during the OFF period T2off of the charging switching element T2. Let L be the self-inductance of the inductor L1. In this case, the DC power supply V1 may be set so as to satisfy the following equation. As a result, the size of the DC power supply V1 can be reduced.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 キャパシタC1として静電容量の大きいキャパシタを使用すれば、十分なエネルギを蓄えることができて、音圧の低下を低減できる可能性がある。しかしながら、静電容量の大きいキャパシタは、一般に、大型であり、高価である。特に、一連の音波P1の数が増えるほど、キャパシタの静電容量も大きくする必要があり、静電容量にも限度がある。一方で、上述したように、インダクタL1には、充電用スイッチング素子T2のオン期間T2onに直流電源V1から電流が流れてエネルギを蓄積する。充電用スイッチング素子T2のオン期間T2onの長さtBon、つまり、インダクタL1に直流電源V1から電流を流す時間(電流時間)を長くすることで、キャパシタC1に供給するエネルギを増やすことができる。図4は、電流時間を変えた際のキャパシタC1の静電容量([μF])に対する電圧減衰率([%])をシミュレーションした結果を示すグラフである。電圧減衰率は、例えば、キャパシタC1の電圧V2の定常状態の値Vcに対する一周期Tで減少した電圧V2の値の割合を示す。図4から明らかなように、静電容量が大きくなるほど電圧減衰率は小さくなる傾向にあり、電圧減衰率は電流時間に大きく依存する。図4では、電流時間が7μs以上であれば、静電容量が100μF以下でも、電圧減衰率が0%である。したがって、電流時間の設定によって、キャパシタC1の静電容量によらずに、電圧減衰率を0%にすることが可能となり、キャパシタC1の小型化が図れる。 If a capacitor with a large capacitance is used as the capacitor C1, it is possible to store sufficient energy and reduce the drop in sound pressure. However, capacitors with large capacitance are generally large and expensive. In particular, as the number of series of sound waves P1 increases, the capacitance of the capacitor must also increase, and there is a limit to the capacitance. On the other hand, as described above, the current flows from the DC power supply V1 to the inductor L1 during the ON period T2on of the charging switching element T2 to store energy. The energy supplied to the capacitor C1 can be increased by lengthening the length tBon of the ON period T2on of the charging switching element T2, that is, the time (current time) in which the current flows from the DC power supply V1 to the inductor L1. FIG. 4 is a graph showing simulation results of the voltage decay rate ([%]) with respect to the capacitance ([μF]) of the capacitor C1 when the current time is changed. The voltage decay rate indicates, for example, the ratio of the value of the voltage V2 that has decreased in one cycle T to the steady-state value Vc of the voltage V2 of the capacitor C1. As is clear from FIG. 4, the voltage decay rate tends to decrease as the capacitance increases, and the voltage decay rate greatly depends on the current time. In FIG. 4, if the current time is 7 μs or more, the voltage decay rate is 0% even if the capacitance is 100 μF or less. Therefore, by setting the current time, the voltage attenuation rate can be set to 0% regardless of the capacitance of the capacitor C1, and the size of the capacitor C1 can be reduced.
 [1-2-2.受波装置]
 受波装置20は、音波を受信し、受信した音波を示す受波信号を処理回路30に出力する。図1の受波装置20は、複数(図示例では2つ)のマイクロフォン21と、複数(図示例では2つ)の増幅回路22と、複数(図示例では2つ)のフィルタ23と、AD変換器24と、制御回路25とを備える。
[1-2-2. Receiving device]
The wave receiving device 20 receives a sound wave and outputs a received wave signal indicating the received sound wave to the processing circuit 30 . 1 includes a plurality of (two in the illustrated example) microphones 21, a plurality of (two in the illustrated example) amplifier circuits 22, a plurality of (two in the illustrated example) filters 23, an AD It comprises a converter 24 and a control circuit 25 .
 マイクロフォン21は、音波を電気信号に変換する電気音響変換素子である。マイクロフォン21は、音波を受信すると、受信した音波を示すアナログ形式の受波信号を出力する。マイクロフォン21は、音波源11から出力された後に、対象物で反射された音波P1を検出するために用いられる。増幅回路22は、マイクロフォン21からのアナログ形式の受波信号を増幅して出力する。フィルタ23は、音波P1の周波数帯域を含む通過帯域の信号を通過させる。フィルタ23は、例えば、バンドパスフィルタである。AD変換器24は、フィルタ23を通過したアナログ形式の受波信号を示すデジタル形式の受波信号に変換して制御回路25に出力する。マイクロフォン21、増幅回路22、フィルタ23、及びAD変換器24は、従来周知の構成であってよいから詳細な説明は省略する。 The microphone 21 is an electroacoustic conversion element that converts sound waves into electrical signals. Upon receiving a sound wave, the microphone 21 outputs an analog received wave signal indicating the received sound wave. The microphone 21 is used to detect the sound waves P1 that are reflected by the object after being output from the sound wave source 11 . The amplifier circuit 22 amplifies the received signal in analog format from the microphone 21 and outputs the amplified signal. The filter 23 passes signals in a passband including the frequency band of the sound wave P1. Filter 23 is, for example, a bandpass filter. The AD converter 24 converts the analog received wave signal that has passed through the filter 23 into a digital received wave signal and outputs the digital received wave signal to the control circuit 25 . The microphone 21, the amplifier circuit 22, the filter 23, and the AD converter 24 may have conventionally well-known configurations, so detailed description thereof will be omitted.
 制御回路25は、AD変換器24がデジタル形式の受波信号を制御回路25に出力するように、AD変換器24を制御する。制御回路25は、AD変換器24からのデジタル形式の受波信号を、処理回路30に出力する。制御回路25は、例えば、FPGA等の集積回路である。なお、制御回路14と制御回路25とは、1チップに集約されていてもよい。例えば、制御回路14と制御回路25とは単一のFPGAで実現されてよい。 The control circuit 25 controls the AD converter 24 so that the AD converter 24 outputs a digital received wave signal to the control circuit 25 . The control circuit 25 outputs the digital received signal from the AD converter 24 to the processing circuit 30 . The control circuit 25 is, for example, an integrated circuit such as FPGA. Note that the control circuit 14 and the control circuit 25 may be integrated into one chip. For example, control circuit 14 and control circuit 25 may be implemented in a single FPGA.
 [1-2-3.処理回路]
 処理回路30は、物体検知システム1の動作を制御する回路である。処理回路30は、例えば、1以上のプロセッサ(マイクロプロセッサ)と1以上のメモリとを含むコンピュータシステムにより実現され得る。1以上のプロセッサがプログラムを実行することで、処理回路30としての機能を実現する。
[1-2-3. processing circuit]
The processing circuit 30 is a circuit that controls the operation of the object detection system 1 . The processing circuitry 30 may be implemented by, for example, a computer system including one or more processors (microprocessors) and one or more memories. The functions of the processing circuit 30 are realized by one or more processors executing programs.
 処理回路30は、音波発生装置10からの音波P1を利用して対象空間の物体の検知をする物体検知処理を実行する。物体検知処理は、送波処理と、判定処理とを含む。送波処理は、音波発生装置10が音波P1を発生させるように音波発生装置10を制御する。送波処理は、例えば、音波発生装置10に測定開始信号を送ることによって、音波発生装置10から一連の音波P1を出力させる。判定処理は、対象空間からの音波を受信する受波装置20から受波装置20で受信した音波を示す受波信号を取得する。判定処理は、例えば、受波装置20からのデジタル形式の受波信号を取得する。判定処理は、取得した受波信号に基づいて対象空間に物体があるかどうかを判定する。判定処理は、例えば、一連の音波P1を示す送波信号と受波信号との相互相関関数のピークの値が閾値以上であれば、対象空間に物体が存在すると判断する。相互相関関数のピークとしては、例えば、相互相関関数のメインローブが用いられる。また、判定処理は、対象空間に物体があると判定した場合に受波信号に基づいて物体までの距離を決定する。判定処理は、例えば、送波信号と受波信号との相互相関関数のピークが出現する時間に基づいて、TOF(Time of Flight)技術により、物体までの距離を求める。音波を利用して物体の検知及び物体までの距離の測定等には、従来周知の技術を適用できるから、詳細な説明は省略する。 The processing circuit 30 uses the sound wave P1 from the sound wave generator 10 to execute object detection processing for detecting an object in the target space. The object detection processing includes wave transmission processing and determination processing. The wave transmission process controls the sound wave generator 10 so that the sound wave generator 10 generates the sound wave P1. The wave transmission process causes the sound wave generator 10 to output a series of sound waves P1 by, for example, sending a measurement start signal to the sound wave generator 10 . The determination process acquires a received wave signal indicating the sound wave received by the wave receiving device 20 from the wave receiving device 20 that receives the sound wave from the target space. In the determination process, for example, a received wave signal in digital format from the wave receiving device 20 is obtained. Determination processing determines whether or not there is an object in the target space based on the acquired received wave signal. In the determination process, for example, if the peak value of the cross-correlation function between the transmitted wave signal and the received wave signal representing the series of sound waves P1 is equal to or greater than a threshold value, it is determined that an object exists in the target space. For example, the main lobe of the cross-correlation function is used as the peak of the cross-correlation function. Further, in the determination processing, when it is determined that there is an object in the target space, the distance to the object is determined based on the received wave signal. In the determination process, for example, the distance to the object is obtained by TOF (Time of Flight) technology based on the time at which the peak of the cross-correlation function between the transmitted wave signal and the received wave signal appears. Conventionally well-known techniques can be applied to the detection of an object and the measurement of the distance to the object using sound waves, so a detailed description thereof will be omitted.
 処理回路30は、音波発生装置10の制御回路14の駆動信号S1,S2を設定する機能を有する。 The processing circuit 30 has a function of setting the drive signals S1 and S2 of the control circuit 14 of the sound wave generator 10 .
 [1-3.性能評価]
 音波発生装置10による一連の音波P1の音圧の安定化の効果を確認するために、音波発生装置10から出力される一連の音波P1の音圧の測定を行った。また、比較例として、電力補助回路13を備えていない音波発生装置から出力される一連の音波の音圧の測定を行った。図5は、音波発生装置10から出力される一連の音波P1の音圧の測定結果を示すグラフである。図6は、比較例の音波発生装置から出力される一連の音波の音圧の測定結果を示すグラフである。
[1-3. Performance evaluation]
In order to confirm the effect of stabilizing the sound pressure of the series of sound waves P1 by the sound wave generator 10, the sound pressure of the series of sound waves P1 output from the sound wave generator 10 was measured. Also, as a comparative example, a series of sound pressures of sound waves output from a sound wave generator without the power auxiliary circuit 13 was measured. FIG. 5 is a graph showing measurement results of the sound pressure of a series of sound waves P1 output from the sound wave generator 10. As shown in FIG. FIG. 6 is a graph showing measurement results of sound pressure of a series of sound waves output from the sound wave generator of the comparative example.
 図6に示すように、比較例の音波発生装置では一連の音波の音圧の包絡線が時間とともに低下している。これは、比較例の音波発生装置では、駆動用スイッチング素子T1のスイッチングにより音波源11から一連の音波を出力する動作で、駆動用スイッチング素子T1のオフ期間T1offでのキャパシタC1の充電が不十分になっているためと考えられる。キャパシタC1の充電が不十分になると、キャパシタC1に蓄えられている電荷量が減少し、音波源11に供給される電力が低下する。音波源11に供給される電力の低下は、音波の音圧の低下の一因となるから、音圧が安定しなくなる。 As shown in FIG. 6, in the sound wave generator of the comparative example, the envelope of the sound pressure of a series of sound waves decreases over time. This is because, in the sound wave generator of the comparative example, a series of sound waves are output from the sound wave source 11 by switching the driving switching element T1, and the charging of the capacitor C1 is insufficient during the OFF period T1off of the driving switching element T1. This is thought to be because When the capacitor C1 is insufficiently charged, the amount of electric charge stored in the capacitor C1 decreases, and the power supplied to the sound wave source 11 decreases. A decrease in the power supplied to the sound wave source 11 contributes to a decrease in the sound pressure of the sound wave, so the sound pressure becomes unstable.
 これに対して、図5に示すように、音波発生装置10では一連の音波P1の音圧の包絡線が低下していない。これは、上述したように、音波発生装置10が電力補助回路13を備えているために、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作においても、音波源11に十分な電力を供給することができ、音波源11から一連の音波P1を音圧の低下を抑制しながら出力させることができる。 On the other hand, as shown in FIG. 5, in the sound wave generator 10, the sound pressure envelope of the series of sound waves P1 does not decrease. As described above, since the sound wave generator 10 includes the power auxiliary circuit 13, even in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1, the sound wave source 11 Sufficient electric power can be supplied to the sound wave source 11, and a series of sound waves P1 can be output from the sound wave source 11 while suppressing a decrease in sound pressure.
 図5及び図6から明らかなように、本実施の形態の音波発生装置10によれば、一連の音波P1の音圧の安定化が図れる。 As is clear from FIGS. 5 and 6, according to the sound wave generator 10 of the present embodiment, the sound pressure of a series of sound waves P1 can be stabilized.
 [1-4.効果等]
 以上述べた音波発生装置10は、駆動回路12と、電力補助回路13とを備える。駆動回路12は、直流電源V1により充電されるキャパシタC1、及び、通電により発熱して音波P1を発生させる音波源11にキャパシタC1から電力を供給する駆動用スイッチング素子T1を有する。電力補助回路13は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように駆動回路12に電力を供給する。つまり、電力補助回路13は、音波P1の発生毎に音波P1の発生に消費した電力以上の電力を駆動回路12に供給する。この構成によれば、一連の音波P1の音圧の安定化が図れる。
[1-4. effects, etc.]
The sound wave generator 10 described above includes a drive circuit 12 and a power auxiliary circuit 13 . The driving circuit 12 has a capacitor C1 charged by a DC power source V1, and a driving switching element T1 that supplies electric power from the capacitor C1 to the sound wave source 11 that generates heat when energized and generates a sound wave P1. The power auxiliary circuit 13 supplies power to the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. In other words, the power auxiliary circuit 13 supplies the driving circuit 12 with power equal to or greater than the power consumed for generating the sound wave P1 each time the sound wave P1 is generated. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 また、音波発生装置10において、電力補助回路13は、駆動用スイッチング素子T1のオフ期間T1offに駆動回路12に電力を供給する。この構成によれば、音波P1の発生毎に電力を供給できて、一連の音波P1の音圧の安定化が図れる。 In addition, in the sound wave generator 10, the power auxiliary circuit 13 supplies power to the drive circuit 12 during the OFF period T1off of the drive switching element T1. According to this configuration, electric power can be supplied each time the sound wave P1 is generated, and the sound pressure of a series of sound waves P1 can be stabilized.
 また、音波発生装置10において、電力補助回路13は、駆動用スイッチング素子T1のオフ期間T1offにキャパシタC1を充電する。この構成によれば、電力補助回路13からの電力の供給先に駆動回路12のキャパシタC1を利用するから、一連の音波P1の音圧の安定化が図れる。 In addition, in the sound wave generator 10, the power auxiliary circuit 13 charges the capacitor C1 during the OFF period T1off of the driving switching element T1. According to this configuration, since the capacitor C1 of the driving circuit 12 is used as the destination of power supply from the power auxiliary circuit 13, the sound pressure of the series of sound waves P1 can be stabilized.
 また、音波発生装置10において、電力補助回路13は、直流電源V1とキャパシタC1との間に電気的に接続されるインダクタL1と、インダクタL1と直流電源V1との直列回路に並列に電気的に接続される充電用スイッチング素子T2とを有する。この構成によれば、回路構成の簡素化が図れる。 In the sound wave generator 10, the auxiliary power circuit 13 includes an inductor L1 electrically connected between the DC power supply V1 and the capacitor C1, and an inductor L1 electrically connected in parallel with the series circuit of the inductor L1 and the DC power supply V1. It has a charging switching element T2 to be connected. With this configuration, the circuit configuration can be simplified.
 また、音波発生装置10において、電力補助回路13は、ダイオードD1を有する。ダイオードD1のアノードはインダクタL1に電気的に接続され、ダイオードD1のカソードはキャパシタC1に電気的に接続される。この構成によれば、キャパシタC1からインダクタL1に電流が流れて意図せずにキャパシタC1が放電してしまう可能性を低減できる。 In addition, in the sound wave generator 10, the power auxiliary circuit 13 has a diode D1. The anode of diode D1 is electrically connected to inductor L1 and the cathode of diode D1 is electrically connected to capacitor C1. According to this configuration, it is possible to reduce the possibility that the current flows from the capacitor C1 to the inductor L1 and the capacitor C1 unintentionally discharges.
 また、音波発生装置10において、充電用スイッチング素子T2は、駆動用スイッチング素子T1のオン期間T1on中はオンにされ、駆動用スイッチング素子T1のオフ期間T1offにオフにされる。この構成によれば、インダクタL1に蓄積されるエネルギを増やすことができる。 In addition, in the sound wave generator 10, the charging switching element T2 is turned on during the ON period T1on of the driving switching element T1, and turned off during the OFF period T1off of the driving switching element T1. With this configuration, the energy stored in inductor L1 can be increased.
 また、音波発生装置10において、駆動用スイッチング素子T1及び充電用スイッチング素子T2は同時にオンにされる。この構成によれば、駆動用スイッチング素子T1及び充電用スイッチング素子T2の制御の簡素化が図れる。 Also, in the sound wave generator 10, the driving switching element T1 and the charging switching element T2 are turned on at the same time. With this configuration, the control of the driving switching element T1 and the charging switching element T2 can be simplified.
 また、音波発生装置10において、充電用スイッチング素子T2は、駆動用スイッチング素子T1がオフになった後にオフにされる。この構成によれば、インダクタL1に蓄積されるエネルギを増やすことができる。 Also, in the sound wave generator 10, the charging switching element T2 is turned off after the driving switching element T1 is turned off. With this configuration, the energy stored in inductor L1 can be increased.
 また、音波発生装置10において、キャパシタC1の両端間の定常状態での電圧値をVc、音波源11の抵抗値をRth、駆動用スイッチング素子T1のオン期間の長さをtAon、充電用スイッチング素子T2のオフ期間T2offにインダクタL1から出力される電流ILの最大値をimax、インダクタL1の自己インダクタンスをLとすると、Lは、
Figure JPOXMLDOC01-appb-M000006
 を満たす。この構成によれば、一連の音波P1の音圧の安定化が図れる。
In the sound wave generator 10, the voltage value across the capacitor C1 in a steady state is Vc, the resistance value of the sound wave source 11 is Rth, the length of the ON period of the driving switching element T1 is tAon, and the charging switching element If the maximum value of the current IL output from the inductor L1 during the off period T2off of T2 is imax, and the self-inductance of the inductor L1 is L, then L is
Figure JPOXMLDOC01-appb-M000006
meet. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 また、音波発生装置10において、直流電源V1の電圧値をV、充電用スイッチング素子T2のオン期間T2onの長さをtBon、充電用スイッチング素子T2のオフ期間T2offにインダクタL1から出力される電流ILの最大値をimax、インダクタL1の自己インダクタンスをLとすると、直流電源V1及びインダクタL1は、
Figure JPOXMLDOC01-appb-M000007
 を満たすように設定される。この構成によれば、一連の音波P1の音圧の安定化が図れる。
In the sound wave generator 10, the voltage value of the DC power source V1 is V, the length of the ON period T2on of the charging switching element T2 is tBon, and the current IL output from the inductor L1 during the OFF period T2off of the charging switching element T2 If imax is the maximum value of and L is the self-inductance of the inductor L1, the DC power supply V1 and the inductor L1 are
Figure JPOXMLDOC01-appb-M000007
is set to satisfy According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 また、音波発生装置10において、駆動回路12は、キャパシタC1と直流電源V1との間に電気的に接続される過電流保護素子(抵抗器R1)を備える。この構成によれば、音波源11の過剰な発熱を防止できる。 In addition, in the sound wave generator 10, the drive circuit 12 includes an overcurrent protection element (resistor R1) electrically connected between the capacitor C1 and the DC power supply V1. According to this configuration, excessive heat generation of the sound wave source 11 can be prevented.
 また、音波発生装置10において、駆動用スイッチング素子T1のスイッチングの周波数は、20kHz以上である。この構成によれば、一連の音波P1の音圧の安定化が図れる。 Also, in the sound wave generator 10, the switching frequency of the drive switching element T1 is 20 kHz or higher. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 また、音波発生装置10は、駆動回路12及び電力補助回路13を制御する制御回路14を備える。制御回路14は、音波源11から一連の音波P1を発生させるように駆動回路12の駆動用スイッチング素子T1のスイッチングを制御しながら、音波源11に供給される電力が減少しないように駆動回路12に電力を供給するように電力補助回路13を制御する。この構成によれば、一連の音波P1の音圧の安定化が図れる。 The sound wave generator 10 also includes a control circuit 14 that controls the drive circuit 12 and the power auxiliary circuit 13 . The control circuit 14 controls the switching of the driving switching element T1 of the drive circuit 12 so that the sound wave source 11 generates a series of sound waves P1, while the control circuit 14 controls the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease. The power auxiliary circuit 13 is controlled to supply power to the . According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 また、音波発生装置10は、駆動回路12と、電力補助回路13とを備える。駆動回路12は、直流電源V1により充電されるキャパシタC1、及び、通電により発熱して音波P1を発生させる音波源11にキャパシタC1から電力を供給する駆動用スイッチング素子T1を有する。電力補助回路13は、直流電源V1とキャパシタC1との間に電気的に接続されるインダクタL1、及び、インダクタL1と直流電源V1との直列回路に並列に電気的に接続される充電用スイッチング素子T2を有する。電力補助回路13は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において駆動用スイッチング素子T1のオフ期間T1offに駆動回路12に電力を供給する。この構成によれば、電力補助回路13は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波P1の発生毎に音波P1の発生に消費した電力以上の電力を駆動回路12に供給することが可能となる。したがって、一連の音波P1の音圧の安定化が図れる。 The sound wave generator 10 also includes a drive circuit 12 and a power auxiliary circuit 13 . The driving circuit 12 has a capacitor C1 charged by a DC power source V1, and a driving switching element T1 that supplies electric power from the capacitor C1 to the sound wave source 11 that generates heat when energized and generates a sound wave P1. The power auxiliary circuit 13 includes an inductor L1 electrically connected between the DC power supply V1 and the capacitor C1, and a charging switching element electrically connected in parallel to the series circuit of the inductor L1 and the DC power supply V1. have T2. The power auxiliary circuit 13 supplies power to the drive circuit 12 during the OFF period T1off of the drive switching element T1 in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the drive switching element T1. According to this configuration, the power auxiliary circuit 13 generates a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. can be supplied to the drive circuit 12 . Therefore, the sound pressure of the series of sound waves P1 can be stabilized.
 [2.実施の形態2]
 [2-1.構成]
 図7は、実施の形態2にかかる音波発生装置10Aを備える物体検知システム1Aの構成例のブロック図である。図7に示すように、物体検知システム1Aは、音波発生装置10Aと、受波装置20と、処理回路30とを備える。
[2. Embodiment 2]
[2-1. Constitution]
FIG. 7 is a block diagram of a configuration example of an object detection system 1A including the sound wave generator 10A according to the second embodiment. As shown in FIG. 7, the object detection system 1A includes a sound wave generator 10A, a wave receiver 20, and a processing circuit 30. As shown in FIG.
 図8は、音波発生装置10Aの構成例の回路図である。図7及び図8に示すように、音波発生装置10Aは、音波源11と、複数(図示例では2つ)の駆動回路12-1,12-2(以下、総称して符号12を付す)と、複数(図示例では2つ)の電力補助回路13-1,13-2(以下、総称して符号13を付す)と、制御回路14Aとを備える。なお、図8では、制御回路14Aの図示を省略している。 FIG. 8 is a circuit diagram of a configuration example of the sound wave generator 10A. As shown in FIGS. 7 and 8, the sound wave generator 10A includes a sound wave source 11 and a plurality of (two in the illustrated example) drive circuits 12-1 and 12-2 (hereinafter collectively denoted by reference numeral 12). , a plurality of (two in the illustrated example) power auxiliary circuits 13-1 and 13-2 (hereinafter collectively denoted by reference numeral 13), and a control circuit 14A. 8, illustration of the control circuit 14A is omitted.
 図8に示すように、駆動回路12-1,12-2の各々は、キャパシタC1と、駆動用スイッチング素子T1とを備える。キャパシタC1は、直流電源V1と音波源11との接続点とグラウンドとの間に電気的に接続される。キャパシタC1は、直流電源V1により充電される。駆動回路12-1,12-2のキャパシタC1同士は互いに電気的に並列に接続される。駆動用スイッチング素子T1は、音波源11とグラウンドとの間に電気的に接続される。駆動回路12-1,12-2の駆動用スイッチング素子T1同士は互いに電気的に並列に接続される。 As shown in FIG. 8, each of the drive circuits 12-1 and 12-2 includes a capacitor C1 and a drive switching element T1. The capacitor C1 is electrically connected between the connection point between the DC power source V1 and the acoustic wave source 11 and the ground. Capacitor C1 is charged by DC power supply V1. The capacitors C1 of the drive circuits 12-1 and 12-2 are electrically connected in parallel with each other. The driving switching element T1 is electrically connected between the sound wave source 11 and ground. The driving switching elements T1 of the driving circuits 12-1 and 12-2 are electrically connected in parallel with each other.
 図7及び図8に示すように、複数の電力補助回路13-1,13-2は、複数の駆動回路12-1,12-2にそれぞれ対応する。図8に示すように、電力補助回路13-1,13-2の各々は、インダクタL1と、充電用スイッチング素子T2と、ダイオードD1とを備える。インダクタL1は、直流電源V1とキャパシタC1との間に電気的に接続される。電力補助回路13-1,13-2のインダクタL1同士は互いに電気的に並列に接続される。各電力補助回路13において、充電用スイッチング素子T2は、インダクタL1と直流電源V1との直列回路に並列に電気的に接続される。インダクタL1、直流電源V1、及び充電用スイッチング素子T2は閉ループを構成する。電力補助回路13-1のダイオードD1は、電力補助回路13-1のインダクタL1と、電力補助回路13-1に対応する駆動回路12-1のキャパシタC1との間に電気的に接続される。電力補助回路13-2のダイオードD1は、電力補助回路13-2のインダクタL1と、電力補助回路13-2に対応する駆動回路12-2のキャパシタC1との間に電気的に接続される。 As shown in FIGS. 7 and 8, the power auxiliary circuits 13-1 and 13-2 correspond to the drive circuits 12-1 and 12-2, respectively. As shown in FIG. 8, each of the power auxiliary circuits 13-1 and 13-2 includes an inductor L1, a charging switching element T2, and a diode D1. Inductor L1 is electrically connected between DC power supply V1 and capacitor C1. The inductors L1 of the power auxiliary circuits 13-1 and 13-2 are electrically connected in parallel with each other. In each power auxiliary circuit 13, the charging switching element T2 is electrically connected in parallel to the series circuit of the inductor L1 and the DC power supply V1. Inductor L1, DC power supply V1, and charging switching element T2 form a closed loop. Diode D1 of power auxiliary circuit 13-1 is electrically connected between inductor L1 of power auxiliary circuit 13-1 and capacitor C1 of drive circuit 12-1 corresponding to power auxiliary circuit 13-1. Diode D1 of power auxiliary circuit 13-2 is electrically connected between inductor L1 of power auxiliary circuit 13-2 and capacitor C1 of drive circuit 12-2 corresponding to power auxiliary circuit 13-2.
 制御回路14Aは、駆動回路12-1,12-2及び電力補助回路13-1,13-2を制御するように構成される。制御回路14は、音波源11に一連の音波P1を発生させるように駆動回路12-1,12-2の駆動用スイッチング素子T1のスイッチングを制御しながら、音波源11に供給される電力が減少しないように駆動回路12-1,12-2に電力を供給するように電力補助回路13-1,13-2を制御する。特に、制御回路14Aは、駆動回路12-1及び電力補助回路13-1の組と駆動回路12-2及び電力補助回路13-2の組とを順番に使用する。 The control circuit 14A is configured to control the drive circuits 12-1 and 12-2 and the power auxiliary circuits 13-1 and 13-2. The control circuit 14 controls the switching of the driving switching elements T1 of the drive circuits 12-1 and 12-2 so as to cause the sound wave source 11 to generate a series of sound waves P1, while the power supplied to the sound wave source 11 decreases. The auxiliary power circuits 13-1 and 13-2 are controlled so as to supply power to the driving circuits 12-1 and 12-2 so as not to cause the power failure. In particular, the control circuit 14A sequentially uses the set of drive circuit 12-1 and power auxiliary circuit 13-1 and the set of drive circuit 12-2 and power auxiliary circuit 13-2.
 制御回路14は、複数の駆動回路12-1,12-2の駆動用スイッチング素子T1のスイッチングを制御するための複数の駆動信号S1-1,S1-2(以下、総称して符号S1を付す)を出力する。図8において、駆動用スイッチング素子T1はMOSFETであり、駆動信号S1は駆動用スイッチング素子T1のゲートに入力される。図8では、駆動信号S1-1,S1-2が直流電源として図示されている。 The control circuit 14 outputs a plurality of drive signals S1-1 and S1-2 (hereinafter collectively referred to as S1) for controlling switching of the drive switching elements T1 of the drive circuits 12-1 and 12-2. ). In FIG. 8, the driving switching element T1 is a MOSFET, and the driving signal S1 is input to the gate of the driving switching element T1. In FIG. 8, drive signals S1-1 and S1-2 are illustrated as DC power sources.
 制御回路14は、複数の電力補助回路13-1,13-2の充電用スイッチング素子T2のスイッチングを制御するための複数の駆動信号S2-1,S2-2(以下、総称して符号S2を付す)を出力する。図8において、充電用スイッチング素子T2はMOSFETであり、駆動信号S2は充電用スイッチング素子T2のゲートに入力される。図8では、駆動信号S2-1,S2-2が直流電源として図示されている。 The control circuit 14 outputs a plurality of drive signals S2-1 and S2-2 (hereinafter collectively referred to as S2) for controlling switching of the charging switching elements T2 of the power auxiliary circuits 13-1 and 13-2. attached) is output. In FIG. 8, the charging switching element T2 is a MOSFET, and the drive signal S2 is input to the gate of the charging switching element T2. In FIG. 8, drive signals S2-1 and S2-2 are illustrated as DC power sources.
 次に、制御回路14Aによる駆動回路12及び電力補助回路13の制御について図9を参照して詳細に説明する。図9は、音波発生装置10Aの動作を説明するタイミング図である。 Next, the control of the drive circuit 12 and power auxiliary circuit 13 by the control circuit 14A will be described in detail with reference to FIG. FIG. 9 is a timing chart for explaining the operation of the sound wave generator 10A.
 制御回路14Aは、駆動回路12を制御して音波源11から一連の音波P1を発生させるために、複数の駆動信号S1-1,S1-2を複数の駆動回路12-1,12-2の駆動用スイッチング素子T1に出力する。複数の駆動信号S1-1,S1-2は、複数の駆動回路12-1,12-2の駆動用スイッチング素子T1が共働して、音波源11から一連の音波P1を発生させるように設定される。特に、制御回路14Aは、複数の駆動回路12-1,12-2の駆動用スイッチング素子T1が順番にスイッチングすることによって音波源11から一連の音波P1を発生させるように、複数の駆動信号S1-1,S1-2を設定する。図9において、S0は、複数の駆動信号S1-1,S1-2を合成して得られる合成駆動信号を示し、合成駆動信号S0の周期及び長さが、一連の音波P1の周期及び長さに対応するように設定される。図9に示すように、合成駆動信号S0は、周期Tのパルス列の信号である。周期Tは、一連の音波P1の周期に対応する。上述したように、合成駆動信号S0は、複数の駆動信号S1-1,S1-2を合成して得られる合成駆動信号である。図9では、駆動信号S1-1,S1-2の各々は、合成駆動信号S0の周期の2倍(2T)のパルス列である。駆動信号S1-1,S1-2は、合成駆動信号S0の周期Tだけずれており、これによって、図9に示す合成駆動信号S0が得られる。なお、複数の駆動信号S1の周期及び複数の駆動信号S1の位相のずれは適宜設定されればよく、図9に示す例に限定されない。 The control circuit 14A applies a plurality of drive signals S1-1, S1-2 to the plurality of drive circuits 12-1, 12-2 to control the drive circuit 12 to generate a series of sound waves P1 from the sound wave source 11. Output to the driving switching element T1. The plurality of drive signals S1-1 and S1-2 are set so that the drive switching elements T1 of the plurality of drive circuits 12-1 and 12-2 cooperate to generate a series of sound waves P1 from the sound wave source 11. be done. In particular, the control circuit 14A generates a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the drive circuits 12-1 and 12-2. -1, S1-2 are set. In FIG. 9, S0 indicates a composite drive signal obtained by combining a plurality of drive signals S1-1 and S1-2, and the period and length of the composite drive signal S0 correspond to the period and length of the series of sound waves P1. is set to correspond to As shown in FIG. 9, the combined drive signal S0 is a pulse train signal with a period T. As shown in FIG. The period T corresponds to the period of the series of sound waves P1. As described above, the combined drive signal S0 is a combined drive signal obtained by combining a plurality of drive signals S1-1 and S1-2. In FIG. 9, each of drive signals S1-1 and S1-2 is a pulse train having a period twice (2T) the period of combined drive signal S0. The drive signals S1-1 and S1-2 are shifted by the period T of the combined drive signal S0, thereby obtaining the combined drive signal S0 shown in FIG. It should be noted that the periods of the plurality of drive signals S1 and the phase shifts of the plurality of drive signals S1 may be appropriately set, and are not limited to the example shown in FIG.
 駆動信号S1-1の周期は、駆動回路12-1の駆動用スイッチング素子T1のオン期間T1on-1及びオフ期間T1off-1を含む。オン期間T1on-1においては、駆動回路12-1のキャパシタC1から音波源11に電流が流れ、音波源11に電力が供給される。オフ期間T1off-1においては、駆動回路12-1のキャパシタC1から音波源11に電流が流れず、駆動回路12-1から音波源11に電力が供給されない。駆動信号S1-2の周期は、駆動回路12-2の駆動用スイッチング素子T1のオン期間T1on-2及びオフ期間T1off-2を含む。オン期間T1on-2においては、駆動回路12-2のキャパシタC1から音波源11に電流が流れ、音波源11に電力が供給される。オフ期間T1off-2においては、駆動回路12-2のキャパシタC1から音波源11に電流が流れず、駆動回路12-2から音波源11に電力が供給されない。 The cycle of the driving signal S1-1 includes an ON period T1on-1 and an OFF period T1off-1 of the driving switching element T1 of the driving circuit 12-1. During the ON period T1on-1, a current flows from the capacitor C1 of the driving circuit 12-1 to the sound wave source 11, and the sound wave source 11 is supplied with power. During the off period T1off-1, no current flows from the capacitor C1 of the drive circuit 12-1 to the sound wave source 11, and power is not supplied from the drive circuit 12-1 to the sound wave source 11. FIG. The period of the driving signal S1-2 includes an ON period T1on-2 and an OFF period T1off-2 of the driving switching element T1 of the driving circuit 12-2. During the ON period T1on-2, current flows from the capacitor C1 of the drive circuit 12-2 to the sound wave source 11, and power is supplied to the sound wave source 11. FIG. During the off period T1off-2, no current flows from the capacitor C1 of the drive circuit 12-2 to the sound wave source 11, and power is not supplied from the drive circuit 12-2 to the sound wave source 11. FIG.
 制御回路14Aは、駆動回路12-1,12-2のキャパシタC1から交互に音波源11に電力を供給する。 The control circuit 14A alternately supplies power to the sound wave source 11 from the capacitors C1 of the drive circuits 12-1 and 12-2.
 制御回路14Aは、オン期間T1on-1,T1on-2による駆動回路12-1,12-2のキャパシタC1の電圧V2の低下を解消するために、電力補助回路13-1,13-2によりそれぞれ対応するキャパシタC1を充電する。制御回路14Aは、電力補助回路13-1,13-2を制御してそれぞれ対応するキャパシタC1を充電するために、駆動信号S2-1,S2-2を電力補助回路13-1,13-2の充電用スイッチング素子T2に出力する。制御回路14Aは、複数の駆動回路12-1,12-2の駆動用スイッチング素子T1が順番にスイッチングすることによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように、複数の電力補助回路13-1,13-2がそれぞれ対応する複数の駆動回路12に電力を供給するように、複数の駆動信号S2-1,S2-2を設定する。これによって、複数の電力補助回路13-1,13-2の各々は、複数の駆動回路12-1,12-2の駆動用スイッチング素子T1が順番にスイッチングすることによって音波源11から一連の音波を発生させる動作において、複数の駆動回路12-1,12-2のうちの対応する駆動回路12に、当該対応する駆動回路12の駆動用スイッチング素子T1のオフ期間T1offに、電力を供給する。 The control circuit 14A controls the power auxiliary circuits 13-1 and 13-2 to eliminate the drop in the voltage V2 of the capacitors C1 of the drive circuits 12-1 and 12-2 due to the on-periods T1on-1 and T1on-2. Charge the corresponding capacitor C1. The control circuit 14A applies drive signals S2-1 and S2-2 to the power auxiliary circuits 13-1 and 13-2 to control the power auxiliary circuits 13-1 and 13-2 to charge the corresponding capacitors C1. is output to the charging switching element T2. The control circuit 14A controls the power supplied to the sound wave source 11 in the operation of generating a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12-1 and 12-2. The plurality of drive signals S2-1 and S2-2 are set so that the plurality of power auxiliary circuits 13-1 and 13-2 supply power to the corresponding plurality of drive circuits 12, respectively, so as not to decrease the power. As a result, each of the plurality of power auxiliary circuits 13-1 and 13-2 sequentially switches the driving switching elements T1 of the plurality of drive circuits 12-1 and 12-2 to generate a series of sound waves from the sound wave source 11. is supplied to the corresponding driving circuit 12 of the plurality of driving circuits 12-1 and 12-2 during the off period T1off of the driving switching element T1 of the corresponding driving circuit 12.
 図9に示すように、駆動信号S2-1,S2-2は、それぞれ対応する駆動信号S1-1,S1-2と同じ周期(ここでは2T)のパルス列の信号である。パルス幅は、充電用スイッチング素子T2の目標のデューティ比に応じて設定される。駆動信号S2-1の周期は、電力補助回路13-1の充電用スイッチング素子T2のオン期間T2on-1及びオフ期間T2off-1を含む。オン期間T2on-1においては、直流電源V1から電力補助回路13-1のインダクタL1に電流が流れ、電力補助回路13-1のインダクタL1にエネルギが蓄積される。オフ期間T2off-1においては、電力補助回路13-1のインダクタL1から駆動回路12-1のキャパシタC1に電流が流れ、駆動回路12-1のキャパシタC1が充電される。駆動信号S2-2の周期は、電力補助回路13-2の充電用スイッチング素子T2のオン期間T2on-2及びオフ期間T2off-2を含む。オン期間T2on-2においては、直流電源V1から電力補助回路13-2のインダクタL1に電流が流れ、電力補助回路13-2のインダクタL1にエネルギが蓄積される。オフ期間T2off-2においては、電力補助回路13-2のインダクタL1から駆動回路12-2のキャパシタC1に電流が流れ、駆動回路12-2のキャパシタC1が充電される。 As shown in FIG. 9, the drive signals S2-1 and S2-2 are pulse train signals having the same period (here, 2T) as the corresponding drive signals S1-1 and S1-2. The pulse width is set according to the target duty ratio of the charging switching element T2. The period of the drive signal S2-1 includes an ON period T2on-1 and an OFF period T2off-1 of the charging switching element T2 of the power auxiliary circuit 13-1. During the ON period T2on-1, a current flows from the DC power supply V1 to the inductor L1 of the power auxiliary circuit 13-1, and energy is stored in the inductor L1 of the power auxiliary circuit 13-1. During the OFF period T2off-1, current flows from the inductor L1 of the power auxiliary circuit 13-1 to the capacitor C1 of the drive circuit 12-1, and the capacitor C1 of the drive circuit 12-1 is charged. The cycle of the driving signal S2-2 includes an ON period T2on-2 and an OFF period T2off-2 of the charging switching element T2 of the power auxiliary circuit 13-2. During the ON period T2on-2, current flows from the DC power supply V1 to the inductor L1 of the power auxiliary circuit 13-2, and energy is stored in the inductor L1 of the power auxiliary circuit 13-2. During the OFF period T2off-2, a current flows from the inductor L1 of the power auxiliary circuit 13-2 to the capacitor C1 of the drive circuit 12-2, and the capacitor C1 of the drive circuit 12-2 is charged.
 図9に示すように、制御回路14Aは、電力補助回路13-1,13-2がオフ期間T1off-1,T1off-2に駆動回路12-1,12-2に電力を供給するように、駆動信号S2-1,S2-2を出力する。これにより、音波P1の発生毎に電力を供給できて、音圧の安定化が図れる。また、音波源11への給電中に電力が変動することを防止できて、音圧の安定化が図れる。制御回路14Aは、電力補助回路13-1,13-2がオフ期間T1on-1、T1on-2に駆動回路12-1,12-2のキャパシタC1をそれぞれ充電するように、駆動信号S2-1,S2-2を出力する。これにより、電力補助回路13からの電力の供給先に対応する駆動回路12のキャパシタC1を利用するから、音圧の安定化が図れる。 As shown in FIG. 9, the control circuit 14A controls the power auxiliary circuits 13-1 and 13-2 to supply power to the driving circuits 12-1 and 12-2 during the OFF periods T1off-1 and T1off-2. It outputs drive signals S2-1 and S2-2. As a result, electric power can be supplied each time the sound wave P1 is generated, and the sound pressure can be stabilized. In addition, it is possible to prevent power from fluctuating while power is being supplied to the sound wave source 11, thereby stabilizing the sound pressure. The control circuit 14A outputs the drive signal S2-1 so that the power auxiliary circuits 13-1 and 13-2 charge the capacitors C1 of the drive circuits 12-1 and 12-2 during the off periods T1on-1 and T1on-2, respectively. , S2-2. As a result, the capacitor C1 of the drive circuit 12 corresponding to the power supply destination from the power auxiliary circuit 13 is used, so that the sound pressure can be stabilized.
 具体的には、図9に示すように、オン期間T1on-1は時刻t21からt22までの期間に設定され、オフ期間T1off-1は時刻t22から時刻t26までの期間に設定される。オン期間T2on-1は時刻t21から、時刻t22より後の時刻t24までの期間に設定される。このように、電力補助回路13-1の充電用スイッチング素子T2は、オン期間T1on-1中はオンにされ、オフ期間T1off-1にオフにされる。これにより、電力補助回路13-1のインダクタL1に蓄積されるエネルギを増やすことができる。特に、駆動信号S1-1の周期2Tは合成駆動信号S0の周期Tより長いため、オン期間T2on-1を合成駆動信号S0の周期より長くできる。そのため、電力補助回路13-1のインダクタL1に蓄積されるエネルギを更に増やすことができる。 Specifically, as shown in FIG. 9, the ON period T1on-1 is set to the period from time t21 to t22, and the OFF period T1off-1 is set to the period from time t22 to time t26. The ON period T2on-1 is set to a period from time t21 to time t24 after time t22. Thus, the charging switching element T2 of the power auxiliary circuit 13-1 is turned on during the on period T1on-1 and turned off during the off period T1off-1. Thereby, the energy stored in the inductor L1 of the power auxiliary circuit 13-1 can be increased. In particular, since the period 2T of the drive signal S1-1 is longer than the period T of the combined drive signal S0, the ON period T2on-1 can be made longer than the period of the combined drive signal S0. Therefore, the energy stored in the inductor L1 of the power auxiliary circuit 13-1 can be further increased.
 図9に示すように、オン期間T1on-2は時刻t23から時刻t25までの期間に設定され、オフ期間T1off-2は時刻t25から時刻t28までの期間に設定される。オン期間T2on-2は時刻t23から、時刻t25より後の時刻t27までの期間に設定される。このように、電力補助回路13-2の充電用スイッチング素子T2は、オン期間T1on-2中はオンにされ、オフ期間T1off-2にオフにされる。これにより、電力補助回路13-2のインダクタL1に蓄積されるエネルギを増やすことができる。特に、駆動信号S1-2の周期2Tは合成駆動信号S0の周期Tより長いため、オン期間T2on-2を合成駆動信号S0の周期より長くできる。そのため、電力補助回路13-2のインダクタL1に蓄積されるエネルギを更に増やすことができる。 As shown in FIG. 9, the ON period T1on-2 is set to the period from time t23 to time t25, and the OFF period T1off-2 is set to the period from time t25 to time t28. The ON period T2on-2 is set to a period from time t23 to time t27 after time t25. Thus, the charging switching element T2 of the power auxiliary circuit 13-2 is turned on during the on period T1on-2 and turned off during the off period T1off-2. Thereby, the energy stored in the inductor L1 of the power auxiliary circuit 13-2 can be increased. In particular, since the period 2T of the drive signal S1-2 is longer than the period T of the combined drive signal S0, the ON period T2on-2 can be made longer than the period of the combined drive signal S0. Therefore, the energy stored in the inductor L1 of the power auxiliary circuit 13-2 can be further increased.
 本実施の形態において、音波発生装置10Aは、複数の駆動回路12の駆動用スイッチング素子T1が順番にスイッチングすることによって音波源11から一連の音波P1を発生させる動作を行う。本実施の形態では、音波発生装置10Aは、2つの駆動回路12-1,12-2を備え、2つの駆動回路12-1,12-2から交互に音波源11に電力を供給する。このようにして一連の音波P1を発生させる動作において、複数の電力補助回路13は、音波源11に供給される電力が減少しないように、それぞれ対応する複数の駆動回路12に電力を供給する。本実施の形態では、電力補助回路13-1が駆動回路12-1に、電力補助回路13-2が駆動回路12-2に、それぞれ電力を供給する。 In the present embodiment, the sound wave generator 10A operates to generate a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12 . In this embodiment, the sound wave generator 10A includes two drive circuits 12-1 and 12-2, and alternately supplies power to the sound wave source 11 from the two drive circuits 12-1 and 12-2. In the operation of generating a series of sound waves P1 in this way, the power auxiliary circuits 13 supply power to the corresponding drive circuits 12 such that the power supplied to the sound wave source 11 is not reduced. In this embodiment, the auxiliary power circuit 13-1 supplies power to the driving circuit 12-1, and the auxiliary power circuit 13-2 supplies power to the driving circuit 12-2.
 このように、本実施の形態では、複数の駆動回路12の駆動用スイッチング素子T1が順番にスイッチングすることによって音波源11から一連の音波P1を発生させる。そのため、各電力補助回路13での充電用スイッチング素子T2のオン期間T2onを、一連の音波P1の周期よりも長くすることができる。つまり、駆動回路12と電力補助回路13との組を複数備えることによって、充電用スイッチング素子T2のオン期間T2onを一連の音波P1の周期よりも長くできて、充電用スイッチング素子T2のオン期間T2onにインダクタL1に蓄積可能なエネルギを大きくできる。 As described above, in the present embodiment, the driving switching elements T1 of the plurality of driving circuits 12 are switched in order, thereby causing the sound wave source 11 to generate a series of sound waves P1. Therefore, the ON period T2on of the charging switching element T2 in each power auxiliary circuit 13 can be made longer than the cycle of the series of sound waves P1. That is, by providing a plurality of sets of the drive circuit 12 and the power auxiliary circuit 13, the ON period T2on of the charging switching element T2 can be made longer than the period of the series of sound waves P1, and the ON period T2on of the charging switching element T2 can be increased. In addition, the energy that can be stored in inductor L1 can be increased.
 [2-2.効果等]
 以上述べた音波発生装置10Aは、複数の駆動回路12と、複数の駆動回路12にそれぞれ対応する複数の電力補助回路13とを備える。複数の電力補助回路13は、複数の駆動回路12の駆動用スイッチング素子T1が順番にスイッチングすることによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように、それぞれ対応する複数の駆動回路12に電力を供給する。この構成によれば、一連の音波P1の音圧の安定化が図れる。
[2-2. effects, etc.]
The sound wave generator 10A described above includes a plurality of drive circuits 12 and a plurality of power auxiliary circuits 13 corresponding to the plurality of drive circuits 12, respectively. The plurality of power auxiliary circuits 13 do not reduce the power supplied to the sound wave source 11 in the operation of generating a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12. , power is supplied to a plurality of drive circuits 12 corresponding to each other. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 換言すれば、音波発生装置10Aは、複数の駆動回路12と、複数の駆動回路12にそれぞれ対応する複数の電力補助回路13とを備える。複数の電力補助回路13の各々は、複数の駆動回路12の駆動用スイッチング素子T1が順番にスイッチングすることによって音波源11から一連の音波を発生させる動作において、複数の駆動回路12のうちの対応する駆動回路12に、当該対応する駆動回路12の駆動用スイッチング素子T1のオフ期間T1offに、電力を供給する。この構成によれば、一連の音波P1の音圧の安定化が図れる。 In other words, the sound wave generator 10A includes a plurality of drive circuits 12 and a plurality of power auxiliary circuits 13 corresponding to the plurality of drive circuits 12, respectively. Each of the plurality of power auxiliary circuits 13 is operated to generate a series of sound waves from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12. The power is supplied to the corresponding drive circuit 12 during the OFF period T1off of the drive switching element T1 of the corresponding drive circuit 12 . According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 [3.実施の形態3]
 [3-1.構成]
 図10は、実施の形態3にかかる音波発生装置10Bを備える物体検知システム1Bの構成例のブロック図である。図10に示すように、物体検知システム1Bは、音波発生装置10Bと、受波装置20と、処理回路30とを備える。
[3. Embodiment 3]
[3-1. Constitution]
FIG. 10 is a block diagram of a configuration example of an object detection system 1B including a sound wave generator 10B according to the third embodiment. As shown in FIG. 10, the object detection system 1B includes a sound wave generator 10B, a wave receiver 20, and a processing circuit 30. As shown in FIG.
 図11は、音波発生装置10Bの構成例の回路図である。図10及び図11に示すように、音波発生装置10Bは、音波源11と、駆動回路12と、電力補助回路13Bと、制御回路14Bとを備える。なお、図11では、制御回路14Bの図示を省略している。 FIG. 11 is a circuit diagram of a configuration example of the sound wave generator 10B. As shown in FIGS. 10 and 11, the sound wave generator 10B includes a sound wave source 11, a drive circuit 12, a power auxiliary circuit 13B, and a control circuit 14B. 11, illustration of the control circuit 14B is omitted.
 電力補助回路13Bは、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように駆動回路12に電力を供給するために用いられる。 The power auxiliary circuit 13B supplies power to the driving circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. Used.
 電力補助回路13Bは、複数の補助キャパシタC2-1~C2-nと、切替回路131と、複数の補助抵抗器R2-1~R2-nとを備える。 The power auxiliary circuit 13B includes a plurality of auxiliary capacitors C2-1 to C2-n, a switching circuit 131, and a plurality of auxiliary resistors R2-1 to R2-n.
 複数の複数の補助キャパシタC2-1~C2-nは、複数の補助直流電源V2-1~V2-nによりそれぞれ充電される。補助キャパシタC2-1~C2-nは、キャパシタC1の代わりに音波源11に電力を供給するために用いられる。補助キャパシタC2-1~C2-nは、補助直流電源V2-1~V2-nと音波源11との接続点とグラウンドとの間に電気的に接続される。補助キャパシタC2-1~C2-nは、補助直流電源V2-1~V2-nにより充電される。補助キャパシタC2-1~C2-nの両端間の定常状態での電圧値は、補助直流電源C2-1~C2-nの電圧値に等しいと考えてよい。補助キャパシタC2-1~C2-nは、例えば電解コンデンサ又はセラミックコンデンサである。 A plurality of auxiliary capacitors C2-1 to C2-n are charged by a plurality of auxiliary DC power supplies V2-1 to V2-n, respectively. Auxiliary capacitors C2-1 to C2-n are used to power the acoustic wave source 11 instead of the capacitor C1. The auxiliary capacitors C2-1 to C2-n are electrically connected between the connection points between the auxiliary DC power sources V2-1 to V2-n and the sound wave source 11 and the ground. Auxiliary capacitors C2-1 to C2-n are charged by auxiliary DC power supplies V2-1 to V2-n. It can be considered that the voltage values across the auxiliary capacitors C2-1 to C2-n in the steady state are equal to the voltage values of the auxiliary DC power supplies C2-1 to C2-n. The auxiliary capacitors C2-1 to C2-n are, for example, electrolytic capacitors or ceramic capacitors.
 補助直流電源V2-1~V2-nは、各種の電源回路及び/又はバッテリ等で構成される。各種の電源回路は、例えばAC/DCコンバータ、DC/DCコンバータ、レギュレータ、バッテリを含む。補助直流電源V2の電圧値は、例えば、5Vである。 The auxiliary DC power supplies V2-1 to V2-n are composed of various power supply circuits and/or batteries. Various power supply circuits include, for example, AC/DC converters, DC/DC converters, regulators, and batteries. The voltage value of the auxiliary DC power supply V2 is, for example, 5V.
 補助抵抗器R2-1~R2-nは、補助キャパシタC2-1~C2-nと補助直流電源V2-1~V2-nとの間に電気的に接続される過電流保護素子を構成する。補助抵抗器R2-1~R2-nは、補助直流電源V2-1~V2-nから直接的に音波源11に流れる電流を制限する。補助抵抗器R2-1~R2-nによれば、音波源11の過剰な発熱を防止できる。補助抵抗器R2-1~R2-nの抵抗値は、例えば、50Ω以上5kΩ以下である。 The auxiliary resistors R2-1 to R2-n constitute overcurrent protection elements electrically connected between the auxiliary capacitors C2-1 to C2-n and the auxiliary DC power supplies V2-1 to V2-n. Auxiliary resistors R2-1 to R2-n limit the current that flows directly to sound wave source 11 from auxiliary DC power supplies V2-1 to V2-n. Excessive heat generation of the sound wave source 11 can be prevented by the auxiliary resistors R2-1 to R2-n. The resistance values of the auxiliary resistors R2-1 to R2-n are, for example, 50Ω or more and 5 kΩ or less.
 切替回路131は、音波源11への電力の供給源を、駆動回路12のキャパシタC1及び電力補助回路13Bの複数の補助キャパシタC2-1~C2-nから選択する。より詳細には、切替回路131は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように、駆動回路12のキャパシタC1の代わりに1以上の補助キャパシタC2-1~C2-nの少なくとも一つを音波源11に電気的に接続する。この構成によれば、一連の音波P1の音圧の安定化が図れる。 The switching circuit 131 selects the power supply source for the sound wave source 11 from the capacitor C1 of the drive circuit 12 and the plurality of auxiliary capacitors C2-1 to C2-n of the power auxiliary circuit 13B. More specifically, the switching circuit 131 controls the capacitor of the drive circuit 12 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. At least one of the one or more auxiliary capacitors C2-1 to C2-n is electrically connected to the acoustic wave source 11 instead of C1. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 切替回路131は、図11に示すように、主スイッチSW1と、複数の補助スイッチSW2-1~SW2-nとを備える。主スイッチSW1は、音波源11とキャパシタC1との間に電気的に接続される。複数の補助スイッチSW2-1~SW2-nは、音波源11と複数の補助キャパシタC2-1~C2-nとの間にそれぞれ電気的に接続される。切替回路131では、主スイッチSW1及び複数の補助スイッチSW2-1~SW2-nのうちの一つがオン、残りがオフとされる。これによって、駆動回路12のキャパシタC1及び電力補助回路13Bの複数の補助キャパシタC2-1~C2-nのうちの一つが音波源11に電気的に接続される。 The switching circuit 131, as shown in FIG. 11, includes a main switch SW1 and a plurality of auxiliary switches SW2-1 to SW2-n. Main switch SW1 is electrically connected between sound wave source 11 and capacitor C1. The plurality of auxiliary switches SW2-1 to SW2-n are electrically connected between the sound wave source 11 and the plurality of auxiliary capacitors C2-1 to C2-n, respectively. In the switching circuit 131, one of the main switch SW1 and the plurality of auxiliary switches SW2-1 to SW2-n is turned on, and the rest are turned off. Thereby, the capacitor C1 of the drive circuit 12 and one of the auxiliary capacitors C2-1 to C2-n of the power auxiliary circuit 13B are electrically connected to the sound wave source 11. FIG.
 制御回路14Bは、駆動回路12及び電力補助回路13Bを制御するように構成される。 The control circuit 14B is configured to control the drive circuit 12 and the power auxiliary circuit 13B.
 制御回路14Bは、駆動回路12の駆動用スイッチング素子T1のスイッチング(オンオフ)を制御する。制御回路14Bは、駆動回路12の駆動用スイッチング素子T1を制御することによって、音波源11から一連の音波P1を発生させる動作を実行する。図10に示すように、制御回路14は、駆動用スイッチング素子T1のスイッチングを制御するための駆動信号S1を出力する。本実施の形態において、駆動用スイッチング素子T1はMOSFETであり、駆動信号S1は駆動用スイッチング素子T1のゲートに入力される。図11では、駆動信号S1が直流電源として図示されている。 The control circuit 14B controls switching (on/off) of the drive switching element T1 of the drive circuit 12. The control circuit 14B controls the driving switching element T1 of the driving circuit 12, thereby causing the sound wave source 11 to generate a series of sound waves P1. As shown in FIG. 10, the control circuit 14 outputs a driving signal S1 for controlling switching of the driving switching element T1. In this embodiment, the driving switching element T1 is a MOSFET, and the driving signal S1 is input to the gate of the driving switching element T1. In FIG. 11, the drive signal S1 is illustrated as a DC power supply.
 制御回路14Bは、電力補助回路13Bの切替回路131を制御する。制御回路14Bは、切替回路131の主スイッチSW1及び複数の補助スイッチSW2-1~SW2-nを制御することによって、音波源11に供給される電力が減少しないように駆動回路12に電力を供給する動作を実行する。本実施の形態では、制御回路14Bは、音波源11に印加される電圧VTが所定値以下とならないように、駆動回路12のキャパシタC1の代わりに1以上の補助キャパシタC2-1~C2-nの少なくとも一つを音波源11に電気的に接続する。より詳細には、制御回路14Bは、音波源11に印加される電圧VTが所定値以下とならないように、駆動回路12のキャパシタC1と電力補助回路13Bの複数の補助キャパシタC2-1~C2-nとのうちの一つを音波源11に電気的に接続する。所定値は、音波源11に供給される電力が減少しないように設定される。つまり、制御回路14Bは、駆動回路12のキャパシタC1と電力補助回路13Bの複数の補助キャパシタC2-1~C2-nを順番に使用することで、音波源11に供給される電力が減少しないようにする。 The control circuit 14B controls the switching circuit 131 of the power auxiliary circuit 13B. The control circuit 14B supplies power to the driving circuit 12 by controlling the main switch SW1 and the plurality of auxiliary switches SW2-1 to SW2-n of the switching circuit 131 so that the power supplied to the sound wave source 11 does not decrease. perform the action to be performed. In this embodiment, the control circuit 14B includes one or more auxiliary capacitors C2-1 to C2-n instead of the capacitor C1 of the drive circuit 12 so that the voltage VT applied to the sound wave source 11 does not fall below a predetermined value. are electrically connected to the acoustic wave source 11 . More specifically, the control circuit 14B controls the capacitor C1 of the drive circuit 12 and the plurality of auxiliary capacitors C2-1 to C2- n are electrically connected to the acoustic wave source 11 . The predetermined value is set so that the power supplied to the sound wave source 11 does not decrease. That is, the control circuit 14B sequentially uses the capacitor C1 of the drive circuit 12 and the plurality of auxiliary capacitors C2-1 to C2-n of the power auxiliary circuit 13B so that the power supplied to the sound wave source 11 does not decrease. to
 次に、制御回路14Bによる電力補助回路13Bの制御について図12を参照して詳細に説明する。図12は、音波発生装置10の動作を説明するタイミング図である。図12に示すように、制御回路14Bは、切替回路131の主スイッチSW1を制御するための駆動信号S31、及び、切替回路131の複数の補助スイッチSW2-1~SW2-nを制御するための駆動信号S32-1~S32-n(以下、総称して符号S32を付す)を出力する。駆動信号S31がハイレベルである間は、主スイッチSW1がオンとなる。駆動信号S31がロウレベルである間は、主スイッチSW1がオフとなる。駆動信号S32がハイレベルである間は、補助スイッチSW2がオンとなる。駆動信号S32がロウレベルである間は、補助スイッチSW2がオフとなる。 Next, the control of the power auxiliary circuit 13B by the control circuit 14B will be described in detail with reference to FIG. FIG. 12 is a timing chart for explaining the operation of the sound wave generator 10. FIG. As shown in FIG. 12, the control circuit 14B provides a drive signal S31 for controlling the main switch SW1 of the switching circuit 131 and a drive signal S31 for controlling the plurality of auxiliary switches SW2-1 to SW2-n of the switching circuit 131. It outputs drive signals S32-1 to S32-n (hereinafter collectively referred to as S32). While the drive signal S31 is at high level, the main switch SW1 is turned on. While the drive signal S31 is at low level, the main switch SW1 is turned off. While the drive signal S32 is at high level, the auxiliary switch SW2 is turned on. While the drive signal S32 is at low level, the auxiliary switch SW2 is turned off.
 制御回路14Bは、時刻t31において、駆動信号S31をハイレベルとし、駆動信号S32-1~S32-nをロウレベルとし、主スイッチSW1だけをオンとする。これによって、駆動回路12のキャパシタC1のみが音波源11に電気的に接続され、キャパシタC1から音波源11に電力が供給可能となる。時刻t31において音波源11に印加される電圧VTは、キャパシタC1の両端間の電圧に等しい。駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させている間は、キャパシタC1に蓄積されたエネルギが消費されるから、電圧VTは低下する。 At time t31, the control circuit 14B sets the drive signal S31 to high level, sets the drive signals S32-1 to S32-n to low level, and turns on only the main switch SW1. As a result, only the capacitor C1 of the drive circuit 12 is electrically connected to the sound wave source 11, and power can be supplied from the capacitor C1 to the sound wave source 11. FIG. The voltage VT applied to the sound wave source 11 at time t31 is equal to the voltage across the capacitor C1. While the driving switching element T1 is switched to generate a series of sound waves P1 from the sound wave source 11, the energy stored in the capacitor C1 is consumed and the voltage VT drops.
 制御回路14Bは、時刻t31以後、電圧VTが所定値以下となる前の時刻t32-1において、駆動信号S32-1をハイレベルとし、駆動信号S31,S32-2~S32-nをロウレベルとし、補助スイッチSW2-1だけをオンとする。これによって、電力補助回路13の補助キャパシタC2-1のみが音波源11に電気的に接続され、補助キャパシタC2-1から音波源11に電力が供給可能となる。そのため、時刻t32-1において音波源11に印加される電圧VTは、補助キャパシタC2-1の両端間の電圧に等しくなる。駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させている間は、補助キャパシタC2-1に蓄積されたエネルギが消費されるから、電圧VTは低下する。 After time t31, the control circuit 14B sets the drive signal S32-1 to high level and sets the drive signals S31, S32-2 to S32-n to low level at time t32-1 before the voltage VT becomes equal to or lower than a predetermined value, Only the auxiliary switch SW2-1 is turned on. As a result, only the auxiliary capacitor C2-1 of the power auxiliary circuit 13 is electrically connected to the sound wave source 11, and power can be supplied to the sound wave source 11 from the auxiliary capacitor C2-1. Therefore, the voltage VT applied to the sound wave source 11 at time t32-1 becomes equal to the voltage across the auxiliary capacitor C2-1. While the driving switching element T1 is switched to generate a series of sound waves P1 from the sound wave source 11, the energy accumulated in the auxiliary capacitor C2-1 is consumed and the voltage VT drops.
 制御回路14Bは、時刻t32-1以後、電圧VTが所定値以下となる前の時刻t32-2において、駆動信号S32-2をハイレベルとし、駆動信号S31,S32-1,S32-3~S32-nをロウレベルとし、補助スイッチSW2-2だけをオンとする。これによって、電力補助回路13の補助キャパシタC2-2のみが音波源11に電気的に接続され、補助キャパシタC2-2から音波源11に電力が供給可能となる。そのため、時刻t32-2において音波源11に印加される電圧VTは、補助キャパシタC2-2の両端間の電圧に等しくなる。駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させている間は、補助キャパシタC2-2に蓄積されたエネルギが消費されるから、電圧VTは低下する。 After time t32-1, the control circuit 14B sets the drive signal S32-2 to a high level at time t32-2 before the voltage VT becomes equal to or lower than a predetermined value, and sets the drive signals S31, S32-1, S32-3 to S32. -n is set to low level, and only the auxiliary switch SW2-2 is turned on. As a result, only the auxiliary capacitor C2-2 of the power auxiliary circuit 13 is electrically connected to the sound wave source 11, and electric power can be supplied to the sound wave source 11 from the auxiliary capacitor C2-2. Therefore, the voltage VT applied to the sound wave source 11 at time t32-2 becomes equal to the voltage across the auxiliary capacitor C2-2. While the driving switching element T1 is switched to generate a series of sound waves P1 from the sound wave source 11, the energy accumulated in the auxiliary capacitor C2-2 is consumed, and the voltage VT decreases.
 以後、制御回路14Bは、電圧VTが所定値以下となる前の時刻t32-3,…,t32-n-1,t32-nにおいて、駆動信号S32-3,…,S32-n-1,S32-nのみをハイレベルとし、補助スイッチSW2-3,…,SW2-n-1,SW2-nだけをオンとする。 , t32-n-1, t32-n before the voltage VT becomes equal to or less than the predetermined value, the control circuit 14B controls the drive signals S32-3, . -n is set to a high level, and only the auxiliary switches SW2-3, . . . , SW2-n-1 and SW2-n are turned on.
 このように、制御回路14Bは、音波源11に印加される電圧VTが所定値以下とならないように、主スイッチSW1及び複数の補助スイッチSW2-1~SW2-nのうちの一つがオン、残りがオフとなるように駆動信号31,32-1,32-nを出力する。 In this manner, the control circuit 14B turns on one of the main switch SW1 and the plurality of auxiliary switches SW2-1 to SW2-n so that the voltage VT applied to the sound wave source 11 does not fall below a predetermined value. drive signals 31, 32-1, 32-n are output so that
 したがって、音波発生装置10Bは、音波源11から一連の音波P1を出力させる場合でも、音波源11に供給される電力が減少しないようにすることができ、安定した音圧で一連の音波P1を発生させることが可能となる。 Therefore, even when the sound wave generator 10B outputs a series of sound waves P1 from the sound wave source 11, the power supplied to the sound wave source 11 can be prevented from decreasing, and the series of sound waves P1 can be generated at a stable sound pressure. can be generated.
 [3-2.効果等]
 以上述べた音波発生装置10Bにおいて、電力補助回路13Bは、複数の補助直流電源V2-1~V2-nによりそれぞれ充電される複数の補助キャパシタC2-1~C2-nと、切替回路131とを備える。切替回路131は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように、駆動回路12のキャパシタC1の代わりに複数の補助キャパシタC2-1~C2-nの少なくとも一つを音波源11に電気的に接続する。この構成によれば、一連の音波P1の音圧の安定化が図れる。
[3-2. effects, etc.]
In the sound wave generator 10B described above, the power auxiliary circuit 13B includes a plurality of auxiliary capacitors C2-1 to C2-n charged by a plurality of auxiliary DC power sources V2-1 to V2-n, respectively, and a switching circuit 131. Prepare. The switching circuit 131 replaces the capacitor C1 of the drive circuit 12 with a plurality of capacitors C1 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. at least one of the auxiliary capacitors C2-1 to C2-n is electrically connected to the acoustic wave source 11; According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
(変形例)
 本開示の実施の形態は、上記実施の形態に限定されない。上記実施の形態は、本開示の課題を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施の形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
(Modification)
Embodiments of the present disclosure are not limited to the above embodiments. The above-described embodiment can be modified in various ways according to the design, etc., as long as the subject of the present disclosure can be achieved. Modifications of the above embodiment are listed below. Modifications described below can be applied in combination as appropriate.
 実施の形態1において、一連の音波Pの周波数は一定であるが、周波数は必ずしも一定である必要はない。例えば、一連の音波Pは、時間とともに周波数が変化(例えば増加又は減少)してもよい。図12は、一変形例の音波発生装置の動作を説明する波形図である。図12において、駆動信号S1は、時間とともに周波数が減少(周期が増加)するパルス信号である。図12において、駆動信号S1の周期は、T41,T42,T43,…と大きくなる。図12において、オン期間T1onは一定であるが、オフ期間T1offは周期の増加に応じて増加している。なお、駆動信号S1は、時間とともに周波数が増加(周期が減少)するパルス信号であってもよい。つまり、駆動信号S1は、時間とともに周波数が増加又は減少するパルス信号であってもよい。このような信号は、例えば、チャープ信号といわれる。チャープ信号を用いれば、時間とともに周波数が変化しないパルス信号を用いる場合よりも、相互相関関数のサイドローブを小さくできる。そのため、相互相関関数のメインローブをサイドローブから区別しやすくなって、物体の検知の精度の向上が図れる。 In Embodiment 1, the frequency of the series of sound waves P is constant, but the frequency does not necessarily have to be constant. For example, the series of sound waves P may vary in frequency (eg, increase or decrease) over time. FIG. 12 is a waveform diagram for explaining the operation of the sound wave generator of one modification. In FIG. 12, the driving signal S1 is a pulse signal whose frequency decreases (period increases) with time. In FIG. 12, the cycle of the drive signal S1 increases to T41, T42, T43, . In FIG. 12, the ON period T1on is constant, but the OFF period T1off increases as the cycle increases. The drive signal S1 may be a pulse signal whose frequency increases (period decreases) with time. That is, the drive signal S1 may be a pulse signal whose frequency increases or decreases with time. Such a signal is called, for example, a chirp signal. Using a chirp signal can reduce the side lobes of the cross-correlation function compared to using a pulse signal whose frequency does not change with time. Therefore, the main lobe of the cross-correlation function can be easily distinguished from the side lobes, and the accuracy of object detection can be improved.
 図12において、駆動信号S2は、駆動信号S1と同期している。そのため、駆動信号S2の周期は、駆動信号S1の周期と等しい。駆動信号S2のオン期間T2onが長ければ、電力補助回路13のインダクタL1により多くのエネルギを蓄積することが可能となる。この点から、駆動信号S2のオン期間T2onは、駆動信号S1の周期に応じて設定されてよい。図12において、駆動信号S1の周期が増加するため、駆動信号S2のオン期間T2onも増加させている。このように、駆動信号S2のオン期間T2onは、一定でなくてよく、駆動信号S1の周期に応じて設定されてよい。 In FIG. 12, the drive signal S2 is synchronized with the drive signal S1. Therefore, the period of the drive signal S2 is equal to the period of the drive signal S1. If the ON period T2on of the drive signal S2 is long, more energy can be stored in the inductor L1 of the power auxiliary circuit 13. FIG. From this point, the ON period T2on of the drive signal S2 may be set according to the cycle of the drive signal S1. In FIG. 12, since the cycle of the drive signal S1 is increased, the ON period T2on of the drive signal S2 is also increased. Thus, the ON period T2on of the drive signal S2 may not be constant, and may be set according to the cycle of the drive signal S1.
 実施の形態2において、音波発生装置10Aは、2組の駆動回路12及び電力補助回路13を備えているが、駆動回路12及び電力補助回路13の組の数は、3以上であってもよい。一変形例では、音波発生装置10Aは、複数の駆動回路12の駆動用スイッチング素子T1が順番にスイッチングすることによって音波源11から一連の音波P1を発生させる動作を行ってよい。そして、一連の音波P1を発生させる動作において、複数の電力補助回路13は、音波源11に供給される電力が減少しないように、それぞれ対応する複数の駆動回路12に電力を供給してよい。 In Embodiment 2, the sound wave generator 10A includes two sets of drive circuit 12 and power auxiliary circuit 13, but the number of sets of drive circuit 12 and power auxiliary circuit 13 may be three or more. . In a modified example, the sound wave generator 10A may operate to generate a series of sound waves P1 from the sound wave source 11 by sequentially switching the driving switching elements T1 of the plurality of drive circuits 12 . Then, in the operation of generating a series of sound waves P1, the plurality of power auxiliary circuits 13 may supply power to the corresponding plurality of drive circuits 12 so that the power supplied to the sound wave source 11 does not decrease.
 実施の形態3において、補助直流電源V2-1~V2-nの数及び補助キャパシタC2-1~C2-nの数は特に限定されない。一変形例では、電力補助回路13Bは、1以上の補助直流電源V2-1~V2-nによりそれぞれ充電される1以上の補助キャパシタC2-1~C2-nと、切替回路131とを備えてよい。切替回路131は、駆動用スイッチング素子T1のスイッチングによって音波源11から一連の音波P1を発生させる動作において音波源11に供給される電力が減少しないように、駆動回路12のキャパシタC1の代わりに1以上の補助キャパシタC2-1~C2-nの少なくとも一つを音波源11に電気的に接続してよい。この構成によれば、一連の音波P1の音圧の安定化が図れる。 In Embodiment 3, the number of auxiliary DC power supplies V2-1 to V2-n and the number of auxiliary capacitors C2-1 to C2-n are not particularly limited. In one modification, the power auxiliary circuit 13B includes one or more auxiliary capacitors C2-1 to C2-n charged by one or more auxiliary DC power supplies V2-1 to V2-n, respectively, and a switching circuit 131. good. The switching circuit 131 replaces the capacitor C1 of the drive circuit 12 with 1 so that the power supplied to the sound wave source 11 does not decrease in the operation of generating a series of sound waves P1 from the sound wave source 11 by switching the driving switching element T1. At least one of the above auxiliary capacitors C2-1 to C2-n may be electrically connected to the sound wave source 11. FIG. According to this configuration, the sound pressure of the series of sound waves P1 can be stabilized.
 一変形例では、抵抗器R1の代わりに別の過電流保護素子が用いられてよい。過電流保護素子の例としては、電流ヒューズ、ヒューズ抵抗、及びバイメタル等が挙げられる。また、過電流保護素子は必須ではない。 In one variation, another overcurrent protection element may be used instead of resistor R1. Examples of overcurrent protection elements include current fuses, fuse resistors, bimetals, and the like. Also, an overcurrent protection device is not essential.
(態様)
 上記実施の形態及び変形例から明らかなように、本開示は、下記の態様を含む。以下では、実施の形態との対応関係を明示するためだけに、符号を括弧付きで付している。
(Mode)
As is clear from the above embodiments and modifications, the present disclosure includes the following aspects. In the following, reference numerals are attached with parentheses only for the purpose of clarifying correspondence with the embodiments.
 第1の態様は、音波発生装置(10;10A;10B)であって、駆動回路(12)と、電力補助回路(13;13B)とを備える。前記駆動回路(12)は、直流電源(V1)により充電されるキャパシタ(C1)、及び、通電により発熱して音波(P1)を発生させる音波源(11)に前記キャパシタ(C1)から電力を供給する駆動用スイッチング素子(T1)を有する。前記電力補助回路(13;13B)は、前記駆動用スイッチング素子(T1)のスイッチングによって前記音波源(11)から一連の音波(P1)を発生させる動作において前記音波源(11)に供給される電力が減少しないように、前記駆動回路(12)に電力を供給する。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。 A first aspect is a sound wave generator (10; 10A; 10B) comprising a drive circuit (12) and a power auxiliary circuit (13; 13B). The drive circuit (12) supplies electric power from the capacitor (C1) to a capacitor (C1) charged by a DC power supply (V1) and to a sound wave source (11) that generates heat by energization and generates a sound wave (P1). It has a driving switching element (T1) for supplying power. The power auxiliary circuit (13; 13B) is supplied to the sound wave source (11) in operation to generate a series of sound waves (P1) from the sound wave source (11) by switching the driving switching element (T1). The drive circuit (12) is powered so that the power does not decrease. According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 第2の態様は、第1の態様に基づく音波発生装置(10;10A)である。第2の態様において、前記電力補助回路(13)は、前記駆動用スイッチング素子(T1)のオフ期間(T1off)に前記駆動回路(12)に電力を供給する。この態様によれば、音波(P1)の発生毎に電力を供給できて、音圧の安定化が図れる。 The second aspect is a sound wave generator (10; 10A) based on the first aspect. In the second aspect, the power auxiliary circuit (13) supplies power to the drive circuit (12) during an OFF period (T1off) of the driving switching element (T1). According to this aspect, electric power can be supplied each time the sound wave (P1) is generated, and the sound pressure can be stabilized.
 第3の態様は、第2の態様に基づく音波発生装置(10;10A)である。第3の態様において、前記電力補助回路(13)は、前記駆動用スイッチング素子(T1)のオフ期間(T1off)に前記キャパシタ(C1)を充電する。この態様によれば、電力補助回路(13)からの電力の供給先に駆動回路(12)のキャパシタ(C1)を利用するから、音波源(11)への給電をキャパシタ(C1)に一本化できて、音圧の安定化が図れる。 A third aspect is a sound wave generator (10; 10A) based on the second aspect. In the third aspect, the power auxiliary circuit (13) charges the capacitor (C1) during an OFF period (T1off) of the driving switching element (T1). According to this aspect, since the capacitor (C1) of the drive circuit (12) is used as the destination of power supply from the power auxiliary circuit (13), power is supplied to the sound wave source (11) via the capacitor (C1). It is possible to stabilize the sound pressure.
 第4の態様は、第3の態様に基づく音波発生装置(10;10A)である。第4の態様において、前記電力補助回路(13)は、前記直流電源(V1)と前記キャパシタ(C1)との間に電気的に接続されるインダクタ(L1)と、前記インダクタ(L1)と前記直流電源(V1)との直列回路に並列に電気的に接続される充電用スイッチング素子(T2)とを有する。この態様によれば、回路構成の簡素化が図れる。 A fourth aspect is a sound wave generator (10; 10A) based on the third aspect. In the fourth aspect, the power auxiliary circuit (13) includes an inductor (L1) electrically connected between the DC power supply (V1) and the capacitor (C1), the inductor (L1) and the and a charging switching element (T2) electrically connected in parallel to a series circuit with the DC power supply (V1). According to this aspect, the circuit configuration can be simplified.
 第5の態様は、音波発生装置(10;10A)であって、駆動回路(12)と、電力補助回路(13)とを備える。前記駆動回路(12)は、直流電源(V1)により充電されるキャパシタ(C1)、及び、通電により発熱して音波(P1)を発生させる音波源(11)に前記キャパシタ(C1)から電力を供給する駆動用スイッチング素子(T1)を有する。前記電力補助回路(13)は、前記直流電源(V1)と前記キャパシタ(C1)との間に電気的に接続されるインダクタ(L1)、及び、前記インダクタ(L1)と前記直流電源(V1)との直列回路に並列に電気的に接続される充電用スイッチング素子(T2)を有する。前記電力補助回路(13)は、前記駆動用スイッチング素子(T1)のスイッチングによって前記音波源(11)から一連の音波(P1)を発生させる動作において前記駆動用スイッチング素子(T1)のオフ期間(T1off)に前記駆動回路(12)に電力を供給する。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。 A fifth aspect is a sound wave generator (10; 10A) comprising a drive circuit (12) and a power auxiliary circuit (13). The drive circuit (12) supplies electric power from the capacitor (C1) to a capacitor (C1) charged by a DC power supply (V1) and to a sound wave source (11) that generates heat by energization and generates a sound wave (P1). It has a driving switching element (T1) for supplying power. The power auxiliary circuit (13) includes an inductor (L1) electrically connected between the DC power supply (V1) and the capacitor (C1), and the inductor (L1) and the DC power supply (V1). and a charging switching element (T2) electrically connected in parallel to the series circuit of . The power auxiliary circuit (13) generates a series of sound waves (P1) from the sound wave source (11) by switching the driving switching element (T1) during an OFF period ( T1off) powers the drive circuit (12). According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 第6の態様は、第4又は第5の態様に基づく音波発生装置(10;10A)である。第6の態様において、前記電力補助回路(13)は、ダイオード(D1)を有する。前記ダイオード(D1)のアノードは前記インダクタ(L1)に電気的に接続され、前記ダイオード(D1)のカソードは前記キャパシタ(C1)に電気的に接続される。この態様によれば、キャパシタ(C1)からインダクタ(L1)に電流が流れて意図せずにキャパシタ(C1)が放電してしまう可能性を低減できる。 A sixth aspect is a sound wave generator (10; 10A) based on the fourth or fifth aspect. In a sixth aspect, said power auxiliary circuit (13) comprises a diode (D1). The anode of the diode (D1) is electrically connected to the inductor (L1) and the cathode of the diode (D1) is electrically connected to the capacitor (C1). According to this aspect, it is possible to reduce the possibility that a current flows from the capacitor (C1) to the inductor (L1) and the capacitor (C1) is unintentionally discharged.
 第7の態様は、第4~第6の態様のいずれか一つに基づく音波発生装置(10;10A)である。第6の態様において、前記充電用スイッチング素子(T2)は、前記駆動用スイッチング素子(T1)のオン期間(T1on)中はオンにされ、前記駆動用スイッチング素子(T1)のオフ期間(T1off)にオフにされる。この態様によれば、インダクタ(L1)に蓄積されるエネルギを増やすことができる。 A seventh aspect is a sound wave generator (10; 10A) based on any one of the fourth to sixth aspects. In the sixth aspect, the charging switching element (T2) is turned on during an ON period (T1on) of the driving switching element (T1), and an OFF period (T1off) of the driving switching element (T1). turned off at According to this aspect, the energy stored in the inductor (L1) can be increased.
 第8の態様は、第7の態様に基づく音波発生装置(10;10A)である。第8の態様において、前記駆動用スイッチング素子(T1)及び前記充電用スイッチング素子(T2)は同時にオンにされる。この態様によれば、駆動用スイッチング素子(T1)及び充電用スイッチング素子(T2)の制御の簡素化が図れる。 An eighth aspect is a sound wave generator (10; 10A) based on the seventh aspect. In the eighth aspect, the driving switching element (T1) and the charging switching element (T2) are turned on at the same time. According to this aspect, the control of the driving switching element (T1) and the charging switching element (T2) can be simplified.
 第9の態様は、第8の態様に基づく音波発生装置(10;10A)である。第9の態様において、前記充電用スイッチング素子(T2)は、前記駆動用スイッチング素子(T1)がオフになった後にオフにされる。この態様によれば、インダクタ(L1)に蓄積されるエネルギを増やすことができる。 A ninth aspect is a sound wave generator (10; 10A) based on the eighth aspect. In the ninth aspect, the charging switching element (T2) is turned off after the driving switching element (T1) is turned off. According to this aspect, the energy stored in the inductor (L1) can be increased.
 第10の態様は、第4~第9の態様のいずれか一つに基づく音波発生装置(10;10A)である。第10の態様において、前記キャパシタ(C1)の両端間の定常状態での電圧値をVc、前記音波源(11)の抵抗値をRth、前記駆動用スイッチング素子(T1)のオン期間の長さをtAon、前記充電用スイッチング素子(T2)のオフ期間(T2off)に前記インダクタ(L1)から出力される電流(IL)の最大値をimax、前記インダクタ(L1)の自己インダクタンスをLとすると、Lは、
Figure JPOXMLDOC01-appb-M000008
 を満たす。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。
A tenth aspect is a sound wave generator (10; 10A) according to any one of the fourth to ninth aspects. In the tenth aspect, the voltage value in a steady state across the capacitor (C1) is Vc, the resistance value of the sound wave source (11) is Rth, and the length of the ON period of the driving switching element (T1) is tAon, the maximum value of the current (IL) output from the inductor (L1) during the OFF period (T2off) of the charging switching element (T2) is imax, and the self-inductance of the inductor (L1) is L, L is
Figure JPOXMLDOC01-appb-M000008
meet. According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 第11の態様は、第4~第10の態様のいずれか一つに基づく音波発生装置(10;10A)である。第11の態様において、前記直流電源(V1)の電圧値をV、前記充電用スイッチング素子(T2)のオン期間(T2on)の長さをtBon、前記充電用スイッチング素子(T2)のオフ期間(T2off)に前記インダクタ(L1)から出力される電流(IL)の最大値をimax、前記インダクタ(L1)の自己インダクタンスをLとすると、前記直流電源(V1)及び前記インダクタ(L1)は、
Figure JPOXMLDOC01-appb-M000009
 を満たすように設定される。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。
An eleventh aspect is a sound wave generator (10; 10A) according to any one of the fourth to tenth aspects. In the eleventh aspect, the voltage value of the DC power supply (V1) is V, the length of the ON period (T2on) of the charging switching element (T2) is tBon, and the OFF period (T2) of the charging switching element (T2) is T2off), the maximum value of the current (IL) output from the inductor (L1) is imax, and the self-inductance of the inductor (L1) is L, the DC power supply (V1) and the inductor (L1) are:
Figure JPOXMLDOC01-appb-M000009
is set to satisfy According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 第12の態様は、第1~第11の態様のいずれか一つに基づく音波発生装置(10)である。第12の態様において、前記駆動回路(12)は、前記キャパシタ(C1)と前記直流電源(V1)との間に電気的に接続される過電流保護素子(R1)を備える。この態様によれば、音波源(11)の過剰な発熱を防止できる。 A twelfth aspect is a sound wave generator (10) based on any one of the first to eleventh aspects. In the twelfth aspect, the drive circuit (12) comprises an overcurrent protection element (R1) electrically connected between the capacitor (C1) and the DC power supply (V1). According to this aspect, excessive heat generation of the sound wave source (11) can be prevented.
 第13の態様は、第1~第12の態様のいずれか一つに基づく音波発生装置(10A)である。第13の態様において、前記音波発生装置(10A)は、複数の前記駆動回路(12)と、前記複数の駆動回路(12)にそれぞれ対応する複数の前記電力補助回路(13;13B)とを備える。前記複数の電力補助回路(13;13B)は、前記複数の駆動回路(12)の駆動用スイッチング素子(T1)が順番にスイッチングすることによって前記音波源(11)から一連の音波(P1)を発生させる動作において前記音波源(11)に供給される電力が減少しないように、それぞれ対応する前記複数の駆動回路(12)に電力を供給する。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。 A thirteenth aspect is a sound wave generator (10A) based on any one of the first to twelfth aspects. In the thirteenth aspect, the sound wave generator (10A) includes a plurality of the drive circuits (12) and a plurality of the power auxiliary circuits (13; 13B) respectively corresponding to the plurality of drive circuits (12). Prepare. The plurality of power auxiliary circuits (13; 13B) generate a series of sound waves (P1) from the sound wave source (11) by sequentially switching the driving switching elements (T1) of the plurality of drive circuits (12). Power is supplied to each of the plurality of drive circuits (12) so that the power supplied to the sound wave source (11) does not decrease in the generating operation. According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 第14の態様は、第5の態様に基づく音波発生装置(10A)である。第14の態様において、前記音波発生装置(10A)は、複数の前記駆動回路(12)と、前記複数の駆動回路(12)にそれぞれ対応する複数の前記電力補助回路(13;13B)とを備える。前記複数の電力補助回路(13;13B)の各々は、前記複数の駆動回路(12)の駆動用スイッチング素子(T1)が順番にスイッチングすることによって前記音波源(11)から一連の音波(P1)を発生させる動作において、前記複数の駆動回路(12)のうち対応する駆動回路(12)に、当該対応する駆動回路(12)の駆動用スイッチング素子(T1)のオフ期間(T1off)に、電力を供給する。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。 A fourteenth aspect is a sound wave generator (10A) based on the fifth aspect. In the fourteenth aspect, the sound wave generator (10A) includes a plurality of the drive circuits (12) and a plurality of the power auxiliary circuits (13; 13B) respectively corresponding to the plurality of drive circuits (12). Prepare. Each of the plurality of power auxiliary circuits (13; 13B) generates a series of sound waves (P1 ) in the driving circuit (12) corresponding to the plurality of driving circuits (12), during the OFF period (T1off) of the driving switching element (T1) of the corresponding driving circuit (12), supply power. According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 第15の態様は、第1の態様に基づく音波発生装置(10B)である。第15の態様において、前記電力補助回路(13B)は、1以上の補助直流電源(V2-1~V2-n)によりそれぞれ充電される1以上の補助キャパシタ(C2-1~C2-n)と、切替回路(131)とを備える。前記切替回路(131)は、前記駆動用スイッチング素子(T1)のスイッチングによって前記音波源(11)から一連の音波(P1)を発生させる動作において前記音波源(11)に供給される電力が減少しないように、前記駆動回路(12)のキャパシタ(C1)の代わりに前記1以上の補助キャパシタ(C2-1~C2-n)の少なくとも一つを前記音波源(11)に電気的に接続する。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。 A fifteenth aspect is a sound wave generator (10B) based on the first aspect. In the fifteenth aspect, the power auxiliary circuit (13B) includes one or more auxiliary capacitors (C2-1 to C2-n) each charged by one or more auxiliary DC power supplies (V2-1 to V2-n) and , and a switching circuit (131). The switching circuit (131) reduces the power supplied to the sound wave source (11) in the operation of generating a series of sound waves (P1) from the sound wave source (11) by switching the driving switching element (T1). At least one of the one or more auxiliary capacitors (C2-1 to C2-n) is electrically connected to the sound wave source (11) instead of the capacitor (C1) of the drive circuit (12) so as not to . According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 第16の態様は、第1~第15の態様のいずれか一つに基づく音波発生装置(10;10A;10B)である。第16の態様において、前記駆動用スイッチング素子(T1)のスイッチングの周波数は、20kHz以上である。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。 A sixteenth aspect is a sound wave generator (10; 10A; 10B) based on any one of the first to fifteenth aspects. In the sixteenth aspect, the switching frequency of the driving switching element (T1) is 20 kHz or more. According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 第17の態様は、第1~第16の態様のいずれか一つに基づく音波発生装置(10;10A;10B)である。第17の態様において、前記音波発生装置(10;10A;10B)は、前記駆動回路(12)及び前記電力補助回路(13;13B)を制御する制御回路(14;14A)を備える。前記制御回路(14;14A)は、前記音波源(11)に一連の音波(P1)を発生させるように前記駆動回路(12)の駆動用スイッチング素子(T1)のスイッチングを制御しながら、前記音波源(11)に供給される電力が減少しないように前記駆動回路(12)に電力を供給するように前記電力補助回路(13;13B)を制御する。この態様によれば、一連の音波(P1)の音圧の安定化が図れる。 A seventeenth aspect is a sound wave generator (10; 10A; 10B) based on any one of the first to sixteenth aspects. In a seventeenth aspect, the sound wave generator (10; 10A; 10B) comprises a control circuit (14; 14A) that controls the drive circuit (12) and the power auxiliary circuit (13; 13B). The control circuit (14; 14A) controls the switching of the driving switching element (T1) of the driving circuit (12) so as to cause the sound wave source (11) to generate a series of sound waves (P1), while the The power auxiliary circuit (13; 13B) is controlled to supply power to the driving circuit (12) so that the power supplied to the sound wave source (11) does not decrease. According to this aspect, the sound pressure of the series of sound waves (P1) can be stabilized.
 本開示は、音波発生装置に適用可能である。具体的には、通電により発熱して音波を発生させる音波源にキャパシタから電力を供給する音波発生装置に、本開示は適用可能である。 The present disclosure is applicable to sound wave generators. Specifically, the present disclosure is applicable to a sound wave generator that supplies power from a capacitor to a sound wave source that generates heat and generates sound waves when energized.
  10,10A,10B 音波発生装置
  11 音波源
  12 駆動回路
  C1 キャパシタ
  T1 駆動用スイッチング素子
  R1 抵抗器
  13,13B 電力補助回路
  C2-1~C2-n 補助キャパシタ
  L1 インダクタ
  T2 充電用スイッチング素子
  D1 ダイオード
  14,14A 制御回路
  V1 直流電源
  V2-1~V2-n 補助直流電源
  P1 音波
10, 10A, 10B sound wave generator 11 sound wave source 12 drive circuit C1 capacitor T1 drive switching element R1 resistor 13, 13B power auxiliary circuit C2-1 to C2-n auxiliary capacitor L1 inductor T2 charging switching element D1 diode 14, 14A Control circuit V1 DC power supply V2-1 to V2-n Auxiliary DC power supply P1 Sound wave

Claims (17)

  1.  直流電源により充電されるキャパシタ、及び、通電により発熱して音波を発生させる音波源に前記キャパシタから電力を供給する駆動用スイッチング素子を有する駆動回路と、
     前記駆動用スイッチング素子のスイッチングによって前記音波源から一連の音波を発生させる動作において前記音波源に供給される電力が減少しないように、前記駆動回路に電力を供給する電力補助回路と、
     を備える、
     音波発生装置。
    a driving circuit having a capacitor charged by a DC power supply and a driving switching element for supplying electric power from the capacitor to a sound wave source that generates heat by energization and generates a sound wave;
    a power auxiliary circuit that supplies power to the drive circuit so that the power supplied to the sound wave source does not decrease in the operation of generating a series of sound waves from the sound wave source by switching the driving switching element;
    comprising
    Sonic generator.
  2.  前記電力補助回路は、前記駆動用スイッチング素子のオフ期間に前記駆動回路に電力を供給する、
     請求項1に記載の音波発生装置。
    The power auxiliary circuit supplies power to the drive circuit during an OFF period of the drive switching element.
    The sound wave generator according to claim 1.
  3.  前記電力補助回路は、前記駆動用スイッチング素子のオフ期間に前記キャパシタを充電する、
     請求項2に記載の音波発生装置。
    The power auxiliary circuit charges the capacitor during an OFF period of the drive switching element.
    The sound wave generator according to claim 2.
  4.  前記電力補助回路は、
      前記直流電源と前記キャパシタとの間に電気的に接続されるインダクタと、
      前記インダクタと前記直流電源との直列回路に並列に電気的に接続される充電用スイッチング素子と、
     を有する、
     請求項3に記載の音波発生装置。
    The power auxiliary circuit is
    an inductor electrically connected between the DC power supply and the capacitor;
    a charging switching element electrically connected in parallel to a series circuit of the inductor and the DC power supply;
    having
    The sound wave generator according to claim 3.
  5.  直流電源により充電されるキャパシタ、及び、通電により発熱して音波を発生させる音波源に前記キャパシタから電力を供給する駆動用スイッチング素子を有する駆動回路と、
     前記直流電源と前記キャパシタとの間に電気的に接続されるインダクタ、及び、前記インダクタと前記直流電源との直列回路に並列に電気的に接続される充電用スイッチング素子を有し、前記駆動用スイッチング素子のスイッチングによって前記音波源から一連の音波を発生させる動作において前記駆動用スイッチング素子のオフ期間に前記駆動回路に電力を供給する電力補助回路と、
     を備える、
     音波発生装置。
    a driving circuit having a capacitor charged by a DC power supply and a driving switching element for supplying electric power from the capacitor to a sound wave source that generates heat by energization and generates a sound wave;
    an inductor electrically connected between the DC power supply and the capacitor; and a charging switching element electrically connected in parallel to a series circuit of the inductor and the DC power supply, a power auxiliary circuit for supplying power to the driving circuit during an OFF period of the driving switching element in the operation of generating a series of sound waves from the sound wave source by switching the switching element;
    comprising
    Sonic generator.
  6.  前記電力補助回路は、ダイオードを有し、
     前記ダイオードのアノードは前記インダクタに電気的に接続され、
     前記ダイオードのカソードは前記キャパシタに電気的に接続される、
     請求項4又は5に記載の音波発生装置。
    The power auxiliary circuit has a diode,
    an anode of the diode is electrically connected to the inductor;
    the cathode of the diode is electrically connected to the capacitor;
    The sound wave generator according to claim 4 or 5.
  7.  前記充電用スイッチング素子は、前記駆動用スイッチング素子のオン期間中はオンにされ、前記駆動用スイッチング素子のオフ期間にオフにされる、
     請求項4~6のいずれか一つに記載の音波発生装置。
    The charging switching element is turned on during an on period of the driving switching element and turned off during an off period of the driving switching element.
    The sound wave generator according to any one of claims 4 to 6.
  8.  前記駆動用スイッチング素子及び前記充電用スイッチング素子は同時にオンにされる、
     請求項7に記載の音波発生装置。
    the driving switching element and the charging switching element are turned on at the same time;
    The sound wave generator according to claim 7.
  9.  前記充電用スイッチング素子は、前記駆動用スイッチング素子がオフになった後にオフにされる、
     請求項8に記載の音波発生装置。
    the charging switching element is turned off after the driving switching element is turned off;
    The sound wave generator according to claim 8.
  10.  前記キャパシタの両端間の定常状態での電圧をVc、前記音波源の抵抗値をRth、前記駆動用スイッチング素子のオン期間の長さをtAon、前記充電用スイッチング素子のオフ期間に前記インダクタから出力される電流の最大値をimax、前記インダクタの自己インダクタンスをLとすると、Lは、
    Figure JPOXMLDOC01-appb-M000001
     を満たす、
     請求項4~9のいずれか一つに記載の音波発生装置。
    Vc is the steady-state voltage across the capacitor, Rth is the resistance value of the sound wave source, tAon is the length of the ON period of the driving switching element, and output from the inductor during the OFF period of the charging switching element Let imax be the maximum value of the applied current and L be the self-inductance of the inductor, then L is
    Figure JPOXMLDOC01-appb-M000001
    satisfy the
    The sound wave generator according to any one of claims 4 to 9.
  11.  前記直流電源の電圧をV、前記充電用スイッチング素子のオン期間の長さをtBon、前記充電用スイッチング素子のオフ期間に前記インダクタから出力される電流の最大値をimax、前記インダクタの自己インダクタンスをLとすると、前記直流電源は、
    Figure JPOXMLDOC01-appb-M000002
     を満たすように設定される、
     請求項4~10のいずれか一つに記載の音波発生装置。
    V is the voltage of the DC power supply, tBon is the length of the ON period of the charging switching element, imax is the maximum value of the current output from the inductor during the OFF period of the charging switching element, and the self-inductance of the inductor is L, the DC power supply is
    Figure JPOXMLDOC01-appb-M000002
    is set to satisfy
    The sound wave generator according to any one of claims 4-10.
  12.  前記駆動回路は、前記キャパシタと前記直流電源との間に電気的に接続される過電流保護素子を備える、
     請求項1~11のいずれか一つに記載の音波発生装置。
    The drive circuit includes an overcurrent protection element electrically connected between the capacitor and the DC power supply.
    The sound wave generator according to any one of claims 1-11.
  13.  複数の前記駆動回路と、
     前記複数の駆動回路にそれぞれ対応する複数の前記電力補助回路と、
     を備え、
     前記複数の電力補助回路は、前記複数の駆動回路の駆動用スイッチング素子が順番にスイッチングすることによって前記音波源から一連の音波を発生させる動作において前記音波源に供給される電力が減少しないように、それぞれ対応する前記複数の駆動回路に電力を供給する、
     請求項1~12のいずれか一つに記載の音波発生装置。
    a plurality of the drive circuits;
    a plurality of power auxiliary circuits respectively corresponding to the plurality of drive circuits;
    with
    The plurality of power auxiliary circuits are configured so that the driving switching elements of the plurality of driving circuits are sequentially switched so that the power supplied to the sound wave source does not decrease in the operation of generating a series of sound waves from the sound wave source. , supplying power to each of said plurality of drive circuits;
    The sound wave generator according to any one of claims 1-12.
  14.  複数の前記駆動回路と、
     前記複数の駆動回路にそれぞれ対応する複数の前記電力補助回路と、
     を備え、
     前記複数の電力補助回路の各々は、前記複数の駆動回路の駆動用スイッチング素子が順番にスイッチングすることによって前記音波源から一連の音波を発生させる動作において、前記複数の駆動回路のうちの対応する駆動回路に、当該対応する駆動回路の駆動用スイッチング素子のオフ期間に、電力を供給する、
     請求項5に記載の音波発生装置。
    a plurality of the drive circuits;
    a plurality of power auxiliary circuits respectively corresponding to the plurality of drive circuits;
    with
    Each of the plurality of power auxiliary circuits has a corresponding one of the plurality of drive circuits in operation to generate a series of sound waves from the sound wave source by sequentially switching the driving switching elements of the plurality of drive circuits. supplying power to the drive circuit during an OFF period of the drive switching element of the corresponding drive circuit;
    The sound wave generator according to claim 5.
  15.  前記電力補助回路は、
      1以上の補助直流電源によりそれぞれ充電される1以上の補助キャパシタと、
      前記駆動用スイッチング素子のスイッチングによって前記音波源から一連の音波を発生させる動作において前記音波源に供給される電力が減少しないように、前記駆動回路のキャパシタの代わりに前記1以上の補助キャパシタの少なくとも一つを前記音波源に電気的に接続する切替回路と、
     を有する、
     請求項1に記載の音波発生装置。
    The power auxiliary circuit is
    one or more auxiliary capacitors each charged by one or more auxiliary DC power sources;
    At least one of the one or more auxiliary capacitors replaces the capacitor of the drive circuit so that the power supplied to the sound wave source is not reduced in the operation of generating a series of sound waves from the sound wave source by switching the driving switching element. a switching circuit electrically connecting one to the sound wave source;
    having
    The sound wave generator according to claim 1.
  16.  前記駆動用スイッチング素子のスイッチングの周波数は、20kHz以上である、
     請求項1~15のいずれか一つに記載の音波発生装置。
    The switching frequency of the driving switching element is 20 kHz or higher.
    The sound wave generator according to any one of claims 1-15.
  17.  前記駆動回路及び前記電力補助回路を制御する制御回路を備え、
     前記制御回路は、前記音波源に一連の音波を発生させるように前記駆動回路の駆動用スイッチング素子のスイッチングを制御しながら、前記音波源に供給される電力が減少しないように前記駆動回路に電力を供給するように前記電力補助回路を制御する、
     請求項1~16のいずれか一つに記載の音波発生装置。
    A control circuit that controls the drive circuit and the power auxiliary circuit,
    The control circuit powers the drive circuit such that the power supplied to the sound wave source does not decrease while controlling the switching of the driving switching elements of the drive circuit to cause the sound wave source to generate a series of sound waves. controlling the power auxiliary circuit to provide
    The sound wave generator according to any one of claims 1-16.
PCT/JP2021/037862 2021-03-03 2021-10-13 Sound wave generation device WO2022185593A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021007200.5T DE112021007200T5 (en) 2021-03-03 2021-10-13 Sound wave generating device
CN202180091300.3A CN116762363A (en) 2021-03-03 2021-10-13 Acoustic wave generating device
JP2023503359A JPWO2022185593A1 (en) 2021-03-03 2021-10-13
US18/215,327 US20230338989A1 (en) 2021-03-03 2023-06-28 Acoustic-wave generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-033501 2021-03-03
JP2021033501 2021-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/215,327 Continuation US20230338989A1 (en) 2021-03-03 2023-06-28 Acoustic-wave generating device

Publications (1)

Publication Number Publication Date
WO2022185593A1 true WO2022185593A1 (en) 2022-09-09

Family

ID=83154180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037862 WO2022185593A1 (en) 2021-03-03 2021-10-13 Sound wave generation device

Country Status (5)

Country Link
US (1) US20230338989A1 (en)
JP (1) JPWO2022185593A1 (en)
CN (1) CN116762363A (en)
DE (1) DE112021007200T5 (en)
WO (1) WO2022185593A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668906A (en) * 1985-07-11 1987-05-26 Ekstrand John P Switched resistor regulator
WO2012020600A1 (en) * 2010-08-10 2012-02-16 株式会社村田製作所 Soundwave source and ultrasound generation device
JP2016120462A (en) * 2014-12-25 2016-07-07 Smk株式会社 Impact generation actuator, touch panel and driving method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668906A (en) * 1985-07-11 1987-05-26 Ekstrand John P Switched resistor regulator
WO2012020600A1 (en) * 2010-08-10 2012-02-16 株式会社村田製作所 Soundwave source and ultrasound generation device
JP2016120462A (en) * 2014-12-25 2016-07-07 Smk株式会社 Impact generation actuator, touch panel and driving method

Also Published As

Publication number Publication date
DE112021007200T5 (en) 2024-01-04
US20230338989A1 (en) 2023-10-26
JPWO2022185593A1 (en) 2022-09-09
CN116762363A (en) 2023-09-15

Similar Documents

Publication Publication Date Title
KR101411000B1 (en) Converter and the driving method thereof
JP2020527232A (en) Electrical architecture for electrochemical impedance spectroscopy
EP2469693B1 (en) Power management device and method for harvesting discontinuous power source
JP2016092958A (en) Power supply circuit device
WO2022185593A1 (en) Sound wave generation device
JP4966338B2 (en) Peak hold type detection circuit
JP6570623B2 (en) Constant on-time (COT) control in isolated converters
WO2020075371A1 (en) Power supply circuit, start-up circuit, power generating device, and electronic apparatus
KR101892059B1 (en) Constant on-time(cot) control in isolated converter
JP2003304644A (en) Bidirectional converter
WO2022185594A1 (en) Object detection system
CN115694197A (en) Isolated power control chip, control method thereof and computer readable storage medium
KR101901576B1 (en) Constant on-time(cot) control in isolated converter
JP5123518B2 (en) Ultrasonic flow meter
WO2022185595A1 (en) Object detection system
KR101915057B1 (en) Constant on-time(cot) control in isolated converter
JP2786870B2 (en) DC / DC converter
NO312800B1 (en) Electroacoustic transducer
CN212677097U (en) Piezoelectric driving circuit
US11563339B2 (en) Regulated storage capacitor charging device and method
JP2000236656A (en) Semiconductor power converter
JP6705397B2 (en) Oxygen concentration sensor controller
JP6570085B2 (en) Constant on-time (COT) control in isolated converters
JP2002044938A (en) Switching power unit
JPS5864077A (en) Electrostrictive element driving circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503359

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091300.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021007200

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929154

Country of ref document: EP

Kind code of ref document: A1