WO2022185486A1 - 認証方法、認証プログラム、および情報処理装置 - Google Patents
認証方法、認証プログラム、および情報処理装置 Download PDFInfo
- Publication number
- WO2022185486A1 WO2022185486A1 PCT/JP2021/008494 JP2021008494W WO2022185486A1 WO 2022185486 A1 WO2022185486 A1 WO 2022185486A1 JP 2021008494 W JP2021008494 W JP 2021008494W WO 2022185486 A1 WO2022185486 A1 WO 2022185486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feature
- feature points
- biometric information
- degree
- authentication
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 230000010365 information processing Effects 0.000 title claims description 25
- 238000012545 processing Methods 0.000 claims abstract description 40
- 230000008569 process Effects 0.000 claims description 30
- 210000003462 vein Anatomy 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 description 15
- 230000001186 cumulative effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 9
- 238000012795 verification Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000013598 vector Substances 0.000 description 5
- 239000000284 extract Substances 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011157 data evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1365—Matching; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/31—User authentication
- G06F21/32—User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/14—Vascular patterns
Definitions
- This case relates to an authentication method, an authentication program, and an information processing device.
- an object of the present invention is to provide an authentication method, an authentication program, and an information processing apparatus capable of improving authentication accuracy.
- the authentication method when biometric information is received from a user, a plurality of features corresponding to the feature points included in the received biometric information among a plurality of feature points included in a plurality of registered biometric information. A point is specified, and based on the similarity between the feature amount of each of the specified plurality of feature points and the feature amount of each corresponding feature point included in the accepted biometric information, the biometric information included in the accepted biometric information.
- the computer executes a process of determining the degree of influence of the similarity between the feature amount of the feature point and the feature amount of each of the specified plurality of feature points on the authentication result of the user.
- the authentication accuracy can be improved.
- FIG. 4 is a diagram illustrating feature point pairs; It is a figure which illustrates a feature-value score. It is a figure which illustrates narrowing-down processing.
- FIG. 10 is a diagram illustrating feature point matching rates; 1 is a block diagram illustrating the overall configuration of an information processing apparatus according to a first embodiment; FIG. It is a flow chart showing an example of biometrics registration processing. It is a flow chart showing an example of biometrics processing.
- FIG. 11 is a block diagram illustrating the overall configuration of an information processing apparatus according to a second embodiment; 10 is a flowchart illustrating an example of biometric authentication processing in Example 2; It is a figure which illustrates a hardware configuration.
- biometric authentication a sensor such as a camera is used to acquire the user's biometric information, convert the acquired biometric information into biometric feature values that can be matched, generate matching data, and match it with the registered data.
- a biometric authentication method using feature points a plurality of feature points suitable for biometric authentication are selected from an image of a body part acquired by a sensor, etc., biometric feature amounts are calculated from images in the vicinity of the feature points, and the feature points are calculated.
- Personal identification is performed by collating the biometric feature amount for each person.
- a similarity score (hereinafter referred to as a feature value score) is obtained for each feature point by matching the biometric feature value for each feature point corresponding to the matching data and the registered data, and furthermore, a similarity score (hereinafter referred to as a feature value score) is obtained for each feature point.
- a similarity score (hereinafter referred to as a feature value score) is obtained for each feature point.
- Combine feature scores The integrated feature score is hereinafter referred to as the final score.
- branch points and end points of fingerprints and veins are extracted as "feature points", and the coordinates (X, Y) of each feature point are extracted.
- the feature amount is calculated from the neighboring image of each feature point.
- a neighborhood image is an image of a smaller area than the acquired biometric image, including feature points.
- the feature amount included in the registered data and the feature amount included in the verification data are compared to obtain feature point pairs. It is assumed that both registered data and matching data have already been roughly aligned. Alignment can be performed using the shape of the body part (for example, the outer shape of the palm, the outer shape of the fingers, etc.).
- (1) spatial distance and (2) feature amount score are used as indices.
- the condition is that the distance between the coordinates (Xri, Yri) of the feature point on the registration data side of interest and the coordinates (Xii, Yii) of the feature point on the verification data side is less than or equal to a predetermined threshold value Rth. and
- a feature point on the collation data side having the most similar feature amount is searched. Specifically, a feature amount score indicating how similar the feature amounts are to each other is calculated, and a matching point that gives the maximum score is obtained.
- the final score is obtained from the results of all feature point pairs obtained. For example, they are sorted by feature value score, the average of the top scores (for example, the top 10) is calculated, and this is used as the final score.
- biometric authentication there are 1:1 authentication in which IDs are entered in advance to specify the registration data to be matched and then matched, and registration of N people without ID input and without specifying the registration data to be matched.
- 1:N authentication that matches the data.
- High authentication accuracy is required in any authentication method, but in 1:N authentication, high authentication accuracy corresponding to the number N of registrations is required. This is because as the number of N increases, the number of matches between strangers increases and the probability of accepting a stranger increases.
- 1:N authentication requires even higher accuracy. In particular, as N becomes larger, such as 100,000 or 1,000,000, higher accuracy is required.
- the feature points are selected from the image, but not all feature points are valid for matching. In other words, if there is a feature point commonly occurring in many data, it acts as noise in matching. Here, there are various common factors that can generate feature points.
- pseudo feature points may be easily detected at predetermined locations due to the influence of illumination distribution. Specifically, pseudo feature points tend to occur in boundary areas between areas with high illumination intensity and areas with low illumination intensity. For example, in non-contact authentication such as vein authentication, pseudo feature points may occur due to surface reflection of a living body part or the like. Alternatively, common feature points may occur in all data due to the effects of lens scratches and distortion. Alternatively, for reasons specific to the biometric information to be authenticated, feature points may occur at specific positions of all users.
- a feature point matching rate Ci for each feature point extracted from the matching data is calculated and used for authentication.
- the feature point matching rate C i is a value calculated for each feature point F i of the matching data, and is the ratio of the matching feature points to the number of N' pieces of registered data.
- N' number may be equal to N number, or may be less than N number.
- N represents the number of registered users (strictly speaking, the number of registered data).
- the narrowing process uses a processing method that enables high-speed calculation although authentication accuracy is not high. Through this narrowing-down process, it is possible to narrow down the matching targets of the matching data from N to N′. By narrowing down the objects to be matched, it is possible to achieve both a reduction in processing time and high authentication accuracy when high-precision matching that takes time is performed for N′ pieces of matching.
- the number N′ of registered data for which the feature point coincidence rate Ci is calculated is N or less when the narrowing down process or the like is performed on the registered data. Cases in which N' ⁇ N are satisfied may include cases in which registered data that are candidates for the principal are excluded by the narrowing process, or cases in which the final score calculated is lower than a predetermined threshold value is excluded from candidates for the principal.
- the “similar feature point” means a feature point whose spatial distance is equal to or less than the predetermined threshold value Rth and whose feature value score Si is higher than the predetermined threshold value Sth, as described with reference to FIG. do.
- the number CN i of similar feature points F i is obtained and divided by the number N′ of feature data to be calculated as in the following equation (1) to calculate the feature point matching rate C i .
- "i" is a feature point number extracted from the collation data and is a number of 1 ⁇ i ⁇ m (total number of feature points).
- Authentication accuracy is enhanced by setting weights W i for score calculation at feature points F i in accordance with this feature point match rate C i .
- a feature point with a high feature point matching rate C i is a feature point that matches many registered data, and such a feature point can be regarded as a common feature.
- Authentication accuracy is improved by lowering the weight of such feature points on the final score.
- a method of reducing the degree of influence of feature points with a high feature point matching rate C i on matching a method of lowering the weight W i with respect to the final score, or a method of reducing the weight W i with respect to the final score
- it can be reflected by excluding feature points whose feature point matching rate C i is higher than a predetermined threshold value or high-ranking feature points (eg, top 10%).
- the degree of influence of the feature value score S i on the final score can be determined based on the degree of similarity between the feature value of each feature point F i and the feature value of the corresponding feature point in the registration data. . Therefore, it is possible to dynamically exclude feature points that commonly occur in a large amount of data, thereby improving authentication accuracy.
- FIG. 6 is a block diagram illustrating the overall configuration of the information processing apparatus 100 according to the first embodiment.
- the information processing apparatus 100 includes an overall management unit 10, a database unit 20, a memory unit 30, a feature extraction unit 40, a matching processing unit 50, an acquisition unit 60, and the like.
- the collation processing unit 50 includes a collation management unit 51, a score calculation unit 52, a final score calculation unit 53, a matching rate calculation unit 54, a weight calculation unit 55, and the like.
- the overall management unit 10 controls the operation of each unit of the information processing device 100 .
- the database unit 20 stores registration data.
- the memory unit 30 is a storage unit that temporarily stores collation data, processing results, and the like.
- the acquisition unit 60 acquires a biometric image from the biosensor 200 .
- the biosensor 200 is an image sensor or the like that can acquire a biometric image.
- the biosensor 200 is a fingerprint sensor, it is a sensor that acquires the fingerprints of one or more fingers placed in contact with the reading surface, and is an optical sensor that acquires fingerprints using light. It is a capacitive sensor that acquires a fingerprint using the difference in capacitance.
- biosensor 200 is a vein sensor, it is a sensor that acquires palm veins without contact, and for example, captures an image of subcutaneous veins in the palm using near-infrared rays that are highly transmissive to the human body.
- the vein sensor includes, for example, a CMOS (Complementary Metal Oxide Semiconductor) camera.
- a lighting or the like that emits light containing near-infrared rays may be provided.
- the collation processing unit 50 outputs the collation processing result to the display device 300 .
- the display device 300 displays the processing result of the information processing device 100 .
- the display device 300 is a liquid crystal display device or the like.
- the door control device 400 is a device that opens and closes the door when authentication is successful in the authentication processing of the information processing device 100 .
- FIG. 7 is a flowchart showing an example of biometric registration processing.
- the biometric registration process is a process performed when a user registers registration data in advance.
- the acquisition unit 60 captures a biometric image from the biosensor 200 (step S1).
- the feature extraction unit 40 extracts a plurality of feature points from the biometric image captured in step S1 (step S2).
- the feature extraction unit 40 extracts the feature amount of each feature point extracted in step S2, and stores it in the database unit 20 as registration data (step S3).
- Various methods such as SIFT (Scale-Invariant Feature Transform) and HOG (Histograms of Oriented Gradients) can be used as the feature amount.
- SIFT Scale-Invariant Feature Transform
- HOG Heistograms of Oriented Gradients
- FIG. 8 is a flowchart showing an example of biometric authentication processing.
- the biometric authentication process is a process performed when personal identification is required.
- the acquisition unit 60 acquires a biometric image from the biosensor 200 (step S11).
- the feature extraction unit 40 extracts a plurality of feature points from the biometric image acquired in step S11 (step S12).
- the feature extraction unit 40 extracts the feature amount of each feature point extracted in step S12, and generates verification data (step S13).
- the score calculation unit 52 performs matching processing for each feature point between the matching data and each registration data registered in the database unit 20, thereby obtaining a feature quantity score for each feature point of the matching data.
- Si is calculated (step S14).
- the narrowing-down process described above narrows down the matching targets from N to N'.
- the matching process for each feature point is performed between feature points whose spatial distance is equal to or less than a predetermined threshold value Rth between matching data and each registered data.
- the final score calculator 53 calculates the final score for each registered data (step S15). For example, they are sorted by feature value score, the average of the top scores (for example, the top 10) is calculated, and this is used as the final score.
- the matching rate calculator 54 calculates a feature point matching rate Ci for each feature point of the collation data (step S16).
- the processing speed can be increased by storing the correspondence relationship between the registered feature points and the matching feature points. For example, as exemplified in FIG. 3, the feature point pair information calculated by the matching process for each feature point is held. Searching for feature point pairs requires a loop of the number of registered feature points ⁇ the number of matching feature points, which takes time. be able to
- the weight calculator 55 calculates the weight W i of each feature point from the feature point match rate C i of each feature point calculated in step S16. For example, the weight calculator 55 calculates the weight W i according to the following equation (2) using the feature point matching rate C i and a positive constant ⁇ . The weight W i is the weight of the feature point F i .
- the final score calculator 53 corrects the final score of step S15 using the calculated weight W i (step S17). For example, the final score calculator 53 corrects the final score for each registered data according to the following formula (3).
- the collation management unit 51 performs authentication processing by determining whether each final score corrected in step S17 is equal to or greater than a threshold (step S18). For example, the collation management unit 51 identifies a user who is performing collation processing as a user of registered data whose final score is equal to or greater than a threshold.
- the display device 300 displays the determination result of step S18 (step S19). For example, if the authentication process is successful, the door control device 400 opens and closes the door.
- the degree of influence of the feature quantity score S i on the final score based on the degree of similarity between the feature quantity of each feature point F i and the feature quantity of the corresponding feature point of the registered data. can. Therefore, it is possible to dynamically exclude feature points that commonly occur in a large amount of data, thereby improving authentication accuracy.
- the number CN i of feature points F i whose feature quantity score S i is higher than a predetermined threshold value Sth or the feature point matching rate C i feature points commonly occurring in a large amount of data can be detected more dynamically. It becomes possible to exclude them, and authentication accuracy increases.
- FIG. 9 is a block diagram illustrating the overall configuration of an information processing apparatus 100a according to the second embodiment. As illustrated in FIG. 9, the information processing apparatus 100a differs from the information processing apparatus 100 of the first embodiment in that the matching processing section 50 further includes an image matching section .
- FIG. 10 is a flowchart showing an example of biometric authentication processing in this embodiment.
- steps S11 to S17 are the same as in FIG.
- the image collating unit 56 performs narrowing processing using the final score corrected in step S17 (step S21).
- the corrected final scores for the calculated N pieces of registered data are sorted, and the top N' pieces of registered data are selected as principal candidates.
- a narrowing-down threshold (which may be different from the matching threshold in the first embodiment) may be set for the final score, and only registered data exceeding the threshold may be used as principal candidates.
- the number of registered data can be narrowed down from the number of registered data of N to the number of registered data of N′.
- the image matching unit 56 reflects the feature point matching rate Ci , and then performs image authentication processing between the narrowed N′ registered data and the biometric image acquired in step S11 (step S22).
- the collation management unit 51 identifies a user who is performing image collation processing as a user of registered data whose final score is equal to or greater than a threshold.
- the display device 300 displays the determination result of step S22 (step S23). For example, if the authentication process is successful, the door control device 400 opens and closes the door.
- the similarity S img between images is obtained as follows (corresponding to calculation for obtaining cos ⁇ between vectors).
- a weight W i obtained from the matching rate of the feature point is applied to the neighboring pixels of the feature point F i .
- the process of matching feature points can be used for the narrowing process. After that, by performing an image collation process that can obtain a more accurate authentication result, the authentication accuracy can be further improved.
- history information (accumulated feature point matching rate C′ j ) of matching rate for each feature point of registered data may be utilized.
- C'j is obtained as follows.
- a feature point coincidence rate C i of the feature points of the matching data corresponding to the j-th registered feature point in the registered data is obtained.
- the cumulative value C'j of the feature point match rate Ci is stored as the match rate for the j -th registered feature point.
- i and j are numbers of paired feature points corresponding to the feature points of the verification data and the feature points of the registration data.
- i is the feature point number of the matching data
- j is the feature point number of the registration data.
- the cumulative feature point matching rate C'j is the cumulative result of a plurality of authentication processes, it can be said to be a more stable value than the feature point matching rate Ci calculated from one authentication.
- the cumulative feature point matching rate C'j is updated according to the above formula, but may be configured to stop updating after a predetermined number of authentications. Alternatively, the update may be stopped when the stability of the cumulative feature point matching rate C'j is confirmed (eg, when the rate of change of C'j is equal to or less than a predetermined threshold). By stopping updating when a stable C'j is obtained, a stable authentication process can be realized, and an effect of reducing the load of the matching process can be obtained.
- registered feature points whose cumulative feature point match rate C'j exceeds a predetermined threshold value are excluded from the verification process. Since the cumulative minutiae coincidence rate is past cumulative data, it is considered to be more reliable (than the minutiae coincidence rate Ci obtained for matching data). A feature point with a high cumulative feature point match rate C'j is highly likely to be a feature point unsuitable for authentication. By excluding such feature points from the matching process, it is possible to realize high authentication accuracy and high-speed effect.
- the same matching method as in Example 1 using the feature point matching rate Ci can be applied.
- the cumulative feature point match rate C'j may be reflected in the final score.
- image matching processing is performed.
- Various methods are conceivable for matching processing using images, but a method of calculating the degree of similarity between images is generally used.
- the high accuracy effect of the present invention can be obtained not only in 1:N authentication but also in 1:1 authentication.
- normal entry/exit is performed by 1:N authentication, but in a server room where high security is required, 1:1 authentication of IC card + biometric authentication may be performed to obtain higher security.
- 1:1 authentication is performed using the cumulative feature point matching rate C'j of the registration data obtained in the 1:N authentication process, so that more accurate authentication can be performed.
- FIG. 11 is a block diagram illustrating the hardware configuration of the overall management unit 10, the database unit 20, the memory unit 30, the feature extraction unit 40, the matching processing unit 50, and the acquisition unit 60 of the information processing device 100 or the information processing device 100a.
- the information processing apparatuses 100 and 100a include a CPU 101, a RAM 102, a storage device 103, an interface 104, and the like.
- a CPU (Central Processing Unit) 101 is a central processing unit.
- CPU 101 includes one or more cores.
- a RAM (Random Access Memory) 102 is a volatile memory that temporarily stores programs executed by the CPU 101, data processed by the CPU 101, and the like.
- the storage device 103 is a non-volatile storage device.
- a ROM Read Only Memory
- SSD solid state drive
- Storage device 103 stores an authentication program.
- the interface 104 is an interface device with an external device.
- the overall management unit 10 By executing the authentication program by the CPU 101, the overall management unit 10, the database unit 20, the memory unit 30, the feature extraction unit 40, the collation processing unit 50, and the acquisition unit 60 of the information processing apparatuses 100 and 100a are realized.
- Hardware such as a dedicated circuit may be used as the overall management unit 10, the database unit 20, the memory unit 30, the feature extraction unit 40, the matching processing unit 50, and the acquisition unit 60.
- the matching rate calculation unit 54 when the matching rate calculation unit 54 receives biometric information from a user, the feature points corresponding to the feature points included in the received biometric information among the plurality of feature points included in the plurality of registered biometric information are determined. It is an example of an identification unit that identifies a plurality of feature points.
- the weight calculation unit 55 calculates the feature amount of each of the specified feature points and the feature amount of each of the corresponding feature points included in the received biometric information based on the degree of similarity. It is an example of the determination part which determines the influence degree of the similarity of the feature-value of the said feature point, and the feature-value of each of said several specified feature points to the authentication result of the said user.
- the matching management unit 51 accumulates and records the ratio of the number of feature point pairs to the number of the plurality of registered biometric information for each corresponding feature point included in the plurality of registered biometric information.
- the image collation unit 56 is an example of an image collation unit that uses the degree of influence for collation between the received biometric image from which the biometric information is extracted and a plurality of registered biometric images.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Computer Security & Cryptography (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Collating Specific Patterns (AREA)
Abstract
Description
図7は、生体登録処理の一例を表すフローチャートである。生体登録処理は、ユーザが登録データを予め登録する際に行なわれる処理である。図7で例示するように、取得部60は、生体センサ200から生体画像を撮影する(ステップS1)。次に、特徴抽出部40は、ステップS1で撮影された生体画像から、複数の特徴点を抽出する(ステップS2)。次に、特徴抽出部40は、ステップS2で抽出された各特徴点の特徴量を抽出し、データベース部20に登録データとして格納する(ステップS3)。ここで特徴量としては、SIFT(Scale-Invariant Feature Transform)やHOG(Histograms of Oriented Gradients)等、様々な方式を利用することができる。N人のユーザに対して生体登録処理を行うことによって、N人の登録データを予め登録しておくことができる。
図8は、生体認証処理の一例を表すフローチャートである。生体認証処理は、本人確認が必要な場面で行なわれる処理である。図8で例示するように、取得部60は、生体センサ200から生体画像を取得する(ステップS11)。次に、特徴抽出部40は、ステップS11で取得された生体画像から、複数の特徴点を抽出する(ステップS12)。次に、特徴抽出部40は、ステップS12で抽出された各特徴点の特徴量を抽出し、照合データを生成する(ステップS13)。
図11は、情報処理装置100または情報処理装置100aの全体管理部10、データベース部20、メモリ部30、特徴抽出部40、照合処理部50、取得部60のハードウェア構成を例示するブロック図である。図11で例示するように、情報処理装置100,100aは、CPU101、RAM102、記憶装置103、インタフェース104等を備える。
20 データベース部
30 メモリ部
40 特徴抽出部
50 照合処理部
51 照合管理部
52 スコア計算部
53 最終スコア計算部
54 一致率算出部
55 重み算出部
60 取得部
100,100a 情報処理装置
200 生体センサ
300 表示装置
400 ドア制御装置
Claims (24)
- ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定し、
特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する、
処理をコンピュータが実行することを特徴とする認証方法。 - 特定した前記複数の特徴点は、登録された前記複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点との距離が閾値以下となる特徴点であることを特徴とする請求項1に記載の認証方法。
- 特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度が閾値以上となる特徴点ペアの数に基づいて、前記影響度を決定することを特徴とする請求項1または請求項2に記載の認証方法。
- 登録された前記複数の生体情報の数に対する、前記特徴点ペアの数の比率に基づいて、前記影響度を決定することを特徴とする請求項3に記載の認証方法。
- 前記特徴点ペアの数が多いほど、前記影響度を低下させることを特徴とする請求項3または請求項4に記載の認証方法。
- 前記比率を、登録された前記複数の生体情報に含まれる対応する特徴点ごとに累積して記録し、前記ユーザの認証結果に用いることを特徴とする請求項4に記載の認証方法。
- 受け付けた前記生体情報が抽出された生体画像と、登録された複数の生体画像との照合に、前記影響度を利用することを特徴とする請求項1から請求項6のいずれか一項に記載の認証方法。
- 前記生体情報は、静脈情報または指紋情報であることを特徴とする請求項1から請求項7のいずれか一項に記載の認証方法。
- ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定する特定部と、
特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する決定部と、を備えることを特徴とする情報処理装置。 - 特定した前記複数の特徴点は、登録された前記複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点との距離が閾値以下となる特徴点であることを特徴とする請求項9に記載の情報処理装置。
- 前記決定部は、特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度が閾値以上となる特徴点ペアの数に基づいて、前記影響度を決定することを特徴とする請求項9または請求項10に記載の情報処理装置。
- 前記決定部は、登録された前記複数の生体情報の数に対する、前記特徴点ペアの数の比率に基づいて、前記影響度を決定することを特徴とする請求項11に記載の情報処理装置。
- 前記決定部は、前記特徴点ペアの数が多いほど、前記影響度を低下させることを特徴とする請求項11または請求項12に記載の情報処理装置。
- 前記比率を、登録された前記複数の生体情報に含まれる対応する特徴点ごとに累積して記録し、前記ユーザの認証結果に用いる認証部を備えることを特徴とする請求項12に記載の情報処理装置。
- 受け付けた前記生体情報が抽出された生体画像と、登録された複数の生体画像との照合に、前記影響度を利用する画像照合部を備えることを特徴とする請求項9から請求項14のいずれか一項に記載の情報処理装置。
- 前記生体情報は、静脈情報または指紋情報であることを特徴とする請求項9から請求項15のいずれか一項に記載の情報処理装置。
- コンピュータに、
ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定する処理と、
特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する処理と、を実行させることを特徴とする認証プログラム。 - 特定した前記複数の特徴点は、登録された前記複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点との距離が閾値以下となる特徴点であることを特徴とする請求項17に記載の認証プログラム。
- 特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度が閾値以上となる特徴点ペアの数に基づいて、前記影響度を決定することを特徴とする請求項17または請求項18に記載の認証プログラム。
- 登録された前記複数の生体情報の数に対する、前記特徴点ペアの数の比率に基づいて、前記影響度を決定することを特徴とする請求項19に記載の認証プログラム。
- 前記特徴点ペアの数が多いほど、前記影響度を低下させることを特徴とする請求項19または請求項20に記載の認証プログラム。
- 前記比率を、登録された前記複数の生体情報に含まれる対応する特徴点ごとに累積して記録し、前記ユーザの認証結果に用いることを特徴とする請求項20に記載の認証プログラム。
- 受け付けた前記生体情報が抽出された生体画像と、登録された複数の生体画像との照合に、前記影響度を利用することを特徴とする請求項17から請求項22のいずれか一項に記載の認証プログラム。
- 前記生体情報は、静脈情報または指紋情報であることを特徴とする請求項17から請求項23のいずれか一項に記載の認証プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023503291A JPWO2022185486A1 (ja) | 2021-03-04 | 2021-03-04 | |
PCT/JP2021/008494 WO2022185486A1 (ja) | 2021-03-04 | 2021-03-04 | 認証方法、認証プログラム、および情報処理装置 |
US18/448,699 US20230386251A1 (en) | 2021-03-04 | 2023-08-11 | Authentication method, storage medium, and information processing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/008494 WO2022185486A1 (ja) | 2021-03-04 | 2021-03-04 | 認証方法、認証プログラム、および情報処理装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/448,699 Continuation US20230386251A1 (en) | 2021-03-04 | 2023-08-11 | Authentication method, storage medium, and information processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022185486A1 true WO2022185486A1 (ja) | 2022-09-09 |
Family
ID=83154095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/008494 WO2022185486A1 (ja) | 2021-03-04 | 2021-03-04 | 認証方法、認証プログラム、および情報処理装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230386251A1 (ja) |
JP (1) | JPWO2022185486A1 (ja) |
WO (1) | WO2022185486A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014106794A (ja) * | 2012-11-28 | 2014-06-09 | Nec Casio Mobile Communications Ltd | 顔認証装置、認証方法とそのプログラム、情報機器 |
JP2016009363A (ja) * | 2014-06-25 | 2016-01-18 | 株式会社日立製作所 | 生体情報を利用する認証システム |
JP2016207216A (ja) | 2015-04-23 | 2016-12-08 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 指紋認証方法及び装置 |
JP2019028532A (ja) * | 2017-07-26 | 2019-02-21 | 富士通株式会社 | 画像処理装置、画像処理方法、及び画像処理プログラム |
JP2019045969A (ja) * | 2017-08-30 | 2019-03-22 | 富士通株式会社 | 生体画像処理装置、生体画像処理方法、及び生体画像処理プログラム |
-
2021
- 2021-03-04 JP JP2023503291A patent/JPWO2022185486A1/ja not_active Withdrawn
- 2021-03-04 WO PCT/JP2021/008494 patent/WO2022185486A1/ja active Application Filing
-
2023
- 2023-08-11 US US18/448,699 patent/US20230386251A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014106794A (ja) * | 2012-11-28 | 2014-06-09 | Nec Casio Mobile Communications Ltd | 顔認証装置、認証方法とそのプログラム、情報機器 |
JP2016009363A (ja) * | 2014-06-25 | 2016-01-18 | 株式会社日立製作所 | 生体情報を利用する認証システム |
JP2016207216A (ja) | 2015-04-23 | 2016-12-08 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 指紋認証方法及び装置 |
JP2019028532A (ja) * | 2017-07-26 | 2019-02-21 | 富士通株式会社 | 画像処理装置、画像処理方法、及び画像処理プログラム |
JP2019045969A (ja) * | 2017-08-30 | 2019-03-22 | 富士通株式会社 | 生体画像処理装置、生体画像処理方法、及び生体画像処理プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022185486A1 (ja) | 2022-09-09 |
US20230386251A1 (en) | 2023-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7006671B2 (en) | Personal identification apparatus and method | |
Connaughton et al. | Fusion of face and iris biometrics | |
US8265347B2 (en) | Method and system for personal identification using 3D palmprint imaging | |
US7257241B2 (en) | Dynamic thresholding for a fingerprint matching system | |
US8498454B2 (en) | Optimal subspaces for face recognition | |
RU2670798C1 (ru) | Способ аутентификации пользователя по радужной оболочке глаз и соответствующее устройство | |
JP5729302B2 (ja) | 生体認証システム、方法およびプログラム | |
JP2008009753A (ja) | 生体認証方法及び生体認証システム | |
US20120057011A1 (en) | Finger vein recognition system and method | |
EP3617993B1 (en) | Collation device, collation method and collation program | |
Uhl et al. | Footprint-based biometric verification | |
Kaur | A study of biometric identification and verification system | |
Liliana et al. | The combination of palm print and hand geometry for biometrics palm recognition | |
US20230070660A1 (en) | Authentication method, non-transitory computer-readable storage medium for storing authentication program, and information processing device | |
WO2022185486A1 (ja) | 認証方法、認証プログラム、および情報処理装置 | |
Cheng et al. | Special point representations for reducing data space requirements of finger-vein recognition applications | |
EP3639197B1 (en) | Template matching of a biometric object | |
Hassan et al. | An information-theoretic measure for face recognition: Comparison with structural similarity | |
Příhodová et al. | Hand-Based Biometric Recognition Technique-Survey | |
Muthukumaran et al. | Face and Iris based Human Authentication using Deep Learning | |
Lomte | Biometric fingerprint authentication with minutiae using ridge feature extraction | |
Joshi | BIOMET: A multimodal biometric authentication system for person identification and verification using fingerprint and face recognition | |
WO2023242899A1 (ja) | 類似度算出方法、類似度算出プログラム、および類似度算出装置 | |
Nivas et al. | Real-time finger-vein recognition system | |
WO2023188332A1 (ja) | 人物特定装置、人物特定方法、および人物特定プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21929059 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023503291 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021929059 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021929059 Country of ref document: EP Effective date: 20231004 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21929059 Country of ref document: EP Kind code of ref document: A1 |