WO2022185486A1 - 認証方法、認証プログラム、および情報処理装置 - Google Patents

認証方法、認証プログラム、および情報処理装置 Download PDF

Info

Publication number
WO2022185486A1
WO2022185486A1 PCT/JP2021/008494 JP2021008494W WO2022185486A1 WO 2022185486 A1 WO2022185486 A1 WO 2022185486A1 JP 2021008494 W JP2021008494 W JP 2021008494W WO 2022185486 A1 WO2022185486 A1 WO 2022185486A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature
feature points
biometric information
degree
authentication
Prior art date
Application number
PCT/JP2021/008494
Other languages
English (en)
French (fr)
Inventor
青木隆浩
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2023503291A priority Critical patent/JPWO2022185486A1/ja
Priority to PCT/JP2021/008494 priority patent/WO2022185486A1/ja
Publication of WO2022185486A1 publication Critical patent/WO2022185486A1/ja
Priority to US18/448,699 priority patent/US20230386251A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns

Definitions

  • This case relates to an authentication method, an authentication program, and an information processing device.
  • an object of the present invention is to provide an authentication method, an authentication program, and an information processing apparatus capable of improving authentication accuracy.
  • the authentication method when biometric information is received from a user, a plurality of features corresponding to the feature points included in the received biometric information among a plurality of feature points included in a plurality of registered biometric information. A point is specified, and based on the similarity between the feature amount of each of the specified plurality of feature points and the feature amount of each corresponding feature point included in the accepted biometric information, the biometric information included in the accepted biometric information.
  • the computer executes a process of determining the degree of influence of the similarity between the feature amount of the feature point and the feature amount of each of the specified plurality of feature points on the authentication result of the user.
  • the authentication accuracy can be improved.
  • FIG. 4 is a diagram illustrating feature point pairs; It is a figure which illustrates a feature-value score. It is a figure which illustrates narrowing-down processing.
  • FIG. 10 is a diagram illustrating feature point matching rates; 1 is a block diagram illustrating the overall configuration of an information processing apparatus according to a first embodiment; FIG. It is a flow chart showing an example of biometrics registration processing. It is a flow chart showing an example of biometrics processing.
  • FIG. 11 is a block diagram illustrating the overall configuration of an information processing apparatus according to a second embodiment; 10 is a flowchart illustrating an example of biometric authentication processing in Example 2; It is a figure which illustrates a hardware configuration.
  • biometric authentication a sensor such as a camera is used to acquire the user's biometric information, convert the acquired biometric information into biometric feature values that can be matched, generate matching data, and match it with the registered data.
  • a biometric authentication method using feature points a plurality of feature points suitable for biometric authentication are selected from an image of a body part acquired by a sensor, etc., biometric feature amounts are calculated from images in the vicinity of the feature points, and the feature points are calculated.
  • Personal identification is performed by collating the biometric feature amount for each person.
  • a similarity score (hereinafter referred to as a feature value score) is obtained for each feature point by matching the biometric feature value for each feature point corresponding to the matching data and the registered data, and furthermore, a similarity score (hereinafter referred to as a feature value score) is obtained for each feature point.
  • a similarity score (hereinafter referred to as a feature value score) is obtained for each feature point.
  • Combine feature scores The integrated feature score is hereinafter referred to as the final score.
  • branch points and end points of fingerprints and veins are extracted as "feature points", and the coordinates (X, Y) of each feature point are extracted.
  • the feature amount is calculated from the neighboring image of each feature point.
  • a neighborhood image is an image of a smaller area than the acquired biometric image, including feature points.
  • the feature amount included in the registered data and the feature amount included in the verification data are compared to obtain feature point pairs. It is assumed that both registered data and matching data have already been roughly aligned. Alignment can be performed using the shape of the body part (for example, the outer shape of the palm, the outer shape of the fingers, etc.).
  • (1) spatial distance and (2) feature amount score are used as indices.
  • the condition is that the distance between the coordinates (Xri, Yri) of the feature point on the registration data side of interest and the coordinates (Xii, Yii) of the feature point on the verification data side is less than or equal to a predetermined threshold value Rth. and
  • a feature point on the collation data side having the most similar feature amount is searched. Specifically, a feature amount score indicating how similar the feature amounts are to each other is calculated, and a matching point that gives the maximum score is obtained.
  • the final score is obtained from the results of all feature point pairs obtained. For example, they are sorted by feature value score, the average of the top scores (for example, the top 10) is calculated, and this is used as the final score.
  • biometric authentication there are 1:1 authentication in which IDs are entered in advance to specify the registration data to be matched and then matched, and registration of N people without ID input and without specifying the registration data to be matched.
  • 1:N authentication that matches the data.
  • High authentication accuracy is required in any authentication method, but in 1:N authentication, high authentication accuracy corresponding to the number N of registrations is required. This is because as the number of N increases, the number of matches between strangers increases and the probability of accepting a stranger increases.
  • 1:N authentication requires even higher accuracy. In particular, as N becomes larger, such as 100,000 or 1,000,000, higher accuracy is required.
  • the feature points are selected from the image, but not all feature points are valid for matching. In other words, if there is a feature point commonly occurring in many data, it acts as noise in matching. Here, there are various common factors that can generate feature points.
  • pseudo feature points may be easily detected at predetermined locations due to the influence of illumination distribution. Specifically, pseudo feature points tend to occur in boundary areas between areas with high illumination intensity and areas with low illumination intensity. For example, in non-contact authentication such as vein authentication, pseudo feature points may occur due to surface reflection of a living body part or the like. Alternatively, common feature points may occur in all data due to the effects of lens scratches and distortion. Alternatively, for reasons specific to the biometric information to be authenticated, feature points may occur at specific positions of all users.
  • a feature point matching rate Ci for each feature point extracted from the matching data is calculated and used for authentication.
  • the feature point matching rate C i is a value calculated for each feature point F i of the matching data, and is the ratio of the matching feature points to the number of N' pieces of registered data.
  • N' number may be equal to N number, or may be less than N number.
  • N represents the number of registered users (strictly speaking, the number of registered data).
  • the narrowing process uses a processing method that enables high-speed calculation although authentication accuracy is not high. Through this narrowing-down process, it is possible to narrow down the matching targets of the matching data from N to N′. By narrowing down the objects to be matched, it is possible to achieve both a reduction in processing time and high authentication accuracy when high-precision matching that takes time is performed for N′ pieces of matching.
  • the number N′ of registered data for which the feature point coincidence rate Ci is calculated is N or less when the narrowing down process or the like is performed on the registered data. Cases in which N' ⁇ N are satisfied may include cases in which registered data that are candidates for the principal are excluded by the narrowing process, or cases in which the final score calculated is lower than a predetermined threshold value is excluded from candidates for the principal.
  • the “similar feature point” means a feature point whose spatial distance is equal to or less than the predetermined threshold value Rth and whose feature value score Si is higher than the predetermined threshold value Sth, as described with reference to FIG. do.
  • the number CN i of similar feature points F i is obtained and divided by the number N′ of feature data to be calculated as in the following equation (1) to calculate the feature point matching rate C i .
  • "i" is a feature point number extracted from the collation data and is a number of 1 ⁇ i ⁇ m (total number of feature points).
  • Authentication accuracy is enhanced by setting weights W i for score calculation at feature points F i in accordance with this feature point match rate C i .
  • a feature point with a high feature point matching rate C i is a feature point that matches many registered data, and such a feature point can be regarded as a common feature.
  • Authentication accuracy is improved by lowering the weight of such feature points on the final score.
  • a method of reducing the degree of influence of feature points with a high feature point matching rate C i on matching a method of lowering the weight W i with respect to the final score, or a method of reducing the weight W i with respect to the final score
  • it can be reflected by excluding feature points whose feature point matching rate C i is higher than a predetermined threshold value or high-ranking feature points (eg, top 10%).
  • the degree of influence of the feature value score S i on the final score can be determined based on the degree of similarity between the feature value of each feature point F i and the feature value of the corresponding feature point in the registration data. . Therefore, it is possible to dynamically exclude feature points that commonly occur in a large amount of data, thereby improving authentication accuracy.
  • FIG. 6 is a block diagram illustrating the overall configuration of the information processing apparatus 100 according to the first embodiment.
  • the information processing apparatus 100 includes an overall management unit 10, a database unit 20, a memory unit 30, a feature extraction unit 40, a matching processing unit 50, an acquisition unit 60, and the like.
  • the collation processing unit 50 includes a collation management unit 51, a score calculation unit 52, a final score calculation unit 53, a matching rate calculation unit 54, a weight calculation unit 55, and the like.
  • the overall management unit 10 controls the operation of each unit of the information processing device 100 .
  • the database unit 20 stores registration data.
  • the memory unit 30 is a storage unit that temporarily stores collation data, processing results, and the like.
  • the acquisition unit 60 acquires a biometric image from the biosensor 200 .
  • the biosensor 200 is an image sensor or the like that can acquire a biometric image.
  • the biosensor 200 is a fingerprint sensor, it is a sensor that acquires the fingerprints of one or more fingers placed in contact with the reading surface, and is an optical sensor that acquires fingerprints using light. It is a capacitive sensor that acquires a fingerprint using the difference in capacitance.
  • biosensor 200 is a vein sensor, it is a sensor that acquires palm veins without contact, and for example, captures an image of subcutaneous veins in the palm using near-infrared rays that are highly transmissive to the human body.
  • the vein sensor includes, for example, a CMOS (Complementary Metal Oxide Semiconductor) camera.
  • a lighting or the like that emits light containing near-infrared rays may be provided.
  • the collation processing unit 50 outputs the collation processing result to the display device 300 .
  • the display device 300 displays the processing result of the information processing device 100 .
  • the display device 300 is a liquid crystal display device or the like.
  • the door control device 400 is a device that opens and closes the door when authentication is successful in the authentication processing of the information processing device 100 .
  • FIG. 7 is a flowchart showing an example of biometric registration processing.
  • the biometric registration process is a process performed when a user registers registration data in advance.
  • the acquisition unit 60 captures a biometric image from the biosensor 200 (step S1).
  • the feature extraction unit 40 extracts a plurality of feature points from the biometric image captured in step S1 (step S2).
  • the feature extraction unit 40 extracts the feature amount of each feature point extracted in step S2, and stores it in the database unit 20 as registration data (step S3).
  • Various methods such as SIFT (Scale-Invariant Feature Transform) and HOG (Histograms of Oriented Gradients) can be used as the feature amount.
  • SIFT Scale-Invariant Feature Transform
  • HOG Heistograms of Oriented Gradients
  • FIG. 8 is a flowchart showing an example of biometric authentication processing.
  • the biometric authentication process is a process performed when personal identification is required.
  • the acquisition unit 60 acquires a biometric image from the biosensor 200 (step S11).
  • the feature extraction unit 40 extracts a plurality of feature points from the biometric image acquired in step S11 (step S12).
  • the feature extraction unit 40 extracts the feature amount of each feature point extracted in step S12, and generates verification data (step S13).
  • the score calculation unit 52 performs matching processing for each feature point between the matching data and each registration data registered in the database unit 20, thereby obtaining a feature quantity score for each feature point of the matching data.
  • Si is calculated (step S14).
  • the narrowing-down process described above narrows down the matching targets from N to N'.
  • the matching process for each feature point is performed between feature points whose spatial distance is equal to or less than a predetermined threshold value Rth between matching data and each registered data.
  • the final score calculator 53 calculates the final score for each registered data (step S15). For example, they are sorted by feature value score, the average of the top scores (for example, the top 10) is calculated, and this is used as the final score.
  • the matching rate calculator 54 calculates a feature point matching rate Ci for each feature point of the collation data (step S16).
  • the processing speed can be increased by storing the correspondence relationship between the registered feature points and the matching feature points. For example, as exemplified in FIG. 3, the feature point pair information calculated by the matching process for each feature point is held. Searching for feature point pairs requires a loop of the number of registered feature points ⁇ the number of matching feature points, which takes time. be able to
  • the weight calculator 55 calculates the weight W i of each feature point from the feature point match rate C i of each feature point calculated in step S16. For example, the weight calculator 55 calculates the weight W i according to the following equation (2) using the feature point matching rate C i and a positive constant ⁇ . The weight W i is the weight of the feature point F i .
  • the final score calculator 53 corrects the final score of step S15 using the calculated weight W i (step S17). For example, the final score calculator 53 corrects the final score for each registered data according to the following formula (3).
  • the collation management unit 51 performs authentication processing by determining whether each final score corrected in step S17 is equal to or greater than a threshold (step S18). For example, the collation management unit 51 identifies a user who is performing collation processing as a user of registered data whose final score is equal to or greater than a threshold.
  • the display device 300 displays the determination result of step S18 (step S19). For example, if the authentication process is successful, the door control device 400 opens and closes the door.
  • the degree of influence of the feature quantity score S i on the final score based on the degree of similarity between the feature quantity of each feature point F i and the feature quantity of the corresponding feature point of the registered data. can. Therefore, it is possible to dynamically exclude feature points that commonly occur in a large amount of data, thereby improving authentication accuracy.
  • the number CN i of feature points F i whose feature quantity score S i is higher than a predetermined threshold value Sth or the feature point matching rate C i feature points commonly occurring in a large amount of data can be detected more dynamically. It becomes possible to exclude them, and authentication accuracy increases.
  • FIG. 9 is a block diagram illustrating the overall configuration of an information processing apparatus 100a according to the second embodiment. As illustrated in FIG. 9, the information processing apparatus 100a differs from the information processing apparatus 100 of the first embodiment in that the matching processing section 50 further includes an image matching section .
  • FIG. 10 is a flowchart showing an example of biometric authentication processing in this embodiment.
  • steps S11 to S17 are the same as in FIG.
  • the image collating unit 56 performs narrowing processing using the final score corrected in step S17 (step S21).
  • the corrected final scores for the calculated N pieces of registered data are sorted, and the top N' pieces of registered data are selected as principal candidates.
  • a narrowing-down threshold (which may be different from the matching threshold in the first embodiment) may be set for the final score, and only registered data exceeding the threshold may be used as principal candidates.
  • the number of registered data can be narrowed down from the number of registered data of N to the number of registered data of N′.
  • the image matching unit 56 reflects the feature point matching rate Ci , and then performs image authentication processing between the narrowed N′ registered data and the biometric image acquired in step S11 (step S22).
  • the collation management unit 51 identifies a user who is performing image collation processing as a user of registered data whose final score is equal to or greater than a threshold.
  • the display device 300 displays the determination result of step S22 (step S23). For example, if the authentication process is successful, the door control device 400 opens and closes the door.
  • the similarity S img between images is obtained as follows (corresponding to calculation for obtaining cos ⁇ between vectors).
  • a weight W i obtained from the matching rate of the feature point is applied to the neighboring pixels of the feature point F i .
  • the process of matching feature points can be used for the narrowing process. After that, by performing an image collation process that can obtain a more accurate authentication result, the authentication accuracy can be further improved.
  • history information (accumulated feature point matching rate C′ j ) of matching rate for each feature point of registered data may be utilized.
  • C'j is obtained as follows.
  • a feature point coincidence rate C i of the feature points of the matching data corresponding to the j-th registered feature point in the registered data is obtained.
  • the cumulative value C'j of the feature point match rate Ci is stored as the match rate for the j -th registered feature point.
  • i and j are numbers of paired feature points corresponding to the feature points of the verification data and the feature points of the registration data.
  • i is the feature point number of the matching data
  • j is the feature point number of the registration data.
  • the cumulative feature point matching rate C'j is the cumulative result of a plurality of authentication processes, it can be said to be a more stable value than the feature point matching rate Ci calculated from one authentication.
  • the cumulative feature point matching rate C'j is updated according to the above formula, but may be configured to stop updating after a predetermined number of authentications. Alternatively, the update may be stopped when the stability of the cumulative feature point matching rate C'j is confirmed (eg, when the rate of change of C'j is equal to or less than a predetermined threshold). By stopping updating when a stable C'j is obtained, a stable authentication process can be realized, and an effect of reducing the load of the matching process can be obtained.
  • registered feature points whose cumulative feature point match rate C'j exceeds a predetermined threshold value are excluded from the verification process. Since the cumulative minutiae coincidence rate is past cumulative data, it is considered to be more reliable (than the minutiae coincidence rate Ci obtained for matching data). A feature point with a high cumulative feature point match rate C'j is highly likely to be a feature point unsuitable for authentication. By excluding such feature points from the matching process, it is possible to realize high authentication accuracy and high-speed effect.
  • the same matching method as in Example 1 using the feature point matching rate Ci can be applied.
  • the cumulative feature point match rate C'j may be reflected in the final score.
  • image matching processing is performed.
  • Various methods are conceivable for matching processing using images, but a method of calculating the degree of similarity between images is generally used.
  • the high accuracy effect of the present invention can be obtained not only in 1:N authentication but also in 1:1 authentication.
  • normal entry/exit is performed by 1:N authentication, but in a server room where high security is required, 1:1 authentication of IC card + biometric authentication may be performed to obtain higher security.
  • 1:1 authentication is performed using the cumulative feature point matching rate C'j of the registration data obtained in the 1:N authentication process, so that more accurate authentication can be performed.
  • FIG. 11 is a block diagram illustrating the hardware configuration of the overall management unit 10, the database unit 20, the memory unit 30, the feature extraction unit 40, the matching processing unit 50, and the acquisition unit 60 of the information processing device 100 or the information processing device 100a.
  • the information processing apparatuses 100 and 100a include a CPU 101, a RAM 102, a storage device 103, an interface 104, and the like.
  • a CPU (Central Processing Unit) 101 is a central processing unit.
  • CPU 101 includes one or more cores.
  • a RAM (Random Access Memory) 102 is a volatile memory that temporarily stores programs executed by the CPU 101, data processed by the CPU 101, and the like.
  • the storage device 103 is a non-volatile storage device.
  • a ROM Read Only Memory
  • SSD solid state drive
  • Storage device 103 stores an authentication program.
  • the interface 104 is an interface device with an external device.
  • the overall management unit 10 By executing the authentication program by the CPU 101, the overall management unit 10, the database unit 20, the memory unit 30, the feature extraction unit 40, the collation processing unit 50, and the acquisition unit 60 of the information processing apparatuses 100 and 100a are realized.
  • Hardware such as a dedicated circuit may be used as the overall management unit 10, the database unit 20, the memory unit 30, the feature extraction unit 40, the matching processing unit 50, and the acquisition unit 60.
  • the matching rate calculation unit 54 when the matching rate calculation unit 54 receives biometric information from a user, the feature points corresponding to the feature points included in the received biometric information among the plurality of feature points included in the plurality of registered biometric information are determined. It is an example of an identification unit that identifies a plurality of feature points.
  • the weight calculation unit 55 calculates the feature amount of each of the specified feature points and the feature amount of each of the corresponding feature points included in the received biometric information based on the degree of similarity. It is an example of the determination part which determines the influence degree of the similarity of the feature-value of the said feature point, and the feature-value of each of said several specified feature points to the authentication result of the said user.
  • the matching management unit 51 accumulates and records the ratio of the number of feature point pairs to the number of the plurality of registered biometric information for each corresponding feature point included in the plurality of registered biometric information.
  • the image collation unit 56 is an example of an image collation unit that uses the degree of influence for collation between the received biometric image from which the biometric information is extracted and a plurality of registered biometric images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Collating Specific Patterns (AREA)

Abstract

認証方法は、ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定し、特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する、処理をコンピュータが実行する。

Description

認証方法、認証プログラム、および情報処理装置
 本件は、認証方法、認証プログラム、および情報処理装置に関する。
 生体認証において、生体情報に含まれる複数の部位を用いた認証方式が開示されている(例えば、特許文献1参照)。
特開2016-207216号公報
 しかしながら、全ての部位が照合について有効とは限らない。つまり、多くのデータで共通して発生する特徴点が存在したとすると、照合においてはノイズとして作用し、認証精度が低下するおそれがある。
 1つの側面では、本発明は、認証精度を向上させることができる認証方法、認証プログラム、および情報処理装置を提供することを目的とする。
 1つの態様では、認証方法は、ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定し、特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する、処理をコンピュータが実行する。
 認証精度を向上させることができる。
(a)および(b)は特徴点および特徴量を例示する図である。 特徴点ペアを例示する図である。 特徴量スコアを例示する図である。 絞り込み処理を例示する図である。 特徴点一致率を例示する図である。 実施例1に係る情報処理装置の全体構成を例示するブロック図である。 生体登録処理の一例を表すフローチャートである。 生体認証処理の一例を表すフローチャートである。 実施例2に係る情報処理装置の全体構成を例示するブロック図である。 実施例2における生体認証処理の一例を表すフローチャートである。 ハードウェア構成を例示する図である。
 生体認証では、カメラなどのセンサを用いて利用者の生体情報を取得し、取得した生体情報を照合可能な生体特徴量に変換して照合データを生成し、登録データと照合する。例えば、特徴点を用いた生体認証方式では、センサで取得した生体部位の画像などから生体認証に適した特徴点を複数選択し、特徴点近傍の画像から生体特徴量を算出し、その特徴点ごとの生体特徴量を照合することで本人確認を行なう。
 照合データと登録データとで対応する特徴点ごとに生体特徴量を照合することによって特徴点ごとに類似度スコア(以降は、これを特徴量スコアと称す。)を求め、さらに複数の特徴点の特徴量スコアを統合する。統合した特徴量スコアを、以下では最終スコアと称する。最終スコアが予め決められた本人判定閾値より大きいかどうかを判定することで、で本人確認を行なうことができる。
 例えば、図1(a)および図1(b)で例示するように、指紋や静脈の分岐点や終点などを「特徴点」として抽出し、各特徴点の座標(X,Y)を抽出し、各特徴点の近傍画像から特徴量を算出する。近傍画像とは、特徴点を含み、取得した生体画像よりも小領域の画像のことである。
 特徴点を用いた照合は様々な方式が可能であるが、以下では一例を述べる。図2で例示するように、登録データに含まれる特徴量と照合データに含まれる特徴量とを比較し、特徴点ペアを求める。なお、登録データ、照合データともにおおよその位置合わせを実施済みとする。位置合わせは、生体部位の形状(例えば、手のひらの外形状、指の外形状など)などを用いて行うことができる。
 まず、登録特徴点に対してループを行い、最も類似している照合データ側の特徴点を探索する。ここで、特徴点ペアの探索では、(1)空間的な距離、(2)特徴量スコア、の2つを指標とする。空間距離に関しては、注目している登録データ側の特徴点の座標(Xri,Yri)と照合データ側の特徴点の座標(Xii,Yii)との距離が所定の閾値Rth以下であることを条件とする。所定の空間距離以下の特徴点の中で、特徴量が最も似ている照合データ側の特徴点を探索する。具体的には、特徴量同士がどの程度似ているかを表す特徴量スコアを算出し、最大スコアを与える照合点を求める。
 次に、図3で例示するように、得られた全特徴点ペアの結果から最終スコアを求める。例えば、特徴量スコアでソートし、スコア上位(例えば、上位10位)の平均を求め、それを最終スコアとする。
 生体認証では、事前にIDを入力することによって照合対象の登録データを特定してから照合する1:1認証と、ID入力を行わず、照合対象の登録データを特定せずにN人の登録データと照合する1:N認証とが存在する。いずれの認証方式でも高い認証精度が求められるが、1:N認証では、登録数Nに応じた高い認証精度が求められる。これは、Nが増えるに従い、他人同士の照合件数が増え、他人受け入れの確率が高くなる為である。1:1認証では十分な精度である場合でも、1:N認証では更なる高精度が求められる。特にNが10万、100万と大規模になればなるほど、高い精度が求められる。
 認証精度を高くする方法として、特徴点ごとに照合に対する有効度合を利用する方式がある。ここで、特徴点は画像から特徴的な点を選択したものであるが、全ての特徴点が照合について有効とは限らない。つまり、多くのデータで共通して発生する特徴点が存在したとすると、照合においてはノイズとして作用する。ここで、共通して特徴点を発生し得る要因は様々なものが存在する。
 例えば、センサ固有のノイズが挙げられる。例えば、認証画像の取得に照明を用いる場合、照明分布の影響から所定の場所に疑似的な特徴点が検出されやすくなる場合がある。具体的には、照明強度が強い領域と弱い領域との境界領域に疑似的な特徴点が発生しやすくなり易い。例えば、静脈認証などの非接触認証においては、生体部位の表面反射などによって疑似的な特徴点が発生することがある。もしくは、レンズの傷や歪の影響で全てのデータで共通の特徴点が発生し得る。または、認証する生体情報固有の理由から、全ての利用者の特定の位置に特徴点が発生することもあり得る。
 一般に、このような共通する特徴点は、大規模なデータ採取を行って評価することで、検出および除外することは可能である。しかしながら、このような処理は、データ採取および評価の負担が大きく、コストもかかるために実施されていない。
 以下では、1:N認証の認証精度を向上させることができる認証方法、認証プログラムおよび情報処理装置について説明する。以下の各実施態様は、特に大規模な1:N認証において顕著な有効性を発揮する。
 まずは原理について説明する。1:N認証を実行する際に、照合データから抽出された特徴点ごとの特徴点一致率Cを算出して、認証に用いる。特徴点一致率Cとは、照合データの特徴点Fごとに算出する値で、N´個の登録データ数に対して、一致する特徴点が存在する割合である。
 N´個は、N個と等しくてもよく、N個よりも少なくてもよい。例えば、絞り込み処理を行う場合には、N´個は、N個以下またはN個未満になる。図4は、絞り込み処理を例示する図である。Nは、登録利用者数(厳密には登録データ数)を表す。絞り込み処理は、認証精度は高くないものの高速に演算できる処理方式を利用する。この絞り込み処理によって、照合データの照合対象を、N個からN´個まで絞り込むことができる。照合対象を絞り込むことによって、N´個に対する照合について、時間を要する高精度な照合を行った場合には、処理時間の短縮化と高認証精度との両立を図ることができる。
 特徴点一致率Cの算出対象の登録データ数N´は、絞り込み処理等を行った後の登録データに対して行う場合にはN以下となる。N´<Nとなるケースは、絞り込み処理によって本人候補となる登録データを除外した場合や、算出した最終スコアが所定の閾値よりも低い為に本人候補から除外した場合などがあり得る。
 ここで、「似ている特徴点」とは、図2で説明したように、空間距離が所定の閾値Rth以下であって、特徴量スコアSが所定の閾値Sthよりも高い特徴点を意味する。似ている特徴点Fの数CNを求め、下記式(1)のように算出対象の特徴データ数N´で割ることで特徴点一致率Cを算出する。「i」は、照合データから抽出された特徴点番号であって、1≦i≦m(特徴点総数)の番号である。
Figure JPOXMLDOC01-appb-M000001
 例えば、図5の例では、照合データの特徴点1が3人の登録データのうち3つに対して一致している。したがって、図5の例では、特徴点一致率Cは3/3=1.0となる。
 この特徴点一致率Cに応じて、特徴点Fにおけるスコア計算に対する重みWを設定することによって、認証精度を高める。特徴点一致率Cが高い特徴点は、多くの登録データに対して一致する特徴点であり、このような特徴点は、ありふれた特徴と見做すことができる。このような特徴点の、最終スコアに対する重みを下げることで、認証精度を改善する。
 照合データのある特徴点Fに着目した場合、多くの登録データと一致する特徴点は、識別としての有効度が低い。つまり、多くの登録データと一致する特徴点(=特徴点一致率Cが高い)は、ありふれた特徴であるため、このような特徴点の照合スコアに対する影響度合いを下げることで認証精度を改善する効果が得られる。
 ここで、特徴点一致率Cが高い特徴点の照合への影響度合いを下げる方法として、最終スコアに対する重みWを下げる方法や、特徴点一致率Cが所定の値を超えた場合に照合から除外する方法などがある。例えば、特徴点一致率Cが高いほど、特徴点Fの特徴量スコアSの重みを小さくする。また、特徴点一致率Cが所定の閾値よりも高いものや上位(例:上位10%)の特徴点を除外することで反映することもできる。
 上記手法によれば、各特徴点Fの特徴量と登録データの対応する特徴点の特徴量との類似度に基づき、最終スコアへの特徴量スコアSの影響度を決定することができる。したがって、多くのデータで共通に発生する特徴点を動的に除外することなどが可能となり、認証精度が向上する。
 また、特徴量スコアSが所定の閾値Sthよりも高い特徴点Fの数CNまたは特徴点一致率Cを用いることで、多くのデータで共通に発生する特徴点をより動的に除外することが可能となり、認証精度がより高まる。多くのデータに共通する特徴点は様々な要因で発生し得るが、一般には大量データを採取・検証することで発見し、除外処理等を実装する。しかしながら、このような処理は時間やコストが膨大に掛かる問題がある。上記手法では、大規模な1:N認証において、大量データによる検証を認証時に動的実行することで、コストをかけずに認証精度を向上させることができる。前述の通り、大規模な1:N認証ではNが増えれば増える程、より高い認証精度が要求される。一方、本件ではNが増えれば増える程、より多くの登録データに対して特徴点一致率Cを算出できるようになり、特徴点一致率Cの信頼性が高まり、結果としてより高い認証精度改善効果を得られる。
 図6は、実施例1に係る情報処理装置100の全体構成を例示するブロック図である。図6で例示するように、情報処理装置100は、全体管理部10、データベース部20、メモリ部30、特徴抽出部40、照合処理部50、取得部60などを備える。照合処理部50は、照合管理部51、スコア計算部52、最終スコア計算部53、一致率算出部54、重み算出部55などを備える。
 全体管理部10は、情報処理装置100の各部の動作を制御する。データベース部20は、登録データを記憶している。メモリ部30は、照合データや処理結果などを一時的に記憶する記憶部である。
 取得部60は、生体センサ200から生体画像を取得する。生体センサ200は、生体画像を取得できるイメージセンサなどである。例えば、生体センサ200は、指紋センサである場合、読み取り面に接触して配置された1本以上の指の指紋を取得するセンサであって光を利用して指紋を取得する光学式センサ、静電容量の差異を利用して指紋を取得する静電容量センサなどである。生体センサ200は、静脈センサである場合、非接触で手のひら静脈を取得するセンサであり、たとえば、人体への透過性が高い近赤外線を用いて手のひらの皮下の静脈を撮影する。静脈センサには、たとえばCMOS(Complementary Metal Oxide Semiconductor)カメラなどが備わっている。また、近赤外線を含む光を照射する照明などが設けられていてもよい。
 照合処理部50は、照合処理結果を表示装置300に出力する。表示装置300は、情報処理装置100の処理結果を表示する。表示装置300は、液晶表示装置などである。ドア制御装置400は、情報処理装置100の認証処理において認証成功した場合などにドアを開閉する装置である。
(生体登録処理)
 図7は、生体登録処理の一例を表すフローチャートである。生体登録処理は、ユーザが登録データを予め登録する際に行なわれる処理である。図7で例示するように、取得部60は、生体センサ200から生体画像を撮影する(ステップS1)。次に、特徴抽出部40は、ステップS1で撮影された生体画像から、複数の特徴点を抽出する(ステップS2)。次に、特徴抽出部40は、ステップS2で抽出された各特徴点の特徴量を抽出し、データベース部20に登録データとして格納する(ステップS3)。ここで特徴量としては、SIFT(Scale-Invariant Feature Transform)やHOG(Histograms of Oriented Gradients)等、様々な方式を利用することができる。N人のユーザに対して生体登録処理を行うことによって、N人の登録データを予め登録しておくことができる。
(生体認証処理)
 図8は、生体認証処理の一例を表すフローチャートである。生体認証処理は、本人確認が必要な場面で行なわれる処理である。図8で例示するように、取得部60は、生体センサ200から生体画像を取得する(ステップS11)。次に、特徴抽出部40は、ステップS11で取得された生体画像から、複数の特徴点を抽出する(ステップS12)。次に、特徴抽出部40は、ステップS12で抽出された各特徴点の特徴量を抽出し、照合データを生成する(ステップS13)。
 次に、スコア計算部52は、照合データと、データベース部20に登録されている各登録データとの間で、特徴点単位の照合処理を行うことで、照合データの各特徴点の特徴量スコアSを算出する(ステップS14)。本実施例においては、一例として、上述した絞り込み処理を行なうことによって照合対象をN個からN´まで絞り込む。また、特徴点単位の照合処理は、照合データと各登録データとの間で、空間距離が所定の閾値Rth以下となる特徴点間で行う。
 次に、最終スコア計算部53は、各登録データについて、最終スコアを算出する(ステップS15)。例えば、特徴量スコアでソートし、スコア上位(例えば、上位10位)の平均を求め、それを最終スコアとする。
 次に、一致率算出部54は、照合データの各特徴点について、特徴点一致率Cを算出する(ステップS16)。ステップS16において、登録特徴点と照合特徴点との対応関係を保存しておくことで、処理を高速化することができる。例えば、図3で例示したように、特徴点単位の照合処理で算出した特徴点ペア情報を保持しておく。特徴点ペアの探索には登録特徴点数×照合特徴点数のループが必要であって時間がかかるところ、特徴点ペア情報を保存しておくことによって、特徴点一致率Cの算出を高速に実行することができるようになる。
 次に、重み算出部55は、ステップS16で算出した各特徴点の特徴点一致率Cから各特徴点の重みWを算出する。例えば、重み算出部55は、特徴点一致率Cと正の定数αとを用いて下記式(2)に従って重みWを算出する。重みWは、特徴点Fの重みである。次に、最終スコア計算部53は、算出した重みWを用いて、ステップS15の最終スコアを修正する(ステップS17)。例えば、最終スコア計算部53は、各登録データについて、下記式(3)に従って最終スコアを修正する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 次に、照合管理部51は、ステップS17で修正された各最終スコアが閾値以上であるか否かを判定することで認証処理を行なう(ステップS18)。例えば、照合管理部51は、照合処理を行なっているユーザが、最終スコアが閾値以上となる登録データのユーザであると特定する。表示装置300は、ステップS18の判定結果を表示する(ステップS19)。例えば、認証処理が成功していれば、ドア制御装置400は、ドアの開閉を行う。
 本実施例によれば、各特徴点Fの特徴量と登録データの対応する特徴点の特徴量との類似度に基づき、最終スコアへの特徴量スコアSの影響度を決定することができる。したがって、多くのデータで共通に発生する特徴点を動的に除外することなどが可能となり、認証精度が向上する。また、特徴量スコアSが所定の閾値Sthよりも高い特徴点Fの数CNまたは特徴点一致率Cを用いることで、多くのデータで共通に発生する特徴点をより動的に除外することが可能となり、認証精度がより高まる。
 図9は、実施例2に係る情報処理装置100aの全体構成を例示するブロック図である。図9で例示するように、情報処理装置100aが実施例1の情報処理装置100と異なる点は、照合処理部50がさらに画像照合部56を備えている点である。
 図10は、本実施例における生体認証処理の一例を表すフローチャートである。図10で例示するように、ステップS11~ステップS17は、図8と同様である。ステップS17の実行後、画像照合部56は、ステップS17で修正された最終スコアを用いて、絞り込み処理を行なう(ステップS21)。絞り込み処理では、算出したN個の登録データに対する修正された最終スコアをソートし、上位N´個の登録データを本人候補として選択する。この際、最終スコアに対して絞り込み用閾値(実施例1の照合用閾値とは異なってもよい)を設定し、閾値以上の登録データのみを本人候補としてもよい。これにより、N個の登録データ数からN´個の登録データ数まで絞り込みを行うことができる。
 次に、画像照合部56は、特徴点一致率Cを反映させたうえで、絞り込んだN´個の登録データと、ステップS11で取得された生体画像との間で画像認証処理を行なう(ステップS22)。例えば、照合管理部51は、画像照合処理を行なっているユーザが、最終スコアが閾値以上となる登録データのユーザであると特定する。表示装置300は、ステップS22の判定結果を表示する(ステップS23)。例えば、認証処理が成功していれば、ドア制御装置400は、ドアの開閉を行う。
 なお、画像照合処理において、登録データの画像ベクトルをF(ベクトル要素=f),ステップS11で取得された生体画像の画像ベクトルをG(ベクトル要素=g)とする。この時、画像間の類似度Simgは以下のように求まる(ベクトル間のcosθを求める演算に相当)。
Figure JPOXMLDOC01-appb-M000004
 この場合、特徴点Fの近傍ピクセルに関しては、該当特徴点の一致率から求めた重みWを作用させる。特徴点から得られた一致率を画像照合のスコアに反映させることで認証精度を改善する効果が得られる。
 本実施例によれば、特徴点同士の照合処理を絞り込み処理に利用することができる。その後に、より高精度な認証結果が得られる画像照合処理を行なうことで、認証精度をさらに向上させることができる。
 本実施例においては、登録データの特徴点ごとの一致率の履歴情報(累積特徴点一致率C´)を活用してもよい。累積特徴点一致率C´は、登録データの特徴点ごとの特徴点一致率(=ありふれた特徴かどうかの指標)である。
 具体的には、以下のようにしてC´を求める。照合処理の際、登録データのうちj番目の登録特徴点に対応する照合データの特徴点の特徴点一致率Cが得られる。この特徴点一致率Cの累積値C´をj番目の登録特徴点に対する一致率として保存しておく。具体的な算出方法は、C´=βC´+(1-β)Cとする、定数βを用いることで、学習の速さをコントロールすることができる。なお、iおよびjは、照合データの特徴点と登録データの特徴点との対応するペア特徴点の番号である。iが照合データの特徴点の番号であり、jが登録データの特徴点の番号である。
 累積特徴点一致率C´は複数回の認証処理の累積結果であるため、1回の認証から算出する特徴点一致率Cと比較して、更に安定した値であると言える。累積特徴点一致率C´は、上記式に従って更新されるが、所定回数の認証後に更新を止める構成としてもよい。あるいは、累積特徴点一致率C´の安定が確認できた時点(例:C´の変化率が所定の閾値以下)で更新を止める構成としてもよい。安定したC´が得られた時点で更新を止めることで、安定した認証処理を実現でき、また、照合処理の負担を低減する効果が得られる。
 本実施例においては、照合特徴点の特徴点一致率Cと登録特徴点の累積特徴点一致率C´の2つの一致率を用いることで、より高精度な認証処理を実現することができる。
 具体的には、累積特徴点一致率C´が所定の閾値を上回った登録特徴点は、照合処理対象から除外する構成とする。累積特徴点一致率は、過去の累積データであるため、(照合データに対して得られる特徴点一致率Cよりも)より信頼性が高いと考えられる。この累積特徴点一致率C´が高い特徴点は、高い確率で認証に適していない特徴点であると考えられる。このような特徴点を照合処理から除外することで、高い認証精度と高速化効果を実現することができる。
 累積特徴点一致率C´が高い特徴点を除外した後は、特徴点一致率Cを用いた実施例1と同様の照合方式を適用することができる。あるいは、累積特徴点一致率C´を最終スコアに反映する構成としてもよい。
 本実施例では、特徴点照合を行った後、画像による照合処理を行う。画像による照合処理は様々な方法が考えられるが、画像同士の類似度を算出する方式が一般的に用いられる。
 登録データの累積特徴点一致率C´を保存しておくことで、1:N認証だけでなく、1:1認証時にも本発明による高精度効果を得ることができる。例えば、通常の入退室は1:N認証で行うが、高セキュリティが要求されるサーバルーム等ではICカード+生体認証の1:1認証を行うことで、より高セキュリティを得る構成としてもよい。この際に、1:N認証処理で得られた登録データの累積特徴点一致率C´を用いて1:1認証を行うことで、より高精度な認証を行うことができる。
(ハードウェア構成)
 図11は、情報処理装置100または情報処理装置100aの全体管理部10、データベース部20、メモリ部30、特徴抽出部40、照合処理部50、取得部60のハードウェア構成を例示するブロック図である。図11で例示するように、情報処理装置100,100aは、CPU101、RAM102、記憶装置103、インタフェース104等を備える。
 CPU(Central Processing Unit)101は、中央演算処理装置である。CPU101は、1以上のコアを含む。RAM(Random Access Memory)102は、CPU101が実行するプログラム、CPU101が処理するデータなどを一時的に記憶する揮発性メモリである。記憶装置103は、不揮発性記憶装置である。記憶装置103として、例えば、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD)、ハードディスクドライブに駆動されるハードディスクなどを用いることができる。記憶装置103は、認証プログラムを記憶している。インタフェース104は、外部機器とのインタフェース装置である。CPU101が認証プログラムを実行することで、情報処理装置100,100aの全体管理部10、データベース部20、メモリ部30、特徴抽出部40、照合処理部50、および取得部60が実現される。なお、全体管理部10、データベース部20、メモリ部30、特徴抽出部40、照合処理部50、および取得部60として、専用の回路などのハードウェアを用いてもよい。
 上記各例において、一致率算出部54が、ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定する特定部の一例である。重み算出部55が、特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する決定部の一例である。照合管理部51が、登録された前記複数の生体情報の数に対する、前記特徴点ペアの数の比率を、登録された前記複数の生体情報に含まれる対応する特徴点ごとに累積して記録し、前記ユーザの認証結果に用いる認証部の一例である。画像照合部56が、受け付けた前記生体情報が抽出された生体画像と、登録された複数の生体画像との照合に、前記影響度を利用する画像照合部の一例である。
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 10 全体管理部
 20 データベース部
 30 メモリ部
 40 特徴抽出部
 50 照合処理部
 51 照合管理部
 52 スコア計算部
 53 最終スコア計算部
 54 一致率算出部
 55 重み算出部
 60 取得部
 100,100a 情報処理装置
 200 生体センサ
 300 表示装置
 400 ドア制御装置

Claims (24)

  1.  ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定し、
     特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する、
     処理をコンピュータが実行することを特徴とする認証方法。
  2.  特定した前記複数の特徴点は、登録された前記複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点との距離が閾値以下となる特徴点であることを特徴とする請求項1に記載の認証方法。
  3.  特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度が閾値以上となる特徴点ペアの数に基づいて、前記影響度を決定することを特徴とする請求項1または請求項2に記載の認証方法。
  4.  登録された前記複数の生体情報の数に対する、前記特徴点ペアの数の比率に基づいて、前記影響度を決定することを特徴とする請求項3に記載の認証方法。
  5.  前記特徴点ペアの数が多いほど、前記影響度を低下させることを特徴とする請求項3または請求項4に記載の認証方法。
  6.  前記比率を、登録された前記複数の生体情報に含まれる対応する特徴点ごとに累積して記録し、前記ユーザの認証結果に用いることを特徴とする請求項4に記載の認証方法。
  7.  受け付けた前記生体情報が抽出された生体画像と、登録された複数の生体画像との照合に、前記影響度を利用することを特徴とする請求項1から請求項6のいずれか一項に記載の認証方法。
  8.  前記生体情報は、静脈情報または指紋情報であることを特徴とする請求項1から請求項7のいずれか一項に記載の認証方法。
  9.  ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定する特定部と、
     特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する決定部と、を備えることを特徴とする情報処理装置。
  10.  特定した前記複数の特徴点は、登録された前記複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点との距離が閾値以下となる特徴点であることを特徴とする請求項9に記載の情報処理装置。
  11.  前記決定部は、特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度が閾値以上となる特徴点ペアの数に基づいて、前記影響度を決定することを特徴とする請求項9または請求項10に記載の情報処理装置。
  12.  前記決定部は、登録された前記複数の生体情報の数に対する、前記特徴点ペアの数の比率に基づいて、前記影響度を決定することを特徴とする請求項11に記載の情報処理装置。
  13.  前記決定部は、前記特徴点ペアの数が多いほど、前記影響度を低下させることを特徴とする請求項11または請求項12に記載の情報処理装置。
  14.  前記比率を、登録された前記複数の生体情報に含まれる対応する特徴点ごとに累積して記録し、前記ユーザの認証結果に用いる認証部を備えることを特徴とする請求項12に記載の情報処理装置。
  15.  受け付けた前記生体情報が抽出された生体画像と、登録された複数の生体画像との照合に、前記影響度を利用する画像照合部を備えることを特徴とする請求項9から請求項14のいずれか一項に記載の情報処理装置。
  16.  前記生体情報は、静脈情報または指紋情報であることを特徴とする請求項9から請求項15のいずれか一項に記載の情報処理装置。
  17.  コンピュータに、
     ユーザより生体情報を受け付けると、登録された複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点に対応する複数の特徴点を特定する処理と、
     特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度に基づき、受け付けた前記生体情報に含まれる前記特徴点の特徴量と、特定した前記複数の特徴点それぞれの特徴量との類似度の、前記ユーザの認証結果への影響度を決定する処理と、を実行させることを特徴とする認証プログラム。
  18.  特定した前記複数の特徴点は、登録された前記複数の生体情報に含まれる複数の特徴点のうち、受け付けた前記生体情報に含まれる特徴点との距離が閾値以下となる特徴点であることを特徴とする請求項17に記載の認証プログラム。
  19.  特定した前記複数の特徴点それぞれの特徴量と、受け付けた前記生体情報に含まれる対応する特徴点それぞれの特徴量との類似度が閾値以上となる特徴点ペアの数に基づいて、前記影響度を決定することを特徴とする請求項17または請求項18に記載の認証プログラム。
  20.  登録された前記複数の生体情報の数に対する、前記特徴点ペアの数の比率に基づいて、前記影響度を決定することを特徴とする請求項19に記載の認証プログラム。
  21.  前記特徴点ペアの数が多いほど、前記影響度を低下させることを特徴とする請求項19または請求項20に記載の認証プログラム。
  22.  前記比率を、登録された前記複数の生体情報に含まれる対応する特徴点ごとに累積して記録し、前記ユーザの認証結果に用いることを特徴とする請求項20に記載の認証プログラム。
  23.  受け付けた前記生体情報が抽出された生体画像と、登録された複数の生体画像との照合に、前記影響度を利用することを特徴とする請求項17から請求項22のいずれか一項に記載の認証プログラム。
  24.  前記生体情報は、静脈情報または指紋情報であることを特徴とする請求項17から請求項23のいずれか一項に記載の認証プログラム。
PCT/JP2021/008494 2021-03-04 2021-03-04 認証方法、認証プログラム、および情報処理装置 WO2022185486A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023503291A JPWO2022185486A1 (ja) 2021-03-04 2021-03-04
PCT/JP2021/008494 WO2022185486A1 (ja) 2021-03-04 2021-03-04 認証方法、認証プログラム、および情報処理装置
US18/448,699 US20230386251A1 (en) 2021-03-04 2023-08-11 Authentication method, storage medium, and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008494 WO2022185486A1 (ja) 2021-03-04 2021-03-04 認証方法、認証プログラム、および情報処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/448,699 Continuation US20230386251A1 (en) 2021-03-04 2023-08-11 Authentication method, storage medium, and information processing device

Publications (1)

Publication Number Publication Date
WO2022185486A1 true WO2022185486A1 (ja) 2022-09-09

Family

ID=83154095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008494 WO2022185486A1 (ja) 2021-03-04 2021-03-04 認証方法、認証プログラム、および情報処理装置

Country Status (3)

Country Link
US (1) US20230386251A1 (ja)
JP (1) JPWO2022185486A1 (ja)
WO (1) WO2022185486A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106794A (ja) * 2012-11-28 2014-06-09 Nec Casio Mobile Communications Ltd 顔認証装置、認証方法とそのプログラム、情報機器
JP2016009363A (ja) * 2014-06-25 2016-01-18 株式会社日立製作所 生体情報を利用する認証システム
JP2016207216A (ja) 2015-04-23 2016-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. 指紋認証方法及び装置
JP2019028532A (ja) * 2017-07-26 2019-02-21 富士通株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
JP2019045969A (ja) * 2017-08-30 2019-03-22 富士通株式会社 生体画像処理装置、生体画像処理方法、及び生体画像処理プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106794A (ja) * 2012-11-28 2014-06-09 Nec Casio Mobile Communications Ltd 顔認証装置、認証方法とそのプログラム、情報機器
JP2016009363A (ja) * 2014-06-25 2016-01-18 株式会社日立製作所 生体情報を利用する認証システム
JP2016207216A (ja) 2015-04-23 2016-12-08 三星電子株式会社Samsung Electronics Co.,Ltd. 指紋認証方法及び装置
JP2019028532A (ja) * 2017-07-26 2019-02-21 富士通株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
JP2019045969A (ja) * 2017-08-30 2019-03-22 富士通株式会社 生体画像処理装置、生体画像処理方法、及び生体画像処理プログラム

Also Published As

Publication number Publication date
JPWO2022185486A1 (ja) 2022-09-09
US20230386251A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
US7006671B2 (en) Personal identification apparatus and method
Connaughton et al. Fusion of face and iris biometrics
US8265347B2 (en) Method and system for personal identification using 3D palmprint imaging
US7257241B2 (en) Dynamic thresholding for a fingerprint matching system
US8498454B2 (en) Optimal subspaces for face recognition
RU2670798C1 (ru) Способ аутентификации пользователя по радужной оболочке глаз и соответствующее устройство
JP5729302B2 (ja) 生体認証システム、方法およびプログラム
JP2008009753A (ja) 生体認証方法及び生体認証システム
US20120057011A1 (en) Finger vein recognition system and method
EP3617993B1 (en) Collation device, collation method and collation program
Uhl et al. Footprint-based biometric verification
Kaur A study of biometric identification and verification system
Liliana et al. The combination of palm print and hand geometry for biometrics palm recognition
US20230070660A1 (en) Authentication method, non-transitory computer-readable storage medium for storing authentication program, and information processing device
WO2022185486A1 (ja) 認証方法、認証プログラム、および情報処理装置
Cheng et al. Special point representations for reducing data space requirements of finger-vein recognition applications
EP3639197B1 (en) Template matching of a biometric object
Hassan et al. An information-theoretic measure for face recognition: Comparison with structural similarity
Příhodová et al. Hand-Based Biometric Recognition Technique-Survey
Muthukumaran et al. Face and Iris based Human Authentication using Deep Learning
Lomte Biometric fingerprint authentication with minutiae using ridge feature extraction
Joshi BIOMET: A multimodal biometric authentication system for person identification and verification using fingerprint and face recognition
WO2023242899A1 (ja) 類似度算出方法、類似度算出プログラム、および類似度算出装置
Nivas et al. Real-time finger-vein recognition system
WO2023188332A1 (ja) 人物特定装置、人物特定方法、および人物特定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503291

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021929059

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021929059

Country of ref document: EP

Effective date: 20231004

122 Ep: pct application non-entry in european phase

Ref document number: 21929059

Country of ref document: EP

Kind code of ref document: A1