WO2022185416A1 - Transmission - Google Patents

Transmission Download PDF

Info

Publication number
WO2022185416A1
WO2022185416A1 PCT/JP2021/007983 JP2021007983W WO2022185416A1 WO 2022185416 A1 WO2022185416 A1 WO 2022185416A1 JP 2021007983 W JP2021007983 W JP 2021007983W WO 2022185416 A1 WO2022185416 A1 WO 2022185416A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
gear
sensor
tooth
teeth
Prior art date
Application number
PCT/JP2021/007983
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 加藤
義弘 山内
泰雅 中條
Original Assignee
株式会社ユニバンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバンス filed Critical 株式会社ユニバンス
Priority to PCT/JP2021/007983 priority Critical patent/WO2022185416A1/en
Priority to JP2023503574A priority patent/JP7477708B2/en
Publication of WO2022185416A1 publication Critical patent/WO2022185416A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/20Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate

Definitions

  • the present invention relates to a transmission that selectively couples gears arranged on a shaft to the shaft.
  • An idle gear provided with a first tooth and a moving member provided with a second tooth are arranged on a first shaft, and a fixed gear meshing with the idle gear is arranged on a second shaft arranged parallel to the first shaft.
  • Transmissions are known which are arranged to initiate axial movement of a moving member by means of a controller to engage first and second teeth to selectively couple an idler gear to a first shaft.
  • a plurality of sleeves (moving members) provided with sleeve teeth (second teeth) are arranged on the input shaft (first shaft), and the output shaft
  • a sensor detects the rotation of any of the transmission gears (fixed gears) arranged on the (second shaft).
  • a fixed gear arranged on the second shaft meshes with a transmission gear (idling gear) arranged on the first shaft, and the moving member rotates integrally with the first shaft.
  • the controller calculates the rotation angle of the second tooth based on the sensor input.
  • the present invention has been made to solve this problem, and it is an object of the present invention to provide a transmission capable of improving the accuracy of calculating the rotation angle of the second tooth.
  • the transmission of the present invention is provided with a first shaft and a second shaft arranged parallel to each other, and a first tooth arranged so as to be rotatable relative to the first shaft and immovable in the axial direction.
  • a plurality of free-rotating gears mounted on a first shaft so as to be non-rotatable relative to each other and axially movable, a plurality of moving members provided with second teeth meshing with the first teeth; and a second shaft non-rotatable relative to each other.
  • a fixed gear that is arranged in and meshes with the idle gear, a sensor that directly or indirectly detects the rotation of the first tooth and the second tooth, and the position of the first tooth and the second tooth in the rotational direction based on the detection of the sensor a controller for acquiring and initiating axial movement of the moving member.
  • the first axis includes a mark that rotates integrally with the first axis, and the rotational position of the second tooth is in a fixed relationship to the rotational position of the mark.
  • the first shaft includes a mark that rotates integrally with the first shaft, and the rotational position of the second tooth has a fixed relationship to the rotational position of the mark. Since the initial position of the second tooth in the direction of rotation can be made constant, the accuracy of calculation of the rotation angle of the second tooth can be improved.
  • the position of the first tooth in the rotation direction when the idle gear is arranged on the first shaft and the fixed gear is arranged on the second shaft in a state where the idle gear and the fixed gear are in mesh. has a constant relationship with respect to the position in the rotational direction of the second axis.
  • the number of sensors that detect the rotation of the first tooth can be reduced.
  • the senor includes a second sensor that detects rotation of the second shaft, idle gear or fixed gear.
  • the control device stores a value obtained by integrating the detection of the second sensor from the time when the idle gear is arranged on the first shaft and the fixed gear is arranged on the second shaft while the idle gear and the fixed gear are in mesh with each other.
  • the second computing unit acquires the position of each first tooth in the rotational direction from the initial position based on the integrated value stored in the memory and the gear ratio between the idle gear and the fixed gear.
  • the rotation angle of each first tooth can be calculated with high accuracy.
  • the sensor includes a third sensor that detects rotation of the second shaft or a gear in a gear different from the gear whose rotation is detected by the second sensor.
  • the control device acquires the position of the gear or the second shaft in the rotational direction based on the detection of the third sensor, and stores the position of the gear or the second shaft in the rotational direction acquired by the third arithmetic unit and the memory.
  • a comparison unit compares the position in the rotational direction of the gear or the second shaft acquired based on the value stored in .
  • the functions of the control device and sensors can be verified.
  • FIG. 1 is a block diagram of a transmission in one embodiment
  • FIG. FIG. 3 is a perspective view of a hub and moving member
  • 4 is a flow chart of a meshing process
  • 6 is a flowchart of correction processing
  • FIG. 1 is a block diagram of transmission 10 in one embodiment.
  • the transmission 10 includes a first shaft 12 arranged coaxially with a drive shaft 11 to which power is input, and a second shaft 13 arranged parallel to the first shaft 12.
  • An output gear 14 is arranged.
  • the transmission 10 includes a fixed gear 15 fixed to the drive shaft 11 so as not to relatively rotate, and a fixed gear 16 which meshes with the fixed gear 15 and is fixed to the second shaft 13 so as not to rotate relatively.
  • the first shaft 12 and the second shaft 13 support a 1st gear 17, a 2nd gear 20, a 3rd gear 23, a 4th gear 26, a 5th gear 27 and a 6th gear 30 as multi-stage transmission gears.
  • the transmission 10 is mounted on an automobile (not shown).
  • the first speed gear 17 includes an idle gear 18 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 19 meshing with the idle gear 18 and fixed to the second shaft 13 so as not to be relatively rotatable.
  • the second speed gear 20 includes an idle gear 21 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 22 which meshes with the idle gear 21 and is fixed to the second shaft 13 so as not to be relatively rotatable.
  • the third speed gear 23 includes an idle gear 24 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 25 meshing with the idle gear 24 and fixed to the second shaft 13 so as not to be relatively rotatable. ing.
  • the 4th speed gear 26 consists of the output gear 14 .
  • the fifth speed gear 27 includes an idle gear 28 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 29 meshing with the idle gear 28 and fixed to the second shaft 13 so as not to be relatively rotatable.
  • the sixth speed gear 30 includes an idle gear 31 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 32 meshing with the idle gear 31 and fixed to the second shaft 13 so as not to be relatively rotatable. ing.
  • the end faces of the fixed gear 15 and the idle gears 18, 21, 24, 28, and 31 are provided with square-shaped first teeth 33 protruding in the axial direction.
  • the fixed gear 15 and the idle gears 18, 21, 24, 28, 31 have the same number, size and shape of the first teeth 33.
  • a hub 34 provided axially adjacent to the first tooth 33 is coupled to the first shaft 12 .
  • a moving member 37 is arranged on the hub 34 .
  • FIG. 2 is a perspective view of the hub 34 and the moving member 37.
  • the hub 34 is a cylindrical member having splines 35 on its inner peripheral surface. Hub 34 is connected to first shaft 12 by splines 35 . A groove 36 extending in the axial direction is provided on the outer peripheral surface of the hub 34 .
  • the moving member 37 is an annular member arranged on the outer peripheral surface of the hub 34 . A square-shaped second tooth 38 protruding in the axial direction is provided on the axial end face of the moving member 37 .
  • second teeth 38 are provided on the end surface of the moving member 37 at 45° intervals (16 on one moving member 37).
  • eight first teeth 33 are provided at 45° intervals on the end face of each gear.
  • the second tooth 38 is provided with a projection 39 elongated in the axial direction.
  • a protrusion 39 fits into the groove 36 of the hub 34 . Therefore, the moving member 37 is arranged on the hub 34 so as to be non-rotatable and axially movable with respect to the hub 34 .
  • the shift device 40 sets the axial position of the moving member 37 .
  • the shift device 40 includes shift forks 41, 42, 43 respectively engaged with the moving member 37, shift arms 44, 45, 46 respectively coupled to the shift forks 41, 42, 43, a cylindrical shift drum 47, It has Shift fork 41 engages with moving member 37 arranged between fixed gear 15 and sixth gear 30 .
  • Shift fork 42 engages with moving member 37 arranged between fifth gear 27 and second gear 20 .
  • the shift fork 43 engages with a moving member 37 arranged between the 3rd gear 23 and the 6th gear 30 .
  • the shift drum 47 is rotated by an actuator 48 such as a motor.
  • Cam grooves 49 , 50 , 51 are provided on the outer circumference of the shift drum 47 .
  • the engaging portion 52 coupled to the shift arm 44 engages the cam groove 49 .
  • An engaging portion 53 coupled to the shift arm 45 engages the cam groove 50 .
  • An engaging portion 54 coupled to the shift arm 46 engages the cam groove 51 .
  • the control device 60 determines a request for shifting gears based on an operation signal of a shift lever (not shown) or based on an accelerator opening and a vehicle speed signal by operating an accelerator pedal (not shown), and shifts.
  • the drum 47 is rotated.
  • the shift drum 47 (cylindrical cam) rotates, the shift forks 41, 42, 43 are shifted through the shift arms 44, 45, 46 whose engaging portions 52, 53, 54 are guided in the cam grooves 49, 50, 51, respectively. moves axially.
  • the shift forks 41, 42, 43 move, the moving member 37 moves in the axial direction.
  • the first tooth 33 and the second tooth 38 are meshed in a state where the rotational speed of the fixed gear 15 and the idle gears 18, 21, 24, 28, 31 and the rotational speed of the moving member 37 are different. be.
  • the control device 60 predicts the rotational position of the first tooth 33 and the rotational position of the second tooth 38 so that the corner portions of the first tooth 33 and the second tooth 38 do not come into contact with each other. , the first tooth 33 and the second tooth 38 are meshed.
  • the outputs of the first sensor 55 , the second sensor 56 and the third sensor 57 are input to the control device 60 .
  • the first sensor 55, the second sensor 56, and the third sensor 57 are sensors that detect the rotation angles of rotating bodies such as shafts and gears.
  • the first sensor 55, the second sensor 56, and the third sensor 57 may be rotary potentiometers, encoders, or the like.
  • the first sensor 55, the second sensor 56, and the third sensor 57 can be either non-contact sensors or contact sensors using magnetism, ultrasonic waves, optical elements, or the like.
  • the first sensor 55 detects rotation of the first shaft 12 and inputs the detection result to the control device 60 .
  • the first sensor 55 detects rotation of the mark 58 that rotates integrally with the first shaft 12 .
  • a mark 58 is a mark for identifying rotation of the first shaft 12 .
  • the mark 58 is a gear fixed to the first shaft 12 so as not to rotate relative to it.
  • the second sensor 56 detects rotation of the fixed gear 16 arranged on the second shaft 13 and inputs the detection result to the control device 60 .
  • the third sensor 57 detects rotation of the idle gear 18 arranged on the first shaft 12 and inputs the detection result to the control device 60 .
  • the warning device 59 is provided at a position where the driver of the automobile can identify the notification, and notifies the driver by sound or light.
  • the control device 60 is a device that controls various operations of the transmission 10 .
  • the control device 60 includes a CPU 61 , nonvolatile memory (NVRAM) 62 , ROM and RAM (not shown), which are connected to an input/output port 63 .
  • An actuator 48 , a first sensor 55 , a second sensor 56 , a third sensor 57 and an alarm device 59 are connected to the input/output port 63 .
  • the CPU 61 is an arithmetic device that controls each part.
  • a ROM (not shown) is a non-rewritable, non-volatile memory that stores control programs executed by the CPU 61 and various threshold values.
  • a RAM (not shown) is a memory that rewritably stores various data.
  • the NVRAM 62 is a non-volatile memory that rewritably stores data.
  • the CPU 61 sequentially processes the signals input by the first sensor 55 , the second sensor 56 and the third sensor 57 and stores them in the RAM and NVRAM 62 .
  • the first shaft 12 is arranged so that the position of the second tooth 38 in the rotational direction has a constant relationship with the position of the mark 58 provided on the first shaft 12 in the rotational direction.
  • the hub 34 and the moving member 37 are arranged. Since the positions in the rotational direction of all the second teeth 38 are constant with reference to the mark 58, the initial positions in the rotational direction of all the second teeth 38 are constant. Since the second teeth 38 (moving members 37) rotate integrally with the first shaft 12, all the second teeth 38 have the same rotation angle.
  • the control device 60 can detect all the second teeth. Rotation of the two teeth 38 can be detected.
  • rotation of the second tooth 38 is indirectly detected by the first sensor 55 that detects rotation of the mark 58 .
  • the CPU 61 sequentially processes the signals input by the first sensor 55, and stores in the RAM the rotation angle ⁇ d of the second tooth 38 that increases from the initial position (0°).
  • the rotation angle ⁇ d of the second tooth 38 increases from 0° to 45° and then returns to 0°.
  • the CPU 61 also causes the RAM to store the rotation speed of the first shaft 12 based on the signal input by the first sensor 55 .
  • the idle gears 18, 21, 24, 28, 31 are arranged on the first shaft 12, and the fixed gears 16, 19, 22, 25, 29, 32 are arranged on the second shaft 13.
  • the fixed gear 15 and the idle gears 18, 21, 24, 28, 31 are meshed with the fixed gears 16, 19, 22, 25, 29, 32, the position of the first tooth 33 in the rotational direction is , and the positions of the marks 58 provided on the first shaft 12 in the rotational direction. Since the rotational positions of all the first teeth 33 are constant with respect to the fixed gear 16 arranged on the second shaft 13, the initial positions of all the first teeth 33 in the rotational direction are constant.
  • the first teeth 33 (the fixed gear 15 and the idle gears 18, 21, 24, 28, 31) are connected to the fixed gear 15, the idle gears 18, 21, 24, 28, 31 and the fixed gears 16, 19, 22, 25. , 29 and 32 rotate in accordance with the gear ratio of the transmission gears meshing with each other. If there is one sensor for detecting the rotation of any one of the fixed gears 15, 19, 22, 25, 29, 32, the second shaft 13 can be used without arranging a sensor for detecting the rotation of the gears for each transmission gear.
  • the CPU 61 can calculate the rotation angles of all the first teeth 33 from the integrated value of the rotation of and the gear ratio of each gear.
  • rotation of the first tooth 33 is indirectly detected by the second sensor 56 that detects rotation of the fixed gear 16 .
  • the control device 60 and the second sensor 56 detect that each gear is engaged with the fixed gear 15 and the idle gears 18, 21, 24, 28, 31 and the fixed gears 16, 19, 22, 25, 29, 32 respectively.
  • a backup battery (not shown) is provided so that the integrated value of the rotation of the second shaft 13 can be stored from when it is arranged on the first shaft 12 and the second shaft 13 (initial position). are connected.
  • the CPU 61 sequentially processes the signals input by the second sensor 56 and causes the NVRAM 62 to store the rotation angle of the fixed gear 16 that increases from the initial position (0°).
  • the first teeth 33 (the fixed gear 15 and the idle gears 18, 21, 24, 28, 31) are connected to the fixed gear 15, the idle gears 18, 21, 24, 28, 31 and the fixed gears 16, 19, 22, 25. , 29 and 32 rotate according to the gear ratio of the transmission gears meshed with each other, the CPU 61 reads out the rotation angle of the fixed gear 16 stored in the NVRAM 62, and reads out the fixed gear 15 and idle gears 18, 21, 24, 28, .
  • the rotation angles ⁇ g of all the first teeth 33 can be calculated for each 31 .
  • the CPU 61 causes the RAM to store the rotation angles ⁇ g of all the first teeth 33 .
  • the rotation angle ⁇ g of the first tooth 33 increases from 0° to 45° and then returns to 0°.
  • the CPU 61 sequentially processes the signals input by the third sensor 57, calculates the rotation angle ⁇ h of the first tooth 33 of the idle gear 18 that increases from the initial position (0°), and stores it in the RAM.
  • the rotation angle ⁇ h of the first tooth 33 increases from 0° to 45° and then returns to 0°.
  • FIG. 3 is a flow chart of the meshing process
  • FIG. 4 is a flow chart of the correction process.
  • the meshing process is performed when changing gear stages of the transmission 10 .
  • the correction process is always performed during operation of the vehicle in which the transmission 10 is installed.
  • the control device 60 acquires the rotation angle ⁇ d of the second tooth 38 stored in the RAM (S1), and the CPU 61 (first calculation unit) acquires the rotation angle ⁇ d of the second tooth 38 when switching the gear stage. (S2).
  • the CPU 61 calculates the difference ⁇ 1 between the rotation angle ⁇ d of the second tooth 38 and the rotation angle ⁇ g of the first tooth 33 (S3), and the moving member 37 starts moving in the axial direction when ⁇ 1 is larger than the threshold value.
  • the actuator 48 is driven so that the first tooth 33 and the second tooth 38 are meshed (S4: Yes).
  • the threshold value indicates the drive timing at which the second tooth 38 can mesh with the first tooth 33 without colliding with it, and is determined by performing simulations or tests in advance.
  • the CPU 61 acquires the rotation angle ⁇ h of the first tooth 33 (idling gear 18) stored in the RAM while the automobile is operating. (S5), the CPU 61 (second calculation unit) acquires the rotation angle ⁇ g of the first tooth 33 (idling gear 18) calculated based on the data (integrated value of rotation) stored in the NVRAM 62 (S6). .
  • the CPU 61 (comparison unit) calculates the difference ⁇ 2 between the rotation angle ⁇ g and the rotation angle ⁇ h (S7).
  • the rotation angle data stored in the NVRAM 62 is rewritten by the rotation angle corresponding to ⁇ 2 (S9).
  • the threshold value 1 indicates that the difference between the calculated value ⁇ g based on the rotation angle stored in the NVRAM 62 and the rotation angle ⁇ h obtained by the third sensor 57 for verification cannot be ignored. to determine. Since the CPU 61 (comparator) obtains the difference ⁇ 2 between the rotation angle ⁇ g and the rotation angle ⁇ h, the functions of the control device 60, sensors, etc. can be verified.
  • Threshold 2 indicates that the vehicle is traveling at a low speed, and is determined by conducting simulations or tests in advance and taking into account the sensor's judgment error.
  • the CPU 61 activates the alarm device 59 (S11) to inform the operator that an abnormality has occurred. do.
  • the deviation between the measured value .theta.h of the first tooth 33 and the calculated value .theta.g may be caused by an abnormality in the sensor, the CPU 61, or the like.
  • NVRAM 62 If the NVRAM 62 is continuously rewritten (continuously deviated), it is not an erroneous determination, and there is a high possibility that the transmission 10 needs to be repaired. Since this can be notified to the operator, damage to the transmission 10 can be prevented.
  • the NVRAM 62 to which the spare battery is connected can be used when the gears are arranged on the first shaft 12 and the second shaft 13 with the gears meshing with each other.
  • the CPU 61 (second calculation unit) acquires the rotation angle ⁇ g of the first tooth 33 based on the value stored in the NVRAM 62 . Therefore, the calculation accuracy of the rotation angle ⁇ g of the first tooth 33 can be improved.
  • the controller 60 calculates the difference between the rotation angle ⁇ g and the rotation angle ⁇ h. Since the data stored in the NVRAM 62 is rewritten by the rotation angle corresponding to ⁇ 2, the calculation accuracy of the rotation angle ⁇ g of the first tooth 33 can be further improved.
  • the controller 60 modifies the data in the NVRAM 62 when the automobile is running at a low speed (the rotation speed of the first tooth 33 is small), the position of the first tooth 33 in the rotational direction generated at the time when the data in the NVRAM 62 is rewritten. It is possible to reduce the deviation. Therefore, it is possible to reduce errors that occur when modifying data in the NVRAM 62 .
  • the controller 60 activates the alarm device 59 when there is a difference ⁇ 2 between the rotation angle ⁇ g and the rotation angle ⁇ h. can.
  • the present invention has been described above based on the embodiments, the present invention is by no means limited to these embodiments, and various improvements and modifications can easily be made without departing from the scope of the present invention. can be inferred.
  • the number of gear stages of the transmission 10 the arrangement of transmission gears, the number of idle gears arranged on the first shaft 12, the number, size and shape of the first teeth 33 and the second teeth 38, etc. are appropriately set. can.
  • the transmission 10 is mounted on an automobile, but it is not limited to this, and it is of course possible to mount the transmission 10 on construction machinery, industrial vehicles, agricultural machinery, and the like.
  • the present invention is not necessarily limited to this.
  • Marks are not limited to gears. Any mark may be used as long as it rotates integrally with the first shaft 12 . Examples of the mark include protrusions and recesses provided on the first shaft 12, the moving member 37, and the hub 34, and magnets arranged on a part of the circumference of the first shaft 12, the moving member 37, and the hub 34, and the like. It is of course possible for the first sensor 55 to detect the second tooth 38 provided on the moving member 37 as a mark.
  • the fixed gear 16 meshing with the fixed gear 15 provided on the drive shaft 11 is arranged on the second shaft 13, and the second sensor 56 detects the rotation of the fixed gear 16 to detect the rotation of the second shaft 13.
  • the detection target of the second sensor 56 is not limited to this. It is of course possible to provide a mark that rotates integrally with the second shaft 13 on the second shaft 13 and use the mark as another detection target of the second sensor 56 .
  • Other objects to be detected by the second sensor 56 are the fixed gear 15 meshing with the fixed gear 16 , the idle gears 18 , 21 , 24 , 28 and 31 arranged on the first shaft 12 , and arranged on the second shaft 13 .
  • a spare battery can be omitted.
  • a second sensor 56 is, for example, a magnetic element in which a coil is arranged around a conducting wire (Wiegand wire) having different magnetic permeability at the center and outside. This magnetic element generates an electric pulse (electricity) while detecting rotation. Thereby, a spare battery connected to the control device 60 and the second sensor 56 can be omitted.
  • the third sensor 57 that detects the rotation of the idle gear 18 arranged on the first shaft 12 has been described.
  • the detection target of the third sensor 57 is not limited to this.
  • Another detection target of the third sensor 57 is a gear in a different gear stage than the gear whose rotation is detected by the second sensor 56 or the second shaft 13 .
  • a detection target of the third sensor 57 is, for example, any of the idle gears 21, 24, 28 and 31 and any of the fixed gears 19, 22, 25, 29 and 32.
  • the third sensor 57 detects the rotation of the idle gear 18, and the CPU 61 (comparator) calculates the rotation angle of the first tooth 33 (idler gear 18) based on the data stored in the NVRAM 62.
  • the CPU 61 calculates the fixed gear 19, 25, 32 based on the data stored in the NVRAM 62.
  • the rotation angle of any of 22, 25, 29, 32 and the rotation angle of any of fixed gears 19, 22, 25, 29, 32 detected by the third sensor 57 are compared.
  • a fixed gear 16 meshing with a fixed gear 15 arranged on the drive shaft 11 is arranged on the second shaft 13, and the fixed gears 19, 22, 25, 29, 32 arranged on the second shaft 13 and the first
  • the idle gears 18 , 21 , 24 , 28 , 31 arranged on the shaft 12 are meshed with each other and the output gear 14 is arranged on the first shaft 12 , this is not necessarily the case.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Provided is a transmission for which the calculation accuracy of the rotation angle of second teeth can be improved. The transmission comprises: a plurality of idle gears disposed on a first shaft (12) and provided with first teeth (33); a plurality of movable members (37) disposed on the first shaft so as to be inhibited from relatively rotating and to be movable in the axial direction and provided with second teeth (38) meshed with the first teeth; a fixed gear disposed on a second shaft (13) and meshed with each of the idle gears; a sensor which directly or indirectly detects the rotation of the first teeth and the second teeth; and a control device (60) which acquires positions of the first teeth and the second teeth in a rotation direction on the basis of the detection by the sensor and which starts to move the movable members in the axial direction. The first shaft includes a mark (58) rotated integrally with the first shaft, and the position of the second teeth in the rotation direction has a fixed relationship with respect to the position of the mark in the rotation direction.

Description

変速機transmission
 本発明は、軸に配置されたギヤを選択的に軸に結合する変速機に関する。 The present invention relates to a transmission that selectively couples gears arranged on a shaft to the shaft.
 第1歯が設けられた遊転ギヤ及び第2歯が設けられた移動部材を第1軸に配置し、第1軸と平行に配置された第2軸に、遊転ギヤにかみ合う固定ギヤを配置し、制御装置によって移動部材の軸方向の移動を開始し、第1歯と第2歯とをかみ合わせて遊転ギヤを選択的に第1軸に結合する変速機は知られている。この種の変速機において、特許文献1に開示された技術では、スリーブ歯部(第2歯)が設けられた複数のスリーブ(移動部材)を入力軸(第1軸)に配置し、出力軸(第2軸)に配置された伝達ギヤ(固定ギヤ)のいずれかの回転をセンサが検出する。第2軸に配置された固定ギヤは、第1軸に配置された変速ギヤ(遊転ギヤ)とかみ合い、移動部材は第1軸と一体に回転する。制御装置は、センサの入力に基づいて第2歯の回転角を算出する。 An idle gear provided with a first tooth and a moving member provided with a second tooth are arranged on a first shaft, and a fixed gear meshing with the idle gear is arranged on a second shaft arranged parallel to the first shaft. Transmissions are known which are arranged to initiate axial movement of a moving member by means of a controller to engage first and second teeth to selectively couple an idler gear to a first shaft. In this type of transmission, in the technique disclosed in Patent Document 1, a plurality of sleeves (moving members) provided with sleeve teeth (second teeth) are arranged on the input shaft (first shaft), and the output shaft A sensor detects the rotation of any of the transmission gears (fixed gears) arranged on the (second shaft). A fixed gear arranged on the second shaft meshes with a transmission gear (idling gear) arranged on the first shaft, and the moving member rotates integrally with the first shaft. The controller calculates the rotation angle of the second tooth based on the sensor input.
特開2020-85066号公報JP 2020-85066 A
 しかし先行技術は、第2歯の回転方向の位置が互いに異なった状態で複数の移動部材が第1軸に配置されると、第1軸に対する第2歯の回転方向の初期位置が互いに異なるため、初期位置を基準に算出された回転角の精度が低下する。 However, in the prior art, when a plurality of moving members are arranged on the first shaft with the positions of the second teeth in the rotation direction different from each other, the initial positions of the second teeth in the rotation direction with respect to the first shaft are different from each other. , the accuracy of the rotation angle calculated with reference to the initial position decreases.
 本発明はこの問題点を解決するためになされたものであり、第2歯の回転角の算出精度を向上できる変速機を提供することを目的とする。 The present invention has been made to solve this problem, and it is an object of the present invention to provide a transmission capable of improving the accuracy of calculating the rotation angle of the second tooth.
 この目的を達成するために本発明の変速機は、互いに平行に配置された第1軸および第2軸と、第1軸に相対回転可能かつ軸方向に移動不能に配置され第1歯が設けられた複数の遊転ギヤと、第1軸に相対回転不能かつ軸方向に移動可能に配置され第1歯にかみ合う第2歯が設けられた複数の移動部材と、第2軸に相対回転不能に配置され遊転ギヤにかみ合う固定ギヤと、第1歯および第2歯の回転を直接または間接に検出するセンサと、センサの検出に基づいて第1歯および第2歯の回転方向の位置を取得し、移動部材の軸方向の移動を開始する制御装置と、を備える。第1軸は、第1軸と一体に回転するマークを含み、第2歯の回転方向の位置は、マークの回転方向の位置に対して一定の関係にある。 To achieve this object, the transmission of the present invention is provided with a first shaft and a second shaft arranged parallel to each other, and a first tooth arranged so as to be rotatable relative to the first shaft and immovable in the axial direction. a plurality of free-rotating gears mounted on a first shaft so as to be non-rotatable relative to each other and axially movable, a plurality of moving members provided with second teeth meshing with the first teeth; and a second shaft non-rotatable relative to each other. A fixed gear that is arranged in and meshes with the idle gear, a sensor that directly or indirectly detects the rotation of the first tooth and the second tooth, and the position of the first tooth and the second tooth in the rotational direction based on the detection of the sensor a controller for acquiring and initiating axial movement of the moving member. The first axis includes a mark that rotates integrally with the first axis, and the rotational position of the second tooth is in a fixed relationship to the rotational position of the mark.
 第1の態様によれば、第1軸は、第1軸と一体に回転するマークを含み、第2歯の回転方向の位置は、マークの回転方向の位置に対して一定の関係にある。第2歯の回転方向の初期位置を一定にできるので、第2歯の回転角の算出精度を向上できる。 According to the first aspect, the first shaft includes a mark that rotates integrally with the first shaft, and the rotational position of the second tooth has a fixed relationship to the rotational position of the mark. Since the initial position of the second tooth in the direction of rotation can be made constant, the accuracy of calculation of the rotation angle of the second tooth can be improved.
 第2の態様によれば、遊転ギヤと固定ギヤとがかみ合った状態で遊転ギヤが第1軸に配置され固定ギヤが第2軸に配置されたときの第1歯の回転方向の位置は、第2軸の回転方向の位置に対して一定の関係にある。第1の態様に効果に加え、第1歯の回転を検出するセンサの数を低減できる。 According to the second aspect, the position of the first tooth in the rotation direction when the idle gear is arranged on the first shaft and the fixed gear is arranged on the second shaft in a state where the idle gear and the fixed gear are in mesh. has a constant relationship with respect to the position in the rotational direction of the second axis. In addition to the effects of the first aspect, the number of sensors that detect the rotation of the first tooth can be reduced.
 第3の態様によれば、センサは、第2軸、遊転ギヤ又は固定ギヤの回転を検出する第2センサを含む。制御装置は、遊転ギヤと固定ギヤとがかみ合った状態で遊転ギヤが第1軸に配置され固定ギヤが第2軸に配置されたときからの第2センサの検出を積算した値をメモリが記憶し、メモリが記憶する積算値および遊転ギヤと固定ギヤとの各ギヤ比に基づいて各第1歯の初期位置からの回転方向の位置を第2演算部が取得する。第2の態様の効果に加え、各第1歯の回転角を精度良く算出できる。 According to the third aspect, the sensor includes a second sensor that detects rotation of the second shaft, idle gear or fixed gear. The control device stores a value obtained by integrating the detection of the second sensor from the time when the idle gear is arranged on the first shaft and the fixed gear is arranged on the second shaft while the idle gear and the fixed gear are in mesh with each other. and the second computing unit acquires the position of each first tooth in the rotational direction from the initial position based on the integrated value stored in the memory and the gear ratio between the idle gear and the fixed gear. In addition to the effect of the second aspect, the rotation angle of each first tooth can be calculated with high accuracy.
 第4の態様によれば、センサは、第2センサが回転を検出するギヤの変速段と異なる変速段のギヤ又は第2軸の回転を検出する第3センサを含む。制御装置は、第3センサの検出に基づいてギヤ又は第2軸の回転方向の位置を第3演算部が取得し、第3演算部が取得したギヤ又は第2軸の回転方向の位置とメモリが記憶する値に基づいて取得したギヤ又は第2軸の回転方向の位置とを比較部が比較する。第3の態様の効果に加え、制御装置やセンサの機能を検証できる。 According to the fourth aspect, the sensor includes a third sensor that detects rotation of the second shaft or a gear in a gear different from the gear whose rotation is detected by the second sensor. The control device acquires the position of the gear or the second shaft in the rotational direction based on the detection of the third sensor, and stores the position of the gear or the second shaft in the rotational direction acquired by the third arithmetic unit and the memory. A comparison unit compares the position in the rotational direction of the gear or the second shaft acquired based on the value stored in . In addition to the effects of the third aspect, the functions of the control device and sensors can be verified.
一実施の形態における変速機のブロック図である。1 is a block diagram of a transmission in one embodiment; FIG. ハブ及び移動部材の斜視図である。FIG. 3 is a perspective view of a hub and moving member; かみ合い処理のフローチャートである。4 is a flow chart of a meshing process; 修正処理のフローチャートである。6 is a flowchart of correction processing;
 以下、本発明の好ましい実施の形態について添付図面を参照して説明する。まず図1を参照して変速機10の概略構成を説明する。図1は一実施の形態における変速機10のブロック図である。変速機10は、動力が入力される駆動軸11の同軸上に配置された第1軸12と、第1軸12と平行に配置された第2軸13と、を備え、第1軸12に出力ギヤ14が配置されている。変速機10は、駆動軸11に相対回転不能に固定された固定ギヤ15と、固定ギヤ15にかみ合いつつ第2軸13に相対回転不能に固定された固定ギヤ16と、を備えている。第1軸12及び第2軸13は、複数段の変速ギヤとしての1速ギヤ17、2速ギヤ20、3速ギヤ23、4速ギヤ26、5速ギヤ27及び6速ギヤ30を支持する。本実施形態では変速機10は自動車(図示せず)に搭載されている。 Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. First, the schematic configuration of the transmission 10 will be described with reference to FIG. FIG. 1 is a block diagram of transmission 10 in one embodiment. The transmission 10 includes a first shaft 12 arranged coaxially with a drive shaft 11 to which power is input, and a second shaft 13 arranged parallel to the first shaft 12. An output gear 14 is arranged. The transmission 10 includes a fixed gear 15 fixed to the drive shaft 11 so as not to relatively rotate, and a fixed gear 16 which meshes with the fixed gear 15 and is fixed to the second shaft 13 so as not to rotate relatively. The first shaft 12 and the second shaft 13 support a 1st gear 17, a 2nd gear 20, a 3rd gear 23, a 4th gear 26, a 5th gear 27 and a 6th gear 30 as multi-stage transmission gears. . In this embodiment, the transmission 10 is mounted on an automobile (not shown).
 1速ギヤ17は、第1軸12に相対回転可能に固定された遊転ギヤ18と、遊転ギヤ18とかみ合いつつ第2軸13に相対回転不能に固定された固定ギヤ19と、を備えている。2速ギヤ20は、第1軸12に相対回転可能に固定された遊転ギヤ21と、遊転ギヤ21とかみ合いつつ第2軸13に相対回転不能に固定された固定ギヤ22と、を備えている。3速ギヤ23は、第1軸12に相対回転可能に固定された遊転ギヤ24と、遊転ギヤ24とかみ合いつつ第2軸13に相対回転不能に固定された固定ギヤ25と、を備えている。 The first speed gear 17 includes an idle gear 18 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 19 meshing with the idle gear 18 and fixed to the second shaft 13 so as not to be relatively rotatable. ing. The second speed gear 20 includes an idle gear 21 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 22 which meshes with the idle gear 21 and is fixed to the second shaft 13 so as not to be relatively rotatable. ing. The third speed gear 23 includes an idle gear 24 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 25 meshing with the idle gear 24 and fixed to the second shaft 13 so as not to be relatively rotatable. ing.
 4速ギヤ26は出力ギヤ14からなる。5速ギヤ27は、第1軸12に相対回転可能に固定された遊転ギヤ28と、遊転ギヤ28とかみ合いつつ第2軸13に相対回転不能に固定された固定ギヤ29と、を備えている。6速ギヤ30は、第1軸12に相対回転可能に固定された遊転ギヤ31と、遊転ギヤ31とかみ合いつつ第2軸13に相対回転不能に固定された固定ギヤ32と、を備えている。 The 4th speed gear 26 consists of the output gear 14 . The fifth speed gear 27 includes an idle gear 28 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 29 meshing with the idle gear 28 and fixed to the second shaft 13 so as not to be relatively rotatable. ing. The sixth speed gear 30 includes an idle gear 31 fixed to the first shaft 12 so as to be relatively rotatable, and a fixed gear 32 meshing with the idle gear 31 and fixed to the second shaft 13 so as not to be relatively rotatable. ing.
 固定ギヤ15及び遊転ギヤ18,21,24,28,31の端面には、それぞれ軸方向に突出する角形形状の第1歯33が設けられている。固定ギヤ15及び遊転ギヤ18,21,24,28,31に設けられた第1歯33の数、大きさ及び形状は同一である。第1歯33と軸方向に隣り合う位置に設けられたハブ34は、第1軸12に結合している。ハブ34には移動部材37が配置されている。 The end faces of the fixed gear 15 and the idle gears 18, 21, 24, 28, and 31 are provided with square-shaped first teeth 33 protruding in the axial direction. The fixed gear 15 and the idle gears 18, 21, 24, 28, 31 have the same number, size and shape of the first teeth 33. As shown in FIG. A hub 34 provided axially adjacent to the first tooth 33 is coupled to the first shaft 12 . A moving member 37 is arranged on the hub 34 .
 図2はハブ34及び移動部材37の斜視図である。ハブ34は内周面にスプライン35が設けられた円筒状の部材である。ハブ34はスプライン35によって第1軸12に結合する。ハブ34の外周面には、軸方向に延びる溝36が設けられている。移動部材37は、ハブ34の外周面に配置された円環状の部材である。移動部材37の軸方向の端面には、軸方向に突出する角形形状の第2歯38が設けられている。 2 is a perspective view of the hub 34 and the moving member 37. FIG. The hub 34 is a cylindrical member having splines 35 on its inner peripheral surface. Hub 34 is connected to first shaft 12 by splines 35 . A groove 36 extending in the axial direction is provided on the outer peripheral surface of the hub 34 . The moving member 37 is an annular member arranged on the outer peripheral surface of the hub 34 . A square-shaped second tooth 38 protruding in the axial direction is provided on the axial end face of the moving member 37 .
 本実施形態では第2歯38は、移動部材37の端面に45°間隔で8個(一つの移動部材37に16個)設けられている。第1歯33(図1参照)も同様に、各ギヤの端面に45°間隔で8個設けられている。第2歯38には、軸方向に細長く延びる突部39が設けられている。突部39がハブ34の溝36にはまる。よって移動部材37は、ハブ34に対して回転不能、且つ、軸方向へ移動可能にハブ34に配置されている。 In this embodiment, eight second teeth 38 are provided on the end surface of the moving member 37 at 45° intervals (16 on one moving member 37). Similarly, eight first teeth 33 (see FIG. 1) are provided at 45° intervals on the end face of each gear. The second tooth 38 is provided with a projection 39 elongated in the axial direction. A protrusion 39 fits into the groove 36 of the hub 34 . Therefore, the moving member 37 is arranged on the hub 34 so as to be non-rotatable and axially movable with respect to the hub 34 .
 図1に戻って説明する。シフト装置40は移動部材37の軸方向の位置を設定する。シフト装置40は、移動部材37にそれぞれ係合するシフトフォーク41,42,43と、シフトフォーク41,42,43にそれぞれ結合するシフトアーム44,45,46と、円柱状のシフトドラム47と、を備えている。シフトフォーク41は、固定ギヤ15と6速ギヤ30との間に配置された移動部材37に係合する。シフトフォーク42は、5速ギヤ27と2速ギヤ20との間に配置された移動部材37に係合する。シフトフォーク43は、3速ギヤ23と6速ギヤ30との間に配置された移動部材37に係合する。 Return to Figure 1 for explanation. The shift device 40 sets the axial position of the moving member 37 . The shift device 40 includes shift forks 41, 42, 43 respectively engaged with the moving member 37, shift arms 44, 45, 46 respectively coupled to the shift forks 41, 42, 43, a cylindrical shift drum 47, It has Shift fork 41 engages with moving member 37 arranged between fixed gear 15 and sixth gear 30 . Shift fork 42 engages with moving member 37 arranged between fifth gear 27 and second gear 20 . The shift fork 43 engages with a moving member 37 arranged between the 3rd gear 23 and the 6th gear 30 .
 シフトドラム47はモータ等のアクチュエータ48により回転する。シフトドラム47の外周にはカム溝49,50,51が設けられている。シフトアーム44に結合する係合部52はカム溝49に係合する。シフトアーム45に結合する係合部53はカム溝50に係合する。シフトアーム46に結合する係合部54はカム溝51に係合する。 The shift drum 47 is rotated by an actuator 48 such as a motor. Cam grooves 49 , 50 , 51 are provided on the outer circumference of the shift drum 47 . The engaging portion 52 coupled to the shift arm 44 engages the cam groove 49 . An engaging portion 53 coupled to the shift arm 45 engages the cam groove 50 . An engaging portion 54 coupled to the shift arm 46 engages the cam groove 51 .
 制御装置60は、シフトレバー(図示せず)の操作信号に基づき、或いはアクセルペダル(図示せず)の操作によるアクセル開度および車速信号等に基づき、変速段の切換の要求を判断し、シフトドラム47を回転させる。シフトドラム47(円筒カム)が回転すると、カム溝49,50,51に係合部52,53,54がそれぞれガイドされたシフトアーム44,45,46を介して、シフトフォーク41,42,43は軸方向に移動する。シフトフォーク41,42,43の移動に伴い移動部材37は軸方向に移動する。移動部材37が軸方向に移動し、固定ギヤ15及び遊転ギヤ18,21,24,28,31に設けられた第1歯33と移動部材37に設けられた第2歯38とがかみ合うと、移動部材37及びハブ34を介して第1軸12に遊転ギヤ18,21,24,28,31及び駆動軸11のいずれかが選択的に結合し、変速が完了する。 The control device 60 determines a request for shifting gears based on an operation signal of a shift lever (not shown) or based on an accelerator opening and a vehicle speed signal by operating an accelerator pedal (not shown), and shifts. The drum 47 is rotated. When the shift drum 47 (cylindrical cam) rotates, the shift forks 41, 42, 43 are shifted through the shift arms 44, 45, 46 whose engaging portions 52, 53, 54 are guided in the cam grooves 49, 50, 51, respectively. moves axially. As the shift forks 41, 42, 43 move, the moving member 37 moves in the axial direction. When the moving member 37 moves in the axial direction and the first teeth 33 provided on the fixed gear 15 and the idle gears 18, 21, 24, 28, 31 mesh with the second teeth 38 provided on the moving member 37, , the free gears 18, 21, 24, 28, 31 and the drive shaft 11 are selectively connected to the first shaft 12 via the moving member 37 and the hub 34 to complete the speed change.
 変速機10は、固定ギヤ15及び遊転ギヤ18,21,24,28,31の回転速度と移動部材37の回転速度とが異なる状態で、第1歯33と第2歯38とがかみ合わされる。このときに第1歯33と第2歯38のコーナー部分とが当たると第1歯33や第2歯38に破損や摩耗が生じたり、第1歯33と第2歯38とがはじかれて第1歯33と第2歯38とがかみ合わなかったりするおそれがある。これを防ぐために制御装置60は、第1歯33の回転方向の位置と第2歯38の回転方向の位置とを予測して、第1歯33と第2歯38のコーナー部分とが当たらないように、第1歯33と第2歯38とをかみ合わせる。 In the transmission 10, the first tooth 33 and the second tooth 38 are meshed in a state where the rotational speed of the fixed gear 15 and the idle gears 18, 21, 24, 28, 31 and the rotational speed of the moving member 37 are different. be. At this time, if the corner portions of the first tooth 33 and the second tooth 38 come into contact with each other, the first tooth 33 and the second tooth 38 may be damaged or worn, or the first tooth 33 and the second tooth 38 may be repelled. There is a possibility that the first tooth 33 and the second tooth 38 may not mesh with each other. In order to prevent this, the control device 60 predicts the rotational position of the first tooth 33 and the rotational position of the second tooth 38 so that the corner portions of the first tooth 33 and the second tooth 38 do not come into contact with each other. , the first tooth 33 and the second tooth 38 are meshed.
 制御装置60には第1センサ55、第2センサ56及び第3センサ57の出力が入力される。第1センサ55、第2センサ56及び第3センサ57は、軸やギヤ等の回転体の回転角を検出するセンサである。第1センサ55、第2センサ56及び第3センサ57は、ロータリーポテンショメータやエンコーダ等が挙げられる。第1センサ55、第2センサ56及び第3センサ57は、磁気、超音波、光学素子などを利用した非接触式センサ、接触式センサのいずれも用いることができる。 The outputs of the first sensor 55 , the second sensor 56 and the third sensor 57 are input to the control device 60 . The first sensor 55, the second sensor 56, and the third sensor 57 are sensors that detect the rotation angles of rotating bodies such as shafts and gears. The first sensor 55, the second sensor 56, and the third sensor 57 may be rotary potentiometers, encoders, or the like. The first sensor 55, the second sensor 56, and the third sensor 57 can be either non-contact sensors or contact sensors using magnetism, ultrasonic waves, optical elements, or the like.
 第1センサ55は、第1軸12の回転を検出し、検出結果を制御装置60に入力する。本実施形態では、第1センサ55は第1軸12と一体に回転するマーク58の回転を検出する。マーク58は、第1軸12の回転を識別するための目印である。本実施形態では、マーク58は、第1軸12に相対回転不能に固定されたギヤである。 The first sensor 55 detects rotation of the first shaft 12 and inputs the detection result to the control device 60 . In this embodiment, the first sensor 55 detects rotation of the mark 58 that rotates integrally with the first shaft 12 . A mark 58 is a mark for identifying rotation of the first shaft 12 . In this embodiment, the mark 58 is a gear fixed to the first shaft 12 so as not to rotate relative to it.
 本実施形態では、第2センサ56は、第2軸13に配置された固定ギヤ16の回転を検出し、検出結果を制御装置60に入力する。第3センサ57は、第1軸12に配置された遊転ギヤ18の回転を検出し、検出結果を制御装置60に入力する。警報装置59は自動車の操縦者が報知を識別できる位置に設けられており、音や光によって操縦者に報知する。 In this embodiment, the second sensor 56 detects rotation of the fixed gear 16 arranged on the second shaft 13 and inputs the detection result to the control device 60 . The third sensor 57 detects rotation of the idle gear 18 arranged on the first shaft 12 and inputs the detection result to the control device 60 . The warning device 59 is provided at a position where the driver of the automobile can identify the notification, and notifies the driver by sound or light.
 制御装置60は、変速機10の各種動作を制御する装置である。制御装置60は、CPU61、不揮発性メモリ(NVRAM)62、ROM及びRAM(図示せず)を備え、それらが入出力ポート63に接続されている。入出力ポート63にはアクチュエータ48、第1センサ55、第2センサ56、第3センサ57、警報装置59が接続されている。 The control device 60 is a device that controls various operations of the transmission 10 . The control device 60 includes a CPU 61 , nonvolatile memory (NVRAM) 62 , ROM and RAM (not shown), which are connected to an input/output port 63 . An actuator 48 , a first sensor 55 , a second sensor 56 , a third sensor 57 and an alarm device 59 are connected to the input/output port 63 .
 CPU61は各部を制御する演算装置である。ROM(図示せず)は、CPU61により実行される制御プログラムや各種の閾値を記憶する書き換え不能な不揮発性のメモリである。RAM(図示せず)は、各種のデータを書き換え可能に記憶するメモリである。NVRAM62は、データを書き換え可能に記憶する不揮発性メモリである。CPU61は、第1センサ55、第2センサ56及び第3センサ57が入力する信号を順次処理してRAMやNVRAM62に記憶させる。 The CPU 61 is an arithmetic device that controls each part. A ROM (not shown) is a non-rewritable, non-volatile memory that stores control programs executed by the CPU 61 and various threshold values. A RAM (not shown) is a memory that rewritably stores various data. The NVRAM 62 is a non-volatile memory that rewritably stores data. The CPU 61 sequentially processes the signals input by the first sensor 55 , the second sensor 56 and the third sensor 57 and stores them in the RAM and NVRAM 62 .
 変速機10を組み立てる組立工程において、第2歯38の回転方向の位置が、第1軸12に設けられたマーク58の回転方向の位置に対して一定の関係になるように、第1軸12にハブ34及び移動部材37が配置される。マーク58を基準にして全ての第2歯38の回転方向の位置が一定になるので、全ての第2歯38の回転方向の初期位置が一定になる。第2歯38(移動部材37)は第1軸12と一体に回転するので、全ての第2歯38の回転角が同一になる。従って第2歯38の回転を検出するセンサを移動部材37ごとに配置しなくても、第2歯38の回転を直接または間接に検出するセンサが一つあれば、制御装置60は全ての第2歯38の回転を検出できる。 In the assembly process of assembling the transmission 10, the first shaft 12 is arranged so that the position of the second tooth 38 in the rotational direction has a constant relationship with the position of the mark 58 provided on the first shaft 12 in the rotational direction. , the hub 34 and the moving member 37 are arranged. Since the positions in the rotational direction of all the second teeth 38 are constant with reference to the mark 58, the initial positions in the rotational direction of all the second teeth 38 are constant. Since the second teeth 38 (moving members 37) rotate integrally with the first shaft 12, all the second teeth 38 have the same rotation angle. Therefore, even if a sensor for detecting the rotation of the second tooth 38 is not arranged for each moving member 37, if there is one sensor for directly or indirectly detecting the rotation of the second tooth 38, the control device 60 can detect all the second teeth. Rotation of the two teeth 38 can be detected.
 本実施形態では、マーク58の回転を検出する第1センサ55によって、第2歯38の回転を間接に検出する。CPU61は、第1センサ55が入力する信号を順次処理し、初期位置(0°)から増加していく第2歯38の回転角θdをRAMに記憶させる。第2歯38の回転角θdは0°から45°まで増加した後、再び0°に戻る。CPU61は、第1センサ55が入力する信号によって、第1軸12の回転速度もRAMに記憶させる。 In this embodiment, rotation of the second tooth 38 is indirectly detected by the first sensor 55 that detects rotation of the mark 58 . The CPU 61 sequentially processes the signals input by the first sensor 55, and stores in the RAM the rotation angle θd of the second tooth 38 that increases from the initial position (0°). The rotation angle θd of the second tooth 38 increases from 0° to 45° and then returns to 0°. The CPU 61 also causes the RAM to store the rotation speed of the first shaft 12 based on the signal input by the first sensor 55 .
 変速機10の組立工程において、遊転ギヤ18,21,24,28,31を第1軸12に配置し、固定ギヤ16,19,22,25,29,32を第2軸13に配置するときには、固定ギヤ15及び遊転ギヤ18,21,24,28,31と固定ギヤ16,19,22,25,29,32とをそれぞれかみ合わせた状態で、第1歯33の回転方向の位置が、第1軸12に設けられたマーク58の回転方向の位置に対して一定の関係になるように全てのギヤが配置される。第2軸13に配置された固定ギヤ16を基準にして全ての第1歯33の回転方向の位置が一定になるので、全ての第1歯33の回転方向の初期位置が一定になる。 In the assembly process of the transmission 10, the idle gears 18, 21, 24, 28, 31 are arranged on the first shaft 12, and the fixed gears 16, 19, 22, 25, 29, 32 are arranged on the second shaft 13. Sometimes, when the fixed gear 15 and the idle gears 18, 21, 24, 28, 31 are meshed with the fixed gears 16, 19, 22, 25, 29, 32, the position of the first tooth 33 in the rotational direction is , and the positions of the marks 58 provided on the first shaft 12 in the rotational direction. Since the rotational positions of all the first teeth 33 are constant with respect to the fixed gear 16 arranged on the second shaft 13, the initial positions of all the first teeth 33 in the rotational direction are constant.
 第1歯33(固定ギヤ15及び遊転ギヤ18,21,24,28,31)は、固定ギヤ15及び遊転ギヤ18,21,24,28,31と固定ギヤ16,19,22,25,29,32とがそれぞれかみ合う変速ギヤのギヤ比に従って回転するので、組み立てた位置から第2軸13の回転の積算値を記憶することで、遊転ギヤ18,21,24,28,31及び固定ギヤ15,19,22,25,29,32のいずれかの回転を検出するセンサが一つあれば、ギヤの回転を検出するセンサを変速ギヤごとに配置しなくても、第2軸13の回転の積算値と各ギヤのギヤ比により、CPU61は全ての第1歯33の回転角を算出できる。 The first teeth 33 (the fixed gear 15 and the idle gears 18, 21, 24, 28, 31) are connected to the fixed gear 15, the idle gears 18, 21, 24, 28, 31 and the fixed gears 16, 19, 22, 25. , 29 and 32 rotate in accordance with the gear ratio of the transmission gears meshing with each other. If there is one sensor for detecting the rotation of any one of the fixed gears 15, 19, 22, 25, 29, 32, the second shaft 13 can be used without arranging a sensor for detecting the rotation of the gears for each transmission gear. The CPU 61 can calculate the rotation angles of all the first teeth 33 from the integrated value of the rotation of and the gear ratio of each gear.
 本実施形態では、固定ギヤ16の回転を検出する第2センサ56によって、第1歯33の回転を間接に検出する。制御装置60及び第2センサ56は、固定ギヤ15及び遊転ギヤ18,21,24,28,31と固定ギヤ16,19,22,25,29,32とがそれぞれかみ合った状態で各ギヤが第1軸12及び第2軸13に配置されたとき(初期位置)から第2軸13の回転の積算値を記憶できるように、電力供給手段としての主電源の他、予備のバッテリ(図示せず)が接続されている。 In this embodiment, rotation of the first tooth 33 is indirectly detected by the second sensor 56 that detects rotation of the fixed gear 16 . The control device 60 and the second sensor 56 detect that each gear is engaged with the fixed gear 15 and the idle gears 18, 21, 24, 28, 31 and the fixed gears 16, 19, 22, 25, 29, 32 respectively. In addition to the main power supply as power supply means, a backup battery (not shown) is provided so that the integrated value of the rotation of the second shaft 13 can be stored from when it is arranged on the first shaft 12 and the second shaft 13 (initial position). are connected.
 CPU61は、第2センサ56が入力する信号を順次処理し、初期位置(0°)から増加していく固定ギヤ16の回転角をNVRAM62に記憶させる。第1歯33(固定ギヤ15及び遊転ギヤ18,21,24,28,31)は、固定ギヤ15及び遊転ギヤ18,21,24,28,31と固定ギヤ16,19,22,25,29,32とがそれぞれかみ合う変速ギヤのギヤ比に従って回転するので、CPU61は、NVRAM62に記憶された固定ギヤ16の回転角を読み出し、固定ギヤ15及び遊転ギヤ18,21,24,28,31ごとに全ての第1歯33の回転角θgを算出できる。CPU61は、全ての第1歯33の回転角θgをRAMに記憶させる。第1歯33の回転角θgは0°から45°まで増加した後、再び0°に戻る。 The CPU 61 sequentially processes the signals input by the second sensor 56 and causes the NVRAM 62 to store the rotation angle of the fixed gear 16 that increases from the initial position (0°). The first teeth 33 (the fixed gear 15 and the idle gears 18, 21, 24, 28, 31) are connected to the fixed gear 15, the idle gears 18, 21, 24, 28, 31 and the fixed gears 16, 19, 22, 25. , 29 and 32 rotate according to the gear ratio of the transmission gears meshed with each other, the CPU 61 reads out the rotation angle of the fixed gear 16 stored in the NVRAM 62, and reads out the fixed gear 15 and idle gears 18, 21, 24, 28, . The rotation angles θg of all the first teeth 33 can be calculated for each 31 . The CPU 61 causes the RAM to store the rotation angles θg of all the first teeth 33 . The rotation angle θg of the first tooth 33 increases from 0° to 45° and then returns to 0°.
 CPU61は、第3センサ57が入力する信号を順次処理し、初期位置(0°)から増加していく遊転ギヤ18の第1歯33の回転角θhを算出しRAMに記憶させる。第1歯33の回転角θhは0°から45°まで増加した後、再び0°に戻る。 The CPU 61 sequentially processes the signals input by the third sensor 57, calculates the rotation angle θh of the first tooth 33 of the idle gear 18 that increases from the initial position (0°), and stores it in the RAM. The rotation angle θh of the first tooth 33 increases from 0° to 45° and then returns to 0°.
 図3及び図4を参照して、変速段の切換を行うかみ合い処理、及び、修正処理について説明する。図3はかみ合い処理のフローチャートであり、図4は修正処理のフローチャートである。かみ合い処理は、変速機10の変速段を切り換えるときに行われる。修正処理は、変速機10が搭載された自動車の作動中は常時行われている。 With reference to FIGS. 3 and 4, the meshing process for switching gears and the correction process will be described. FIG. 3 is a flow chart of the meshing process, and FIG. 4 is a flow chart of the correction process. The meshing process is performed when changing gear stages of the transmission 10 . The correction process is always performed during operation of the vehicle in which the transmission 10 is installed.
 図3に示すように制御装置60は、変速段の切換を行うときに、RAMに記憶されている第2歯38の回転角θdをCPU61(第1演算部)が取得し(S1)、かみ合いを開始する第1歯33の回転角θgをCPU61(第2演算部)が取得する(S2)。CPU61は、第2歯38の回転角θdと第1歯33の回転角θgとの差Δθ1を算出し(S3)、閾値よりもΔθ1が大きいときに移動部材37が軸方向の移動を開始し、第1歯33と第2歯38とがかみ合うようにアクチュエータ48を駆動する(S4:Yes)。閾値は、第2歯38が第1歯33と衝突を起こさずにかみ合いできる駆動タイミングを示すものであり、予めシミュレーション又は試験などを行って決定する。 As shown in FIG. 3, the control device 60 acquires the rotation angle θd of the second tooth 38 stored in the RAM (S1), and the CPU 61 (first calculation unit) acquires the rotation angle θd of the second tooth 38 when switching the gear stage. (S2). The CPU 61 calculates the difference Δθ1 between the rotation angle θd of the second tooth 38 and the rotation angle θg of the first tooth 33 (S3), and the moving member 37 starts moving in the axial direction when Δθ1 is larger than the threshold value. , the actuator 48 is driven so that the first tooth 33 and the second tooth 38 are meshed (S4: Yes). The threshold value indicates the drive timing at which the second tooth 38 can mesh with the first tooth 33 without colliding with it, and is determined by performing simulations or tests in advance.
 図4に示すように制御装置60は、自動車が作動しているときに、RAMに記憶されている第1歯33(遊転ギヤ18)の回転角θhをCPU61(第3演算部)が取得し(S5)、NVRAM62に記憶されたデータ(回転の積算値)に基づいて算出した第1歯33(遊転ギヤ18)の回転角θgをCPU61(第2演算部)が取得する(S6)。回転角θgと回転角θhとの差Δθ2をCPU61(比較部)が算出し(S7)、閾値1よりもΔθ2が大きいときは(S7:Yes)、CPU61は、出力ギヤ14が配置された第1軸12の回転速度が閾値2よりも小さいときに(S8:Yes)、Δθ2に対応する回転角だけ、NVRAM62に記憶された回転角のデータを書き換える(S9)。 As shown in FIG. 4, in the control device 60, the CPU 61 (third computing unit) acquires the rotation angle θh of the first tooth 33 (idling gear 18) stored in the RAM while the automobile is operating. (S5), the CPU 61 (second calculation unit) acquires the rotation angle θg of the first tooth 33 (idling gear 18) calculated based on the data (integrated value of rotation) stored in the NVRAM 62 (S6). . The CPU 61 (comparison unit) calculates the difference Δθ2 between the rotation angle θg and the rotation angle θh (S7). When the rotation speed of the first axis 12 is smaller than the threshold value 2 (S8: Yes), the rotation angle data stored in the NVRAM 62 is rewritten by the rotation angle corresponding to Δθ2 (S9).
 閾値1は、NVRAM62に記憶された回転角に基づく計算値θgと、検証用の第3センサ57による回転角θhと、の差が無視できなくなったことを示すものであり、予めシミュレーション又は試験などを行って決定する。回転角θgと回転角θhとの差Δθ2をCPU61(比較部)が求めるので、制御装置60やセンサ等の機能を検証できる。 The threshold value 1 indicates that the difference between the calculated value θg based on the rotation angle stored in the NVRAM 62 and the rotation angle θh obtained by the third sensor 57 for verification cannot be ignored. to determine. Since the CPU 61 (comparator) obtains the difference Δθ2 between the rotation angle θg and the rotation angle θh, the functions of the control device 60, sensors, etc. can be verified.
 閾値2は、自動車が低速走行していることを示すものであり、予めシミュレーション又は試験などを行ってセンサの判定誤差を加味して決定する。CPU61は、NVRAM62の書き換えが連続して一定数以上(例えば2回目以上)である場合に(S10:No)、警報装置59を作動し(S11)、異常が生じていることを操縦者に報知する。第1歯33の実測値θhと演算値θgにずれが生じるのは、センサやCPU61等に異常が生じている可能性がある。NVRAM62の書き換えが連続して行われている(連続してずれが生じている)場合は誤判定ではなく、変速機10の修理が必要である可能性が高い。これを操縦者に知らせることができるので、変速機10の破損を未然に防ぐことができる。 Threshold 2 indicates that the vehicle is traveling at a low speed, and is determined by conducting simulations or tests in advance and taking into account the sensor's judgment error. When the NVRAM 62 is continuously rewritten a certain number of times or more (for example, the second time or more) (S10: No), the CPU 61 activates the alarm device 59 (S11) to inform the operator that an abnormality has occurred. do. The deviation between the measured value .theta.h of the first tooth 33 and the calculated value .theta.g may be caused by an abnormality in the sensor, the CPU 61, or the like. If the NVRAM 62 is continuously rewritten (continuously deviated), it is not an erroneous determination, and there is a high possibility that the transmission 10 needs to be repaired. Since this can be notified to the operator, damage to the transmission 10 can be prevented.
 予備のバッテリーを備えることで、主電源が消失した状態であっても予備のバッテリーが接続されたNVRAM62は、互いにギヤをかみ合わせた状態で第1軸12及び第2軸13にギヤを配置したときからの第2センサ56の検出を積算した値を記憶している。よって変速機10が搭載された自動車の前輪または後輪を吊り上げた状態でレッカー車が自動車を牽引する等、出力ギヤ14を介して第1軸12が強制的に回されたときもNVRAM62のデータが書き換えられる。CPU61(第2演算部)は、NVRAM62が記憶する値に基づいて第1歯33の回転角θgを取得する。よって第1歯33の回転角θgの算出精度を向上できる。 By providing a spare battery, the NVRAM 62 to which the spare battery is connected, even in a state where the main power supply is lost, can be used when the gears are arranged on the first shaft 12 and the second shaft 13 with the gears meshing with each other. A value obtained by integrating the detection of the second sensor 56 from . Therefore, even when the first shaft 12 is forcibly rotated via the output gear 14, such as when the vehicle is towed by a wrecker with the front or rear wheels of the vehicle equipped with the transmission 10 lifted, the data in the NVRAM 62 will be retained. can be rewritten. The CPU 61 (second calculation unit) acquires the rotation angle θg of the first tooth 33 based on the value stored in the NVRAM 62 . Therefore, the calculation accuracy of the rotation angle θg of the first tooth 33 can be improved.
 制御装置60は、NVRAM62に記憶された回転角に基づいて計算した回転角θgと第3センサ57による回転角θhとの差が無視できなくなったときに、回転角θgと回転角θhとの差Δθ2に対応する回転角の分だけNVRAM62に記憶されたデータを書き換えるので、第1歯33の回転角θgの算出精度をさらに向上できる。 When the difference between the rotation angle θg calculated based on the rotation angle stored in the NVRAM 62 and the rotation angle θh obtained by the third sensor 57 cannot be ignored, the controller 60 calculates the difference between the rotation angle θg and the rotation angle θh. Since the data stored in the NVRAM 62 is rewritten by the rotation angle corresponding to Δθ2, the calculation accuracy of the rotation angle θg of the first tooth 33 can be further improved.
 制御装置60は、自動車が低速走行している(第1歯33の回転速度が小さい)ときにNVRAM62のデータを修正するので、NVRAM62のデータを書き換える時間に生じる第1歯33の回転方向の位置ずれを小さくできる。よってNVRAM62のデータを修正するときに生じる誤差を低減できる。 Since the controller 60 modifies the data in the NVRAM 62 when the automobile is running at a low speed (the rotation speed of the first tooth 33 is small), the position of the first tooth 33 in the rotational direction generated at the time when the data in the NVRAM 62 is rewritten. It is possible to reduce the deviation. Therefore, it is possible to reduce errors that occur when modifying data in the NVRAM 62 .
 制御装置60は、NVRAM62のデータを修正しても、回転角θgと回転角θhとの差Δθ2が生じるときは警報装置59を作動するので、操縦者は変速機10に異常があることを認識できる。 Even if the data in the NVRAM 62 is corrected, the controller 60 activates the alarm device 59 when there is a difference Δθ2 between the rotation angle θg and the rotation angle θh. can.
 以上、実施の形態に基づき本発明を説明したが、本発明はこの実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、変速機10の変速段の数、変速ギヤの配置、第1軸12に配置される遊転ギヤの数、第1歯33及び第2歯38の数、大きさ及び形状などは適宜設定できる。 Although the present invention has been described above based on the embodiments, the present invention is by no means limited to these embodiments, and various improvements and modifications can easily be made without departing from the scope of the present invention. can be inferred. For example, the number of gear stages of the transmission 10, the arrangement of transmission gears, the number of idle gears arranged on the first shaft 12, the number, size and shape of the first teeth 33 and the second teeth 38, etc. are appropriately set. can.
 実施形態では、変速機10を自動車に搭載する場合について説明したが、これに限られるものではなく、建設機械、産業車両、農業機械等に変速機10を搭載することは当然可能である。 In the embodiment, the case where the transmission 10 is mounted on an automobile has been described, but it is not limited to this, and it is of course possible to mount the transmission 10 on construction machinery, industrial vehicles, agricultural machinery, and the like.
 実施形態では、ギヤからなるマーク58を第1軸12に設け、第1センサ55がマーク58を検出する場合について説明したが、必ずしもこれに限られるものではない。マークはギヤに限らない。マークは第1軸12と一体に回転するものであれば良い。マークは、第1軸12や移動部材37、ハブ34に設けられた突起や凹み、第1軸12や移動部材37、ハブ34の周の一部に配置された磁石などが挙げられる。移動部材37に設けられた第2歯38をマークとして、第1センサ55が検出することは当然可能である。 In the embodiment, the case where the mark 58 made up of gears is provided on the first shaft 12 and the first sensor 55 detects the mark 58 has been described, but the present invention is not necessarily limited to this. Marks are not limited to gears. Any mark may be used as long as it rotates integrally with the first shaft 12 . Examples of the mark include protrusions and recesses provided on the first shaft 12, the moving member 37, and the hub 34, and magnets arranged on a part of the circumference of the first shaft 12, the moving member 37, and the hub 34, and the like. It is of course possible for the first sensor 55 to detect the second tooth 38 provided on the moving member 37 as a mark.
 実施形態では、駆動軸11に設けられた固定ギヤ15にかみ合う固定ギヤ16を第2軸13に配置し、第2センサ56が、固定ギヤ16の回転を検出して第2軸13の回転を検出する場合について説明した。第2センサ56の検出対象は、これに限られるものではない。第2軸13と一体に回転するマークを第2軸13に設け、そのマークを第2センサ56の他の検出対象にすることは当然可能である。第2センサ56の他の検出対象は、固定ギヤ16にかみ合う固定ギヤ15、第1軸12に配置された遊転ギヤ18,21,24,28,31のいずれか、第2軸13に配置された固定ギヤ19,22,25,29,32のいずれかが挙げられる。これらは固定ギヤ15の回転に伴い規則正しく回転するからである。 In the embodiment, the fixed gear 16 meshing with the fixed gear 15 provided on the drive shaft 11 is arranged on the second shaft 13, and the second sensor 56 detects the rotation of the fixed gear 16 to detect the rotation of the second shaft 13. The case of detection has been described. The detection target of the second sensor 56 is not limited to this. It is of course possible to provide a mark that rotates integrally with the second shaft 13 on the second shaft 13 and use the mark as another detection target of the second sensor 56 . Other objects to be detected by the second sensor 56 are the fixed gear 15 meshing with the fixed gear 16 , the idle gears 18 , 21 , 24 , 28 and 31 arranged on the first shaft 12 , and arranged on the second shaft 13 . fixed gears 19, 22, 25, 29, 32. This is because they regularly rotate as the fixed gear 15 rotates.
 実施形態では、制御装置60及び第2センサ56に予備のバッテリーを接続する場合について説明したが、必ずしもこれに限られるものではない。回転の検出と発電とを行う第2センサ56を採用すると予備のバッテリーを省略できる。このような第2センサ56は例えば中心と外側で異なる透磁率をもつ導線(ウィーガントワイヤ)の周りにコイルを配置した磁気素子が挙げられる。この磁気素子は回転を検出しつつ電気的パルスを発生(発電)する。これにより制御装置60及び第2センサ56に接続する予備のバッテリーを省略できる。 In the embodiment, the case of connecting a spare battery to the control device 60 and the second sensor 56 has been described, but it is not necessarily limited to this. If the second sensor 56 that detects rotation and generates power is employed, a spare battery can be omitted. Such a second sensor 56 is, for example, a magnetic element in which a coil is arranged around a conducting wire (Wiegand wire) having different magnetic permeability at the center and outside. This magnetic element generates an electric pulse (electricity) while detecting rotation. Thereby, a spare battery connected to the control device 60 and the second sensor 56 can be omitted.
 実施形態では、第1軸12に配置された遊転ギヤ18の回転を検出する第3センサ57を配置する場合について説明した。第3センサ57の検出対象は、これに限られるものではない。第3センサ57の他の検出対象は、第2センサ56が回転を検出するギヤの変速段と異なる変速段のギヤ又は第2軸13である。第3センサ57の検出対象は、例えば遊転ギヤ21,24,28,31のいずれか、固定ギヤ19,22,25,29,32のいずれかが挙げられる。 In the embodiment, the case where the third sensor 57 that detects the rotation of the idle gear 18 arranged on the first shaft 12 is arranged has been described. The detection target of the third sensor 57 is not limited to this. Another detection target of the third sensor 57 is a gear in a different gear stage than the gear whose rotation is detected by the second sensor 56 or the second shaft 13 . A detection target of the third sensor 57 is, for example, any of the idle gears 21, 24, 28 and 31 and any of the fixed gears 19, 22, 25, 29 and 32.
 実施形態では、第3センサ57が遊転ギヤ18の回転を検出し、CPU61(比較部)が、NVRAM62に記憶されたデータに基づいて算出した第1歯33(遊転ギヤ18)の回転角θgと回転角θhとの差Δθ2を算出する場合について説明したが、これに限られるものではない。第3センサ57が固定ギヤ19,22,25,29,32のいずれかの回転を検出する場合には、CPU61(比較部)は、NVRAM62に記憶されたデータに基づいて算出した固定ギヤ19,22,25,29,32のいずれかの回転角と第3センサ57が検出した固定ギヤ19,22,25,29,32のいずれかの回転角とを比較する。 In the embodiment, the third sensor 57 detects the rotation of the idle gear 18, and the CPU 61 (comparator) calculates the rotation angle of the first tooth 33 (idler gear 18) based on the data stored in the NVRAM 62. Although the case of calculating the difference Δθ2 between θg and the rotation angle θh has been described, the present invention is not limited to this. When the third sensor 57 detects rotation of any one of the fixed gears 19, 22, 25, 29 and 32, the CPU 61 (comparator) calculates the fixed gear 19, 25, 32 based on the data stored in the NVRAM 62. The rotation angle of any of 22, 25, 29, 32 and the rotation angle of any of fixed gears 19, 22, 25, 29, 32 detected by the third sensor 57 are compared.
 実施形態では、駆動軸11に配置された固定ギヤ15にかみ合う固定ギヤ16が第2軸13に配置され、第2軸13に配置された固定ギヤ19,22,25,29,32と第1軸12に配置された遊転ギヤ18,21,24,28,31とがそれぞれかみ合い、第1軸12に出力ギヤ14が配置される場合について説明したが、必ずしもこれに限られるものではない。例えば第2軸13に遊転ギヤ18,21,24,28,31を配置し、第1軸12に固定ギヤ19,22,25,29,32を配置することは当然可能である。また、固定ギヤ15,16を省略して駆動軸11を第1軸12に接続し、出力ギヤ14を第2軸13に配置することは当然可能である。 In the embodiment, a fixed gear 16 meshing with a fixed gear 15 arranged on the drive shaft 11 is arranged on the second shaft 13, and the fixed gears 19, 22, 25, 29, 32 arranged on the second shaft 13 and the first Although the idle gears 18 , 21 , 24 , 28 , 31 arranged on the shaft 12 are meshed with each other and the output gear 14 is arranged on the first shaft 12 , this is not necessarily the case. For example, it is naturally possible to arrange idle gears 18 , 21 , 24 , 28 , 31 on the second shaft 13 and arrange fixed gears 19 , 22 , 25 , 29 , 32 on the first shaft 12 . It is of course possible to omit the fixed gears 15 and 16, connect the drive shaft 11 to the first shaft 12, and dispose the output gear 14 on the second shaft 13. FIG.
 実施形態では、修正処理(図4参照)において、NVRAM62のデータを修正する場合について説明したが、必ずしもこれに限られるものではない。S8-S10の処理を省略し、回転角θgと回転角θhとの差Δθ2が閾値1よりも大きいときに(S7:Yes)、S11の処理を実行して、警報装置59を作動させることは当然可能である。 In the embodiment, the case of correcting the data in the NVRAM 62 in the correction process (see FIG. 4) has been described, but it is not necessarily limited to this. If the difference Δθ2 between the rotation angle θg and the rotation angle θh is greater than the threshold 1 (S7: Yes), the processing of S8-S10 can be omitted and the alarm device 59 can be activated by executing the processing of S11. Of course it is possible.
 10 変速機
 12 第1軸
 13 第2軸
 18,21,24,28,31 遊転ギヤ
 19,22,25,29,32 固定ギヤ
 33 第1歯
 37 移動部材
 38 第2歯
 55 第1センサ
 56 第2センサ
 57 第3センサ
 58 マーク
 60 制御装置
 62 NVRAM(メモリ)
10 transmission 12 first shaft 13 second shaft 18, 21, 24, 28, 31 idle gears 19, 22, 25, 29, 32 fixed gear 33 first tooth 37 moving member 38 second tooth 55 first sensor 56 Second sensor 57 Third sensor 58 Mark 60 Control device 62 NVRAM (memory)

Claims (4)

  1.  互いに平行に配置された第1軸および第2軸と、
     前記第1軸に相対回転可能かつ軸方向に移動不能に配置され第1歯が設けられた複数の遊転ギヤと、
     前記第1軸に相対回転不能かつ軸方向に移動可能に配置され前記第1歯にかみ合う第2歯が設けられた複数の移動部材と、
     前記第2軸に相対回転不能に配置され前記遊転ギヤにかみ合う固定ギヤと、
     前記第1歯および前記第2歯の回転を直接または間接に検出するセンサと、
     前記センサの検出に基づいて前記第1歯および前記第2歯の回転方向の位置を取得し、前記移動部材の軸方向の移動を開始する制御装置と、を備え、
     前記第1軸は、前記第1軸と一体に回転するマークを含み、
     前記第2歯の回転方向の位置は、前記マークの回転方向の位置に対して一定の関係にある変速機。
    a first axis and a second axis arranged parallel to each other;
    a plurality of idler gears arranged to be relatively rotatable and immovable in the axial direction on the first shaft and provided with first teeth;
    a plurality of moving members provided with second teeth that are arranged so as to be non-rotatable relative to the first shaft and movable in the axial direction and that mesh with the first teeth;
    a fixed gear that is arranged on the second shaft so as not to be relatively rotatable and meshes with the idle gear;
    a sensor that directly or indirectly detects the rotation of the first tooth and the second tooth;
    a control device that acquires the positions of the first tooth and the second tooth in the rotational direction based on the detection of the sensor and starts moving the moving member in the axial direction;
    the first axis includes a mark that rotates integrally with the first axis;
    A transmission wherein the rotational position of said second tooth is in a fixed relationship to the rotational position of said mark.
  2.  前記遊転ギヤと前記固定ギヤとがかみ合った状態で前記遊転ギヤが前記第1軸に配置され前記固定ギヤが前記第2軸に配置されたときの前記第1歯の回転方向の位置は、前記第2軸の回転方向の位置に対して一定の関係にある請求項1記載の変速機。 The position of the first tooth in the rotation direction when the idle gear is arranged on the first shaft and the fixed gear is arranged on the second shaft in a state where the idle gear and the fixed gear are in mesh with each other 2. A transmission according to claim 1, wherein said second shaft has a constant relationship with respect to the rotational position of said second shaft.
  3.  前記センサは、前記第2軸、前記遊転ギヤ又は前記固定ギヤの回転を検出する第2センサを含み、
     前記制御装置は、前記遊転ギヤと前記固定ギヤとがかみ合った状態で前記遊転ギヤが前記第1軸に配置され前記固定ギヤが前記第2軸に配置されたときからの前記第2センサの検出を積算した値を記憶するメモリと、
     前記メモリが記憶する前記値に基づいて前記第1歯の回転方向の位置を取得する第2演算部と、を備える請求項2記載の変速機。
    the sensor includes a second sensor that detects rotation of the second shaft, the idle gear, or the fixed gear;
    The control device controls the second sensor from when the idle gear is arranged on the first shaft and the fixed gear is arranged on the second shaft in a state where the idle gear and the fixed gear are in mesh with each other. a memory for storing the integrated value of the detection of
    3. The transmission according to claim 2, further comprising a second calculation section that acquires the rotational position of the first tooth based on the value stored in the memory.
  4.  前記センサは、前記第2センサが回転を検出するギヤの変速段と異なる変速段のギヤ又は前記第2軸の回転を検出する第3センサを含み、
     前記制御装置は、前記第3センサの検出に基づいて前記ギヤ又は前記第2軸の回転方向の位置を取得する第3演算部と、
     前記第3演算部が取得した前記ギヤ又は前記第2軸の回転方向の位置と前記メモリが記憶する前記値に基づいて取得した前記ギヤ又は前記第2軸の回転方向の位置とを比較する比較部と、を備える請求項3記載の変速機。
    The sensor includes a third sensor that detects the rotation of the second shaft or a gear in a gear different from the gear whose rotation is detected by the second sensor,
    The control device includes a third computing unit that acquires a rotational direction position of the gear or the second shaft based on detection by the third sensor;
    A comparison for comparing the position in the rotational direction of the gear or the second shaft acquired by the third computing unit and the position in the rotational direction of the gear or the second shaft acquired based on the value stored in the memory 4. The transmission of claim 3, comprising:
PCT/JP2021/007983 2021-03-02 2021-03-02 Transmission WO2022185416A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/007983 WO2022185416A1 (en) 2021-03-02 2021-03-02 Transmission
JP2023503574A JP7477708B2 (en) 2021-03-02 2021-03-02 transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007983 WO2022185416A1 (en) 2021-03-02 2021-03-02 Transmission

Publications (1)

Publication Number Publication Date
WO2022185416A1 true WO2022185416A1 (en) 2022-09-09

Family

ID=83154016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007983 WO2022185416A1 (en) 2021-03-02 2021-03-02 Transmission

Country Status (2)

Country Link
JP (1) JP7477708B2 (en)
WO (1) WO2022185416A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149023A (en) * 2013-01-31 2014-08-21 Aisin Ai Co Ltd Driving device for hybrid vehicle
JP2014173681A (en) * 2013-03-11 2014-09-22 Aisin Ai Co Ltd Shift operation device of automatic transmission
JP2020085066A (en) * 2018-11-20 2020-06-04 ジヤトコ株式会社 Rotation transmission mechanism

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6574992B2 (en) 2015-08-31 2019-09-18 ジヤトコ株式会社 Automatic transmission
JP6666825B2 (en) 2016-10-27 2020-03-18 トヨタ自動車株式会社 Transmission for vehicles
JP6991676B2 (en) 2018-03-06 2022-01-12 ジヤトコ株式会社 Control device for automatic transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149023A (en) * 2013-01-31 2014-08-21 Aisin Ai Co Ltd Driving device for hybrid vehicle
JP2014173681A (en) * 2013-03-11 2014-09-22 Aisin Ai Co Ltd Shift operation device of automatic transmission
JP2020085066A (en) * 2018-11-20 2020-06-04 ジヤトコ株式会社 Rotation transmission mechanism

Also Published As

Publication number Publication date
JPWO2022185416A1 (en) 2022-09-09
JP7477708B2 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP4559982B2 (en) Rotation angle detection device and initial setting method thereof
US7681688B2 (en) Steering apparatus
JP6300858B2 (en) Electric parking lock device
JP2008241411A (en) Device for detecting steering angle
JP6789461B2 (en) Shift range controller
JP2015160504A (en) Steering device for vehicle, failure determination method thereof, and control method for steering motor
US20100076643A1 (en) Failure detecting method for steering angle sensor
US10920877B2 (en) Control apparatus for vehicular transmission
CN109955892A (en) Steering system
US20030020461A1 (en) Angle sensor and car using the same
WO2018230462A1 (en) Shift range control device
US20170350502A1 (en) Shift actuator for tractor
JP2005180653A (en) Abnormality diagnostic device of motor driving system
WO2022185416A1 (en) Transmission
JP5773188B2 (en) Steering device
US11028921B2 (en) Arrangement structure of gear position detecting sensor
US20080103018A1 (en) System for Identifying Position of Locking Differential
US20190093766A1 (en) Gear position detecting device
US11505238B2 (en) Handwheel position measurement system and method
JP2010002297A (en) Steering angle detection apparatus for vehicle
JP6950588B2 (en) Shift range controller
EP2335026B1 (en) Rotation angle detection device, and rotation angle detection method
JPH10274520A (en) Steering angle detecting device
JP2006143102A (en) Steering system for vehicle
JP2008082826A (en) Rotational angle/rotational torque detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928992

Country of ref document: EP

Kind code of ref document: A1