WO2022184076A1 - 一种测量装置、测量机构、测量系统及测量方法 - Google Patents

一种测量装置、测量机构、测量系统及测量方法 Download PDF

Info

Publication number
WO2022184076A1
WO2022184076A1 PCT/CN2022/078726 CN2022078726W WO2022184076A1 WO 2022184076 A1 WO2022184076 A1 WO 2022184076A1 CN 2022078726 W CN2022078726 W CN 2022078726W WO 2022184076 A1 WO2022184076 A1 WO 2022184076A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
measuring
measurement
stretched
line
Prior art date
Application number
PCT/CN2022/078726
Other languages
English (en)
French (fr)
Inventor
彭智祥
何建国
彭鹏
王洲科
冯梦林
郭文彬
Original Assignee
成都阿朗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都阿朗科技有限责任公司 filed Critical 成都阿朗科技有限责任公司
Priority to EP22762540.7A priority Critical patent/EP4303535A1/en
Publication of WO2022184076A1 publication Critical patent/WO2022184076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/10Plumb lines

Definitions

  • the invention relates to the technical field of engineering measurement, in particular to a measurement device, a measurement mechanism, a measurement system and a measurement method.
  • the purpose of the present invention is to provide a measuring device, a measuring mechanism, a measuring system and a measuring method for the problems existing in the prior art.
  • a measuring device comprising a swing arm and an automatic detection device
  • the swing arm can allow a stretched line to pass through or be adsorbed on the stretched line
  • the automatic detection device includes a swing angle measuring device, the swing angle measuring device and the pendulum The arms are connected, and the swing angle measuring device is used to automatically measure the swing angle of the swing arm.
  • the straight line is a straight and straight line segment, that is, a non-relaxed and non-curved line segment, using the straightness or verticality of the straight line as a measurement reference, and then by setting a swing arm, the stretched line is stretched.
  • the straight line passes through the swing arm or the swing arm is adsorbed on the stretch line, so that the specific position of the contact point between the swing arm and the stretch line can be determined, and the swing angle of the swing arm is automatically measured by the automatic detection device, which can achieve accurate measurement.
  • the invention uses the straightness or verticality of the stretched line as a measurement reference, so that multiple measuring devices can be arranged, and the positions of multiple contact points are ensured to be accurate, and then the multiple measuring points are automatically measured, and the straight line of the object to be measured can be obtained. Degree, perpendicularity, tilt angle, flatness, torsion and other parameters.
  • the invention uses the straightness or verticality of the stretched line as a measurement reference, ensures the accuracy of the measurement data, and has a simple scheme and is easy to implement; the automatic detection device is used for automatic measurement, which reduces the requirements for the measurement personnel and avoids the manual measurement of the measurement personnel. Measurement errors are reduced, and safety hazards are reduced.
  • the swing arm is provided with a through hole or a through slot, the through hole or the through slot is adapted to the stretched line, and the through hole or the through slot can allow the Pass straight through.
  • the size of the through hole or the through slot is basically the same as the shape of the straight line, so that the position of the contact point between the swing arm and the straight line remains basically unchanged during the measurement process, thereby improving the measurement accuracy.
  • the swing arm is provided with a magnetic body, and the magnetic body can be adsorbed on the stretched line.
  • the magnetic body is adsorbed on the stretched line, so that the position of the contact point between the swing arm and the stretched line remains unchanged during the measurement process, thereby improving the measurement accuracy.
  • the swing arm is provided with a through hole or a through slot
  • a magnetic body is installed at the through hole or the through slot, and the through hole or the through slot can allow the stretcher
  • the straight line passes through, and the magnetic body can be adsorbed on the stretched straight line.
  • the size of the through hole or the through slot is basically the same as the shape of the stretched line, and then the magnetic body is adsorbed on the stretched line, so that the position of the contact point between the swing arm and the stretched line remains unchanged during the measurement process, which further improves the measurement accuracy.
  • the magnetic body includes magnets, magnets, and the like.
  • the swing angle measuring device can convert the swing angle of the swing arm into an electrical signal, so as to facilitate the transmission of measurement information to the outside, and the swing angle measuring device includes an encoder or a potentiometer or an angle sensors, etc.
  • the present invention also includes an ejector rod, the ejector rod is used for pressing the measurement point, and the ejector rod is fixedly connected with the swing angle measuring device.
  • the front end of the ejector rod can be pressed against the measurement point by external force to ensure the accuracy of the measurement information.
  • an elastic member is further included, and the top rod is fixedly connected to the swing angle measuring device through the elastic member.
  • the automatic detection device further includes a distance measuring device, the distance measuring device is fixedly connected with the swing angle measuring device, and the distance measuring device is used to automatically measure the swing angle measuring device to the measurement
  • the straight-line distance of a point the distance measuring device includes a laser ranging sensor or an ultrasonic ranging sensor.
  • the distance measuring device adopts a non-contact measurement method, which is more convenient for installation and implementation.
  • the measuring device can slide along the stretched line.
  • the automatic detection device automatically measures different measurement points, so that parameters such as straightness, perpendicularity, inclination angle, flatness, and twist of the object to be measured can be obtained.
  • the measuring device is fixedly connected with a protruding member, and the end of the protruding member is provided with a roller to facilitate sliding along the measuring surface.
  • the invention also discloses a measuring mechanism, comprising a straight line and any one of the above-mentioned measuring devices, wherein the straight line passes through the swing arm or the swing arm is adsorbed on the straight line.
  • the stretched line is a vertical line or an obliquely pulled line, as long as the stretched line is in a stretched state, rather than a relaxed or bent state.
  • the invention also discloses a measurement system, comprising a stretch line and a plurality of any one of the measuring devices, all the measuring devices are arranged at intervals along the stretch line, and the stretch line passes through all the swing arms, Or all the swing arms are adsorbed on the stretched line.
  • the invention also discloses a measuring method, comprising the following steps:
  • Step 1 Set a stretched line on the side of the measurement surface, and install a plurality of any of the measurement devices on or near the measurement surface. All the measurement devices are arranged at intervals along the stretched line, so The stretch line passes through all the swing arms, or all the swing arms are adsorbed on the stretch line;
  • Step 2 automatically measure by the automatic detection device
  • Step 3 Obtain the straightness of the measurement surface by reading the measurement information of different measurement points at the same time.
  • the obtaining of the straightness of the measurement surface as described herein includes two cases of judging whether the measurement surface is straight, and specifically calculating and obtaining the value of the straightness of the measurement surface. As long as any situation can be satisfied, it belongs to the protection scope of the present invention.
  • the number of the stretched lines is at least two, all the stretched lines are arranged in parallel, and a plurality of any one of the stretched lines are fixedly installed on each of the stretched lines.
  • the measuring device in the third step, obtains the straightness and flatness of the measuring surface by reading the measuring information of different measuring points at the same time.
  • the acquisition of the flatness of the measurement surface as described herein includes two cases of judging whether the measurement surface is straight, and specifically calculating the value of the flatness of the measurement surface. As long as any situation can be satisfied, it belongs to the protection scope of the present invention.
  • the measurement information of the automatic detection device is sent to the control device, and in the third step, the control device processes the measurement information, and calculates to obtain the measurement
  • the straightness or flatness of the face is displayed in real time.
  • the control device in the third step, when the measured information and/or the calculated straightness and/or flatness exceeds the threshold, the control device will issue an alarm.
  • the invention also discloses a measuring method, comprising the following steps:
  • Step 1 Set up a stretch line on the side of the measurement surface, the stretch line is a vertical line, install any of the measuring devices on the stretch line, and the stretch line passes through the swing arm, or the pendulum The arm is adsorbed on the stretched line;
  • Step 2 Under the action of external force, the measuring device slides down along the stretched line, and during the sliding process, the automatic detection device automatically measures different measuring points;
  • Step 3 Obtain the straightness of the measurement surface by reading the measurement information in real time.
  • the obtaining of the straightness of the measurement surface as described herein includes two cases of judging whether the measurement surface is straight, and specifically calculating and obtaining the value of the straightness of the measurement surface. As long as any situation can be satisfied, it belongs to the protection scope of the present invention.
  • the measuring device By sliding the measuring device down along the stretched line, the measurement information of different heights can be easily measured, thereby calculating the straightness of the measuring surface, the scheme is simple and easy to implement, and the measurement accuracy is high.
  • the measurement information of the automatic detection device is sent to the control device, and in the third step, the control device processes the measurement information, and calculates to obtain the measurement The straightness of the surface is displayed in real time.
  • the control device in the third step, when the measured information and/or the calculated straightness exceeds the threshold, the control device will issue an alarm.
  • the present invention also provides a truss structure with the measuring device based on the aforementioned measuring device, including a vertical truss structure, and a base that can move up and down along the vertical truss structure, the automatic detection device or the The swing arm is mounted on the base.
  • the automatic detection device is fixedly installed on the base, the automatic detection device further includes a distance measuring device, and the distance measuring device is fixedly connected with the swing angle measuring device.
  • the distance measuring device is used to automatically measure the straight-line distance from the swing angle measuring device to the measurement point, and the distance measuring device includes a laser distance measuring sensor or an ultrasonic distance measuring sensor.
  • the present invention uses the straightness or verticality of the stretched straight line as a reference for measurement, and then by setting the swing arm, The straight line is passed through the swing arm or the swing arm is adsorbed on the straight line, so that the specific position of the contact point between the swing arm and the straight line can be determined, and the swing angle of the swing arm can be automatically measured by the automatic detection device, which can achieve accurate measurement.
  • the present invention uses the straightness or verticality of the stretched line as a measurement reference, so that multiple measuring devices can be arranged, and the positions of multiple contact points are ensured to be accurate, and then the multiple measuring points are automatically measured, and the object to be measured can be obtained. parameters such as straightness, verticality, inclination angle, flatness, and torsion.
  • the present invention uses the straightness or verticality of the stretched line as a measurement reference, which ensures the accuracy of the measurement data, and the scheme is simple and easy to implement; the automatic detection device is used for automatic measurement, which reduces the requirements for measurement personnel and avoids measurement. The error caused by manual measurement by personnel is reduced, and the potential safety hazard is reduced.
  • FIG. 1 is a schematic structural diagram of the measuring mechanism according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of the measurement system according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of the measuring mechanism according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of the measurement system according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of the measuring mechanism according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of the measurement system according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of the swing arm according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural diagram of the swing arm according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural diagram according to Embodiment 6 of the present invention.
  • FIG. 10 is a schematic structural diagram of the measuring mechanism according to Embodiment 7 of the present invention.
  • FIG. 11 is a schematic structural diagram of the measurement system according to Embodiment 7 of the present invention.
  • FIG. 12 is a schematic structural diagram of the measuring device according to Embodiment 8 of the present invention.
  • FIG. 13 is a schematic structural diagram of the measuring mechanism according to Embodiment 8 of the present invention.
  • FIG. 14 is a schematic diagram of a truss structure according to an embodiment of the present invention.
  • FIG. 15 is a partially enlarged schematic view of the measuring device of the embodiment shown in FIG. 14 after removing the truss structure.
  • Icon 1- Straight line, 2- Plumb weight, 3- Swing arm, 4- Swing angle measuring device, 5- Ejector rod, 6- Fixing frame, 7- Measuring surface, 8- Distance measuring device, 9- Through hole, 10-Fixed arm, 11-Linear displacement sensor, 12-Protruding member, 13-Roller, 14-Cross bar, 15-Through slot, 16-Magnetic body, 17-Vertical truss structure, 18-Base.
  • a measuring mechanism includes a straight line 1 and a measuring device.
  • the tension line 1 is a plumb line
  • a plumb bob 2 is suspended at the bottom of the tension line 1
  • the top of the tension line 1 can be fixed at any fixed point. It acts as a reference when measuring.
  • the measuring device includes a swing arm 3 , a swing angle measuring device 4 and a fixing frame 6 , the swing arm 3 is installed on the swing angle measuring device 4 , and the swing angle measuring device 4 is then fixed by The frame 6 is fixed on the object to be measured.
  • the pendulum angle measuring device 4 includes an encoder, a potentiometer, an angle sensor, and the like.
  • the swing arm 3 is provided with a through hole 9, and the through hole 9 is adapted to the straight line 1 (that is, the inner diameter of the through hole 9 is almost the same as the outer diameter of the straight line 1).
  • the straight line 1 passes through the through hole 9 .
  • the contact position of the through hole 9 and the stretched line 1 is the contact point.
  • the vertical line is kept vertical due to the action of gravity, the measuring device is fixed on the object to be measured, and the measuring device is in contact with the vertical line through the through hole 9 on the swing arm 3 .
  • the position of the object to be measured changes (such as tilt, etc.)
  • the swing arm 3 will swing, and then the swing angle of the swing arm 3 can be obtained through the swing angle measuring device 4, and then the new position of the object to be measured can be calculated.
  • the measuring point refers to the contact point between the measuring device and the object to be measured (in the case of contact measurement, as in this embodiment), or the position where the laser or ultrasound of the measuring device is emitted to the object to be measured (non-contact measurement In this case, as in Embodiment 3)
  • the data is collected multiple times, which can reflect the change of the spatial position of the object to be measured over time.
  • the data obtained by the pendulum angle measuring device 4 can be directly transmitted to the control device, and the control device transmits the collected data to the computer through wired (network cable, usb cable, etc.) or wireless (WIFI, mobile communication, etc.) Or mobile phones and other devices with data processing capabilities, so as to facilitate data processing, analysis and alarm processing.
  • a measurement system includes a stretch line 1 and a plurality of the measuring devices, all the measuring devices are arranged at intervals along the stretch line 1, and the stretch line 1 passes through all the hole 9. That is, a plurality of the measuring devices are fixedly installed on the object to be measured, and the through holes 9 of the swing arm 3 of each of the measuring devices are in contact with the straight line 1, so as to ensure that all the through holes 9 are located in the same lead. On the vertical line, it is ensured that all the through holes 9 are arranged vertically.
  • the measurement information of multiple measurement points (in this embodiment, the installation positions of multiple measurement devices) can be obtained at the same time, and then the straightness, verticality of the object to be measured can be obtained. degrees, tilt angles, etc.
  • the straightness, verticality, inclination angle, etc. of the measurement surface 7 can be obtained through specific conversion.
  • each of the stretched straight lines 1 is fixedly installed with a plurality of the described measuring devices, and by reading the measurement information of different measuring points at the same time, it is obtained. Parameters such as straightness, flatness, and torsion of the surface 7 are measured.
  • the difference between this embodiment and Embodiment 1 is that, in this embodiment, the measuring device of a measuring mechanism further includes a jack 5 , and the jack 5 is connected to the swing angle measuring device. 4 fixed connections.
  • the measuring device is fixed on a certain structure close to the object to be measured through the fixing frame 6, and by designing the structure of the fixing frame 6 (for example, using a linear guide rail), it can be ensured that the mandrel 5 of the measuring device keeps moving in a straight line, The mandrel 5 of the measuring device presses the object to be measured, and then the position change of the object to be measured is reflected by the movement of the mandrel 5 .
  • the mandrel 5 should always press against the object to be measured, for example, it can be achieved by applying external force, or an elastic member, such as a spring, can be arranged on the mandrel 5, so that the mandrel 5 can always be Hold the object to be measured tightly.
  • an elastic member such as a spring
  • the ejector rod 5 When the position of the object to be measured changes (such as inclination, etc.), the ejector rod 5 will produce a linear displacement, which will drive the swing arm 3 to swing, and then the swing angle of the swing arm 3 can be obtained through the swing angle measuring device 4, and then the to-be-measured swing angle can be calculated. Measure the new position of the object.
  • a measurement system includes a straight line 1 and a plurality of the measurement devices.
  • a plurality of the measurement devices are arranged at different positions of the measurement surface 7 , so that measurement information of multiple measurement points can be obtained at the same time, and the straightness, verticality, inclination angle, etc. of the measurement surface 7 can be obtained.
  • the measuring device of a measuring mechanism further includes a distance measuring device 8 , the distance measuring device 8 and the pendulum measuring device
  • the angle device 4 is fixedly connected, and the distance measuring device 8 is used to measure the distance from the swing angle measuring device 4 to the measurement point.
  • the distance measuring device 8 includes a laser distance measuring sensor or an ultrasonic distance measuring sensor or the like.
  • the measuring device is fixed on a fixed structure close to the object to be measured through the fixing frame 6, and the measuring device does not need to directly contact the object to be measured.
  • d1 is the distance from the pendulum angle measuring device 4 to the measurement point of the object to be measured, and this part of the distance can be directly measured by the pendulum angle measuring device 4
  • d2 is the distance from the pendulum angle measuring device 4 to the through hole 9, and this part of the distance can be measured.
  • the swing angle device 4 measures the swing angle of the swing arm 3 and converts it.
  • the data obtained by the distance measuring device 8 and the swing angle measuring device 4 can be directly transmitted to a computer or a mobile phone, so as to facilitate the processing and analysis of the data.
  • a measuring system when the verticality of the measuring surface 7 needs to be measured, a measuring system includes a straight line 1 and a plurality of the measuring devices. A plurality of the measurement devices are sequentially arranged at different positions on the measurement surface 7 from top to bottom, and the stretched line 1 passes through all the through holes 9 . By stretching the straight line 1 (providing a measurement reference) to ensure that all the through holes 9 are located on the same vertical line, when the measurement surface 7 is inclined, the distance d obtained at different measurement points is different, and then the measurement can be calculated. Straightness, verticality, inclination angle, etc. of the surface 7.
  • this embodiment is substantially the same as the embodiment 1-3, only the structure of the swing arm 3 is different. Specifically, in this embodiment, a magnetic body is installed at the through hole 9 16. By selecting steel strands etc. for the stretched straight line 1, and then setting the magnetic body 16 (including magnets, magnets, etc.) The location is more accurate, thereby enhancing the accuracy of the measurement information.
  • the difference between this embodiment and Embodiment 4 is that the through hole 9 of the swing arm 3 is replaced with a through slot 15 , and the magnetic body 16 is installed at the through slot 15 .
  • this embodiment is roughly the same as Embodiments 1-3, only the structure of the swing arm 3 is different. Specifically, in this embodiment, the through hole 9 is no longer provided on the swing arm 3, Instead, the magnetic body 16 is directly provided, and the swing arm 3 is adsorbed on the straight line 1 through the magnetic body 16 .
  • the stretched line 1 is not a vertical line, but a stretched or straightened line segment, which may be a vertical line Can also be a slash.
  • the straight line 1 can be realized by arranging a thread tensioner at the end of the straight line 1 to straighten the line segment.
  • both ends of the straight line 1 are fixed on the measuring surface 7 by the cross bars 14 . Because the straight line 1 serves as a reference during measurement, a non-relaxed and non-curved line segment needs to be used to achieve, and there are many ways to straighten or straighten the line segment, which will not be described in detail here.
  • the stretched line 1 is an oblique line
  • a plurality of the measurement devices can also be arranged on the measurement surface 7, so that the measurement information of multiple measurement points can be obtained at the same time.
  • a measuring mechanism includes a straight line 1 and a measuring device.
  • the stretched line 1 is not a vertical line, but a stretched or straight vertical line.
  • the straight line 1 can be realized by arranging a thread tensioner at the end of the straight line 1 to pull the line segment.
  • both ends of the straight line 1 are fixed on the measuring surface 7 by the cross bars 14 . Because the straight line 1 serves as a reference during measurement, a non-relaxed and non-curved line segment needs to be used to achieve, and there are many ways to straighten or straighten the line segment, which will not be described in detail here.
  • the measuring device includes a swing arm 3 and a swing angle measuring device 4, the swing arm 3 is mounted on the swing angle measuring device 4, and the swing arm 3 is provided with a through hole 9, so The through hole 9 is adapted to the stretched straight line 1 , the stretched straight line 1 passes through the through hole 9 , and the measuring device can slide along the stretched straight line 1 .
  • an outer convex member 12 may be fixedly connected to one end of the swing angle measuring device 4 , and a roller 13 is provided at the end of the outer convex member 12 . When in use, the roller 13 can slide directly on the object to be measured.
  • the measuring device when measuring, the measuring device is arranged on the surface of the object to be measured, and the roller 13 is in contact with the surface of the object to be measured. Under the action of gravity, the measuring device slides down along the stretched line 1. During the sliding process, Due to the different distance information from different measurement points to the stretched line 1, the swing arm 3 will swing, and then the position information of different heights on the surface of the object to be measured can be accurately measured, and parameters such as the verticality and inclination angle of the object to be measured can be obtained.
  • Embodiment 9 of the present invention provides a truss structure with the measurement device based on the aforementioned measurement device, including a vertical truss structure 17 and a The base 18 on which the structure 17 moves up and down.
  • the base 18 is fixedly mounted on the synchronous traction belt 19, one section of the synchronous traction belt 19 is matched with the stepping motor 20, and one end is matched with the fixed pulley 21.
  • the base 18 is driven to move up and down by the stepping motor 20 by driving the synchronous traction belt 19 .
  • the base 18 is fixedly mounted with the same measuring device as in Embodiment 3, wherein the fixing frame 6 is fixedly mounted on the base 18 .
  • the verticality of the object to be measured can be measured synchronously during the up and down movement of the base 18 driven by the stepping motor 20, and can also be continuously measured in real time during the movement to form a complete monitoring record.
  • the base 18 can also be driven to move up and down by other mechanical transmission methods in the prior art, such as gear racks, self-propelled sliding rails, and the like.
  • Various measuring devices of the foregoing embodiments can also be installed on the base 18 so as to measure the verticality of the object to be measured when the base 18 moves up and down.
  • the truss structure in this embodiment is particularly suitable for high-rise building construction, water conservancy and hydropower gate and dam construction and other construction fields.

Abstract

一种测量装置、测量机构、测量系统及测量方法,其中测量装置包括摆臂(3)和自动检测装置,所述摆臂(3)能够让绷直线(1)穿过或吸附于绷直线(1),所述自动检测装置包括测摆角装置(4),所述测摆角装置(4)和所述摆臂(3)相连接,所述测摆角装置(4)用于自动测量所述摆臂(3)的摆动角度。该测量装置利用绷直线(1)的直线度或垂直度作为测量参考,保证了测量数据的准确性,且方案简单,便于实施;利用自动检测装置自动测量,降低了对测量人员的要求,避免了测量人员人工测量产生的误差,且减少了安全隐患;可以同时获得多点的测量信息,得到待测物体的直线度、垂直度、倾斜角度、平面度、扭转情况等参数。

Description

一种测量装置、测量机构、测量系统及测量方法 技术领域
本发明涉及工程测量技术领域,特别是一种测量装置、测量机构、测量系统及测量方法。
背景技术
目前大多数有垂直度安装要求的设备、轨道、面板等设施普遍使用吊垂线及准直仪等设备进行人工测量,测量人员读数及环境干扰造成的测量误差不能很好的控制,同时在多次施工的现场需要反复安装测量设备,在不同的高程上测量需要人员上下攀爬,存在较大的安全隐患,且这些测量设备需要专业的测量人员进行操作,对人员的要求比较高。
发明内容
本发明的目的在于:针对现有技术存在的问题,提供一种测量装置、测量机构、测量系统及测量方法。
为了实现上述目的,本发明采用的技术方案为:
一种测量装置,包括摆臂和自动检测装置,所述摆臂能够让绷直线穿过或吸附于绷直线,所述自动检测装置包括测摆角装置,所述测摆角装置和所述摆臂相连接,所述测摆角装置用于自动测量所述摆臂的摆动角度。
本发明通过设置绷直线,所述绷直线为拉直、绷直的线段,即非松弛、非弯曲的线段,利用绷直线的直线度或垂直度作为测量参考,再通过设置摆臂,将绷直线穿过摆臂或将摆臂吸附于绷直线,从而使得摆臂与绷直线接触点的具体位置可以进行确定,进一步通过自动检测装置自动测量摆臂的摆动角度,可以实现精确测量。
本发明利用绷直线的直线度或垂直度作为测量参考,从而可以布置多个测 量装置,并保证多个接触点的位置准确,进而对多个测量点进行自动测量,可以获得待测物体的直线度、垂直度、倾斜角度、平面度、扭转情况等参数。
本发明利用绷直线的直线度或垂直度作为测量参考,保证了测量数据的准确性,且方案简单,便于实施;利用自动检测装置自动测量,降低了对测量人员的要求,避免了测量人员人工测量产生的误差,且减少了安全隐患。
作为本发明的优选方案,所述摆臂设有通孔或通槽,所述通孔或所述通槽与所述绷直线相适配,所述通孔或所述通槽能够让所述绷直线穿过。通孔或通槽的大小基本与绷直线的外形一致,使得在测量过程中摆臂与绷直线接触点的位置基本保持不变,进而提高测量精度。
作为本发明的优选方案,所述摆臂设有磁性体,所述磁性体能够吸附于所述绷直线。通过磁性体吸附在绷直线,使得在测量过程中摆臂与绷直线接触点的位置保持不变,进而提高测量精度。
作为本发明的优选方案,所述摆臂设有通孔或通槽,且在所述通孔或所述通槽处安装有磁性体,所述通孔或所述通槽能够让所述绷直线穿过,且所述磁性体能够吸附于所述绷直线。通孔或通槽的大小基本与绷直线的外形一致,再通过磁性体吸附在绷直线,使得在测量过程中摆臂与绷直线接触点的位置保持不变,进一步提高测量精度。
作为本发明的优选方案,所述磁性体包括磁铁、磁石等。
作为本发明的优选方案,所述测摆角装置能够将所述摆臂的摆动角度转化为电信号,从而便于将测量信息向外传输,所述测摆角装置包括编码器或电位器或角度传感器等。
作为本发明的优选方案,还包括顶杆,所述顶杆用于顶紧测量点,所述顶杆与所述测摆角装置固定连接。使用时,可以通过外力使得顶杆前端顶紧测量点,保证测量信息的准确性。
作为本发明的优选方案,还包括弹性件,所述顶杆通过所述弹性件与所述测摆角装置固定连接。通过设置弹性件,从而便于顶杆前端顶紧测量点。
作为本发明的优选方案,所述自动检测装置还包括测距离装置,所述测距离装置与所述测摆角装置固定连接,所述测距离装置用于自动测量所述测摆角装置到测量点的直线距离,所述测距离装置包括激光测距传感器或超声测距传感器。所述测距离装置采用非接触式测量方式,更加便于安装和实施。
作为本发明的优选方案,所述测量装置能够沿着所述绷直线滑动。在滑动的过程中,所述自动检测装置对不同测量点进行自动测量,从而可以获得待测物体的直线度、垂直度、倾斜角度、平面度、扭转情况等参数
作为本发明的优选方案,所述测量装置固定连接有外凸构件,所述外凸构件的端部设有滚轮,便于沿着测量面滑动。
本发明还公开了一种测量机构,包括绷直线和任一所述的一种测量装置,所述绷直线穿过所述摆臂或所述摆臂吸附于所述绷直线。
作为本发明的优选方案,所述绷直线为铅垂线或斜拉线,只需所述绷直线处于绷直状态,而不是松弛、弯曲状态即可。
本发明还公开了一种测量系统,包括绷直线和若干个任一所述的测量装置,所有所述测量装置沿着所述绷直线间隔布置,所述绷直线穿过所有所述摆臂,或所有所述摆臂均吸附于所述绷直线。
本发明还公开了一种测量方法,包括以下步骤:
步骤一:在测量面的一旁设置绷直线,在所述测量面或所述测量面附近固定安装多个任一所述的测量装置,所有所述测量装置沿着所述绷直线间隔布置,所述绷直线穿过所有所述摆臂,或所有所述摆臂均吸附于所述绷直线;
步骤二:通过所述自动检测装置自动测量;
步骤三:通过读取同一时刻不同测量点的测量信息,来获取所述测量面的直线度。此处所述的获取所述测量面的直线度,包括判断所述测量面是否平直,以及具体计算得到所述测量面的直线度的数值两种情况。只要能满足任何一种情况,均属于本发明的保护范围。
作为本发明的优选方案,所述步骤一中,所述绷直线的数量为至少两条,所有所述绷直线平行设置,且每条所述绷直线上均固定安装多个任一所述的测量装置,所述步骤三中,通过读取同一时刻不同测量点的测量信息,来获取所述测量面的直线度和平面度。此处所述的获取所述测量面的平面度,包括判断所述测量面是否平直,以及具体计算得到所述测量面的平面度的数值两种情况。只要能满足任何一种情况,均属于本发明的保护范围。
作为本发明的优选方案,所述步骤二中,将所述自动检测装置的测量信息发送至控制装置,所述步骤三中,所述控制装置对所述测量信息进行处理,计算得到所述测量面的直线度或平面度,并实时显示。
作为本发明的优选方案,所述步骤三中,当测量信息和/或计算得到的直线度和/或平面度超过阈值时,所述控制装置进行报警。
本发明还公开了一种测量方法,包括以下步骤:
步骤一:在测量面的一旁设置绷直线,所述绷直线为垂线,在所述绷直线上安装任一所述的测量装置,所述绷直线穿过所述摆臂,或所述摆臂吸附于所述绷直线;
步骤二:在外力作用下,所述测量装置沿着所述绷直线向下滑动,在滑动的过程中,所述自动检测装置对不同测量点进行自动测量;
步骤三:通过实时读取测量信息,来获取所述测量面的直线度。此处所述的获取所述测量面的直线度,包括判断所述测量面是否平直,以及具体计算得到所述测量面的直线度的数值两种情况。只要能满足任何一种情况,均属于本 发明的保护范围。
通过所述测量装置沿着所述绷直线向下滑动,即可方便测量得到不同高度的测量信息,从而计算得到测量面的直线度,方案简单便于实施,且测量精度高。
作为本发明的优选方案,所述步骤二中,将所述自动检测装置的测量信息发送至控制装置,所述步骤三中,所述控制装置对所述测量信息进行处理,计算得到所述测量面的直线度,并实时显示。
作为本发明的优选方案,所述步骤三中,当测量信息和/或计算得到的直线度超过阈值时,所述控制装置进行报警。
本发明还基于前述的测量装置提供了一种具有该测量装置的桁架结构,包括竖向的桁架结构,还包括能够沿所述竖向桁架结构上下移动的基座,所述自动检测装置或所述摆臂安装在所述基座上。
作为上述桁架结构的优选方案,所述自动检测装置固定安装在所示基座上,所述自动检测装置还包括测距离装置,所述测距离装置与所述测摆角装置固定连接,所述测距离装置用于自动测量所述测摆角装置到测量点的直线距离,所述测距离装置包括激光测距传感器或超声测距传感器。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明通过设置绷直线,所述绷直线为拉直、绷直的线段,即非松弛、非弯曲的线段,利用绷直线的直线度或垂直度作为测量参考,再通过设置摆臂,将绷直线穿过摆臂或将摆臂吸附于绷直线,从而使得摆臂与绷直线接触点的具体位置可以进行确定,进一步通过自动检测装置自动测量摆臂的摆动角度,可以实现精确测量。
2、本发明利用绷直线的直线度或垂直度作为测量参考,从而可以布置多个 测量装置,并保证多个接触点的位置准确,进而对多个测量点进行自动测量,可以获得待测物体的直线度、垂直度、倾斜角度、平面度、扭转情况等参数。
3、本发明利用绷直线的直线度或垂直度作为测量参考,保证了测量数据的准确性,且方案简单,便于实施;利用自动检测装置自动测量,降低了对测量人员的要求,避免了测量人员人工测量产生的误差,且减少了安全隐患。
附图说明
图1是本发明实施例1所述的测量机构的结构示意图。
图2是本发明实施例1所述的测量系统的结构示意图。
图3是本发明实施例2所述的测量机构的结构示意图。
图4是本发明实施例2所述的测量系统的结构示意图。
图5是本发明实施例3所述的测量机构的结构示意图。
图6是本发明实施例3所述的测量系统的结构示意图。
图7是本发明实施例4所述的摆臂的结构示意图。
图8是本发明实施例5所述的摆臂的结构示意图。
图9是本发明实施例6所述的结构示意图。
图10是本发明实施例7所述的测量机构的结构示意图。
图11是本发明实施例7所述的测量系统的结构示意图。
图12是本发明实施例8所述的测量装置的结构示意图。
图13是本发明实施例8所述的测量机构的结构示意图。
图14是本发明实施例桁架结构的示意图。
图15是图14所示实施例的测量装置移去桁架结构后的局部放大示意图。
图标:1-绷直线,2-铅锤,3-摆臂,4-测摆角装置,5-顶杆,6-固定架,7-测量面,8-测距离装置,9-通孔,10-固定臂,11-直线位移传感器,12-外凸构件,13-滚轮,14-横杆,15-通槽,16-磁性体,17-竖向桁架结构,18-基座。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,一种测量机构,包括绷直线1和测量装置。
在本实施例中所述绷直线1为铅垂线,在所述绷直线1的底部悬挂有铅锤2,而所述绷直线1的顶部可以固定在任何固定点,所述绷直线1在测量时起参照作用。
在本实施例中所述测量装置包括摆臂3、测摆角装置4和固定架6,所述摆臂3安装在所述测摆角装置4上,所述测摆角装置4再通过固定架6固定在待测物体上。所述测摆角装置4包括编码器或电位器或角度传感器等。
所述摆臂3上设有通孔9,所述通孔9与所述绷直线1相适配(即所述通孔9的内径与所述绷直线1的外径几乎一致),所述绷直线1穿过所述通孔9。所述通孔9与所述绷直线1的接触位置即为接触点。
因此,铅垂线因重力作用保持垂直状态,而测量装置固定在待测物体上,且测量装置通过摆臂3上的通孔9与铅垂线相接触。当待测物体的位置发生变化(比如倾斜等)时,摆臂3会产生摆动,继而可通过测摆角装置4得到摆臂3的摆动角,继而计算出待测物体的新位置。通过对一个测量点(测量点指测量装置与待测物体的接触点(接触测量的情况下,如本实施例),或测量装置的激 光或超声发射到待测物体的位置(非接触测量的情况下,如实施例3))多次采集数据,可以反映待测物体的空间位置随时间的变化情况。而测摆角装置4获得的数据,可以直接向外传输至控制装置,所述控制装置将收集的数据通过有线(网线,usb线等)或无线(WIFI,移动通讯等)的方式传输至计算机或手机等具备数据处理能力的装置上,从而便于对数据进行处理分析和报警处理。
如图2所示,一种测量系统,包括绷直线1和多个所述的测量装置,所有所述测量装置沿着所述绷直线1间隔布置,所述绷直线1穿过所有所述通孔9。即在待测物体上固定安装多个所述测量装置,每个所述测量装置的摆臂3的通孔9均与绷直线1相接触,继而可以保证所有所述通孔9位于同一根铅垂线上,即保证所有所述通孔9垂直布置。如此,通过在待测物体上布置所述测量系统,从而可以同时获得多个测量点(在本实施例指多个测量装置的安装位置)的测量信息,进而得到待测物体的直线度、垂直度、倾斜角度等。需要说明的是,在得到多个测量点摆臂3的摆动角度后,无需进行计算,就可以根据摆动角度是否一致初步判断测量面7是否垂直,获取测量面7的直线度。之后,若有必要,可通过具体换算得到测量面7的直线度、垂直度、倾斜角度等。
更进一步的,通过设置两条相互平行的所述绷直线1,每条所述绷直线1上均固定安装多个所述的测量装置,通过读取同一时刻不同测量点的测量信息,来获取测量面7的直线度和平面度、扭转情况等参数。
实施例2
如图3所示,本实施例与实施例1的区别在于,在本实施例中,一种测量机构的所述测量装置还包括顶杆5,所述顶杆5与所述测摆角装置4固定连接。
如此,在安装时,测量装置通过固定架6固定在靠近待测物体的某一结构上,通过设计固定架6的结构(例如采用直线导轨),可以保证测量装置的顶杆5保持直线运动,而测量装置的顶杆5则顶紧所述待测物体,继而通过顶杆5的运动来反映待测物体的位置变化。在测量过程中,所述顶杆5应始终顶紧待测 物体,比如可以通过施加外力的方式来实现,也可以通过在顶杆5上设置弹性件,例如弹簧等,使得顶杆5能始终顶紧待测物体。
当待测物体的位置发生变化(比如倾斜等)时,顶杆5会产生直线位移,带动摆臂3产生摆动,继而可通过测摆角装置4得到摆臂3的摆动角,继而计算出待测物体的新位置。
如图4所示,一种测量系统,包括绷直线1和多个所述的测量装置。多个所述测量装置布置在测量面7的不同位置,从而可以同时获得多个测量点的测量信息,得到测量面7的直线度、垂直度、倾斜角度等。
实施例3
如图5所示,本实施例与实施例1的区别在于,在本实施例中,一种测量机构的所述测量装置还包括测距离装置8,所述测距离装置8和所述测摆角装置4固定连接,所述测距离装置8用于测量所述测摆角装置4到测量点的距离。所述测距离装置8包括激光测距传感器或超声测距传感器等。
如此,在安装时,测量装置通过固定架6固定在靠近待测物体的某一固定结构上,测量装置无需直接跟待测物体接触。在测量时,摆臂3上通孔9到测量点的距离d,被拆解为两个距离d1和d2,即d=d1+d2。d1为测摆角装置4到待测物体的测量点的距离,该部分距离可直接通过测摆角装置4测量得到,d2为测摆角装置4到通孔9的距离,该部分距离可由测摆角装置4测量摆臂3的摆动角换算得到。测距离装置8和测摆角装置4获得的数据,均可以直接向外传输至计算机或手机等机构,从而便于对数据进行处理分析。
如图6所示,当需要测量测量面7的垂直度时,一种测量系统,包括绷直线1和多个所述的测量装置。多个所述测量装置由上至下依次布置在测量面7的不同位置,且所述绷直线1穿过所有所述通孔9。通过绷直线1(提供测量参考)来保证所有所述通孔9位于同一根铅垂线上,当测量面7存在倾斜的情况时,在不同测量点得到的距离d不同,继而可计算得到测量面7的直线度、垂 直度、倾斜角度等。
实施例4
如图7所示,本实施例与实施例1-3大致相同,仅在摆臂3的结构上有所不同的,具体的,本实施例中,在所述通孔9处安装有磁性体16,通过将绷直线1选用钢绞线等,再设置磁性体16(包括磁铁、磁石等),从而使得通孔9和绷直线1进一步贴合紧密,使得通孔9与绷直线1的接触位置更加准确,从而增强了测量信息的准确性。
实施例5
如图8所示,本实施例与实施例4的区别在于,所述摆臂3的通孔9被替换成通槽15,再在通槽15处安装所述磁性体16。
实施例6
如图9所示,本实施例与实施例1-3大致相同,仅在摆臂3的结构上有所不同的,具体的,本实施例中,摆臂3上不再设置通孔9,而是直接设有磁性体16,摆臂3通过磁性体16吸附在绷直线1上。
实施例7
如图10-图11所示,本实施例与实施例2的区别在于,在本实施例中,所述绷直线1不是铅垂线,而是绷直或拉直的线段,可以是垂线也可以是斜线。具体的,可以通过在绷直线1的端部设置紧线器,将线段拉直从而实现绷直线1。在本实施例中,绷直线1的两端通过横杆14固定在测量面7上。因为,绷直线1在测量时起参照作用,因此,需采用非松弛、非弯曲的线段实现,而将线段拉直或绷直的方式有很多,在此不再详述。
当绷直线1为垂线时,其原理和实施例2完全一致,再次不再详述。
而当绷直线1为斜线时,同样可以在测量面7布置多个所述测量装置,从 而可以同时获得多个测量点的测量信息,只需在数据处理时,计入斜线的斜率即可。
实施例8
如图12-图13所示,一种测量机构,包括绷直线1和测量装置。
在本实施例中,所述绷直线1不是铅垂线,而是绷直或拉直的垂线。具体的,可以通过在绷直线1的端部设置紧线器,将线段拉从而实现绷直线1。在本实施例中,绷直线1的两端通过横杆14固定在测量面7上。因为,绷直线1在测量时起参照作用,因此,需采用非松弛、非弯曲的线段实现,而将线段拉直或绷直的方式有很多,在此不再详述。
在本实施例中,所述测量装置包括摆臂3和测摆角装置4,所述摆臂3安装在所述测摆角装置4上,所述摆臂3上设有通孔9,所述通孔9与所述绷直线1相适配,所述绷直线1穿过所述通孔9,所述测量装置能够沿着所述绷直线1滑动。
进一步地,可以在测摆角装置4的一端固定连接外凸构件12,所述外凸构件12的端部设置滚轮13。使用时,滚轮13可直接在待测物体上滑动。
因此,测量时,将测量装置布置在待测物体表面,所述滚轮13和待测物体表面相接触,在重力的作用下,测量装置沿着绷直线1向下滑动,在滑动的过程中,由于不同测量点到绷直线1的距离信息不同,摆臂3会发生摆动,继而可以精确测量待测物体表面不同高度的位置信息,得到待测物体的垂直度、倾斜角度等参数。
实施例9
本发明的实施例9,如图14至图15所示,基于前述的测量装置提供了一种具有该测量装置的桁架结构,包括竖向的桁架结构17,还包括能够沿所述竖向桁架结构17上下移动的基座18。如图15所示的,基座18固定安装在同步牵引 带19上,同步牵引带19一段与步进电机20配合,一端与定滑轮21配合。由步进电机20通过驱动同步牵引带19带动基座18上下移动。基座18上固定安装有与实施例3中相同的测量装置,其中的固定架6固定安装在基座18上。基座18由步进电机20驱动上下移动的过程中可以同步测量被测物的垂直度,在移动过程中还可以实时连续测量,形成完整的监控记录。在本实施例中,基座18也可以由现有技术中的其他机械传动方式所驱动上下移动,例如齿轮齿条配合,自行走滑轨等等。基座18上也可以安装前述实施例的各项测量装置,以便在基座18上下移动的过程中对被测物的垂直度进行测量。
本实施例中的桁架结构特别适用于高层建筑施工、水利水电的闸坝施工等建筑领域。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种测量装置,其特征在于,包括摆臂(3)和自动检测装置,所述摆臂(3)能够让绷直线(1)穿过或吸附于绷直线(1),所述自动检测装置包括测摆角装置(4),所述测摆角装置(4)和所述摆臂(3)相连接,所述测摆角装置(4)用于自动测量所述摆臂(3)的摆动角度。
  2. 根据权利要求1所述的一种测量装置,其特征在于,所述摆臂(3)设有通孔(9)或通槽(15),所述通孔(9)或所述通槽(15)与所述绷直线(1)相适配,所述通孔(9)或所述通槽(15)能够让所述绷直线(1)穿过。
  3. 根据权利要求1所述的一种测量装置,其特征在于,所述摆臂(3)设有磁性体(16),所述磁性体(16)能够吸附于所述绷直线(1)。
  4. 根据权利要求1所述的一种测量装置,其特征在于,所述摆臂(3)设有通孔(9)或通槽(15),且在所述通孔(9)或所述通槽(15)处安装有磁性体(16),所述通孔(9)或所述通槽(15)能够让所述绷直线(1)穿过,且所述磁性体(16)能够吸附于所述绷直线(1)。
  5. 根据权利要求3或4所述的一种测量装置,其特征在于,所述磁性体(16)包括磁铁或磁石。
  6. 根据权利要求1所述的一种测量装置,其特征在于,所述测摆角装置(4)能够将所述摆臂(3)的摆动角度转化为电信号,所述测摆角装置(4)包括编码器或电位器或角度传感器。
  7. 根据权利要求6所述的一种测量装置,其特征在于,还包括顶杆(5),所述顶杆(5)用于顶紧测量点,所述顶杆(5)与所述测摆角装置(4)固定连接。
  8. 根据权利要求7所述的一种测量装置,其特征在于,还包括弹性件,所述顶杆(5)通过所述弹性件与所述测摆角装置(4)固定连接。
  9. 根据权利要求1所述的一种测量装置,其特征在于,所述自动检测装置 还包括测距离装置(8),所述测距离装置(8)与所述测摆角装置(4)固定连接,所述测距离装置(8)用于自动测量所述测摆角装置(4)到测量点的直线距离,所述测距离装置(8)包括激光测距传感器或超声测距传感器。
  10. 根据权利要求7所述的一种测量装置,其特征在于,所述测量装置能够沿着所述绷直线(1)滑动。
  11. 根据权利要求10所述的一种测量装置,其特征在于,所述测量装置固定连接有外凸构件(12),所述外凸构件(12)的端部设有滚轮(13)。
  12. 一种测量机构,其特征在于,包括绷直线(1)和如权利要求1所述的一种测量装置,所述绷直线(1)穿过所述摆臂(3)或所述摆臂(3)吸附于所述绷直线(1)。
  13. 根据权利要求12所述的一种测量机构,其特征在于,所述绷直线(1)为铅垂线或斜拉线。
  14. 一种测量系统,其特征在于,包括绷直线(1)和若干个如权利要求1所述的测量装置,所有所述测量装置沿着所述绷直线(1)间隔布置,所述绷直线(1)穿过所有所述摆臂(3)或所有所述摆臂(3)均吸附于所述绷直线(1)。
  15. 一种测量方法,其特征在于,包括以下步骤:
    步骤一:在测量面(7)的一旁设置绷直线(1),在所述测量面(7)或所述测量面(7)附近固定安装多个如权利要求1-9任一所述的测量装置,所有所述测量装置沿着所述绷直线(1)间隔布置,所述绷直线(1)穿过所有所述摆臂(3)或所有所述摆臂(3)均吸附于所述绷直线(1);
    步骤二:通过所述自动检测装置自动测量;
    步骤三:通过读取同一时刻不同测量点的测量信息,来获取所述测量面(7)的直线度。
  16. 根据权利要求15所述的一种测量方法,其特征在于,所述步骤一中,所述绷直线(1)的数量为至少两条,所有所述绷直线(1)平行设置,且每条所述绷直线(1)上均固定安装多个如权利要求1-9任一所述的测量装置,所述步骤三中,通过读取同一时刻不同测量点的测量信息,来获取所述测量面(7)的直线度和平面度。
  17. 根据权利要求16所述的一种测量方法,其特征在于,所述步骤二中,将所述自动检测装置的测量信息发送至控制装置,所述步骤三中,所述控制装置对所述测量信息进行处理,计算得到所述测量面(7)的直线度或平面度,并实时显示。
  18. 根据权利要求17所述的一种测量方法,其特征在于,所述步骤三中,当测量信息和/或计算得到的直线度和/或平面度超过阈值时,所述控制装置进行报警。
  19. 一种测量方法,其特征在于,包括以下步骤:
    步骤一:在测量面(7)的一旁设置绷直线(1),所述绷直线(1)为垂线,在所述绷直线(1)上安装如权利要求10所述的测量装置,所述绷直线(1)穿过所述摆臂(3)或所述摆臂(3)吸附于所述绷直线(1);
    步骤二:在外力作用下,所述测量装置沿着所述绷直线(1)向下滑动,在滑动的过程中,所述自动检测装置对不同测量点进行自动测量;
    步骤三:通过实时读取测量信息,来获取所述测量面(7)的直线度。
  20. 根据权利要求19所述的一种测量方法,其特征在于,所述步骤二中,将所述自动检测装置的测量信息发送至控制装置,所述步骤三中,所述控制装置对所述测量信息进行处理,计算得到所述测量面(7)的直线度,并实时显示。
  21. 根据权利要求20所述的一种测量方法,其特征在于,所述步骤三中,当测量信息和/或计算得到的直线度超过阈值时,所述控制装置进行报警。
  22. 一种具有权利要求1所述测量装置的桁架结构,包括竖向的桁架结构(17),其特征在于,还包括能够沿所述竖向桁架结构(17)上下移动的基座(18),所述自动检测装置或所述摆臂(3)安装在所述基座上。
  23. 根据权利要求22所述的桁架结构,其特征在于,所述自动检测装置固定安装在所示基座(18)上,所述自动检测装置还包括测距离装置(8),所述测距离装置(8)与所述测摆角装置(4)固定连接,所述测距离装置(8)用于自动测量所述测摆角装置(4)到测量点的直线距离,所述测距离装置(8)包括激光测距传感器或超声测距传感器。
PCT/CN2022/078726 2021-03-03 2022-03-02 一种测量装置、测量机构、测量系统及测量方法 WO2022184076A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22762540.7A EP4303535A1 (en) 2021-03-03 2022-03-02 Measuring device, measuring mechanism, measuring system and measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110237598.6A CN115031624B (zh) 2021-03-03 2021-03-03 一种测量机构、测量系统及测量方法
CN202110237598.6 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022184076A1 true WO2022184076A1 (zh) 2022-09-09

Family

ID=83118028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078726 WO2022184076A1 (zh) 2021-03-03 2022-03-02 一种测量装置、测量机构、测量系统及测量方法

Country Status (3)

Country Link
EP (1) EP4303535A1 (zh)
CN (1) CN115031624B (zh)
WO (1) WO2022184076A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116255965A (zh) * 2023-05-16 2023-06-13 山东永昇重工有限公司 一种钢结构桥梁竖直度检测装置
CN116399297A (zh) * 2023-06-06 2023-07-07 山东紫东科技发展有限公司 一种建筑物倾斜度检测设备及检测方法
CN117516476A (zh) * 2023-11-23 2024-02-06 山西清泰恒环保科技有限公司 一种建筑节能工程质量检测器垂直度检测仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH661350A5 (en) * 1986-03-24 1987-07-15 Sodeco Compteurs De Geneve Sensor for inclination and vibration
JPH0662319U (ja) * 1993-02-05 1994-09-02 株式会社タジマツール 下げ振りの振れ止め兼用垂直測定器
CN103588095A (zh) * 2013-11-28 2014-02-19 中联重科股份有限公司 摆角测量装置及起重机械
CN210268666U (zh) * 2019-08-12 2020-04-07 鸿霖股份有限公司 建筑工程垂直度检测装置
CN210375107U (zh) * 2019-10-15 2020-04-21 郑州华中建机设备安装有限公司 一种检测架桥机支腿垂直度的装置
CN211783495U (zh) * 2020-04-28 2020-10-27 李彦召 建筑工程垂直度检测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706324B (zh) * 2012-06-30 2014-06-25 交通运输部公路科学研究所 一种基于单摆原理及激光测距相结合的高精度实时倾角传感器
CN105547249B (zh) * 2016-01-21 2017-10-10 中建八局第三建设有限公司 一种控制斜柱子垂直度及角度的工具
CN107055327A (zh) * 2017-04-14 2017-08-18 上海海事大学 一种基于液体摆的双起升双吊具桥吊摆角测量装置
CN207936901U (zh) * 2017-11-30 2018-10-02 中国二十冶集团有限公司 墙柱模板的垂直度测量工具
CN207976156U (zh) * 2018-03-13 2018-10-16 北京华融路通工程咨询有限公司 一种工程检测垂直度检测装置
CN108759807A (zh) * 2018-05-25 2018-11-06 中冶建工集团有限公司 墙柱模板垂直度检测尺
CN110207665A (zh) * 2019-07-16 2019-09-06 贵州电网有限责任公司 一种电杆倾斜角度测量装置及其测量方法
CN210108372U (zh) * 2019-07-16 2020-02-21 安徽东昌建设工程有限公司 测量墙面垂直度用的伸缩式支架
CN211291305U (zh) * 2020-03-05 2020-08-18 云南合信工程检测咨询有限公司 防护密闭门垂直度检测仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH661350A5 (en) * 1986-03-24 1987-07-15 Sodeco Compteurs De Geneve Sensor for inclination and vibration
JPH0662319U (ja) * 1993-02-05 1994-09-02 株式会社タジマツール 下げ振りの振れ止め兼用垂直測定器
CN103588095A (zh) * 2013-11-28 2014-02-19 中联重科股份有限公司 摆角测量装置及起重机械
CN210268666U (zh) * 2019-08-12 2020-04-07 鸿霖股份有限公司 建筑工程垂直度检测装置
CN210375107U (zh) * 2019-10-15 2020-04-21 郑州华中建机设备安装有限公司 一种检测架桥机支腿垂直度的装置
CN211783495U (zh) * 2020-04-28 2020-10-27 李彦召 建筑工程垂直度检测装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116255965A (zh) * 2023-05-16 2023-06-13 山东永昇重工有限公司 一种钢结构桥梁竖直度检测装置
CN116255965B (zh) * 2023-05-16 2023-08-25 山东永昇重工有限公司 一种钢结构桥梁竖直度检测装置
CN116399297A (zh) * 2023-06-06 2023-07-07 山东紫东科技发展有限公司 一种建筑物倾斜度检测设备及检测方法
CN116399297B (zh) * 2023-06-06 2023-08-15 山东紫东科技发展有限公司 一种建筑物倾斜度检测设备及检测方法
CN117516476A (zh) * 2023-11-23 2024-02-06 山西清泰恒环保科技有限公司 一种建筑节能工程质量检测器垂直度检测仪
CN117516476B (zh) * 2023-11-23 2024-03-22 山西清泰恒环保科技有限公司 一种建筑节能工程质量检测器垂直度检测仪

Also Published As

Publication number Publication date
EP4303535A1 (en) 2024-01-10
CN115031624A (zh) 2022-09-09
CN115031624B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2022184076A1 (zh) 一种测量装置、测量机构、测量系统及测量方法
EP2872432B1 (en) Guide rail straightness measuring system for elevator installations
JPH11160062A (ja) レール測量装置
CN106092024B (zh) 模型桩测孔仪及桩孔孔径测量方法
CN109405718A (zh) 一种线缆弯曲位移量测量装置
WO2019196771A1 (zh) 一种基坑变形的测量系统及测量方法
CN104655418B (zh) 手刹检测装置
KR101179667B1 (ko) 크랙 측정기
CN207570457U (zh) 一种圆弧半径测量工具
CN207472227U (zh) 一种新型边坡地表位移的监测装置
CN214574186U (zh) 基坑沉降变形自动监测装置
CN201901883U (zh) 光纤型大变形地基沉降监测装置
CN206593580U (zh) 一种角度测量装置
CN210718877U (zh) 一种土木工程检测用测量尺
CN219908496U (zh) 一种检测路面平整度的辅助装置
CN207894579U (zh) 轨道交通桥梁扰度检测装置
CN108387211B (zh) 支护拱顶下沉监测装置及方法
CN103541545B (zh) 大型弧形结构模板安装控制的方法及其垂直对中装置
CN114061403B (zh) 基于bim的工程监理监控系统
CN205691094U (zh) 波形钢板挠曲测量装置
CN106123844A (zh) 一种钢构件变形检测仪器及使用方法
CN210086210U (zh) 一种测量土体水平位移的测斜装置
CN114812488A (zh) 一种墙面垂直度、平整度测量装置及测量方法
CN106017393A (zh) 一种焊趾形貌的测量装置
CN214470657U (zh) 一种软管及软管组合件承压变形的测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022762540

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762540

Country of ref document: EP

Effective date: 20231004