WO2022183739A1 - 数据处理方法和装置、能源信息网关和能源互联网系统 - Google Patents
数据处理方法和装置、能源信息网关和能源互联网系统 Download PDFInfo
- Publication number
- WO2022183739A1 WO2022183739A1 PCT/CN2021/123975 CN2021123975W WO2022183739A1 WO 2022183739 A1 WO2022183739 A1 WO 2022183739A1 CN 2021123975 W CN2021123975 W CN 2021123975W WO 2022183739 A1 WO2022183739 A1 WO 2022183739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- energy
- server
- real
- time period
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 13
- 238000004891 communication Methods 0.000 claims description 38
- 230000001186 cumulative effect Effects 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 10
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000005611 electricity Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003203 everyday effect Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2462—Approximate or statistical queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y10/00—Economic sectors
- G16Y10/35—Utilities, e.g. electricity, gas or water
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y20/00—Information sensed or collected by the things
- G16Y20/30—Information sensed or collected by the things relating to resources, e.g. consumed power
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y40/00—IoT characterised by the purpose of the information processing
- G16Y40/10—Detection; Monitoring
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y40/00—IoT characterised by the purpose of the information processing
- G16Y40/20—Analytics; Diagnosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
Definitions
- the present disclosure relates to the field of control, and in particular, to a data processing method and device, an energy information gateway and an energy internet system.
- the distributed local energy Internet includes clean and renewable new energy power generation equipment, energy storage equipment, new energy electrical appliances, energy management and control equipment, etc.
- the energy management system conducts unified management and dispatching of energy generation, storage and use. To this end, it is necessary to collect a large amount of energy data from the relevant equipment and line terminals of the local energy Internet, and upload the energy management system deployed on the cloud platform in real time.
- a data processing method executed by a data processing device, including: collecting energy data in real time; detecting whether the energy data is real-time analog data; if the energy data is real-time analog data quantity data, start a first timer to store the real-time analog quantity data received within the first preset time period; count the real-time analog quantity data received within the first preset time period eigenvalues; send the eigenvalues to the server.
- the characteristic value includes at least one of a weighted average value, a maximum value and a minimum value of the real-time analog data within the first preset time period.
- the energy data is not real-time analog data, it is detected whether the energy data is switch state data; if the energy data is switch state data, the corresponding switch state is switched at the moment Send the switch state quantity data to the server.
- the energy data is not on-off state quantity data, it is detected whether the energy data is cumulative quantity data or statistical quantity data; if the energy data is cumulative quantity data or statistical quantity data, the first Two timers, so as to store the accumulated data or statistical data received in the second preset time period; send the accumulated data or statistical data received in the second preset time period to server.
- the second preset time period is greater than the first preset time period.
- the server before sending data information to the server, it is detected whether the communication between the data processing device and the server is normal; if the communication between the data processing device and the server is normal, the data The information is sent to the server; if the communication between the data processing device and the server is abnormal, the data information is stored locally, and a third preset time period is used to detect whether the communication has returned to normal; if the communication has resumed If it is normal, the data information stored locally is sent to the server.
- a data processing device comprising: a collection module configured to collect energy data in real time; a detection module configured to detect whether the energy data is real-time analog data; a processing module , is configured to start a first timer if the energy data is real-time analog data, so as to store the real-time analog data received within a first preset time period, and count the real-time analog data received in the first preset time period.
- the characteristic value of the real-time analog data received in the time period is sent to the server.
- the characteristic value includes at least one of a weighted average value, a maximum value and a minimum value of the real-time analog data within the first preset time period.
- the detection module is further configured to detect whether the energy data is on-off state quantity data if the energy data is not real-time analog quantity data; the processing module is further configured to if the energy data is on-off state data quantity data, the switch state quantity data is sent to the server at the moment when the corresponding switch state is switched.
- the detection module is further configured to detect whether the energy data is cumulative quantity data or statistical quantity data if the energy data is not on-off state quantity data; the processing module is further configured to, if the energy data is not is accumulative data or statistical data, then start a second timer so as to store the accumulative data or statistical data received in the second preset time period, which will be received in the second preset time period The cumulative amount data or statistical data of the data is sent to the server.
- the second preset time period is greater than the first preset time period.
- the processing module is further configured to detect whether the communication between the data processing apparatus and the server is normal before sending the data information to the server, if the communication between the data processing apparatus and the server is normal , then send the data information to the server, if the communication between the data processing device and the server is abnormal, store the data information locally, and check whether the communication returns to normal at a third preset time period , and if the communication returns to normal, the data information stored locally is sent to the server.
- a data processing apparatus comprising: a memory configured to store instructions; a processor coupled to the memory, the processor configured to execute any of the above-mentioned instructions based on the instructions stored in the memory methods described in the examples.
- an energy information gateway is provided, including the data processing apparatus described in any of the foregoing embodiments.
- an energy internet system including: the energy information gateway according to any of the above embodiments; and a server configured to receive information data sent by the energy information gateway.
- a computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, implement the method according to any of the foregoing embodiments.
- FIG. 1 is a schematic flowchart of a data processing method according to an embodiment of the present disclosure
- FIG. 2 is a schematic flowchart of a data processing method according to another embodiment of the disclosure.
- FIG. 3 is a schematic structural diagram of a data processing apparatus according to an embodiment of the disclosure.
- FIG. 4 is a schematic structural diagram of a data processing apparatus according to another embodiment of the disclosure.
- FIG. 5 is a schematic structural diagram of an energy information gateway according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of an energy internet system according to an embodiment of the present disclosure.
- the present disclosure provides a data processing solution, which can effectively reduce the transmission amount of energy data and improve the use efficiency of communication resources.
- FIG. 1 is a schematic flowchart of a data processing method according to an embodiment of the present disclosure.
- the following data processing method steps are performed by a data processing device in an energy information gateway.
- step 101 energy data is collected in real time.
- step 102 it is detected whether the energy data is real-time analog data.
- real-time analog data refers to rapidly fluctuating data, such as voltage data, current data, or power data, etc., and the data changes can reach the millisecond level.
- the energy data type can be identified by the label.
- step 103 if the energy data is real-time analog data, a first timer is started to store real-time analog data received within a first preset time period.
- the characteristic value includes at least one of a weighted average value, a maximum value, and a minimum value of the real-time analog quantity data within the first preset time period.
- the first predetermined time period is one minute.
- step 104 the characteristic values of the real-time analog quantity data received within the first preset time period are counted.
- the feature value is sent to the server.
- the energy data can be effectively reduced by reporting the characteristic values of the real-time analog data within a preset time period to the server. increase the transmission volume and improve the use efficiency of communication resources.
- FIG. 2 is a schematic flowchart of a data processing method according to another embodiment of the present disclosure.
- the following data processing method steps are performed by a data processing device in an energy information gateway.
- step 201 energy data is collected in real time.
- step 202 it is detected whether the energy data is real-time analog data.
- step 203 If the energy data is real-time analog data, go to step 203; if the energy data is not real-time analog data, go to step 206.
- a first timer is started to store real-time analog data received within a first preset time period.
- the characteristic value includes at least one of a weighted average value, a maximum value, and a minimum value of the real-time analog quantity data within the first preset time period.
- the first predetermined time period is one minute.
- step 204 the characteristic values of the real-time analog quantity data received within the first preset time period are counted.
- the feature value is sent to the server.
- step 206 it is detected whether the energy data is switch state quantity data.
- switch state quantity data refers to the data of the switch state change.
- the switch has two states: on and off, and usually the switching cycle of the switch is longer.
- step 207 If the energy data is the switch state quantity data, go to step 207 ; if the energy data is not the switch state quantity data, go to step 208 .
- step 207 the switch state quantity data is sent to the server at the moment when the corresponding switch state is switched.
- step 208 it is detected whether the energy data is cumulative quantity data or statistical quantity data.
- step 209 If the energy data is cumulative amount data or statistical amount data, go to step 209; otherwise, end the process.
- step 209 a second timer is started to store the accumulated amount data or the statistical amount data received within the second preset time period.
- the statistic refers to the statistic value of the content of a time period. For example, the maximum or minimum value in a day, etc.
- Cumulative volume refers to the cumulative value over a period of time. For example, the amount of electricity accumulated every hour, the amount of electricity accumulated every day, etc.
- the second preset time period is greater than the first preset time period.
- the second preset time period is ten minutes.
- step 210 the accumulated data or statistical data received within the second preset time period is sent to the server.
- the server before sending data information to the server, it is detected whether the communication between the data processing apparatus and the server is normal. If the communication between the data processing device and the server is normal, the data information is sent to the server. If the communication between the data processing device and the server is abnormal, the data information is stored locally, and it is detected whether the communication returns to normal in a third preset time period. If the communication returns to normal, the data information stored locally will be sent to the server. In this way, the loss of data information due to abnormal communication can be avoided.
- the above-mentioned data information is characteristic value, switching state quantity data, accumulated quantity data or statistical quantity data sent by the data processing apparatus to the server.
- FIG. 3 is a schematic structural diagram of a data processing apparatus according to an embodiment of the disclosure. As shown in FIG. 3 , the data processing apparatus includes a collection module 31 , a detection module 32 and a processing module 33 .
- the collection module 31 is configured to collect energy data in real time.
- the detection module 32 is configured to detect whether the energy data is real-time analog data.
- real-time analog data refers to rapidly fluctuating data, such as voltage data, current data, or power data, etc., and the data changes can reach the millisecond level.
- the energy data type can be identified by the label.
- the processing module 33 is configured to start a first timer if the energy data is real-time analog data, so as to store the real-time analog data received in the first preset time period, and count the data received in the first preset time period.
- the characteristic value of the received real-time analog data is sent to the server.
- the characteristic value includes at least one of a weighted average value, a maximum value, and a minimum value of the real-time analog quantity data within the first preset time period.
- the first predetermined time period is one minute.
- the detection module 32 is further configured to detect whether the energy data is switch state data if the energy data is not real-time analog data.
- switch state quantity data refers to the data of the switch state change.
- the switch has two states: on and off, and usually the switching cycle of the switch is longer.
- the processing module 33 is further configured to, if the energy data is switch state quantity data, send the switch state quantity data to the server at the moment when the corresponding switch state is switched.
- the detection module 32 is further configured to detect whether the energy data is cumulative amount data or statistical amount data if the energy data is not switch state data.
- the statistic refers to the statistic value of the content of a time period. For example, the maximum or minimum value in a day, etc.
- Cumulative volume refers to the cumulative value over a period of time. For example, the amount of electricity accumulated every hour, the amount of electricity accumulated every day, etc.
- the processing module 33 is further configured to start a second timer if the energy data is cumulative data or statistical data, so as to store the cumulative data or statistical data received in the second preset time period, which will be stored in the second preset time period. 2. Send the accumulated data or statistical data received within the preset time period to the server.
- the second preset time period is greater than the first preset time period.
- the second preset time period is ten minutes.
- the processing module 33 is further configured to detect whether the communication between the data processing apparatus and the server is normal before sending the data information to the server, and if the communication between the data processing apparatus and the server is normal, send the data information to the server, If the communication between the data processing device and the server is abnormal, the data information is stored locally, and whether the communication returns to normal is detected at a third preset time period, and if the communication returns to normal, the locally stored data information is sent to the server. In this way, the loss of data information due to abnormal communication can be avoided.
- the above-mentioned data information is characteristic value, switching state quantity data, accumulated quantity data or statistical quantity data sent by the data processing apparatus to the server.
- FIG. 4 is a schematic structural diagram of a data processing apparatus according to another embodiment of the disclosure. As shown in FIG. 4 , the data processing apparatus includes a memory 41 and a processor 42 .
- a memory 41 is used to store instructions, and a processor 42 is coupled to the memory 41, and the processor 42 is configured to implement the method involved in any of the embodiments in FIG. 1 or FIG. 2 based on the execution of the instructions stored in the memory.
- the data processing apparatus further includes a communication interface 43 for exchanging information with other devices.
- the data processing apparatus further includes a bus 44 , and the processor 42 , the communication interface 43 , and the memory 41 communicate with each other through the bus 44 .
- the memory 41 may include high-speed RAM memory, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
- the memory 41 may also be a memory array.
- the storage 41 may also be divided into blocks, and the blocks may be combined into virtual volumes according to certain rules.
- processor 42 may be a central processing unit (CPU), or may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present disclosure.
- CPU central processing unit
- ASIC application specific integrated circuit
- the present disclosure also relates to a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions, and the instructions are executed by a processor to implement the method involved in any of the embodiments in FIG. 1 or FIG. 2 .
- FIG. 5 is a schematic structural diagram of an energy information gateway according to an embodiment of the present disclosure.
- the energy information gateway 51 includes a data processing device 52 .
- the data processing device 52 is the data processing device involved in any of the embodiments in FIG. 3 or FIG. 4 .
- FIG. 6 is a schematic structural diagram of an energy internet system according to an embodiment of the present disclosure.
- the energy internet system includes an energy information gateway 61 and a server 62 .
- the energy information gateway 61 is the energy information gateway involved in any of the embodiments in FIG. 5 .
- the server 62 is configured to receive the information data sent by the energy information gateway 61 .
- server 62 is a cloud platform server.
- the functional unit modules described above may be implemented as a general-purpose processor, a programmable logic controller (Programmable Logic Controller, PLC for short), a digital signal processor ( Digital Signal Processor (referred to as: DSP), Application Specific Integrated Circuit (referred to as: ASIC), Field-Programmable Gate Array (referred to as: FPGA) or other programmable logic devices, discrete gates or transistors Logic devices, discrete hardware components, or any suitable combination thereof.
- a programmable logic controller Programmable Logic Controller, PLC for short
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Mathematical Physics (AREA)
- Fuzzy Systems (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
一种数据处理方法和装置、能源信息网关和能源互联网系统。数据处理方法包括:实时采集能源数据(101);检测能源数据是否为实时模拟量数据(102);若能源数据为实时模拟量数据,则启动第一定时器,以便存储在第一预设时间周期内接收到的实时模拟量数据(103);统计在第一预设时间周期内接收到的实时模拟量数据的特征值(104);将特征值发送给服务器(105)。
Description
相关申请的交叉引用
本申请是以CN申请号为202110239733.0,申请日为2021年3月4日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
本公开涉及控制领域,特别涉及一种数据处理方法和装置、能源信息网关和能源互联网系统。
近年来,分布式局域能源互联网得到了快速的发展。分布式局域能源互联网包括了清洁可再生的新能源发电设备、储能设备、新能源电器、能源管理控制设备等,是发电、储电、配电、用电为一体的供需联动系统,由能源管理系统对能源的发、储、用进行统一的管理和调度。为此,需要采集局域能源互联网各相关设备和线路端的大量能源数据,并实时上传部署在云平台的能源管理系统。
发明内容
根据本公开实施例的第一方面,提供一种数据处理方法,由数据处理装置执行,包括:实时采集能源数据;检测所述能源数据是否为实时模拟量数据;若所述能源数据为实时模拟量数据,则启动第一定时器,以便存储在第一预设时间周期内接收到的所述实时模拟量数据;统计在所述第一预设时间周期内接收到的所述实时模拟量数据的特征值;将所述特征值发送给服务器。
在一些实施例中,所述特征值包括所述实时模拟量数据在所述第一预设时间周期内的加权平均值、最大值和最小值中的至少一项。
在一些实施例中,若所述能源数据不是实时模拟量数据,则检测所述能源数据是否为开关状态量数据;若所述能源数据为开关状态量数据,则在对应开关状态发生切换的时刻将所述开关状态量数据发送给服务器。
在一些实施例中,若所述能源数据不是开关状态量数据,则检测所述能源数据是否为累积量数据或统计量数据;若所述能源数据为累积量数据或统计量数据,则启动 第二定时器,以便存储在第二预设时间周期内接收到的所述累积量数据或统计量数据;将在第二预设时间周期内接收到的所述累积量数据或统计量数据发送给服务器。
在一些实施例中,所述第二预设时间周期大于所述第一预设时间周期。
在一些实施例中,在向所述服务器发送数据信息前,检测所述数据处理装置与所述服务器的通信是否正常;若所述数据处理装置与所述服务器的通信正常,则将所述数据信息发送给服务器;若所述数据处理装置与所述服务器的通信异常,则将所述数据信息存储在本地,并以第三预设时间周期检测所述通信是否恢复正常;若所述通信恢复正常,则将存储在本地的所述数据信息发送给服务器。
根据本公开实施例的第二方面,提供一种数据处理装置,包括:采集模块,被配置为实时采集能源数据;检测模块,被配置为检测所述能源数据是否为实时模拟量数据;处理模块,被配置为若所述能源数据为实时模拟量数据,则启动第一定时器,以便存储在第一预设时间周期内接收到的所述实时模拟量数据,统计在所述第一预设时间周期内接收到的所述实时模拟量数据的特征值,将所述特征值发送给服务器。
在一些实施例中,所述特征值包括所述实时模拟量数据在所述第一预设时间周期内的加权平均值、最大值和最小值中的至少一项。
在一些实施例中,检测模块还被配置为若所述能源数据不是实时模拟量数据,则检测所述能源数据是否为开关状态量数据;处理模块还被配置为若所述能源数据为开关状态量数据,则在对应开关状态发生切换的时刻将所述开关状态量数据发送给服务器。
在一些实施例中,检测模块还被配置为若所述能源数据不是开关状态量数据,则检测所述能源数据是否为累积量数据或统计量数据;处理模块还被配置为若所述能源数据为累积量数据或统计量数据,则启动第二定时器,以便存储在第二预设时间周期内接收到的所述累积量数据或统计量数据,将在第二预设时间周期内接收到的所述累积量数据或统计量数据发送给服务器。
在一些实施例中,所述第二预设时间周期大于所述第一预设时间周期。
在一些实施例中,处理模块还被配置为在向所述服务器发送数据信息前,检测所述数据处理装置与所述服务器的通信是否正常,若所述数据处理装置与所述服务器的通信正常,则将所述数据信息发送给服务器,若所述数据处理装置与所述服务器的通信异常,则将所述数据信息存储在本地,并以第三预设时间周期检测所述通信是否恢复正常,若所述通信恢复正常,则将存储在本地的所述数据信息发送给服务器。
根据本公开实施例的第三方面,提供一种数据处理装置,包括:存储器,被配置为存储指令;处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如上述任一实施例所述的方法。
根据本公开实施例的第四方面,提供一种能源信息网关,包括如上述任一实施例所述的数据处理装置。
根据本公开实施例的第五方面,提供一种能源互联网系统,包括:如上述任一实施例所述的能源信息网关;和服务器,被配置为接收所述能源信息网关发送的信息数据。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如上述任一实施例所述的方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为本公开一个实施例的数据处理方法的流程示意图;
图2为本公开另一个实施例的数据处理方法的流程示意图;
图3为本公开一个实施例的数据处理装置的结构示意图;
图4为本公开另一个实施例的数据处理装置的结构示意图;
图5为本公开一个实施例的能源信息网关的结构示意图;
图6为本公开一个实施例的能源互联网系统的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多 不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
发明人注意到,能源数据具有实时更新变化快的特点,因此底层能源信息传感器基于毫秒级采样周期所产生的能源数据量很大。若直接将所采集的能源数据上传给服务器,会占用大量的通信资源。
据此,本公开提供一种数据处理方案,能够有效减小能源数据的传输量,提高通信资源的使用效率。
图1为本公开一个实施例的数据处理方法的流程示意图。在一些实施例中,下列的数据处理方法步骤由能源信息网关中的数据处理装置执行。
在步骤101,实时采集能源数据。
在步骤102,检测能源数据是否为实时模拟量数据。
这里需要说明的是,实时模拟量数据是指快速波动的数据,例如电压数据、电流数据或功率数据等,数据变化可达毫秒级别。
由于底层传感器在进行信息采用时,会给不同类型的能源数据添加相应的标签。因此通过标签就能识别出能源数据类型。
在步骤103,若能源数据为实时模拟量数据,则启动第一定时器,以便存储在第一预设时间周期内接收到的实时模拟量数据。
在一些实施例中,特征值包括实时模拟量数据在第一预设时间周期内的加权平均值、最大值和最小值中的至少一项。
在一些实施例中,第一预设时间周期为一分钟。
在步骤104,统计在第一预设时间周期内接收到的实时模拟量数据的特征值。
在步骤105,将特征值发送给服务器。
基于本公开上述实施例提供的数据处理方法中,由于实时模拟量数据是快速变化的数据,通过将实时模拟量数据在预设时间周期内的特征值上报给服务器,从而可有效减小能源数据的传输量,提高通信资源的使用效率。
图2为本公开另一个实施例的数据处理方法的流程示意图。在一些实施例中,下列的数据处理方法步骤由能源信息网关中的数据处理装置执行。
在步骤201,实时采集能源数据。
在步骤202,检测能源数据是否为实时模拟量数据。
若能源数据为实时模拟量数据,则执行步骤203;若能源数据不是实时模拟量数据,则执行步骤206。
在步骤203,启动第一定时器,以便存储在第一预设时间周期内接收到的实时模拟量数据。
在一些实施例中,特征值包括实时模拟量数据在第一预设时间周期内的加权平均值、最大值和最小值中的至少一项。
在一些实施例中,第一预设时间周期为一分钟。
在步骤204,统计在第一预设时间周期内接收到的实时模拟量数据的特征值。
在步骤205,将特征值发送给服务器。
在步骤206,检测能源数据是否为开关状态量数据。
这里需要说明的是,开关状态量数据是指开关状态变化的数据。开关有开和关两种状态,通常开关切换的周期较长。
若能源数据为开关状态量数据,则执行步骤207;若能源数据不是开关状态量数据,则执行步骤208。
在步骤207,在对应开关状态发生切换的时刻将开关状态量数据发送给服务器。
在步骤208,检测能源数据是否为累积量数据或统计量数据。
若能源数据为累积量数据或统计量数据,则执行步骤209;否则结束本流程。
在步骤209,启动第二定时器,以便存储在第二预设时间周期内接收到的累积量数据或统计量数据。
这里需要说明的是,统计量是指一个时间段内容的统计值。例如一天内的最大值或最小值等。累积量是指一个时间段内的累积值。例如每小时累积的电量、每天累积 的电量等。
在一些实施例中,第二预设时间周期大于第一预设时间周期。
例如,第二预设时间周期为十分钟。
在步骤210,将在第二预设时间周期内接收到的累积量数据或统计量数据发送给服务器。
在一些实施例中,在向服务器发送数据信息前,检测数据处理装置与服务器的通信是否正常。若数据处理装置与服务器的通信正常,则将数据信息发送给服务器。若数据处理装置与服务器的通信异常,则将数据信息存储在本地,并以第三预设时间周期检测通信是否恢复正常。若通信恢复正常,则将存储在本地的数据信息发送给服务器。由此可避免因通信异常而导致数据信息的丢失。
例如,上述数据信息为数据处理装置发送给服务器的特征值、开关状态量数据、累积量数据或统计量数据。
图3为本公开一个实施例的数据处理装置的结构示意图。如图3所示,数据处理装置包括采集模块31、检测模块32和处理模块33。
采集模块31被配置为实时采集能源数据。
检测模块32被配置为检测能源数据是否为实时模拟量数据。
这里需要说明的是,实时模拟量数据是指快速波动的数据,例如电压数据、电流数据或功率数据等,数据变化可达毫秒级别。
由于底层传感器在进行信息采用时,会给不同类型的能源数据添加相应的标签。因此通过标签就能识别出能源数据类型。
处理模块33被配置为若能源数据为实时模拟量数据,则启动第一定时器,以便存储在第一预设时间周期内接收到的实时模拟量数据,统计在第一预设时间周期内接收到的实时模拟量数据的特征值,将特征值发送给服务器。
在一些实施例中,特征值包括实时模拟量数据在第一预设时间周期内的加权平均值、最大值和最小值中的至少一项。
在一些实施例中,第一预设时间周期为一分钟。
基于本公开上述实施例提供的数据处理装置中,由于实时模拟量数据是快速变化的数据,通过将实时模拟量数据在预设时间周期内的特征值上报给服务器,从而可有效减小能源数据的传输量,提高通信资源的使用效率。
在一些实施例中,检测模块32还被配置为若能源数据不是实时模拟量数据,则 检测能源数据是否为开关状态量数据。
这里需要说明的是,开关状态量数据是指开关状态变化的数据。开关有开和关两种状态,通常开关切换的周期较长。
处理模块33还被配置为若能源数据为开关状态量数据,则在对应开关状态发生切换的时刻将开关状态量数据发送给服务器。
在一些实施例中,检测模块32还被配置为若能源数据不是开关状态量数据,则检测能源数据是否为累积量数据或统计量数据。
这里需要说明的是,统计量是指一个时间段内容的统计值。例如一天内的最大值或最小值等。累积量是指一个时间段内的累积值。例如每小时累积的电量、每天累积的电量等。
处理模块33还被配置为若能源数据为累积量数据或统计量数据,则启动第二定时器,以便存储在第二预设时间周期内接收到的累积量数据或统计量数据,将在第二预设时间周期内接收到的累积量数据或统计量数据发送给服务器。
在一些实施例中,第二预设时间周期大于第一预设时间周期。
例如,第二预设时间周期为十分钟。
在一些实施例中,处理模块33还被配置为在向服务器发送数据信息前,检测数据处理装置与服务器的通信是否正常,若数据处理装置与服务器的通信正常,则将数据信息发送给服务器,若数据处理装置与服务器的通信异常,则将数据信息存储在本地,并以第三预设时间周期检测通信是否恢复正常,若通信恢复正常,则将存储在本地的数据信息发送给服务器。由此可避免因通信异常而导致数据信息的丢失。
例如,上述数据信息为数据处理装置发送给服务器的特征值、开关状态量数据、累积量数据或统计量数据。
图4为本公开另一个实施例的数据处理装置的结构示意图。如图4所示,数据处理装置包括存储器41和处理器42。
存储器41用于存储指令,处理器42耦合到存储器41,处理器42被配置为基于存储器存储的指令执行实现如图1或图2中任一实施例涉及的方法。
如图4所示,该数据处理装置还包括通信接口43,用于与其它设备进行信息交互。同时,该数据处理装置还包括总线44,处理器42、通信接口43、以及存储器41通过总线44完成相互间的通信。
存储器41可以包含高速RAM存储器,也可还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器41也可以是存储器阵列。存储器41还可能被分块,并且块可按一定的规则组合成虚拟卷。
此外,处理器42可以是一个中央处理器CPU,或者可以是专用集成电路ASIC,或是被配置成实施本公开实施例的一个或多个集成电路。
本公开同时还涉及一种计算机可读存储介质,其中计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如图1或图2中任一实施例涉及的方法。
图5为本公开一个实施例的能源信息网关的结构示意图。如图5所示,能源信息网关51包括数据处理装置52。数据处理装置52为图3或图4中任一实施例涉及的数据处理装置。
图6为本公开一个实施例的能源互联网系统的结构示意图。如图6所述,能源互联网系统包括能源信息网关61和服务器62。能源信息网关61为图5中任一实施例涉及的能源信息网关。
服务器62被配置为接收能源信息网关61发送的信息数据。
在一些实施例中,服务器62为云平台服务器。
在一些实施例中,在上面所描述的功能单元模块可以实现为用于执行本公开所描述功能的通用处理器、可编程逻辑控制器(Programmable Logic Controller,简称:PLC)、数字信号处理器(Digital Signal Processor,简称:DSP)、专用集成电路(Application Specific Integrated Circuit,简称:ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称:FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。
至此,已经详细描述了本公开的实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。
Claims (16)
- 一种数据处理方法,由数据处理装置执行,包括:实时采集能源数据;检测所述能源数据是否为实时模拟量数据;若所述能源数据为实时模拟量数据,则启动第一定时器,以便存储在第一预设时间周期内接收到的所述实时模拟量数据;统计在所述第一预设时间周期内接收到的所述实时模拟量数据的特征值;将所述特征值发送给服务器。
- 根据权利要求1所述的方法,其中,所述特征值包括所述实时模拟量数据在所述第一预设时间周期内的加权平均值、最大值和最小值中的至少一项。
- 根据权利要求1所述的方法,还包括:若所述能源数据不是实时模拟量数据,则检测所述能源数据是否为开关状态量数据;若所述能源数据为开关状态量数据,则在对应开关状态发生切换的时刻将所述开关状态量数据发送给服务器。
- 根据权利要求3所述的方法,还包括:若所述能源数据不是开关状态量数据,则检测所述能源数据是否为累积量数据或统计量数据;若所述能源数据为累积量数据或统计量数据,则启动第二定时器,以便存储在第二预设时间周期内接收到的所述累积量数据或统计量数据;将在第二预设时间周期内接收到的所述累积量数据或统计量数据发送给服务器。
- 根据权利要求4所述的方法,其中,所述第二预设时间周期大于所述第一预设时间周期。
- 根据权利要求1-5中任一项所述的方法,还包括:在向所述服务器发送数据信息前,检测所述数据处理装置与所述服务器的通信是否正常;若所述数据处理装置与所述服务器的通信正常,则将所述数据信息发送给服务器;若所述数据处理装置与所述服务器的通信异常,则将所述数据信息存储在本地,并以第三预设时间周期检测所述通信是否恢复正常;若所述通信恢复正常,则将存储在本地的所述数据信息发送给服务器。
- 一种数据处理装置,包括:采集模块,被配置为实时采集能源数据;检测模块,被配置为检测所述能源数据是否为实时模拟量数据;处理模块,被配置为若所述能源数据为实时模拟量数据,则启动第一定时器,以便存储在第一预设时间周期内接收到的所述实时模拟量数据,统计在所述第一预设时间周期内接收到的所述实时模拟量数据的特征值,将所述特征值发送给服务器。
- 根据权利要求7所述的装置,其中,所述特征值包括所述实时模拟量数据在所述第一预设时间周期内的加权平均值、最大值和最小值中的至少一项。
- 根据权利要求7所述的装置,其中,检测模块还被配置为若所述能源数据不是实时模拟量数据,则检测所述能源数据是否为开关状态量数据;处理模块还被配置为若所述能源数据为开关状态量数据,则在对应开关状态发生切换的时刻将所述开关状态量数据发送给服务器。
- 根据权利要求9所述的装置,其中,检测模块还被配置为若所述能源数据不是开关状态量数据,则检测所述能源数据是否为累积量数据或统计量数据;处理模块还被配置为若所述能源数据为累积量数据或统计量数据,则启动第二定 时器,以便存储在第二预设时间周期内接收到的所述累积量数据或统计量数据,将在第二预设时间周期内接收到的所述累积量数据或统计量数据发送给服务器。
- 根据权利要求10所述的装置,其中,所述第二预设时间周期大于所述第一预设时间周期。
- 根据权利要求7-11中任一项所述的装置,其中,处理模块还被配置为在向所述服务器发送数据信息前,检测所述数据处理装置与所述服务器的通信是否正常,若所述数据处理装置与所述服务器的通信正常,则将所述数据信息发送给服务器,若所述数据处理装置与所述服务器的通信异常,则将所述数据信息存储在本地,并以第三预设时间周期检测所述通信是否恢复正常,若所述通信恢复正常,则将存储在本地的所述数据信息发送给服务器。
- 一种数据处理装置,包括:存储器,被配置为存储指令;处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如权利要求1-6中任一项所述的方法。
- 一种能源信息网关,包括如权利要求7-13中任一项所述的数据处理装置。
- 一种能源互联网系统,包括:如权利要求14所述的能源信息网关;服务器,被配置为接收所述能源信息网关发送的信息数据。
- 一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如权利要求1-6中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110239733.0A CN112860703A (zh) | 2021-03-04 | 2021-03-04 | 数据处理方法和装置、能源信息网关和能源互联网系统 |
CN202110239733.0 | 2021-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022183739A1 true WO2022183739A1 (zh) | 2022-09-09 |
Family
ID=75991663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/123975 WO2022183739A1 (zh) | 2021-03-04 | 2021-10-15 | 数据处理方法和装置、能源信息网关和能源互联网系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112860703A (zh) |
WO (1) | WO2022183739A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112860703A (zh) * | 2021-03-04 | 2021-05-28 | 珠海格力电器股份有限公司 | 数据处理方法和装置、能源信息网关和能源互联网系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103296749A (zh) * | 2012-02-24 | 2013-09-11 | 江苏省帕瓦电力技术有限公司 | 一种基于无线传感网的电网状态信息的处理方法及系统 |
US20150319803A1 (en) * | 2014-05-02 | 2015-11-05 | Siliconpro Inc. | Method and system for monitoring an electrical power grid |
CN107302560A (zh) * | 2017-05-19 | 2017-10-27 | 珠海格力电器股份有限公司 | 能源信息系统、能源信息的处理方法及装置 |
CN107404483A (zh) * | 2017-07-31 | 2017-11-28 | 北京中科金马科技股份有限公司 | 数据处理方法、装置及数据采集系统 |
CN109101394A (zh) * | 2018-07-09 | 2018-12-28 | 珠海格力电器股份有限公司 | 数据处理方法和装置 |
CN110781050A (zh) * | 2018-07-31 | 2020-02-11 | 深圳市新绿智科技术有限公司 | 基于电能数据传感器的数据采集方法、装置及管理系统 |
CN112860703A (zh) * | 2021-03-04 | 2021-05-28 | 珠海格力电器股份有限公司 | 数据处理方法和装置、能源信息网关和能源互联网系统 |
-
2021
- 2021-03-04 CN CN202110239733.0A patent/CN112860703A/zh active Pending
- 2021-10-15 WO PCT/CN2021/123975 patent/WO2022183739A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103296749A (zh) * | 2012-02-24 | 2013-09-11 | 江苏省帕瓦电力技术有限公司 | 一种基于无线传感网的电网状态信息的处理方法及系统 |
US20150319803A1 (en) * | 2014-05-02 | 2015-11-05 | Siliconpro Inc. | Method and system for monitoring an electrical power grid |
CN107302560A (zh) * | 2017-05-19 | 2017-10-27 | 珠海格力电器股份有限公司 | 能源信息系统、能源信息的处理方法及装置 |
CN107404483A (zh) * | 2017-07-31 | 2017-11-28 | 北京中科金马科技股份有限公司 | 数据处理方法、装置及数据采集系统 |
CN109101394A (zh) * | 2018-07-09 | 2018-12-28 | 珠海格力电器股份有限公司 | 数据处理方法和装置 |
CN110781050A (zh) * | 2018-07-31 | 2020-02-11 | 深圳市新绿智科技术有限公司 | 基于电能数据传感器的数据采集方法、装置及管理系统 |
CN112860703A (zh) * | 2021-03-04 | 2021-05-28 | 珠海格力电器股份有限公司 | 数据处理方法和装置、能源信息网关和能源互联网系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112860703A (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106771883B (zh) | 一种基于云的多源信息配电故障定位方法及系统 | |
CN110071577B (zh) | 变电站监控信息验收方法及系统 | |
CN1639649B (zh) | 用于有条件触发的系统数据捕获的方法和系统 | |
CN111611254B (zh) | 设备能耗异常监测方法、装置、终端设备及存储介质 | |
US10295368B2 (en) | Data collection method, apparatus, and system | |
CN105577152B (zh) | 负载开关中的保护电路 | |
WO2022183739A1 (zh) | 数据处理方法和装置、能源信息网关和能源互联网系统 | |
CN110739661A (zh) | 一种过流保护装置及板卡 | |
CN104426696A (zh) | 一种故障处理的方法及装置 | |
CN110221674A (zh) | 服务器、电源应用方法及控制装置 | |
CN116887569A (zh) | 一种数据中心能耗预测和节能调节方法、系统及存储介质 | |
WO2024183555A1 (zh) | 储能设备故障排除方法、装置、计算机设备、介质和系统 | |
CN112393765A (zh) | 一种校园建筑能耗管理方法、系统、设备及可读存储介质 | |
US8578212B2 (en) | Remote communication system and method | |
JP6707646B2 (ja) | ユーティリティシステムにおける供給停止に対処するためのシステムおよび方法 | |
CN212459839U (zh) | 基于大数据的能耗监测系统 | |
CN115525461A (zh) | 储能设备的异常检测方法和服务器 | |
CN112332529B (zh) | 用于配电网的改进的电子保护装置 | |
CN113849375B (zh) | 一种用于计算机的远程管理方法、系统及介质 | |
CN104125082A (zh) | 用于电力系统通讯网络的监测方法、装置及系统 | |
CN115877269B (zh) | 基于智慧母线的配电预警方法、装置、设备及存储介质 | |
CN115277079B (zh) | 一种电力终端信息攻击监测方法和系统 | |
CN118408602B (zh) | 一种用于开关柜健康状态智能监测装置 | |
CN203811688U (zh) | 用于无功补偿模块的电容状态在线监测装置 | |
CN110943537B (zh) | 一种低功耗的高压线路负荷监测触发电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21928813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21928813 Country of ref document: EP Kind code of ref document: A1 |