WO2022183694A1 - 主叫信息认证方法、装置和系统 - Google Patents

主叫信息认证方法、装置和系统 Download PDF

Info

Publication number
WO2022183694A1
WO2022183694A1 PCT/CN2021/114577 CN2021114577W WO2022183694A1 WO 2022183694 A1 WO2022183694 A1 WO 2022183694A1 CN 2021114577 W CN2021114577 W CN 2021114577W WO 2022183694 A1 WO2022183694 A1 WO 2022183694A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssgw
iam message
calling
certificate
signature
Prior art date
Application number
PCT/CN2021/114577
Other languages
English (en)
French (fr)
Inventor
史敏锐
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2022183694A1 publication Critical patent/WO2022183694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3263Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3236Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys

Definitions

  • the present disclosure relates to the technical field of telecommunication network signaling, and in particular, to a calling information authentication method, device and system.
  • UE User Equipment
  • UNI User Network Interface, user network interface
  • UE is regarded as an untrusted party by the network, so UNI must consider and meet many security requirements, such as providing authentication, authorization, and AKA (Authentication and key Agreement, authentication and key agreement) and other mechanisms.
  • AKA Authentication and key Agreement, authentication and key agreement
  • the operator network entities are connected through NNI (Network-Network Interface, network-network interface). Based on the closedness and isolation of the telecommunication network, the relationship between network entities is regarded as trustworthy. Similarly, network entities between different operators are also connected through NNI, and they are also considered to be trusted, but this trust relationship is based on commercial contracts or agreements rather than security technologies. Based on this trust relationship described above, security measures and policies for NNI are usually not implemented.
  • NNI Network-Network Interface, network-network interface
  • NNI Network-to-Network Interface
  • SIP Session Initiation Protocol
  • Session Initiation Protocol Session Initiation Protocol
  • Diameter Protocol cluster
  • a technical problem to be solved by the present disclosure is to provide a caller information authentication method, device and system, which can ensure the authenticity, non-tamperability and traceability of caller information.
  • a method for authenticating calling information including: receiving a first IAM message sent by a local exchange LS, where the first IAM message includes calling information; generating calling signature parameters based on the calling information; The calling signature parameters and the signaling security gateway SSGW certificate parameters obtained from the certificate authority CA of this domain are added to the first IAM message and reorganized into a second IAM message; and the second IAM message is sent to the destination domain, wherein the purpose After passing the verification of the second IAM message, the domain removes the calling signature parameter and the SSGW certificate parameter in the second IAM message, generates a third IAM message, and sends the third IAM message to the next node.
  • obtaining the SSGW certificate parameters from the CA of the local domain includes: encrypting the SSGW identifier and sending it to the CA, so that after the CA verifies the SSGW identifier, generating a random number and signing it with the CA; receiving the CA signature and the CA's signature sent by the CA. Encrypted random number; after verifying that the CA signature is valid and decrypting the encrypted random number, the random number is sent to the CA, where the CA compares the received random number with the generated random number and generates the SSGW certificate parameters; and Receive the SSGW certificate parameters sent by the CA.
  • verifying the CA signature includes: decrypting the CA signature with the CA public key, wherein the CA encrypts the random number with the SSGW public key, and encrypts the encrypted random number with the CA private key to obtain the CA signature; And if the CA signature can be decrypted, it is determined that the CA signature is valid.
  • the SSGW certificate parameters include one or more of SSGW identity, SSGW public key, valid time, version number, and algorithm.
  • generating the caller signature parameter based on the caller information includes: performing a hash operation on the caller information to obtain a hash value; and after encrypting the hash value, generating the caller signature parameter.
  • a method for authenticating caller information including: receiving a second IAM message sent by a source domain, wherein the second IAM message includes the caller information, the caller's information in the first IAM message, and the Signature parameters and signaling security gateway SSGW certificate parameters; after verifying the calling signature parameters and SSGW certificate parameters, determine whether the calling information in the second IAM message has been tampered with; and if it is determined that the calling information in the second IAM message If it is not tampered with, the calling signature parameter and the SSGW certificate parameter in the second IAM message are removed to generate a third IAM message; and the third IAM message is sent to the next node.
  • verifying the SSGW certificate parameters includes: obtaining the SSGW certificate parameters from a certificate authority CA of the local domain, wherein the CA of the local domain obtains the SSGW certificate parameters from the CA of the source domain through the bridge CA; and if from If the SSGW certificate parameters obtained by the CA of this domain are consistent with the SSGW certificate parameters in the second IAM message, it is determined that the SSGW certificate parameters are verified successfully.
  • the verification of the calling signature parameter includes: decrypting the calling signature parameter, and if the hash value can be obtained through decryption, it is determined that the verification of the calling signature parameter is passed.
  • determining whether the caller information in the second IAM message has been tampered with includes: extracting the caller information in the second IAM message, and performing a hash operation on the extracted caller information; Whether the hash value is consistent with the hash value obtained after decrypting the calling party signature parameter; and if they are consistent, it is determined that the calling party information in the second IAM message has not been tampered with.
  • the second IAM message is rejected.
  • an apparatus for authenticating calling information including: an IAM message obtaining unit configured to receive a first IAM message sent by the local exchange LS, where the first IAM message includes calling information;
  • the calling signature generation unit is configured to generate calling signature parameters based on the calling information;
  • the SSGW certificate obtaining unit is configured to obtain the signaling security gateway SSGW certificate parameters from the certificate authority CA of this domain;
  • the IAM message reorganization unit is configured to add the calling signature parameter and the SSGW certificate parameter to the first IAM message, and reorganize it into a second IAM message;
  • an IAM message sending unit configured to send the second IAM message to the destination domain, wherein the destination domain pair After the verification of the second IAM message is passed, the calling signature parameter and the SSGW certificate parameter in the second IAM message are removed, a third IAM message is generated, and the third IAM message is sent to the next node.
  • an apparatus for authenticating calling information comprising: an IAM message receiving unit configured to receive a second IAM message sent by a source domain, wherein the second IAM message includes the first IAM message
  • the calling information, calling signature parameters and signaling security gateway SSGW certificate parameters in the IAM message verification unit after being configured to verify the calling signature parameters and SSGW certificate parameters, determine the calling information in the second IAM message Whether it has been tampered with; and the IAM message generating unit, configured to remove the calling signature parameter and the SSGW certificate parameter in the second IAM message if it is determined that the calling information in the second IAM message has not been tampered with, and generate a third IAM message ;
  • IAM message forwarding unit is configured to send the third IAM message to the next node.
  • a calling information authentication system including the above-mentioned calling information authentication apparatus.
  • the calling information authentication system further includes: a CA located in the source domain, configured to receive the encrypted SSGW identifier sent by the calling information authentication device of the local domain, and after verifying the SSGW identifier, generate a random number to CA signs, and sends the CA signature and encrypted random number to the calling information authentication device in the domain, receives the random number sent by the calling information authentication device in the domain, and compares the generated random number with the received random number After that, generate the SSGW certificate parameters, and send the SSGW certificate parameters to the calling information authentication device of this domain.
  • a CA located in the source domain, configured to receive the encrypted SSGW identifier sent by the calling information authentication device of the local domain, and after verifying the SSGW identifier, generate a random number to CA signs, and sends the CA signature and encrypted random number to the calling information authentication device in the domain, receives the random number sent by the calling information authentication device in the domain, and compares the generated random number with the received random number After that, generate the SSGW certificate parameters, and send
  • the calling information authentication system further includes: a CA located in the destination domain, configured to obtain the SSGW certificate parameters from the CA of the source domain through the bridge CA, and send the SSGW certificate parameters to the calling party in this domain Information authentication device.
  • a caller information authentication apparatus comprising: a memory; and a processor coupled to the memory, the processor being configured to perform the above-mentioned caller information authentication based on instructions stored in the memory method.
  • a non-transitory computer-readable storage medium on which computer program instructions are stored, and when the instructions are executed by a processor, implement the above-mentioned calling information authentication method.
  • the source domain generates the caller signature parameter based on the caller information, and uses the caller signature parameter and the certificate issued by the CA to sign the IAM message, and routes the reorganized IAM message to the destination domain, and the destination domain After the security detection of the message, the message is directed to the destination, and the authenticity, non-tampering and traceability of the calling information can be guaranteed under the premise of not changing the existing signaling transmitted by the LS.
  • FIG. 1 is a schematic flowchart of some embodiments of the calling information authentication method of the present disclosure.
  • FIG. 2 is a schematic flowchart of other embodiments of the calling information authentication method of the present disclosure.
  • FIG. 3 is a schematic flowchart of other embodiments of the calling information authentication method of the present disclosure.
  • FIG. 4 is a schematic flowchart of other embodiments of the calling information authentication method of the present disclosure.
  • FIG. 5 is a schematic structural diagram of some embodiments of the calling information authentication apparatus of the present disclosure.
  • FIG. 6 is a schematic structural diagram of other embodiments of the calling information authentication apparatus of the present disclosure.
  • FIG. 7 is a schematic structural diagram of other embodiments of the calling information authentication apparatus of the present disclosure.
  • FIG. 8 is a schematic structural diagram of some embodiments of the calling information authentication system of the present disclosure.
  • FIG. 1 is a schematic flowchart of some embodiments of the calling information authentication method of the present disclosure. This embodiment is performed by a calling information authentication device located in the source domain, for example, an SSGW (Signalling Security Gateway, signaling security gateway) located in the source domain.
  • SSGW Signaling Security Gateway
  • step 110 a first IAM (Initiate Address Message, initial address message) sent by an LS (Local Switch, local exchange) is received, and the first IAM message includes calling party information.
  • LS Local Switch, local exchange
  • the LS is the source or destination of the call, and the SSGW and the LS located in the same security domain are each other's internal trusted nodes.
  • the SSGW in the source domain receives the first IAM message sent by the LS in its own domain.
  • the calling information is the calling number.
  • caller signature parameters are generated.
  • the SSGW performs a hash operation on the caller information to obtain a hash value, and after encrypting the hash value, generates a caller signature parameter.
  • the SSGW decodes the first IAM message, extracts the original parameter of the message, that is, the calling number, performs a HASH operation on the calling number to obtain a HASH value, and encrypts the HASH value with the SSGW private key to generate the Caller signature parameter.
  • step 130 the caller's signature parameters and the SSGW certificate parameters obtained from the CA (Certificate Authority, certificate authority) of the domain are added to the first IAM message, and reassembled into the second IAM message.
  • CA Certificate Authority
  • the SSGW encrypts the SSGW identifier and sends it to the CA, so that after the CA verifies the SSGW identifier, a random number is generated and signed by the CA.
  • the SSGW receives the CA signature and encrypted random number sent by the CA. If it verifies that the CA signature is valid and decrypts the encrypted random number, the random number is sent to the CA.
  • the CA compares the received random number with the generated random number. After that, generate the SSGW certificate parameters.
  • the SSGW receives the SSGW certificate parameters sent by the CA.
  • step 140 the second IAM message is sent to the destination domain, wherein after the destination domain passes the verification of the second IAM message, the calling signature parameter and the SSGW certificate parameter in the second IAM message are removed to generate a third IAM message, and The third IAM message is sent to the next node.
  • the SSGW of the source domain routes the second IAM message to the destination domain through the Sa interface.
  • the second IAM message is an ISUP (Integrated Services Digital Network User Part, ISDN User Part, Integrated Services Digital Network User Part) message.
  • the SSGW of the destination domain receives the second IAM message sent by the source domain, and after verifying the caller's signature parameters and the SSGW certificate parameters, determines whether the caller information in the second IAM message has been tampered with. If the calling information in the second IAM message has not been tampered with, the calling signature parameter and the SSGW certificate parameter in the second IAM message are removed, a third IAM message is generated, and the third IAM message is sent to the next node.
  • the next node is the LS.
  • the caller signature parameter is generated, and the IAM message is signed by using the caller signature parameter and the certificate issued by the CA, the reorganized IAM message is routed to the destination domain, and the destination domain verifies the After security detection, the message is directed to the destination, and the authenticity, non-tampering and traceability of the calling information can be guaranteed without changing the existing signaling transmitted by the LS.
  • FIG. 2 is a schematic flowchart of other embodiments of the calling information authentication method of the present disclosure.
  • the SSGW obtains the SSGW certificate parameters from the CA.
  • the SSGW stores the CA's public key PC, and generates its own public key and private key pair ( P O , Q O ), and the CA stores its own private key QC .
  • the SSGW sends the SSGW identity A encrypted with the CA public key PC to the CA.
  • the SSGW identifier A is a signaling code or a global code of the SSWG, and the SSGW identifier A is pre-fixedly allocated.
  • step 220 the CA decrypts the encrypted SSGW identifier A using the private key QC to complete the verification.
  • step 230 the CA generates a random number N S , and encrypts the random number N S with the public key PO of the SSGW to obtain EN S .
  • step 240 the CA encrypts the EN S with the private key Q C to obtain the CA signature EN_Sig s .
  • the CA signature EN_Sig s are encoded as follows:
  • the CA sends EN S and EN_Sig s to the SSGW.
  • the SSGW verifies the EN_Sigs.
  • the SSGW decrypts the EN_Sig s by using the CA public key PC, and determines that the EN_Sig s is valid if the EN_Sig s can be decrypted.
  • step 270 if the EN_Sig s is valid, the SSGW decrypts the EN S using the private key Q O to obtain a random number N S .
  • the SSGW sends the random number N S to the CA.
  • step 290 if the CA determines that the received random number N S is consistent with the generated random number N S , the CA considers the random number N S to be valid, and generates the SSGW certificate parameter C S .
  • the SSGW identifier A, the SSGW public key P O and the valid time VA are encrypted using a related algorithm, and the SSGW identifier A, the SSGW public key P O and the valid time VA are obtained based on the encrypted data, the SSGW identifier A , the SSGW public key P O and the valid time VA SSGW certificate parameters.
  • the SSGW certificate parameters include one or more of the SSGW identity A , the SSGW public key P 0 , the validity time VA , the version number and the algorithm.
  • the SSGW certificate parameter encoding is as follows:
  • the CA sends the SSGW certificate parameter CS to the SSGW.
  • the CA receives the SSGW's request for a digital certificate, authenticates the requesting SSGW, binds the public key to the corresponding SSGW, and issues a digital certificate containing the public key and the owner's identity to the SSGW.
  • the public key included in the digital certificate belongs to the network entity SSGW marked in the certificate, so that the SSGW can use the digital certificate to sign the IAM message.
  • the digital certificate is also a confirmation or verification of the CA.
  • FIG. 3 is a schematic flowchart of other embodiments of the calling information authentication method of the present disclosure. This embodiment is performed by the calling information authentication apparatus located in the destination domain, for example, the SSGW located in the destination domain.
  • step 310 a second IAM message sent by the source domain is received, wherein the second IAM message includes the calling party information, the calling party signature parameter and the SSGW certificate parameter in the first IAM message.
  • step 320 after verifying the calling party signature parameter and the SSGW certificate parameter, it is determined whether the calling party information in the second IAM message has been tampered with.
  • the calling signature parameter is decrypted, and if the hash value can be obtained through decryption, it is determined that the verification of the calling signature parameter is passed.
  • the SSGW obtains the SSGW certificate parameters from the CA of the local domain, wherein the CA of the local domain obtains the SSGW certificate parameters from the CA of the source domain through the bridge CA. If the SSGW certificate parameters obtained from the CA of the local domain are the same as the If the SSGW certificate parameters in the second IAM message are consistent, it is determined that the SSGW certificate parameters are verified successfully.
  • CAs can cross-certify each other.
  • the caller information in the second IAM message is extracted, and a hash operation is performed on the extracted caller information; it is determined that the calculated hash value is the same as the hash value obtained by decrypting the caller's signature parameter. Whether the values are consistent; and if they are consistent, it is determined that the calling party information in the second IAM message has not been tampered with.
  • step 330 if it is determined that the calling party information in the second IAM message has not been tampered with, the calling party signature parameter and the SSGW certificate parameter in the second IAM message are removed to generate a third IAM message.
  • a third IAM message is sent to the next node.
  • the next node refers to the LS of the destination domain.
  • the SSGW of the destination domain performs security checks such as authentication, verification and decryption on the received second IAM message, and after checking the message, directs the message to the destination to effectively control the interaction with entities outside the network , to solve the problem that signaling attacks are difficult to identify and prevent.
  • FIG. 4 is a schematic flowchart of other embodiments of the calling number authentication method of the present disclosure. This embodiment is performed by the calling information authentication apparatus located in the destination domain, for example, the SSGW located in the destination domain.
  • step 410 the SSGW in the destination domain receives the second IAM message sent by the source domain.
  • the SSGW in the destination domain receives the second IAM message sent by the SSGW in the source domain.
  • step 420 the SSGW determines that the destination of the message is this network, and then decodes the second IAM message.
  • the second IAM message if the second IAM message needs to be forwarded to another network, the second IAM message is transparently transmitted.
  • step 430 it is judged whether the SSGW certificate parameter is valid, if valid, step 440 is performed, otherwise, step 480 is performed.
  • step 440 it is judged whether the caller's signature parameter is valid, if valid, step 450 is performed, otherwise, step 480 is performed.
  • the calling signature parameter is decrypted by using the public key of the SSGW of the source domain, and if the hash value can be obtained through decryption, it is determined that the calling signature parameter is valid.
  • step 450 it is determined whether the calling signal has been tampered with, if not, step 460 is performed, and if it is tampered, step 480 is performed.
  • the calling number in the second IAM message is extracted, and a hash operation is performed on the calling number to obtain a hash value. If the calculated hash value and the calling signature parameter are decrypted to obtain If the hash values are consistent, it is determined that the calling signal has not been tampered with.
  • step 460 the calling signature parameter and the SSGW certificate parameter in the second IAM message are removed to obtain the calling number of the third IAM message.
  • a third IAM message is sent to the LS of the domain.
  • step 480 it is judged whether to block the call, if so, step 490 is executed, otherwise, step 460 is executed.
  • the call is released.
  • the second IAM message is rejected.
  • the security of the calling number can be guaranteed.
  • FIG. 5 is a schematic structural diagram of some embodiments of the calling information authentication apparatus of the present disclosure.
  • the calling information authentication apparatus in this embodiment may be a separate device, or may be integrated into an existing device, for example, an SSGW located in the source domain.
  • the calling information authentication apparatus includes: an IAM message obtaining unit 510 , a calling signature generating unit 520 , an SSGW certificate obtaining unit 530 , an IAM message reassembling unit 540 and an IAM message sending unit 550 .
  • the IAM message obtaining unit 510 is configured to receive a first IAM message sent by the LS, where the first IAM message includes calling party information.
  • the calling signature generating unit 520 is configured to generate calling signature parameters based on the calling information.
  • a hash operation is performed on the caller information to obtain a hash value, and after the hash value is encrypted, a caller signature parameter is generated.
  • the SSGW certificate obtaining unit 530 is configured to obtain the SSGW certificate parameters from the CA of this domain.
  • the SSGW identifier is encrypted and sent to the CA, so that after the CA verifies the SSGW identifier, a random number is generated and signed by the CA; the CA signature and the encrypted random number sent by the CA are received; if the CA signature is verified to be valid, After decrypting the encrypted random number, the random number is sent to the CA, wherein the CA generates the SSGW certificate parameters after comparing the received random number with the generated random number; and receives the SSGW certificate parameters sent by the CA.
  • the SSGW certificate obtaining unit is configured to use the CA public key to decrypt the CA signature, wherein the CA uses the SSGW public key to encrypt the random number, and uses the CA private key to encrypt the encrypted random number to obtain the CA signature; and if the CA signature can be decrypted, the CA signature is determined to be valid.
  • the SSGW certificate parameters include one or more of SSGW identity, SSGW public key, valid time, version number, and algorithm.
  • the IAM message reorganization unit 540 is configured to add the caller's signature parameter and the SSGW certificate parameter to the first IAM message and reassemble into a second IAM message.
  • the IAM message sending unit 550 is configured to send the second IAM message to the destination domain, wherein after the destination domain passes the verification of the second IAM message, it removes the calling signature parameter and the SSGW certificate parameter in the second IAM message, and generates a third IAM message. IAM message, and send the first IAM message to the next node.
  • the caller signature parameter is generated, and the certificate issued by the CA is used to sign the IAM message, the reorganized IAM message is routed to the destination domain, and the destination domain performs security detection on the message. , direct the message to the destination, and ensure the authenticity, non-tampering and traceability of the calling information on the premise of not changing the signaling transmitted by the existing LS.
  • FIG. 6 is a schematic structural diagram of other embodiments of the calling information authentication apparatus of the present disclosure.
  • the calling information authentication apparatus in this embodiment may be a separate device, or may be integrated into an existing device, for example, an SSGW located in the destination domain.
  • the calling information authentication apparatus includes: an IAM message receiving unit 610 , an IAM message verifying unit 620 , an IAM message generating unit 630 and an IAM message forwarding unit 640 .
  • the IAM message receiving unit 610 is configured to receive a second IAM message sent by the source domain, wherein the second IAM message includes the calling party information, the calling party signature parameter and the SSGW certificate parameter in the first IAM message, and the calling party information is, for example, The calling number.
  • the IAM message verification unit 620 is configured to determine whether the caller information in the second IAM message has been tampered with after verifying the caller signature parameter and the SSGW certificate parameter.
  • the IAM message verification unit 620 is configured to decrypt the calling signature parameter, and if the hash value can be obtained through decryption, it is determined that the verification of the calling signature parameter is passed.
  • the IAM message verification unit 620 is configured to obtain the SSGW certificate parameters from the CA of the local domain, wherein the CA of the local domain obtains the SSGW certificate parameters from the CA of the source domain through the bridge CA. If the acquired SSGW certificate parameters are consistent with the SSGW certificate parameters in the second IAM message, it is determined that the SSGW certificate parameters are verified successfully.
  • the IAM message verification unit 620 is configured to extract the caller information in the second IAM message, and perform a hash operation on the extracted caller information; Whether the hash values obtained after the signature parameters are decrypted are consistent; and if they are consistent, it is determined that the calling party information in the second IAM message has not been tampered with.
  • the IAM message generating unit 630 is configured to, if it is determined that the calling party information in the second IAM message has not been tampered with, remove the calling party signature parameter and the SSGW certificate parameter in the second IAM message, and generate a third IAM message.
  • the IAM message forwarding unit 640 is configured to send the third IAM message to the next node.
  • the IAM message forwarding unit 640 is further configured to reject if any one of the caller signature parameter and the SSGW certificate parameter is not verified, or if it is determined that the caller information in the second IAM message has been tampered with Second IAM message.
  • the calling information authentication device located in the destination domain performs security checks such as authentication, verification and decryption on the received second IAM message, and after checking the message, directs the message to the destination, which can ensure that the calling Authenticity, immutability and traceability of information.
  • the second IAM message is transparently transmitted.
  • FIG. 7 is a schematic structural diagram of other embodiments of the calling information authentication apparatus of the present disclosure.
  • the calling information authentication device may be located in the source domain or in the destination domain.
  • the calling information authentication apparatus 700 includes a memory 710 and a processor 720 .
  • the memory 710 may be a magnetic disk, flash memory or any other non-volatile storage medium.
  • the memory is used to store the instructions in the embodiments corresponding to FIGS. 1-4.
  • the processor 720 is coupled to the memory 710 and may be implemented as one or more integrated circuits, such as a microprocessor or microcontroller.
  • the processor 720 is used to execute instructions stored in the memory.
  • processor 720 is coupled to memory 710 through BUS bus 730 .
  • the calling information authentication apparatus 700 can also be connected to an external storage system 750 through a storage interface 740 to call external data, and can also be connected to a network or another computer system (not shown) through a network interface 760 . It will not be described in detail here.
  • the data instructions are stored in the memory and the above instructions are processed by the processor, so that the authenticity, non-tamperability and traceability of the calling information can be guaranteed.
  • a calling information authentication system is protected, and the calling information authentication system includes a calling information authentication device located in a source domain and a calling information authentication device located in a destination domain.
  • the calling information authentication system further includes a CA located in the source domain, configured to receive the encrypted SSGW identifier sent by the calling information authentication device in the local domain, and after verifying the SSGW identifier, generate a random number with the CA sign, and send the CA signature and encrypted random number to the calling information authentication device in the domain, receive the random number sent by the calling information authentication device in the domain, and compare the generated random number with the received random number. , generate the SSGW certificate parameters, and send the SSGW certificate parameters to the calling information authentication device of this domain.
  • the calling information authentication system further includes a CA located in the destination domain, configured to obtain the SSGW certificate parameters from the CA of the source domain through the bridge CA, and send the SSGW certificate parameters to the calling information of this domain Authentication device.
  • a CA located in the destination domain, configured to obtain the SSGW certificate parameters from the CA of the source domain through the bridge CA, and send the SSGW certificate parameters to the calling information of this domain Authentication device.
  • the calling information authentication apparatus takes the SSGW as an example to introduce the calling information authentication system.
  • FIG. 8 is a schematic structural diagram of some embodiments of the calling information authentication system of the present disclosure.
  • the SSGW, CA and multiple LSs located in the network where operator A is located and the SSGW, CA and multiple LSs located in the network where operator B is located, wherein the CA located in the network where operator A is located and the multiple LS located in the network where operator A is located
  • the CA of the network where business B is located exchanges information through the bridge CA.
  • the signaling ISUP/BICC (bearer Independent Call Control, bearer independent call control) between the SSGW of the source domain and the SSGW of the destination domain is extended, and the extended parameters include certificate parameters and signature parameters.
  • Two parameters are carried in the IAM message as shown below.
  • the message interaction between LSs within an operator may be considered credible, and the above-mentioned security mechanism may not be used.
  • ISUP lacks a cognitive identification mechanism, and the receiving end entity completes passive reception and processing of the sending end message, while in this embodiment, the SSGW uses the calling party signature parameters and the certificate issued by the CA to sign the message, and passes the Sa interface. Route messages to another security domain. All incoming ISUP messages from another domain are checked by the SSGW for security, including authentication, verification, decryption, etc. After checking the message by the SSGW of the destination domain, the SSGW shall direct the message to the destination LS. If the message does not comply with the security policy, the SSGW will block or discard the message.
  • the network entity that realizes signaling interaction performs mutual authentication on the calling number and establishes a trusted calling number transmission, which can ensure the authenticity, non-tampering and traceability of the calling number.
  • a computer-readable storage medium has computer program instructions stored thereon, the instructions, when executed by a processor, implement the steps of the methods in the embodiments corresponding to FIGS. 1-4 .
  • embodiments of the present disclosure may be provided as a method, apparatus, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein .
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本公开公开了一种主叫信息认证方法、装置和系统,涉及电信网络信令技术领域。该方法包括:接收LS发送的第一IAM消息,第一IAM消息中包括主叫信息;基于主叫信息,生成主叫签名参数;将主叫签名参数和从本域的CA获取的SSGW证书参数添加到第一IAM消息,重组为第二IAM消息;以及将第二IAM消息发送至目的域,其中,目的域对第二IAM消息验证通过后,去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息,并将第三IAM消息发送至下一节点。本公开在不改变现有LS传输的信令的前提下,能够保证主叫信息的真实性、不可篡改性和可溯源性。

Description

主叫信息认证方法、装置和系统
相关申请的交叉引用
本申请是以CN申请号为202110253128.9,申请日为2021年3月3日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电信网络信令技术领域,尤其涉及一种主叫信息认证方法、装置和系统。
背景技术
电信运营商传统上拥有网络基础设施,包括接入网络、核心网络和业务网络。UE(User Equipment,用户终端)通过UNI(User Network Interface,用户网络接口)连接,UE被网络视为不可信方,因此UNI必须考虑并满足了许多安全需求,例如提供身份验证、授权、和AKA(Authentication and key Agreement,认证和密钥协商)等机制。
运营商网络实体通过NNI(Network-Network Interface,网络-网络接口)连接。基于电信网络的封闭性和隔离性,网络实体之间的关系被视为可信任的。同样的,不同运营商间的网络实体之间也是通过NNI连接,它们之间也认为是可信的,但这种信任关系是基于商业合同或协议而非安全技术。基于上述这种信任关系,通常不会实施针对NNI的安全措施和策略。
如今,电信网络越来越开放。用户设备通过NNI接入到网络中,例如,通过SIP(Session Initiation Protocol,会话初始协议),七号信令和Diameter(协议簇)等。在这种情况下,用于控制和管理的NNI信令可能被滥用,导致与用户相关的主叫号码被非法获取、冒用、篡改,并且不可溯源。
发明内容
本公开要解决的一个技术问题是,提供一种主叫信息认证方法、装置和系统,能够保证主叫信息的真实性、不可篡改性和可溯源性。
根据本公开一方面,提出一种主叫信息认证方法,包括:接收本地交换机LS发 送的第一IAM消息,第一IAM消息中包括主叫信息;基于主叫信息,生成主叫签名参数;将主叫签名参数和从本域的证书颁发机构CA获取的信令安全网关SSGW证书参数添加到第一IAM消息,重组为第二IAM消息;以及将第二IAM消息发送至目的域,其中,目的域对第二IAM消息验证通过后,去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息,并将第三IAM消息发送至下一节点。
在一些实施例中,从本域的CA获取SSGW证书参数包括:将SSGW标识加密后,发送至CA,以使CA对SSGW标识验证后,生成随机数以CA签名;接收CA发送的CA签名和加密的随机数;若验证CA签名有效,并解密加密的随机数后,将随机数发送至CA,其中,CA对接收的随机数和生成的随机数进行比对后,生成SSGW证书参数;以及接收CA发送的SSGW证书参数。
在一些实施例中,验证CA签名包括:利用CA公钥对CA签名进行解密,其中,CA利用SSGW公钥对随机数进行加密,利用CA私钥对加密的随机数进行加密,得到CA签名;以及若能够解密CA签名,则确定CA签名有效。
在一些实施例中,SSGW证书参数包括SSGW标识、SSGW公钥、有效时间、版本号和算法中的一项或多项。
在一些实施例中,基于主叫信息,生成主叫签名参数包括:对主叫信息进行哈希运算,得到哈希值;以及对哈希值加密后,生成主叫签名参数。
根据本公开的另一方面,还提出一种主叫信息认证方法,包括:接收源域发送的第二IAM消息,其中,第二IAM消息中包括第一IAM消息中的主叫信息、主叫签名参数和信令安全网关SSGW证书参数;对主叫签名参数和SSGW证书参数进行验证后,判断第二IAM消息中的主叫信息是否被篡改;以及若确定第二IAM消息中的主叫信息未被篡改,则去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息;以及将第三IAM消息发送至下一节点。
在一些实施例中,对SSGW证书参数进行验证包括:从本域的证书颁发机构CA获取SSGW证书参数,其中,本域的CA通过桥CA从源域的CA中获取SSGW证书参数;以及若从本域的CA获取的SSGW证书参数,与第二IAM消息中的SSGW证书参数一致,则确定SSGW证书参数验证通过。
在一些实施例中,对主叫签名参数进行验证包括:对主叫签名参数进行解密,若能解密得到哈希值,则确定主叫签名参数验证通过。
在一些实施例中,判断第二IAM消息中的主叫信息是否被篡改包括:对第二IAM 消息中的主叫信息进行提取,并对提取的主叫信息进行哈希运算;判断计算得到的哈希值与对主叫签名参数进行解密后得到的哈希值是否一致;以及若一致,则确定第二IAM消息中的主叫信息未被篡改。
在一些实施例中,若主叫签名参数和SSGW证书参数中的任意一项未验证通过,或者,确定第二IAM消息中的主叫信息被篡改,则拒绝第二IAM消息。
根据本公开的另一方面,还提出一种主叫信息认证装置,包括:IAM消息获取单元,被配置为接收本地交换机LS发送的第一IAM消息,第一IAM消息中包括主叫信息;主叫签名生成单元,被配置为基于主叫信息,生成主叫签名参数;SSGW证书获取单元,被配置为从本域的证书颁发机构CA获取的信令安全网关SSGW证书参数;IAM消息重组单元,被配置为将主叫签名参数和SSGW证书参数添加到第一IAM消息,重组为第二IAM消息;以及IAM消息发送单元,被配置为将第二IAM消息发送至目的域,其中,目的域对第二IAM消息验证通过后,去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息,并将第三IAM消息发送至下一节点。
根据本公开的另一方面,还提出一种主叫信息认证装置,包括:IAM消息接收单元,被配置为接收源域发送的第二IAM消息,其中,第二IAM消息中包括第一IAM消息中的主叫信息、主叫签名参数和信令安全网关SSGW证书参数;IAM消息验证单元,被配置为对主叫签名参数和SSGW证书参数进行验证后,判断第二IAM消息中的主叫信息是否被篡改;以及IAM消息生成单元,被配置为若确定第二IAM消息中的主叫信息未被篡改,则去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息;IAM消息转发单元,被配置为将第三IAM消息发送至下一节点。
根据本公开的另一方面,还提出一种主叫信息认证系统,包括:上述的主叫信息认证装置。
在一些实施例中,该主叫信息认证系统还包括:位于源域的CA,被配置为接收本域的主叫信息认证装置发送的加密的SSGW标识,对SSGW标识验证后,生成随机数以CA签名,并将CA签名和加密的随机数发送至本域的主叫信息认证装置,接收本域的主叫信息认证装置发送的随机数,将生成的随机数与接收的随机数进行比对后,生成SSGW证书参数,并将SSGW证书参数发送至本域的主叫信息认证装置。
在一些实施例中,该主叫信息认证系统还包括:位于目的域的CA,被配置为通过桥CA从源域的CA中获取SSGW证书参数,并将SSGW证书参数发送至本域的主叫信息认证装置。
根据本公开的另一方面,还提出一种主叫信息认证装置,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器的指令执行如上述的主叫信息认证方法。
根据本公开的另一方面,还提出一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现上述的主叫信息认证方法。
本公开实施例中,源域基于主叫信息,生成主叫签名参数,并利用主叫签名参数和CA颁发的证书对IAM消息进行签名,将重组后的IAM消息路由到目的域,由目的域对消息进行安全性检测后,将消息指向目的地,在不改变现有LS传输的信令的前提下,能够保证主叫信息的真实性、不可篡改性和可溯源性。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为本公开的主叫信息认证方法的一些实施例的流程示意图。
图2为本公开的主叫信息认证方法的另一些实施例的流程示意图。
图3为本公开的主叫信息认证方法的另一些实施例的流程示意图。
图4为本公开的主叫信息认证方法的另一些实施例的流程示意图。
图5为本公开的主叫信息认证装置的一些实施例的结构示意图。
图6为本公开的主叫信息认证装置的另一些实施例的结构示意图。
图7为本公开的主叫信息认证装置的另一些实施例的结构示意图。
图8为本公开的主叫信息认证系统的一些实施例的结构示意图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
除非特别声明,否则,本公开中的“第一”和“第二”等描述,仅用来区分不同的对象,并不用来表示大小或时序等含义。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
图1为本公开的主叫信息认证方法的一些实施例的流程示意图。该实施例由位于源域的主叫信息认证装置,例如位于源域的SSGW(Signalling Security Gateway,信令安全网关)执行。
在步骤110,接收LS(Local Switch,本地交换机)发送的第一IAM(Initiate Address Message,初始地址消息),第一IAM消息中包括主叫信息。
在一些实施例中,LS为呼叫的源点或目的地,位于同一安全域内的SSGW和LS互为内部可信节点。位于源域的SSGW接收本域的LS发送的第一IAM消息。
在一些实施例中,主叫信息为主叫号码。
在步骤120,基于主叫信息,生成主叫签名参数。
在一些实施例中,SSGW对主叫信息进行哈希运算,得到哈希值,对哈希值加密后,生成主叫签名参数。
在一些实施例中,SSGW对第一IAM消息进行解码,提取消息原始参数,即主叫号码,并对主叫号码进行HASH运算,得到HASH值,利用SSGW私钥对HASH值进行加密,生成该主叫签名参数。
在步骤130,将主叫签名参数和从本域的CA(Certificate Authority,证书颁发机构)获取的SSGW证书参数添加到第一IAM消息,重组为第二IAM消息。
在一些实施例中,SSGW将SSGW标识加密后,发送至CA,以使CA对SSGW标识验证后,生成随机数以CA签名。SSGW接收CA发送的CA签名和加密的随机数,若验证CA签名有效,并解密加密的随机数后,将随机数发送至CA,其中,CA对接收的随机数和生成的随机数进行比对后,生成SSGW证书参数。SSGW接收CA发送的SSGW证书参数。
在步骤140,将第二IAM消息发送至目的域,其中,目的域对第二IAM消息验证通过后,去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息,并将第三IAM消息发送至下一节点。
在一些实施例中,源域的SSGW通过Sa接口将第二IAM消息路由到目的域。该第二IAM消息为ISUP(Integrated Services Digital Network User Part,ISDN User Part,综合业务数字网用户部分)消息。
在一些实施例中,目的域的SSGW接收源域发送的第二IAM消息,对主叫签名参数和SSGW证书参数进行验证后,判断第二IAM消息中的主叫信息是否被篡改,若确定第二IAM消息中的主叫信息未被篡改,则去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息,并将第三IAM消息发送至下一节点。
在一些实施例中,下一节点为LS。
在上述实施例中,基于主叫信息,生成主叫签名参数,并利用主叫签名参数和CA颁发的证书对IAM消息进行签名,将重组后的IAM消息路由到目的域,由目的域对消息进行安全性检测后,将消息指向目的地,在不改变现有LS传输的信令的前提下,能够保证主叫信息的真实性、不可篡改性和可溯源性。
图2为本公开的主叫信息认证方法的另一些实施例的流程示意图。该实施例中,SSGW从CA中获取SSGW证书参数。SSGW中存储CA的公钥P C,以及生成自身公钥和私钥对(P O,Q O),CA中存储自身的私钥Q C
在步骤210,SSGW向CA发送利用CA公钥P C加密的SSGW标识A。
在一些实施例中,SSGW标识A为SSWG的信令码或者全局码,该SSGW标识A为预先固定分配的。
在步骤220,CA利用私钥Q C对加密的SSGW标识A进行解密,完成验证。
在步骤230,CA生成随机数N S,并利用SSGW的公钥P O对随机数N S进行加密,得到EN S
在步骤240,CA利用私钥Q C对EN S进行加密,得到CA签名EN_Sig s
在一些实施例中,CA签名EN_Sig s编码如下所示:
Figure PCTCN2021114577-appb-000001
在步骤250,CA将EN S和EN_Sig s发送至SSGW。
在步骤260,SSGW对EN_Sig s进行验证。
在一些实施例中,SSGW利用CA公钥P C对EN_Sig s进行解密,若能够解密该EN_Sig s,则确定EN_Sig s有效。
在步骤270,如果EN_Sig s有效,则SSGW利用私钥Q O对EN S进行解密,得到随机数N S
在步骤280,SSGW将随机数N S发送至CA。
在步骤290,CA若确定接收到的随机数N S和生成的随机数N S一致,则认为随机数N S有效,生成SSGW证书参数C S
在一些实施例中,利用相关算法对SSGW标识A、SSGW公钥P O、有效时间V A进行加密,基于加密后的数据、以及SSGW标识A、SSGW公钥P O、有效时间V A得到该SSGW证书参数。
在一些实施例中,SSGW证书参数包括SSGW标识A、SSGW公钥P O、有效时间V A、版本号和算法中的一项或多项。
在一些实施例中,SSGW证书参数编码如下所示:
Figure PCTCN2021114577-appb-000002
在步骤2100,CA将SSGW证书参数C S发送至SSGW。
在上述实施例中,CA接收SSGW对数字证书的请求,并对发出请求的SSGW进行认证,将公钥与相应的SSGW绑定,并向SSGW发布包含公钥和所有者身份的数字证书,该数字证书包含的公钥属于证书中标注的网络实体SSGW,便于SSGW利用该数字证书对IAM消息进行签名。另外,该数字证书也是对CA的确认或验证。
图3为本公开的主叫信息认证方法的另一些实施例的流程示意图。该实施例由位于目的域的主叫信息认证装置,例如位于目的域的SSGW执行。
在步骤310,接收源域发送的第二IAM消息,其中,第二IAM消息中包括第一IAM消息中的主叫信息、主叫签名参数和SSGW证书参数。
在步骤320,对主叫签名参数和SSGW证书参数进行验证后,判断第二IAM消息中的主叫信息是否被篡改。
在一些实施例中,对主叫签名参数进行解密,若能解密得到哈希值,则确定主叫签名参数验证通过。
在一些实施例中,SSGW从本域的CA获取SSGW证书参数,其中,本域的CA通过桥CA从源域的CA中获取SSGW证书参数,若从本域的CA获取的SSGW证书参数,与第二IAM消息中的SSGW证书参数一致,则确定SSGW证书参数验证通过。
在一些实施例中,CA之间可以相互交叉认证。
在一些实施例中,对第二IAM消息中的主叫信息进行提取,并对提取的主叫信息进行哈希运算;判断计算得到的哈希值与对主叫签名参数进行解密后得到的哈希值是否一致;以及若一致,则确定第二IAM消息中的主叫信息未被篡改。
在步骤330,若确定第二IAM消息中的主叫信息未被篡改,则去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息。
在步骤340,将第三IAM消息发送至下一节点。
在一些实施例中,下一节点指的是目的域的LS。
在上述实施例中,目的域的SSGW对接收到的第二IAM消息进行认证、验证和解密等安全性检查,并在检查消息后,将消息指向目的地,将有效控制与网络外实体的交互,解决信令攻击难以识别和防范的问题。
图4为本公开的主叫号码认证方法的另一些实施例的流程示意图。该实施例由位于目的域的主叫信息认证装置,例如位于目的域的SSGW执行。
在步骤410,位于目的域的SSGW接收源域发送的第二IAM消息。
在一些实施例中,位于目的域的SSGW接收源域的SSGW发送的第二IAM消息。
在步骤420,SSGW确定该消息的目的地为本网络,则对第二IAM消息进行解码。
在一些实施例中,若该第二IAM消息需要转送到另一网络,则透传该第二IAM消息。
在步骤430,判断SSGW证书参数是否有效,若有效,则执行步骤440,否则,执行步骤480。
在步骤440,判断主叫签名参数是否有效,若有效,则执行步骤450,否则,执行步骤480。
在一些实施例中,利用源域的SSGW的公钥对主叫签名参数进行解密,若能够解密得到哈希值,则确定主叫签名参数有效。
在步骤450,判断主叫信号是否被篡改,若没有,则执行步骤460,若被篡改,则执行步骤480。
在一些实施例中,提取第二IAM消息中的主叫号码,并对该主叫号码进行哈希运算,得到哈希值,若计算得到的哈希值与对主叫签名参数进行解密后得到的哈希值一致,则确定主叫信号未被篡改。
在步骤460,将第二IAM消息中的主叫签名参数和SSGW证书参数去除,得到第三IAM消息的主叫号码。
在步骤470,将第三IAM消息发送至本域的LS。
在步骤480,判断是否屏蔽该呼叫,若是,则执行步骤490,否则,执行步骤460。
在步骤490,释放该呼叫。
若主叫签名参数和SSGW证书参数中的任意一项未验证通过,或者,确定第二IAM消息中的主叫号码被篡改,则拒绝第二IAM消息。
在上述实施例中,能够保证主叫号码的安全性。
图5为本公开的主叫信息认证装置的一些实施例的结构示意图。该实施例中的主叫信息认证装置可以为单独设备,也可以集成在现有设备中,例如为位于源域的SSGW。该主叫信息认证装置包括:IAM消息获取单元510、主叫签名生成单元520、SSGW证书获取单元530、IAM消息重组单元540和IAM消息发送单元550。
IAM消息获取单元510被配置为接收LS发送的第一IAM消息,第一IAM消息中包括主叫信息。
主叫签名生成单元520被配置为基于主叫信息,生成主叫签名参数。
在一些实施例中,对主叫信息进行哈希运算,得到哈希值,对哈希值加密后,生成主叫签名参数。
SSGW证书获取单元530被配置为从本域的CA获取SSGW证书参数。
在一些实施例中,将SSGW标识加密后,发送至CA,以使CA对SSGW标识验证后,生成随机数以CA签名;接收CA发送的CA签名和加密的随机数;若验证CA签名有效,并解密加密的随机数后,将随机数发送至CA,其中,CA对接收的随机数和生成的随机数进行比对后,生成SSGW证书参数;以及接收CA发送的SSGW证书参数。
在一些实施例中,SSGW证书获取单元被配置为利用CA公钥对CA签名进行解密,其中,CA利用SSGW公钥对随机数进行加密,利用CA私钥对加密的随机数进行加密,得到CA签名;以及若能够解密CA签名,则确定CA签名有效。
在一些实施例中,SSGW证书参数包括SSGW标识、SSGW公钥、有效时间、版本号和算法中的一项或多项。
IAM消息重组单元540被配置为将主叫签名参数和SSGW证书参数添加到第一IAM消息,重组为第二IAM消息。
IAM消息发送单元550被配置为将第二IAM消息发送至目的域,其中,目的域对第二IAM消息验证通过后,去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息,并将第一IAM消息发送至下一节点。
在上述实施例中,基于主叫信息,生成主叫签名参数,并利用CA颁发的证书对IAM消息进行签名,将重组后的IAM消息路由到目的域,由目的域对消息进行安全性检测后,将消息指向目的地,在不改变现有LS传输的信令的前提下,能够保证主叫信息的真实性、不可篡改性和可溯源性。
图6为本公开的主叫信息认证装置的另一些实施例的结构示意图。该实施例中的主叫信息认证装置可以为单独设备,也可以集成在现有设备中,例如为位于目的域的SSGW。该主叫信息认证装置包括:IAM消息接收单元610、IAM消息验证单元620、IAM消息生成单元630和IAM消息转发单元640。
IAM消息接收单元610被配置为接收源域发送的第二IAM消息,其中,第二IAM消息中包括第一IAM消息中的主叫信息、主叫签名参数和SSGW证书参数,主叫信息例如为主叫号码。
IAM消息验证单元620被配置为对主叫签名参数和SSGW证书参数进行验证后,判断第二IAM消息中的主叫信息是否被篡改。
在一些实施例中,IAM消息验证单元620被配置为对主叫签名参数进行解密,若能解密得到哈希值,则确定主叫签名参数验证通过。
在一些实施例中,IAM消息验证单元620被配置为从本域的CA获取SSGW证书参数,其中,本域的CA通过桥CA从源域的CA中获取SSGW证书参数,若从本域的CA获取的SSGW证书参数,与第二IAM消息中的SSGW证书参数一致,则确定SSGW证书参数验证通过。
在一些实施例中,IAM消息验证单元620被配置为对第二IAM消息中的主叫信息进行提取,并对提取的主叫信息进行哈希运算;判断计算得到的哈希值与对主叫签名参数进行解密后得到的哈希值是否一致;以及若一致,则确定第二IAM消息中的主叫信息未被篡改。
IAM消息生成单元630被配置为若确定第二IAM消息中的主叫信息未被篡改,则去除第二IAM消息中的主叫签名参数和SSGW证书参数,生成第三IAM消息。
IAM消息转发单元640被配置为将第三IAM消息发送至下一节点。
在一些实施例中,IAM消息转发单元640还被配置为若主叫签名参数和SSGW证书参数中的任意一项未验证通过,或者,确定第二IAM消息中的主叫信息被篡改,则拒绝第二IAM消息。
在上述实施例中,位于目的域的主叫信息认证装置对接收到的第二IAM消息进行认证、验证和解密等安全性检查,并在检查消息后,将消息指向目的地,能够保证主叫信息的真实性、不可篡改性和可溯源性。
在一些实施例中,若目的域的SSGW确定接收到的第二IAM消息需要转发至另一网络,则透传该第二IAM消息。
图7为本公开的主叫信息认证装置的另一些实施例的结构示意图。该主叫信息认证装置可以位于源域,也可以位于目的域。该主叫信息认证装置700包括存储器710和处理器720。其中:存储器710可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储图1-4所对应实施例中的指令。处理器720耦接至存储器710,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器720用于执行存储器中存储的指令。
在一些实施例中,处理器720通过BUS总线730耦合至存储器710。该主叫信息认证装置700还可以通过存储接口740连接至外部存储系统750以便调用外部数据,还可以通过网络接口760连接至网络或者另外一台计算机系统(未标出)。此处不再 进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,能够保证主叫信息的真实性、不可篡改性和可溯源性。
在本公开的另一些实施例中,保护一种主叫信息认证系统,该主叫信息认证系统包括位于源域的主叫信息认证装置以及位于目的域的主叫信息认证装置。
在一些实施例中,该主叫信息认证系统还包括位于源域的CA,被配置为接收本域的主叫信息认证装置发送的加密的SSGW标识,对SSGW标识验证后,生成随机数以CA签名,并将CA签名和加密的随机数发送至本域的主叫信息认证装置,接收本域的主叫信息认证装置发送的随机数,将生成的随机数与接收的随机数进行比对后,生成SSGW证书参数,并将SSGW证书参数发送至本域的主叫信息认证装置。
在一些实施例中,该主叫信息认证系统还包括位于目的域的CA,被配置为通过桥CA从源域的CA中获取SSGW证书参数,并将SSGW证书参数发送至本域的主叫信息认证装置。
下面主叫信息认证装置以SSGW为例对主叫信息认证系统进行介绍。
图8为本公开的主叫信息认证系统的一些实施例的结构示意图。该实施例中,包括位于运营商A所在网络的SSGW、CA和多个LS,以及位于运营商B所在网络的SSGW、CA和多个LS,其中,位于运营商A所在网络的CA和位于运营商B所在网络的CA通过桥CA进行信息交互。
在该实施例中,对位于源域的SSGW和目的域的SSGW之间的信令ISUP/BICC(bearer Independent Call Control,承载无关呼叫控制)进行扩展,扩展的参数包括证书参数和签名参数,这两个参数在IAM消息中携带,如下所示。
Figure PCTCN2021114577-appb-000003
在一些实施例中,对于运营商内部的LS,即属于同一安全域内的LS之间的消息交互,可认为是可信的,可以不采用上述安全机制。
相关技术中,ISUP缺乏认知识别机制,接收端实体完成被动接收和处理发送端消息,而在该实施例中,SSGW使用主叫签名参数和CA颁发的证书对消息进行签名,并通过Sa接口将消息路由到另一个安全域。来自另一个域的所有传入ISUP消息由SSGW进行安全性检查,包括认证、验证、解密等。在由目的域的SSGW检查消息之后, 该SSGW应将消息指向目的地LS。如果消息不符合安全策略,则SSGW将阻止或丢弃该消息。实现了信令交互的网络实体对主叫号码进行相互认证,建立可信主叫号码传送,能够保证主叫号码真实、不可篡改和可溯源性。
在另一些实施例中,一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现图1-4所对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领 域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (17)

  1. 一种主叫信息认证方法,包括:
    接收本地交换机LS发送的第一初始地址消息IAM,第一IAM消息中包括主叫信息;
    基于所述主叫信息,生成主叫签名参数;
    将所述主叫签名参数和从本域的证书颁发机构CA获取的信令安全网关SSGW证书参数添加到第一IAM消息,重组为第二IAM消息;以及
    将所述第二IAM消息发送至目的域,其中,所述目的域对所述第二IAM消息验证通过后,去除所述第二IAM消息中的所述主叫签名参数和所述SSGW证书参数,生成第三IAM消息,并将所述第三IAM消息发送至下一节点。
  2. 根据权利要求1所述的主叫信息认证方法,其中,从本域的CA获取SSGW证书参数包括:
    将SSGW标识加密后,发送至所述CA,以使所述CA对所述SSGW标识验证后,生成随机数以CA签名;
    接收所述CA发送的CA签名和加密的随机数;
    若验证所述CA签名有效,并解密所述加密的随机数后,将所述随机数发送至CA,其中,所述CA对接收的随机数和生成的随机数进行比对后,生成所述SSGW证书参数;以及
    接收所述CA发送的所述SSGW证书参数。
  3. 根据权利要求2所述的主叫信息认证方法,其中,验证所述CA签名包括:
    利用CA公钥对所述CA签名进行解密,其中,所述CA利用SSGW公钥对随机数进行加密,利用CA私钥对加密的随机数进行加密,得到所述CA签名;以及
    若能够解密所述CA签名,则确定所述CA签名有效。
  4. 根据权利要求2所述的主叫信息认证方法,其中,
    所述SSGW证书参数包括SSGW标识、SSGW公钥、有效时间、版本号和算法中的一项或多项。
  5. 根据权利要求1至4任一所述的主叫信息认证方法,其中,基于所述主叫信息,生成主叫签名参数包括:
    对所述主叫信息进行哈希运算,得到哈希值;以及
    对所述哈希值加密后,生成所述主叫签名参数。
  6. 一种主叫信息认证方法,包括:
    接收源域发送的第二初始地址消息IAM消息,其中,第二IAM消息中包括第一IAM消息中的主叫信息、主叫签名参数和信令安全网关SSGW证书参数;
    对所述主叫签名参数和所述SSGW证书参数进行验证后,判断所述第二IAM消息中的主叫信息是否被篡改;
    若确定所述第二IAM消息中的主叫信息未被篡改,则去除所述第二IAM消息中的所述主叫签名参数和所述SSGW证书参数,生成第三IAM消息;以及
    将所述第三IAM消息发送至下一节点。
  7. 根据权利要求6所述的主叫信息认证方法,其中,对所述SSGW证书参数进行验证包括:
    从本域的证书颁发机构CA获取SSGW证书参数,其中,本域的CA通过桥CA从源域的CA中获取所述SSGW证书参数;以及
    若从本域的CA获取的SSGW证书参数,与所述第二IAM消息中的SSGW证书参数一致,则确定所述SSGW证书参数验证通过。
  8. 根据权利要求6所述的主叫信息认证方法,其中,对所述主叫签名参数进行验证包括:
    对所述主叫签名参数进行解密,若能解密得到哈希值,则确定所述主叫签名参数验证通过。
  9. 根据权利要求8所述的主叫信息认证方法,其中,判断所述第二IAM消息中的主叫信息是否被篡改包括:
    对所述第二IAM消息中的主叫信息进行提取,并对提取的主叫信息进行哈希运算;
    判断计算得到的哈希值与对所述主叫签名参数进行解密后得到的哈希值是否一 致;以及
    若一致,则确定所述第二IAM消息中的主叫信息未被篡改。
  10. 根据权利要求6至9任一所述的主叫信息认证方法,其中,
    若所述主叫签名参数和所述SSGW证书参数中的任意一项未验证通过,或者,确定所述第二IAM消息中的主叫信息被篡改,则拒绝所述第二IAM消息。
  11. 一种主叫信息认证装置,包括:
    IAM消息获取单元,被配置为接收本地交换机LS发送的第一初始地址消息IAM,第一IAM消息中包括主叫信息;
    主叫签名生成单元,被配置为基于所述主叫信息,生成主叫签名参数;
    SSGW证书获取单元,被配置为从本域的证书颁发机构CA获取的信令安全网关SSGW证书参数;
    IAM消息重组单元,被配置为将所述主叫签名参数和所述SSGW证书参数添加到第一IAM消息,重组为第二IAM消息;以及
    IAM消息发送单元,被配置为将所述第二IAM消息发送至目的域,其中,所述目的域对所述第二IAM消息验证通过后,去除所述第二IAM消息中的所述主叫签名参数和所述SSGW证书参数,生成所述第三IAM消息,并将所述第三IAM消息发送至下一节点。
  12. 一种主叫信息认证装置,包括:
    IAM消息接收单元,被配置为接收源域发送的第二初始地址消息IAM,其中,第二IAM消息中包括第一IAM消息中的主叫信息、主叫签名参数和信令安全网关SSGW证书参数;
    IAM消息验证单元,被配置为对所述主叫签名参数和所述SSGW证书参数进行验证后,判断所述第二IAM消息中的主叫信息是否被篡改;
    IAM消息生成单元,被配置为若确定所述第二IAM消息中的主叫信息未被篡改,则去除所述第二IAM消息中的所述主叫签名参数和所述SSGW证书参数,生成第三IAM消息;以及
    IAM消息转发单元,被配置为将所述第三IAM消息发送至下一节点。
  13. 一种主叫信息认证系统,包括:
    位于源域的权利要求11所述的主叫信息认证装置;以及
    位于目的域的权利要求12所述的主叫信息认证装置。
  14. 根据权利要求13所述的主叫信息认证系统,还包括:
    位于源域的CA,被配置为接收本域的主叫信息认证装置发送的加密的SSGW标识,对所述SSGW标识验证后,生成随机数以CA签名,并将所述CA签名和加密的随机数发送至本域的主叫信息认证装置,接收本域的主叫信息认证装置发送的随机数,将生成的随机数与接收的随机数进行比对后,生成SSGW证书参数,并将所述SSGW证书参数发送至本域的主叫信息认证装置。
  15. 根据权利要求13或14所述的主叫信息认证系统,还包括:
    位于目的域的CA,被配置为通过桥CA从源域的CA中获取SSGW证书参数,并将所述SSGW证书参数发送至本域的主叫信息认证装置。
  16. 一种主叫信息认证装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至10任一项所述的主叫信息认证方法。
  17. 一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现权利要求1至10任一项所述的主叫信息认证方法。
PCT/CN2021/114577 2021-03-03 2021-08-25 主叫信息认证方法、装置和系统 WO2022183694A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110253128.9A CN115037470A (zh) 2021-03-03 2021-03-03 主叫信息认证方法、装置和系统
CN202110253128.9 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022183694A1 true WO2022183694A1 (zh) 2022-09-09

Family

ID=83117763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114577 WO2022183694A1 (zh) 2021-03-03 2021-08-25 主叫信息认证方法、装置和系统

Country Status (2)

Country Link
CN (1) CN115037470A (zh)
WO (1) WO2022183694A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595708A (zh) * 2007-01-30 2009-12-02 阿尔卡特朗讯公司 用于防止主叫方身份欺骗的主叫方名称认证
US9060057B1 (en) * 2013-03-07 2015-06-16 Serdar Artun Danis Systems and methods for caller ID authentication, spoof detection and list based call handling
CN105704711A (zh) * 2014-11-25 2016-06-22 中兴通讯股份有限公司 一种保证通话安全的方法、装置及用户终端
CN105790942A (zh) * 2014-12-17 2016-07-20 中兴通讯股份有限公司 一种安全通话的方法、终端和系统
US20170264443A1 (en) * 2016-03-14 2017-09-14 Arizona Board Of Regents On Behalf Of Arizona State Univeristy Systems and methods for authenticating caller identity and call request header information for outbound telephony communications
CN109861946A (zh) * 2017-11-30 2019-06-07 中国电信股份有限公司 主叫号码验真的方法、系统以及呼叫接收设备
US20200336314A1 (en) * 2019-04-17 2020-10-22 Verizon Patent And Licensing Inc. Validating and securing caller identification to prevent identity spoofing
CN112865975A (zh) * 2019-11-12 2021-05-28 中国电信股份有限公司 消息安全交互方法和系统、信令安全网关装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595708A (zh) * 2007-01-30 2009-12-02 阿尔卡特朗讯公司 用于防止主叫方身份欺骗的主叫方名称认证
US9060057B1 (en) * 2013-03-07 2015-06-16 Serdar Artun Danis Systems and methods for caller ID authentication, spoof detection and list based call handling
CN105704711A (zh) * 2014-11-25 2016-06-22 中兴通讯股份有限公司 一种保证通话安全的方法、装置及用户终端
CN105790942A (zh) * 2014-12-17 2016-07-20 中兴通讯股份有限公司 一种安全通话的方法、终端和系统
US20170264443A1 (en) * 2016-03-14 2017-09-14 Arizona Board Of Regents On Behalf Of Arizona State Univeristy Systems and methods for authenticating caller identity and call request header information for outbound telephony communications
CN109861946A (zh) * 2017-11-30 2019-06-07 中国电信股份有限公司 主叫号码验真的方法、系统以及呼叫接收设备
US20200336314A1 (en) * 2019-04-17 2020-10-22 Verizon Patent And Licensing Inc. Validating and securing caller identification to prevent identity spoofing
CN112865975A (zh) * 2019-11-12 2021-05-28 中国电信股份有限公司 消息安全交互方法和系统、信令安全网关装置

Also Published As

Publication number Publication date
CN115037470A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US6839841B1 (en) Self-generation of certificates using secure microprocessor in a device for transferring digital information
CN106656503B (zh) 密钥存储方法、数据加解密方法、电子签名方法及其装置
JP6731491B2 (ja) データ転送方法、非一過性のコンピュータ読み取り可能な記憶媒体、暗号デバイス、およびデータ使用のコントロール方法
CN109728909A (zh) 基于USBKey的身份认证方法和系统
US20140281493A1 (en) Provisioning sensitive data into third party
CN110069918A (zh) 一种基于区块链技术的高效双因子跨域认证方法
CN113411190B (zh) 密钥部署、数据通信、密钥交换、安全加固方法及系统
WO2011038620A1 (zh) 一种移动通讯网络中的接入认证方法、装置及系统
US10826711B2 (en) Public key infrastructure and method of distribution
CN108989325A (zh) 加密通信方法、装置及系统
CN105207778B (zh) 一种在接入网关设备上实现包身份标识及数字签名的方法
CN109525583B (zh) 一种用于第三方提供身份管理的服务系统的虚假凭证检测方法及系统
CN112766962A (zh) 证书的接收、发送方法及交易系统、存储介质、电子装置
US10277576B1 (en) Diameter end-to-end security with a multiway handshake
CN115277168B (zh) 一种访问服务器的方法以及装置、系统
WO2007073659A1 (fr) Methode d'acces des terminaux a base de protocole h.323 applique a un reseau de paquets
CN110855695A (zh) 一种改进的sdn网络安全认证方法及系统
JP4783340B2 (ja) 移動ネットワーク環境におけるデータトラフィックの保護方法
JP2016522637A (ja) 共有秘密を含意するセキュア化されたデータチャネル認証
CN110839036B (zh) 一种sdn网络的攻击检测方法及系统
WO2022135391A1 (zh) 身份鉴别方法、装置、存储介质、程序、及程序产品
CN110929231A (zh) 数字资产的授权方法、装置和服务器
Kara et al. VoIPChain: A decentralized identity authentication in Voice over IP using Blockchain
CN110572392A (zh) 一种基于Hyperledger网络的身份认证方法
CN114091009A (zh) 利用分布式身份标识建立安全链接的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE