WO2022183569A1 - 一种自适应调整区域内子区域的基站停开机的方法及装置 - Google Patents

一种自适应调整区域内子区域的基站停开机的方法及装置 Download PDF

Info

Publication number
WO2022183569A1
WO2022183569A1 PCT/CN2021/086816 CN2021086816W WO2022183569A1 WO 2022183569 A1 WO2022183569 A1 WO 2022183569A1 CN 2021086816 W CN2021086816 W CN 2021086816W WO 2022183569 A1 WO2022183569 A1 WO 2022183569A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
area
neighbor
region
base station
Prior art date
Application number
PCT/CN2021/086816
Other languages
English (en)
French (fr)
Inventor
陈鸽
葛超
Original Assignee
中国科学院数学与系统科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院数学与系统科学研究院 filed Critical 中国科学院数学与系统科学研究院
Publication of WO2022183569A1 publication Critical patent/WO2022183569A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method and apparatus for adaptively adjusting the shutdown of a base station in a sub-area within an area.
  • the intelligent shutdown strategy of the base station can be set according to the dynamic actual resource utilization of the base station, and the energy consumption can be effectively reduced without causing the quality of the communication network to be degraded, it will certainly help to achieve the goal of energy conservation and emission reduction.
  • the embodiments of this specification provide a method and apparatus for adaptively adjusting the shutdown of a base station in a sub-area in an area, which can adjust the switching state of the base station equipment according to the actual resource utilization of each sub-area in the area, thereby contributing to the goal of energy saving and emission reduction. accomplish.
  • Step S1 Obtain the average busyness of the base stations in the active sub-area within the preset range of the i-th sub-area that is active in the area
  • Step S2 Based on the average busyness Send a wake-up application or a shutdown application to the base stations of each neighbor sub-area that is in an active state in the i-th sub-area;
  • Step S3 Screen out neighbor sub-areas b j* in each neighbor sub-area based on the first preset rule, send an agreeing wake-up instruction to the base station of the neighbor sub-area b j* , and send a request to each neighbor sub-area
  • the base stations of the remaining neighbor sub-regions except the neighbor sub-region b j* send a refusal to wake-up command;
  • the neighbor sub-regions b j' are screened out from the neighbor sub-regions, send an approval shutdown instruction to the base station of the neighbor sub-region b j' , and remove all neighbor sub-regions from the neighbor sub-regions.
  • the base stations of the remaining neighbor sub-regions other than the neighbor sub-region b j' send a refusal to close the command;
  • k 1,2,...,N
  • N is the number of sampling periods
  • T Indicates the time length of the sampling period.
  • step S1 it also includes:
  • the step S1 specifically includes: acquiring the average busyness of the base stations in the active sub-area within the preset range of the i-th sub-area that is active in the area
  • the judging whether the base station of the i-th sub-area that is in an active state in the area can be shut down in the k-th sampling period includes:
  • the base station in the i-th sub-area After the base station in the i-th sub-area is turned off and the total pilot signal transmission power of the base stations in the remaining active neighbor sub-areas in the area is adjusted to the rated power, it is determined whether the communication network in the area can meet the coverage conditions ; If it can, the state of the base station in the i-th sub-area is a state that can be closed; if not, the state of the base station in the i-th sub-area is a state that cannot be closed.
  • the step S3 includes:
  • the i-th sub-region has a neighbor sub-region in the closed state
  • calculate the correlation coefficient ⁇ i max (kT) max ⁇ ji :j ⁇ N i ,b j state is "off" ⁇ ; send a wake-up application and the correlation coefficient ⁇ i max (kT) to each neighbor sub-region in the active state of the i-th sub-region; wherein the wake-up request includes the i-th sub-region
  • the ID identification information of the area, the parameter ⁇ ji represents the correlation coefficient of the i-th sub-area and the neighbor sub-area b j in the closed state; N i represents the set of the neighbor sub-area of the i-th sub-area;
  • the average busyness is less than the preset second threshold ⁇
  • the numerical value is less than the preset third threshold ⁇ and the i-th sub-region is in a closed state
  • send a shutdown application to each neighbor sub-region that is in an active state in the i-th sub-region, wherein the shutdown application includes all The ID identification information of the i-th sub-area.
  • step S1 it also includes:
  • the busyness f i (kT) of the i-th sub-region is calculated according to the following formula:
  • a i ( ⁇ ) represents the utilization rate of the physical resource block of the i-th sub-region
  • H represents the real-time statistical period of the utilization rate of the physical resource block.
  • the average busyness is calculated according to the following formula
  • N i * (kT) represents the number of active sub-regions within the preset range neighborhood of the i-th sub-region in the k-th cycle
  • f i (kT) represents the busyness of the i-th sub-region
  • f j (kT) represents the busyness of the j-th sub-area that is in an active state within the preset range neighborhood of the i-th sub-area.
  • the step S4 further includes:
  • the base station in the neighbor sub-region to be woken up starts to work in the k+1th sampling period;
  • the base station in the neighbor sub-region to be closed stops working in the k+1th sampling period.
  • the total pilot signal transmission power of the i-th sub-region within the k+1-th sampling period is adjusted to P i ((k+1)T) according to the following formula;
  • P i '(kT) P i (kT)+u i (kT)
  • P i max is the rated power of the radio frequency transmitting unit of the base station in the ith sub-region
  • P i min (kT) is the The minimum transmit power of the pilot signal required by the base station in the i-th sub-area to satisfy the coverage condition in the k-th sampling period
  • u i (kT) represents the base station in the i-th sub-area in the k+1-th period Theoretical power adjustment.
  • an embodiment of the present description provides a device for self-adaptingly adjusting the shutdown of a sub-region in the region, including:
  • the average busyness obtaining module is used to obtain the average busyness of the base stations in the active sub-area within the preset range of the i-th sub-area that is active in the area
  • an application instruction sending module for based on the average busyness Send a wake-up application or a shutdown application to the base stations of each neighbor sub-area that is in an active state in the i-th sub-area;
  • a feedback instruction sending module configured to screen out neighbor sub-areas b j* in each neighbor sub-area based on a first preset rule, send an agreeing wake-up instruction to the base station of the neighbor sub-area b j* , and send an instruction to the neighbor sub-area b j*
  • the base stations of the remaining neighbor sub-regions in each neighbor sub-region except the neighbor sub-region b j* send a refusal to wake-up instruction;
  • the neighbor sub-regions b j' are screened out from the neighbor sub-regions, send an approval shutdown instruction to the base station of the neighbor sub-region b j' , and remove all neighbor sub-regions from the neighbor sub-regions.
  • the base stations of the remaining neighbor sub-regions other than the neighbor sub-region b j' send a refusal to close the command;
  • a screening module used for screening out neighbor sub-areas to be awakened or to be shut down according to the third preset rule
  • an adjustment module configured to adjust the total pilot signal transmission power P i ((k+1)T) of the base station in the i-th sub-region in the k+1-th sampling period;
  • k 1,2,...,N
  • N is the number of sampling periods
  • T Indicates the time length of the sampling period.
  • At least one embodiment provided in this specification can achieve the following beneficial effects: from the perspective of system engineering, the technical solution of the present invention can set the intelligent shutdown strategy of the base station according to the dynamic actual resource utilization rate of the base station in each sub-area in the area, Continuously adjust the system according to the operating state of the system, so as to effectively reduce the energy consumption during the operation cycle without causing the quality of the communication network to degrade, and contribute to the realization of energy saving and emission reduction goals.
  • FIG. 1 is a schematic diagram of an application scenario of a method and an apparatus for adaptively adjusting the shutdown of a base station in a sub-area in an area provided by an embodiment of the present specification;
  • FIG. 2 is a schematic flowchart of an overall solution of a method for adaptively adjusting the shutdown of a base station in a sub-area in an area provided by an embodiment of the present specification;
  • FIG. 3 is a schematic structural diagram of an apparatus for adaptively shutting down machines in each sub-area in the area corresponding to FIG. 2 according to an embodiment of the present specification.
  • Embodiments of the present invention provide a method and device for adaptively adjusting the shutdown of a base station in a sub-area within an area.
  • the intelligent shutdown strategy of the base station is set according to the dynamic actual resource utilization rate of the communication base station, which can prevent the quality of the communication network from being degraded at the same time. Effectively reduce energy consumption, thereby contributing to the realization of energy saving and emission reduction goals.
  • a certain area S (such as a certain city) includes several sub-areas covered with a mobile communication network, and the set B is a collection of these sub-areas covered with a mobile communication network (the communication signal can be 2g, 3g, 4g or 5g),
  • the set B includes a total of L sub-regions (assuming L is equal to 11 in this scenario), specifically including b 1 , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 , b 8 , b 9 , b 10 and b 11 , as shown in Figure 1, each sub-region b i has a neighbor sub-region set N i , that is, a set of sub-regions adjacent to this sub-region b i in position, taking sub-region b 1 as an example For illustration, the neighbor sub-region N 1 of the sub-region b 1 includes the sub-region
  • communication base stations are installed in each sub-area b i , and these communication base stations transmit mobile signals for user terminal equipment in the sub-area.
  • the embodiment of the present invention assumes that the neighbor relationship between the two sub-regions is symmetrical, that is, if the sub-region b i is the neighbor of the sub-region b j , then the sub-region b j must also be the neighbor of the sub-region b i .
  • the base stations in each sub-area in the area S have three possible states: a non-shutdown state, a shut-down state, and a shut-down state, wherein the non-shutdown state refers to the base station in a certain sub-area.
  • the active state but if it is turned off, the communication network in the area cannot meet the coverage conditions;
  • the closed state means that the base station in a sub-area is in an active state. If it is turned off, the communication network can also meet the coverage conditions. ;
  • the closed state means that the base station in a certain sub-area itself is in an inactive state, that is, the base station does not access the user's terminal equipment.
  • FIG. 2 is a schematic flowchart of a method for adaptively adjusting the shutdown of a base station in a sub-area in an area according to an embodiment of the present specification.
  • the execution body of the process may be a program mounted on an application server or an application client.
  • Step S1 judging whether the base station of the i-th sub-area that is in an active state in the area can be closed in the k-th sampling period, and obtain a judgment result;
  • the base stations of some sub-areas that are in an active state are in a state that can be closed, and some are in a state that cannot be closed.
  • the technical solution of this embodiment starts from the perspective of the ith sub-area in the area Describe the technical solution of the present invention.
  • Step S1 Obtain the average busyness of the base stations in the active sub-area within the preset range of the i-th sub-area that is active in the area
  • the preset range neighborhood is used to indicate the average busyness of the active sub-areas within the radius of the ith sub-area as a reference.
  • average busyness It can indicate the overall busyness of all base stations within this radius. It should be noted that when calculating the average busyness , the busyness of the i-th sub-area itself needs to be taken into account.
  • the average busyness is calculated according to the following formula
  • N i * (kT) represents the number of active sub-regions within the preset range neighborhood of the i-th sub-region in the k-th cycle
  • f i (kT) represents the busyness of the i-th sub-region
  • f j (kT) represents the busyness of the jth sub-area.
  • the method further includes: sending the base station busyness f i (kT), the total pilot signal transmission power P i (kT), the energy efficiency E i (kT) and the activity state information of the i-th sub-area to all Each neighbor sub-region in the active state of the i-th sub-region; wherein, the energy efficiency E i (kT) is calculated according to the following formula:
  • Step S2 Based on the average busyness Send a wake-up application or a shutdown application to the base stations of each active neighbor sub-area of the i-th sub-area.
  • Due to the average busyness Can indicate the overall busyness of all base stations within a preset radius distance, if this average busyness If it is larger, it indicates that the overall working state of the base stations in the neighborhood of the preset range of the ith sub-area is relatively busy, and it is necessary to wake up some base stations in the off state to start work; if the average busyness is smaller, it indicates that the preset range of the ith sub-region is The base stations in the area are relatively idle as a whole, and some base stations in working state need to be stopped, so as to maximize the system operation efficiency and save the energy consumption required for the operation of the base stations.
  • Step S3 Screen out neighbor sub-areas b j* in each neighbor sub-area based on the first preset rule, send an agreeing wake-up instruction to the base station of the neighbor sub-area b j* , and send a request to each neighbor sub-area
  • the base stations of the remaining neighbor sub-regions except the neighbor sub-region b j* send a refusal to wake-up command;
  • the neighbor sub-regions b j' are screened out from the neighbor sub-regions, send an approval shutdown instruction to the base station of the neighbor sub-region b j' , and remove all neighbor sub-regions from the neighbor sub-regions.
  • the base stations of the remaining neighbor sub-regions other than the neighbor sub-region b j' send a refusal to close the command.
  • the average busyness of the base stations in the neighborhood of the preset range of the ith sub-area is low, and when the base stations of some sub-areas need to be shut down, after the ith sub-area sends a shutdown application request, If the received responses are all "Agree", the i-th sub-area will stop working in the k+1-th sampling period. Before the i-th sub-area will stop working, it needs to be calculated in the k-th sampling period.
  • the minimum transmit power of the pilot signal required to meet the coverage conditions in the surrounding sub-regions of its neighbors can be calculated according to geographic information, wireless propagation models (such as Hata formula, Cost231 formula) and the current pilot signal transmit power of neighboring sub-regions). Then the i-th sub-region sends the shutdown notification and the calculated minimum transmit power of each neighbor sub-region pilot signal to each neighbor sub-region, and then at the beginning of the k+1-th cycle, the i-th sub-region stops working.
  • the average busyness of the base stations in the preset range of the i-th sub-area is high, and it is necessary to wake up some base stations in the closed sub-area. If it is "agree", the i-th sub-region selects a sub-region that is in a closed state to start work immediately, and at the same time, the newly-started sub-region adjusts the current pilot signal transmission power to zero, and informs its own active The neighbor subregion of the state.
  • step S4 also includes:
  • the base station in the neighbor sub-region to be woken up starts to work in the k+1th sampling period;
  • the base station in the neighbor sub-region to be closed stops working in the k+1th sampling period.
  • k 1,2,...,N
  • N is the number of sampling periods
  • T Indicates the time length of the sampling period.
  • the active state includes a closeable state and a non-closeable state.
  • step S1 it also includes:
  • the step S1 specifically includes: acquiring the average busyness of the base stations in the active sub-area within the preset range of the i-th sub-area that is active in the area
  • step S1 includes:
  • the i-th sub-region After the i-th sub-region is closed and the total pilot signal transmission power of the remaining active neighbor sub-regions in the region is adjusted to the rated power, it is judged whether the communication network in the region can meet the coverage conditions; if so, The state of the i-th sub-region is a state that can be closed, and if not, the state of the i-th sub-region is a state that cannot be closed.
  • step S3 includes:
  • the correlation coefficient ⁇ ji of the i sub-region and the correlation coefficient ⁇ ij of the i-th sub-region and the j-th sub-region are equal.
  • the emission angle is given based on empirical formulas, which are in the prior art and will not be repeated here.
  • the average busyness is less than the preset second threshold ⁇
  • the numerical value is less than the preset third threshold ⁇ and the i-th sub-region is in a closed state
  • send a shutdown application to each neighbor sub-region that is in an active state in the i-th sub-region, wherein the shutdown application includes all The ID identification information of the i-th sub-area.
  • the ith sub-area also turns on or off the base stations in some sub-areas, and the ith sub-area also changes the base station busyness f i (kT), the total pilot signal transmission power P i (kT), the energy efficiency E i (kT) and the activity status information Sent to each neighbor subregion that is active in the ith subregion.
  • the ith sub-area is also receiving wake-up or shutdown applications sent from its neighbor sub-areas, and needs to respond to these applications in step S4 described above.
  • the first preset rule is to select the numerical value The largest sub-region b j* , the second preset rule, that is, picking the value The smallest corresponding subregion b j' .
  • a i ( ⁇ ) represents the utilization rate of the physical resource block of the i-th sub-region
  • H is the real-time statistical period of the utilization rate of the physical resource block.
  • the total power of pilot signal transmission in the i-th sub-region in the k+1-th sampling period is adjusted to P i ((k+1)T);
  • P i '(kT) P i (kT)+u i (kT)
  • P i max is the rated power of the radio frequency transmitting unit of the base station in the ith sub-region
  • P i min (kT) is the ith sub-region
  • u i (kT) represents the theoretical power adjustment amount of the base station in the ith sub-area in the k+1th period .
  • the following describes how to calculate the theoretical power adjustment amount u i (kT) of the base station in the ith sub-region in the k+1 th cycle: first calculate the busyness of the ith sub-region and the busyness of the active neighbor sub-region Weighted average of differences in degrees:
  • k p is the proportional coefficient in the PID controller, and the dimension is dBm
  • k i is the integral coefficient in the PID controller, and the dimension is the dimension of dBm/T
  • k d is the PID control
  • the differential coefficient in the controller, the dimension is the dimension of dBm ⁇ T
  • ⁇ >1 is a positive integer, which is used to represent the maximum number of cycles of the sub-region storing and using the historical data ⁇ i (kT).
  • the values of k p , ki , k d , ⁇ can be given empirically.
  • the base station in the i-th sub-area will remove it when calculating the theoretical power adjustment u i (kT) of the k+1-th sampling period, and the calculation of u i (kT) can be performed in the digital signal processing of each sub-area
  • the computation is distributed in the server.
  • an embodiment of the present description further provides a device for self-adaptingly adjusting the shutdown of a sub-area in the area, including:
  • the average busyness obtaining module 310 is configured to obtain the average busyness of the base stations in the active sub-area within the preset range of the i-th sub-area that is active in the area
  • the application instruction sending module 320 is configured to, based on the average busyness Send a wake-up application or a shutdown application to the base stations of each neighbor sub-area that is in an active state in the i-th sub-area;
  • the feedback instruction sending module 330 is configured to filter out neighbor sub-areas b j* in each neighbor sub-area based on the first preset rule, send an agreeing wake-up instruction to the base station of the neighbor sub-area b j* , and send an instruction to all neighbor sub-areas b j*.
  • the base stations of the remaining neighbor sub-regions except the neighbor sub-region b j* in each of the neighbor sub-regions send a refusal to wake-up instruction;
  • the neighbor sub-regions b j' are screened out from the neighbor sub-regions, send an approval shutdown instruction to the base station of the neighbor sub-region b j' , and remove all neighbor sub-regions from the neighbor sub-regions.
  • the base stations of the remaining neighbor sub-regions other than the neighbor sub-region b j' send a refusal to close the command;
  • a screening module 340 configured to screen out neighbor sub-regions to be awakened or to be shut down according to the third preset rule
  • an adjustment module 350 configured to adjust the total pilot signal transmission power P i ((k+1)T) of the base station in the i-th sub-region in the k+1-th sampling period;
  • k 1,2,...,N
  • N is the number of sampling periods
  • T Indicates the time length of the sampling period.
  • the technical solution of this embodiment is to describe the technical solution of the present invention from the perspective of the i-th sub-region in the k-th sampling period, and explain how to use the adjacent sub-regions (including the i-th sub-region)
  • the dynamic actual resource utilization rate of the base station in the area itself is used to set the intelligent shutdown strategy of the base station in the k+1th sampling period, which is equivalent to optimizing the operation of the base station in the local area within the area.
  • the area includes multiple sub-areas, each sub-area has base station equipment, and the base stations in the system are also in continuous operation during the operation period.
  • the technical solution of the present invention can set the intelligent shutdown strategy of the base station according to the dynamic actual resource utilization rate of the base station in each sub-area in the area, and continuously adjust the system according to the operating state of the system, so as to be able to During the operation period, the energy consumption can be effectively reduced without causing the quality of the communication network to deteriorate, which is conducive to the realization of the goal of energy saving and emission reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本说明书实施例公开了一种自适应调整区域内子区域的基站停开机的方法及装置,包括:判断区域内处于活动状态的第i个子区域的基站在第k个采样周期能否关闭;获取处于活动状态的子区域的平均繁忙度式(I)向第i个子区域的处于活动状态的各个邻居子区域发送唤醒申请或关闭申请;在各个邻居子区域中筛选出邻居子区域b j*,向b j*发送同意唤醒指令,向除b j*之外的邻居子区域发送拒绝唤醒指令;和/或,筛选出邻居子区域b j',向b j'发送同意关闭指令,且向除b j'之外的邻居子区域发送拒绝关闭指令;筛选出待唤醒或待关闭的邻居子区域;调整在第k+1个采样周期的导频信号发射总功率。本发明自适应地调整区域内子区域的基站停开机状态,能够在不引起通信网络质量下降的同时减少能耗。

Description

一种自适应调整区域内子区域的基站停开机的方法及装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种自适应调整区域内子区域的基站停开机的方法及装置。
背景技术
随着移动通信领域技术的不断发展,通信网络的业务量大幅增加,通信站点和设备越来越多,消耗的电能也越来越多,其中通信基站的能耗约占整个通信网络能耗的70%。目前基站电费约占运营商网络运营费用的16%,因此针对基站的节能减排是运营商的普遍目标。经统计发现,网络话务量存在明显的潮汐效应,但是大部分基站设备却始终处于24小时持续运行状态,能耗并没有随话务量进行动态调整,从而造成浪费。因此如果能够根据基站动态的实际资源利用率设定基站的智能停开策略,在不引起通信网络质量下降的同时,有效减少能耗,则必将有助于节能减排目标的实现。
发明内容
本说明书实施例提供一种自适应调整区域内子区域的基站停开机的方法及装置,能够根据区域内各子区域的实际资源利用率调整基站设备的开关状态,从而有助于节能减排目标的实现。
为解决上述技术问题,本说明书实施例是这样实现的:
本说明书实施例提供的一种自适应调整区域内子区域的基站停开机的方法,包括:
步骤S1:获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
Figure PCTCN2021086816-appb-000001
步骤S2:基于所述平均繁忙度
Figure PCTCN2021086816-appb-000002
向所述第i个子区域的处于活动状态的各个邻居子区域的基站发送唤醒申请或关闭申请;
步骤S3:基于第一预设规则在所述各个邻居子区域中筛选出邻居子区域b j*,向所述邻居子区域b j*的基站发送同意唤醒指令,且向所述各个邻居子区域中除所述邻居子区域b j*之外的其余邻居子区域的基站发送拒绝唤醒指令;
和/或,
基于第二预设规则在所述各个邻居子区域中筛选出邻居子区域b j',向所述邻居子区域b j'的基站发送同意关闭指令,且向所述各个邻居子区域中除所述邻居子区域b j'之外的其余邻居子区域的基站发送拒绝关闭指令;
S4:根据第三预设规则,筛选出待唤醒或待关闭的邻居子区域;
S5:调整所述第i个子区域的基站在第k+1个采样周期的导频信号发射总功率P i((k+1)T);
其中,i=1,2,...,M,M为所述区域内的处于活动状态的子区域的数量,k=1,2,...,N,N为采样周期的数量,T表示所述采样周期的时间长度。
优选的,所述步骤S1之前还包括:
判断区域内处于活动状态的第i个子区域的基站在第k个采样周期能否关闭,得到判断结果;
如果所述判断结果为是,则在所述第k个采样周期将所述第i个子区域关闭;
若所述判断结果为否,执行所述步骤S1;
所述步骤S1,具体包括:获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
Figure PCTCN2021086816-appb-000003
优选的,所述判断区域内处于活动状态的第i个子区域的基站在第k个采样周期能否关闭,包括:
将所述第i个子区域的基站关闭并且将区域内其余处于活动状态的邻居子区域的基站的导频信号发射总功率调整至额定功率后,判断所述区域内的 通信网络能否满足覆盖条件;若能,则所述第i个子区域的基站的状态为可关闭状态,若不能,则所述第i个子区域的基站的状态为不可关闭状态。
优选的,所述步骤S3包括:
如果所述平均繁忙度
Figure PCTCN2021086816-appb-000004
大于预先设定的第一阈值α,且所述第i个子区域存在处于关闭状态的邻居子区域,则计算相关系数ω i max(kT)=max{ω ji:j∈N i,b j的状态为“关闭”};向所述第i个子区域的处于活动状态的各个邻居子区域发送唤醒申请和所述相关系数ω i max(kT);其中,所述唤醒申请包含所述第i个子区域的ID标识信息,参数ω ji表示所述第i个子区域和处于关闭状态的邻居子区域b j的相关系数;N i表示所述第i个子区域的邻居子区域组成的集合;
如果所述平均繁忙度
Figure PCTCN2021086816-appb-000005
小于预先设定的第二阈值β,数值
Figure PCTCN2021086816-appb-000006
小于预先设定的第三阈值γ且所述第i个子区域处于可关闭状态,则向所述第i个子区域的处于活动状态的各个邻居子区域发送关闭申请,其中,所述关闭申请包含所述第i个子区域的ID标识信息。
优选的,在所述步骤S1之前,还包括:
将所述第i个子区域的基站繁忙度f i(kT)、导频信号发射总功率P i(kT)、能量效率E i(kT)和活动状态信息发送给所述第i个子区域的处于活动状态的各个邻居子区域;其中,根据下式计算所述能量效率E i(kT):
Figure PCTCN2021086816-appb-000007
优选的,依据下式计算所述第i个子区域的繁忙度f i(kT):
Figure PCTCN2021086816-appb-000008
其中,a i(·)表示所述第i个子区域的物理资源块的利用率,H表示所述物理资源块的利用率的实时统计周期。
优选的,依据下式计算所述平均繁忙度
Figure PCTCN2021086816-appb-000009
Figure PCTCN2021086816-appb-000010
其中N i *(kT)表示在第k个周期所述第i个子区域的预设范围邻域内处于活动状态的子区域的数量,f i(kT)表示所述第i个子区域的繁忙度,f j(kT)表示所述第i个子区域的预设范围邻域内处于活动状态的第j个子区域的繁忙度。
优选的,所述步骤S4还包括:
所述待唤醒邻居子区域的基站在第k+1个采样周期开始工作;
和/或,
所述待关闭邻居子区域的基站在第k+1个采样周期停止工作。
优选的,依据下式将所述第i个子区域在所述第k+1个采样周期内的导频信号发射总功率调整为P i((k+1)T);
Figure PCTCN2021086816-appb-000011
其中,P i'(kT)=P i(kT)+u i(kT),P i max为所述第i个子区域的基站的射频发射单元的额定功率;P i min(kT)为所述第i个子区域的基站在所述第k个采样周期内满足覆盖条件所需的导频信号最低发射功率,u i(kT)表示所述第i个子区域的基站在第k+1个周期的理论功率调整量。
同时,本说明实施例提供一种自适应调整区域内子区域停开机的装置,包括:
平均繁忙度获取模块,用于获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
Figure PCTCN2021086816-appb-000012
申请指令发送模块,用于基于所述平均繁忙度
Figure PCTCN2021086816-appb-000013
向所述第i个子区域的处于活动状态的各个邻居子区域的基站发送唤醒申请或关闭申请;
反馈指令发送模块,用于基于第一预设规则在所述各个邻居子区域中筛选出邻居子区域b j*,向所述邻居子区域b j*的基站发送同意唤醒指令,且向所述各个邻居子区域中除所述邻居子区域b j*之外的其余邻居子区域的基站发送拒绝唤醒指令;
和/或,
基于第二预设规则在所述各个邻居子区域中筛选出邻居子区域b j',向所述邻居子区域b j'的基站发送同意关闭指令,且向所述各个邻居子区域中除所述邻居子区域b j'之外的其余邻居子区域的基站发送拒绝关闭指令;
筛选模块,用于根据第三预设规则,筛选出待唤醒或待关闭的邻居子区域;
调整模块,用于调整所述第i个子区域的基站在第k+1个采样周期的导频信号发射总功率P i((k+1)T);
其中,i=1,2,...,M,M为所述区域内的处于活动状态的子区域的数量,k=1,2,...,N,N为采样周期的数量,T表示所述采样周期的时间长度。
本说明书中提供的至少一个实施例能够达到以下有益效果:本发明技术方案从系统工程的角度出发,能够根据区域内各子区域的基站动态的实际资源利用率设定基站的智能停开策略,持续地根据系统的运行状态对系统进行调整,从而能够在运营周期内,在不引起通信网络质量下降的同时,有效减少能耗,有助于节能减排目标的实现。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本说明书实施例提供的自适应调整区域内子区域的基站停开机的方法及装置的应用场景的示意图;
图2为本说明书实施例提供的自适应调整区域内子区域的基站停开机的方法的整体方案流程示意图;
图3为本说明书实施例提供的对应于图2的区域内各子区域自适应停开机装置的结构示意图。
具体实施方式
为使本说明书一个或多个实施例的目的、技术方案和优点更加清楚,下面将结合本说明书具体实施例及相应的附图对本说明书一个或多个实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本说明书的一部分实施例,而不是全部的实施例。基于本说明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书一个或多个实施例保护的范围。
随着移动通信领域技术的不断发展,通信网络的业务量大幅增加,通信站点越来越多,通信站点安装的通信设备消耗的电能也越来越多,其中,据统计,这些通信设备中的通信基站的能耗约占整个通信网络能耗的70%,并且目前通信基站的电费约占网络运营商的网络运营费用的16%,因此针对通信基站的节能减排是网络运营商的普遍追求目标。经统计发现,网络话务量存在明显的潮汐效应,但是大部分通信基站却始终处于24小时的持续运行状态,能耗并没有随话务量而进行动态调整,从而造成很大浪费。本发明实施例提供一种自适应调整区域内子区域的基站停开机的方法及装置,根据通信基站动态的实际资源利用率设定基站的智能停开策略,能够在不引起通信网络质量下降 的同时有效减少能耗,从而有助于节能减排目标的实现。
为了清楚地介绍本实施技术方案,下面先对本实施例技术方案的应用场景进行介绍,图1为本说明书实施例提供的一种自适应调整区域内子区域基站停开机的方法的应用场景的示意图。在某区域S(如某个城市)包括若干覆盖有移动通信网络的子区域,集合B为这些覆盖有移动通信网络(通信信号可以为2g、3g、4g或5g)的子区域构成的集合,集合B中总共包括L个子区域(本场景中假设L等于11),具体包括b 1、b 2、b 3、b 4、b 5、b 6、b 7、b 8、b 9、b 10和b 11,如图1所示,每个子区域b i都有一个邻居子区域集合N i,即与此子区域b i在位置上相邻的子区域构成的集合,以子区域b 1为例进行说明,子区域b 1的邻居子区域N 1包括子区域b 2、b 3、b 4、b 7、b 10和子区域b 11。本实施例技术方案中每个子区域b i都安装有通信基站,这些通信基站为子区域内的用户终端设备发射移动信号。同时本发明实施例假设两个子区域的邻居关系是对称的,即如果子区域b i是子区域b j的邻居,那么子区域b j也必定是子区域b i的邻居。
本说明书实施例的技术方案中假设区域S内的各子区域内的基站都有三种可能的状态:不可关闭状态、可关闭状态和关闭状态,其中,不可关闭状态是指某个子区域的基站本处于活动状态,但若将其关闭,则区域内的通信网络不能满足覆盖条件;可关闭状态是指,某个子区域的基站本处于活动状态,如若将其关闭,则通信网络也能满足覆盖条件;关闭状态是指某个子区域的基站本身就处于非活动状态,即此基站不接入用户的终端设备。
为使本说明书中一个或多个实施例的目的、技术方案和优点更加清楚,下面将结合本说明书具体实施例及相应的附图对本说明书一个或多个实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本说明书的一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书一个或多个实施例的保护范围。
以下结合附图,详细说明本说明书各实施例所提供的技术方案。图2为本说明书实施例提供的一种自适应调整区域内子区域的基站停开机的方法的流程示意图。从程序角度而言,流程的执行主体可以为搭载于应用服务器的程序或应用客户端。
步骤S1:判断区域内处于活动状态的第i个子区域的基站在第k个采样周期能否关闭,得到判断结果;
如果所述判断结果为是,则在所述第k个采样周期将所述第i个子区域关闭;
区域内有多个子区域,在第k个采样周期内,处于活动状态的一些子区域的基站处于可关闭状态,一些处于不可关闭状态,本实施例技术方案从区域内第i个子区域的角度出发阐述本发明技术方案。
步骤S1:获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
Figure PCTCN2021086816-appb-000014
本步骤中预设范围邻域用于表示以第i个子区域所在位置为基准,在多大半径距离范围内统计处于活动状态的子区域的平均繁忙度
Figure PCTCN2021086816-appb-000015
平均繁忙度
Figure PCTCN2021086816-appb-000016
能够表明此半径距离范围内所有基站工作的整体繁忙程度,需要说明的是,在计算平均繁忙度
Figure PCTCN2021086816-appb-000017
时,需要将第i个子区域自身的繁忙度也考虑在内。
具体地,依据下式计算所述平均繁忙度
Figure PCTCN2021086816-appb-000018
Figure PCTCN2021086816-appb-000019
其中N i *(kT)表示在第k个周期,所述第i个子区域的预设范围邻域内处于活动状态的子区域的数量,f i(kT)表示第i个子区域的繁忙度,f j(kT)表示第j个子区域的繁忙度。
在步骤S2之前还包括:将所述第i个子区域的基站繁忙度f i(kT)、导频信号发射总功率P i(kT)、能量效率E i(kT)和活动状态信息发送给所述第i个子区域的处于活动状态的各个邻居子区域;其中,根据下式计算所述能量效率E i(kT):
Figure PCTCN2021086816-appb-000020
步骤S2:基于所述平均繁忙度
Figure PCTCN2021086816-appb-000021
向所述第i个子区域的处于活动状态的各个邻居子区域的基站发送唤醒申请或关闭申请。
由于平均繁忙度
Figure PCTCN2021086816-appb-000022
能够表明在预设的半径距离范围内所有基站工作的整体繁忙程度,如果此平均繁忙度
Figure PCTCN2021086816-appb-000023
较大,则表明第i个子区域的预设范围邻域内基站整体工作状态较繁忙,需要唤醒一些处于关闭状态的基站启动工作;如果此平均繁忙度较小,则表明第i个子区域的预设范围邻域内基站整体较清闲,需要将一些处于工作状态的基站停止工作,从而最大程度上提高系统运行效率,节省基站运行所需的能量消耗。
步骤S3:基于第一预设规则在所述各个邻居子区域中筛选出邻居子区域b j*,向所述邻居子区域b j*的基站发送同意唤醒指令,且向所述各个邻居子区域中除所述邻居子区域b j*之外的其余邻居子区域的基站发送拒绝唤醒指令;
和/或,
基于第二预设规则在所述各个邻居子区域中筛选出邻居子区域b j',向所述邻居子区域b j'的基站发送同意关闭指令,且向所述各个邻居子区域中除所述邻居子区域b j'之外的其余邻居子区域的基站发送拒绝关闭指令。
S4:根据第三预设规则,筛选出待唤醒或待关闭的邻居子区域。
在第i个邻居子区域的预设范围邻域内的子区域的整体繁忙度较高或较低时,需要唤醒或关闭一些子区域内的基站。
具体地,本实施例技术方案中,在第i个子区域的预设范围邻域内基站的平均繁忙度较低,需要关闭一些子区域的基站时,则在第i个子区域发出关闭申请请求后,如果接收到的响应都为“同意”,则在第k+1个采样周期所述第i个子区域将停止工作,在此第i个子区域将停止工作前,需要在第k个采样周期则计算周围其邻居子区域为满足覆盖条件所需的导频信号最低发射功率(可以根据地理信息、无线传播模型(例如Hata公式,Cost231公式)以及邻居子区域当前导频信号发射功率计算给出)。然后此第i个子区域将关闭通知和计算得到的各邻居子区域导频信号最低发射功率发送到各邻居子区域,然后在第k+1个周期开始时,此第i个子区域停止工作。
在第i个子区域的预设范围邻域内基站的平均繁忙度较高,需要唤醒一些处于关闭状态的子区域的基站时,则在第i个子区域发出唤醒申请请求后,如果接收到的响应都为“同意”,则此第i个子区域挑选一个处于关闭状态的子区域立即启动工作,同时,此新启动工作的子区域将当前导频信号发射功率调整为零,并通知其自身的处于活动状态的邻居子区域。
进一步优化方案,所述步骤S4还包括:
所述待唤醒邻居子区域的基站在第k+1个采样周期开始工作;
和/或,
所述待关闭邻居子区域的基站在第k+1个采样周期停止工作。
S5:调整所述第i个子区域的基站在第k+1个采样周期的导频信号发射总功率P i((k+1)T);
其中,i=1,2,...,M,M为所述区域内的处于活动状态的子区域的数量,k=1,2,...,N,N为采样周期的数量,T表示所述采样周期的时间长度。
进一步优化方案,所述活动状态包括可关闭状态和不可关闭状态。
进一步优化方案,所述步骤S1之前还包括:
判断区域内处于活动状态的第i个子区域的基站在第k个采样周期能否关闭,得到判断结果;
如果所述判断结果为是,则在所述第k个采样周期将所述第i个子区域关闭;
若所述判断结果为否,执行所述步骤S1;
所述步骤S1,具体包括:获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
Figure PCTCN2021086816-appb-000024
进一步优化方案,所述步骤S1包括:
将所述第i个子区域关闭并且将区域内其余处于活动状态的邻居子区域的导频信号发射总功率调整至额定功率后,判断所述区域内的通信网络能否满足覆盖条件;若能,则所述第i个子区域的状态为可关闭状态,若不能,则所述第i个子区域的状态为不可关闭状态。
进一步优化方案,所述步骤S3包括:
如果所述平均繁忙度
Figure PCTCN2021086816-appb-000025
大于预先设定的第一阈值α,且所述第i个子区域存在处于关闭状态的邻居子区域,则计算相关系数ω i max(kT)=max{ω ji:j∈N i,b j的状态为“关闭”};向所述第i个子区域的处于活动状态的各个邻居子区域发送唤醒申请和所述相关系数ω i max(kT);其中,所述唤醒申请包含所述第i个子区域的ID标识信息,参数ω ji表示所述第i个子区域和处于关闭状态的邻居子区域b j的相关系数;N i表示所述第i个子区域的邻居子区域组成的集合;其中,相关系数ω ji表示区域内第j个子区域与第i个区域之间的紧密程度的正常数,它与两个子区域覆盖区域的交界面积成正比,且本发明实施例中规定第j个子区域与第i个子区域的相关系数ω ji和第i个子区域与第j个区域的相关系数ω ij相等,这两个相关系数可以根据第j个子区域与 第i个子区域的地理距离、地理特征、基站的发射角度而凭经验公式给出,这些为现有技术,此处不再赘述。
如果所述平均繁忙度
Figure PCTCN2021086816-appb-000026
小于预先设定的第二阈值β,数值
Figure PCTCN2021086816-appb-000027
小于预先设定的第三阈值γ且所述第i个子区域处于可关闭状态,则向所述第i个子区域的处于活动状态的各个邻居子区域发送关闭申请,其中,所述关闭申请包含所述第i个子区域的ID标识信息。
前文已经阐述了需要基于平均繁忙度
Figure PCTCN2021086816-appb-000028
的大小开启或关闭一些子区域内的基站,第i个子区域也将基站繁忙度f i(kT)、导频信号发射总功率P i(kT)、能量效率E i(kT)和活动状态信息发送给第i个子区域的处于活动状态的各个邻居子区域。同时,第i个子区域也在接收其邻居子区域发送过来的唤醒或关闭申请,在前文阐述的步骤S4中需要对这些申请做出响应。具体地,所述第一预设规则,即挑选出数值
Figure PCTCN2021086816-appb-000029
最大的子区域b j*,所述第二预设规则,即挑选数值
Figure PCTCN2021086816-appb-000030
最小的对应的子区域b j'
进一步优化方案,依据下式计算所述第i个子区域的繁忙度f i(kT):
Figure PCTCN2021086816-appb-000031
其中,a i(·)表示所述第i个子区域的物理资源块的利用率,H所述物理资源块的利用率的实时统计周期。
进一步优化方案,依据下式将所述第i个子区域在所述第k+1个采样周期内的导频信号发射总功率调整为P i((k+1)T);
Figure PCTCN2021086816-appb-000032
其中,P i'(kT)=P i(kT)+u i(kT),P i max为第i个子区域的基站的射频发射单元的额定功率;P i min(kT)为第i个子区域的基站在所述第k个采样周期内满足覆盖条件所需的导频信号最低发射功率,u i(kT)表示所述第i个子区域的基站在第k+1个周期的理论功率调整量。
具体地,下文阐述如何计算第i个子区域的基站在第k+1个周期的理论功率调整量u i(kT):首先计算第i个子区域的繁忙度与处于活动状态的邻居子区域的繁忙度之差的加权平均:
Figure PCTCN2021086816-appb-000033
注意到对于刚启动的子区域b i,其繁忙度f i(kT)=0,然后利用比例-积分-微分(PID)控制器的思想,利用PID控制器计算第i个子区域的基站在第k+1个采样周期的理论功率调整量:
Figure PCTCN2021086816-appb-000034
其中,k p为所述PID控制器中的比例系数,量纲为dBm;k i为所述PID控制器中的积分系数,量纲为dBm/T的量纲;k d为所述PID控制器中的微分系数,量纲为dBm×T的量纲;δ>1为正整数,用于表示子区域存储和利用历史数据Δ i(kT)的最大周期数。k p,k i,k d,δ的数值可以根据经验给出。注意到若第i个子区域自身或者邻居子区域在某时刻k′T(其中数值k′小于数值k)有关闭或启动的行为,则认为历史数据Δ i(k′T)为异常波动历史数据,在第i个子区域的基站在第k+1个采样周期的理论功率调整量u i(kT)的计算时将其剔除,并且u i(kT)的计算可以在各子区域的数字信号处理器中分布式地进行计算。
同时,如图3所示,本说明实施例还提供一种自适应调整区域内子区域停开机的装置,包括:
平均繁忙度获取模块310,用于获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
Figure PCTCN2021086816-appb-000035
申请指令发送模块320,用于基于所述平均繁忙度
Figure PCTCN2021086816-appb-000036
向所述第i个子区域的处于活动状态的各个邻居子区域的基站发送唤醒申请或关闭申请;
反馈指令发送模块330,用于基于第一预设规则在所述各个邻居子区域中筛选出邻居子区域b j*,向所述邻居子区域b j*的基站发送同意唤醒指令,且向所述各个邻居子区域中除所述邻居子区域b j*之外的其余邻居子区域的基站发送拒绝唤醒指令;
和/或,
基于第二预设规则在所述各个邻居子区域中筛选出邻居子区域b j',向所述邻居子区域b j'的基站发送同意关闭指令,且向所述各个邻居子区域中除所述邻居子区域b j'之外的其余邻居子区域的基站发送拒绝关闭指令;
筛选模块340,用于根据第三预设规则,筛选出待唤醒或待关闭的邻居子区域;
调整模块350,用于调整所述第i个子区域的基站在第k+1个采样周期的导频信号发射总功率P i((k+1)T);
其中,i=1,2,...,M,M为所述区域内的处于活动状态的子区域的数量,k=1,2,...,N,N为采样周期的数量,T表示所述采样周期的时间长度。
需要说明的是,本实施例技术方案是在第k个采样周期,从第i个子区域的角度出发对本发明技术方案进行阐述,说明如何基于第i个子区域的附近的子区域(包括第i个子区域自身)的基站的动态的实际资源利用率设定基站在第k+1个采样周期的智能停开策略的,这相当于对区域内的局部区域的基站的运行做了优化。应当理解的是,区域内包括多个子区域,每个子区域都有基站设备,系统内的基站在运营周期内也处于持续运行状态,本领域技术人员应当 从整体、系统的角度理解本发明技术方案,即区域内的全部或部分子区域都可以同时作为执行主体,在持续的采样周期内各自不断进行优化,从而本发明技术方案中区域内各子区域的基站的状态互相影响,处于联动状态,整个系统处于复杂的动态优化过程中,能够不间断地、自适应地持续进行动态调整,从而使得整个系统的效率持续处于最优或次优状态,在很大程度上基于基站动态的实际资源利用率智能地设定基站智的开决策,从而在不引起网络质量下降的同时有效减少能耗,有助于节能减排目标的实现。
本发明技术方案从系统工程的角度出发,能够根据区域内各子区域的基站动态的实际资源利用率设定基站的智能停开策略,持续地根据系统的运行状态对系统进行调整,从而能够在运营周期内,在不引起通信网络质量下降的同时,有效减少能耗,有助于节能减排目标的实现。
上述对本说明书特定实施例进行了描述,其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,附图中描绘的过程不一定必须按照示出的特定顺序或者连续顺序才能实现期望的结果。本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本说明书实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所 作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种自适应调整区域内子区域的基站停开机的方法,其特征在于,包括:
    步骤S1:获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
    Figure PCTCN2021086816-appb-100001
    步骤S2:基于所述平均繁忙度
    Figure PCTCN2021086816-appb-100002
    向所述第i个子区域的处于活动状态的各个邻居子区域的基站发送唤醒申请或关闭申请;
    步骤S3:基于第一预设规则在所述各个邻居子区域中筛选出邻居子区域b j*,向所述邻居子区域b j*的基站发送同意唤醒指令,且向所述各个邻居子区域中除所述邻居子区域b j*之外的其余邻居子区域的基站发送拒绝唤醒指令;
    和/或,
    基于第二预设规则在所述各个邻居子区域中筛选出邻居子区域b j',向所述邻居子区域b j'的基站发送同意关闭指令,且向所述各个邻居子区域中除所述邻居子区域b j'之外的其余邻居子区域的基站发送拒绝关闭指令;
    S4:根据第三预设规则,筛选出待唤醒或待关闭的邻居子区域;
    S5:调整所述第i个子区域的基站在第k+1个采样周期的导频信号发射总功率P i((k+1)T);
    其中,i=1,2,...,M,M为所述区域内的处于活动状态的子区域的数量,k=1,2,...,N,N为采样周期的数量,T表示所述采样周期的时间长度。
  2. 根据权利要求1所述的自适应调整区域内子区域的基站停开机的方法,其特征在于,所述步骤S1之前还包括:
    判断区域内处于活动状态的第i个子区域的基站在第k个采样周期能否关闭,得到判断结果;
    如果所述判断结果为是,则在所述第k个采样周期将所述第i个子区域关闭;
    若所述判断结果为否,执行所述步骤S1;
    所述步骤S1,具体包括:获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
    Figure PCTCN2021086816-appb-100003
  3. 根据权利要求2所述的自适应调整区域内子区域的基站停开机的方法,其特征在于,所述判断区域内处于活动状态的第i个子区域的基站在第k个采样周期能否关闭,包括:
    将所述第i个子区域的基站关闭并且将区域内其余处于活动状态的邻居子区域的基站的导频信号发射总功率调整至额定功率后,判断所述区域内的通信网络能否满足覆盖条件;若能,则所述第i个子区域的基站的状态为可关闭状态,若不能,则所述第i个子区域的基站的状态为不可关闭状态。
  4. 根据权利要求1所述的自适应调整区域内子区域的基站停开机的方法,其特征在于,所述步骤S3包括:
    如果所述平均繁忙度
    Figure PCTCN2021086816-appb-100004
    大于预先设定的第一阈值α,且所述第i个子区域存在处于关闭状态的邻居子区域,则计算相关系数ω i max(kT)=max{ω ji:j∈N i,b j的状态为“关闭”};向所述第i个子区域的处于活动状态的各个邻居子区域发送唤醒申请和所述相关系数ω i max(kT);其中,所述唤醒申请包含所述第i个子区域的ID标识信息,参数ω ji表示所述第i个子区域和处于关闭状态的邻居子区域b j的相关系数;N i表示所述第i个子区域的邻居子区域组成的集合;
    如果所述平均繁忙度
    Figure PCTCN2021086816-appb-100005
    小于预先设定的第二阈值β,数值
    Figure PCTCN2021086816-appb-100006
    小于预先设定的第三阈值γ且所述第i个子区域处于可关闭状态,则向所述第i个子区域的处于活动状态的各个邻居子区域发送关闭申请,其中,所述关闭申请包含所述第i个子区域的ID标识信息。
  5. 根据权利要求1所述的自适应调整区域内子区域的基站停开机的方法,其特征在于,在所述步骤S1之前,还包括:
    将所述第i个子区域的基站繁忙度f i(kT)、导频信号发射总功率P i(kT)、能量效率E i(kT)和活动状态信息发送给所述第i个子区域的处于活动状态的各个邻居子区域;其中,根据下式计算所述能量效率E i(kT):
    Figure PCTCN2021086816-appb-100007
  6. 根据权利要求5所述的自适应调整区域内子区域的基站停开机的方法,其特征在于,依据下式计算所述第i个子区域的繁忙度f i(kT):
    Figure PCTCN2021086816-appb-100008
    其中,a i(·)表示所述第i个子区域的物理资源块的利用率,H表示所述物理资源块的利用率的实时统计周期。
  7. 根据权利要求1所述的自适应调整区域内子区域的基站停开机的方法,其特征在于,依据下式计算所述平均繁忙度
    Figure PCTCN2021086816-appb-100009
    Figure PCTCN2021086816-appb-100010
    其中N i *(kT)表示在第k个周期所述第i个子区域的预设范围邻域内处于活动状态的子区域的数量,f i(kT)表示所述第i个子区域的繁忙度,f j(kT)表示所述第i个子区域的预设范围邻域内处于活动状态的第j个子区域的繁忙度。
  8. 根据权利要求1所述的自适应调整区域内子区域的基站停开机的方法,其特征在于,所述步骤S4还包括:
    所述待唤醒邻居子区域的基站在第k+1个采样周期开始工作;
    和/或,
    所述待关闭邻居子区域的基站在第k+1个采样周期停止工作。
  9. 根据权利要求1所述的自适应调整区域内子区域的基站停开机的方法,其特征在于,依据下式将所述第i个子区域在所述第k+1个采样周期内的导频信号发射总功率调整为P i((k+1)T);
    Figure PCTCN2021086816-appb-100011
    其中,P i'(kT)=P i(kT)+u i(kT),P i max为所述第i个子区域的基站的射频发射单元的额定功率;P i min(kT)为所述第i个子区域的基站在所述第k个采样周期内满足覆盖条件所需的导频信号最低发射功率,u i(kT)表示所述第i个子区域的基站在第k+1个周期的理论功率调整量。
  10. 一种自适应调整区域内子区域停开机的装置,其特征在于,包括:
    平均繁忙度获取模块,用于获取区域内处于活动状态的第i个子区域的预设范围邻域内处于活动状态的子区域的基站的平均繁忙度
    Figure PCTCN2021086816-appb-100012
    申请指令发送模块,用于基于所述平均繁忙度
    Figure PCTCN2021086816-appb-100013
    向所述第i个子区域的处于活动状态的各个邻居子区域的基站发送唤醒申请或关闭申请;
    反馈指令发送模块,用于基于第一预设规则在所述各个邻居子区域中筛选出邻居子区域b j*,向所述邻居子区域b j*的基站发送同意唤醒指令,且向所述各个邻居子区域中除所述邻居子区域b j*之外的其余邻居子区域的基站发送拒绝唤醒指令;
    和/或,
    基于第二预设规则在所述各个邻居子区域中筛选出邻居子区域b j',向所述邻居子区域b j'的基站发送同意关闭指令,且向所述各个邻居子区域中除所述邻居子区域b j'之外的其余邻居子区域的基站发送拒绝关闭指令;
    筛选模块,用于根据第三预设规则,筛选出待唤醒或待关闭的邻居子区域;
    调整模块,用于调整所述第i个子区域的基站在第k+1个采样周期的导频信号发射总功率P i((k+1)T);
    其中,i=1,2,...,M,M为所述区域内的处于活动状态的子区域的数量,k=1,2,...,N,N为采样周期的数量,T表示所述采样周期的时间长度。
PCT/CN2021/086816 2021-03-05 2021-04-13 一种自适应调整区域内子区域的基站停开机的方法及装置 WO2022183569A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110254856.1 2021-03-05
CN202110254856.1A CN113015191B (zh) 2021-03-05 2021-03-05 一种自适应调整区域内子区域的基站停开机的方法及装置

Publications (1)

Publication Number Publication Date
WO2022183569A1 true WO2022183569A1 (zh) 2022-09-09

Family

ID=76402721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086816 WO2022183569A1 (zh) 2021-03-05 2021-04-13 一种自适应调整区域内子区域的基站停开机的方法及装置

Country Status (2)

Country Link
CN (1) CN113015191B (zh)
WO (1) WO2022183569A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430559B (zh) * 2021-11-23 2023-08-08 华信咨询设计研究院有限公司 一种基于阶梯式评估的5g基站智能关断方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135994A1 (en) * 2010-06-16 2013-05-30 Nokia Siemens Networks Oy Power Saving Procedure in Communications Network
CN106792812A (zh) * 2016-12-16 2017-05-31 重庆邮电大学 一种基于业务负载量评估的LTE‑Hi小小区开关控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135994A1 (en) * 2010-06-16 2013-05-30 Nokia Siemens Networks Oy Power Saving Procedure in Communications Network
CN106792812A (zh) * 2016-12-16 2017-05-31 重庆邮电大学 一种基于业务负载量评估的LTE‑Hi小小区开关控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Potential solutions for energy saving for E-UTRAN (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 36.927, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. V16.0.0, 16 July 2020 (2020-07-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 22, XP051925404 *
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Study on Energy Savings Management (ESM) (Release 10)", 3GPP STANDARD; 3GPP TR 32.826, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V10.0.0, 30 March 2010 (2010-03-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 33, XP050402127 *
EUNSUNG OH ; KYUHO SON ; BHASKAR KRISHNAMACHARI: "Dynamic Base Station Switching-On/Off Strategies for Green Cellular Networks", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ., US, vol. 12, no. 5, 1 May 2013 (2013-05-01), US , pages 2126 - 2136, XP011511581, ISSN: 1536-1276, DOI: 10.1109/TWC.2013.032013.120494 *
HUAWEI: "Cell wake up based on low-load period information", 3GPP DRAFT; R3-103279 CELL WAKE UP, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Jacksonville, USA; 20101115, 8 November 2010 (2010-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050466286 *

Also Published As

Publication number Publication date
CN113015191A (zh) 2021-06-22
CN113015191B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US11853143B2 (en) Power management of networked devices
CN102413554B (zh) 一种基于异构蜂窝无线网络的节能方法及其实现结构
Rasti et al. Distributed uplink power control with soft removal for wireless networks
WO2022183569A1 (zh) 一种自适应调整区域内子区域的基站停开机的方法及装置
CN103906076A (zh) 一种分布式自适应调节小基站发射功率偏置值的方法
CN113891377A (zh) 一种5g小基站设备自动维护及调优方法
TWI638579B (zh) 資料驅動的基站管理方法與裝置
CN113891415A (zh) 可节能小区快速筛选方法
Rumeng et al. Intelligent energy saving solution of 5G base station based on artificial intelligence technologies
CN103369640B (zh) 基站节电方法及装置
CN117514733A (zh) 一种水泵控制方法、装置、设备及存储介质
CN113938993A (zh) 一种自适应节能方法、系统、装置及计算机可读存储介质
CN104883725B (zh) 一种长期演进网络中基于站点实际负载的网络节能方法
CN111542102A (zh) 一种ZigBee-WiFi协同无线局域网终端设备节能系统及其使用方法
CN115623569A (zh) 一种基于ai的5g网络节能系统
CN114860058B (zh) 一种电力芯片低功耗处理方法及系统
CN116032672A (zh) 一种基于智能路由器的动态低能耗控制方法和装置
Yang et al. Energy minimization by dynamic base station switching in heterogeneous cellular network
CN111246504B (zh) 一种基于小世界特性的动态分簇路由优化方法
Alnoman et al. On Base Station Sleeping for Heterogeneous Cloud-Fog Computing Networks
Zhou et al. Exploration of Adaptive Energy Optimization for 5G Roadside Unit
CN115002884B (zh) 一种面向无蜂窝网络的接入点关断方法及装置
Zheng et al. A Multi-Dimensional Resource Cooperative Allocation Scheme Based on Wireless Digital Twin Network
CN114554576B (zh) 一种节能的方法、装置以及宏基站
WO2024113906A1 (zh) 一种服务器集群温度调节方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928650

Country of ref document: EP

Kind code of ref document: A1