WO2022183442A1 - 触控驱动电路、驱动芯片以及触控显示装置 - Google Patents
触控驱动电路、驱动芯片以及触控显示装置 Download PDFInfo
- Publication number
- WO2022183442A1 WO2022183442A1 PCT/CN2021/079092 CN2021079092W WO2022183442A1 WO 2022183442 A1 WO2022183442 A1 WO 2022183442A1 CN 2021079092 W CN2021079092 W CN 2021079092W WO 2022183442 A1 WO2022183442 A1 WO 2022183442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- switch circuit
- touch
- pressure
- mos transistor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 188
- 238000004146 energy storage Methods 0.000 claims description 145
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 10
- 238000007599 discharging Methods 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000010351 charge transfer process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
Definitions
- Embodiments of the present application relate to the technical field of electronic circuits, and in particular, to a touch driving circuit, a driving chip, and a touch display device.
- a capacitive touch display device generally includes a display, touch electrodes, and a touch driving circuit. Using the touch driving circuit to charge and discharge the touch electrodes can detect the capacitance change at the corresponding coordinate position of the display when a human body or other conductors touch the display, and then determine the user's operation.
- FIG. 1 it is a schematic structural diagram of a conventional touch driving circuit.
- the touch drive circuit utilizes the inverter INV to provide a drive signal to drive the touch electrodes.
- the voltage V DD is the power supply voltage
- the capacitance CL represents the equivalent capacitance of the touch electrodes
- the resistance RL represents the equivalent impedance (ie, the driving impedance) during coding.
- the power consumption of the touch drive circuit is mainly divided into two parts, one of which is the loss on the resistor RL when the capacitor CL is charged, and the other part is the loss on the resistor RL when the capacitor CL is discharged;
- the losses of the above two parts are both 1/2*C L *V DD 2 *f, so the touch driving circuit shown in FIG.
- the total driving power consumption is C L *V DD 2 *f.
- OLED Organic Light Emitting Display, organic light-emitting display
- LCD Liquid Crystal Display, liquid crystal display
- the capacitance value of the load capacitance (equivalent capacitance C L ) of the OLED screen is significantly larger, which in turn leads to an increase in the power consumption of the OLED screen, making it difficult to meet the needs of low-power touch detection.
- embodiments of the present application provide a touch driving circuit, a driving chip, and a touch display device to reduce driving power consumption.
- an embodiment of the present application provides a touch driving circuit for outputting a driving signal to drive touch electrodes of a touch display device, the touch driving circuit comprising: a power supply voltage generating circuit, a switching circuit and a first energy storage capacitor; the first input end of the switch circuit is connected to the power supply voltage generating circuit; the second input end of the switch circuit is connected to the ground GND through the first energy storage capacitor; the switch The third input terminal of the circuit is connected to the ground terminal GND; the output terminal of the switching circuit is connected to the touch electrode; the power supply voltage generating circuit is used for generating a first positive voltage; the switching circuit is used for The touch electrodes are controlled to be connected to the power supply voltage generating circuit within a first period, and the first positive voltage charges the touch electrodes, so that the voltage across the touch electrodes is equal to the first positive voltage; The touch electrodes are controlled to be connected to the first energy storage capacitors within a second period of time, and the first energy storage capacitors are used to store the charges released by the touch electrode
- a second positive voltage is introduced between the first positive voltage and the zero voltage as an intermediate level, which reduces the need for touch control.
- the loss on the driving impedance during the process that the voltage across the electrodes drops from the first positive voltage to the zero voltage reduces the driving power consumption of the touch driving circuit.
- the touch drive circuit further includes: a second energy storage capacitor; a fourth input terminal of the switch circuit is connected to the ground terminal GND through the second energy storage capacitor; The fifth input terminal is connected to the power supply voltage generating circuit; the power supply voltage generating circuit is further configured to generate a first negative voltage; the switch circuit is further configured to control the touch electrodes to be connected to the first negative voltage within a fourth period of time Two energy storage capacitors, the second energy storage capacitors are used to transfer the stored charges to the touch electrodes, so that the voltage across the touch electrodes is equal to the second negative voltage; and the control of the The touch electrodes are connected to the power supply voltage generating circuit, and the first negative voltage charges the touch electrodes, so that the voltage across the touch electrodes is equal to the first negative voltage; the second negative voltage is high at the first negative voltage and below the zero voltage.
- the switch circuit is further configured to control the touch electrodes to be connected to the second energy storage capacitors within a sixth time period, and the second energy storage capacitors are used to store the charges released by the touch electrodes , so that the voltage across the touch electrodes is equal to the second negative voltage; in the seventh period, the touch electrodes are controlled to be connected to the ground terminal GND, and the touch electrodes discharge to the ground terminal GND, making the voltage across the touch electrodes equal to the zero voltage; and controlling the touch electrodes to be connected to the first energy storage capacitor within an eighth time period, the first energy storage capacitor is used to store the stored charge It is transferred to the touch electrodes, so that the voltage across the touch electrodes is equal to the second positive voltage.
- the switch circuit further includes: a first switch circuit, a second switch circuit, a third switch circuit, a fourth switch circuit and a fifth switch circuit;
- the input end of the first switch circuit is the switch circuit
- the output end of the first switch circuit is connected to the output end of the switch circuit;
- the input end of the second switch circuit is the second input end of the switch circuit, and the second switch circuit
- the output terminal of the circuit is connected to the output terminal of the switch circuit;
- the input terminal of the third switch circuit is the third input terminal of the switch circuit, and the output terminal of the third switch circuit is connected to the output terminal of the switch circuit.
- the input terminal of the fourth switch circuit is the fourth input terminal of the switch circuit, and the output terminal of the fourth switch circuit is connected to the output terminal of the switch circuit;
- the input terminal of the fifth switch circuit The terminal is the fifth input terminal of the switch circuit, and the output terminal of the fifth switch circuit is connected to the output terminal of the switch circuit.
- the first switch circuit is turned on; in the second time period, the second switch circuit is turned on; in the third time period, the third The switch circuit is turned on; in the fourth time period, the fourth switch circuit is turned on; in the fifth time period, the fifth switch circuit is turned on; in the sixth time period, the first The four switch circuits are turned on; in the seventh time period, the third switch circuit is turned on; in the eighth time period, the second switch circuit is turned on; when any one of the switch circuits is turned on, The other four switch circuits are all turned off.
- the touch drive circuit further includes a first pressure-bearing tube and a second pressure-bearing tube;
- the first switch circuit further includes a first MOS tube;
- the second switch circuit further includes a second MOS tube;
- the fourth switch circuit further includes a fourth MOS transistor;
- the fifth switch circuit further includes a fifth MOS transistor;
- the third switch circuit further includes a third MOS transistor and a sixth MOS transistor;
- the first MOS transistor , the sixth MOS transistor and the first pressure-bearing transistor are P-type MOS transistors, the second MOS transistor, the third MOS transistor, the fourth MOS transistor, the fifth MOS transistor and the
- the second pressure-bearing tube is an N-type MOS tube;
- the source of the first MOS tube is connected to the first positive voltage, and the drain of the first MOS tube is connected to the source of the first pressure-bearing tube pole;
- the source of the second MOS transistor is connected to the source of the first pressure-bearing transistor, and the
- the first MOS transistor is turned on, the gates of the first pressure-bearing tube and the second pressure-bearing tube are connected to the ground terminal GND, and the other The five MOS transistors are turned off; during the second period, the second MOS transistor is turned on, and the gates of the first pressure-receiving transistor and the second pressure-receiving transistor are connected to the ground terminal GND, so The other five MOS transistors are turned off; during the third period, the third MOS transistor is turned on, and the voltage connected to the gate of the first pressure-bearing transistor is equal to the second positive voltage minus the The difference of the first positive voltage, the gate of the second pressure-bearing tube is connected to the ground terminal GND, and the other five MOS tubes are turned off; during the fourth period, the fourth MOS tube is turned on.
- the gates of the first pressure-bearing tube and the second pressure-bearing tube are connected to the ground terminal GND, and the other five MOS tubes are turned off; in the fifth period, the fifth MOS tube the gates of the first pressure-bearing tube and the second pressure-bearing tube are connected to the ground terminal GND, and the other five MOS tubes are turned off; in the sixth period, the The four MOS transistors are turned on, the gates of the first pressure-bearing tube and the second pressure-bearing tube are connected to the ground terminal GND, and the other five MOS transistors are turned off; in the seventh period, all The sixth MOS transistor is turned on, the gate of the first pressure-bearing tube is connected to the ground terminal GND, and the voltage connected to the gate of the second pressure-bearing tube is equal to the second negative voltage minus the The difference between the first negative voltage, the other five MOS transistors are turned off; during the eighth period, the second MOS transistor is turned on, the first pressure-bearing tube and the second pressure-
- the signal amplitude of the driving signal in one cycle is sequentially equal to the first positive voltage, the second positive voltage, the zero voltage, the second negative voltage, the first negative voltage, the second negative voltage, the zero voltage, the second positive voltage.
- the power supply voltage generating circuit further includes a positive and negative voltage conversion circuit; the positive and negative voltage conversion circuit is configured to convert the first positive voltage into the first negative voltage.
- the capacitance value of the first energy storage capacitor or the second energy storage capacitor is greater than 50 times the equivalent capacitance value of the touch electrode.
- the second positive voltage is equal to 1/2 of the first positive voltage
- the second negative voltage is equal to 1/2 of the first negative voltage
- an embodiment of the present application provides a touch driving chip, including the touch driving circuit provided in the first aspect or any optional manner of the first aspect.
- an embodiment of the present application provides a touch display device, including the touch driving chip provided in the third aspect.
- touch driving chip described in the second aspect and the touch display device described in the third aspect both apply the corresponding touch driving circuit provided above. Therefore, they can achieve For the beneficial effects, reference may be made to the beneficial effects of the corresponding touch driving circuits provided above, which will not be repeated here.
- FIG. 1 is a schematic structural diagram of a conventional touch driving circuit
- FIG. 2 is a schematic structural diagram of a touch driving circuit according to an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of another touch driving circuit according to an embodiment of the present application.
- FIG. 4 is a schematic waveform diagram of a driving signal provided by an embodiment of the present application.
- FIG. 5 provides a first time period according to an embodiment of the present application and second period Schematic diagram of the internal touch drive circuit charging and discharging the touch electrodes;
- FIG. 6 provides a seventh time period according to an embodiment of the present application and eighth period Schematic diagram of the internal touch drive circuit charging and discharging the touch electrodes;
- FIG. 7 is a schematic structural diagram of another touch driving circuit provided by an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of another touch driving circuit provided by an embodiment of the present application.
- FIG. 9 is a schematic waveform diagram of another driving signal provided by an embodiment of the present application.
- first and second are only used to distinguish similar objects, and should not be construed as indicating or implying relative importance, or implicitly indicating the number of technical features indicated.
- a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature.
- Embodiments of the present application provide a touch driving circuit, a driving chip and a touch display device.
- the touch driving circuit can be applied to a touch display device, and outputs a driving signal to drive the touch electrodes of the touch display device.
- the touch display device may also include a display, and a user can use a finger or other conductors to touch icons or characters on the display to achieve corresponding touch operations; examples of displays include but are not limited to liquid crystal (LCD) displays, organic light emitting (OLED) Displays, Plasma (PDP) Displays and Cathode Ray (CRT) Displays.
- LCD liquid crystal
- OLED organic light emitting
- PDP Plasma
- CRT Cathode Ray
- FIG. 2 it is a schematic structural diagram of a touch driving circuit according to an embodiment of the present application.
- the resistance RL represents the driving impedance (including the equivalent impedance of the touch electrodes and the touch driving circuit); the capacitance CL represents the equivalent capacitance of the touch electrodes.
- the touch driving circuit 10 includes a switch circuit 101, and the first input terminal of the switch circuit 101 is connected to the first positive voltage V DD , the second input terminal is connected to the ground terminal GND through the first energy storage capacitor C S1 , and the third input terminal is connected to the ground terminal GND. It is connected to the ground terminal GND, and the output terminal is connected to the touch electrode.
- the first positive voltage V DD may be a power supply voltage generated by a power supply voltage generating circuit.
- the switch circuit 101 can control the connection objects of the touch electrodes in the following order: control the touch electrodes to be connected to the power supply voltage generating circuit within a first period of time, and charge the touch electrodes with a first positive voltage, so that the voltage across the touch electrodes is is equal to the first positive voltage V DD ; in the second period, the touch electrodes are controlled to be connected to the first energy storage capacitor C S1 , and the first energy storage capacitor C S1 can store the charge released by the touch electrodes, so that the voltage across the touch electrodes is equal to the second positive voltage V C1 ; and control the touch electrodes to be connected to the ground terminal GND during the third period, and the touch electrodes are discharged to the ground, so that the voltage across the touch electrodes is equal to zero voltage.
- the power supply voltage generating circuit may be provided separately for providing the power supply voltage to the touch driving circuit, or may be shared with other circuit modules in the touch detection chip.
- the touch electrodes transfer a part of the positive charge to the first energy storage capacitor C S1 until the voltage across the touch electrodes is equal to the voltage across the first energy storage capacitor C S1 , so that the two touch electrodes are
- the voltage of the terminal changes from the first positive voltage V DD to the second positive voltage V C1 , so the second positive voltage V C1 is lower than the first positive voltage V DD and higher than the zero voltage, that is, V DD >V C1 >0.
- the second positive voltage V C1 is approximately equal to V DD /2, so during the above-mentioned discharge process of the touch electrodes, the voltage on the resistor RL The loss is approximately equal to 1/4*C L *V DD 2 *f, which is only 50% of the traditional touch driving circuit shown in FIG. 1 .
- the capacitance value of the first energy storage capacitor C S1 is greater than that of the capacitor C L 30 times the capacitance value of the first energy storage capacitor C S1 , it can be determined that the capacitance value of the first energy storage capacitor C S1 is much larger than the capacitance value of the capacitor CL ; 50 to 100 times the value.
- the first energy storage capacitor C S1 may also introduce a voltage lower than the first positive voltage V DD and higher than the zero voltage.
- the middle level thereby reducing the loss on the resistance RL during the discharge process of the touch electrode, that is, the loss value can be made less than 1/2*C L *V DD 2 *f, but since the middle level is not approximately equal to V DD /2, so this would result in a loss greater than 1/4*C L *V DD 2 *f.
- the touch driving circuit 20 includes a switch circuit 201, and the first input terminal of the switch circuit 201 is connected to the first positive voltage V DD , the second input terminal is connected to the ground terminal GND through the first energy storage capacitor C S1 , and the third input terminal is connected to the ground terminal GND.
- the fourth input terminal is connected to the ground terminal GND through the second energy storage capacitor CS2 , the fifth input terminal is connected to the first negative voltage -V DD , and the output terminal is connected to the touch electrode.
- Both the first positive voltage V DD and the first negative voltage -V DD are power supply voltages generated by the power supply voltage generating circuit.
- the switch circuit 201 can control the connection objects of the touch electrodes in the following order: control the touch electrodes to be connected to the power supply voltage generating circuit within a first period of time, and charge the touch electrodes with the first positive voltage, so that the voltage across the touch electrodes is is equal to the first positive voltage V DD ; in the second period, the touch electrodes are controlled to be connected to the first energy storage capacitor C S1 , and the first energy storage capacitor C S1 can store the charge released by the touch electrodes, so that the voltage across the touch electrodes is equal to the second positive voltage V C1 ; control the touch electrodes to be connected to the ground terminal GND in the third period, and discharge the touch electrodes to ground, so that the voltage across the touch electrodes is equal to zero voltage; control the touch electrodes to connect in the fourth period to the second energy storage capacitor C S2 , the second energy storage capacitor C S2 transfers the
- the power supply voltage generating circuit may include a positive and negative voltage conversion circuit, and the positive and negative voltage conversion circuit may convert the first positive voltage V DD into the first negative voltage -V DD , and an example of the positive and negative voltage conversion circuit includes a negative voltage charge pump circuit .
- the above-mentioned charge transfer process in the fourth period is based on the fact that the second energy storage capacitor C S2 has already stored a certain amount of negative charge.
- the first negative voltage -V DD further charges the touch electrodes, so that the voltage across the touch electrodes changes from the second negative voltage V C2 to the first negative voltage -V DD , so the second negative voltage
- the voltage V C2 is higher than the first negative voltage -V DD and lower than the zero voltage, that is, 0>V C2 >-V DD , ⁇ V DD ⁇ > ⁇ V C2 ⁇ >0.
- the signal amplitude of the driving signal output by the touch driving circuit can be increased from V DD to 2V DD , which is beneficial to improve the resolution of touch detection.
- the drive power consumption in one cycle T will increase to 4*C L *V DD 2 *f;
- the loss on the resistor RL during electrode discharge is equal to 2*C L *V DD 2 *f.
- the first energy storage capacitor C S1 and the second energy storage capacitor C S2 are used to recycle the charges transferred from the touch electrodes during the discharge process, and no extra work is generated during this process. Therefore, the loss on the resistor RL during the discharge process of the touch electrode is equal to 1/2*C L *V DD 2 *f, which is only 25% of the conventional touch driving circuit.
- the switch circuit can further control the touch electrodes to be connected to the second energy storage capacitor C S2 within the sixth period, and the second energy storage capacitor C S2 stores the charges released by the touch electrodes , so that the voltage at both ends of the touch electrode is equal to the second negative voltage V C2 ; in the seventh period, the touch electrode is controlled to be connected to the ground terminal GND, and the touch electrode is discharged to the ground, so that the voltage at both ends of the touch electrode is equal to zero voltage; in the seventh period The control touch electrodes are connected to the first energy storage capacitor C S1 within eight time periods, and the first energy storage capacitor C S1 transfers the stored charges to the touch electrodes, so that the voltage across the touch electrodes is equal to the second positive voltage V C1 .
- the switch circuit has completed the operation in one working cycle, and then can control the first positive voltage V DD to charge the touch electrodes according to the operation in the first period, and continue to cycle periodically, so that the touch drive
- the signal amplitude of the driving signal output by the circuit in one cycle is sequentially equal to the first positive voltage, the second positive voltage, the zero voltage, the second negative voltage, the first negative voltage, the second negative voltage, the zero voltage, and the second positive voltage.
- the switching circuit can be operated according to the above-mentioned first to eighth time periods.
- the sequence is controlled in sequence: the first positive voltage V DD charges the touch electrodes until the voltage across the touch electrodes is equal to the first positive voltage V DD ; the touch electrodes are connected to the first energy storage capacitor C S1 and are connected to the first
- the energy storage capacitor C S1 transfers a part of the positive charge until the voltage across the touch electrodes is equal to the second positive voltage V C1 ; the touch electrodes are grounded and discharged to ground until the voltage across the touch electrodes is equal to 0; the touch electrodes are connected to the second positive voltage V C1 .
- the energy storage capacitor C S2 is connected, but since the amount of charge stored by the second energy storage capacitor C S2 is 0, no charge transfer occurs between the touch electrode and the second energy storage capacitor C S2 ; the first negative voltage-V DD pair The touch electrodes are charged until the voltage across the touch electrodes is equal to the first negative voltage -V DD ; the touch electrodes are connected to the second energy storage capacitor C S2 again, and the touch electrodes discharge the second energy storage capacitor C S2 , The second energy storage capacitor C S2 stores the charges released by the touch electrodes until the voltage across the touch electrodes is equal to the second negative voltage V C2 ; the touch electrodes are grounded again and discharged to the ground until the voltage across the touch electrodes is equal to 0; The touch electrodes are connected to the first energy storage capacitor C S1 , and the first energy storage capacitor C S1 transfers the stored charges to the touch electrodes to charge the touch electrodes until the voltage across the touch electrodes is equal to the second positive voltage V C1 ; Next, the above process is periodically cycled, and when
- the amount of charge stored in the first energy storage capacitor C S1 and the second energy storage capacitor C S2 can be gradually stabilized, so that the values of the second positive voltage V C1 and the second negative voltage V C2 are gradually stabilized, And when the capacitance value of the first energy storage capacitor C S1 and the second energy storage capacitor C S2 is much larger than the capacitance value of the capacitor CL , before and after the charge transfer with the capacitor CL , the first energy storage capacitor C S1 and the second energy storage capacitor C S1 and the second The amount of charge stored in the storage capacitor C S2 hardly changes.
- the switch circuit may further include a first switch circuit, a second switch circuit, a third switch circuit, a fourth switch circuit, and a fifth switch circuit.
- the input end of the first switch circuit is the first input end of the switch circuit, the output end of the first switch circuit is connected to the output end of the switch circuit;
- the input end of the second switch circuit is the second input end of the switch circuit,
- the output terminal of the second switch circuit is connected to the output terminal of the switch circuit;
- the input terminal of the third switch circuit is the third input terminal of the switch circuit, and the output terminal of the third switch circuit is connected to the output terminal of the switch circuit;
- the fourth switch circuit The input end of the switch circuit is the fourth input end of the switch circuit, and the output end of the fourth switch circuit is connected to the output end of the switch circuit;
- the input end of the fifth switch circuit is the fifth input end of the switch circuit, and the output end of the fifth switch circuit Connect to the output of the switching circuit.
- the above five switch circuits may be periodically cyclically turned on in the following order:
- the first period only the first switch circuit is turned on, and the first positive voltage V DD charges the touch electrodes, so that the voltage across the touch electrodes is equal to the first positive voltage V DD .
- the second period only the second switch circuit is turned on, the touch electrodes are connected to the first energy storage capacitor C S1 , and the first energy storage capacitor C S1 stores the charges released by the touch electrodes, so that the voltage across the touch electrodes is equal to the first energy storage capacitor C S1 .
- the touch electrodes are connected to the ground GND, and the touch electrodes are discharged to the ground, so that the touch The voltage across the electrodes is equal to zero voltage; in the eighth period, the touch electrodes are connected to the first energy storage capacitor C S1 , and the first energy storage capacitor C S1 transfers the stored charge to the touch electrodes, so that the voltage across the touch electrodes is is equal to the second positive voltage V C1 .
- the first The conduction time of the first switch circuit, the second switch circuit, the third switch circuit, the fourth switch circuit, and the fifth switch circuit is greater than or equal to the time for the voltage across the electrodes to establish to a stable value within a corresponding period of time, so as to ensure touch control
- the signal amplitude of the driving signal output by the driving circuit and the driving power consumption of the touch driving circuit can reach the designed target value.
- the first switch circuit is turned on, and the touch drive circuit outputs a first positive voltage to charge the electrode, then when the voltage across the electrode rises to a stable value, or when the voltage across the electrode increases After the voltage rises to a stable value, the first switch circuit is controlled to be turned off, and the second switch circuit is turned on; if the voltage across the electrode does not rise to a stable value, the first switch circuit is turned off and the second switch is turned on.
- the fourth switch circuit is turned on, and the touch electrodes The voltage at both ends starts to drop from zero voltage. If the voltage at both ends of the touch electrodes does not drop to a stable value, the fourth switch circuit is turned off and the fifth switch circuit is turned on, that is, the power supply voltage generation circuit starts to provide power.
- the touch electrodes are driven by the voltage, it is equivalent to an increase in the voltage variation across the touch electrodes when the touch electrodes are directly driven by the power supply voltage, thereby causing greater driving power consumption.
- the driving signal can be generated by the touch driving circuit shown in FIG. 3 , and the second positive voltage V C1 and the second negative voltage V
- the value of C2 has basically stabilized. It can be seen that the waveform of the driving signal is stepped, the signal amplitude is 2V DD , and in a period T, only the first period and fifth period
- the touch electrodes are directly charged by the power supply voltage, which is equivalent to only the first period of time and fifth period Actual drive power consumption will be generated.
- the touch drive circuit there is charge transfer between the first energy storage capacitor C S1 and the equivalent capacitance CL of the touch electrodes, so before and after the charge transfer, the amount of charge in the first energy storage capacitor C S1
- the voltage value at both ends will change to a certain extent.
- the first period of The value after the voltage at both ends of the inner first energy storage capacitor C S1 tends to be stable is recorded as V C1_1
- the second period The value after the voltage at both ends of the inner first energy storage capacitor C S1 tends to be stable is denoted as V C1_2 .
- a first time period provided by this embodiment of the present application and second period A schematic diagram of the principle of charging and discharging the touch electrodes by the internal touch driving circuit; the voltage value across the first energy storage capacitor C S1 has basically tended to be stable.
- the first positive voltage V DD charges the equivalent capacitance CL of the touch electrodes, and the voltage across the first energy storage capacitor C S1 is stabilized at the voltage value V C1_1 ; during the second period Inside, the equivalent capacitance CL of the touch electrode transfers positive charge to the first energy storage capacitor C S1 , so that the voltages across the equivalent capacitance CL and the first energy storage capacitor C S1 are both stabilized at the voltage value V C1_2 , and the voltage The value V C1_2 is slightly higher than the voltage value V C1_1 . According to the law of conservation of charge, the above voltage values and capacitance values satisfy the following relationship:
- a seventh time period provided by this embodiment of the present application and eighth period A schematic diagram of the principle of charging and discharging the touch electrodes by the internal touch drive circuit. It can be seen that in the seventh period Inside, the equivalent capacitance CL of the touch electrode is discharged to the ground, and the voltage across the first energy storage capacitor C S1 is stabilized at the voltage value V C1_2 ; in the eighth period Inside, the equivalent capacitance CL of the touch electrode transfers negative charge to the first energy storage capacitor C S1 , so that the voltages across the equivalent capacitance CL and the first energy storage capacitor C S1 are both stabilized at the voltage value V C1_1 . According to the law of conservation of charge, the above voltage value and capacitance value satisfy the following relationship:
- V C1_1 V DD *C S1 /(2C S1 +C L ) (Equation 3)
- V C1_2 V DD *(C L +C S1 )/(2C S1 +C L ) (Equation 4)
- the capacitance value of the second energy storage capacitor CS2 is much larger than the capacitance value of the capacitor CL, it can be obtained that the second negative voltage V C2 is approximately equal to -1/2V DD .
- the capacitance value of the second energy storage capacitor C S2 is greater than 50-100 times that of the capacitor CL, it can be determined that the capacitance value of the second energy storage capacitor C S2 is much larger than that of the capacitor CL.
- the touch driving circuit shown in Figure 3 can be calculated.
- the driving power consumption in one cycle T is 4*C L *V DD 2 *f. Therefore, the touch driving circuit provided by the embodiments of the present application obviously has lower driving power consumption while providing a high driving voltage.
- the driving power consumption of the touch driving circuit can also be divided into two parts, one of which is the loss on the resistance R L when the touch electrodes are charged, and the other part is the resistance R when the touch electrodes are discharged.
- the loss on L these two parts of the loss are both 1/2*C L *V DD 2 *f in a period T, so the driving power consumption of the touch driving circuit in a period T is C L *V in total DD 2 *f.
- each switch circuit in the embodiments of the present application may be composed of one or more MOS (Metal-Oxide-Semiconductor, metal-oxide-semiconductor) field effect transistors, which are referred to as MOS transistors for the convenience of description below.
- MOS Metal-Oxide-Semiconductor, metal-oxide-semiconductor
- the first switch circuit further includes a first MOS transistor S A1
- the second switch circuit further includes a second MOS transistor S A2
- the fourth switch circuit further includes a fourth MOS transistor S B1
- the fifth switch circuit further includes a fifth MOS transistor S B2
- the third switch circuit further includes a third MOS transistor S A3 and a sixth MOS transistor S B3 ; wherein the first MOS transistor S A1 and the sixth MOS transistor S B3 and the first pressure-bearing tube S CA are all P-type MOS tubes, the second MOS tube S A2 , the third MOS tube S A3 , the fourth MOS tube S B1 , the fifth MOS tube S B2 and the second pressure-bearing tube S CB All are N-type MOS transistors.
- each element in the touch driving circuit 30 is as follows: the source of the first MOS transistor S A1 is connected to the first positive voltage V DD , and the drain of the first MOS transistor S A1 is connected to the first positive voltage V DD .
- the first end; the source of the third MOS transistor S A3 is connected to the ground terminal GND, the drain of the third MOS transistor S A3 is connected to the source of the first pressure-bearing transistor S CA ; the source of the fourth MOS transistor S B1 Connected to the first end of the second energy storage capacitor C S2 , the drain of the fourth MOS transistor S B1 is connected to the source of the second pressure-bearing transistor S CB ; the source of the fifth MOS transistor S B2 is connected to the first negative Voltage -V DD , the drain of the fifth MOS transistor S B2 is connected to the source of the second pressure-bearing transistor S CB ; the source of the sixth MOS transistor S B3 is connected to the ground GND, and the drain of the sixth MOS transistor S B3 The pole is connected to the source of the second pressure-bearing tube S CB ; the second ends of the first energy storage capacitor C S1 and the second energy storage capacitor C S2 are both connected to the ground GND; the first pressure-
- the withstand voltage value of the MOS tube components processed by the CMOS process is usually equal to the power supply voltage V DD , but in a certain period of time, the voltage values at both ends of several MOS tubes in the switching circuit will exceed their withstand voltage value, so it is easy to cause MOS Tube burnout etc. Therefore, according to the voltage difference between the two ends of each MOS tube in different time periods, the voltage values connected to the gates of the first pressure-bearing tube S CA and the second pressure-bearing tube S CB can be set to prevent the occurrence of two MOS tubes. The voltage of the terminal exceeds its withstand voltage value, and it will not affect the normal charging and discharging of the touch electrodes by the touch drive circuit.
- the first pressure-bearing tube S CA can prevent the voltage across the first MOS tube S A1 , the second MOS tube S A2 and the third MOS tube S A3 from exceeding the withstand voltage value; the second pressure-bearing tube S CB can prevent The voltages across the fourth MOS transistor S B1 , the fifth MOS transistor S B2 and the sixth MOS transistor S B3 exceed their withstand voltage values.
- the voltage at both ends of the MOS transistor is specifically the voltage between the source electrode and the drain electrode of the MOS transistor, that is, the source-drain voltage V SD or the drain-source voltage V DS .
- each MOS tube in the switch circuit in order to make the signal amplitude of the driving signal output by the touch driving circuit 30 equal to the first positive voltage, the second positive voltage, the zero voltage, the second negative voltage, the first negative voltage, the second Negative voltage, zero voltage, and second positive voltage can control each MOS tube in the switch circuit to be periodically turned on in the following order, and when any one of the MOS tubes in the switch circuit is turned on, the other five MOS tubes are kept on. Disconnected, that is, at a single moment, only one MOS transistor in the switch circuit is turned on:
- the first MOS transistor S A1 is turned on, the gates of the first pressure-receiving transistor S CA and the second pressure-receiving transistor S CB are connected to the ground GND, and the other five MOS transistors are turned off.
- the first pressure-bearing tube S CA is turned on, which does not affect the touch driving.
- the circuit 30 outputs the first positive voltage V DD to charge the capacitor CL until the voltage across the capacitor CL is equal to the first positive voltage V DD .
- the gate voltage V b of the second pressure-bearing tube S CB is equal to 0, only when the source voltage of the second pressure-bearing tube S CB is less than 0, the second pressure-bearing tube S CB can be turned on, and when the first pressure-bearing tube S CB is turned on.
- the second pressure-bearing tube S CB When the source voltage of the second pressure-bearing tube S CB is higher than or equal to 0, the second pressure-bearing tube S CB is turned off, so the second pressure-bearing tube S CB is turned off during this period, which can avoid the fourth MOS tube S B1 ,
- the drain-source voltage of the fifth MOS transistor S B2 and the sixth MOS transistor S B3 exceeds the withstand voltage value V DD , thereby preventing the fourth MOS transistor S B1 , the fifth MOS transistor S B2 and the sixth MOS transistor S B3 from burning out.
- the second MOS transistor S A2 is turned on, the gates of the first pressure-receiving transistor S CA and the second pressure-receiving transistor S CB are connected to the ground GND, and the other five MOS transistors are turned off.
- the second pressure-bearing tube S CB Since the gate voltage V b of the second pressure-bearing tube S CB is equal to 0, the second pressure-bearing tube S CB is turned off, which can avoid the fourth MOS tube S B1 , the fifth MOS tube S B2 and the sixth MOS tube S B3 The drain-source voltage exceeds the withstand voltage value V DD .
- the third MOS transistor S A3 is turned on, and the voltage value connected to the gate of the first pressure-receiving transistor S CA is equal to the difference between the second positive voltage V C1 and the first positive voltage V DD , that is, The voltage value connected to the gate of the first pressure tube S CA is equal to V C1 -V DD , the gate of the second pressure tube S CB is connected to the ground GND, and the other five MOS tubes are turned off.
- the fourth MOS transistor S B1 is turned on, the gates of the first pressure-receiving transistor S CA and the second pressure-receiving transistor S CB are connected to the ground GND, and the other five MOS transistors are turned off.
- the second pressure-bearing tube S CB is turned on without affecting the second energy storage
- the capacitor C S2 charges the capacitor C L , so that the voltage across the capacitor C L is equal to the voltage across the second energy storage capacitor C S2 , that is, the voltage across the capacitor C L changes from 0 to the second negative voltage V C2 (V C2 ⁇ 0).
- the gate voltage Va of the first pressure-bearing tube S CA is equal to 0, only when the source voltage of the first pressure-bearing tube S CA is higher than 0, the first pressure-bearing tube S CA is turned on, and when the first pressure-bearing tube S CA is turned on.
- the source voltage of a pressure-bearing tube S CA is less than or equal to 0, the first pressure-bearing tube S CA is turned off, so the first pressure-bearing tube S CA is turned off during this period, which can avoid the first MOS tube S A1 , the first pressure tube S CA
- the source-drain voltages of the second MOS transistor S A2 and the third MOS transistor S A3 exceed the withstand voltage value V DD .
- the fifth MOS transistor S B2 is turned on, the gates of the first pressure-receiving transistor S CA and the second pressure-receiving transistor S CB are connected to the ground GND, and the other five MOS transistors are turned off.
- the second pressure-bearing tube S CB is turned on without affecting the touch driving circuit 30 outputs the first negative voltage -V DD to charge the capacitor CL , so that the voltage across the capacitor CL changes from the second negative voltage V C2 to the first negative voltage -V DD .
- the first pressure-bearing tube S CA Since the gate voltage Va of the first pressure-bearing tube S CA is equal to 0, the first pressure-bearing tube S CA is turned off, which can avoid the first MOS tube S A1 , the second MOS tube S A2 and the third MOS tube S A3 The source-drain voltage exceeds the withstand voltage value V DD .
- the fourth MOS transistor S B1 is turned on, the gates of the first pressure-receiving transistor S CA and the second pressure-receiving transistor S CB are connected to the ground GND, and the other five MOS transistors are turned off.
- the second pressure-bearing tube S CB is turned on without affecting the pair of capacitors CL and L
- the second energy storage capacitor C S2 discharges until the voltage across the capacitor CL is equal to the voltage across the second energy storage capacitor C S2 , that is, the voltage across the capacitor C L changes from the first negative voltage -V DD to the second negative voltage voltage V C2 .
- the first pressure-bearing tube S CA Since the gate voltage Va of the first pressure-bearing tube S CA is equal to 0, the first pressure-bearing tube S CA is turned off, which can avoid the first MOS tube S A1 , the second MOS tube S A2 and the third MOS tube S A3 The source-drain voltage exceeds the withstand voltage value V DD .
- the sixth MOS transistor S B3 is turned on, the gate of the first pressure-bearing tube S CA is connected to the ground terminal GND, and the voltage value connected to the gate of the second pressure-bearing tube S CB is equal to the second negative voltage
- the other five MOS tube is cut off.
- the gate voltage V b of the second pressure-bearing tube S CB is equal to V C2 +V DD , the gate voltage V b >0, the source voltage is less than the gate voltage V b , and the second pressure-bearing tube S CB
- the conduction of the tube S CB does not affect the discharge of the capacitor CL to the ground, so that the voltage across the capacitor CL changes from the second negative voltage V C2 to 0.
- the gate voltage of the first pressure-bearing tube S CA is equal to 0, the first pressure-bearing tube S CA is turned off, which can avoid the source of the first MOS tube S A1 , the second MOS tube S A2 and the third MOS tube S A3 .
- V b V C2 + V DD ⁇ 1 /2V DD .
- the second MOS transistor S A2 is turned on, the gates of the first pressure-receiving transistor S CA and the second pressure-receiving transistor S CB are connected to the ground GND, and the other five MOS transistors are turned off.
- the gate voltage Va of the first pressure-bearing tube S CA is equal to 0, the source voltage is higher than the gate voltage Va , the first pressure-bearing tube S CA is turned on, and the first storage tube is not affected.
- the capacitor C S1 charges the capacitor CL , so that the voltage across the capacitor CL changes from 0 to the second positive voltage V C1 . Since the gate voltage V b of the second pressure-bearing tube S CB is equal to 0, the second pressure-bearing tube S CB is turned off, which can avoid the fourth MOS tube S B1 , the fifth MOS tube S B2 and the sixth MOS tube S B3 The drain-source voltage exceeds the withstand voltage value V DD .
- the touch drive circuit provided by the embodiment of the present application can not only use two energy storage capacitors, but also four or more pairs of energy storage capacitors, and each pair of energy storage capacitors is used to provide Positive voltage and negative voltage, thereby introducing more intermediate levels and achieving lower driving power consumption, but with the increase of the number of energy storage capacitors, more peripheral devices are also introduced, resulting in the cost and complexity of the circuit Increase.
- the touch driving circuit 40 includes a switch circuit 401 and four energy storage capacitors; the four energy storage capacitors are a third energy storage capacitor C S3 , a fourth energy storage capacitor C S4 , and a fifth energy storage capacitor C respectively. S5 and the sixth energy storage capacitor C S6 ; the switch circuit 401 includes seven switches, namely switch S 1 , switch S 2 , switch S 3 , switch S 4 , switch S 5 , switch S 6 and switch S 7 .
- the first end of the switch S1 is connected to the power supply voltage V DD , the second end of the switch S1 is connected to the touch electrode; the first end of the switch S2 is connected to the first end of the third energy storage capacitor C S3 , The second end of the switch S2 is connected to the touch electrode; the first end of the switch S3 is connected to the first end of the fourth energy storage capacitor CS4 , and the second end of the switch S3 is connected to the touch electrode; the switch S4 The first end of the switch S4 is connected to the ground terminal GND, the second end of the switch S4 is connected to the touch electrode ; the first end of the switch S5 is connected to the first end of the fifth energy storage capacitor C S5 , and the second end of the switch S5 The terminal is connected to the touch electrode; the first terminal of the switch S6 is connected to the first terminal of the sixth energy storage capacitor C S6 , the second terminal of the switch S6 is connected to the touch electrode ; the first terminal of the switch S7 is connected to When the power supply voltage is
- V C3 the voltage across the third energy storage capacitor C S3
- V C4 the voltage across the fourth energy storage capacitor C S4
- V C5 the voltage across the fifth energy storage capacitor C S5
- V C6 the voltage across the sixth energy storage capacitor CS6 .
- the touch drive circuit can periodically output the power supply voltage V DD , the voltage V C3 , the voltage V C4 , the zero voltage, the voltage V C5 , the voltage V C6 , the power supply Voltage -V DD , voltage V C6 , voltage V C5 , zero voltage, voltage V C4 , voltage V C3 .
- f 1/T.
- each switching circuit can also be implemented by MOS transistors, and the voltage across each MOS transistor can be prevented from exceeding the withstand voltage value by setting a pressure-bearing transistor, and the pressure-bearing transistor can also be implemented by MOS transistors .
- the touch driving circuit provided by the embodiments of the present application can also turn on only a part of the switch circuits or MOS transistors in a specific order to generate different driving signals, so as to adapt to different application scenarios, for example, in some applications In the scenario, it is not necessary to achieve very low driving power consumption, so the control operation of the switching circuit can be simplified, and the period of the driving signal can be shortened.
- the touch drive circuit shown in FIG. 3 as an example, only by controlling the touch electrodes to be connected to the first positive voltage V DD , grounded, connected to the first negative voltage -V DD , and grounded in one cycle T in sequence, it is possible to generate
- the signal amplitude of the driving signal is 2V DD
- the driving power consumption is 2C L *V DD 2 *f.
- An embodiment of the present application provides a touch driving chip, and the touch driving chip includes the touch driving circuit provided by the above embodiments.
- the touch driving chip may further include other circuits, such as a control circuit, for controlling the switch circuit to be periodically cyclically turned on according to the turn-on sequence provided in the above embodiment.
- a control circuit for controlling the switch circuit to be periodically cyclically turned on according to the turn-on sequence provided in the above embodiment.
- Embodiments of the present application provide a touch display device, where the touch display device includes the touch drive chip provided by the above embodiments.
- the touch display device may include a display such as a liquid crystal display, an organic light emitting display, a plasma display, a cathode ray display, and the like.
- a display such as a liquid crystal display, an organic light emitting display, a plasma display, a cathode ray display, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
本申请提供一种触控驱动电路、驱动芯片以及触控显示装置。该触控驱动电路用于输出驱动信号对触控显示装置的触控电极进行驱动;该触控驱动电路包括:电源电压产生电路、开关电路以及第一储能电容;开关电路的第一输入端连接至电源电压产生电路;开关电路的第二输入端通过第一储能电容连接至地端GND;开关电路的第三输入端连接至地端GND;开关电路的输出端连接至触控电极;电源电压产生电路用于产生第一正电压;开关电路用于在第一时段内控制该触控电极连接至电源电压产生电路,在第二时段内控制该触控电极连接至第一储能电容,以及在第三时段内控制该触控电极连接至地端GND。该触控驱动电路具有较低的驱动功耗。
Description
本申请实施例涉及电子电路技术领域,尤其涉及一种触控驱动电路、驱动芯片以及触控显示装置。
电容式触控显示装置一般包括显示器、触控电极以及触控驱动电路。利用触控驱动电路对触控电极进行充放电,可以在有人体或其他导体触碰到显示器时,对显示器相应坐标位置上的电容变化量进行检测,进而确定用户的操作。
如图1所示,为一种传统的触控驱动电路的结构示意图。该触控驱动电路利用反相器INV提供驱动信号,以实现对触控电极进行驱动。其中,电压V
DD为电源电压,电容C
L表示触控电极的等效电容,电阻R
L表示打码时的等效阻抗(即驱动阻抗)。该触控驱动电路的功耗主要分为两个部分,其中一个部分为对电容C
L充电时电阻R
L上的损耗,另一个部分为电容C
L放电时电阻R
L上的损耗;在驱动信号的一个周期T(以下简称为一个周期T)内,上述两部分损耗均为1/2*C
L*V
DD
2*f,因而图1所示的触控驱动电路在一个周期T内的驱动功耗共为C
L*V
DD
2*f。其中,f=1/T,为驱动信号的频率。
目前,由于OLED(Organic Light Emitting Display,有机发光显示)技术与传统的LCD(Liquid Crystal Display,液晶显示)技术相比在显示性能方面具有很多明显的优势,例如OLED屏幕更加轻薄,并且具有广视角、耐低温、生态环保等特点,所以OLED屏幕得到了广泛的应用。但是,相比于LCD屏幕,OLED屏幕的负载电容(等效电容C
L)的电容值明显更大,进而导致OLED屏幕的功耗增加,难以满足低功耗触控检测的需求。
发明内容
有鉴于此,本申请实施例提供了一种触控驱动电路、驱动芯片以及触控显示装置,以降低驱动功耗。
第一方面,本申请实施例提供了一种触控驱动电路,用于输出驱动信号对触控显示装置的触控电极进行驱动,所述触控驱动电路包括:电源电压产生电路、开关电路以及第一储能电容;所述开关电路的第一输入端连接至所述电源电压产生电路;所述开关电路的第二输入端通过所述第一储能电容连接至地端GND;所述开关电路的第三输入端连接至所述地端GND;所述开关电路的输出端连接至所述触控电极;所述电源电压产生电路用于产生第一正电压;所述开关电路用于在第一时段内控制所述触控电极连接至所述电源电压产生电路,所述第一正电压对所述触控电极充电,使得所述触控电极两端的电压等于所述第一正电压;在第二时段内控制所述触控电极连接至所述 第一储能电容,所述第一储能电容用于存储所述触控电极释放的电荷,使得所述触控电极两端的电压等于第二正电压;以及在第三时段内控制所述触控电极连接至所述地端GND,所述触控电极对所述地端GND放电,使得所述触控电极两端的电压等于零电压;所述第二正电压低于所述第一正电压,并且高于所述零电压。
通过设置第一储能电容,并利用第一储能电容存储触控电极释放的电荷,在第一正电压和零电压之间引入了第二正电压作为中间电平,减小了在触控电极两端的电压由第一正电压下降至零电压的过程(即放电过程)中驱动阻抗上的损耗,从而降低了触控驱动电路的驱动功耗。
可选地,所述触控驱动电路进一步包括:第二储能电容;所述开关电路的第四输入端通过所述第二储能电容连接至所述地端GND;所述开关电路的第五输入端连接至所述电源电压产生电路;所述电源电压产生电路进一步用于产生第一负电压;所述开关电路进一步用于在第四时段内控制所述触控电极连接至所述第二储能电容,所述第二储能电容用于将存储的电荷转移给所述触控电极,使得所述触控电极两端的电压等于第二负电压;以及在第五时段内控制所述触控电极连接至所述电源电压产生电路,所述第一负电压对所述触控电极充电,使得所述触控电极两端的电压等于所述第一负电压;所述第二负电压高于所述第一负电压,并且低于所述零电压。
可选地,所述开关电路进一步用于在第六时段内控制所述触控电极连接至所述第二储能电容,所述第二储能电容用于存储所述触控电极释放的电荷,使得所述触控电极两端的电压等于所述第二负电压;在第七时段内控制所述触控电极连接至所述地端GND,所述触控电极对所述地端GND放电,使得所述触控电极两端的电压等于所述零电压;以及在第八时段内控制所述触控电极连接至所述第一储能电容,所述第一储能电容用于将存储的电荷转移给所述触控电极,使得所述触控电极两端的电压等于所述第二正电压。
可选地,所述开关电路进一步包括:第一开关电路、第二开关电路、第三开关电路、第四开关电路以及第五开关电路;所述第一开关电路的输入端为所述开关电路的第一输入端,所述第一开关电路的输出端连接至所述开关电路的输出端;所述第二开关电路的输入端为所述开关电路的第二输入端,所述第二开关电路的输出端连接至所述开关电路的输出端;所述第三开关电路的输入端为所述开关电路的第三输入端,所述第三开关电路的输出端连接至所述开关电路的输出端;所述第四开关电路的输入端为所述开关电路的第四输入端,所述第四开关电路的输出端连接至所述开关电路的输出端;所述第五开关电路的输入端为所述开关电路的第五输入端,所述第五开关电路的输出端连接至所述开关电路的输出端。
可选地,在所述第一时段内,所述第一开关电路导通;在所述第二时段内,所述第二开关电路导通;在所述第三时段内,所述第三开关电路导通;在所述第四时段内,所述第四开关电路导通;在所述第五时段内,所述第五开关电路导通;在所述第六时段内,所述第四开关电路导通;在所述第七时段内,所述第三开关电路导通;在所述第八时段内,所述第二开关电路导通;所述任意一个开关电路导通时,所述其他四个开关电路均断开。
可选地,所述触控驱动电路进一步包括第一承压管和第二承压管;所述第一开关 电路进一步包括第一MOS管;所述第二开关电路进一步包括第二MOS管;所述第四开关电路进一步包括第四MOS管;所述第五开关电路进一步包括第五MOS管;所述第三开关电路进一步包括第三MOS管和第六MOS管;所述第一MOS管、所述第六MOS管和所述第一承压管为P型MOS管,所述第二MOS管、所述第三MOS管、所述第四MOS管、所述第五MOS管和所述第二承压管为N型MOS管;所述第一MOS管的源极接入所述第一正电压,所述第一MOS管的漏极连接至所述第一承压管的源极;所述第二MOS管的源极连接至所述第一承压管的源极,所述第二MOS管的漏极连接至所述第一储能电容的第一端;所述第三MOS管的源极连接至所述地端GND,所述第三MOS管的漏极连接至所述第一承压管的源极;所述第四MOS管的源极连接至所述第二储能电容的第一端,所述第四MOS管的漏极连接至所述第二承压管的源极;所述第五MOS管的源极接入所述第一负电压,所述第五MOS管的漏极连接至所述第二承压管的源极;所述第六MOS管的源极连接至所述地端GND,所述第六MOS管的漏极连接至所述第二承压管的源极;所述第一储能电容和所述第二储能电容的第二端均连接至所述地端GND;所述第一承压管和所述第二承压管的漏极均连接至所述触控电极;所述第一承压管用于防止所述第一MOS管、所述第二MOS管和所述第三MOS管两端的电压超过耐压值;所述第二承压管用于防止所述第四MOS管、所述第五MOS管和所述第六MOS管两端的电压超过耐压值。
可选地,在所述第一时段内,所述第一MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第二时段内,所述第二MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第三时段内,所述第三MOS管导通,所述第一承压管的栅极接入的电压等于所述第二正电压减去所述第一正电压的差值,所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第四时段内,所述第四MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第五时段内,所述第五MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第六时段内,所述第四MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第七时段内,所述第六MOS管导通,所述第一承压管的栅极连接至所述地端GND,所述第二承压管的栅极接入的电压等于所述第二负电压减去所述第一负电压的差值,所述其他五个MOS管截止;在所述第八时段内,所述第二MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止。
可选地,所述驱动信号在一个周期内的信号幅度依次等于所述第一正电压、所述第二正电压、所述零电压、所述第二负电压、所述第一负电压、所述第二负电压、所述零电压、所述第二正电压。
可选地,所述电源电压产生电路进一步包括正负电压转换电路;所述正负电压转换电路用于将所述第一正电压转换为所述第一负电压。
可选地,所述第一储能电容或所述第二储能电容的电容值大于所述触控电极的等效电容值的50倍。
可选地,所述第二正电压等于所述第一正电压的1/2,所述第二负电压等于所述第一负电压的1/2。
第二方面,本申请实施例提供了一种触控驱动芯片,包括第一方面或第一方面的任一可选方式所提供的触控驱动电路。
第三方面,本申请实施例提供了一种触控显示装置,包括第三方面所提供的触控驱动芯片。
可以理解的是,上述提供的第二方面所述的触控驱动芯片和第三方面所述的触控显示装置均应用了上文所提供的对应的触控驱动电路,因此,其所能达到的有益效果可参考上文所提供的对应的触控驱动电路的有益效果,此处不再赘述。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。下面的描述涉及附图时,不同附图中的相同数字表示相同的要素。除非有特别申明,附图中的图不构成比例限制。
图1为一种传统的触控驱动电路的结构示意图;
图2为本申请实施例提供的一种触控驱动电路的结构示意图;
图3为本申请实施例提供的另一种触控驱动电路的结构示意图;
图4为本申请实施例提供的一种驱动信号的波形示意图;
图7为本申请实施例提供的又一种触控驱动电路的结构示意图;
图8为本申请实施例提供的又一种触控驱动电路的结构示意图;
图9为本申请实施例提供的另一种驱动信号的波形示意图。
下面将结合附图对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。
本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
另外,“第一”、“第二”等术语仅用于区别类似的对象,而不能理解为指示或暗示相对重要性,或者隐含地指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例提供一种触控驱动电路、驱动芯片以及触控显示装置。其中,触控驱动电路可以应用于触控显示装置中,输出驱动信号对触控显示装置的触控电极进行驱动。触控显示装置还可以包括显示器,用户可以利用手指或其他导体触碰显示器上 的图符或文字实现相应的触控操作;显示器的示例包括但不限于液晶(LCD)显示器,有机发光(OLED)显示器,等离子体(PDP)显示器以及阴极射线(CRT)显示器。
如图2所示,为本申请实施例提供的一种触控驱动电路的结构示意图。其中,电阻R
L表示驱动阻抗(包括触控电极和触控驱动电路的等效阻抗);电容C
L表示触控电极的等效电容。触控驱动电路10包括开关电路101,并且开关电路101的第一输入端接入第一正电压V
DD,第二输入端通过第一储能电容C
S1连接至地端GND,第三输入端连接至地端GND,输出端连接至触控电极。第一正电压V
DD可以为由电源电压产生电路所产生的电源电压。开关电路101可以按照以下顺序对触控电极的连接对象进行控制:在第一时段内控制触控电极连接至电源电压产生电路,第一正电压对触控电极充电,使得触控电极两端的电压等于第一正电压V
DD;在第二时段内控制触控电极连接至第一储能电容C
S1,第一储能电容C
S1可以存储触控电极释放的电荷,使得触控电极两端的电压等于第二正电压V
C1;以及在第三时段内控制触控电极连接至地端GND,触控电极对地放电,使得触控电极两端的电压等于零电压。
其中,电源电压产生电路可以是为了给触控驱动电路提供电源电压而单独设置的,也可以是与触控检测芯片中的其他电路模块共用的。
由于在上述第二时段内,触控电极向第一储能电容C
S1转移了一部分正电荷,直至触控电极两端的电压与第一储能电容C
S1两端的电压相等,使得触控电极两端的电压由第一正电压V
DD变为第二正电压V
C1,所以第二正电压V
C1低于第一正电压V
DD,并且高于零电压,即满足V
DD>V
C1>0。
当第一储能电容C
S1的电容值远大于电容C
L的电容值时,第二正电压V
C1近似等于V
DD/2,所以在上述触控电极的放电过程中,电阻R
L上的损耗近似等于1/4*C
L*V
DD
2*f,仅为图1所示的传统触控驱动电路的50%,具体的,若第一储能电容C
S1的电容值大于电容C
L的电容值的30倍,则可以判定第一储能电容C
S1的电容值远大于电容C
L的电容值;优选地,可以使第一储能电容C
S1的电容值大于电容C
L的电容值的50~100倍。
另外,当第一储能电容C
S1的电容值未远大于电容C
L的电容值时,第一储能电容C
S1也可以引入一个低于第一正电压V
DD,并且高于零电压的中间电平,进而减小在触控电极的放电过程中电阻R
L上的损耗,即能够使得损耗值小于1/2*C
L*V
DD
2*f,但是由于该中间电平并非近似等于V
DD/2,所以会导致该损耗值大于1/4*C
L*V
DD
2*f。
如图3所示,为本申请实施例提供的另一种触控驱动电路的结构示意图。触控驱动电路20包括开关电路201,并且开关电路201的第一输入端接入第一正电压V
DD,第二输入端通过第一储能电容C
S1连接至地端GND,第三输入端连接至地端GND,第四输入端通过第二储能电容C
S2连接至地端GND,第五输入端接入第一负电压-V
DD,输出端连接至触控电极。第一正电压V
DD和第一负电压-V
DD均为由电源电压产生电路所产生的电源电压。开关电路201可以按照以下顺序对触控电极的连接对象进行控制:在第一时段内控制触控电极连接至电源电压产生电路,第一正电压对触控电极充电,使得触控电极两端的电压等于第一正电压V
DD;在第二时段内控制触控电极连接至第一储能电容C
S1,第一储能电容C
S1可以存储触控电极释放的电荷,使得触控电极两端的电压等于第二正电压V
C1;在第三时段内控制触控电极连接至地端GND,触控电极对地放电,使得触控电极两端的电压等于零电压;在第四时段内控制触控电极连接至 第二储能电容C
S2,第二储能电容C
S2将存储的电荷转移给触控电极,使得触控电极两端的电压等于第二负电压V
C2;在第五时段内控制触控电极接入第一负电压-V
DD,第一负电压-V
DD对触控电极充电,使得触控电极两端的电压等于第一负电压-V
DD。
其中,电源电压产生电路可以包括正负电压转换电路,正负电压转换电路可以将第一正电压V
DD转换为第一负电压-V
DD,正负电压转换电路的示例包括负压电荷泵电路。
上述第四时段内的电荷转移过程是基于第二储能电容C
S2已经存储有一定负电荷的情况。由于在第五时段内,第一负电压-V
DD进一步对触控电极进行充电,使得触控电极两端的电压由第二负电压V
C2变为第一负电压-V
DD,所以第二负电压V
C2高于第一负电压-V
DD,并且低于零电压,即满足0>V
C2>-V
DD,│V
DD│>│V
C2│>0。
通过设置第一负电压-V
DD,可以使得触控驱动电路输出的驱动信号的信号幅度从V
DD升高至2V
DD,有利于提高触控检测的分辨率。对于图1所示的传统触控驱动电路,若驱动信号的信号幅度增加至2V
DD,则一个周期T内的驱动功耗将增加至4*C
L*V
DD
2*f;其中,触控电极放电过程中电阻R
L上的损耗等于2*C
L*V
DD
2*f。但是,在本实施例中,利用第一储能电容C
S1和第二储能电容C
S2回收利用了触控电极在放电过程中转移出的电荷,并且在此过程中不会产生额外的功耗,从而使得在触控电极的放电过程中电阻R
L上的损耗等于1/2*C
L*V
DD
2*f,仅为传统触控驱动电路的25%。
基于上述实施例公开的内容,本实施例中,开关电路可以进一步在第六时段内控制触控电极连接至第二储能电容C
S2,第二储能电容C
S2存储触控电极释放的电荷,使得触控电极两端的电压等于第二负电压V
C2;在第七时段内控制触控电极连接至地端GND,触控电极对地放电,使得触控电极两端的电压等于零电压;在第八时段内控制触控电极连接至第一储能电容C
S1,第一储能电容C
S1将存储的电荷转移给触控电极,使得触控电极两端的电压等于第二正电压V
C1。至此,开关电路完成了一个工作周期内的操作,接下来可以重新按照第一时段内的操作,控制第一正电压V
DD对触控电极进行充电,并继续周期性地循环,使得触控驱动电路输出的驱动信号在一个周期内的信号幅度依次等于第一正电压、第二正电压、零电压、第二负电压、第一负电压、第二负电压、零电压、第二正电压。
当触控驱动电路处于初始状态时,第一储能电容C
S1和第二储能电容C
S2存储的电荷量均为零,此时可以使得开关电路按照上述第一时段至第八时段的操作顺序,依次控制:第一正电压V
DD对触控电极进行充电,直至触控电极两端的电压等于第一正电压V
DD;触控电极与第一储能电容C
S1相连,并向第一储能电容C
S1转移一部分正电荷,直至触控电极两端的电压等于第二正电压V
C1;触控电极接地并对地放电,直至触控电极两端的电压等于0;触控电极与第二储能电容C
S2相连,但由于第二储能电容C
S2存储的电荷量为0,所以触控电极与第二储能电容C
S2之间不发生电荷转移;第一负电压-V
DD对触控电极进行充电,直至触控电极两端的电压等于第一负电压-V
DD;触控电极再次与第二储能电容C
S2相连,并且触控电极对第二储能电容C
S2放电,第二储能电容C
S2存储触控电极释放的电荷,直至触控电极两端的电压等于第二负电压V
C2;触控电极再次接地并对地放电,直至触控电极两端的电压等于0;触控电极与第一储能电容C
S1相连,第一储能电容C
S1将存储的电荷转移给触控电极,对触控电极进行充电,直 至触控电极两端的电压等于第二正电压V
C1;接下来,周期性地循环上述过程,当再次控制触控电极从接地切换为连接至第二储能电容C
S2时,第二储能电容C
S2则可以将存储的电荷转移给触控电极,以对触控电极进行充电,直至触控电极两端的电压等于第二负电压V
C2。由此,第一储能电容C
S1和第二储能电容C
S2存储的电荷量可以逐渐趋于稳定,从而使得第二正电压V
C1和第二负电压V
C2的值逐渐趋于稳定,并且当第一储能电容C
S1和第二储能电容C
S2的电容值远大于电容C
L的电容值时,在与电容C
L进行电荷转移前后,第一储能电容C
S1和第二储能电容C
S2存储的电荷量几乎不发生改变。
基于上述实施例公开的内容,本实施例中,开关电路可以进一步包括第一开关电路、第二开关电路、第三开关电路、第四开关电路以及第五开关电路。具体的,第一开关电路的输入端为开关电路的第一输入端,第一开关电路的输出端连接至开关电路的输出端;第二开关电路的输入端为开关电路的第二输入端,第二开关电路的输出端连接至开关电路的输出端;第三开关电路的输入端为开关电路的第三输入端,第三开关电路的输出端连接至开关电路的输出端;第四开关电路的输入端为开关电路的第四输入端,第四开关电路的输出端连接至开关电路的输出端;第五开关电路的输入端为开关电路的第五输入端,第五开关电路的输出端连接至开关电路的输出端。
上述任意一个开关电路导通时,其他四个开关电路均保持断开,即在单一时刻下,仅有一个开关电路导通。本实施例中,上述五个开关电路可以按照如下顺序周期性地循环导通:
第一时段内,仅第一开关电路导通,第一正电压V
DD对触控电极充电,使得触控电极两端的电压等于第一正电压V
DD。第二时段内,仅第二开关电路导通,触控电极连接至第一储能电容C
S1,第一储能电容C
S1存储触控电极释放的电荷,使得触控电极两端的电压等于第二正电压V
C1;第三时段内,仅第三开关电路导通,触控电极连接至地端GND,触控电极对地放电,使得触控电极两端的电压等于零电压;在第四时段内,仅第四开关电路导通,触控电极连接至第二储能电容C
S2,第二储能电容C
S2将存储的电荷转移给触控电极,使得触控电极两端的电压等于第二负电压V
C2;在第五时段内,仅第五开关电路导通,触控电极接入第一负电压-V
DD,第一负电压-V
DD对触控电极充电,使得触控电极两端的电压等于第一负电压-V
DD;在第六时段内,仅第四开关电路导通,触控电极连接至第二储能电容C
S2,第二储能电容C
S2存储触控电极释放的电荷,使得触控电极两端的电压等于第二负电压V
C2;在第七时段内,仅第三开关电路导通,触控电极连接至地端GND,触控电极对地放电,使得触控电极两端的电压等于零电压;在第八时段内,触控电极连接至第一储能电容C
S1,第一储能电容C
S1将存储的电荷转移给触控电极,使得触控电极两端的电压等于第二正电压V
C1。
另外,由于对触控电极进行充放电时,触控电极两端的电压往往需要经过一定的时间才能够达到稳定值,所以为了保证在相应时段内触控电极能够充分地进行充放电,可以设置第一开关电路、第二开关电路、第三开关电路、第四开关电路、第五开关电路的导通时间大于或等于该电极两端的电压在相应时段内建立至稳定值的时间,从而保证触控驱动电路输出的驱动信号的信号幅度和触控驱动电路的驱动功耗可以达到设计的目标值。例如,在第一时段内,第一开关电路导通,触控驱动电路输出第一正电压对电极进行充电,则可以当该电极两端的电压升高至稳定值时,或者在该电极两端 的电压升高至稳定值后,控制第一开关电路断开,第二开关电路导通;若在该电极两端的电压未升高至稳定值的情况下将第一开关电路断开、第二开关电路导通,则会导致驱动信号的正电压幅度并未达到V
DD,进而导致驱动信号的信号幅度无法达到2V
DD;又例如,在第四时段内,第四开关电路导通,触控电极两端的电压由零电压开始下降,若在触控电极两端的电压未下降至稳定值的情况下,将第四开关电路断开,第五开关电路导通,即开始由电源电压产生电路提供电源电压对触控电极进行驱动,则相当于直接由电源电压对触控电极进行驱动时触控电极两端的电压变化量增大,进而造成较大的驱动功耗。
如图4所示,为本申请实施例提供的一种驱动信号的波形示意图,该驱动信号可以由图3所示的触控驱动电路产生,并且第二正电压V
C1和第二负电压V
C2的值均已基本趋于稳定。可以看到,该驱动信号的波形呈阶梯状,信号幅度为2V
DD,并且在一个周期T内,仅第一时段
和第五时段
直接由电源电压对触控电极进行充电,因而相当于仅第一时段
和第五时段
会产生实际的驱动功耗。由于在触控驱动电路的工作过程中,第一储能电容C
S1与触控电极的等效电容C
L之间存在电荷转移,所以在电荷转移前后,第一储能电容C
S1的电荷量及其两端的电压值会发生一定的变化,为便于计算触控驱动电路的驱动功耗,下面将第一时段
内第一储能电容C
S1两端的电压趋于稳定后的值记为V
C1_1,将第二时段
内第一储能电容C
S1两端的电压趋于稳定后的值记为V
C1_2。
如图5所示,为本申请实施例提供的一种第一时段
和第二时段
内触控驱动电路对触控电极进行充放电的原理示意图;第一储能电容C
S1两端的电压值已经基本趋于稳定。可以看到,在第一时段
内,第一正电压V
DD对触控电极的等效电容C
L进行充电,第一储能电容C
S1两端的电压稳定在电压值V
C1_1;在第二时段
内,触控电极的等效电容C
L向第一储能电容C
S1转移正电荷,使得等效电容C
L和第一储能电容C
S1两端的电压均稳定在电压值V
C1_2,并且电压值V
C1_2略高于电压值V
C1_1。根据电荷守恒定律,上述各个电压值和电容值满足如下关系:
V
DD*C
L+V
C1_1*C
S1=V
C1_2*(C
L+C
S1) (公式1)
如图6所示,为本申请实施例提供的一种第七时段
和第八时段
内触控驱动电路对触控电极进行充放电的原理示意图。可以看到,在第七时段
内,触控电极的等效电容C
L对地放电,第一储能电容C
S1两端的电压稳定在电压值V
C1_2;在第八时段
内,触控电极的等效电容C
L向第一储能电容C
S1转移负电荷,使得等效电容C
L和第一储能电容C
S1两端的电压均稳定在电压值V
C1_1。根据电荷守恒定律,上述电压值与电容值满足如下关系:
V
C1_2*C
S1=V
C1_1*(C
L+C
S1) (公式2)
结合公式1和公式2,可以计算得到:
V
C1_1=V
DD*C
S1/(2C
S1+C
L) (公式3)
V
C1_2=V
DD*(C
L+C
S1)/(2C
S1+C
L) (公式4)
当第一储能电容C
S1的电容值远大于电容C
L的电容值(即C
S1>>C
L)时,可以得到:V
C1_1≈V
C1_2≈1/2V
DD。具体的,可以在第一储能电容C
S1的电容值大于电容C
L的电容值的50~100倍时,判定第一储能电容C
S1的电容值远大于电容C
L的电容值。
同理,当第二储能电容C
S2的电容值远大于电容C
L的电容值时,可以得到第二负电压V
C2近似等于-1/2V
DD。具体的,可以在第二储能电容C
S2的电容值大于电容C
L的电容值的50~100倍时,判定第二储能电容C
S2的电容值远大于电容C
L的电容值。
由于在一个周期T内仅第一时段
和第五时段
直接由电源电压对触控电极进行驱动,相当于仅在这两个时段内会产生实际的驱动功耗,所以当驱动信号的频率为f时,可以计算得到图3所示的触控驱动电路在一个周期T内实际的驱动功耗为P=(1/2V
DD)*C
L*f*V
DD*2=C
L*V
DD
2*f,并且驱动信号的信号幅度为2V
DD;其中,f=1/T,为驱动信号的频率。然而,对于传统的触控驱动电路,当输出的驱动信号的信号幅度为2V
DD时,一个周期T内的驱动功耗为4*C
L*V
DD
2*f。因此,本申请实施例提供的触控驱动电路在提供高驱动电压的同时,明显具有较低的驱动功耗。
需要说明的是,该触控驱动电路的驱动功耗也可以分为两个部分,其中一个部分为对触控电极充电时电阻R
L上的损耗,另外一个部分为触控电极放电时电阻R
L上的损耗,这两部分损耗在一个周期T内均为1/2*C
L*V
DD
2*f,所以该触控驱动电路在一个周期T内的驱动功耗共为C
L*V
DD
2*f。
另外,本申请实施例中,可以设置第一储能电容C
S1和第二储能电容C
S2的电容值相等,并且均远大于触控电极的等效电容值C
L,即设置C
S1=C
S2>>C
L。
具体的,本申请实施例中的各个开关电路可以由一个或多个MOS(Metal-Oxide-Semiconductor,金属-氧化物-半导体)场效应管组成,为了便于描述,下面简称为MOS管。
如图7所示,为本申请实施例提供的又一种触控驱动电路的结构示意图。基于上述实施例公开的内容,本实施例中,第一开关电路进一步包括第一MOS管S
A1,第二开关电路进一步包括第二MOS管S
A2,第四开关电路进一步包括第四MOS管S
B1,第五开关电路进一步包括第五MOS管S
B2,第三开关电路进一步包括第三MOS管S
A3和第六MOS管S
B3;其中,第一MOS管S
A1、第六MOS管S
B3和第一承压管S
CA均为P型MOS管,第二MOS管S
A2、第三MOS管S
A3、第四MOS管S
B1、第五MOS管S
B2和第二承压管S
CB均为N型MOS管。
请参照图7,触控驱动电路30中各个元件的具体连接关系如下:第一MOS管S
A1的源极接入第一正电压V
DD,第一MOS管S
A1的漏极连接至第一承压管S
CA的源极;第二MOS管S
A2的源极连接至第一承压管S
CA的源极,第二MOS管S
A2的漏极连接至第一储能电容C
S1的第一端;第三MOS管S
A3的源极连接至地端GND,第三MOS管S
A3的漏极连接至第一承压管S
CA的源极;第四MOS管S
B1的源极连接至第二储能电容C
S2的第一端,第四MOS管S
B1的漏极连接至第二承压管S
CB的源极;第五MOS管S
B2的源极接入第一负电压-V
DD,第五MOS管S
B2的漏极连接至第二承压管S
CB的源极;第六MOS管S
B3的源极连接至地端GND,第六MOS管S
B3的漏极连接至第二承压管S
CB的源极;第一储能电容C
S1和第二储能电容C
S2的第二端均连接至地端GND;第一承压管S
CA和第二承压管S
CB的漏极均连接至触控电极。
由于采用CMOS工艺加工得到的MOS管元件其耐压值通常等于电源电压V
DD,但是在部分时段内,开关电路中的几个MOS管两端的电压值会超过其耐压值,所以容易导致MOS管烧坏等问题。因此,可以分别根据各个MOS管在不同时段内两端的压 差,对第一承压管S
CA和第二承压管S
CB的栅极接入的电压值进行设置,以防止出现MOS管两端的电压超过其耐压值的情况,并且不会影响触控驱动电路对触控电极正常进行充放电。具体的,第一承压管S
CA可以防止第一MOS管S
A1、第二MOS管S
A2和第三MOS管S
A3两端的电压超过其耐压值;第二承压管S
CB可以防止第四MOS管S
B1、第五MOS管S
B2和第六MOS管S
B3两端的电压超过其耐压值。其中,MOS管两端的电压具体为MOS管的源极与漏极之间的电压,即源漏电压V
SD或漏源电压V
DS。
本实施例中,为了使触控驱动电路30输出的驱动信号的信号幅度在一个周期内依次等于第一正电压、第二正电压、零电压、第二负电压、第一负电压、第二负电压、零电压、第二正电压,可以控制开关电路中的各个MOS管按照如下顺序周期性地循环导通,并且开关电路中的任意一个MOS管导通时,其他五个MOS管均保持断开,即在单一时刻下,开关电路中仅有一个MOS管导通:
在第一时段内,第一MOS管S
A1导通,第一承压管S
CA和第二承压管S
CB的栅极连接至地端GND,其他五个MOS管截止。
在这一时段内,由于第一承压管S
CA的栅极电压V
a等于0,源极电压高于栅极电压V
a,所以第一承压管S
CA导通,不影响触控驱动电路30输出第一正电压V
DD对电容C
L充电,直至电容C
L两端的电压等于第一正电压V
DD。又由于第二承压管S
CB的栅极电压V
b等于0,所以仅当第二承压管S
CB的源极电压小于0时,第二承压管S
CB可以导通,而当第二承压管S
CB的源极电压高于或等于0时,第二承压管S
CB截止,所以在这一时段内第二承压管S
CB截止,能够避免第四MOS管S
B1、第五MOS管S
B2和第六MOS管S
B3的漏源电压超过耐压值V
DD,从而防止第四MOS管S
B1、第五MOS管S
B2和第六MOS管S
B3烧坏。
在第二时段内,第二MOS管S
A2导通,第一承压管S
CA和第二承压管S
CB的栅极连接至地端GND,其他五个MOS管截止。
在这一时段内,由于第一承压管S
CA的栅极电压V
a等于0,源极电压高于栅极电压V
a,所以第一承压管S
CA导通,不影响电容C
L对第一储能电容C
S1放电,直至电容C
L两端的电压与第一储能电容C
S1两端的电压相等,即使得电容C
L两端的电压由第一正电压V
DD变为第二正电压V
C1(0<V
C1<V
DD)。又由于第二承压管S
CB的栅极电压V
b等于0,所以第二承压管S
CB截止,能够避免第四MOS管S
B1、第五MOS管S
B2和第六MOS管S
B3的漏源电压超过耐压值V
DD。
在第三时段内,第三MOS管S
A3导通,第一承压管S
CA的栅极接入的电压值等于第二正电压V
C1减去第一正电压V
DD的差值,即第一承压管S
CA的栅极接入的电压值等于V
C1-V
DD,第二承压管S
CB的栅极连接至地端GND,其他五个MOS管截止。
在这一时段内,由于第一承压管S
CA的栅极电压V
a等于V
C1-V
DD,所以栅极电压V
a<0,源极电压高于栅极电压V
a,第一承压管S
CA导通,不影响电容C
L对地放电,使得电容C
L两端的电压由第二正电压V
C1变为0。又由于第二承压管S
CB的栅极电压V
b等于0,所以第二承压管S
CB截止,能够避免第四MOS管S
B1、第五MOS管S
B2和第六MOS管S
B3的漏源电压超过耐压值V
DD。另外,当第一储能电容C
S1的电容值远大于电容C
L的电容值时,V
a=V
C1-V
DD≈-1/2V
DD。
在第四时段内,第四MOS管S
B1导通,第一承压管S
CA和第二承压管S
CB的栅极 连接至地端GND,其他五个MOS管截止。
在这一时段内,由于第二承压管S
CB的栅极电压V
b等于0,源极电压小于栅极电压V
b,所以第二承压管S
CB导通,不影响第二储能电容C
S2对电容C
L充电,使得电容C
L两端的电压与第二储能电容C
S2两端的电压相等,即使得电容C
L两端的电压由0变为第二负电压V
C2(V
C2<0)。又由于第一承压管S
CA的栅极电压V
a等于0,所以仅当第一承压管S
CA的源极电压高于0时,第一承压管S
CA导通,而当第一承压管S
CA的源极电压小于或等于0时,第一承压管S
CA截止,因而在这一时段内第一承压管S
CA截止,可以避免第一MOS管S
A1、第二MOS管S
A2和第三MOS管S
A3的源漏电压超过耐压值V
DD。
在第五时段内,第五MOS管S
B2导通,第一承压管S
CA和第二承压管S
CB的栅极连接至地端GND,其他五个MOS管截止。
在这一时段内,由于第二承压管S
CB的栅极电压V
b等于0,源极电压小于栅极电压V
b,所以第二承压管S
CB导通,不影响触控驱动电路30输出第一负电压-V
DD对电容C
L充电,使得电容C
L两端的电压由第二负电压V
C2变为第一负电压-V
DD。又由于第一承压管S
CA的栅极电压V
a等于0,所以第一承压管S
CA截止,能够避免第一MOS管S
A1、第二MOS管S
A2和第三MOS管S
A3的源漏电压超过耐压值V
DD。
在第六时段内,第四MOS管S
B1导通,第一承压管S
CA和第二承压管S
CB的栅极连接至地端GND,其他五个MOS管截止。
在这一阶段内,由于第二承压管S
CB的栅极电压V
b等于0,源极电压小于栅极电压V
b,所以第二承压管S
CB导通,不影响电容C
L对第二储能电容C
S2放电,直至电容C
L两端的电压与第二储能电容C
S2两端的电压相等,即使得电容C
L两端的电压由第一负电压-V
DD变为第二负电压V
C2。又由于第一承压管S
CA的栅极电压V
a等于0,所以第一承压管S
CA截止,能够避免第一MOS管S
A1、第二MOS管S
A2和第三MOS管S
A3的源漏电压超过耐压值V
DD。
第七时段内,第六MOS管S
B3导通,第一承压管S
CA的栅极连接至地端GND,第二承压管S
CB的栅极接入的电压值等于第二负电压V
C2减去第一负电压-V
DD的差值,即第二承压管S
CB的栅极接入的电压值等于V
C2-(-V
DD)=V
C2+V
DD,其他五个MOS管截止。
在这一时段内,由于第二承压管S
CB的栅极电压V
b等于V
C2+V
DD,所以栅极电压V
b>0,源极电压小于栅极电压V
b,第二承压管S
CB导通,不影响电容C
L对地放电,使得电容C
L两端的电压由第二负电压V
C2变为0。又由于第一承压管S
CA的栅极电压等于0,所以第一承压管S
CA截止,能够避免第一MOS管S
A1、第二MOS管S
A2和第三MOS管S
A3的源漏电压超过耐压值V
DD。另外,当第二储能电容C
S2的电容值远大于电容C
L的电容值时,V
b=V
C2+V
DD≈1/2V
DD。
在第八时段内,第二MOS管S
A2导通,第一承压管S
CA和第二承压管S
CB的栅极连接至地端GND,其他五个MOS管截止。
在这一时段内,由于第一承压管S
CA的栅极电压V
a等于0,所以源极电压高于栅极电压V
a,第一承压管S
CA导通,不影响第一储能电容C
S1对电容C
L充电,使得电容C
L两端的电压由0变为第二正电压V
C1。又由于第二承压管S
CB的栅极电压V
b等于0, 所以第二承压管S
CB截止,能够避免第四MOS管S
B1、第五MOS管S
B2和第六MOS管S
B3的漏源电压超过耐压值V
DD。
具体的,第一MOS管S
A1导通的控制电压可以设置为0,即可以将第一MOS管S
A1的栅极接入零电压(V
1=0)使其导通;第一MOS管S
A1截止的控制电压可以设置为V
DD,即可以将第一MOS管S
A1的栅极接入电压值V
DD(V
1=V
DD)使其截止。
第二MOS管S
A2导通的控制电压可以设置为0,即可以将第二MOS管S
A2的栅极接入零电压(V
2=0)使其导通;第二MOS管S
A2截止的控制电压可以设置为V
DD,即可以将第二MOS管S
A2的栅极接入电压值V
DD(V
2=V
DD)使其截止。
第三MOS管S
A3导通的控制电压可以设置为V
DD,即可以将第三MOS管S
A3的栅极接入电压值V
DD(V
3=V
DD)使其导通;第三MOS管S
A3截止的控制电压V
3可以设置为0,即可以将第三MOS管S
A3的栅极接入零电压(V
3=0)使其截止。
第四MOS管S
B1导通的控制电压可以设置为0,即可以将第四MOS管S
B1的栅极接入零电压(V
4=0)使其导通;第四MOS管S
B1截止的控制电压V
4可以设置为-V
DD,即可以将第四MOS管S
B1的栅极接入电压值-V
DD(V
4=-V
DD)使其截止。
第五MOS管S
B2导通的控制电压可以设置为0,即可以将第五MOS管S
B2的栅极接入零电压(V
5=0)使其导通;第五MOS管S
B2截止的控制电压V
5可以设置为-V
DD,即可以将第五MOS管S
B2的栅极接入电压值(V
5=-V
DD)使其截止。
第六MOS管S
B3导通的控制电压可以设置为-V
DD,即可以将第六MOS管S
B3的栅极接入电压值-V
DD(V
6=-V
DD)使其导通;第六MOS管S
B3截止的控制电压V
6可以设置为0,即可以将第六MOS管S
B3的栅极接入零电压(V
6=0)使其截止。
同样的,当第一储能电容C
S1、第二储能电容C
S2的电容值远大于触控电极的等效电容值C
L,并且驱动信号的频率为f时,本实施例提供的触控驱动电路在一个周期T内的驱动功耗为P=C
L*V
DD
2*f,并且驱动信号的信号幅度为2V
DD;其中,f=1/T。
需要说明的是,本申请实施例提供的触控驱动电路不但可以采用两个储能电容,还可以采用四个或四个以上成对的储能电容,每一对储能电容分别用于提供正电压和负电压,从而引入更多的中间电平,实现更低的驱动功耗,但是随着储能电容个数的增加,也引入了更多的外围器件,导致电路的成本和复杂度增加。
如图8所示,为本申请实施例提供的又一种触控驱动电路的结构示意图。请参照图8,触控驱动电路40包括开关电路401和四个储能电容;四个储能电容分别为第三储能电容C
S3、第四储能电容C
S4、第五储能电容C
S5和第六储能电容C
S6;开关电路401包括七个开关,分别为开关S
1、开关S
2、开关S
3、开关S
4、开关S
5、开关S
6和开关S
7。其中,开关S
1的第一端接入电源电压V
DD,开关S
1的第二端连接至触控电极;开关S
2的第一端连接至第三储能电容C
S3的第一端,开关S
2的第二端连接至触控电极;开关S
3的第一端连接至第四储能电容C
S4的第一端,开关S
3的第二端连接至触控电极;开关S
4的第一端连接至地端GND,开关S
4的第二端连接至触控电极;开关S
5的第一端连接至第五储能电容C
S5的第一端,开关S
5的第二端连接至触控电极;开关S
6的第一端连接至第六储能电容C
S6的第一端,开关S
6的第二端连接至触控电极;开关S
7的第一端接入电源电压-V
DD,开关S
7的第二端连接至触控电极。其中,电源电压-V
DD可以通过将电源电压V
DD接入正负电压转换电路得到。
为了便于描述,下面将第三储能电容C
S3两端的电压记为V
C3,第四储能电容C
S4两端的电压记为V
C4,第五储能电容C
S5两端的电压记为V
C5,第六储能电容C
S6两端的电压记为V
C6。
本实施例中,四个储能电容分别引入了四个中间电平,并且四个中间电平的大小关系满足:0<V
C4<V
C3<V
DD,-V
DD<V
C6<V
C5<0,通过设置七个开关的导通顺序,可以使得该触控驱动电路周期性地依次输出电源电压V
DD、电压V
C3、电压V
C4、零电压、电压V
C5、电压V
C6、电源电压-V
DD、电压V
C6、电压V
C5、零电压、电压V
C4、电压V
C3。
另外,通过设置四个储能电容的电容值均远大于电容C
L的电容值,可以进一步使得V
C3≈2/3V
DD,V
C4≈1/3V
DD,V
C5≈-1/3V
DD,V
C6≈-2/3V
DD;具体的,当四个储能电容的电容值大于电容C
L的电容值的50~100倍时,可以判定四个储能电容的电容值远大于电容C
L的电容值。由于在一个周期T内仅电源电压直接对触控电极进行驱动时会产生实际的驱动功耗,所以本实施例提供的触控驱动电路在一个周期T内产生的驱动功耗为P=(1/3V
DD)*C
L*f*V
DD*2=2/3C
L*V
DD
2*f,并且驱动信号的信号幅度为2V
DD。其中,f=1/T。
具体的,本实施例中,各个开关电路也可以通过MOS管实现,并且也可以通过设置承压管来防止各个MOS管两端的电压超过耐压值,并且承压管也可以通过MOS管来实现。
需要说明的是,本申请实施例提供的触控驱动电路还可以按照特定顺序仅导通其中一部分开关电路或MOS管,以产生不同的驱动信号,从而适应不同的应用场景,例如,在一些应用场景下,不需要实现很低的驱动功耗,则可以简化对开关电路的控制操作,缩短驱动信号的周期。以图3所示的触控驱动电路为例,仅在一个周期T内依次控制触控电极接入第一正电压V
DD、接地、接入第一负电压-V
DD、接地,则可以产生图9所示的驱动信号,其驱动信号的信号幅度为2V
DD,驱动功耗为2C
L*V
DD
2*f。
本申请实施例提供一种触控驱动芯片,该触控驱动芯片包括上述实施例提供的触控驱动电路。
需要说明的是,该触控驱动芯片还可以包括其他电路,例如控制电路,用于控制开关电路按照上述实施例提供的导通顺序周期性地循环导通。
本申请实施例提供一种触控显示装置,该触控显示装置包括上述实施例提供的触控驱动芯片。
该触控显示装置可以包括显示器,例如液晶显示器、有机发光显示器、等离子体显示器和阴极射线显示器等。
应理解,本申请实施例中的具体实施方式仅是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落入本申请的保护范围。
Claims (13)
- 一种触控驱动电路,用于输出驱动信号对触控显示装置的触控电极进行驱动,其特征在于,包括:电源电压产生电路、开关电路以及第一储能电容;所述开关电路的第一输入端连接至所述电源电压产生电路;所述开关电路的第二输入端通过所述第一储能电容连接至地端GND;所述开关电路的第三输入端连接至所述地端GND;所述开关电路的输出端连接至所述触控电极;所述电源电压产生电路用于产生第一正电压;所述开关电路用于在第一时段内控制所述触控电极连接至所述电源电压产生电路,所述第一正电压对所述触控电极充电,使得所述触控电极两端的电压等于所述第一正电压;在第二时段内控制所述触控电极连接至所述第一储能电容,所述第一储能电容用于存储所述触控电极释放的电荷,使得所述触控电极两端的电压等于第二正电压;以及在第三时段内控制所述触控电极连接至所述地端GND,所述触控电极对所述地端GND放电,使得所述触控电极两端的电压等于零电压;所述第二正电压低于所述第一正电压,并且高于所述零电压。
- 根据权利要求1所述的触控驱动电路,其特征在于,进一步包括:第二储能电容;所述开关电路的第四输入端通过所述第二储能电容连接至所述地端GND;所述开关电路的第五输入端连接至所述电源电压产生电路;所述电源电压产生电路进一步用于产生第一负电压;所述开关电路进一步用于在第四时段内控制所述触控电极连接至所述第二储能电容,所述第二储能电容用于将存储的电荷转移给所述触控电极,使得所述触控电极两端的电压等于第二负电压;以及在第五时段内控制所述触控电极连接至所述电源电压产生电路,所述第一负电压对所述触控电极充电,使得所述触控电极两端的电压等于所述第一负电压;所述第二负电压高于所述第一负电压,并且低于所述零电压。
- 根据权利要求2所述的触控驱动电路,其特征在于,所述开关电路进一步用于在第六时段内控制所述触控电极连接至所述第二储能电容,所述第二储能电容用于存储所述触控电极释放的电荷,使得所述触控电极两端的电压等于所述第二负电压;在第七时段内控制所述触控电极连接至所述地端GND,所述触控电极对所述地端GND放电,使得所述触控电极两端的电压等于所述零电压;以及在第八时段内控制所述触控电极连接至所述第一储能电容,所述第一储能电容用于将存储的电荷转移给所述触控电极,使得所述触控电极两端的电压等于所述第二正电压。
- 根据权利要求3所述的触控驱动电路,其特征在于,所述开关电路进一步包括:第一开关电路、第二开关电路、第三开关电路、第四开关电路以及第五开关电路;所述第一开关电路的输入端为所述开关电路的第一输入端,所述第一开关电路的输出端连接至所述开关电路的输出端;所述第二开关电路的输入端为所述开关电路的第二输入端,所述第二开关电路的输出端连接至所述开关电路的输出端;所述第三开关电路的输入端为所述开关电路的第三输入端,所述第三开关电路的输出端连接至所述开关电路的输出端;所述第四开关电路的输入端为所述开关电路的第四输入端,所述第四开关电路的输出端连接至所述开关电路的输出端;所述第五开关电路的输入端为所述开关电路的第五输入端,所述第五开关电路的输出端连接至所述开关电路的输出端。
- 根据权利要求4所述的触控驱动电路,其特征在于,在所述第一时段内,所述第一开关电路导通;在所述第二时段内,所述第二开关电路导通;在所述第三时段内,所述第三开关电路导通;在所述第四时段内,所述第四开关电路导通;在所述第五时段内,所述第五开关电路导通;在所述第六时段内,所述第四开关电路导通;在所述第七时段内,所述第三开关电路导通;在所述第八时段内,所述第二开关电路导通;所述任意一个开关电路导通时,所述其他四个开关电路均断开。
- 根据权利要求5所述的触控驱动电路,其特征在于,进一步包括第一承压管和第二承压管;所述第一开关电路进一步包括第一MOS管;所述第二开关电路进一步包括第二MOS管;所述第四开关电路进一步包括第四MOS管;所述第五开关电路进一步包括第五MOS管;所述第三开关电路进一步包括第三MOS管和第六MOS管;所述第一MOS管、所述第六MOS管和所述第一承压管为P型MOS管,所述第二MOS管、所述第三MOS管、所述第四MOS管、所述第五MOS管和所述第二承压管为N型MOS管;所述第一MOS管的源极接入所述第一正电压,所述第一MOS管的漏极连接至所述第一承压管的源极;所述第二MOS管的源极连接至所述第一承压管的源极,所述第二MOS管的漏极连接至所述第一储能电容的第一端;所述第三MOS管的源极连接至所述地端GND,所述第三MOS管的漏极连接至所述第一承压管的源极;所述第四MOS管的源极连接至所述第二储能电容的第一端,所述第四MOS管的漏极连接至所述第二承压管的源极;所述第五MOS管的源极接入所述第一负电压,所述第五MOS管的漏极连接至所述第二承压管的源极;所述第六MOS管的源极连接至所述地端GND,所述第六MOS管的漏极连接至所述第二承压管的源极;所述第一储能电容和所述第二储能电容的第二端均连接至所述地端GND;所述第一承压管和所述第二承压管的漏极均连接至所述触控电极;所述第一承压管用于防止所述第一MOS管、所述第二MOS管和所述第三MOS管两端的电压超过耐压值;所述第二承压管用于防止所述第四MOS管、所述第五MOS管和所述第六MOS管两端的电压超过耐压值。
- 根据权利要求6所述的触控驱动电路,其特征在于,在所述第一时段内,所述第一MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第二时段内,所述第二MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第三时段内,所述第三MOS管导通,所述第一承压管的栅极接入的电压等于所述第二正电压减去所述第一正电压的差值,所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第四时段内,所述第四MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第五时段内,所述第五MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第六时段内,所述第四MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止;在所述第七时段内,所述第六MOS管导通,所述第一承压管的栅极连接至所述地端GND,所述第二承压管的栅极接入的电压等于所述第二负电压减去所述第一负电压的差值,所述其他五个MOS管截止;在所述第八时段内,所述第二MOS管导通,所述第一承压管和所述第二承压管的栅极连接至所述地端GND,所述其他五个MOS管截止。
- 根据权利要求3至7任一项所述的触控驱动电路,其特征在于,所述驱动信号在一个周期内的信号幅度依次等于所述第一正电压、所述第二正电压、所述零电压、所述第二负电压、所述第一负电压、所述第二负电压、所述零电压、所述第二正电压。
- 根据权利要求2至7任一项所述的触控驱动电路,其特征在于,所述电源电压产生电路进一步包括正负电压转换电路;所述正负电压转换电路用于将所述第一正电压转换为所述第一负电压。
- 根据权利要求1至7任一项所述的触控驱动电路,其特征在于,所述第一储能电容或所述第二储能电容的电容值大于所述触控电极的等效电容值的50倍。
- 根据权利要求10所述的触控驱动电路,其特征在于,所述第二正电压等于所述第一正电压的1/2,所述第二负电压等于所述第一负电压的1/2。
- 一种触控驱动芯片,其特征在于,包括如权利要求1至11任一项所述的触控驱动电路。
- 一种触控显示装置,其特征在于,包括如权利要求12所述的触控驱动芯片。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/079092 WO2022183442A1 (zh) | 2021-03-04 | 2021-03-04 | 触控驱动电路、驱动芯片以及触控显示装置 |
US18/234,245 US11947753B2 (en) | 2021-03-04 | 2023-08-15 | Touch driving circuit, driving chip, and touch display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/079092 WO2022183442A1 (zh) | 2021-03-04 | 2021-03-04 | 触控驱动电路、驱动芯片以及触控显示装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/234,245 Continuation US11947753B2 (en) | 2021-03-04 | 2023-08-15 | Touch driving circuit, driving chip, and touch display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022183442A1 true WO2022183442A1 (zh) | 2022-09-09 |
Family
ID=83153900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/079092 WO2022183442A1 (zh) | 2021-03-04 | 2021-03-04 | 触控驱动电路、驱动芯片以及触控显示装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11947753B2 (zh) |
WO (1) | WO2022183442A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101960415A (zh) * | 2008-02-25 | 2011-01-26 | 苹果公司 | 用于多点触摸控制器的电荷再循环 |
US20140313157A1 (en) * | 2013-04-22 | 2014-10-23 | Ulsan National Institute of Science and Technology (UNIST) | Touch sensing apparatus and touch sensing method using the same |
KR20170046851A (ko) * | 2015-10-21 | 2017-05-04 | 엘지디스플레이 주식회사 | 표시장치, 구동집적회로, 터치구동회로 및 구동전원회로 |
CN109388264A (zh) * | 2017-08-08 | 2019-02-26 | 三星电子株式会社 | 触摸显示器驱动集成电路、其操作方法和触摸显示装置 |
CN109992158A (zh) * | 2019-03-29 | 2019-07-09 | 京东方科技集团股份有限公司 | 触控显示面板、其驱动方法及显示装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103902114B (zh) * | 2012-12-30 | 2017-03-15 | 比亚迪股份有限公司 | 电容检测电路 |
CN103310729B (zh) | 2013-05-29 | 2015-05-27 | 京东方科技集团股份有限公司 | 发光二极管像素单元电路和显示面板 |
CN103488362B (zh) | 2013-08-29 | 2016-08-17 | 北京大学深圳研究生院 | 触控单元电路、触控面板阵列和显示面板 |
KR102636679B1 (ko) | 2016-08-31 | 2024-02-14 | 엘지디스플레이 주식회사 | 터치 디스플레이 장치 및 그 구동 방법 |
-
2021
- 2021-03-04 WO PCT/CN2021/079092 patent/WO2022183442A1/zh active Application Filing
-
2023
- 2023-08-15 US US18/234,245 patent/US11947753B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101960415A (zh) * | 2008-02-25 | 2011-01-26 | 苹果公司 | 用于多点触摸控制器的电荷再循环 |
US20140313157A1 (en) * | 2013-04-22 | 2014-10-23 | Ulsan National Institute of Science and Technology (UNIST) | Touch sensing apparatus and touch sensing method using the same |
KR20170046851A (ko) * | 2015-10-21 | 2017-05-04 | 엘지디스플레이 주식회사 | 표시장치, 구동집적회로, 터치구동회로 및 구동전원회로 |
CN109388264A (zh) * | 2017-08-08 | 2019-02-26 | 三星电子株式会社 | 触摸显示器驱动集成电路、其操作方法和触摸显示装置 |
CN109992158A (zh) * | 2019-03-29 | 2019-07-09 | 京东方科技集团股份有限公司 | 触控显示面板、其驱动方法及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20230384880A1 (en) | 2023-11-30 |
US11947753B2 (en) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11227550B2 (en) | Electronic panel, display device, and driving method | |
CN103295525B (zh) | 像素电路及其驱动方法、有机发光显示面板及显示装置 | |
US9818339B2 (en) | Shift register unit and method of driving the same, gate scanning circuit | |
US9437324B2 (en) | Shift register unit, driving method thereof, shift register and display device | |
JP6181850B2 (ja) | シフトレジスタユニット及び表示装置 | |
CN107369413B (zh) | 一种像素补偿电路、其驱动方法、显示面板及显示装置 | |
US11482148B2 (en) | Power supply time sequence control circuit and control method thereof, display driver circuit, and display device | |
US10930361B2 (en) | Voltage control circuit, shift register unit and display device | |
KR102491774B1 (ko) | 터치 검출 회로, 터치 디스플레이 장치 및 터치 검출 방법 | |
WO2019113819A1 (zh) | 主动笔的信号发生电路、主动笔和打码方法 | |
CN112947790B (zh) | 触控驱动电路、驱动芯片以及触控显示装置 | |
WO2013174118A1 (zh) | 移位寄存器、驱动装置及显示器 | |
US10192474B2 (en) | Controllable voltage source, shift register and unit thereof, and display | |
US20180348922A1 (en) | Touch driving unit and driving method thereof, touch driving circuit and display device | |
CN104318883A (zh) | 移位寄存器及其单元、显示器和阈值电压补偿电路 | |
CN105427786A (zh) | 一种栅极驱动电路单元及栅极驱动电路 | |
CN213583063U (zh) | 栅极驱动电路及显示装置 | |
US11393402B2 (en) | OR logic operation circuit and driving method, shift register unit, gate drive circuit, and display device | |
CN109616060B (zh) | 一种低功耗电路 | |
WO2022166467A1 (zh) | 栅极开启电压产生电路、显示面板驱动装置及显示装置 | |
WO2022183442A1 (zh) | 触控驱动电路、驱动芯片以及触控显示装置 | |
CN108346400B (zh) | 一种像素电路、驱动方法及显示面板 | |
WO2024109219A1 (zh) | 触摸检测装置及方法、芯片、显示设备及电子设备 | |
TWI670702B (zh) | 雙閘極電晶體電路、畫素電路及其閘極驅動電路 | |
CN107546976B (zh) | 电荷泵电路及电荷泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21928527 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21928527 Country of ref document: EP Kind code of ref document: A1 |