WO2022183332A1 - 发光模组和显示模组 - Google Patents

发光模组和显示模组 Download PDF

Info

Publication number
WO2022183332A1
WO2022183332A1 PCT/CN2021/078502 CN2021078502W WO2022183332A1 WO 2022183332 A1 WO2022183332 A1 WO 2022183332A1 CN 2021078502 W CN2021078502 W CN 2021078502W WO 2022183332 A1 WO2022183332 A1 WO 2022183332A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
area
emitting module
emitting
Prior art date
Application number
PCT/CN2021/078502
Other languages
English (en)
French (fr)
Inventor
张恩亮
石海军
吴斌
王伯长
付常佳
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/768,319 priority Critical patent/US20230400732A1/en
Priority to PCT/CN2021/078502 priority patent/WO2022183332A1/zh
Priority to CN202180000381.1A priority patent/CN115280230A/zh
Publication of WO2022183332A1 publication Critical patent/WO2022183332A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means

Definitions

  • the present application relates to the field of display technology, and in particular, to a light-emitting module and a display module.
  • the light-emitting module is an important part of the liquid crystal display device, and the light-emitting module is used to provide sufficient and uniform surface light sources for the liquid crystal display device.
  • light-emitting modules are classified into side-entry light-emitting modules and direct-lighting light-emitting modules, wherein the direct-lighting light-emitting modules may include a plastic frame, a backplane, a light source, a diffuser plate, an optical film, and the like.
  • the light source is located under the diffuser plate. The light emitted by the light source is transmitted through the diffusion plate and irradiated on the liquid crystal display panel.
  • the present disclosure provides a light-emitting module and a display module.
  • a light-emitting module including: a light source assembly;
  • the light source assembly includes a substrate and a light source, the light source is located on the substrate, the substrate includes a first area and a second area, the first area surrounds the second area, and the first area is located in the first area.
  • the light-emitting surface of the light source is inclined and faces the second area.
  • the light-emitting module further includes an optical film layer; the optical film layer is located on the light-emitting side of the light source assembly, and is used to modulate the light emitted by the light source assembly;
  • the light source is located on the side of the substrate facing the optical film layer;
  • the light-emitting surface of the light source located in the second area faces the optical film layer and is parallel to the surface of the substrate facing the optical film layer;
  • the light source On the same side of the substrate, for each light source located in the second region and adjacent to the junction of the first region and the second region, the light source is close to the first vertex of the first region and The first distance between the surfaces of the optical film layer facing the light source along the direction perpendicular to the substrate, the projection of the first vertex on the optical film layer and the first edge of the optical film layer. The following relationship is satisfied between the second distance between and the light-emitting angle of the light source
  • a is the second distance
  • b is the first distance
  • the substrate in the first area, in the direction of the first area away from the first boundary of the second area and pointing to the second boundary of the second area There are at least two rows of light sources; the first boundary is adjacent to the second boundary and extends in the same direction;
  • the inclination angle of the light emitting surface of the light source close to the first boundary is greater than the inclination angle of the light emitting surface of the light source far from the first boundary.
  • in the first region there are two rows of light sources in the direction in which the first boundary points to the second boundary.
  • the second area is rectangular
  • the light sources located on the extension of the diagonal of the second area are inclined toward the center of the second area, and the remaining light sources are located along the center of the second area.
  • the axis is inclined toward the second area, and the central axis is perpendicular to the extending direction of the row where the light sources are located.
  • the projection of the end of the light source close to the first boundary on the optical film layer is the same as the projection of the first region of the optical film layer.
  • a third distance between an edge, a direction perpendicular to the substrate between a second vertex of the light source in the first region near the first boundary and a surface of the optical film layer facing the light source The fourth distance of , the light-emitting angle of the light source, and the inclination angle of the light-emitting surface of the light source satisfy the following relationship:
  • c is the third distance
  • d is the fourth distance
  • is the inclination angle of the light-emitting surface of the light source, is the light-emitting angle of the light source.
  • the optical film layer includes a diffusion layer
  • the light emitting module further includes a backplane, a plastic frame, and an adhesive layer
  • the light source component is located between the backplane and the diffusion layer, and on the side of the backplane facing the diffusion layer;
  • the plastic frame is located on the back plate, and the adhesive layer is located between the diffusion layer and the plastic frame;
  • the material of the adhesive layer is an opaque material.
  • the light source is for emitting light of a first wavelength
  • the optical film layer further includes a light conversion layer, the light conversion layer is located on the side of the diffusion layer close to the light source, and is used for converting the light of the first wavelength into the light of the second wavelength and the light of the third wavelength and allow part of the light of the first wavelength to pass through, so that the mixed light of the light of the first wavelength, the light of the second wavelength and the light of the third wavelength transmitted through the light conversion layer is white light.
  • the light conversion layer is located on the side of the diffusion layer close to the light source, and is used for converting the light of the first wavelength into the light of the second wavelength and the light of the third wavelength and allow part of the light of the first wavelength to pass through, so that the mixed light of the light of the first wavelength, the light of the second wavelength and the light of the third wavelength transmitted through the light conversion layer is white light.
  • the light converting layer includes quantum dot material.
  • the light-emitting module further includes a water-oxygen barrier layer; the water-oxygen barrier layer is located between the diffusion layer and the adhesive layer, and is located between the light conversion layer and the adhesive layer between layers.
  • the light-emitting module further includes a brightness enhancement film, and the brightness enhancement film is located on the side of the optical film layer away from the light source.
  • the light source assembly further includes a bracket and a circuit board, the circuit board is located between the substrate and the light source, and the bracket is located between the circuit board and the light source.
  • the height of the first end of the bracket is lower than the height of the second end, so that the light-emitting surface of the light source is inclined; and/or,
  • the light source assembly further includes a conductive pad located below the second end of the bracket, so that the light emitting surface of the light source is inclined.
  • the surface of the substrate in the first region close to the light source is on the same plane as the surface of the substrate in the second region close to the light source.
  • a display module comprising: a display panel and the above-mentioned light-emitting module, the display panel is located on a side of the light-emitting module away from the light source assembly.
  • FIG. 1 is a schematic structural diagram of a light-emitting module according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another light-emitting module according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of another light-emitting module according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another light-emitting module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another light-emitting module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another light-emitting module according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another light-emitting module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another light-emitting module according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an optical path of a light-emitting module according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a display module according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a light-emitting module.
  • the light-emitting module as shown in FIG. 1 , includes: a light source assembly 11 .
  • the light source assembly 11 includes a substrate 111 and a light source 112 , and the light source 112 is located on the substrate 111 .
  • the substrate 111 includes a first area Q1 and a second area Q2, the first area Q1 surrounds the second area Q2, and the light emitting surface of the light source 112 located in the first area Q1 is inclined and faces the second area Q1.
  • Area Q2 the first area Q1 surrounds the second area Q2, and the light emitting surface of the light source 112 located in the first area Q1 is inclined and faces the second area Q1.
  • the light source 112 located at the edge can emit light
  • the light is inclined toward the center of the light-emitting module, reducing the light at the edge of the light-emitting module, thereby reducing the light leakage phenomenon at the edge of the light-emitting module, which is beneficial to improve the display quality.
  • the light-emitting module provided by the embodiment of the present disclosure is briefly introduced above, and the light-emitting module provided by the embodiment of the present disclosure is described in detail below.
  • Embodiments of the present disclosure also provide a light-emitting module.
  • the light-emitting module as shown in FIG. 1 , includes a light source assembly 11 , an optical film layer 12 , a back plate 13 , a plastic frame 14 , a brightness enhancement film 16 , a water-oxygen barrier layer 17 and an adhesive layer 18 .
  • the light source assembly 11 is located between the backplane 13 and the optical film layer 12 , and is located on the side of the backplane 13 facing the optical film layer 12 .
  • the light-emitting side of the light source assembly 11 faces the optical film layer 12 , that is, the optical film layer 12 is located on the light-emitting side of the light source assembly 11 .
  • the optical film layer 12 is used to modulate the light emitted by the light source assembly 11 , for example, modulating the light emitted by the light source assembly 11 includes diffusing the light emitted by the light source assembly 11 to make the light output uniform and the light emitted by the light source assembly 11 Adjust any one or combination of wavelengths.
  • the light source assembly 11 includes a substrate 111 , a light source 112 , a bracket 113 and a circuit board 114 .
  • the substrate 111 is located on the side of the backplane 13 facing the optical film layer 12 , and is used to support the circuit board 114 and the light source 112 , and can also protect the circuit board 114 and the light source 112 .
  • the circuit board 114 includes conductive lines, and the conductive lines are electrically connected to the light source 112 through the bracket 113 .
  • the bracket 113 plays the role of supporting and conducting electricity.
  • the light source assembly 11 includes a plurality of light sources 112 , which are arranged in an array on the substrate 111 and located on the side of the substrate 111 facing the optical film layer 12 .
  • Each light source 112 is used for emitting light of the first wavelength, for example, each light source 112 is used for emitting blue light, but not limited thereto.
  • each light source 112 may also be used to emit white light.
  • the light source 112 may be an LED chip.
  • the LED chip may be a miniLED chip or a microLED chip, but is not limited thereto.
  • the substrate 111 includes a first area Q1 and a second area Q2 , and the first area Q1 surrounds the second area Q2 . That is, the first region Q1 is an edge region, and the second region Q2 is a central region.
  • the second area Q2 is rectangular or approximately rectangular, and the outer edge of the first area Q1 is rectangular or approximately rectangular.
  • the surface of the substrate 111 facing the light source 112 in the first region Q1 and the surface of the substrate 111 facing the light source 112 in the second region Q2 are located on the same plane. Compared with the two not located on the same plane, the thickness of the substrate 111 can be made smaller. It is beneficial for the display panel to become thinner, and the material of the substrate 111 can be glass or metal, instead of being limited to metal, etc., and the processing difficulty of the substrate is relatively small.
  • the light emitting surface of the light source 1121 located in the second region Q2 faces the optical film layer 12 and is parallel to the surface of the substrate 111 facing the optical film layer 12 .
  • the light-emitting surface of the light source is the surface on the light-emitting side of the LED chip.
  • the light emitting surface F1 of the light source 1121 located in the second region Q2 is parallel to the surface of the substrate 111 facing the optical film layer 12 , wherein the surface of the substrate 111 facing the optical film layer 12 is parallel to the optical film layer 12 .
  • the surface of the film layer 12 facing the substrate 111 is parallel, that is, the light emitting surface F1 of the light source 1121 located in the second region Q2 is also parallel to the surface of the optical film layer 12 facing the substrate 111 .
  • the light emitting surface of the light source 112 located in the first area Q1 is inclined and faces the second area Q2. In this way, the light emitted by the light source 112 located at the edge of the light emitting module can be inclined toward the center of the optical film layer 12 , thereby reducing the light at the edge of the optical film layer 12 .
  • the surface of the substrate 111 facing the optical film layer 12 is rectangular or approximately rectangular.
  • the substrate 111 includes a first side S1 and a second side S2 opposite in the first direction X, and includes a third side S3 and a fourth side S4 opposite in the second direction Y.
  • the first boundary B1 of the first region Q1 is directed away from the second region Q2 In the direction of the second boundary B2 of the second region Q2, there are at least two rows of light sources 112; the first boundary B1 and the second boundary B2 are adjacent to each other and extend in the same direction.
  • the distances between the first boundary B1 and the second boundary B2 on the four sides of the substrate 111 may be the same, but are not limited thereto.
  • the first distance between the first boundary B1 and the second boundary B2 is the distance in the first direction X
  • the first boundary B1 and the first The second distance between the two boundaries B2 is the distance in the second direction Y, and the first distance is the same as the second distance.
  • the inclination angle of the light emitting surface of the light source 1123 close to the first boundary B1 is greater than that of the light source 1122 far from the first boundary B1
  • the inclination angle of the light-emitting surface is equal to the angle between the light-emitting surface and the surface of the substrate 111 facing the optical film layer 12 , or the inclination angle of the light-emitting surface is equal to the angle between the light-emitting surface and the surface of the optical film layer 12 facing the substrate 111 .
  • the angle between the light-emitting surface and the surface of the substrate 111 facing the optical film layer 12 is an acute angle formed by the light-emitting surface and the surface of the substrate 111 facing the optical film layer 12 .
  • the angle between the light-emitting surface and the surface of the optical film layer 12 facing the substrate 111 is an acute angle formed by the light-emitting surface and the surface of the optical film layer 12 facing the substrate 111 .
  • the inclination angle of the light emitting surface of the light source 1123 close to the first boundary B1 is greater than that far from the first boundary B1.
  • the inclination angle of the light emitting surface F3 of the light source 1123 close to the first boundary B1 is ⁇ 1.
  • the inclination angle of the light emitting surface F2 of the light source 1122 far from the first boundary B1 is ⁇ 2 , and ⁇ 1 is greater than ⁇ 2 .
  • ⁇ 1 is equal to 13 degrees
  • ⁇ 2 is equal to 5 degrees, but not limited thereto.
  • the heights of the brackets 113 of all the light sources 112 are the same.
  • it may be 0.2mm.
  • the distance between the highest point of the light emitting surface of the light source 1123 close to the first boundary B1 and the substrate 111 is 0.9 mm
  • the distance between the highest point of the light emitting surface of the light source 1122 far from the first boundary B1 and the substrate 111 is 0.9 mm.
  • the distance between them is 0.7mm.
  • the distance between the light emitting surface of the light source 1121 and the substrate 111 is 0.7 mm.
  • the shapes and sizes of the light-emitting surfaces of all the light sources 112 are the same, for example, the shapes of the light-emitting surfaces are all rectangular or approximately rectangular, the length of the light-emitting surface is 1 mm, and the width of the light-emitting surface is 0.5 mm, but not limited to this.
  • the diagonal of the second region Q2 includes a first diagonal L1 and a second diagonal L2 .
  • the central axis of the second region Q2 includes a first central axis L3 and a second central axis L4.
  • the first central axis L3 extends along the first direction X
  • the second central axis L4 extends along the second direction Y.
  • the light sources 112 located on the extension line of the first diagonal line L1 of the second area Q2 and the light sources 112 located in the second area are inclined toward the center of the second area Q2, and the remaining light sources 112 are inclined toward the second area Q2 along one of the first central axis L3 and the second central axis L4, and
  • the central axis is perpendicular to the extending direction of the row where the light sources 112 are located.
  • the direction of the arrow in FIG. 6 represents the orientation of the light emitting surface of the light source 112 .
  • the mixed light can be made more uniform, and bright lines at the corners can be avoided.
  • the light source 1121 is close to the first area Q2.
  • the first distance between the first vertex of the region Q1 and the surface of the optical film layer 12 facing the light source 1121 along the direction perpendicular to the substrate 111 , the projection of the first vertex on the optical optical film layer 12 and the first is satisfied between the second distance between the edges and the light emission angle of the light source 1121
  • a is the second distance
  • b is the first distance
  • the first vertex is the vertex of the light source 1121 facing the optical film layer 12 . In this way, it can be ensured that the light with the maximum emission angle of all the light sources 112 just incident on the outermost edge of the optical film layer 12, and no light leakage phenomenon occurs.
  • the value range of b is 10-40 mm.
  • the value of b can be set as required.
  • a is 70mm
  • b 30mm
  • arctan(a/b) 67 degrees
  • the light-emitting angle of the light source 1121 is 120 degrees, that is, is equal to 120 degrees. It should be noted that, in at least one embodiment, the light-emitting angles of all the light sources 112 in the light-emitting module are the same, for example, 120 degrees, but not limited thereto.
  • the projection of the end of the light source 112 close to the first boundary B1 on the optical film layer 12 is the same as the projection of the optical film layer 12 .
  • the third distance between an edge, the fourth distance along the direction perpendicular to the substrate 111 between the second vertex of the light source 112 in the first region Q1 close to the first boundary and the surface of the optical film layer 12 facing the light source 112, the light source 112 The following relationship is satisfied between the light-emitting angle of , and the inclination angle of the light-emitting surface of the light source 112:
  • c is the third distance
  • d is the fourth distance
  • is the inclination angle of the light-emitting surface of the light source 112
  • the second vertex of the light source 112 close to the first boundary B1 is the vertex close to the first boundary B1 and facing the optical film layer 12 .
  • ⁇ 4 is the inclination angle of the light-emitting surface of the light source 112
  • the projection of the end of the light source 1122 close to the first boundary B1 on the optical film layer 12 and the first edge of the optical film layer 12 are between the projections
  • the third distance is 43mm
  • the third distance of the light source 1122 has become larger, and the fourth distance has a small change, which can be regarded as unchanged. Therefore, the inclination angle of the light-emitting surface can be reduced accordingly, and the light at the maximum light-emitting angle of the light source 1122 can still be guaranteed.
  • the optical film layer 12 includes a diffusion layer 121 for diffusing the light emitted by the light source assembly 11 to make the light output uniform.
  • the material of the diffusion layer 121 includes PMMA (polymethyl methacrylate) material, PC (polycarbonate) material or PS (polystyrene plastic) material, but is not limited thereto.
  • the light emitted by the light source 112 may be white light. In this way, the solution provided by the present disclosure can avoid the phenomenon of increased brightness at the edge of the light-emitting module.
  • the optical film layer 12 may further include a light conversion layer 122.
  • the light conversion layer 122 is located on the side of the diffusion layer 121 close to the light source 112, and is used to convert the light of the first wavelength into the light of the second wavelength.
  • the light of the second wavelength and the light of the third wavelength are allowed to pass through part of the light of the first wavelength, so that the light of the first wavelength, the light of the second wavelength and the light of the third wavelength are transmitted through the light conversion layer 122
  • the mixed light is white light.
  • the light of the first wavelength is blue light
  • the light of the second wavelength and the light of the third wavelength are red light and green light, respectively.
  • the light conversion layer 122 is used for converting blue light into red light and green light, and allows part of the blue light to pass through, so that the mixed light of blue light, red light and green light transmitted through the light conversion layer 122 is white light.
  • the solution provided by the present disclosure can avoid the phenomenon of blue light or bluishness of the display screen caused by light leakage at the edge of the light-emitting module.
  • the light conversion layer 122 includes quantum dot material.
  • Quantum dot materials include III-V group compounds, for example, cadmium-containing CdS (cadmium sulfide), CdSn (cadmium tin sulfide), etc. or cadmium-free ZnS (zinc sulfide), InP (indium phosphide), perovskite Mine etc.
  • the brightness enhancement film 16 is located on the side of the optical film layer 12 away from the light source 112 .
  • the brightness enhancement film 16 may be a prismatic film for improving the brightness of light emission.
  • the plastic frame 14 is located on the back plate 13
  • the adhesive layer 18 is located between the water-oxygen barrier layer 17 and the plastic frame 14
  • the material of the adhesive layer 18 is an opaque material, such as Opaque glue.
  • the water and oxygen blocking layer 17 is located between the brightness enhancement film 16 and the adhesive layer 18 , for preventing water and oxygen from eroding the light conversion layer 122 .
  • the material of the water and oxygen barrier layer 17 is an opaque material.
  • the adhesive layer 18 is opaque and the water-oxygen barrier layer 17 is opaque, which can reduce light leakage.
  • the light emitting surfaces of some of the light sources 112 are inclined relative to the surface of the substrate 111 facing the optical film layer 12 .
  • the inclination of the light-emitting surface of the light source 112 with respect to the surface of the substrate 111 facing the optical film layer 12 is realized by the special-shaped processing of the internal structure of the light source. This can be achieved, for example, by a bracket, a conductive pad, or at least one of the two.
  • the internal structure of the light source 112 is consistent, that is, no internal special-shaped processing is performed, and the height of the first end of the bracket 113 is lower than the height of the second end, so that the light emitting surface of the light source 112 is inclined.
  • the internal structure of the light source 112 is the same, and no internal special-shaped processing is performed. Below the second end of the bracket 113, no conductive pad is provided below the first end of the bracket 113, so that the light emitting surface of the light source 112 is inclined.
  • the solution of this embodiment is more convenient for reassembly, convenient for disassembly and reassembly, and does not affect the performance of the product.
  • Embodiments of the present disclosure also provide a display module.
  • the display module includes a display panel 1001 and also includes the light-emitting module described in any of the above embodiments.
  • the display panel 1001 is located on the side of the light emitting module away from the light source assembly 11 .
  • the display panel 1001 may be a liquid crystal display panel, but is not limited thereto.
  • the first area Q1 surrounds the second area Q2
  • the light emitting surfaces of the light sources located in the first area Q1 are inclined and face the second area Q2
  • the light emitted by the light sources 112 located at the edge can be directed toward the second area Q2.
  • the center of the light-emitting module is inclined to reduce the light at the edge of the light-emitting module, thereby reducing the light leakage phenomenon at the edge of the light-emitting module, which is beneficial to improve the display quality of the display module.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种发光模组和显示模组。该发光模组包括光源(112)组件(11);光源(112)组件(11)包括基板(111)与光源(112),光源(112)位于基板(111)上。基板(111)包括第一区域(Q1)与第二区域(Q2),第一区域(Q1)环绕第二区域(Q2),位于第一区域(Q1)中的光源(112)的发光面倾斜,且朝向第二区域(Q2)。该发光模组可以使位于边缘的光源(112)发射的光向发光模组的中央倾斜,减少发光模组边缘处的光,进而减弱发光模组边缘的漏光现象,有利于提高显示质量。

Description

发光模组和显示模组 技术领域
本申请涉及显示技术领域,尤其涉及一种发光模组和显示模组。
背景技术
相关技术中,发光模组是液晶显示设备的重要组成部分,发光模组用于为液晶显示设备提供充足及均匀的面光源。通常情况下,发光模组分为侧入式发光模组和直下式发光模组,其中,直下式发光模组可包括胶框、背板、光源、扩散板和光学膜材等。其中,光源位于扩散板的下方。光源发出的光经扩散板传递,照射到液晶显示面板上。然而,光源发出的光中有部分光会从发光模组的边框与扩散板之间的缝隙漏出,导致显示设备正常显示时,显示设备的屏幕边缘四周出现明显的漏光现象,大大降低了显示设备的显示质量。
发明内容
本公开提供了一种发光模组和显示模组。
根据本公开实施例的第一方面,提供一种发光模组,包括:光源组件;
所述光源组件包括基板与光源,所述光源位于所述基板上,所述基板包括第一区域与第二区域,所述第一区域环绕所述第二区域,位于所述第一区域中的光源的发光面倾斜,且朝向所述第二区域。
在一个实施例中,所述发光模组还包括光学膜层;所述光学膜层位于所述光源组件的出光侧,用于对所述光源组件发射的光进行调制;
所述光源位于所述基板面向所述光学膜层的一侧;
位于所述第二区域中的光源的发光面面向所述光学膜层,且与所述基板面向所述光学膜层的表面平行;
在所述基板的同一侧,针对每个位于所述第二区域中且邻近所述第一区域与所述第二区域交界处的光源,所述光源靠近所述第一区域的第一顶点与所述光学膜层面向所述光源的表面之间沿垂直于所述基板的方向的第一距离、所述第一顶点在所述光学膜层上的投影与所述光学膜层的第一边缘之间的第二距离以及所述光源的发光角度之间满足如下关系
Figure PCTCN2021078502-appb-000001
其中,a为所述第二距离,b为所述第一距离,
Figure PCTCN2021078502-appb-000002
为所述光源的发光角度。
在一个实施例中,
Figure PCTCN2021078502-appb-000003
在一个实施例中,在所述基板的同一侧,在所述第一区域中,在所述第一区域远离所述第二区域的第一边界指向所述第二区域的第二边界的方向上,存在至少两排光源;所述第一边界与所述第二边界相邻且延伸方向相同;
在所述第一区域中,靠近所述第一边界的光源的发光面的倾斜角度大于远离所述第一边界的光源的发光面的倾斜角度。
在一个实施例中,在所述第一区域中,在所述第一边界指向所述第二边界的方向上,存在两排光源。
在一个实施例中,所述第二区域为矩形;
在所述第一区域中,在每排光源中,位于所述第二区域的对角线的延长线上的光源面向所述第二区域的中心倾斜,其余光源沿所述第二区域的中轴线面向第二区域倾斜,所述中轴线与所述光源所在排的延伸方向垂直。
在一个实施例中,在所述基板的同一侧,在所述第一区域中,所述光源靠近所述第一边界的一端在所述光学膜层上的投影与所述光学膜层的第一 边缘之间的第三距离、所述第一区域中所述光源靠近所述第一边界的第二顶点与所述光学膜层面向所述光源的表面之间沿垂直于所述基板的方向的第四距离、所述光源的发光角度、所述光源的发光面的倾斜角度之间满足如下关系:
Figure PCTCN2021078502-appb-000004
其中,c为所述第三距离,d为所述第四距离,ψ为所述光源的发光面的倾斜角度,
Figure PCTCN2021078502-appb-000005
为所述光源的发光角度。
在一个实施例中,所述光学膜层包括扩散层,所述发光模组还包括背板、胶框、粘结层,所述光源组件位于所述背板与所述扩散层之间,且位于所述背板面向所述扩散层的一侧;
所述胶框位于所述背板上,所述粘结层位于所述扩散层与所述胶框之间;
所述粘结层的材料为不透明材料。
在一个实施例中,所述光源用于发射第一波长的光;
所述光学膜层还包括光转换层,所述光转换层位于所述扩散层靠近所述光源的一侧,用于将第一波长的光转换为第二波长的光以及第三波长的光,并允许部分第一波长的光透过,以使透过所述光转换层的第一波长的光与第二波长的光以及第三波长的光的混合光为白光。
在一个实施例中,所述光转换层包括量子点材料。
在一个实施例中,所述发光模组还包括水氧阻隔层;所述水氧阻隔层位于所述扩散层与所述粘结层之间,以及位于所述光转换层与所述粘结层之间。
在一个实施例中,所述发光模组,还包括增亮膜,所述增亮膜位于所述光学膜层远离所述光源的一侧。
在一个实施例中,所述光源组件还包括支架与线路板,所述线路板位于所述基板与所述光源之间,所述支架位于所述线路板与所述光源之间。
在一个实施例中,所述支架的第一端的高度低于第二端的高度,以使所述光源的发光面倾斜;和/或,
所述光源组件还包括导电焊垫,所述导电焊垫位于所述支架的第二端的下方,以使光源的发光面倾斜。
在一个实施例中,所述第一区域中所述基板靠近所述光源的表面与所述第二区域中所述基板靠近所述光源的表面位于同一平面。
根据本公开实施例的第二方面,提供一种显示模组,包括:显示面板与上述的发光模组,所述显示面板位于所述发光模组远离所述光源组件的一侧。
附图说明
图1是根据本公开实施例示出的一种发光模组的结构示意图;
图2是根据本公开实施例示出的另一种发光模组的结构示意图;
图3是根据本公开实施例示出的另一种发光模组的结构示意图;
图4是根据本公开实施例示出的另一种发光模组的结构示意图;
图5是根据本公开实施例示出的另一种发光模组的结构示意图;
图6是根据本公开实施例示出的另一种发光模组的结构示意图;
图7是根据本公开实施例示出的另一种发光模组的结构示意图;
图8是根据本公开实施例示出的另一种发光模组的结构示意图;
图9是根据本公开实施例示出的一种发光模组的光路示意图;
图10是根据本公开实施例示出的一种显示模组的结构示意图。
具体实施方式
为使本公开的上述目的、特征和优点能够更为明显易懂,下面结合附图对本公开的具体实施例做详细的说明。
本公开实施例提供一种发光模组。该发光模组,如图1所示,包括:光源组件11。
如图1所示,光源组件11包括基板111与光源112,光源112位于基板111上。
如图1与图2所示,基板111包括第一区域Q1与第二区域Q2,第一区域Q1环绕第二区域Q2,位于第一区域Q1中的光源112的发光面倾斜,且朝向第二区域Q2。
在本实施例中,由于第一区域Q1环绕第二区域Q2,且位于第一区域Q1中的光源112的发光面倾斜,且朝向第二区域Q2,因此,可以使位于边缘的光源112发射的光向发光模组的中央倾斜,减少发光模组边缘处的光,进而减弱发光模组边缘的漏光现象,有利于提高显示质量。
以上对本公开实施例提供的发光模组进行了简要的介绍,下面对本公开实施例提供的发光模组进行详细的介绍。
本公开实施例还提供一种发光模组。该发光模组,如图1所示,包括:光源组件11、光学膜层12、背板13、胶框14、增亮膜16、水氧阻隔层17与粘结层18。
在本实施例中,如图1所示,光源组件11位于背板13与光学膜层12之间,且位于背板13面向光学膜层12的一侧。光源组件11的出光侧面向光学膜层12,即光学膜层12位于光源组件11的出光侧。其中,光学膜层12用于对光源组件11发射的光进行调制,例如,对光源组件11发射的光进行调制包括对光源组件11发射的光进行扩散使出光均匀与对光源组件11发射的光的波长进行调整中的任意一个或组合。
在本实施例中,如图1所示,光源组件11包括基板111、光源112、支架113与线路板114。基板111位于背板13上面向光学膜层12的一侧,用于支撑线路板114与光源112,还可以保护线路板114与光源112。线路板114包括导电线路,导电线路通过支架113与光源112电连接。支架113起到支撑与导电的作用。
在本实施例中,如图1与图2所示,光源组件11包括多个光源112,多个光源112在基板111上呈阵列排布,且位于基板111面向光学膜层12的一侧。每个光源112用于发射第一波长的光,例如,每个光源112用于发射蓝光,但不限于此。例如,每个光源112还可以用于发射白光。
本实施例中,光源112可以为LED芯片。LED芯片可以为miniLED芯片或microLED芯片,但不限于此。
在本实施例中,如图1与图2所示,基板111包括第一区域Q1与第二区域Q2,第一区域Q1环绕第二区域Q2。即第一区域Q1为边缘区域,第二区域Q2为中央区域。第二区域Q2为矩形或近似为矩形,第一区域Q1的外边缘呈矩形或近似呈矩形。第一区域Q1中基板111面向光源112的表面与第二区域Q2中基板111面向光源112的表面位于同一平面,与二者不位于同一平面相比,可以使基板111的厚度做得比较小,有利于显示面板变得更薄,而且,基板111的材料可以为玻璃或金属,而不必局限于金属等,基板的加工难度也比较小。
在本实施例中,如图1所示,位于第二区域Q2中的光源1121的发光面面向光学膜层12,且与基板111面向光学膜层12的表面平行。其中,光源的发光面为LED芯片出光侧的表面。
在本实施例中,如图3所示,位于第二区域Q2中的光源1121的发光面F1与基板111面向光学膜层12的表面平行,其中,基板111面向光学膜层12的表面与光学膜层12面向基板111的表面平行,即位于第二区域Q2中 的光源1121的发光面F1与光学膜层12面向基板111的表面也平行。
在本实施例中,如图1所示,位于第一区域Q1中的光源112的发光面倾斜,且朝向所述第二区域Q2。这样,可以使位于发光模组边缘的光源112发射的光向光学膜层12的中央倾斜,减少光学膜层12边缘处的光。
在本实施例中,如图2所示,基板111为面向光学膜层12的表面为矩形或近似为矩形。基板111在第一方向X上包括相对的第一侧S1与第二侧S2,在第二方向Y上包括相对的第三侧S3与第四侧S4。
在本实施例中,如图2所示,在基板111的同一侧,例如,在第二侧S2,在第一区域Q1中,在第一区域Q1远离第二区域Q2的第一边界B1指向第二区域Q2的第二边界B2的方向上,存在至少两排光源112;第一边界B1与第二边界B2相邻且延伸方向相同。其中,基板111的四侧的第一边界B1与第二边界B2之间的间距可相同,但不限于此。例如,在基板111的第二侧S2,第一边界B1与第二边界B2之间的第一间距为第一方向X上的间距,在基板111的第三侧S3,第一边界B1与第二边界B2之间的第二间距为第二方向Y上的间距,第一间距与第二间距相同。
在本实施例中,如图1所示,在基板111的同一侧,在第一区域Q1中,靠近第一边界B1的光源1123的发光面的倾斜角度大于远离第一边界B1的光源1122的发光面的倾斜角度。其中,发光面的倾斜角度等于发光面与基板111面向光学膜层12的表面的夹角,或发光面的倾斜角度等于发光面与光学膜层12面向基板111的表面的夹角。其中,发光面与基板111面向光学膜层12的表面的夹角为发光面与基板111面向光学膜层12的表面所形成的锐角。发光面与光学膜层12面向基板111的表面的夹角为发光面与光学膜层12面向基板111的表面所形成的锐角。
在本实施例中,在第一区域Q1中,在第一边界B1指向第二边界B2的方向上,存在两排光源112,靠近第一边界B1的光源1123的发光面的倾斜 角度大于远离第一边界B1的光源1122的发光面的倾斜角度。当第一区域Q1中在第一边界B1指向第二边界B2的方向上,存在多排光源112时,随着光源112到第一边界B1的距离的增加,光源112的发光面的倾斜角度减小。
在本实施例中,如图4所示,在第一区域Q1中,靠近第一边界B1的光源1123的发光面F3的倾斜角度为ψ1,如图5所示,在第一区域Q1中,远离第一边界B1的光源1122的发光面F2的倾斜角度为ψ2,ψ1大于ψ2。例如,ψ1等于13度,ψ2等于5度,但不限于此。
在本实施例中,如图3~图5所示,所有光源112的支架113的高度相同。例如,可为0.2mm。在第一区域Q1中,靠近第一边界B1的光源1123的发光面的最高点与基板111之间的距离为0.9mm,远离第一边界B1的光源1122的发光面的最高点与基板111之间的距离为0.7mm。在第二区域Q2中,光源1121的发光面与基板111之间的距离为0.7mm。
在本实施例中,所有光源112的发光面的形状、尺寸分别相同,例如,发光面的形状均为矩形或近似为矩形,发光面的长度为1mm,发光面的宽度为0.5mm,但不限于此。
在本实施例中,如图6所示,第二区域Q2的对角线包括第一对角线L1与第二对角线L2。第二区域Q2的中轴线包括第一中轴线L3与第二中轴线L4。第一中轴线L3沿第一方向X延伸,第二中轴线L4沿第二方向Y延伸。
在本实施例中,如图6所示,在第一区域Q1中,在每排光源112中,位于第二区域Q2的第一对角线L1的延长线上的光源112与位于第二区域Q2的第二对角线L2的延长线上的光源112面向第二区域Q2的中心倾斜,其余光源112沿第一中轴线L3与第二中轴线L4中的一条面向第二区域Q2倾斜,且该中轴线与光源112所在排的延伸方向垂直。图6中的箭头方向代表光源112的发光面的朝向。例如,在基板111的第二侧S2,对于第一区域Q1中靠 近第一边界B1的一排光源112中,没有位于第一对角线L1与第二对角线L2的延长线上的光源112,沿第一中轴线L3面向第二区域Q2倾斜。这样,可以使混光更均匀,可以避免边角处出现亮线。
在本实施例中,如图7所示,在基板111的同一侧,针对每个位于第二区域Q2中且邻近第一区域Q1与第二区域Q2交界处的光源1121,光源1121靠近第一区域Q1的第一顶点与光学膜层12面向光源1121的表面之间沿垂直于基板111的方向的第一距离、第一顶点在光光学膜层12上的投影与光学膜层12的第一边缘之间的第二距离以及光源1121的发光角度之间满足如下关系
Figure PCTCN2021078502-appb-000006
其中,a为第二距离,b为第一距离,
Figure PCTCN2021078502-appb-000007
为光源1121的发光角度。第一顶点为光源1121面向光学膜层12的顶点。这样,可以保证所有光源112最大发光角的光线恰好入射到光学膜层12最外边缘,而不发生漏光现象。
在本实施例中,b的取值范围为10~40mm。b的取值可以根据需求设置。
在本实施例中,a为70mm,b=30mm,arctan(a/b)=67度,光源1121的发光角度为120度,即
Figure PCTCN2021078502-appb-000008
等于120度。需要说明的是,在至少一个实施例中,发光模组中所有光源112的发光角度相同,例如可均为120度,但不限于此。
在本实施例中,如图8所示,在基板111的同一侧,在第一区域Q1中,光源112靠近第一边界B1的一端在光学膜层12上的投影与光学膜层12的第一边缘之间的第三距离、第一区域Q1中光源112靠近第一边界的第二顶点与光学膜层12面向光源112的表面之间沿垂直于基板111的方向的第四距离、光源112的发光角度、光源112的发光面的倾斜角度之间满足如下关系:
Figure PCTCN2021078502-appb-000009
其中,c为第三距离,d为第四距离,ψ为光源112的发光面的倾斜角度,
Figure PCTCN2021078502-appb-000010
为光源112的发光角度。光源112靠近第一边界B1的第二顶点为靠近 第一边界B1且面向光学膜层12的顶点。图8中,∠4为光源112的发光面的倾斜角度,∠1+∠2为光源112的发光角度,即
Figure PCTCN2021078502-appb-000011
由于∠1+∠2+∠3=∠2+∠3+∠4=90°,因此,∠1=∠4=ψ。
在本实施例中,对于第一区域Q1中靠近第一边界B1的光源1123,光源1123靠近第一边界B1的一端在光学膜层12上的投影与光学膜层12的第一边缘之间的第三距离为32mm,光源1123靠近第一边界B1的第二顶点与光学膜层12之间的第四距离为30mm,利用计算式(2)可以计算得到,ψ1=13°。这样,可以保证光源1123最大发光角的光线恰好入射到光学膜层12最外边缘,而不发生漏光现象。而且,可以使得光源1123的发光面的倾斜角度为可以实现量产的最大倾斜角度,进而可以实现量产。
在本实施例中,对于第一区域Q1中远离第一边界B1的光源1122,光源1122靠近第一边界B1的一端在光学膜层12上的投影与光学膜层12的第一边缘之间的第三距离为43mm,光源1122靠近第一边界B1的第二顶点与光学膜层12之间的第四距离为30mm,利用计算式(2)可以计算得到,ψ2=5°。光源1122与光源1123相比,第三距离变大了,第四距离变化较小,可视为不变,因此,发光面的倾斜角度可以相应变小,仍可以保证光源1122最大发光角的光线恰好入射到光学膜层12最外边缘,而不发生漏光现象。
在本实施例中,如图1所示,光学膜层12包括扩散层121,用于对光源组件11发射的光进行扩散使出光均匀。扩散层121的材料包括PMMA(聚甲基丙烯酸甲酯)材料、PC(聚碳酸酯)材料或者PS(聚苯乙烯系塑料)材料,但不限于此。当光学膜层12仅包括扩散层121时,光源112发射的光可为白光。这样,本公开提供的方案可以避免发光模组边缘处出现亮度增大的现象。
在本实施例中,如图1所示,光学膜层12还可包括光转换层122,光转换层122位于扩散层121靠近光源112的一侧,用于将第一波长的光转换为第二波长的光以及第三波长的光,并允许部分第一波长的光透过,以使透 过所述光转换层122的第一波长的光与第二波长的光以及第三波长的光的混合光为白光。例如,第一波长的光为蓝光,第二波长的光以及第三波长的光分别为红光与绿光。光转换层122用于将蓝光转换为红光与绿光,并允许部分蓝光透过,以将透过光转换层122的蓝光、红光与绿光的混合光为白光。这样,本公开提供的方案可以避免发光模组边缘处漏光而出现蓝光或显示画面偏蓝的现象。
在本实施例中,光转换层122包括量子点材料。量子点材料包括包括Ⅲ-Ⅴ族化合物,例如,含镉系的CdS(硫化镉)、CdSn(锡化镉)等或无镉系的ZnS(硫化锌)、InP(磷化铟)、钙钛矿等。
在本实施例中,如图1所示,增亮膜16位于光学膜层12远离光源112的一侧。增亮膜16可以为棱镜膜,用于提高发光亮度。
在本实施例中,如图1所示,胶框14位于背板13上,粘结层18位于水氧阻隔层17与胶框14之间,粘结层18的材料为不透明材料,例如为不透明胶。水氧阻隔层17位于增亮膜16与粘结层18之间,用于阻止水氧侵蚀光转换层122。水氧阻隔层17的材料为不透明材料。粘结层18不透明以及水氧阻隔层17不透明,可以减弱漏光现象。
在本实施例中,部分光源112的发光面相对于基板111面向光学膜层12的表面倾斜。在一些实施例中,光源112的发光面相对于基板111面向光学膜层12的表面倾斜通过光源内部结构的异形加工实现,在另一些实施例中,通过光源112与基板111之间的连接结构来实现,例如,可以通过支架,也可以通过导电焊垫,也可通过二者中的至少一个实现。当通过支架实现光源112的发光面倾斜时,在第一区域Q1中,光源112的内部结构一致,也即均不作内部的异形加工,支架113的第一端的高度低于第二端的高度,以使所述光源112的发光面倾斜。当通过导电焊垫实现光源112的发光面倾斜时,在第一区域Q1中,光源112的内部结构一致,均不作内部的异形加工,光源组件11还包括导电焊垫,导电焊垫位于支架113的第二端的下方,支架113 的第一端的下方不设置导电焊垫,以使光源112的发光面倾斜。
在本实施例中,如图9所示,可以保证所有光源112最大发光角的光线O1、O2恰好入射到光转换层122最外边缘,而不发生漏光现象。
在本实施例中,不需要通过使用颜色涂层,也不需要采用专门设计挡板和遮光膜遮挡从发光模组边缘处漏出的光线,大大降低产品成本和工序。另外,本实施例的方案具有更方便重新组装,拆机重组方便而且不影响产品使用性能。
本公开的实施例还提出了一种显示模组。如图10所示,该显示模组包括显示面板1001,还包括上述任一实施例所述的发光模组。显示面板1001位于发光模组远离光源组件11的一侧。
本实施例中,显示面板1001可以是液晶显示面板,但不限于此。
本实施例中,由于第一区域Q1环绕第二区域Q2,且位于第一区域Q1中的光源的发光面倾斜,且朝向第二区域Q2,因此,可以使位于边缘的光源112发射的光向发光模组的中央倾斜,减少发光模组边缘处的光,进而减弱发光模组边缘的漏光现象,有利于提高显示模组的显示质量。
虽然本公开披露如上,但本公开并非限定于此。任何本领域技术人员,在不脱离本公开的精神和范围内,均可作各种更动与修改,因此本公开的保护范围应当以权利要求所限定的范围为准。

Claims (16)

  1. 一种发光模组,其特征在于,包括:光源组件;
    所述光源组件包括基板与光源,所述光源位于所述基板上,所述基板包括第一区域与第二区域,所述第一区域环绕所述第二区域,位于所述第一区域中的光源的发光面倾斜,且朝向所述第二区域。
  2. 根据权利要求1所述的发光模组,其特征在于,还包括光学膜层;所述光学膜层位于所述光源组件的出光侧,用于对所述光源组件发射的光进行调制;所述光源位于所述基板面向所述光学膜层的一侧;
    位于所述第二区域中的光源的发光面面向所述光学膜层,且与所述基板面向所述光学膜层的表面平行;
    在所述基板的同一侧,针对每个位于所述第二区域中且邻近所述第一区域与所述第二区域交界处的光源,所述光源靠近所述第一区域的第一顶点与所述光学膜层面向所述光源的表面之间沿垂直于所述基板的方向的第一距离、所述第一顶点在所述光学膜层上的投影与所述光学膜层的第一边缘之间的第二距离以及所述光源的发光角度之间满足如下关系
    Figure PCTCN2021078502-appb-100001
    其中,a为所述第二距离,b为所述第一距离,
    Figure PCTCN2021078502-appb-100002
    为所述光源的发光角度。
  3. 根据权利要求2所述的发光模组,其特征在于,
    Figure PCTCN2021078502-appb-100003
  4. 根据权利要求2所述的发光模组,其特征在于,在所述基板的同一侧,在所述第一区域中,在所述第一区域远离所述第二区域的第一边界指向所述第二区域的第二边界的方向上,存在至少两排光源;所述第一边界与所述第二边界相邻且延伸方向相同;
    在所述第一区域中,靠近所述第一边界的光源的发光面的倾斜角度大于远离所述第一边界的光源的发光面的倾斜角度。
  5. 根据权利要求4所述的发光模组,其特征在于,在所述第一区域中, 在所述第一边界指向所述第二边界的方向上,存在两排光源。
  6. 根据权利要求4所述的发光模组,其特征在于,所述第二区域为矩形;
    在所述第一区域中,在每排光源中,位于所述第二区域的对角线的延长线上的光源面向所述第二区域的中心倾斜,其余光源沿所述第二区域的中轴线面向第二区域倾斜,所述中轴线与所述光源所在排的延伸方向垂直。
  7. 根据权利要求4所述的发光模组,其特征在于,在所述基板的同一侧,在所述第一区域中,所述光源靠近所述第一边界的一端在所述光学膜层上的投影与所述光学膜层的第一边缘之间的第三距离、所述第一区域中所述光源靠近所述第一边界的第二顶点与所述光学膜层面向所述光源的表面之间沿垂直于所述基板的方向的第四距离、所述光源的发光角度、所述光源的发光面的倾斜角度之间满足如下关系:
    Figure PCTCN2021078502-appb-100004
    其中,c为所述第三距离,d为所述第四距离,ψ为所述光源的发光面的倾斜角度,
    Figure PCTCN2021078502-appb-100005
    为所述光源的发光角度。
  8. 根据权利要求2所述的发光模组,其特征在于,所述光学膜层包括扩散层,所述发光模组还包括背板、胶框、粘结层,所述光源组件位于所述背板与所述扩散层之间,且位于所述背板面向所述扩散层的一侧;
    所述胶框位于所述背板上,所述粘结层位于所述扩散层与所述胶框之间;
    所述粘结层的材料为不透明材料。
  9. 根据权利要求8所述的发光模组,其特征在于,所述光源用于发射第一波长的光;
    所述光学膜层还包括光转换层,所述光转换层位于所述扩散层靠近所述光源的一侧,用于将第一波长的光转换为第二波长的光以及第三波长的光,并允许部分第一波长的光透过,以使透过所述光转换层的第一 波长的光与第二波长的光以及第三波长的光的混合光为白光。
  10. 根据权利要求9所述的发光模组,其特征在于,所述光转换层包括量子点材料。
  11. 根据权利要求9所述的发光模组,其特征在于,所述发光模组还包括水氧阻隔层;所述水氧阻隔层位于所述扩散层与所述粘结层之间,以及位于所述光转换层与所述粘结层之间。
  12. 根据权利要求2所述的发光模组,其特征在于,还包括增亮膜,所述增亮膜位于所述光学膜层远离所述光源的一侧。
  13. 根据权利要求1所述的发光模组,其特征在于,所述光源组件还包括支架与线路板,所述线路板位于所述基板与所述光源之间,所述支架位于所述线路板与所述光源之间。
  14. 根据权利要求13所述的发光模组,其特征在于,所述支架的第一端的高度低于第二端的高度,以使所述光源的发光面倾斜;和/或,
    所述光源组件还包括导电焊垫,所述导电焊垫位于所述支架的第二端的下方,以使光源的发光面倾斜。
  15. 根据权利要求1所述的发光模组,其特征在于,所述第一区域中所述基板靠近所述光源的表面与所述第二区域中所述基板靠近所述光源的表面位于同一平面。
  16. 一种显示模组,其特征在于,包括:显示面板与权利要求1至15任一项所述的发光模组,所述显示面板位于所述发光模组远离所述光源组件的一侧。
PCT/CN2021/078502 2021-03-01 2021-03-01 发光模组和显示模组 WO2022183332A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/768,319 US20230400732A1 (en) 2021-03-01 2021-03-01 Light emitting module and display module
PCT/CN2021/078502 WO2022183332A1 (zh) 2021-03-01 2021-03-01 发光模组和显示模组
CN202180000381.1A CN115280230A (zh) 2021-03-01 2021-03-01 发光模组和显示模组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078502 WO2022183332A1 (zh) 2021-03-01 2021-03-01 发光模组和显示模组

Publications (1)

Publication Number Publication Date
WO2022183332A1 true WO2022183332A1 (zh) 2022-09-09

Family

ID=83153757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078502 WO2022183332A1 (zh) 2021-03-01 2021-03-01 发光模组和显示模组

Country Status (3)

Country Link
US (1) US20230400732A1 (zh)
CN (1) CN115280230A (zh)
WO (1) WO2022183332A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201017137Y (zh) * 2006-09-15 2008-02-06 苏州璨宇光学有限公司 背光模组
US20110242794A1 (en) * 2010-03-31 2011-10-06 Sony Corporation Light emitting device and display device using the same
CN102818197A (zh) * 2012-08-28 2012-12-12 京东方科技集团股份有限公司 一种背光源以及包括所述背光源的显示装置
CN202647490U (zh) * 2012-07-24 2013-01-02 京东方科技集团股份有限公司 背光模组及显示装置
CN109683396A (zh) * 2019-01-30 2019-04-26 厦门天马微电子有限公司 背光模组、显示面板、显示装置及背光模组的制作方法
CN109782489A (zh) * 2019-03-28 2019-05-21 京东方科技集团股份有限公司 一种背光模组及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070108712A (ko) * 2006-05-08 2007-11-13 주식회사 엘 앤 에프 백라이트 유닛
TWI331243B (en) * 2007-08-20 2010-10-01 Au Optronics Corp Backlight module and scattering module for same
WO2012060255A1 (ja) * 2010-11-02 2012-05-10 シャープ株式会社 照明装置及び表示装置
WO2012096204A1 (ja) * 2011-01-12 2012-07-19 シャープ株式会社 照明装置および表示装置
KR101307731B1 (ko) * 2011-12-19 2013-09-11 엘지이노텍 주식회사 광속 제어 부재, 발광 장치 및 표시장치
JP5848612B2 (ja) * 2012-01-10 2016-01-27 シャープ株式会社 面光源装置およびそれを備えた液晶表示装置
KR101382744B1 (ko) * 2012-03-30 2014-04-08 엘지이노텍 주식회사 표시장치
KR102315835B1 (ko) * 2015-03-17 2021-10-25 삼성디스플레이 주식회사 표시장치
KR102339539B1 (ko) * 2015-05-08 2021-12-16 삼성전자주식회사 디스플레이 장치
KR102283948B1 (ko) * 2017-08-01 2021-07-29 엘지디스플레이 주식회사 표시장치
CN114153093B (zh) * 2021-12-09 2023-04-07 武汉华星光电技术有限公司 曲面背光模组及曲面显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201017137Y (zh) * 2006-09-15 2008-02-06 苏州璨宇光学有限公司 背光模组
US20110242794A1 (en) * 2010-03-31 2011-10-06 Sony Corporation Light emitting device and display device using the same
CN202647490U (zh) * 2012-07-24 2013-01-02 京东方科技集团股份有限公司 背光模组及显示装置
CN102818197A (zh) * 2012-08-28 2012-12-12 京东方科技集团股份有限公司 一种背光源以及包括所述背光源的显示装置
CN109683396A (zh) * 2019-01-30 2019-04-26 厦门天马微电子有限公司 背光模组、显示面板、显示装置及背光模组的制作方法
CN109782489A (zh) * 2019-03-28 2019-05-21 京东方科技集团股份有限公司 一种背光模组及显示装置

Also Published As

Publication number Publication date
US20230400732A1 (en) 2023-12-14
CN115280230A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US8506148B2 (en) Lighting device, display device and television receiver
US8985798B2 (en) Backlight unit and display apparatus using the same
KR100989219B1 (ko) 백라이트 어셈블리 및 이를 구비한 액정표시장치.
US9243775B2 (en) Light unit having asymmetric reflector and illumination system using the same
US10197720B2 (en) Backlight module and display device
US20070019394A1 (en) Backlight unit and liquid crystal display comprising the same
KR20130061796A (ko) 광학 어셈블리, 백라이트 유닛 및 그를 이용한 디스플레이 장치
US20110211141A1 (en) Lighting device, display device and television receiver
WO2020056912A1 (zh) 背光模组
TWI655480B (zh) 背光模組及其面光源組件
US11175446B1 (en) Backlight module and display device
US20210080785A1 (en) Backlight module
US7553061B2 (en) Side type backlight module
CN113985656B (zh) 背光源、背光模组及显示装置
WO2020087651A1 (zh) 背光模组及显示装置
KR20160051292A (ko) 렌즈, 렌즈를 포함하는 발광 장치, 및 발광 장치를 포함하는 백 라이트 유닛
TW202331374A (zh) 光學膜以及包括其的背光單元
CN114740652B (zh) 背光模组、显示面板及显示装置
CN109407403B (zh) 背光模组及显示装置
CN116931160A (zh) 于光学膜片上设计多个锥状结构的背光模组及显示装置
KR100838332B1 (ko) 평판 디스플레이용 백라이트 구조
US6738116B2 (en) Reflective liquid crystal display device
US10732457B2 (en) Backlight module and display device having transparent substrate with a plurality of light source disposed thereon
WO2022183332A1 (zh) 发光模组和显示模组
US20240053635A1 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/01/2024)