WO2022181968A1 - Hydraulic wind power generation system - Google Patents

Hydraulic wind power generation system Download PDF

Info

Publication number
WO2022181968A1
WO2022181968A1 PCT/KR2022/000106 KR2022000106W WO2022181968A1 WO 2022181968 A1 WO2022181968 A1 WO 2022181968A1 KR 2022000106 W KR2022000106 W KR 2022000106W WO 2022181968 A1 WO2022181968 A1 WO 2022181968A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
hydraulic
movement path
wind power
power generation
Prior art date
Application number
PCT/KR2022/000106
Other languages
French (fr)
Korean (ko)
Inventor
김홍주
김영주
Original Assignee
주식회사 코리안파워파트너스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코리안파워파트너스 filed Critical 주식회사 코리안파워파트너스
Priority to CN202290000148.3U priority Critical patent/CN219431962U/en
Publication of WO2022181968A1 publication Critical patent/WO2022181968A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention relates to a wind power generation system, and more particularly, to a hydraulic wind power generation system having a structure that is easy to maintain, has few failures, and maximizes operating time.
  • a propeller type wind power generator has a configuration in which three propellers are installed on a single pole.
  • This wind turbine can only generate power in the wind speed range of 11 to 30 mph (miles per hour). In other words, at a wind speed of 60 mph outside the upper limit, there is a high risk of the propeller breaking or fire in the generator.
  • the propeller is made of reinforced fiberglass for weight reduction, there is a disadvantage in that it is vulnerable to UV rays.
  • this wind turbine generates a lot of noise during operation, and there are disadvantages in that it is necessary to secure 22 acres of land to install one.
  • the bearing capacity of the outer ring supporting the blade is weak, so that the blade may be bent or broken in strong wind.
  • a space is formed between the blade and the structure supporting it, and noise and vibration may be generated.
  • a generator, a gearbox, a transformer, and a gearbox are located on the upper part of the tower. Accordingly, due to the weight concentrated on the upper part of the tower, the durability is weakened due to temperature changes during the day and night in summer and winter, resulting in frequent breakdowns and a high risk of fire.
  • this wind power generator has a disadvantage in that it is difficult to maintain in the event of a breakdown because a generator, a gearbox, etc. are located on the upper part of the tower.
  • the present invention has been devised in view of the above points, and has a structure capable of generating power even at a slow wind speed, making less noise during operation, easy maintenance, and minimizing failures.
  • the purpose is to provide a system.
  • the hydraulic wind power generation system a tower installed at a predetermined height; a rotation support rotatably installed on the tower; a fan assembly installed on the rotating support and rotated by wind power; a hydraulic pump installed on the rotary support and pumping a fluid by the rotational force of the fan assembly; a hydraulic motor connected to the hydraulic pump through a fluid movement path and outputting a rotational force by the fluid moving through the fluid movement path; It is connected to the hydraulic motor, and includes a power generation unit that generates power by the rotational force provided from the hydraulic motor.
  • the fan assembly may include: a hub installed on the rotating support; a plurality of support rings disposed coaxially with the hub and having different diameters; a plurality of spokes installed between the hub and a support ring located inside the plurality of support rings; It may include a plurality of flap wings each independently reciprocally and rotatably installed between the support rings adjacent to each other among the plurality of support rings.
  • the plurality of support rings includes first, second, and third support rings having different diameters
  • the plurality of flap wings includes a plurality of support rings installed between the first support ring and the second support ring.
  • a first flap wing It may include a plurality of second flap wings installed between the second support ring and the third support ring.
  • the hydraulic motor and the power generation unit may be disposed at the lower end of the tower.
  • the fluid movement path includes: a first fluid movement path for transferring the fluid from the hydraulic motor side to the hydraulic pump; A second fluid movement path for transferring the fluid from the hydraulic pump side to the hydraulic motor direction is included so that the fluid can circulate between the first and second fluid movement paths by the rotational force of the fan assembly.
  • the present invention may further include an accumulator that is connected to the fluid movement path and accommodates the fluid in a pressurized state therein.
  • the present invention is installed between the hydraulic pump and the second fluid movement path, and may further include an auxiliary hydraulic motor for actively pumping the fluid when the fluid transfer speed on the second fluid movement path is less than or equal to a predetermined speed. .
  • the present invention is installed inside the upper end of the tower, while rotatably supporting the rotary support on the tower may further include a swivel joint for preventing twisting of the fluid passage.
  • the hydraulic wind power generation system includes a tower installed at a predetermined height, a rotation support rotatably installed on the tower, a wind ring assembly that is installed on the rotation support and rotated by wind power, and the rotation support first and second wind power generators each having a hydraulic pump for pumping a fluid by the rotational force of the windring assembly to be installed in the wind ring assembly, the first and second wind power generators being installed at different positions and heights; through the fluid path.
  • a hydraulic motor connected to the hydraulic pump of the first wind power generator and the hydraulic pump of the second wind power generator and outputting rotational force by the fluid moving through the fluid movement path; It is connected to the hydraulic motor, and may include a power generation unit that generates power by the rotational force provided from the hydraulic motor.
  • the present invention may further include a hydraulic manifold in which at least two or more of each of the hydraulic motor and the power generation unit are provided and disposed between the fluid movement path and the plurality of hydraulic motors to branch the hydraulic pressure.
  • the hydraulic wind power generation system according to the present invention is a fan assembly, and by applying a wind ring composed of a plurality of flap wings, power generation is possible even at a low wind speed, and there is an advantage in that there is little noise during operation.
  • the present invention constitutes a hydraulic wind power generation structure, and by having a configuration that can transmit power using a flow of a fluid flowing through a fluid movement path, a hydraulic motor and a generator can be arranged around the lower end or lower end of the tower have. Accordingly, by reducing the load applied to the upper part of the tower, it is possible to minimize the failure of the upper part of the ellipse. In addition, since the hydraulic motor and the generator are installed at the lower end of the tower, that is, on the ground, there is an advantage in that maintenance thereof is easy.
  • the present invention is provided with a plurality of hydraulic motors and generators, and by installing and connecting a hydraulic manifold between them, when the hydraulic motor or generator on one side fails, power can be generated on the other side, so that power generation can be more stably
  • the hydraulic wind power generation system may constitute a plurality of wind power generators, and a hydraulic circuit may be commonly designed for them. That is, power can be generated using a common hydraulic motor and a power generation unit connected to the fluid movement path of a plurality of wind power generators, so that the overall configuration can be more compact, and a hydraulic circuit is formed to achieve hydraulic balance between the plurality of wind power generators. By designing, it is possible to develop more stably. In this case, since the plurality of wind power generators can be installed at different positions and heights from each other, the amount of power generation can be increased without mutual interference.
  • FIG. 1 is a view showing a hydraulic wind power generation system according to an embodiment of the present invention.
  • Figure 2 is a perspective view showing the wind power generator of Figure 1;
  • FIG. 3 is a perspective view of the fan assembly of FIG. 2;
  • Figure 4 is a schematic view showing a coupling relationship between the hydraulic pump and the swivel joint of Figure 1;
  • FIG. 5 is a view schematically showing the overall configuration of a hydraulic wind power generation system according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a hydraulic circuit of a hydraulic wind power generation system according to an embodiment of the present invention.
  • FIG. 7 is a view showing a hydraulic wind power generation system according to another embodiment of the present invention.
  • Figure 8 is a schematic perspective view showing the arrangement relationship of the hydraulic motor and the generator of Figure 7;
  • FIG. 9 is a schematic view showing a hydraulic circuit of a hydraulic wind power generation system according to another embodiment of the present invention.
  • FIG. 1 is a view showing a hydraulic wind power generation system according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing the wind power generator of FIG. 1
  • FIG. 3 is a perspective view showing the fan assembly of FIG. 2 .
  • the hydraulic wind power generation system includes a wind power generator installed at a predetermined height, a hydraulic motor 150 , and a power generation unit 170 .
  • the wind power generator includes a tower 110 , a rotating support 120 , a fan assembly 130 , and a hydraulic pump 140 installed at a predetermined height on a support such as the ground (G).
  • the rotary support 120 is rotatably installed on the tower 110 , and the hydraulic pump 140 may be built therein.
  • the fan assembly 130 is installed on the rotation support 120 and is rotated by wind power.
  • the hydraulic pump 140 is installed on the rotating support 120 , and pumps the fluid by the rotational force of the fan assembly 130 , so that the fluid is circulated through a fluid movement path to be described later.
  • the fan assembly 130 is formed of a wind ring assembly, and includes a hub 131 , a support ring 135 , a plurality of spokes 133 , and a plurality of flap wings 137 . can do.
  • the hub 131 is installed on the rotation support 120 , and transmits the rotational force provided from the fan assembly 130 into the hydraulic pump 140 .
  • a plurality of support rings 135 are provided, each of which is disposed coaxially with the hub 131 and has a different diameter.
  • the support ring 135 may include first, second, and third support rings 135a, 135b, and 135c having different diameters.
  • the spokes 133 are installed between the hub 131 and the first support ring 135 located inside the plurality of support rings 135 . Accordingly, the first support ring 135 is stably supported by the spokes 133 .
  • the plurality of flap wings 137 are each independently reciprocally rotatably installed between adjacent support rings among the plurality of support rings 135 . That is, the plurality of flap wings 137 may include a plurality of first flap wings 137 and a plurality of second flap wings 137 .
  • the first flap wing 137 is installed between the first support ring 135 and the second support ring 135
  • the second flap wing 137 includes the second support ring 135 and the third support ring 135 .
  • the first and second flap wings 137 are designed in consideration of lift and drag, and the lift angles of the flap wings are varied according to low, medium, and high speed rotational states.
  • the wind ring can be formed in a two-stage structure. Therefore, since the windring can rotate even at a low wind speed, it can generate electricity even in a low wind speed environment.
  • the hydraulic pump 140 pumps the fluid by the rotational force of the fan assembly 130 . That is, as shown in FIG. 4 , the fluid injected therein is moved by the rotational force of the hub of the fan assembly 130 .
  • the hydraulic pump 140 is composed of a vane pump, a gear pump, and the like, and the configuration and principle thereof are well known, and a detailed description thereof will be omitted.
  • the hydraulic motor 150 is connected to the hydraulic pump 140 through the fluid movement path (P). This hydraulic motor 150 outputs a rotational force by the fluid moving through the fluid movement path (P).
  • the power generation unit 170 is connected to the output rotation shaft of the hydraulic motor 150 , and generates electric power by the rotational force provided from the hydraulic motor 150 .
  • the hydraulic motor 150 when it is configured to generate electric power in a hydraulic manner, it has a configuration that can transmit power using a flow of a fluid flowing through a fluid movement path, so that the hydraulic motor 150 is operated by the hydraulic pump 140 . It can be easily installed in a location different from the installation location. Accordingly, the hydraulic motor 150 and the power generation unit 170 may be disposed at the lower end of the tower 110 as shown in FIG. 1 . Accordingly, by reducing the load applied to the upper part of the tower, the failure of the upper part of the ellipse can be minimized. In addition, since the hydraulic motor and the generator are installed at the lower end of the tower, that is, on the ground, there is an advantage in that maintenance thereof is easy.
  • the fluid flow path P is for forming a fluid circulation structure, and includes first and second fluid flow paths P1 and P2.
  • the first fluid movement path P1 transfers the fluid from the hydraulic pump 140 side to the hydraulic motor 150 direction.
  • the second fluid movement path P2 transfers the fluid from the hydraulic motor 150 side to the hydraulic pump 140 direction. Therefore, the fluid can circulate between the first and second fluid flow paths P1 and P2 by the rotational force of the fan assembly 130 .
  • the wind power generation system may further include a swivel joint 115 installed inside the upper end of the tower 110 .
  • the swivel joint 115 rotatably supports the rotation support 120 on the tower 110 while preventing the fluid movement path P from being twisted.
  • the hydraulic wind power generation system according to the present invention is connected to the fluid movement path P and may further include an accumulator 160 for accommodating the fluid in a pressurized state therein.
  • the accumulator 160 may be installed to be connected to the second fluid movement path P2, and by allowing a pressure greater than or equal to a predetermined pressure to be applied in the second fluid movement path P2, the hydraulic pump 140 smoothly operates Allow the fluid to circulate.
  • the power generation unit 170 is connected to the power system 180, and outputs power to the outside.
  • FIG. 6 is a schematic view showing a hydraulic circuit of a hydraulic wind power generation system according to an embodiment of the present invention.
  • the rotational force provided from the fan assembly 130 is provided to the hydraulic pump 140 , and accordingly, the hydraulic pump 140 circulates the fluid introduced through the second fluid movement path P2 to circulate the first It is pumped to be transferred to the fluid movement path (P1).
  • the speed increaser G is installed on the rotation shaft of the fan assembly 130 and the hydraulic pump 140 to increase the rotational force to a predetermined rotation ratio.
  • the fluid transferred at a predetermined speed by the hydraulic pump 140 passes through the direction control valve V1 and is then transferred to the hydraulic motor 150 along the first fluid movement path P1.
  • the hydraulic motor 150 outputs a rotational force in one direction, and the power generation unit 170 generates electricity by the output.
  • the pressure of the fluid directed to the direction control valve V1 exceeds a predetermined pressure, it moves to the second fluid movement path P2 through the bypass path in which the first relief valve V21 is installed. Accordingly, it is possible to prevent the internal pressure of the first fluid passage P1 from rising above a predetermined pressure.
  • an accumulator (A) and a second relief valve (V22) may be installed in the first fluid movement path (P1) as a means for adjusting the pressure.
  • a third relief valve (V23) for controlling the passage of a fluid of a predetermined pressure or more, a cooler (C) for cooling the fluid, a filter (F) for filtering foreign substances contained in the fluid , a reservoir (R) for replenishing the fluid, etc. may be installed.
  • the present invention may further include an auxiliary hydraulic motor 190 installed between the hydraulic pump 140 and the second fluid movement path P2, that is, in the third fluid movement path P3.
  • the auxiliary hydraulic motor 190 actively pumps the fluid when the transport speed of the fluid supplied to the second fluid movement path P2 is lowered to a predetermined speed or less.
  • the auxiliary hydraulic motor 190 may be composed of an electric motor driven by power applied from the outside and a hydraulic motor that increases hydraulic pressure by the rotational force of the electric motor.
  • a bypass path is formed between the output end of the auxiliary hydraulic motor 190 and the input end of the cooler C, and a fourth relief valve V24 may be installed on the path. Therefore, when the pressure of the fluid is increased to a predetermined pressure or more by the auxiliary hydraulic motor 190, the second relief valve V24 is opened, and a part of the fluid is bypassed in the cooler C direction, and the pressure is adjusted.
  • FIG. 7 is a view showing a hydraulic wind power generation system according to another embodiment of the present invention
  • FIG. 8 is a schematic perspective view showing the arrangement relationship between the hydraulic motor and the generator of FIG.
  • the hydraulic wind power generation system includes a first wind power generator WG1 and a second wind power generator WG2 installed at different positions and heights from each other, and a hydraulic motor. (150) and may include a power generation unit (170).
  • Each of the first and second wind power generators WG1 and WG2 includes a tower, a rotating support, a fan assembly, and a hydraulic pump, hydraulic type according to an embodiment of the present invention described with reference to FIGS. 1 to 5 It is substantially identical to the component of the same name of a wind power system. Therefore, a detailed description thereof will be omitted.
  • the hydraulic motor 150 is connected to the hydraulic pump of the first wind power generator WG1 and the hydraulic pump of the second wind power generator WG2, and outputs rotational force by the fluid moving through the fluid movement path.
  • the power generation unit 170 may include a power generation unit that generates power by the rotational force provided from the hydraulic motor 150 .
  • each of the hydraulic motor 160 and the power generation unit 170 may be provided with at least two or more. That is, referring to FIG. 8 , the hydraulic motor 160 includes first and second hydraulic motors 161 and 165 , and the power generation unit 170 includes first and second hydraulic motors 161 and 165 . It may be composed of first and second power generation units 171 and 175 that are respectively connected to the installed.
  • the hydraulic wind power generation system may further include a hydraulic manifold 190 arranged between the fluid movement path P and the plurality of hydraulic motors to branch the hydraulic pressure.
  • the present invention includes a plurality of hydraulic motors and generators, and by installing and connecting a hydraulic manifold between them, when the hydraulic motor or generator on one side fails, power can be generated on the other side, so that power generation is more stable can do.
  • FIG. 9 is a schematic view showing a hydraulic circuit of a hydraulic wind power generation system according to another embodiment of the present invention.
  • the hydraulic circuit of each of the first and second wind power generators among the hydraulic circuits according to this embodiment has substantially the same configuration as that of the hydraulic circuit in the embodiment of the present invention described with reference to FIG. 6 . .
  • the fourth fluid movement path P13 it is configured to be commonly applied to the first and second wind power generators. That is, the fourth fluid movement path P13 is provided to connect between the first fluid movement path P11 of the first wind power generator and the second fluid movement path P12 of the second wind power generator, and the first fluid movement path P11 and P12 to achieve hydraulic equilibrium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

A hydraulic wind power generation system is disclosed. The hydraulic wind power generation system disclosed herein comprises: a tower installed to have a certain height; a rotating support body which is installed on the tower to be rotatable; a wind ring assembly which is installed on the rotating support body and is rotated by the wind force; a hydraulic pump which is installed on the rotating support body and pumps a fluid by using the rotating force of the wind ring assembly; a hydraulic motor which is connected to the hydraulic pump via a fluid moving passage and outputs the rotating force generated by the fluid moving through the fluid moving passage; and a power generation unit which is connected to the hydraulic motor and generates power according to the rotating force provided from the hydraulic motor.

Description

유압식 풍력발전 시스템Hydraulic wind power system
본 발명은 풍력발전 시스템에 관한 것으로서, 상세하게는 유지 보수가 쉽고, 고장이 적으며, 가동시간을 극대화할 수 있도록 된 구조의 유압식 풍력발전 시스템에 관한 것이다.The present invention relates to a wind power generation system, and more particularly, to a hydraulic wind power generation system having a structure that is easy to maintain, has few failures, and maximizes operating time.
일반적으로 프로펠라 방식의 풍력발전기는 한 개의 기둥에 3개의 프로펠러를 설치한 구성을 가진다. 이 풍력발전기는 11 내지 30mph(miles per hour)의 풍속 범위에서만 발전이 가능하다. 즉, 상한 범위를 벗어난 60mph의 풍속에서는 프로펠러가 부러지거나, 발전장치에 화재가 발생할 위험이 높다. 또한 경량화를 위하여 강화섬유유리로 프로펠러를 제작하므로, 자외선에 취약하다는 단점이 있다. 또한 이 풍력발전기는 동작시 소음 발생이 심하고, 1대 설치하기 위해서는 22 에이커의 부지 확보가 필요하다는 단점이 있다.In general, a propeller type wind power generator has a configuration in which three propellers are installed on a single pole. This wind turbine can only generate power in the wind speed range of 11 to 30 mph (miles per hour). In other words, at a wind speed of 60 mph outside the upper limit, there is a high risk of the propeller breaking or fire in the generator. In addition, since the propeller is made of reinforced fiberglass for weight reduction, there is a disadvantage in that it is vulnerable to UV rays. In addition, this wind turbine generates a lot of noise during operation, and there are disadvantages in that it is necessary to secure 22 acres of land to install one.
항력식 풍력발전기는 블레이드를 지지하는 외부링의 지지력이 약하여 강한 바람에 블레이드가 휘거나 부러지는 현상이 발생될 수 있다. 또한 블레이드와 이를 지지하는 구조체 사이에 공간이 형성되어, 소음과 진동이 발생될 수 있다.In the drag-type wind power generator, the bearing capacity of the outer ring supporting the blade is weak, so that the blade may be bent or broken in strong wind. In addition, a space is formed between the blade and the structure supporting it, and noise and vibration may be generated.
또한 상기한 풍력발전기는 타워 상부에 발전기, 증속기, 변압기, 기어박스가 위치하고 있다. 이에 따라 타워 상부에 편중된 무게로 인하여 여름과 겨울의 주야간 온도 변화로 인한 내구성이 약해지면서 고장이 잦고, 화제 위험성이 높다. 또한, 이 풍력발전기는 발전기, 기어박스 등이 타워의 상부에 위치하고 있어서 고장 시 유지 보수가 어렵다는 단점이 있다.In addition, in the above-mentioned wind power generator, a generator, a gearbox, a transformer, and a gearbox are located on the upper part of the tower. Accordingly, due to the weight concentrated on the upper part of the tower, the durability is weakened due to temperature changes during the day and night in summer and winter, resulting in frequent breakdowns and a high risk of fire. In addition, this wind power generator has a disadvantage in that it is difficult to maintain in the event of a breakdown because a generator, a gearbox, etc. are located on the upper part of the tower.
본 발명은 상기한 바와 같은 점을 감안하여 창안된 것으로서, 속도가 느린 풍속에서도 발전이 가능하고, 작동 시 소음이 적으며, 유지보수가 용이함과 아울러 고장을 최소화 할 수 있도록 된 구조의 유압식 풍력발전 시스템을 제공하는데 그 목적이 있다.The present invention has been devised in view of the above points, and has a structure capable of generating power even at a slow wind speed, making less noise during operation, easy maintenance, and minimizing failures. The purpose is to provide a system.
상기한 목적을 달성하기 위하여, 본 발명에 따른 유압식 풍력발전 시스템은, 소정 높이로 설치되는 타워와; 상기 타워 상에 회전 가능하게 설치되는 회전지지체와; 상기 회전지지체에 설치되는 것으로, 풍력에 의하여 회전되는 팬 조립체와; 상기 회전지지체에 설치되는 것으로, 상기 팬 조립체의 회전력에 의하여 유체를 펌핑하는 유압펌프와; 유체이동경로를 통하여 상기 유압펌프와 연결되는 것으로, 상기 유체이동경로를 통하여 이동되는 유체에 의하여 회전력을 출력하는 유압모터와; 상기 유압모터에 연결되는 것으로, 상기 유압모터로부터 제공된 회전력에 의하여 발전하는 발전유닛을 포함한다.In order to achieve the above object, the hydraulic wind power generation system according to the present invention, a tower installed at a predetermined height; a rotation support rotatably installed on the tower; a fan assembly installed on the rotating support and rotated by wind power; a hydraulic pump installed on the rotary support and pumping a fluid by the rotational force of the fan assembly; a hydraulic motor connected to the hydraulic pump through a fluid movement path and outputting a rotational force by the fluid moving through the fluid movement path; It is connected to the hydraulic motor, and includes a power generation unit that generates power by the rotational force provided from the hydraulic motor.
상기 팬 조립체는, 상기 회전지지체에 설치되는 허브와; 상기 허브와 동축 상에 배치되며, 서로 다른 직경을 가지는 복수의 지지링과; 상기 허브와 상기 복수의 지지링 중 내측에 위치된 지지링 사이에 설치된 복수의 스포크와; 상기 복수의 지지링 중 서로 이웃하는 지지링 사이에 각각 독립적으로 왕복 회동 가능하게 설치되는 복수의 플랩윙을 포함할 수 있다.The fan assembly may include: a hub installed on the rotating support; a plurality of support rings disposed coaxially with the hub and having different diameters; a plurality of spokes installed between the hub and a support ring located inside the plurality of support rings; It may include a plurality of flap wings each independently reciprocally and rotatably installed between the support rings adjacent to each other among the plurality of support rings.
상기 복수의 지지링은, 서로 다른 직경을 가지는 제1, 제2 및 제3지지링을 포함하며, 상기 복수의 플랩윙은, 상기 제1지지링과 상기 제2지지링 사이에 설치되는 복수의 제1플랩윙과; 상기 제2지지링과 상기 제3지지링 사이에 설치되는 복수의 제2플랩윙을 포함할 수 있다.The plurality of support rings includes first, second, and third support rings having different diameters, and the plurality of flap wings includes a plurality of support rings installed between the first support ring and the second support ring. a first flap wing; It may include a plurality of second flap wings installed between the second support ring and the third support ring.
상기 유압모터와 상기 발전유닛은, 상기 타워의 하단부에 배치될 수 있다.The hydraulic motor and the power generation unit may be disposed at the lower end of the tower.
상기 유체이동경로는, 상기 유압모터 측에서 상기 유압펌프 방향으로 유체를 이송하는 제1유체이동경로와; 상기 유압펌프 측에서 상기 유압모터 방향으로 유체를 이송하는 제2유체이동경로를 포함하여, 상기 팬 조립체의 회전력에 의하여 상기 제1 및 제2유체이동경로 사이에서 유체가 순환할 수 있도록 되어 있다.The fluid movement path includes: a first fluid movement path for transferring the fluid from the hydraulic motor side to the hydraulic pump; A second fluid movement path for transferring the fluid from the hydraulic pump side to the hydraulic motor direction is included so that the fluid can circulate between the first and second fluid movement paths by the rotational force of the fan assembly.
또한 본 발명은 상기 유체이동경로에 연결 설치되는 것으로, 내부에 유체를 가압 상태로 수용하는 어큐뮬레이터를 더 포함할 수 있다.In addition, the present invention may further include an accumulator that is connected to the fluid movement path and accommodates the fluid in a pressurized state therein.
또한 본 발명은 상기 유압펌프와 상기 제2유체이동경로 사이에 설치되는 것으로, 상기 제2유체이동경로 상의 유체 이송속도가 소정 속도 이하인 경우 유체를 능동적으로 펌핑하는 보조유압모터를 더 포함할 수 있다.In addition, the present invention is installed between the hydraulic pump and the second fluid movement path, and may further include an auxiliary hydraulic motor for actively pumping the fluid when the fluid transfer speed on the second fluid movement path is less than or equal to a predetermined speed. .
또한 본 발명은 상기 타워의 상단 내측에 설치되는 것으로, 상기 타워 상에서 상기 회전지지체를 회전 가능하게 지지하면서도 상기 유체이동경로의 꼬임을 방지하는 스위블 조인트를 더 포함할 수 있다.In addition, the present invention is installed inside the upper end of the tower, while rotatably supporting the rotary support on the tower may further include a swivel joint for preventing twisting of the fluid passage.
또한 본 발명에 따른 유압식 풍력발전 시스템은 소정 높이로 설치되는 타워와, 상기 타워 상에 회전 가능하게 설치되는 회전지지체와, 상기 회전지지체에 설치되는 것으로 풍력에 의하여 회전되는 윈드링 조립체 및 상기 회전지지체에 설치되는 것으로 상기 윈드링 조립체의 회전력에 의하여 유체를 펌핑하는 유압펌프를 각각 구비한 것으로, 서로 위치 및 높이를 달리하여 설치되는 제1 및 제2풍력발전기와; 유체이동경로를 통하여. 상기 제1풍력발전기의 유압펌프 및 상기 제2풍력발전기의 유압펌프와 연결되는 것으로, 상기 유체이동경로를 통하여 이동되는 유체에 의하여 회전력을 출력하는 유압모터와; 상기 유압모터에 연결되는 것으로, 상기 유압모터로부터 제공된 회전력에 의하여 발전하는 발전유닛을 포함할 수 있다.In addition, the hydraulic wind power generation system according to the present invention includes a tower installed at a predetermined height, a rotation support rotatably installed on the tower, a wind ring assembly that is installed on the rotation support and rotated by wind power, and the rotation support first and second wind power generators each having a hydraulic pump for pumping a fluid by the rotational force of the windring assembly to be installed in the wind ring assembly, the first and second wind power generators being installed at different positions and heights; through the fluid path. a hydraulic motor connected to the hydraulic pump of the first wind power generator and the hydraulic pump of the second wind power generator and outputting rotational force by the fluid moving through the fluid movement path; It is connected to the hydraulic motor, and may include a power generation unit that generates power by the rotational force provided from the hydraulic motor.
또한 본 발명은 상기 유압모터와 상기 발전유닛 각각은 적어도 2개 이상 구비되고, 상기 유체이동경로와 상기 복수의 유압모터 사이에 배치되어, 유압을 분기시키는 유압매니폴드를 더 포함할 수 있다.In addition, the present invention may further include a hydraulic manifold in which at least two or more of each of the hydraulic motor and the power generation unit are provided and disposed between the fluid movement path and the plurality of hydraulic motors to branch the hydraulic pressure.
본 발명에 따른 유압식 풍력발전 시스템은 팬 조립체로서, 복수의 플랩윙으로 이루어진 윈드링(wind ring)을 적용함으로써 속도가 느린 풍속에서도 발전이 가능하며, 작동 시 소음이 적다는 이점이 있다.The hydraulic wind power generation system according to the present invention is a fan assembly, and by applying a wind ring composed of a plurality of flap wings, power generation is possible even at a low wind speed, and there is an advantage in that there is little noise during operation.
또한 본 발명은 유압식 풍력발전 구조를 구성하고, 유체이동경로를 통하여 유동하는 유체의 흐름을 이용하여 동력을 전달할 수 있는 구성을 가짐으로써, 유압모터와 발전기를 타워의 하단부 또는 하단부 주위에 배치 할 수 있다. 이에 따라 타워 상단부에 걸리는 부하를 줄임으로써, 타원 상단부의 고장을 최소화 할 수 있다. 또한 유압모터와 발전기가 타워 하단부 즉, 지상에 설치됨으로써 이들에 대한 유지 보수가 용이하다는 이점이 있다.In addition, the present invention constitutes a hydraulic wind power generation structure, and by having a configuration that can transmit power using a flow of a fluid flowing through a fluid movement path, a hydraulic motor and a generator can be arranged around the lower end or lower end of the tower have. Accordingly, by reducing the load applied to the upper part of the tower, it is possible to minimize the failure of the upper part of the ellipse. In addition, since the hydraulic motor and the generator are installed at the lower end of the tower, that is, on the ground, there is an advantage in that maintenance thereof is easy.
또한 본 발명은 유압모터와 발전기를 복수개 구비하고, 이들 사이에 유압매니폴드를 설치하여 연결함으로써, 어느 한 측의 유압모터 또는 발전기가 고장나는 경우 다른 측으로 발전할 수 있으므로, 보다 안정적으로 발전할 수 있다는 이점이 있다.In addition, the present invention is provided with a plurality of hydraulic motors and generators, and by installing and connecting a hydraulic manifold between them, when the hydraulic motor or generator on one side fails, power can be generated on the other side, so that power generation can be more stably There is an advantage that
또한 본 발명에 따른 유압식 풍력발전 시스템은 복수의 풍력발전기를 구성하고, 이들에 대해 공통적으로 유압 회로를 설계할 수 있다. 즉, 복수의 풍력발전기의 유체이동경로와 연결된 공통의 유압모터 및 발전유닛을 이용하여 발전할 수 있으므로, 전체적으로 구성을 보다 컴팩트화 할 수 있고, 복수의 풍력발전기 사이의 유압 평형을 이루도록 유압 회로를 설계함으로써, 보다 안정적으로 발전할 수 있도록 한다. 이때 복수의 풍력발전기는 서로 위치 및 높이를 달리하여 설치할 수 있으므로, 상호 간섭없이 발전량을 증대시킬 수 있다.In addition, the hydraulic wind power generation system according to the present invention may constitute a plurality of wind power generators, and a hydraulic circuit may be commonly designed for them. That is, power can be generated using a common hydraulic motor and a power generation unit connected to the fluid movement path of a plurality of wind power generators, so that the overall configuration can be more compact, and a hydraulic circuit is formed to achieve hydraulic balance between the plurality of wind power generators. By designing, it is possible to develop more stably. In this case, since the plurality of wind power generators can be installed at different positions and heights from each other, the amount of power generation can be increased without mutual interference.
도 1은 본 발명의 일 실시예에 따른 유압식 풍력발전 시스템을 보인 도면.1 is a view showing a hydraulic wind power generation system according to an embodiment of the present invention.
도 2는 도 1의 풍력발전기를 보인 사시도.Figure 2 is a perspective view showing the wind power generator of Figure 1;
도 3은 도 2의 팬 조립체를 보인 사시도.3 is a perspective view of the fan assembly of FIG. 2;
도 4는 도 1의 유압펌프와 스위블 조인트의 결합 관계를 보인 개략적인 도면.Figure 4 is a schematic view showing a coupling relationship between the hydraulic pump and the swivel joint of Figure 1;
도 5은 본 발명의 일 실시예에 따른 유압식 풍력발전 시스템의 전체적인 구성을 개략적으로 보인 도면.5 is a view schematically showing the overall configuration of a hydraulic wind power generation system according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 유압식 풍력발전 시스템의 유압회로를 보인 개략적인 도면.6 is a schematic view showing a hydraulic circuit of a hydraulic wind power generation system according to an embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 유압식 풍력발전 시스템을 보인 도면.7 is a view showing a hydraulic wind power generation system according to another embodiment of the present invention.
도 8은 도 7의 유압모터와 발전기의 배치 관계를 보인 개략적인 사시도.Figure 8 is a schematic perspective view showing the arrangement relationship of the hydraulic motor and the generator of Figure 7;
도 9는 본 발명의 다른 실시예에 따른 유압식 풍력발전 시스템의 유압회로를 보인 개략적인 도면.9 is a schematic view showing a hydraulic circuit of a hydraulic wind power generation system according to another embodiment of the present invention.
이하, 첨부한 도면들을 참고하여 본 발명의 실시예들을 상세하게 설명하기로 한다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 사용하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In order to clearly describe the present invention in the drawings, parts irrelevant to the description are omitted, and the same reference numerals are used for the same or similar elements throughout the specification.
도 1은 본 발명의 일 실시예에 따른 유압식 풍력발전 시스템을 보인 도면이고, 도 2는 도 1의 풍력발전기를 보인 사시도이고, 도 3은 도 2의 팬 조립체를 보인 사시도이다.1 is a view showing a hydraulic wind power generation system according to an embodiment of the present invention, FIG. 2 is a perspective view showing the wind power generator of FIG. 1 , and FIG. 3 is a perspective view showing the fan assembly of FIG. 2 .
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 유압식 풍력발전 시스템은 소정 높이로 설치되는 풍력발전기, 유압모터(150) 및 발전유닛(170)를 포함한다.1 and 2 , the hydraulic wind power generation system according to an embodiment of the present invention includes a wind power generator installed at a predetermined height, a hydraulic motor 150 , and a power generation unit 170 .
풍력발전기는 지상(G)과 같은 지지체에 소정 높이로 설치되는 타워(110), 회전지지체(120), 팬 조립체(130) 및 유압펌프(140)를 포함한다. 회전지지체(120)는 타워(110) 상에 회전 가능하게 설치되는 것으로, 상기 유압펌프(140)가 내장될 수 있다. 팬 조립체(130)는 회전지지체(120)에 설치되는 것으로, 풍력에 의하여 회전된다. 유압펌프(140)는 회전지지체(120)에 설치되는 것으로, 팬 조립체(130)의 회전력에 의하여 유체를 펌핑함으로써, 후술하는 유체이동경로를 통하여 유체가 순환되도록 한다.The wind power generator includes a tower 110 , a rotating support 120 , a fan assembly 130 , and a hydraulic pump 140 installed at a predetermined height on a support such as the ground (G). The rotary support 120 is rotatably installed on the tower 110 , and the hydraulic pump 140 may be built therein. The fan assembly 130 is installed on the rotation support 120 and is rotated by wind power. The hydraulic pump 140 is installed on the rotating support 120 , and pumps the fluid by the rotational force of the fan assembly 130 , so that the fluid is circulated through a fluid movement path to be described later.
도 3을 참조하면, 팬 조립체(130)는 윈드링(Wind Ring) 조립체로 이루어지는 것으로, 허브(131), 지지링(135), 복수의 스포크(133) 및 복수의 플랩윙(137)을 포함할 수 있다. 허브(131)는 회전지지체(120)에 설치되는 것으로, 팬 조립체(130)에서 제공되는 회전력을 유압펌프(140) 내부로 전달한다. 지지링(135)은 복수개 구비되는 것으로, 그 각각은 허브(131)와 동축 상에 배치되며, 서로 다른 직경을 가진다. 여기서, 지지링(135)은 서로 다른 직경을 가지는 제1, 제2 및 제3지지링(135a)(135b)(135c)을 포함할 수 있다.Referring to FIG. 3 , the fan assembly 130 is formed of a wind ring assembly, and includes a hub 131 , a support ring 135 , a plurality of spokes 133 , and a plurality of flap wings 137 . can do. The hub 131 is installed on the rotation support 120 , and transmits the rotational force provided from the fan assembly 130 into the hydraulic pump 140 . A plurality of support rings 135 are provided, each of which is disposed coaxially with the hub 131 and has a different diameter. Here, the support ring 135 may include first, second, and third support rings 135a, 135b, and 135c having different diameters.
스포크(133)는 허브(131)와 복수의 지지링(135) 중 내측에 위치된 제1지지링(135) 사이에 설치된다. 따라서, 제1지지링(135)은 스포크(133)에 의하여 안정적으로 지지된다. 복수의 플랩윙(137)은 복수의 지지링(135) 중 서로 이웃하는 지지링 사이에 각각 독립적으로 왕복 회동 가능하게 설치된다. 즉, 복수의 플랩윙(137)은 복수의 제1플랩윙(137) 및 복수의 제2플랩윙(137)을 포함할 수 있다. 제1플랩윙(137)은 제1지지링(135)과 제2지지링(135) 사이에 설치되고, 제2플랩윙(137)은 제2지지링(135)과 제3지지링(135) 사이에 설치된다. 상기한 제1 및 제2플랩윙(137)은 양력과 항력을 고려하여 설계되는 것으로, 저속, 중속 및 고속 회전 상태에 따라 플랩윙의 리프트 각도를 달리한다.The spokes 133 are installed between the hub 131 and the first support ring 135 located inside the plurality of support rings 135 . Accordingly, the first support ring 135 is stably supported by the spokes 133 . The plurality of flap wings 137 are each independently reciprocally rotatably installed between adjacent support rings among the plurality of support rings 135 . That is, the plurality of flap wings 137 may include a plurality of first flap wings 137 and a plurality of second flap wings 137 . The first flap wing 137 is installed between the first support ring 135 and the second support ring 135 , and the second flap wing 137 includes the second support ring 135 and the third support ring 135 . ) is installed between The first and second flap wings 137 are designed in consideration of lift and drag, and the lift angles of the flap wings are varied according to low, medium, and high speed rotational states.
이와 같이 제1 및 제2플랩윙(137)을 설치함으로써, 윈드링을 2단 구조로 형성할 수 있다. 따라서 느린 풍속에서도 윈드링이 회전 가능하므로, 풍속이 느린 환경에서도 발전할 수 있다. By installing the first and second flap wings 137 in this way, the wind ring can be formed in a two-stage structure. Therefore, since the windring can rotate even at a low wind speed, it can generate electricity even in a low wind speed environment.
유압펌프(140)는 팬 조립체(130)의 회전력에 의하여 유체를 펌핑한다. 즉, 도 4에 도시된 바와 같이, 팬 조립체(130)의 허브의 회전력에 의하여 내부에 주입된 유체를 이동시킨다. 이 유압펌프(140)는 베인펌프, 기어펌프 등으로 구성되는 것으로, 그 자체의 구성 및 원리는 잘 알려져 있는 바 그 자세한 설명은 생략하기로 한다.The hydraulic pump 140 pumps the fluid by the rotational force of the fan assembly 130 . That is, as shown in FIG. 4 , the fluid injected therein is moved by the rotational force of the hub of the fan assembly 130 . The hydraulic pump 140 is composed of a vane pump, a gear pump, and the like, and the configuration and principle thereof are well known, and a detailed description thereof will be omitted.
유압모터(150)는 유체이동경로(P)를 통하여 상기 유압펌프(140)와 연결된다. 이 유압모터(150)는 유체이동경로(P)를 통하여 이동되는 유체에 의하여 회전력을 출력한다. 발전유닛(170)은 유압모터(150)의 출력 회전축에 연결되는 것으로, 유압모터(150)로부터 제공된 회전력에 의하여 전력을 생산한다.The hydraulic motor 150 is connected to the hydraulic pump 140 through the fluid movement path (P). This hydraulic motor 150 outputs a rotational force by the fluid moving through the fluid movement path (P). The power generation unit 170 is connected to the output rotation shaft of the hydraulic motor 150 , and generates electric power by the rotational force provided from the hydraulic motor 150 .
상기한 바와 같이, 유압식으로 전력을 생산하도록 구성하는 경우는 유체이동경로를 통하여 유동하는 유체의 흐름을 이용하여 동력을 전달할 수 있는 구성을 가짐으로써, 유압모터(150)를 유압펌프(140)의 설치 위치와 다른 위치에 용이하게 설치할 수 있다. 따라서, 유압모터(150)와 발전유닛(170)은 도 1에 도시된 바와 같이, 타워(110)의 하단부에 배치될 수 있다. 이에 따라 타워 상단부에 걸리는 부하를 줄임으로써, 타원 상단부의 고장을 최소화 할 있다. 또한 유압모터와 발전기가 타워 하단부 즉, 지상에 설치됨으로써 이들에 대한 유지 보수가 용이하다는 이점이 있다.As described above, when it is configured to generate electric power in a hydraulic manner, it has a configuration that can transmit power using a flow of a fluid flowing through a fluid movement path, so that the hydraulic motor 150 is operated by the hydraulic pump 140 . It can be easily installed in a location different from the installation location. Accordingly, the hydraulic motor 150 and the power generation unit 170 may be disposed at the lower end of the tower 110 as shown in FIG. 1 . Accordingly, by reducing the load applied to the upper part of the tower, the failure of the upper part of the ellipse can be minimized. In addition, since the hydraulic motor and the generator are installed at the lower end of the tower, that is, on the ground, there is an advantage in that maintenance thereof is easy.
상기 유체이동경로(P)는 유체 순환 구조를 형성하기 위한 것으로, 제1 및 제2유체이동경로(P1)(P2)를 포함한다. 제1유체이동경로(P1)는 유압펌프(140) 측에서 유압모터(150) 방향으로 유체를 이송한다. 제2유체이동경로(P2)는 유압모터(150) 측에서 유압펌프(140) 방향으로 유체를 이송한다. 따라서 팬 조립체(130)의 회전력에 의하여 상기 제1 및 제2유체이동경로(P1)(P2) 사이에서 유체가 순환할 수 있도록 되어 있다.The fluid flow path P is for forming a fluid circulation structure, and includes first and second fluid flow paths P1 and P2. The first fluid movement path P1 transfers the fluid from the hydraulic pump 140 side to the hydraulic motor 150 direction. The second fluid movement path P2 transfers the fluid from the hydraulic motor 150 side to the hydraulic pump 140 direction. Therefore, the fluid can circulate between the first and second fluid flow paths P1 and P2 by the rotational force of the fan assembly 130 .
도 4는 도 1의 유압펌프와 스위블 조인트의 결합 관계를 보인 개략적인 도면이다. 도 4를 참조하면, 본 발명에 따른 풍력발전 시스템은 타워(110)의 상단 내측에 설치되는 스위블 조인트(swivel joint)(115)를 더 포함할 수 있다. 이 스위블 조인트(115)는 타워(110) 상에서 회전지지체(120)를 회전 가능하게 지지하면서도, 유체이동경로(P)의 꼬임을 방지한다.4 is a schematic view showing a coupling relationship between the hydraulic pump and the swivel joint of FIG. 1 . Referring to FIG. 4 , the wind power generation system according to the present invention may further include a swivel joint 115 installed inside the upper end of the tower 110 . The swivel joint 115 rotatably supports the rotation support 120 on the tower 110 while preventing the fluid movement path P from being twisted.
도 5은 본 발명의 일 실시예에 따른 유압식 풍력발전 시스템의 전체적인 구성을 개략적으로 보인 도면이다. 도 5를 참조하면, 본 발명에 따른 유압식 풍력발전 시스템은 유체이동경로(P)에 연결 설치되는 것으로, 내부에 유체를 가압 상태로 수용하는 어큐뮬레이터(160)를 더 포함할 수 있다. 어큐뮬레이터(160)는 제2유체이동경로(P2)에 연결되도록 설치될 수 있으며, 제2유체이동경로(P2) 내에 소정 압력 이상의 압력이 인가되도록 함으로써, 상기 유압펌프(140)의 작동시 원활하게 유체가 순환되도록 한다. 또한 발전유닛(170)은 전력계통(180)과 연결되어, 전력을 외부로 출력한다.5 is a view schematically showing the overall configuration of a hydraulic wind power generation system according to an embodiment of the present invention. Referring to FIG. 5 , the hydraulic wind power generation system according to the present invention is connected to the fluid movement path P and may further include an accumulator 160 for accommodating the fluid in a pressurized state therein. The accumulator 160 may be installed to be connected to the second fluid movement path P2, and by allowing a pressure greater than or equal to a predetermined pressure to be applied in the second fluid movement path P2, the hydraulic pump 140 smoothly operates Allow the fluid to circulate. In addition, the power generation unit 170 is connected to the power system 180, and outputs power to the outside.
도 6은 본 발명의 일 실시예에 따른 유압식 풍력발전 시스템의 유압회로를 보인 개략적인 도면이다.6 is a schematic view showing a hydraulic circuit of a hydraulic wind power generation system according to an embodiment of the present invention.
도 6을 참조하면, 팬 조립체(130)에서 제공된 회전력은 유압펌프(140)에 제공되며, 이에 따라 유압펌프(140)는 제2유체이동경로(P2)를 통하여 유입되는 유체가 순환하여 제1유체이동경로(P1)로 이송되도록 펌핑한다. 여기서, 팬 조립체(130)와 유압펌프(140)의 회전축 상에는 증속기(G)가 설치되어 회전력을 소정 회전비로 증속시킬 수 있다.Referring to FIG. 6 , the rotational force provided from the fan assembly 130 is provided to the hydraulic pump 140 , and accordingly, the hydraulic pump 140 circulates the fluid introduced through the second fluid movement path P2 to circulate the first It is pumped to be transferred to the fluid movement path (P1). Here, the speed increaser G is installed on the rotation shaft of the fan assembly 130 and the hydraulic pump 140 to increase the rotational force to a predetermined rotation ratio.
유압펌프(140)에 의해 소정 속도로 이송되는 유체는 방향제어밸브(V1)를 경유한 후, 제1유체이동경로(P1)를 따라 유압모터(150)로 전달된다. 유압모터(150)는 일 방향 회전력을 출력하며, 그 출력에 의하여 발전유닛(170)이 전기를 생산한다. 한편, 방향제어밸브(V1)로 향하는 유체의 압력이 소정 압력을 초과하는 경우는 제1릴리프밸브(V21)가 설치된 바이패스 경로를 통하여 제2유체이동경로(P2)로 이동한다. 이에 따라 제1유체이동경로(P1)의 내압이 일정 압력 이상으로 상승하는 것을 방지할 수 있다. 또한 제1유체이동경로(P1)에는 압력을 조정하기 위한 수단으로서, 어큐뮬레이터(A) 및 제2릴리프밸브(V22)가 설치 될 수 있다.The fluid transferred at a predetermined speed by the hydraulic pump 140 passes through the direction control valve V1 and is then transferred to the hydraulic motor 150 along the first fluid movement path P1. The hydraulic motor 150 outputs a rotational force in one direction, and the power generation unit 170 generates electricity by the output. On the other hand, when the pressure of the fluid directed to the direction control valve V1 exceeds a predetermined pressure, it moves to the second fluid movement path P2 through the bypass path in which the first relief valve V21 is installed. Accordingly, it is possible to prevent the internal pressure of the first fluid passage P1 from rising above a predetermined pressure. In addition, an accumulator (A) and a second relief valve (V22) may be installed in the first fluid movement path (P1) as a means for adjusting the pressure.
상기 유압모터(150)를 경유하여 배출되는 유체는 소정 압력 이상인 경우는 제1체크밸브(V31)를 통과하여 제2유체이동경로(P2)로 진입한 후, 다시 유압펌프(140)로 입력된다. 한편 유압모터(150)에서 배출된 유체가 소정 압력 이하로 저하된 경우는 제3유체이동경로(P3)를 경유하면서, 유체 보충 및 압력을 상승시킨 후 제2유체이동경로(P2)로 공급한다. 이를 위하여, 제3유체이동경로(P3) 상에는 소정 압력 이상의 유체가 통과되도록 제어하는 제3릴리프밸브(V23), 유체를 냉각시키는 쿨러(C), 유체 내에 포함된 이물질을 여과하는 필터(F), 유체를 보충하는 리저버(R) 등이 설치될 수 있다. When the fluid discharged via the hydraulic motor 150 is higher than a predetermined pressure, it passes through the first check valve V31 and enters the second fluid movement path P2, and then is input to the hydraulic pump 140 again. . On the other hand, when the fluid discharged from the hydraulic motor 150 falls below a predetermined pressure, it is supplied to the second fluid flow path P2 after replenishing the fluid and increasing the pressure while passing through the third fluid flow path P3. . To this end, on the third fluid movement path P3, a third relief valve (V23) for controlling the passage of a fluid of a predetermined pressure or more, a cooler (C) for cooling the fluid, a filter (F) for filtering foreign substances contained in the fluid , a reservoir (R) for replenishing the fluid, etc. may be installed.
여기서, 본 발명은 유압펌프(140)와 제2유체이동경로(P2) 사이 즉, 제3유체이동경로(P3)에 설치되는 보조유압모터(190)를 더 포함할 수 있다. 이 보조유압모터(190)는 제2유체이동경로(P2)로 공급된 유체의 이송속도가 소정 속도 이하로 저하되는 경우에 유체를 능동적으로 펌핑한다. 이를 위하여, 보조유압모터(190)는 외부에서 인가되는 전원에 의하여 구동되는 전기모터와 이 전기모터의 회전력에 의하여 유압을 상승시키는 유압모터로 이루어질 수 있다. 여기서, 보조유압모터(190)의 출력단과 상기 쿨러(C)의 입력단 사이에는 바이패스 경로가 형성되고, 그 경로 상에 제4릴리프밸브(V24)가 설치될 수 있다. 따라서 보조유압모터(190)에 의하여 유체의 압력이 소정 압력 이상으로 상승된 경우는 제2릴리프밸브(V24)가 개방되면서, 유체의 일부는 쿨러(C) 방향으로 바이패스 되면서 압력이 조절된다.Here, the present invention may further include an auxiliary hydraulic motor 190 installed between the hydraulic pump 140 and the second fluid movement path P2, that is, in the third fluid movement path P3. The auxiliary hydraulic motor 190 actively pumps the fluid when the transport speed of the fluid supplied to the second fluid movement path P2 is lowered to a predetermined speed or less. To this end, the auxiliary hydraulic motor 190 may be composed of an electric motor driven by power applied from the outside and a hydraulic motor that increases hydraulic pressure by the rotational force of the electric motor. Here, a bypass path is formed between the output end of the auxiliary hydraulic motor 190 and the input end of the cooler C, and a fourth relief valve V24 may be installed on the path. Therefore, when the pressure of the fluid is increased to a predetermined pressure or more by the auxiliary hydraulic motor 190, the second relief valve V24 is opened, and a part of the fluid is bypassed in the cooler C direction, and the pressure is adjusted.
도 7은 본 발명의 다른 실시예에 따른 유압식 풍력발전 시스템을 보인 도면이고, 도 8은 도 7의 유압모터와 발전기의 배치 관계를 보인 개략적인 사시도이다.7 is a view showing a hydraulic wind power generation system according to another embodiment of the present invention, FIG. 8 is a schematic perspective view showing the arrangement relationship between the hydraulic motor and the generator of FIG.
도 7 및 도 8을 참조하면, 본 발명의 다른 실시예에 따른 유압식 풍력발전 시스템은 서로 위치 및 높이를 달리하여 설치되는 제1풍력발전기(WG1) 및 제2풍력발전기(WG2)와, 유압모터(150) 그리고 발전유닛(170)을 포함할 수 있다. 상기 제1 및 제2풍력발전기(WG1)(WG2) 각각은 타워, 회전지지체, 팬 조립체 및 유압펌프를 포함하는 것으로, 도 1 내지 도 5를 참조하여 설명된 본 발명의 일 실시예에 따른 유압식 풍력발전 시스템의 동일 이름의 구성요소와 실질적으로 동일하다. 그러므로 그 자세한 설명은 생략하기로 한다.7 and 8 , the hydraulic wind power generation system according to another embodiment of the present invention includes a first wind power generator WG1 and a second wind power generator WG2 installed at different positions and heights from each other, and a hydraulic motor. (150) and may include a power generation unit (170). Each of the first and second wind power generators WG1 and WG2 includes a tower, a rotating support, a fan assembly, and a hydraulic pump, hydraulic type according to an embodiment of the present invention described with reference to FIGS. 1 to 5 It is substantially identical to the component of the same name of a wind power system. Therefore, a detailed description thereof will be omitted.
유압모터(150)는 상기 제1풍력발전기(WG1)의 유압펌프 및 상기 제2풍력발전기(WG2)의 유압펌프와 연결되는 것으로, 유체이동경로를 통하여 이동되는 유체에 의하여 회전력을 출력한다. 발전유닛(170)는 유압모터(150)로부터 제공된 회전력에 의하여 발전하는 발전유닛을 포함할 수 있다.The hydraulic motor 150 is connected to the hydraulic pump of the first wind power generator WG1 and the hydraulic pump of the second wind power generator WG2, and outputs rotational force by the fluid moving through the fluid movement path. The power generation unit 170 may include a power generation unit that generates power by the rotational force provided from the hydraulic motor 150 .
여기서, 유압모터(160)와 발전유닛(170) 각각은 적어도 2개 이상 구비될 수 있다. 즉, 도 8을 참조하면, 유압모터(160)는 제1 및 제2유압모터(161)(165)로 구성되고, 발전유닛(170)는 제1 및 제2유압모터(161)(165)에 각각 연결 설치되는 제1 및 제2발전유닛(171)(175)로 구성될 수 있다.Here, each of the hydraulic motor 160 and the power generation unit 170 may be provided with at least two or more. That is, referring to FIG. 8 , the hydraulic motor 160 includes first and second hydraulic motors 161 and 165 , and the power generation unit 170 includes first and second hydraulic motors 161 and 165 . It may be composed of first and second power generation units 171 and 175 that are respectively connected to the installed.
본 발명에 따른 유압식 풍력발전 시스템은 유체이동경로(P)와 복수의 유압모터 사이에 배치되어, 유압을 분기시키는 유압매니폴드(190)를 더 포함할 수 있다. 이와 같이, 본 발명은 유압모터와 발전기를 복수개 구비하고, 이들 사이에 유압매니폴드를 설치하여 연결함으로써, 어느 한 측의 유압모터 또는 발전기가 고장나는 경우 다른 측으로 발전할 수 있으므로, 보다 안정적으로 발전할 수 있다.The hydraulic wind power generation system according to the present invention may further include a hydraulic manifold 190 arranged between the fluid movement path P and the plurality of hydraulic motors to branch the hydraulic pressure. As described above, the present invention includes a plurality of hydraulic motors and generators, and by installing and connecting a hydraulic manifold between them, when the hydraulic motor or generator on one side fails, power can be generated on the other side, so that power generation is more stable can do.
또한 복수의 풍력발전기는 서로 위치 및 높이를 달리하여 설치되므로, 상호 간섭없이 발전량을 극대화 시킬 수 있다.In addition, since a plurality of wind power generators are installed with different positions and heights from each other, the amount of power generation can be maximized without mutual interference.
도 9는 본 발명의 다른 실시예에 따른 유압식 풍력발전 시스템의 유압회로를 보인 개략적인 도면이다.9 is a schematic view showing a hydraulic circuit of a hydraulic wind power generation system according to another embodiment of the present invention.
도 9를 참조하면, 본 실시예에 따른 유압회로 중 제1 및 제2풍력발전기 각각의 유압회로는 도 6을 참조하여 설명한 본 발명의 일 실시예에 유압회로의 구성과 실질상 동일한 구성을 가진다. 한편, 제4유체이동경로(P13)를 마련함에 있어서, 제1 및 제2풍력발전기에 공통적으로 적용되도록 구성된다. 즉, 제4유체이동경로(P13)는 제1풍력발전기의 제1유체이동경로(P11)와 제2풍력발전기의 제2유체이동경로(P12) 사이를 연결하도록 마련되어, 제1유체이동경로 P11과 P12 사이에 유압 평형을 이룰 수 있도록 한다.Referring to FIG. 9 , the hydraulic circuit of each of the first and second wind power generators among the hydraulic circuits according to this embodiment has substantially the same configuration as that of the hydraulic circuit in the embodiment of the present invention described with reference to FIG. 6 . . Meanwhile, in providing the fourth fluid movement path P13, it is configured to be commonly applied to the first and second wind power generators. That is, the fourth fluid movement path P13 is provided to connect between the first fluid movement path P11 of the first wind power generator and the second fluid movement path P12 of the second wind power generator, and the first fluid movement path P11 and P12 to achieve hydraulic equilibrium.
이와 같이, 복수의 풍력발전기를 구성하고, 이들에 대해 공통적으로 유압 회로를 설계할 수 있다. 이에 따라 전체적으로 구성을 보다 컴팩트화 할 수 있다. 또한 복수의 풍력발전기 사이의 유압 평형을 이루도록 유압 회로를 설계함으로써, 보다 안정적으로 발전할 수 있도록 한다. In this way, it is possible to configure a plurality of wind power generators, and to design a hydraulic circuit in common for them. Accordingly, the overall configuration can be more compact. In addition, by designing a hydraulic circuit to achieve hydraulic equilibrium between a plurality of wind turbines, it enables more stable power generation.
상기한 실시예들은 예시적인 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 사람이라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다. 따라서 본 발명의 진정한 기술적 보호범위는 청구범위에 기재된 발명의 기술적 사상에 의해 정해져야만 할 것이다.The above-described embodiments are merely exemplary, and various modifications and equivalent other embodiments are possible by those of ordinary skill in the art to which the present invention pertains. Therefore, the true technical protection scope of the present invention will have to be determined by the technical idea of the invention described in the claims.

Claims (9)

  1. 소정 높이로 설치되는 타워와;a tower installed at a predetermined height;
    상기 타워 상에 회전 가능하게 설치되는 회전지지체와;a rotation support rotatably installed on the tower;
    상기 회전지지체에 설치되는 것으로, 풍력에 의하여 회전되는 팬 조립체와;a fan assembly installed on the rotating support and rotated by wind power;
    상기 회전지지체에 설치되는 것으로, 상기 팬 조립체의 회전력에 의하여 유체를 펌핑하는 유압펌프와;a hydraulic pump installed on the rotary support and pumping a fluid by the rotational force of the fan assembly;
    상기 타워의 하단부에 배치되고, 유체이동경로를 통하여 상기 유압펌프와 연결되는 것으로, 상기 유체이동경로를 통하여 이동되는 유체에 의하여 회전력을 출력하는 유압모터와;a hydraulic motor disposed at the lower end of the tower, connected to the hydraulic pump through a fluid movement path, and outputting a rotational force by the fluid moving through the fluid movement path;
    상기 타워의 하단부에 배치되고, 상기 유압모터에 연결되는 것으로, 상기 유압모터로부터 제공된 회전력에 의하여 발전하는 발전유닛을 포함하며,It is disposed at the lower end of the tower and is connected to the hydraulic motor, and includes a power generation unit that generates power by the rotational force provided from the hydraulic motor,
    상기 유체이동경로는,The fluid movement path,
    상기 유압모터 측에서 상기 유압펌프 방향으로 유체를 이송하는 제1유체이동경로와; 상기 유압펌프 측에서 상기 유압모터 방향으로 유체를 이송하는 제2유체이동경로를 포함하여, 상기 팬 조립체의 회전력에 의하여 상기 제1 및 제2유체이동경로 사이에서 유체가 순환할 수 있도록 된 것을 특징으로 하는 유압식 풍력발전 시스템.a first fluid movement path for transferring the fluid from the hydraulic motor side to the hydraulic pump; and a second fluid movement path for transferring the fluid from the hydraulic pump side to the hydraulic motor direction, so that the fluid can circulate between the first and second fluid movement paths by the rotational force of the fan assembly hydraulic wind power system.
  2. 제1항에 있어서,According to claim 1,
    상기 팬 조립체는,the fan assembly,
    상기 회전지지체에 설치되는 허브와;a hub installed on the rotary support;
    상기 허브와 동축 상에 배치되며, 서로 다른 직경을 가지는 복수의 지지링과;a plurality of support rings disposed coaxially with the hub and having different diameters;
    상기 허브와 상기 복수의 지지링 중 내측에 위치된 지지링 사이에 설치된 복수의 스포크와;a plurality of spokes installed between the hub and a support ring located inside the plurality of support rings;
    상기 복수의 지지링 중 서로 이웃하는 지지링 사이에 각각 독립적으로 왕복 회동 가능하게 설치되는 복수의 플랩윙을 포함하는 것을 특징으로 하는 유압식 풍력발전 시스템.Hydraulic wind power generation system, characterized in that it comprises a plurality of flap wings each independently reciprocally and rotatably installed between the support rings adjacent to each other among the plurality of support rings.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 복수의 지지링은,The plurality of support rings,
    서로 다른 직경을 가지는 제1, 제2 및 제3지지링을 포함하며,It includes first, second and third support rings having different diameters,
    상기 복수의 플랩윙은,The plurality of flap wings,
    상기 제1지지링과 상기 제2지지링 사이에 설치되는 복수의 제1플랩윙과;a plurality of first flap wings installed between the first support ring and the second support ring;
    상기 제2지지링과 상기 제3지지링 사이에 설치되는 복수의 제2플랩윙을 포함하는 것을 특징으로 하는 유압식 풍력발전 시스템.Hydraulic wind power generation system comprising a plurality of second flap wings installed between the second support ring and the third support ring.
  4. 제1항에 있어서,According to claim 1,
    상기 유체이동경로에 연결 설치되는 것으로, 내부에 유체를 가압 상태로 수용하는 어큐뮬레이터를 더 포함하는 것을 특징으로 하는 유압식 풍력발전 시스템.The hydraulic wind power generation system, which is connected to the fluid movement path, and further comprises an accumulator for accommodating the fluid in a pressurized state therein.
  5. 제1항에 있어서,According to claim 1,
    상기 유압모터에서 배출된 유체가 소정 압력 이하로 저하된 경우, 유체 보충 및 압력이 상승되도록 하는 것으로, 상기 제1유체이동경로와 상기 제2유체이동경로 사이에 마련 된 제3유체이동경로를 더 포함하며,When the fluid discharged from the hydraulic motor falls below a predetermined pressure, the third fluid flow path provided between the first fluid flow path and the second fluid flow path is added to supplement the fluid and increase the pressure. includes,
    상기 제3유체이동경로에 설치되는 것으로, 소정 압력 이상의 유체가 통과되도록 제어하는 제3릴리프밸브와; a third relief valve installed in the third fluid movement path and controlling the passage of a fluid having a predetermined pressure or higher;
    상기 제3유체이동경로를 경유하는 유체를 냉각시키는 쿨러와;a cooler for cooling the fluid passing through the third fluid movement path;
    유체 내에 포함된 이물질을 여과하는 필터와; a filter for filtering foreign substances contained in the fluid;
    유체를 보충하는 리저버; 및, a reservoir to replenish fluid; and,
    상기 제2유체이동경로 상의 유체 이송속도가 소정 속도 이하인 경우, 상기 리저버 내의 유체를 상기 제2유체이동경로 방향으로 펌핑하는 보조유압모터를 더 포함하는 것을 특징으로 하는 유압식 풍력발전 시스템.The hydraulic wind power generation system, characterized in that it further comprises an auxiliary hydraulic motor for pumping the fluid in the reservoir in the direction of the second fluid movement path when the fluid transfer speed on the second fluid movement path is less than a predetermined speed.
  6. 제1항에 있어서,According to claim 1,
    상기 타워의 상단 내측에 설치되는 것으로, 상기 타워 상에서 상기 회전지지체를 회전 가능하게 지지하면서도 상기 유체이동경로의 꼬임을 방지하는 스위블 조인트를 포함하는 것을 특징으로 하는 유압식 풍력발전 시스템.The hydraulic wind power generation system, which is installed inside the upper end of the tower, and includes a swivel joint that rotatably supports the rotation support on the tower and prevents twisting of the fluid passage.
  7. 소정 높이로 설치되는 타워와, 상기 타워 상에 회전 가능하게 설치되는 회전지지체와, 상기 회전지지체에 설치되는 것으로 풍력에 의하여 회전되는 윈드링 조립체 및 상기 회전지지체에 설치되는 것으로 상기 윈드링 조립체의 회전력에 의하여 유체를 펌핑하는 유압펌프를 각각 구비한 것으로, 서로 위치 및 높이를 달리하여 설치되는 제1 및 제2풍력발전기와;A tower installed at a predetermined height; first and second wind power generators each having a hydraulic pump for pumping the fluid by means of a first and second wind turbine generators installed with different positions and heights from each other;
    유체이동경로를 통하여. 상기 제1풍력발전기의 유압펌프 및 상기 제2풍력발전기의 유압펌프와 연결되는 것으로, 상기 유체이동경로를 통하여 이동되는 유체에 의하여 회전력을 출력하는 유압모터와;through the fluid path. a hydraulic motor connected to the hydraulic pump of the first wind power generator and the hydraulic pump of the second wind power generator and outputting rotational force by the fluid moving through the fluid movement path;
    상기 유압모터에 연결되는 것으로, 상기 유압모터로부터 제공된 회전력에 의하여 발전하는 발전유닛을 포함하며,It is connected to the hydraulic motor and includes a power generation unit that generates power by the rotational force provided from the hydraulic motor,
    상기 유체이동경로는,The fluid movement path,
    상기 유압모터 측에서 상기 유압펌프 방향으로 유체를 이송하는 제1유체이동경로와; a first fluid movement path for transferring the fluid from the hydraulic motor side to the hydraulic pump;
    상기 유압펌프 측에서 상기 유압모터 방향으로 유체를 이송하는 제2유체이동경로와;a second fluid movement path for transferring the fluid from the hydraulic pump side to the hydraulic motor;
    상기 유압모터에서 배출된 유체가 소정 압력 이하로 저하된 경우, 유체 보충 및 압력이 상승되도록 하는 것으로, 상기 제1유체이동경로와 상기 제2유체이동경로 사이에 마련 된 제3유체이동경로를 포함하며,When the fluid discharged from the hydraulic motor falls below a predetermined pressure, the fluid is replenished and the pressure is increased, and a third fluid flow path provided between the first fluid flow path and the second fluid flow path is included. and
    상기 팬 조립체의 회전력에 의하여 상기 제1 및 제2유체이동경로 사이에서 유체가 순환할 수 있도록 된 것을 특징으로 하는 유압식 풍력발전 시스템.The hydraulic wind power generation system, characterized in that the fluid is circulated between the first and second fluid passages by the rotational force of the fan assembly.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 제3유체이동경로에 설치되는 것으로, 소정 압력 이상의 유체가 통과되도록 제어하는 제3릴리프밸브와; a third relief valve installed in the third fluid movement path and controlling the passage of a fluid having a predetermined pressure or higher;
    상기 제3유체이동경로를 경유하는 유체를 냉각시키는 쿨러와;a cooler for cooling the fluid passing through the third fluid movement path;
    유체 내에 포함된 이물질을 여과하는 필터와; a filter for filtering foreign substances contained in the fluid;
    유체를 보충하는 리저버; 및, a reservoir to replenish fluid; and,
    상기 제2유체이동경로 상의 유체 이송속도가 소정 속도 이하인 경우, 상기 리저버 내의 유체를 상기 제2유체이동경로 방향으로 펌핑하는 보조유압모터를 더 포함하는 것을 특징으로 하는 유압식 풍력발전 시스템.The hydraulic wind power generation system, characterized in that it further comprises an auxiliary hydraulic motor for pumping the fluid in the reservoir in the direction of the second fluid movement path when the fluid transfer speed on the second fluid movement path is less than a predetermined speed.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,9. The method according to any one of claims 1 to 8,
    상기 유압모터와 상기 발전유닛 각각은 적어도 2개 이상 구비되고,Each of the hydraulic motor and the power generation unit is provided with at least two or more,
    상기 유체이동경로와 상기 유압모터 사이에 배치되어, 유압을 분기시키는 유압매니폴드를 더 포함하는 것을 특징으로 하는 유압식 풍력발전 시스템.The hydraulic wind power generation system, which is disposed between the fluid movement path and the hydraulic motor, further comprising a hydraulic manifold for branching hydraulic pressure.
PCT/KR2022/000106 2021-02-26 2022-01-04 Hydraulic wind power generation system WO2022181968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202290000148.3U CN219431962U (en) 2021-02-26 2022-01-04 Hydraulic wind power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0027014 2021-02-26
KR1020210027014A KR102320936B1 (en) 2021-02-26 2021-02-26 Hydraulic wind power generating system

Publications (1)

Publication Number Publication Date
WO2022181968A1 true WO2022181968A1 (en) 2022-09-01

Family

ID=78502928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000106 WO2022181968A1 (en) 2021-02-26 2022-01-04 Hydraulic wind power generation system

Country Status (3)

Country Link
KR (1) KR102320936B1 (en)
CN (1) CN219431962U (en)
WO (1) WO2022181968A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102320936B1 (en) * 2021-02-26 2021-11-15 주식회사 코리안파워파트너스 Hydraulic wind power generating system
KR102397223B1 (en) 2021-11-24 2022-05-12 남정호 Tornado wind and pumped complex powergeneration system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120090758A (en) * 2010-11-30 2012-08-17 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator system and operation control method thereof
KR20130107485A (en) * 2012-03-22 2013-10-02 현대중공업 주식회사 Fluid power delivery type wind power generator
KR20130109413A (en) * 2012-03-27 2013-10-08 한국전력공사 Hydraulic wind power generation device and its method
JP6106697B2 (en) * 2013-01-11 2017-04-05 株式会社日立製作所 Wind power generator
KR102132438B1 (en) * 2019-12-23 2020-07-09 주식회사 코리안파워파트너스 Fan assembly and drag type wind power generator employing the same
KR102320936B1 (en) * 2021-02-26 2021-11-15 주식회사 코리안파워파트너스 Hydraulic wind power generating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986654B1 (en) 2008-08-25 2010-10-11 아이알제너레이터(주) Generator and wind power system using the same
KR101757123B1 (en) 2016-08-30 2017-07-12 김성호 Wind power generator with double wings
WO2018208938A1 (en) 2017-05-10 2018-11-15 Barber Gerald Segmented airfoil design for guide wires

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120090758A (en) * 2010-11-30 2012-08-17 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator system and operation control method thereof
KR20130107485A (en) * 2012-03-22 2013-10-02 현대중공업 주식회사 Fluid power delivery type wind power generator
KR20130109413A (en) * 2012-03-27 2013-10-08 한국전력공사 Hydraulic wind power generation device and its method
JP6106697B2 (en) * 2013-01-11 2017-04-05 株式会社日立製作所 Wind power generator
KR102132438B1 (en) * 2019-12-23 2020-07-09 주식회사 코리안파워파트너스 Fan assembly and drag type wind power generator employing the same
KR102320936B1 (en) * 2021-02-26 2021-11-15 주식회사 코리안파워파트너스 Hydraulic wind power generating system

Also Published As

Publication number Publication date
CN219431962U (en) 2023-07-28
KR102320936B1 (en) 2021-11-15

Similar Documents

Publication Publication Date Title
WO2022181968A1 (en) Hydraulic wind power generation system
US8358028B2 (en) Wind turbine
US7633174B1 (en) Floating water turbine for a power plant
CA2680691C (en) Wind turbine with load-transmitting components
EP2005558B1 (en) Electric generator for wind and water turbines
CN103397975B (en) Standard type floating pipe type hydraulic generator
CN112469895B (en) Dynamic fluid energy conversion system
CN102812239B (en) Wind turbine, the operation of transporting system and wind turbine, maintenance and construction method
BR102013005496B1 (en) WIND TURBINE GENERATING ELECTRICITY WITH NAVAL TECHNOLOGY
EP0830507A1 (en) Self-governing fluid energy turbine
CN101918712A (en) Wind turbine with hydraulic swivel
GB2311566A (en) Column mounted water current turbine
CN102869881A (en) Renewable energy generator
CN111648920B (en) Ultra-compact medium-speed permanent magnet wind generating set
WO2011102638A2 (en) Rotational force generating device and a centripetally acting type of water turbine using the same
WO2011055962A2 (en) Wind power generating apparatus
WO2014025124A1 (en) Wind power generator
WO2017069452A1 (en) Pumped-storage hydroelectric system for controlling load of water lift pump
WO2020256247A1 (en) Maritime transport means for floating-type wind power generator
WO2022124697A1 (en) Dual-axis hybrid wind power generator
BRPI1102301B1 (en) electromechanical device
WO2015093641A1 (en) Wind power generating unit and vertically stacked wind power generation system
US9447777B2 (en) Continuous-flow power installation
WO2011149167A1 (en) High-performance wind turbine generator that can be driven in horizontal/vertical axis directions with the use of 3d active intelligent turbine blades
WO2020040461A1 (en) Apparatus and method for obtaining energy from flowing fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202290000148.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759887

Country of ref document: EP

Kind code of ref document: A1