WO2022181760A1 - Light-adjusting material, light-adjusting film, and light-adjusting device - Google Patents

Light-adjusting material, light-adjusting film, and light-adjusting device Download PDF

Info

Publication number
WO2022181760A1
WO2022181760A1 PCT/JP2022/007843 JP2022007843W WO2022181760A1 WO 2022181760 A1 WO2022181760 A1 WO 2022181760A1 JP 2022007843 W JP2022007843 W JP 2022007843W WO 2022181760 A1 WO2022181760 A1 WO 2022181760A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light modulating
electrode
modulating material
light control
Prior art date
Application number
PCT/JP2022/007843
Other languages
French (fr)
Japanese (ja)
Inventor
弘司 福井
幹敏 末松
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022528312A priority Critical patent/JPWO2022181760A1/ja
Publication of WO2022181760A1 publication Critical patent/WO2022181760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material

Definitions

  • the present invention relates to an electrochromic light control material capable of controlling the transmittance of light in a specific wavelength range, and a light control film and a light control device using the light control material.
  • Electrochromic light control materials that can control the transmittance of light in a specific wavelength range are intended to adjust the transmittance by blocking light of a specific wavelength, and to adjust the color tone. It's being used. Such dimming materials are widely used in various applications such as interior members, building members, and electronic components.
  • Patent Document 1 For example, in Patent Document 1 below, a laminate in which three layers of an electrochromic layer of nickel oxide, an ion-conducting layer, and an electrochromic layer of tungsten oxide are sequentially laminated is sandwiched between two conductive substrates. An electrochromic dimming device is disclosed. Patent Document 1 describes that an electrochromic layer of nickel oxide or tungsten oxide is formed by a vapor deposition method or a sputtering method.
  • Patent Document 2 discloses a layer containing a conductive electrochromic polydioxythiophene, a layer containing an electrolyte containing protonic acid, and a layer containing an ion-retaining compound or a mixture of ion-retaining compounds.
  • An electrochromic device is disclosed having a layered structure.
  • JP-A-2004-062030 Japanese translation of PCT publication No. 2002-526801
  • Patent Document 2 when an electrochromic material made of a conductive polymer such as polythiophene is used, it is difficult to apply without using an organic solvent, which is undesirable from an environmental point of view.
  • An object of the present invention is to provide a light modulating material that can be easily formed into a film by coating in an aqueous system and that can control the light transmittance in a wide range from visible light to infrared light by applying a voltage. and a light control film and a light control device using the light control material.
  • the light modulating material according to the present invention contains at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives.
  • the polystyrenesulfonic acid derivative is polystyrenesulfonate.
  • the polystyrenesulfonate is sodium polystyrenesulfonate.
  • the light modulating material according to the present invention further contains a water-soluble plasticizer.
  • the water-soluble plasticizer is glycerin.
  • the light modulating material according to the present invention does not substantially contain polythiophene.
  • a light control film according to the present invention includes a light control material configured according to the present invention.
  • a light modulating device comprises a first electrode, an electrolyte layer provided on the first electrode, and a light modulating material provided on the electrolyte layer and constructed according to the present invention. and a second electrode provided on the light modulating material layer.
  • the first electrode is a working electrode
  • the second electrode is a counter electrode
  • the light modulating material is disposed on the counter electrode side of the electrolyte layer. layers are provided.
  • a light modulating material that can be easily formed into a film by coating in an aqueous system and that can control the light transmittance in a wide range from visible light to infrared light by applying a voltage. and a light control film and a light control device using the light control material.
  • FIG. 1 is a schematic front cross-sectional view showing a light control device according to one embodiment of the present invention.
  • FIG. 2 is a schematic front cross-sectional view showing the light control device produced in Example 1.
  • FIG. 3 is a graph showing transmission spectra of the light modulating device of Example 1 when a voltage of 0 V to 3.0 V is applied.
  • FIG. 4 is a diagram showing transmission spectra when a voltage is applied while changing from 0 V to 3.0 V in the light control device of Reference Example 1.
  • FIG. 1 is a schematic front cross-sectional view showing a light control device according to one embodiment of the present invention.
  • FIG. 2 is a schematic front cross-sectional view showing the light control device produced in Example 1.
  • FIG. 3 is a graph showing transmission spectra of the light modulating device of Example 1 when a voltage of 0 V to 3.0 V is applied.
  • FIG. 4 is a diagram showing transmission spectra when a voltage is applied while changing from 0 V to 3.0 V in the light
  • the light modulating material of the present invention contains at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives. Therefore, the light modulating material of the present invention may contain either polystyrenesulfonic acid or polystyrenesulfonic acid derivative alone, or may contain both polystyrenesulfonic acid and polystyrenesulfonic acid derivative.
  • the light modulating material of the present invention contains at least one of polystyrenesulfonic acid and a polystyrenesulfonic acid derivative, it can be easily formed into a film by coating in an aqueous system, and furthermore, by applying a voltage, it can be converted from visible light to It is possible to control light transmittance in a wide range up to infrared light.
  • inorganic materials such as nickel oxide and tungsten oxide, and conductive polymers such as polythiophene have been known as electrochromic light control materials.
  • light modulating materials using inorganic materials are often formed by vapor deposition or sputtering, which requires a large-scale apparatus such as a chamber, which is undesirable in terms of manufacturing costs.
  • conductive polymers such as polythiophene are often difficult to dissolve in water, it is difficult to apply them unless an organic solvent is used, which is undesirable from an environmental point of view.
  • polystyrene sulfonic acid and polystyrene sulfonic acid derivatives exhibit electrochromic properties and can be used as light modulating materials. That is, the present inventors have found that by applying a voltage to polystyrene sulfonic acid or a polystyrene sulfonic acid derivative itself, it is possible to control light transmittance in a wide range from visible light to infrared light.
  • polystyrene sulfonic acid and polystyrene sulfonic acid derivatives such as polystyrene sulfonate have high solubility in water, they can be easily formed into films by coating in an aqueous system. Therefore, it is excellent in handleability and does not require a large-scale apparatus such as a chamber as in the vapor deposition method or the sputtering method, so that the manufacturing cost can be reduced.
  • coating can be performed without using an organic solvent, it can be used favorably from an environmental point of view.
  • the polystyrene sulfonate is not particularly limited, and for example, sodium polystyrene sulfonate, lithium polystyrene sulfonate, ammonium polystyrene sulfonate, and the like can be used. Among them, it is preferable to use sodium polystyrene sulfonate, which is highly versatile, as the polystyrene sulfonate.
  • polystyrene sulfonic acid derivatives other than polystyrene sulfonate may be used as long as they are water-soluble.
  • examples of polystyrenesulfonic acid derivatives other than polystyrenesulfonate include polyparamethylstyrenesulfonic acid, copolymers of styrenesulfonic acid and styrene, copolymers of styrenesulfonate and maleic anhydride, styrenesulfonates and A copolymer of maleimide anhydride, a copolymer of styrenesulfonic acid and (meth)acrylic acid ester, and the like can be mentioned.
  • (meth)acryl means methacryl or acryl.
  • the polystyrenesulfonic acid derivative may be a copolymer of styrenesulfonic acid or styrenesulfonate and other water-soluble monomers.
  • copolymers include styrenesulfonic acid-sodium styrenesulfonate copolymer, styrenesulfonic acid-lithium styrenesulfonate copolymer, styrenesulfonic acid-potassium styrenesulfonate copolymer, and styrenesulfonic acid-styrene.
  • a calcium sulfonate copolymer, a styrenesulfonic acid-ammonium styrenesulfonate copolymer, and the like are included.
  • polystyrene sulfonic acid derivatives may be used singly or in combination.
  • the weight average molecular weight (Mw) of polystyrenesulfonic acid or polystyrenesulfonic acid derivative is not particularly limited, but is preferably 2,000 or more, more preferably 10,000 or more, still more preferably 50,000 or more, and particularly preferably 200,000 or more. 000 or more, most preferably 500,000 or more, preferably 2,000,000 or less, more preferably 1,500,000 or less.
  • the weight average molecular weight (Mw) indicates the weight average molecular weight in terms of sodium polystyrene sulfonate measured by gel permeation chromatography (GPC).
  • the content of at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass or more, relative to the entire light modulating material. , preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and particularly preferably 60% by mass or less.
  • the content of at least one of the polystyrene sulfonic acid and the polystyrene sulfonic acid derivative is equal to or higher than the above lower limit, the light transmittance in a wide range from visible light to infrared light can be further effectively increased by applying a voltage. can be controlled to However, the upper limit of the content of at least one of the polystyrenesulfonic acid and the polystyrenesulfonic acid derivative is not particularly limited, and may be 100% by mass with respect to the entire light modulating material.
  • the light modulating material of the present invention preferably does not substantially contain a light modulating material different from polystyrene sulfonic acid and polystyrene sulfonic acid derivatives.
  • the photochromic material does not substantially contain a poorly water-soluble light modulating material.
  • dimming materials include, for example, polythiophene, polyaniline, polyvinylpyridine, and the like. In this case, water-based coating can be performed more favorably.
  • the expression "substantially does not contain” means, for example, that the content is 5% by mass or less with respect to the entire light modulating material. However, it does not have to contain any dimming material that is difficult to dissolve in water.
  • the light modulating material of the present invention preferably contains a plasticizer in addition to at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives.
  • a plasticizer in addition to at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives.
  • the plasticizer is preferably a water-soluble plasticizer. In this case, coatability can be further improved.
  • water-soluble plasticizers include, but are not limited to, polyoxyalkylenes such as glycerin, polyethylene glycol, polypropylene glycol, copolymers of polyethylene glycol and polypropylene glycol, N-methylpyrrolidone, trimethylolpropane, sucrose, and sorbitol. , or xylitol or the like can be used. These may be used individually by 1 type, and may use multiple types together. Among them, it is preferable to use glycerin as the water-soluble plasticizer. In this case, electrons can be more easily moved when a voltage is applied, and light transmittance in a wide range from visible light to infrared light can be more effectively controlled.
  • polyoxyalkylenes such as glycerin, polyethylene glycol, polypropylene glycol, copolymers of polyethylene glycol and polypropylene glycol, N-methylpyrrolidone, trimethylolpropane, sucrose, and sorbitol.
  • the content of the plasticizer is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and particularly preferably 40% by mass or more, relative to the entire light modulating material. is 60% by mass or less, more preferably 50% by mass or less.
  • the light transmittance in a wide range from visible light to infrared light can be controlled more effectively by applying voltage.
  • FIG. 1 is a schematic front cross-sectional view showing a light control device according to one embodiment of the present invention.
  • the light modulating device 1 includes a first electrode 2 , a second electrode 3 , an electrolyte layer 4 and a light modulating material layer 5 .
  • an electrolyte layer 4 is provided on the first electrode 2 .
  • a light modulating material layer 5 is provided on the electrolyte layer 4 .
  • a second electrode 3 is provided on the light modulating material layer 5 .
  • first electrode 2 and the second electrode 3 for example, transparent electrodes such as ITO can be used.
  • the first electrode 2 and the second electrode 3 may be made of the same material or may be made of different materials.
  • the first electrode 2 and the second electrode 3 may be conductive films provided on a support such as a glass substrate.
  • the electrolyte layer 4 may be composed of an electrolyte solution, or may be composed of a solid electrolyte.
  • the electrolyte solution is not particularly limited, for example, an electrolyte solution containing LiPF 6 or the like in a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), or propylene carbonate (PC) can be used.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • the light control material layer 5 is a light control film containing the light control material of the present invention described above.
  • the light modulating material layer 5 can be formed, for example, by coating an aqueous solution containing the light modulating material on the second electrode 3 by a coating method such as spin coating.
  • the light transmittance at each wavelength changes.
  • a voltage is applied so that the first electrode 2 is the working electrode (reduction side, positive electrode) and the second electrode 3 is the counter electrode (oxidation side, negative electrode). . Therefore, in this embodiment, the light modulating material layer 5 is provided on the opposite electrode side of the electrolyte layer 4 .
  • a light modulating material layer using polythiophene or the like as a light modulating material is provided on the working electrode side with respect to the electrolyte layer.
  • the present inventors have found that the light modulating material layer 5 using polystyrene sulfonic acid or a polystyrene sulfonic acid derivative as the light modulating material is provided on the counter electrode side of the electrolyte layer 4 rather than on the working electrode side. It was found that electrochromic properties were expressed by
  • the light control device 1 can be obtained by simply forming the light control material layer 5 by coating with a water system.
  • the light control device 1 can control light transmittance in a wide range from visible light to infrared light by applying a voltage.
  • Example 1 the light control device 21 shown in FIG. 2 was produced. Specifically, first, a first electrode 22 and a second electrode 23 each having a conductive film made of ITO provided on a glass substrate were prepared.
  • a light modulating material containing 50% by mass of sodium polystyrene sulfonate manufactured by Tosoh Finechem, product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000
  • PSD100 weight average molecular weight: 800,000 to 1,200,000
  • glycerin 50% by mass of glycerin.
  • the light modulating material was dispersed in water by applying ultrasonic waves for 30 minutes to obtain a dispersion.
  • the dispersion was applied onto the second electrode 23 by spin coating. Then, it was dried by heating at 100° C. for 1 hour, and the light modulating material layer 25 was produced.
  • Example 1 the first electrode 22 and the second electrode 23 were pasted together with a pressure-sensitive tape via two strip-shaped supporting members 26 and 27 .
  • an electrolyte solution LiPF 6 . . . 1 mol/L, solvent .
  • an epoxy adhesive was applied to the periphery and cured at 50° C. for 1 hour to seal the inside.
  • the light control device 21 shown in FIG. 2 was obtained.
  • the first electrode 22 was used as the working electrode
  • the second electrode 23 was used as the counter electrode.
  • the light modulating material layer 25 is provided on the counter electrode side of the electrolyte layer 24 .
  • Example 2 As a light control material, sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) 100% by mass without using glycerin.
  • a light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that the materials were used.
  • Example 3 A light control material containing 90% by mass of sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) and 10% by mass of glycerin as a light control material.
  • a light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that the materials were used.
  • Example 4 A light control material containing 70% by mass of sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) and 30% by mass of glycerin as a light control material.
  • a light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that the materials were used.
  • Example 5 A light modulating material layer 25 and a light modulating device were prepared in the same manner as in Example 1, except that polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., product number “PED-600”, number average molecular weight: 600) was used instead of glycerin. 21 was obtained.
  • polyethylene glycol manufactured by Sanyo Chemical Industries, Ltd., product number “PED-600”, number average molecular weight: 600
  • Example 6 A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that trimethylolpropane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of glycerin.
  • Example 7 Polystyrene sulfonic acid (manufactured by Sigma Aldrich, 18% aqueous solution, weight average A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except for using a molecular weight of 75,000.
  • Example 8 Ammonium polystyrene sulfonate (Sigma Aldrich), which is an ammonium salt of polystyrene sulfonate, instead of sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) A light control material layer 25 and a light control device 21 were obtained in the same manner as in Example 1, except that 30% aqueous solution, weight average molecular weight: 200,000) was used.
  • Example 9 Sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number "PS-100", weight average molecular weight: 800,000 to 1,200,000) instead of polystyrene sulfonic acid, which is a lithium hydroxide neutralized salt of polystyrene sulfonic acid A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that lithium was used.
  • PS-100 weight average molecular weight: 800,000 to 1,200,000
  • the lithium polystyrene sulfonate used was prepared by neutralizing polystyrene sulfonic acid (manufactured by Sigma Aldrich, 18% aqueous solution, weight average molecular weight: 75,000) with an aqueous solution of lithium hydroxide.
  • Reference Example 1 In Reference Example 1, a light modulating device 21 similar to that of Example 1 was produced, and the second electrode 23 was used as the working electrode, and the first electrode 22 was used as the counter electrode. Therefore, in Reference Example 1, the light modulating material layer 25 is provided on the working electrode side of the electrolyte layer 24 .
  • a DC voltage was applied to the light control device, and changes in light transmittance were evaluated. Changes in light transmittance were measured using a JASCO spectrometer (model number: V-670). The applied voltage was 0 V to 3.0 V (CV), and the measurement was performed in an air atmosphere. Also, the measurement wavelength range was set to 2500 nm to 300 nm.
  • FIG. 3 is a diagram showing the transmission spectrum of the light control device of Example 1 when the voltage is applied while changing from 0V to 3.0V.
  • FIG. 4 is a diagram showing transmission spectra when a voltage is applied while changing from 0 V to 3.0 V in the light control device of Reference Example 1.
  • the transmittance is reduced over the entire visible light region and the infrared region after voltage application.
  • the light control material layer 25 on the counter electrode side of the electrolyte layer 24, the above electrochromic characteristics are exhibited.
  • Examples 2 to 9 transmission spectra were obtained before voltage application (applied voltage of 0 V), applied voltage of 2.5 V, and applied voltage of 3.0 V, respectively. From the obtained transmission spectrum, the difference in transmittance at a wavelength of 800 nm and a wavelength of 1300 nm was obtained before and after applying a voltage of 2.5 V and a voltage of 3.0 V, respectively. The results are shown in Table 1 below. In addition, in Table 1, the content of each material is the content when the entire light modulating material is 100% by mass. Further, the difference in light transmittance is the difference between the transmittance before voltage application (applied voltage 0 V) and the transmittance when voltages of 2.5 V and 3.0 V are applied (before voltage application - after voltage application).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Provided is a light-adjusting material with which a film can easily be formed by aqueous coating, and which, with application of a voltage, can control light transmittance in a wide range from visible light to infra-red light. The light-adjusting material contains at least one of polystyrene sulphonate and a polystyrene sulphonate derivative.

Description

調光材料、調光フィルム、及び調光デバイスLight control material, light control film, and light control device
 本発明は、特定の波長領域の光の透過率を制御し得るエレクトロクロミック調光材料、並びに該調光材料を用いた調光フィルム及び調光デバイスに関する。 The present invention relates to an electrochromic light control material capable of controlling the transmittance of light in a specific wavelength range, and a light control film and a light control device using the light control material.
 特定の波長領域の光の透過率を制御し得るエレクトロクロミック調光材料は、特定の波長の光を遮断することにより透過率の調整を行うことや、色味の調整を行うことなどを目的として利用されている。このような調光材料は、室内部材、建築部材、電子部品等の様々な用途において広く用いられている。 Electrochromic light control materials that can control the transmittance of light in a specific wavelength range are intended to adjust the transmittance by blocking light of a specific wavelength, and to adjust the color tone. It's being used. Such dimming materials are widely used in various applications such as interior members, building members, and electronic components.
 また、近年では、赤外線領域における透過率の制御を可能とする省エネ型調光材料も注目を集めており、種々の検討が行われている。例えば、自動車の車内の温度を制御するために、調光材料を含む調光フィルムを中間層として用いた合わせガラスが提案されている。また、対向する一対の透明電極基板の間に、調光フィルム及び電解質層が挟み込まれた合わせガラスが提案されている。これにより、合わせガラスの透過率が制御されるとされている。 In recent years, energy-saving dimming materials that enable control of transmittance in the infrared region have also attracted attention, and various studies are being conducted. For example, in order to control the temperature inside an automobile, a laminated glass using a light control film containing a light control material as an intermediate layer has been proposed. Laminated glass has also been proposed in which a light control film and an electrolyte layer are sandwiched between a pair of opposing transparent electrode substrates. This is said to control the transmittance of the laminated glass.
 例えば、下記の特許文献1には、ニッケル酸化物のエレクトロクロミック層、イオン伝導層、酸化タングステンのエレクトロクロミック層の3層が順次積層された積層体が、2枚の導電性基板間に挟み込まれたエレクトロクロミック調光素子が開示されている。特許文献1では、ニッケル酸化物や酸化タングステンのエレクトロクロミック層が、蒸着法やスパッタリング法により形成されることが記載されている。 For example, in Patent Document 1 below, a laminate in which three layers of an electrochromic layer of nickel oxide, an ion-conducting layer, and an electrochromic layer of tungsten oxide are sequentially laminated is sandwiched between two conductive substrates. An electrochromic dimming device is disclosed. Patent Document 1 describes that an electrochromic layer of nickel oxide or tungsten oxide is formed by a vapor deposition method or a sputtering method.
 また、下記の特許文献2には、導電性のエレクトロクロミックなポリジオキシチオフェンを含む層と、プロトン酸を含む電解質を含む層と、イオン貯留化合物又はイオン貯留化合物の混合物を含む層とを備える、層状構造を有する、エレクトロクロミック装置が開示されている。 Further, Patent Document 2 below discloses a layer containing a conductive electrochromic polydioxythiophene, a layer containing an electrolyte containing protonic acid, and a layer containing an ion-retaining compound or a mixture of ion-retaining compounds. An electrochromic device is disclosed having a layered structure.
特開2004-062030号公報JP-A-2004-062030 特表2002-526801号公報Japanese translation of PCT publication No. 2002-526801
 しかしながら、特許文献1のように、蒸着法やスパッタリング法により、無機材料からなるエレクトロクロミック層を形成する場合、チャンバー等の大掛かりな装置が必要となり、製造コストの面からも好ましくないという問題がある。 However, when an electrochromic layer made of an inorganic material is formed by a vapor deposition method or a sputtering method, as in Patent Document 1, a large-scale apparatus such as a chamber is required, which is undesirable in terms of manufacturing cost. .
 また、特許文献2のように、ポリチオフェン等の導電性ポリマーからなるエレクトロクロミック材料を用いた場合、有機溶剤を用いないと塗工することが難しく、環境的側面から好ましくないという問題がある。 In addition, as in Patent Document 2, when an electrochromic material made of a conductive polymer such as polythiophene is used, it is difficult to apply without using an organic solvent, which is undesirable from an environmental point of view.
 本発明の目的は、水系での塗工により簡便に成膜することができ、しかも電圧を印加することにより、可視光から赤外光までの幅広い領域における光線透過率を制御できる、調光材料、並びに該調光材料を用いた調光フィルム及び調光デバイスを提供することにある。 An object of the present invention is to provide a light modulating material that can be easily formed into a film by coating in an aqueous system and that can control the light transmittance in a wide range from visible light to infrared light by applying a voltage. and a light control film and a light control device using the light control material.
 本発明に係る調光材料は、ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体のうち少なくとも一方を含む。 The light modulating material according to the present invention contains at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives.
 本発明に係る調光材料のある特定の局面では、前記ポリスチレンスルホン酸誘導体が、ポリスチレンスルホン酸塩である。 In a specific aspect of the light modulating material according to the present invention, the polystyrenesulfonic acid derivative is polystyrenesulfonate.
 本発明に係る調光材料の他の特定の局面では、前記ポリスチレンスルホン酸塩が、ポリスチレンスルホン酸ナトリウムである。 In another specific aspect of the light modulating material according to the present invention, the polystyrenesulfonate is sodium polystyrenesulfonate.
 本発明に係る調光材料のさらに他の特定の局面では、水溶性可塑剤をさらに含む。 In still another specific aspect of the light modulating material according to the present invention, it further contains a water-soluble plasticizer.
 本発明に係る調光材料のさらに他の特定の局面では、前記水溶性可塑剤が、グリセリンである。 In still another specific aspect of the light modulating material according to the present invention, the water-soluble plasticizer is glycerin.
 本発明に係る調光材料のさらに他の特定の局面では、ポリチオフェンを実質的に含まない。 In yet another specific aspect of the light modulating material according to the present invention, it does not substantially contain polythiophene.
 本発明に係る調光フィルムは、本発明に従って構成される調光材料を含む。 A light control film according to the present invention includes a light control material configured according to the present invention.
 本発明に係る調光デバイスは、第1の電極と、前記第1の電極上に設けられている、電解質層と、前記電解質層上に設けられており、本発明に従って構成される調光材料を含む、調光材料層と、前記調光材料層上に設けられている、第2の電極と、を備える。 A light modulating device according to the present invention comprises a first electrode, an electrolyte layer provided on the first electrode, and a light modulating material provided on the electrolyte layer and constructed according to the present invention. and a second electrode provided on the light modulating material layer.
 本発明に係る調光デバイスのある特定の局面では、前記第1の電極が、作用極であり、前記第2の電極が、対極であり、前記電解質層よりも前記対極側に前記調光材料層が設けられている。 In a specific aspect of the light modulating device according to the present invention, the first electrode is a working electrode, the second electrode is a counter electrode, and the light modulating material is disposed on the counter electrode side of the electrolyte layer. layers are provided.
 本発明によれば、水系での塗工により簡便に成膜することができ、しかも電圧を印加することにより、可視光から赤外光までの幅広い領域における光線透過率を制御できる、調光材料、並びに該調光材料を用いた調光フィルム及び調光デバイスを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a light modulating material that can be easily formed into a film by coating in an aqueous system and that can control the light transmittance in a wide range from visible light to infrared light by applying a voltage. and a light control film and a light control device using the light control material.
図1は、本発明の一実施形態に係る調光デバイスを示す模式的正面断面図である。FIG. 1 is a schematic front cross-sectional view showing a light control device according to one embodiment of the present invention. 図2は、実施例1で作製した調光デバイスを示す模式的正面断面図である。FIG. 2 is a schematic front cross-sectional view showing the light control device produced in Example 1. FIG. 図3は、実施例1の調光デバイスにおいて、電圧を0V~3.0Vまで変化させて印加したときの透過スペクトルを示す図である。FIG. 3 is a graph showing transmission spectra of the light modulating device of Example 1 when a voltage of 0 V to 3.0 V is applied. 図4は、参考例1の調光デバイスにおいて、電圧を0V~3.0Vまで変化させて印加したときの透過スペクトルを示す図である。FIG. 4 is a diagram showing transmission spectra when a voltage is applied while changing from 0 V to 3.0 V in the light control device of Reference Example 1. FIG.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 本発明の調光材料は、ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体のうち少なくとも一方を含む。従って、本発明の調光材料は、ポリスチレンスルホン酸又はポリスチレンスルホン酸誘導体をそれぞれ単独で含んでいてもよいし、ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体の双方を含んでいてもよい。 The light modulating material of the present invention contains at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives. Therefore, the light modulating material of the present invention may contain either polystyrenesulfonic acid or polystyrenesulfonic acid derivative alone, or may contain both polystyrenesulfonic acid and polystyrenesulfonic acid derivative.
 本発明の調光材料は、ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体のうち少なくとも一方を含むので、水系での塗工により簡便に成膜することができ、しかも電圧を印加することにより、可視光から赤外光までの幅広い領域における光線透過率を制御できる。 Since the light modulating material of the present invention contains at least one of polystyrenesulfonic acid and a polystyrenesulfonic acid derivative, it can be easily formed into a film by coating in an aqueous system, and furthermore, by applying a voltage, it can be converted from visible light to It is possible to control light transmittance in a wide range up to infrared light.
 従来、エレクトロクロミック調光材料として、ニッケル酸化物や酸化タングステン等の無機材料や、ポリチオフェン等の導電性ポリマーが知られている。しかしながら、無機材料を用いた調光材料は、蒸着法やスパッタリング法により成膜されることが多く、チャンバー等の大掛かりな装置が必要となり、製造コストの面からも好ましくないという問題がある。また、ポリチオフェン等の導電性ポリマーは、水に溶解し難い場合が多いことから、有機溶剤を用いなければ塗工することが難しく、環境的側面から好ましくないという問題がある。 Conventionally, inorganic materials such as nickel oxide and tungsten oxide, and conductive polymers such as polythiophene have been known as electrochromic light control materials. However, light modulating materials using inorganic materials are often formed by vapor deposition or sputtering, which requires a large-scale apparatus such as a chamber, which is undesirable in terms of manufacturing costs. Further, since conductive polymers such as polythiophene are often difficult to dissolve in water, it is difficult to apply them unless an organic solvent is used, which is undesirable from an environmental point of view.
 これに対して、本発明者らは、ポリスチレンスルホン酸やポリスチレンスルホン酸誘導体が、エレクトロクロミック特性を発現し、調光材料として用い得ることを見出した。すなわち、ポリスチレンスルホン酸やポリスチレンスルホン酸誘導体そのものに、電圧を印加すると、可視光から赤外光までの幅広い領域における光線透過率を制御できることを見出した。 In contrast, the present inventors found that polystyrene sulfonic acid and polystyrene sulfonic acid derivatives exhibit electrochromic properties and can be used as light modulating materials. That is, the present inventors have found that by applying a voltage to polystyrene sulfonic acid or a polystyrene sulfonic acid derivative itself, it is possible to control light transmittance in a wide range from visible light to infrared light.
 また、ポリスチレンスルホン酸や、ポリスチレンスルホン酸塩などのポリスチレンスルホン酸誘導体は、水への溶解度が高いことから、水系での塗工により簡便に成膜することができる。そのため、ハンドリング性に優れ、しかも蒸着法やスパッタリング法のようにチャンバー等の大掛かりな装置を必要とせず、製造コストを低減することができる。また、有機溶剤を使用せずとも塗工することができるので、環境的側面からも好適に用いることができる。 In addition, since polystyrene sulfonic acid and polystyrene sulfonic acid derivatives such as polystyrene sulfonate have high solubility in water, they can be easily formed into films by coating in an aqueous system. Therefore, it is excellent in handleability and does not require a large-scale apparatus such as a chamber as in the vapor deposition method or the sputtering method, so that the manufacturing cost can be reduced. Moreover, since coating can be performed without using an organic solvent, it can be used favorably from an environmental point of view.
 ポリスチレンスルホン酸塩としては、特に限定されず、例えば、ポリスチレンスルホン酸ナトリウムや、ポリスチレンスルホン酸リチウム、ポリスチレンスルホン酸アンモニウム等を用いることができる。なかでも、ポリスチレンスルホン酸塩としては、汎用性の高い、ポリスチレンスルホン酸ナトリウムを用いることが好ましい。 The polystyrene sulfonate is not particularly limited, and for example, sodium polystyrene sulfonate, lithium polystyrene sulfonate, ammonium polystyrene sulfonate, and the like can be used. Among them, it is preferable to use sodium polystyrene sulfonate, which is highly versatile, as the polystyrene sulfonate.
 もっとも、水溶性を有する限りにおいて、ポリスチレンスルホン酸塩以外のポリスチレンスルホン酸誘導体を用いてもよい。ポリスチレンスルホン酸塩以外のポリスチレンスルホン酸誘導体としては、例えば、ポリパラメチルスチレンスルホン酸、スチレンスルホン酸とスチレンの共重合体、スチレンスルホン酸塩と無水マレイン酸の共重合体、スチレンスルホン酸塩と無水マレインイミドの共重合体、スチレンスルホン酸と(メタ)アクリル酸エステルの共重合体等が挙げられる。なお、(メタ)アクリルとは、メタクリル又はアクリルのことをいうものとする。 However, polystyrene sulfonic acid derivatives other than polystyrene sulfonate may be used as long as they are water-soluble. Examples of polystyrenesulfonic acid derivatives other than polystyrenesulfonate include polyparamethylstyrenesulfonic acid, copolymers of styrenesulfonic acid and styrene, copolymers of styrenesulfonate and maleic anhydride, styrenesulfonates and A copolymer of maleimide anhydride, a copolymer of styrenesulfonic acid and (meth)acrylic acid ester, and the like can be mentioned. In addition, (meth)acryl means methacryl or acryl.
 また、ポリスチレンスルホン酸誘導体は、スチレンスルホン酸又はスチレンスルホン酸塩と、他の水溶性モノマーとの共重合体であってもよい。このような共重合体としては、スチレンスルホン酸-スチレンスルホン酸ナトリウム共重合体、スチレンスルホン酸-スチレンスルホン酸リチウム共重合体、スチレンスルホン酸-スチレンスルホン酸カリウム共重合体、スチレンスルホン酸-スチレンスルホン酸カルシウム共重合体、スチレンスルホン酸-スチレンスルホン酸アンモニウム共重合体等が挙げられる。 In addition, the polystyrenesulfonic acid derivative may be a copolymer of styrenesulfonic acid or styrenesulfonate and other water-soluble monomers. Examples of such copolymers include styrenesulfonic acid-sodium styrenesulfonate copolymer, styrenesulfonic acid-lithium styrenesulfonate copolymer, styrenesulfonic acid-potassium styrenesulfonate copolymer, and styrenesulfonic acid-styrene. A calcium sulfonate copolymer, a styrenesulfonic acid-ammonium styrenesulfonate copolymer, and the like are included.
 なお、これらのポリスチレンスルホン酸誘導体は、1種を単独で用いてもよく、複数種を併用してもよい。 These polystyrene sulfonic acid derivatives may be used singly or in combination.
 ポリスチレンスルホン酸又はポリスチレンスルホン酸誘導体の重量平均分子量(Mw)は、特に限定されないが、好ましくは2,000以上、より好ましくは10,000以上、さらに好ましくは50,000以上、特に好ましくは200,000以上、最も好ましくは500,000以上、好ましくは2,000,000以下、より好ましくは1,500,000以下である。ポリスチレンスルホン酸又はポリスチレンスルホン酸誘導体の重量平均分子量(Mw)が上記範囲内にある場合、電圧を印加することにより、可視光から赤外光までの幅広い領域における光線透過率をより一層効果的に制御できる。なお、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレンスルホン酸ナトリウム換算での重量平均分子量を示す。 The weight average molecular weight (Mw) of polystyrenesulfonic acid or polystyrenesulfonic acid derivative is not particularly limited, but is preferably 2,000 or more, more preferably 10,000 or more, still more preferably 50,000 or more, and particularly preferably 200,000 or more. 000 or more, most preferably 500,000 or more, preferably 2,000,000 or less, more preferably 1,500,000 or less. When the weight average molecular weight (Mw) of polystyrenesulfonic acid or a polystyrenesulfonic acid derivative is within the above range, the light transmittance in a wide range from visible light to infrared light can be more effectively improved by applying a voltage. You can control it. The weight average molecular weight (Mw) indicates the weight average molecular weight in terms of sodium polystyrene sulfonate measured by gel permeation chromatography (GPC).
 本発明において、ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体のうち少なくとも一方の含有量は、調光材料全体に対し、好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、好ましくは90質量%以下、より好ましくは80質量%以下、さらに好ましくは70質量%以下、特に好ましくは60質量%以下である。ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体のうち少なくとも一方の含有量が上記下限値以上である場合、電圧を印加することにより、可視光から赤外光までの幅広い領域における光線透過率をより一層効果的に制御できる。もっとも、ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体のうち少なくとも一方の含有量の上限値は、特に限定されず、調光材料全体に対し、100質量%であってもよい。 In the present invention, the content of at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass or more, relative to the entire light modulating material. , preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and particularly preferably 60% by mass or less. When the content of at least one of the polystyrene sulfonic acid and the polystyrene sulfonic acid derivative is equal to or higher than the above lower limit, the light transmittance in a wide range from visible light to infrared light can be further effectively increased by applying a voltage. can be controlled to However, the upper limit of the content of at least one of the polystyrenesulfonic acid and the polystyrenesulfonic acid derivative is not particularly limited, and may be 100% by mass with respect to the entire light modulating material.
 本発明の調光材料は、ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体とは異なる調光材料を実質的に含まないことが好ましい。特に、水に溶けにくい調光材料を実質的に含んでいないことが好ましい。このような調光材料としては、例えば、ポリチオフェン、ポリアニリン、ポリビニルピリジン等が挙げられる。この場合、水系での塗工をより一層好適に行うことができる。なお、本明細書において、「実質的に含んでいない」とは、例えば、調光材料全体に対し、その含有量が、5質量%以下であることをいうものとする。もっとも、水に溶けにくい調光材料を全く含んでいなくてもよい。 The light modulating material of the present invention preferably does not substantially contain a light modulating material different from polystyrene sulfonic acid and polystyrene sulfonic acid derivatives. In particular, it is preferable that the photochromic material does not substantially contain a poorly water-soluble light modulating material. Such dimming materials include, for example, polythiophene, polyaniline, polyvinylpyridine, and the like. In this case, water-based coating can be performed more favorably. In this specification, the expression "substantially does not contain" means, for example, that the content is 5% by mass or less with respect to the entire light modulating material. However, it does not have to contain any dimming material that is difficult to dissolve in water.
 本発明の調光材料は、ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体のうち少なくとも一方に加えて、さらに可塑剤を含んでいることが好ましい。この場合、電圧を印加したときに、電子をより一層移動し易くすることができ、可視光から赤外光までの幅広い領域における光線透過率をより一層効果的に制御することができる。 The light modulating material of the present invention preferably contains a plasticizer in addition to at least one of polystyrenesulfonic acid and polystyrenesulfonic acid derivatives. In this case, electrons can be more easily moved when a voltage is applied, and light transmittance in a wide range from visible light to infrared light can be more effectively controlled.
 可塑剤としては、水溶性可塑剤であることが好ましい。この場合、塗工性をより一層向上させることができる。 The plasticizer is preferably a water-soluble plasticizer. In this case, coatability can be further improved.
 水溶性可塑剤としては、特に限定されないが、例えば、グリセリン、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体等のポリオキシアルキレン、N-メチルピロリドン、トリメチロールプロパン、ショ糖、ソルビトール、又はキシリトール等を用いることができる。これらは、1種を単独で用いてもよく、複数種を併用してもよい。なかでも、水溶性可塑剤としては、グリセリンを用いることが好ましい。この場合、電圧を印加したときに、電子をより一層移動し易くすることができ、可視光から赤外光までの幅広い領域における光線透過率をより一層効果的に制御することができる。 Examples of water-soluble plasticizers include, but are not limited to, polyoxyalkylenes such as glycerin, polyethylene glycol, polypropylene glycol, copolymers of polyethylene glycol and polypropylene glycol, N-methylpyrrolidone, trimethylolpropane, sucrose, and sorbitol. , or xylitol or the like can be used. These may be used individually by 1 type, and may use multiple types together. Among them, it is preferable to use glycerin as the water-soluble plasticizer. In this case, electrons can be more easily moved when a voltage is applied, and light transmittance in a wide range from visible light to infrared light can be more effectively controlled.
 本発明において、可塑剤の含有量は、調光材料全体に対し、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上、特に好ましくは40質量%以上、好ましくは60質量%以下、より好ましくは50質量%以下である。可塑剤の含有量が上記範囲内である場合、電圧を印加することにより、可視光から赤外光までの幅広い領域における光線透過率をより一層効果的に制御できる。 In the present invention, the content of the plasticizer is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and particularly preferably 40% by mass or more, relative to the entire light modulating material. is 60% by mass or less, more preferably 50% by mass or less. When the content of the plasticizer is within the above range, the light transmittance in a wide range from visible light to infrared light can be controlled more effectively by applying voltage.
 (調光デバイス)
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
(dimmer device)
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る調光デバイスを示す模式的正面断面図である。 FIG. 1 is a schematic front cross-sectional view showing a light control device according to one embodiment of the present invention.
 図1に示すように、調光デバイス1は、第1の電極2、第2の電極3、電解質層4、及び調光材料層5を備える。本実施形態では、第1の電極2上に、電解質層4が設けられている。電解質層4上に、調光材料層5が設けられている。また、調光材料層5上に、第2の電極3が設けられている。 As shown in FIG. 1 , the light modulating device 1 includes a first electrode 2 , a second electrode 3 , an electrolyte layer 4 and a light modulating material layer 5 . In this embodiment, an electrolyte layer 4 is provided on the first electrode 2 . A light modulating material layer 5 is provided on the electrolyte layer 4 . A second electrode 3 is provided on the light modulating material layer 5 .
 第1の電極2及び第2の電極3としては、例えば、ITO等の透明電極を用いることができる。第1の電極2及び第2の電極3は、同じ材料により構成されていてもよく、異なる材料により構成されていてもよい。なお、第1の電極2及び第2の電極3は、ガラス基板等の支持体上に設けられた導電膜であってもよい。 As the first electrode 2 and the second electrode 3, for example, transparent electrodes such as ITO can be used. The first electrode 2 and the second electrode 3 may be made of the same material or may be made of different materials. The first electrode 2 and the second electrode 3 may be conductive films provided on a support such as a glass substrate.
 電解質層4は、電解質溶液により構成されていてもよいし、固体電解質により構成されていてもよい。電解質溶液としては、特に限定されないが、例えば、エチレンカーボネート(EC)や、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)等を溶媒とし、LiPF等を含む電解質溶液を用いることができる。 The electrolyte layer 4 may be composed of an electrolyte solution, or may be composed of a solid electrolyte. Although the electrolyte solution is not particularly limited, for example, an electrolyte solution containing LiPF 6 or the like in a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), or propylene carbonate (PC) can be used.
 調光材料層5は、上述した本発明の調光材料を含む調光フィルムである。調光材料層5は、例えば、上記調光材料を含む水溶液をスピンコート等の塗布方法によって、第2の電極3上に塗布することにより形成することができる。 The light control material layer 5 is a light control film containing the light control material of the present invention described above. The light modulating material layer 5 can be formed, for example, by coating an aqueous solution containing the light modulating material on the second electrode 3 by a coating method such as spin coating.
 上記のように構成された調光デバイス1に電圧を印加することにより、各波長における光線透過率が変化する。なお、本実施形態においては、第1の電極2を作用極(還元側、プラス極)とし、第2の電極3が対極(酸化側、マイナス極)となるように電圧を印加するものとする。従って、本実施形態において、調光材料層5は、電解質層4に対し、対極側に設けられている。 By applying a voltage to the light control device 1 configured as described above, the light transmittance at each wavelength changes. In this embodiment, a voltage is applied so that the first electrode 2 is the working electrode (reduction side, positive electrode) and the second electrode 3 is the counter electrode (oxidation side, negative electrode). . Therefore, in this embodiment, the light modulating material layer 5 is provided on the opposite electrode side of the electrolyte layer 4 .
 通常、ポリチオフェン等を調光材料に用いた調光材料層は、電解質層に対し、作用極側に設けられている。これに対して、本発明者らは、ポリスチレンスルホン酸やポリスチレンスルホン酸誘導体を調光材料に用いた調光材料層5では、電解質層4に対し、作用極側ではなく、対極側に設けることにより、エレクトロクロミック特性が発現されることを見出した。 Normally, a light modulating material layer using polythiophene or the like as a light modulating material is provided on the working electrode side with respect to the electrolyte layer. In contrast, the present inventors have found that the light modulating material layer 5 using polystyrene sulfonic acid or a polystyrene sulfonic acid derivative as the light modulating material is provided on the counter electrode side of the electrolyte layer 4 rather than on the working electrode side. It was found that electrochromic properties were expressed by
 このように、本実施形態では、水系での塗工により簡便に調光材料層5を成膜して、調光デバイス1を得ることができる。また、調光デバイス1では、電圧を印加することにより、可視光から赤外光までの幅広い領域における光線透過率を制御することができる。 Thus, in this embodiment, the light control device 1 can be obtained by simply forming the light control material layer 5 by coating with a water system. In addition, the light control device 1 can control light transmittance in a wide range from visible light to infrared light by applying a voltage.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更可能である。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited by these Examples, and can be appropriately modified within the scope of not changing the gist of the present invention.
 (実施例1)
 実施例1では、図2に示す調光デバイス21を作製した。具体的には、まず、ガラス基板上にITOからなる導電膜が設けられてなる第1の電極22及び第2の電極23を用意した。
(Example 1)
In Example 1, the light control device 21 shown in FIG. 2 was produced. Specifically, first, a first electrode 22 and a second electrode 23 each having a conductive film made of ITO provided on a glass substrate were prepared.
 次に、ポリスチレンスルホン酸ナトリウム(東ソー・ファインケム社製、品番「PS-100」、重量平均分子量:800,000~1,200,000)50質量%とグリセリン50質量%とを含む調光材料を1重量%の濃度で水に添加した。次に、超音波照射を30分間行うことにより水中に調光材料を分散させ、分散液を得た。続いて、第2の電極23上に、上記分散液をスピンコーティングにより塗布した。そして、100℃で1時間加熱することによって乾燥させ、調光材料層25を作製した。 Next, a light modulating material containing 50% by mass of sodium polystyrene sulfonate (manufactured by Tosoh Finechem, product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) and 50% by mass of glycerin. It was added to water at a concentration of 1% by weight. Next, the light modulating material was dispersed in water by applying ultrasonic waves for 30 minutes to obtain a dispersion. Subsequently, the dispersion was applied onto the second electrode 23 by spin coating. Then, it was dried by heating at 100° C. for 1 hour, and the light modulating material layer 25 was produced.
 次に、2枚の短冊状の支持部材26,27を介して、第1の電極22及び第2の電極23を感圧テープにより貼り合わせた。続いて、第1の電極22、支持部材26,27、及び調光材料層25に囲まれた空間に電解質溶液(LiPF…1mol/L、溶媒…EC:DMC=50:50(体積比))を注入し、電解質層24を形成した。最後に、周囲にエポキシ接着剤を塗布し、50℃で1時間の条件にて硬化させ、内部を封止した。これにより、図2に示す調光デバイス21を得た。なお、実施例1では、第1の電極22を作用極とし、第2の電極23を対極として作用させるものとした。従って、実施例1では、電解質層24に対し、対極側に調光材料層25が設けられている。 Next, the first electrode 22 and the second electrode 23 were pasted together with a pressure-sensitive tape via two strip-shaped supporting members 26 and 27 . Subsequently, an electrolyte solution (LiPF 6 . . . 1 mol/L, solvent . ) was injected to form the electrolyte layer 24 . Finally, an epoxy adhesive was applied to the periphery and cured at 50° C. for 1 hour to seal the inside. Thereby, the light control device 21 shown in FIG. 2 was obtained. In Example 1, the first electrode 22 was used as the working electrode, and the second electrode 23 was used as the counter electrode. Accordingly, in Example 1, the light modulating material layer 25 is provided on the counter electrode side of the electrolyte layer 24 .
 (実施例2)
 調光材料として、グリセリンを用いずに、ポリスチレンスルホン酸ナトリウム(東ソー・ファインケム社製、品番「PS-100」、重量平均分子量:800,000~1,200,000)100質量%からなる調光材料を用いたこと以外は、実施例1と同様にして、調光材料層25及び調光デバイス21を得た。
(Example 2)
As a light control material, sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) 100% by mass without using glycerin. A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that the materials were used.
 (実施例3)
 調光材料として、ポリスチレンスルホン酸ナトリウム(東ソー・ファインケム社製、品番「PS-100」、重量平均分子量:800,000~1,200,000)90質量%とグリセリン10質量%とを含む調光材料を用いたこと以外は、実施例1と同様にして、調光材料層25及び調光デバイス21を得た。
(Example 3)
A light control material containing 90% by mass of sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) and 10% by mass of glycerin as a light control material. A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that the materials were used.
 (実施例4)
 調光材料として、ポリスチレンスルホン酸ナトリウム(東ソー・ファインケム社製、品番「PS-100」、重量平均分子量:800,000~1,200,000)70質量%とグリセリン30質量%とを含む調光材料を用いたこと以外は、実施例1と同様にして、調光材料層25及び調光デバイス21を得た。
(Example 4)
A light control material containing 70% by mass of sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) and 30% by mass of glycerin as a light control material. A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that the materials were used.
 (実施例5)
 グリセリンの代わりにポリエチレングリコール(三洋化成工業社製、品番「PED-600」、数平均分子量:600)を用いたこと以外は、実施例1と同様にして、調光材料層25及び調光デバイス21を得た。
(Example 5)
A light modulating material layer 25 and a light modulating device were prepared in the same manner as in Example 1, except that polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd., product number “PED-600”, number average molecular weight: 600) was used instead of glycerin. 21 was obtained.
 (実施例6)
 グリセリンの代わりにトリメチロールプロパン(東京化成工業社製)を用いたこと以外は、実施例1と同様にして、調光材料層25及び調光デバイス21を得た。
(Example 6)
A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that trimethylolpropane (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of glycerin.
 (実施例7)
 ポリスチレンスルホン酸ナトリウム(東ソー・ファインケム社製、品番「PS-100」、重量平均分子量:800,000~1,200,000)の代わりにポリスチレンスルホン酸(Sigama Aldrichi社製、18%水溶液、重量平均分子量:75,000)を用いたこと以外は、実施例1と同様にして、調光材料層25及び調光デバイス21を得た。
(Example 7)
Polystyrene sulfonic acid (manufactured by Sigma Aldrich, 18% aqueous solution, weight average A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except for using a molecular weight of 75,000.
 (実施例8)
 ポリスチレンスルホン酸ナトリウム(東ソー・ファインケム社製、品番「PS-100」、重量平均分子量:800,000~1,200,000)の代わりにポリスチレンスルホン酸のアンモニウム塩であるポリスチレンスルホン酸アンモニウム(Sigama Aldrichi社製、30%水溶液、重量平均分子量:200,000)を用いたこと以外は、実施例1と同様にして、調光材料層25及び調光デバイス21を得た。
(Example 8)
Ammonium polystyrene sulfonate (Sigma Aldrich), which is an ammonium salt of polystyrene sulfonate, instead of sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number “PS-100”, weight average molecular weight: 800,000 to 1,200,000) A light control material layer 25 and a light control device 21 were obtained in the same manner as in Example 1, except that 30% aqueous solution, weight average molecular weight: 200,000) was used.
 (実施例9)
 ポリスチレンスルホン酸ナトリウム(東ソー・ファインケム社製、品番「PS-100」、重量平均分子量:800,000~1,200,000)の代わりにポリスチレンスルホン酸の水酸化リチウム中和塩であるポリスチレンスルホン酸リチウムを用いたこと以外は、実施例1と同様にして、調光材料層25及び調光デバイス21を得た。なお、用いたポリスチレンスルホン酸リチウムは、ポリスチレンスルホン酸(Sigama Aldrichi社製、18%水溶液、重量平均分子量:75,000)を水酸化リチウム水溶液で中和して調製して用いた。
(Example 9)
Sodium polystyrene sulfonate (manufactured by Tosoh Finechem Co., Ltd., product number "PS-100", weight average molecular weight: 800,000 to 1,200,000) instead of polystyrene sulfonic acid, which is a lithium hydroxide neutralized salt of polystyrene sulfonic acid A light modulating material layer 25 and a light modulating device 21 were obtained in the same manner as in Example 1, except that lithium was used. The lithium polystyrene sulfonate used was prepared by neutralizing polystyrene sulfonic acid (manufactured by Sigma Aldrich, 18% aqueous solution, weight average molecular weight: 75,000) with an aqueous solution of lithium hydroxide.
 (参考例1)
 参考例1では、実施例1と同様の調光デバイス21を作製して、第2の電極23を作用極とし、第1の電極22を対極として作用させるものとした。従って、参考例1では、電解質層24に対し、作用極側に調光材料層25が設けられている。
(Reference example 1)
In Reference Example 1, a light modulating device 21 similar to that of Example 1 was produced, and the second electrode 23 was used as the working electrode, and the first electrode 22 was used as the counter electrode. Therefore, in Reference Example 1, the light modulating material layer 25 is provided on the working electrode side of the electrolyte layer 24 .
 (評価)
 調光デバイスに直流電圧を印加し、光線透過率の変化を評価した。光線透過率の変化は、JASCO社製の分光装置(型番:V-670)により測定した。なお、印加する電圧は0V~3.0V(CV)とし、空気雰囲気下で測定を行った。また、測定波長領域は、2500nm~300nmとした。
(evaluation)
A DC voltage was applied to the light control device, and changes in light transmittance were evaluated. Changes in light transmittance were measured using a JASCO spectrometer (model number: V-670). The applied voltage was 0 V to 3.0 V (CV), and the measurement was performed in an air atmosphere. Also, the measurement wavelength range was set to 2500 nm to 300 nm.
 図3は、実施例1の調光デバイスにおいて、電圧を0V~3.0Vまで変化させて印加したときの透過スペクトルを示す図である。図4は、参考例1の調光デバイスにおいて、電圧を0V~3.0Vまで変化させて印加したときの透過スペクトルを示す図である。 FIG. 3 is a diagram showing the transmission spectrum of the light control device of Example 1 when the voltage is applied while changing from 0V to 3.0V. FIG. 4 is a diagram showing transmission spectra when a voltage is applied while changing from 0 V to 3.0 V in the light control device of Reference Example 1. FIG.
 図3に示すように、調光材料としてポリスチレンスルホン酸誘導体を用いることにより、電圧印加後に可視光領域の全域及び赤外領域にわたり、透過率が小さくなっていることがわかる。なお、図3及び図4の比較より、電解質層24に対し、対極側に調光材料層25を設けることにより、上記のようなエレクトロクロミック特性が発現されていることがわかる。 As shown in FIG. 3, by using a polystyrene sulfonic acid derivative as a light modulating material, the transmittance is reduced over the entire visible light region and the infrared region after voltage application. 3 and 4, by providing the light control material layer 25 on the counter electrode side of the electrolyte layer 24, the above electrochromic characteristics are exhibited.
 また、実施例2~9においても、電圧印可前(印加電圧0V)、印加電圧2.5V、及び印加3.0V電圧それぞれの透過スペクトルを得た。得られた透過スペクトルから、電圧2.5V及び電圧3.0Vそれぞれの電圧を印加する前後において、波長800nm及び波長1300nmそれぞれにおける透過率の差を求めた。結果を下記の表1に示す。なお、表1において、各材料の含有量は、調光材料全体を100質量%としたときの含有量である。また、光線透過率の差は、電圧を印加する前(印加電圧0V)の透過率と、電圧2.5V及び電圧3.0Vそれぞれの電圧を印加したときの透過率との差(電圧印可前-電圧印可後)を示している。 Also, in Examples 2 to 9, transmission spectra were obtained before voltage application (applied voltage of 0 V), applied voltage of 2.5 V, and applied voltage of 3.0 V, respectively. From the obtained transmission spectrum, the difference in transmittance at a wavelength of 800 nm and a wavelength of 1300 nm was obtained before and after applying a voltage of 2.5 V and a voltage of 3.0 V, respectively. The results are shown in Table 1 below. In addition, in Table 1, the content of each material is the content when the entire light modulating material is 100% by mass. Further, the difference in light transmittance is the difference between the transmittance before voltage application (applied voltage 0 V) and the transmittance when voltages of 2.5 V and 3.0 V are applied (before voltage application - after voltage application).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例2~9においても、電圧印加後に、波長800nm及び波長1300nmそれぞれにおいて透過率が小さくなっていることがわかる。以上より、実施例1~9では、水系の塗工で簡便に調光材料層を成膜でき、上記のようなエレクトロクロミック特性が発現される調光デバイスが得られていることが確認できた。 From Table 1, it can be seen that in Examples 2 to 9 as well, the transmittance decreased at wavelengths of 800 nm and 1300 nm after voltage application. From the above, it was confirmed that in Examples 1 to 9, a light control material layer could be easily formed by water-based coating, and a light control device exhibiting electrochromic characteristics as described above was obtained. .
 1,21…調光デバイス
 2,22…第1の電極
 3,23…第2の電極
 4,24…電解質層
 5,25…調光材料層
 26,27…支持部材
DESCRIPTION OF SYMBOLS 1, 21... Light control device 2, 22... 1st electrode 3, 23... 2nd electrode 4, 24... Electrolyte layer 5, 25... Light control material layer 26, 27... Support member

Claims (9)

  1.  ポリスチレンスルホン酸及びポリスチレンスルホン酸誘導体のうち少なくとも一方を含む、調光材料。 A light modulating material containing at least one of polystyrenesulfonic acid and a polystyrenesulfonic acid derivative.
  2.  前記ポリスチレンスルホン酸誘導体が、ポリスチレンスルホン酸塩である、請求項1に記載の調光材料。 The light modulating material according to claim 1, wherein the polystyrene sulfonic acid derivative is a polystyrene sulfonate.
  3.  前記ポリスチレンスルホン酸塩が、ポリスチレンスルホン酸ナトリウムである、請求項2に記載の調光材料。 The light modulating material according to claim 2, wherein the polystyrene sulfonate is sodium polystyrene sulfonate.
  4.  水溶性可塑剤をさらに含む、請求項1~3のいずれか1項に記載の調光材料。 The light modulating material according to any one of claims 1 to 3, further comprising a water-soluble plasticizer.
  5.  前記水溶性可塑剤が、グリセリンである、請求項4に記載の調光材料。 The light modulating material according to claim 4, wherein the water-soluble plasticizer is glycerin.
  6.  ポリチオフェンを実質的に含まない、請求項1~5のいずれか1項に記載の調光材料。 The light modulating material according to any one of claims 1 to 5, which does not substantially contain polythiophene.
  7.  請求項1~6のいずれか1項に記載の調光材料を含む、調光フィルム。 A light control film containing the light control material according to any one of claims 1 to 6.
  8.  第1の電極と、
     前記第1の電極上に設けられている、電解質層と、
     前記電解質層上に設けられており、請求項1~6のいずれか1項に記載の調光材料を含む、調光材料層と、
     前記調光材料層上に設けられている、第2の電極と、
    を備える、調光デバイス。
    a first electrode;
    an electrolyte layer provided on the first electrode;
    A light modulating material layer provided on the electrolyte layer and containing the light modulating material according to any one of claims 1 to 6;
    a second electrode provided on the light modulating material layer;
    A dimming device, comprising:
  9.  前記第1の電極が、作用極であり、
     前記第2の電極が、対極であり、
     前記電解質層よりも前記対極側に前記調光材料層が設けられている、請求項8に記載の調光デバイス。
    the first electrode is a working electrode,
    the second electrode is a counter electrode,
    The light modulating device according to claim 8, wherein the light modulating material layer is provided on the counter electrode side of the electrolyte layer.
PCT/JP2022/007843 2021-02-26 2022-02-25 Light-adjusting material, light-adjusting film, and light-adjusting device WO2022181760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022528312A JPWO2022181760A1 (en) 2021-02-26 2022-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-029729 2021-02-26
JP2021029729 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181760A1 true WO2022181760A1 (en) 2022-09-01

Family

ID=83049153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007843 WO2022181760A1 (en) 2021-02-26 2022-02-25 Light-adjusting material, light-adjusting film, and light-adjusting device

Country Status (2)

Country Link
JP (1) JPWO2022181760A1 (en)
WO (1) WO2022181760A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217791A (en) * 1983-05-25 1984-12-07 Japan Electronic Ind Dev Assoc<Jeida> Electrochromic material
JPS62186231A (en) * 1986-02-12 1987-08-14 Toyo Soda Mfg Co Ltd Electrochromic display material
JPH07301708A (en) * 1994-04-28 1995-11-14 Asahi Glass Co Ltd Substrate with color filter, its production and liquid crystal display element using the same
JP2004526195A (en) * 2001-03-07 2004-08-26 アクレオ アーベー Electrochromic device
JP2005519316A (en) * 2002-03-07 2005-06-30 アクレオ アーベー Electrochemical devices
US20190324341A1 (en) * 2018-04-19 2019-10-24 Gentex Corporation Plastic coatings for improved solvent resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217791A (en) * 1983-05-25 1984-12-07 Japan Electronic Ind Dev Assoc<Jeida> Electrochromic material
JPS62186231A (en) * 1986-02-12 1987-08-14 Toyo Soda Mfg Co Ltd Electrochromic display material
JPH07301708A (en) * 1994-04-28 1995-11-14 Asahi Glass Co Ltd Substrate with color filter, its production and liquid crystal display element using the same
JP2004526195A (en) * 2001-03-07 2004-08-26 アクレオ アーベー Electrochromic device
JP2005519316A (en) * 2002-03-07 2005-06-30 アクレオ アーベー Electrochemical devices
US20190324341A1 (en) * 2018-04-19 2019-10-24 Gentex Corporation Plastic coatings for improved solvent resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIMURA, KENICHI, KUMAR, JAYANT: "Electrochromism of Polyaniline/Poly (4-styrenesulfonate) Complex", JOURNAL OF PRINTING SCIENCE AND TECHNOLOGY, JAPANESE SOCIETY OF PRINTING SCIENCE AND TECHNOLOGY, JP, vol. 41, no. 2, 30 April 2004 (2004-04-30), JP , pages 109 - 116, XP009539242, ISSN: 0914-3319, DOI: 10.11413/nig.41.109 *

Also Published As

Publication number Publication date
JPWO2022181760A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US8179587B2 (en) Electrochromic device
KR102149672B1 (en) Electrochromic device
Shen et al. Out of sight but not out of mind: the role of counter electrodes in polymer-based solid-state electrochromic devices
US8992719B2 (en) Fabrication method of electrochromic element
KR101656466B1 (en) Ion Gel Smart Window Manufacturing Method
WO2020056326A1 (en) Method for fabricating solid state electrochromic device, solid state electrochromic device and its applications
US10597518B2 (en) Solid polymer electrolyte for electrochromic devices
US10703881B2 (en) Polymer electrolyte and electrochromic devices including polymer electrolyte
US11912114B2 (en) Electrochromic sunroof based on all solid-state flexible thin film electrochromic device and methods to fabricate the same
KR20010053618A (en) Self-adhesive Electrochromic Electrode and Systems Containing Same
Zhu et al. Polyelectrolytes exceeding ITO flexibility in electrochromic devices
Sun et al. Deep eutectic solvent‐based gel electrolytes for flexible electrochromic devices with excellent high/low temperature durability
JP2009169229A (en) Electrochromic element and method of manufacturing the same
CN102841473A (en) Electrochromism device and preparation method thereof
WO2022181760A1 (en) Light-adjusting material, light-adjusting film, and light-adjusting device
US20080070062A1 (en) Electrochromic arrangement
KR20010041486A (en) Method of preparing lithiated vanadium oxide-coated substrates of optical quality
Meng Organic Electronics for Electrochromic Materials and Devices
US10323122B2 (en) Electrochromic composition and electrochromic element
US10983408B2 (en) Display device with electrochromic material
KR20220097574A (en) Polymer composition for electrochromic device, ion conductive composition and electrochromic device comprising the same
JP2010198793A (en) Conductive film, conductive polymer composition, conductive polymer material, device, and resistance film type touch panel
JPH03132724A (en) Production of electrochromic display device
KR102429311B1 (en) Electrolyte composition comprising metal organic compound and antioxidant, and electrochromic device comprising the same
KR102539689B1 (en) Photochromic sheet with excellent discoloring performance and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022528312

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759794

Country of ref document: EP

Kind code of ref document: A1