WO2022181754A1 - Composite laminate and joined body - Google Patents

Composite laminate and joined body Download PDF

Info

Publication number
WO2022181754A1
WO2022181754A1 PCT/JP2022/007818 JP2022007818W WO2022181754A1 WO 2022181754 A1 WO2022181754 A1 WO 2022181754A1 JP 2022007818 W JP2022007818 W JP 2022007818W WO 2022181754 A1 WO2022181754 A1 WO 2022181754A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
thermoplastic resin
type epoxy
epoxy resin
Prior art date
Application number
PCT/JP2022/007818
Other languages
French (fr)
Japanese (ja)
Inventor
和男 大谷
信行 高橋
良太 新林
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2023502530A priority Critical patent/JPWO2022181754A1/ja
Publication of WO2022181754A1 publication Critical patent/WO2022181754A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins

Definitions

  • the present invention provides a composite laminate containing a base material made of metal or resin, wherein the base materials can be welded and joined together at a low temperature, a method for producing the same, and each base material using the composite laminate.
  • the present invention relates to a bonded body and a method for manufacturing the same.
  • metal substrates and resin substrates, metal substrates and metal substrates, and resin substrates and resin substrates are collectively referred to as "
  • adhesive bonding using an adhesive is often used as a method for bonding substrates.
  • vinyl chloride resin pipes are widely used due to their excellent hydraulic characteristics, chemical resistance, and ease of handling. in use.
  • the adhesive used for joining vinyl chloride resin pipes is usually a solution-type adhesive dissolved in a solvent such as tetrahydrofuran or methyl ethyl ketone. These solution-type adhesives are applied to the adhesive surfaces of pipes and joints, the applied surfaces are swollen, and the swollen surfaces are pressed together to entangle the vinyl chloride resin molecules of both, and the solvent evaporates to achieve bonding. It is something to do.
  • the adhesive used for adhesive bonding it is suitable for bonding hard-to-bond and flexible resin adherends such as polyvinyl chloride sheets to hard base materials such as steel plates and concrete, and is suitable for initial bonding.
  • a first liquid containing an isocyanato group-terminated urethane polymer A multi-liquid type adhesive composition consisting of a second liquid containing an active hydrogen-containing compound having two or more active hydrogens has been proposed (Patent Document 1).
  • Patent Document 2 As a resin adhesive that can efficiently and firmly bond an article made of vinyl chloride resin and other articles, a moisture-curable urethane prepolymer having an isocyanato group at the end and an active hydrogen A resin adhesive made of an organic solvent that does not dissolve is proposed (Patent Document 2).
  • JP 2020-105460 Composite material with low friction slidability and excellent safety Composite material with low friction slidability and excellent safety
  • the present invention has been made under such circumstances, and joins base materials with high joint strength in a short time even under low temperature conditions without requiring time for evaporation of the solvent at the site of the joint work.
  • An object of the present invention is to provide a composite laminate and a method for manufacturing the same, and to provide a joined body using the composite laminate and a method for manufacturing the same.
  • the “low temperature condition” in the present invention is a temperature condition that does not affect the resin such as vinyl chloride resin having low heat resistance such as deformation. means a temperature condition of 70°C or less.
  • the present invention by providing a resin primer layer formed of a specific material on the surface of a base material, it is possible to easily weld and bond on site, and to develop high bonding strength in a short time even under the above-mentioned low temperature conditions. This is based on the discovery of
  • the present invention provides the following [1] to [20].
  • a composite laminate having a substrate made of metal or resin and one or more resin primer layers laminated on the surface of the substrate, At least one layer of the resin primer layer is a polymer layer made of a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (A), and a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (B).
  • the resin primer layer is laminated on the surface-treated surface of the base material,
  • the substrate is made of a metal selected from the group consisting of aluminum, iron and stainless steel.
  • the substrate comprises a resin selected from the group consisting of polyvinyl chloride, polyethylene and polypropylene.
  • A a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin
  • B a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin
  • C a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin
  • D a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin
  • E maleic anhydride-modified polyolefins and/or chlorinated polyolefins
  • the substrate is treated with at least one selected from the group consisting of a silane coupling agent, an isocyanate compound and a thiol compound to form a functional group-introduced layer on the substrate.
  • the method for manufacturing a composite laminate according to any one of [6] to [8].
  • a method for manufacturing a joined body At least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, thermal welding, injection welding, and press welding is applied to the surface of the composite laminate on the primer layer side and the thermoplastic resin.
  • a method for manufacturing a joined body in which the material is welded and joined together.
  • a method for manufacturing a joined body The surfaces on the primer layer side of the composite laminate are welded together by at least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, heat welding, injection welding, and press welding.
  • a method for manufacturing a bonded body, in which the bonded body is integrated by [15] The method for producing a joined body according to [13] or [14], wherein the welding is performed at a temperature of 80° C. or lower.
  • ⁇ Resin composition for heat welding, film for primer> [16] An in-situ polymerization type thermoplastic resin composition containing the following (A), an in-situ polymerization type thermoplastic resin composition containing the following (B), an in-situ polymerization type thermoplastic resin composition containing the following (C), and the following (D) At least one selected from the group consisting of an in-situ polymerization type thermoplastic resin composition containing, and an in-situ polymerization type thermoplastic resin composition containing any of the following (A) to (D) and the following (E) , a resin composition for heat welding.
  • A a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin
  • B a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin
  • C a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin
  • D a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin
  • E maleic anhydride-modified polyolefins and/or chlorinated polyolefins [17]
  • a primer film obtained by subjecting the heat-welding resin composition of [16] to a polyaddition reaction to form a film.
  • a film for a primer in which the heat-welding resin composition according to [16] is applied onto the surface of a release mold or a release film, subjected to a polyaddition reaction, and then released to obtain a film-like polymer.
  • Production method. ⁇ Method for manufacturing joined body using primer film> [19] a base material made of metal or resin; A method for manufacturing a joined body, wherein a primer film is sandwiched between a base material A made of metal or resin and a base material B made of metal or resin, and the base material A and the base material B are joined and integrated.
  • the primer film is a polymer of an in situ polymerization type thermoplastic resin composition containing (A) below, a polymer of an in situ polymerization type thermoplastic resin composition containing (B) below, and an in situ polymerization containing (C) below.
  • a polymer of a type thermoplastic resin composition, a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (D), and an in-situ polymerization type containing any of the following (A) to (D) and the following (E) A method for producing a joined body comprising at least one selected from the group consisting of a polymer of a thermoplastic resin composition.
  • the base material A and the base material B are welded by at least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, heat welding, injection welding, and press welding.
  • the base materials can be bonded together in a short time with high bonding strength.
  • FIG. 3 is a cross-sectional view schematically showing another embodiment of the composite laminate of the present invention.
  • 1 is a cross-sectional view schematically showing an embodiment of a joined body of the present invention;
  • FIG. 3 is a cross-sectional view schematically showing another embodiment of the composite laminate of the present invention.
  • “Welding” means heating the joint surfaces of joint materials such as resins and metals to a temperature exceeding the softening point or melting point of the component present on at least one joint surface, and It means to form a bonding state by entanglement by diffusion or crystallization.
  • adhesive means bonding of adherends via an organic material (thermosetting resin, thermoplastic resin, etc.) such as a tape or adhesive.
  • FIG. 1 shows one embodiment of the composite laminate of the present invention.
  • the composite laminate 1 shown in FIG. 1 is a composite laminate comprising a substrate 2 made of metal or resin and one or more resin primer layers 3 laminated on the surface of the substrate 2 .
  • At least one layer of the resin primer layer 3 is a polymer layer made of a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (A), and a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (B).
  • the composite laminate has the polymer layer on the outermost surface.
  • each polymer layer may be formed of the same in-situ polymerizable thermoplastic resin composition, or may be formed of a different in-situ polymerizable thermoplastic resin composition.
  • may (A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin; (B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin; (C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin; (D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin; (E) maleic anhydride-modified polyolefin and/or chlorinated polyolefin
  • the term "comprising" in the expression "in-situ polymerization type thermoplastic resin composition containing (A)” means that the combination of (A) is blended as a composition raw material of the in-situ polymerization type thermoplastic resin composition.
  • thermoplastic resin composition containing (B) means that "In-situ polymerization type thermoplastic resin composition containing (B)", “In-situ polymerization type thermoplastic resin composition containing (C)”, “In-situ polymerization type thermoplastic resin composition containing (D)", "( Similarly, the expression “in-situ polymerization type thermoplastic resin composition containing any of A) to (D) and (E)” also means that the combination of (B) is blended as a composition raw material, and The combination of (C) is blended, the combination of (D) is blended as a composition raw material, the combination of (A) to (D) as a composition raw material, and further (E ) is blended.
  • Metal base material The type of metal base material applied to the composite laminate of the present invention is not particularly limited.
  • the types of metal substrates include aluminum materials, iron materials, titanium materials, magnesium materials, stainless steel materials, and copper materials. These metal substrates may be single metals or alloys. Among these, aluminum is preferably used from the viewpoint of light weight and ease of processing.
  • the type of resin constituting the resin base material applied to the composite laminate of the present invention is not particularly limited, but examples thereof include polyvinyl chloride, polyethylene, polypropylene and the like, which are used particularly for infrastructure piping and the like.
  • Polyvinyl chloride includes resins called rigid vinyl chloride and soft vinyl chloride
  • polyethylene includes high-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, ultra-high-molecular-weight polyethylene, etc.
  • Polypropylene is a homopolymer. , random copolymers, block copolymers, etc.
  • a resin primer layer is laminated on the surface of the substrate.
  • the resin primer layer may be composed of one layer, or may be composed of two or more layers.
  • the substrate can be bonded to another substrate with high bonding strength.
  • the resin primer layer is firmly adhered to the surface of the base material, and can protect the surface of the base material from deterioration such as dirt and oxidation.
  • the polymer layer constituting at least one layer of the resin primer layer can be formed by heating under low temperature conditions that do not affect the resin having low heat resistance such as deformation.
  • the base material in the composite laminate having the polymer layer on the outermost surface, can be joined to the polymer layer by welding under low temperature conditions that do not affect the resin with low heat resistance such as deformation, A high bonding strength can be expressed.
  • the "phenol novolak type epoxy resin” and “cresol novolak type epoxy resin”, which are the raw materials for the composition of the polymer layer, are resins having an epoxy group having a plurality of nuclei.
  • "Resin” is a resin having a phenolic hydroxyl group with a plurality of nuclear bodies.
  • "Phenol novolak type epoxy resin”, “cresol novolak type epoxy resin”, “phenol novolak resin” and “cresol novolak resin” have a distribution in the number of nuclei of the novolacs used as raw materials.
  • the binuclear bisphenol F portion is a portion having the following linear polymer structure.
  • the linear polymer means a one-dimensional linear polymer that does not contain a crosslinked structure in the polymer molecule.
  • the polymer of the in-situ polymerizable thermoplastic resin composition containing (A) has a thermoplastic structure, that is, a linear polymer structure resulting from a polyaddition reaction of a bifunctional thiol compound and a bifunctional epoxy resin in the presence of a catalyst.
  • the polymer of the in-situ polymerizable thermoplastic resin composition containing (B) has a thermoplastic structure, that is, a linear polymer structure resulting from a polyaddition reaction of a bifunctional amino compound and a bifunctional epoxy resin in the presence of a catalyst. .
  • the polymer of the in-situ polymerizable thermoplastic resin composition containing (C) has a thermoplastic structure, that is, a linear polymer structure resulting from a polyaddition reaction of a bifunctional carboxy compound and a bifunctional epoxy resin in the presence of a catalyst.
  • the polymer of the in-situ polymerizable thermoplastic resin composition containing (D) is a polyaddition reaction of a bifunctional isocyanate compound and a bifunctional phenol in the presence of a catalyst, and/or a bifunctional isocyanate compound and a bifunctional cresol. It has a thermoplastic structure, that is, a linear polymer structure due to a polyaddition reaction in the presence of a catalyst.
  • a portion of the novolak having three or more nuclear bodies has a complicated structure including a ladder structure and a partial cross-linking structure, so that a structure that can maintain a relatively high heat resistance can be derived.
  • a polymer layer made of the polymer of the in-situ polymerization type thermoplastic resin composition containing the above (A), a polymer layer made of the polymer of the in-situ polymerization type thermoplastic resin composition containing the above (B), the above A polymer layer comprising a polymer of the in-situ polymerizable thermoplastic resin composition containing (C), a polymer layer comprising a polymer of the in-situ polymerizable thermoplastic resin composition containing (D), the (A) to A polymer layer composed of a polymer of an in-situ polymerizable thermoplastic resin composition containing any of (D) and the above (E) differs from a thermosetting resin that is entirely composed of a three-dimensional network with a crosslinked structure.
  • the composite laminate of the present invention comprises an in-situ polymerizable thermoplastic resin composition containing (A), an in-situ polymerizable thermoplastic resin composition containing (B), and an in-situ polymerizable thermoplastic resin composition containing (C) on the surface of the base material.
  • the resin primer layer is produced through a step of forming one or more layers of the resin primer layer by subjecting at least one of the in-situ polymerization type thermoplastic resin compositions to a polyaddition reaction.
  • the method of coating the surface of the substrate with the in-situ polymerizable thermoplastic resin composition is not particularly limited, but examples thereof include a spray coating method and an immersion method.
  • the heating temperature for forming a resin primer layer by polyaddition reaction of the coated in-situ polymerizable thermoplastic resin composition depends on the type of the compound to be reacted, but it is important for ease of operation in in-situ polymerization and composite lamination. From the viewpoint of production efficiency of the body, the temperature is preferably normal temperature to 80°C, more preferably 50 to 80°C, and still more preferably 60 to 80°C. From the same point of view, the heating time is preferably 5 to 90 minutes, more preferably 10 to 80 minutes, even more preferably 15 to 60 minutes.
  • the in-situ polymerization type thermoplastic resin composition contains a solvent
  • after coating the in-situ polymerization type thermoplastic resin composition it is appropriately dried for volatilization of the solvent, and then heated to initiate the polyaddition reaction. preferably.
  • the bifunctional thiol compound in (A) a combination of a bifunctional thiol compound and a phenol novolac epoxy resin and/or a cresol novolak epoxy resin is a compound having two mercapto groups in the molecule, for example, a bifunctional difunctional Class thiol compound 1,4-bis(3-mercaptobutyryloxy)butane (for example, "Karenzu MT (registered trademark) BD1" manufactured by Showa Denko KK) can be mentioned.
  • a tetrafunctional thiol compound may also be used in combination from the viewpoint of increasing the number of crosslinking points.
  • pentaerythritol tetrakis (3-mercaptobutyrate) for example, Showa Denko Co., Ltd. "Karenzu MT (registered trademark) PE1
  • a well-known thing can be used as a phenol novolak-type epoxy resin.
  • Specific examples include YDPN-638 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and N-740 (manufactured by DIC Corporation).
  • a known cresol novolac type epoxy resin can also be used.
  • o-cresol novolak type epoxy resins YDCN-700-7, YDCN-700-10, YDCN-704, YDCN-704L (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), N-680 (DIC Corporation (manufactured by Changchun Group) and CNE-202 (manufactured by Changchun Group).
  • the bifunctional amino compound in (B) a combination of a bifunctional amino compound and a phenol novolac type epoxy resin and/or a cresol novolac type epoxy resin is a compound having two amino groups, such as a secondary amine amino group.
  • a secondary amine amino group such as piperazine and the like having two are preferred, compounds having two amino groups, which are secondary amines, can also be used. Or it may be an amine having one primary amine with two active hydrogens.
  • Compounds having two amino groups, which are primary amines include bifunctional aliphatic diamines and aromatic diamines.
  • Aliphatic diamines include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, 1,6-hexamethylenediamine, 2,5-dimethyl-2,5-hexane Diamine, 2,2,4-trimethylhexamethylenediamine, isophoronediamine, bis(4-amino-3-methylcyclohexyl)methane, 1,3-diaminocyclohexane, N-aminoethylpiperazine and the like, and aromatic diamines include includes diaminodiphenylmethane, diaminodiphenylpropane and the like.
  • 1,3-propanediamine, 1,4-diaminobutane, 1,6-hexamethylenediamine and the like are preferable from the viewpoint of primer toughness.
  • a well-known thing can be used as a phenol novolak-type epoxy resin. Specific examples include YDPN-638 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and N-740 (manufactured by DIC Corporation). A known cresol novolac type epoxy resin can also be used.
  • o-cresol novolak type epoxy resins YDCN-700-7, YDCN-700-10, YDCN-704, YDCN-704L (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), N-680 (DIC Corporation (manufactured by Changchun Group) and CNE-202 (manufactured by Changchun Group).
  • the bifunctional carboxy compound in (C) a combination of a bifunctional carboxy compound and a phenol novolac type epoxy resin and/or a cresol novolak type epoxy resin is a compound having two carboxy groups, such as oxalic acid, malonic acid, and succinic acid. , glutaric acid, adipic acid, maleic acid, fumaric acid, isophthalic acid, terephthalic acid, and the like. Among them, isophthalic acid, terephthalic acid, adipic acid, and the like are preferable from the viewpoint of primer strength and toughness.
  • a well-known thing can be used as a phenol novolak-type epoxy resin.
  • Specific examples include YDPN-638 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and N-740 (manufactured by DIC Corporation).
  • a known cresol novolac type epoxy resin can also be used.
  • o-cresol novolak type epoxy resins YDCN-700-7, YDCN-700-10, YDCN-704, YDCN-704L manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • N-680 DIC Corporation
  • CNE-202 manufactured by Changchun Group
  • the bifunctional isocyanate compound in (D) a combination of a bifunctional isocyanate compound and a phenol novolac resin and/or a cresol novolac resin is a compound having two isocyanato groups, such as hexamethylene diisocyanate, tetramethylene diisocyanate, dimer acid diisocyanate, Diisocyanate compounds such as 2,4- or 2,6-tolylene diisocyanate (TDI) or mixtures thereof, p-phenylene diisocyanate, xylylene diisocyanate, and diphenylmethane diisocyanate (MDI) can be mentioned.
  • TDI 2,4- or 2,6-tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • TDI, MDI, and the like are preferable from the viewpoint of primer strength.
  • phenol novolak resins include BRG-555, BRG-556, BRG-557, BRG-558, and CRG-951 (manufactured by Aica Kogyo Co., Ltd.).
  • Cresol novolac resins include ortho-, meta-, and para-cresol novolacs. Specifically, for example, meta-para-cresol novolak: LF-100, LF-110, LF-120, ortho-cresol novolak: LF-200, para-cresol novolac: LF-400 (manufactured by Lignite Co., Ltd.), and the like. .
  • the compounding ratio of the bifunctional thiol compound and the phenol novolak epoxy resin and/or the cresol novolac epoxy resin in the in situ polymerizable thermoplastic resin composition containing (A) is determined by considering the reactivity of both.
  • the molar equivalent ratio of thiol to epoxy groups is preferably set to 0.7 to 1.5, more preferably 0.8 to 1.4, and still more preferably 0.9 to 1.3. do.
  • the compounding ratio of the bifunctional amino group to the phenol novolak epoxy resin and/or the cresol novolac epoxy resin is determined by considering the reactivity of both.
  • the molar equivalent ratio of amino groups to epoxy groups is preferably set to 0.7 to 1.5, more preferably 0.8 to 1.4, still more preferably 0.9 to 1.3. and
  • the compounding ratio of the bifunctional carboxyl group to the phenol novolak type epoxy resin and/or cresol novolak type epoxy resin is determined in consideration of the reactivity of both.
  • the molar equivalent ratio of carboxy groups to epoxy groups is preferably set to 0.7 to 1.5, more preferably 0.8 to 1.4, and still more preferably 0.9 to 1.3.
  • the compounding ratio of the bifunctional osocyanate and the phenol novolak resin and/or cresol novolak resin is determined by taking into consideration the reactivity of both isocyanato groups relative to the epoxy groups. is preferably set to be 0.7 to 1.5, more preferably 0.8 to 1.4, and still more preferably 0.9 to 1.3.
  • At least one polymer layer of the resin primer layer 3 is selected from the group consisting of the combination of (A), the combination of (B), the combination of (C) and the combination of (D). It consists of a polymer of an in-situ polymerization type thermoplastic resin composition containing any one of them, and the in-situ polymerization type thermoplastic resin composition may contain a mixture of two or more selected from the above group. Here, the mixing ratio is not particularly limited.
  • a known catalyst can be used for the polyaddition reaction.
  • tertiary amines such as triethylamine and 2,4,6-tris(dimethylaminomethyl)phenol; phosphorus compounds such as triphenylphosphine; and the like are preferably used.
  • the amount of the catalyst used is preferably 0.01 with respect to a total of 100 parts by mass of the raw material compounds forming the in-situ polymerization type thermoplastic resin, from the viewpoint of moderate acceleration of the polyaddition reaction. to 5 parts by mass, more preferably 0.05 to 3 parts by mass, and even more preferably 0.1 to 2 parts by mass.
  • the in-situ polymerization type thermoplastic resin composition containing at least one selected from the group consisting of the combination of (A), the combination of (B), the combination of (C) and the combination of (D) may contain a solvent from the viewpoint of ease of mixing of composition raw materials and ease of coating of the in-situ polymerization type thermoplastic resin composition.
  • the solvent is, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, tetrahydrofuran, Cyclohexane, n-hexane, ethanol, methanol and the like are preferably used, but methyl ethyl ketone and tetrahydrofuran are preferably used for improving adhesion to polyvinyl chloride.
  • the in-situ polymerization type thermoplastic resin composition may contain additives such as colorants as necessary in order to form a desired resin coating layer.
  • additives such as colorants as necessary in order to form a desired resin coating layer.
  • 100% by mass of the in-situ polymerization type thermoplastic resin composition (excluding the solvent) 0.1 to It is preferably 5% by mass, more preferably 0.5 to 3% by mass.
  • thermoplastic resin composition containing any of (A) to (D) and (E)
  • the maleic anhydride-modified polyolefin is obtained by grafting maleic anhydride to polyolefin, and includes maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, and the like.
  • maleic anhydride-modified polyethylene maleic anhydride-modified polypropylene, and the like.
  • Kayabrid 002PP, 002PP-NW, 003PP, 003PP-NW manufactured by Kayaku Akzo Co., Ltd. and Modic series manufactured by Mitsubishi Chemical.
  • SCONA TPPP2112GA, TPPP8112GA, and TPPP9212GA manufactured by BYK may also be used together as polypropylene additives functionalized with maleic anhydride.
  • Toyobo Hardren registered trademark
  • 13-LP As chlorinated polyolefins, Toyobo Hardren (registered trademark) 13-LP, 13-LLP, 15-LP, Nippon Paper Industries Co., Ltd.
  • Superchron registered trademark 814HS, 390S, 803LT (toluene solution), 803L (toluene solution ), 1026 (toluene solution), and the like.
  • the amount of (E) added to (A) to (D) is the total of (A) to (D) (E) is preferably 5 to 200 parts by mass (solid content), more preferably 20 to 100 parts by mass (solid content), with respect to 100 parts by mass (solid content). If the amount added is less than 5 parts by mass, bonding with polyolefin will not be possible, and if the amount exceeds 200 parts by mass, sufficient bonding strength with polyvinyl chloride will not be exhibited. Further, when the maleic anhydride-modified polyolefin is added, the reaction may proceed at room temperature to 150°C.
  • thermosetting resin When the resin primer layer consists of a plurality of layers, at least one of the layers is a layer formed from a cured product of a resin composition containing a thermosetting resin (hereinafter also referred to as a "thermosetting resin layer"). It is also preferable that examples of the thermosetting resin include allyl-modified maleimide resin, urethane resin, epoxy resin, vinyl ester resin, and unsaturated polyester resin. Each layer of the thermosetting resin layer may be formed of one of these resins alone, or may be formed of a mixture of two or more. Alternatively, two or more layers may be thermosetting resin layers of different types.
  • the surface of the substrate preferably has a surface-treated surface. Since the resin primer layer is formed on the surface-treated surface of the base material, it can be easily and firmly adhered to the base material.
  • Examples of the surface treatment include cleaning with a solvent or the like, degreasing treatment, blasting treatment, polishing treatment, etching treatment, chemical conversion treatment, and the like. These treatments may be used alone or in combination of two or more. Among these, it is preferable that the surface be subjected to at least one surface treatment selected from the group consisting of plasma treatment, corona discharge treatment, UV ozone treatment, blasting treatment, polishing treatment, etching treatment and chemical conversion treatment.
  • the surface treatment is performed by cleaning the surface of the base material, generating hydroxyl groups on the surface, or by the anchor effect of forming fine unevenness (roughening) on the surface. This is done for the purpose of improving the adhesion of the primer layer.
  • the properties of the surface of the base material surface-treated by the above-described method may change from that immediately after the surface treatment due to the formation of a resin primer layer or the like on the surface-treated surface. . For this reason, it is considered impossible or impractical to specify and express the properties of the surface of the surface-treated substrate in the composite laminate. Therefore, in the present invention, the surface of the substrate that has undergone surface treatment is specified by the surface treatment method.
  • Various treatments of the surface treatment can be performed by known methods. As a specific treatment method, for example, the following method can be used.
  • the cleaning or degreasing treatment with a solvent or the like includes, for example, a method of cleaning the surface of the base material with an organic solvent such as acetone or toluene or wiping the surface for degreasing.
  • blasting examples include shot blasting and sandblasting.
  • polishing treatment examples include buffing using an abrasive cloth, roll polishing using abrasive paper (sandpaper), electropolishing, and the like.
  • Examples of the etching treatment when the substrate is aluminum include chemical etching treatments such as an alkali method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, an iron salt method, and an electrolytic etching method. and other electrochemical etching treatments.
  • the etching treatment is preferably an alkali method using an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution, and particularly preferably a caustic soda method using an aqueous sodium hydroxide solution.
  • the alkali method for example, the aluminum substrate can be immersed in an aqueous solution of sodium hydroxide or potassium hydroxide having a concentration of 3 to 20% by mass at 20 to 70° C. for 1 to 15 minutes.
  • a chelating agent, an oxidizing agent, a phosphate, or the like may be added. After the immersion, it is preferable to neutralize (desmut) with a 5 to 20% by mass nitric acid aqueous solution or the like, wash with water, and dry.
  • the chemical conversion treatment is to form a chemical conversion film mainly on the surface of the substrate.
  • Examples of the chemical conversion treatment applied when the substrate is made of an aluminum material include boehmite treatment and zirconium treatment, with boehmite treatment being particularly preferred. It is also preferable that the chemical conversion treatment be performed after the etching treatment.
  • the boehmite treatment is carried out, for example, by treating an aluminum substrate with hot water of about 90 to 100° C. to form a boehmite (aluminum hydrated oxide) film on the surface of the substrate.
  • a reaction accelerator ammonia, triethanolamine, or the like may be added to water.
  • boehmite treatment can be performed by immersing an aluminum substrate in hot water of 90 to 100° C. containing triethanolamine at a concentration of 0.1 to 5.0% by mass for 3 seconds to 5 minutes.
  • baking is preferably performed after the treatment with hot water or the like, in order to form a good boehmite film.
  • the zirconium treatment is carried out, for example, by immersing an aluminum base material in a zirconium salt-containing liquid such as zirconium phosphate to form a zirconium compound film on the surface of the base material.
  • a zirconium salt-containing liquid such as zirconium phosphate
  • an aluminum substrate is immersed in a solution of a chemical conversion agent for zirconium treatment such as "Palcoat 3762" or "Palcoat 3796" (manufactured by Nihon Parkerizing Co., Ltd.) at 45 to 70°C for 0.5 to 3 minutes.
  • a chemical conversion agent for zirconium treatment such as "Palcoat 3762" or "Palcoat 3796" (manufactured by Nihon Parkerizing Co., Ltd.) at 45 to 70°C for 0.5 to 3 minutes.
  • zirconium treatment can also be performed.
  • the surface treatment When surface treatment is applied to a substrate made of an aluminum material, the surface treatment preferably includes one or more selected from the group consisting of etching treatment and boehmite treatment.
  • FIG. 2 shows another preferred embodiment of the composite laminate of the present invention.
  • the composite laminate 1 shown in FIG. 2 has a functional group-introduced layer 4 laminated between a substrate 2 made of metal (hereinafter referred to as a metal substrate) and a resin coating layer 3 in contact with both.
  • the functional group-introduced layer has a structure derived from one or more functional groups selected from the group consisting of (C1) to (C7) below.
  • the structure derived from the functional group in the functional group-introduced layer chemically bonds with each of the metal substrate and the resin coating layer laminated in contact with the functional group-introduced layer, whereby the metal substrate and the resin It becomes easier to adhere firmly to the coating layer.
  • the functional group-introduced layer can also contribute to improving the bonding strength between the surface of the composite laminate on the resin coating layer side and the resin material.
  • the functional group-introduced layer has a structure derived from the functional groups (C1) to (C7) is confirmed by analysis immediately after the functional group-introduced layer is formed on the surface of the metal substrate. In some cases, it is possible, but in the obtained composite laminate, the structure derived from these functional groups is changed by chemically bonding with the resin coating layer, and the presence of the group or structure in the functional group-introduced layer It is impossible or impractical to ascertain Therefore, in the present invention, the functional group-introduced layer is formed on the basis of the functional groups possessed by the silane coupling agent and/or other compounds capable of generating structures derived from the functional groups (C1) to (C7). We will specify the configuration.
  • the functional group-introduced layer is preferably laminated on the surface of the metal substrate that has undergone the surface treatment described above. That is, it is preferable that the metal substrate be subjected to the surface treatment before forming the functional group-introduced layer.
  • the synergistic effect of the surface treatment and the chemical bond provided by the functional group-introduced layer facilitates strong adhesion between the metal substrate and the resin coating layer. Also, the bonding strength between the surface of the composite laminate on the resin coating layer side and the resin material can be improved.
  • the functional group-introduced layer is formed by treating the surface of the substrate with one or more selected from the group consisting of (c1) to (c7) below before forming the resin coating layer.
  • (c1) a silane coupling agent having one or more functional groups selected from the group consisting of an amino group, a mercapto group, a (meth)acryloyl group, an epoxy group and an isocyanato group; and (c2) a silane coupling agent having an amino group.
  • a combination with an epoxy compound (c3) one selected from the group consisting of a silane coupling agent having a mercapto group, an epoxy compound, an isocyanate compound, an epoxy-modified (meth)acrylate compound, and an amino group-containing (meth)acrylate compound Combination with the above compounds (c4)
  • Combination of a silane coupling agent having a (meth) acryloyl group and a thiol compound (c5)
  • a silane coupling agent having an epoxy group, an amine compound, a thiol compound and an amino group-containing Combination with one or more compounds selected from the group consisting of meth)acrylate compounds (c6) isocyanate compound (c7) thiol compound
  • (c1) to (c7) correspond to the respective groups or structures of (C1) to (C7) formed therefrom, respectively. That is, the treatment by (c1) forms a functional group-introduced layer into which the group of (C1) is introduced, and the treatment by (c2) forms a functional group-introduced layer into which the structure of (C2) is introduced. to form.
  • the treatment (c2) when the amino group is reacted with a polyfunctional epoxy compound, an epoxy group, which is a functional group possessed by the polyfunctional epoxy compound, is introduced at the end.
  • an isocyanato group which is a functional group possessed by the polyfunctional isocyanate compound, is introduced to the terminal.
  • the method for forming the functional group-introduced layer is not particularly limited. can be formed by coating with the coating method of For example, a metal substrate is immersed in a solution of a silane coupling agent having a concentration of 5 to 50% by mass at room temperature to 100° C. for 1 minute to 5 days, and then dried at room temperature to 100° C. for 1 minute to 5 hours. method.
  • silane coupling agent for example, known agents used in surface treatment of glass fibers can be applied.
  • these functional groups react with functional groups of compounds other than the silane coupling agent used to form the functional group-introduced layer to produce functional groups that are compatible with the compound forming the resin coating layer. obtain. Therefore, in each of the treatments (c2) to (c5), it is preferable to treat the surface of the metal substrate with the silane coupling agent and then with a compound other than the silane coupling agent.
  • the silicon coupling agent is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
  • the silane coupling agent is not particularly limited, but has one or more functional groups selected from the group consisting of an amino group, a mercapto group, a (meth)acryloyl group, an epoxy group and an isocyanato group. preferable. These silane coupling agents may be used singly or in combination of two or more.
  • Those having an amino group include, for example, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxy Silane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-(vinylbenzyl)-2 -Aminopropyltrimethoxysilane hydrochloride and the like.
  • mercapto groups include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
  • Those having a (meth)acryloyl group include, for example, 3-methacryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri ethoxysilane and the like.
  • Those having an epoxy group include, for example, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyltrimethoxysilane, 3-glycid xypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like.
  • Those having an isocyanato group include, for example, 3-isocyanatopropyltriethoxysilane.
  • the thiol compound in (c4), (c5) or (c7) is a compound other than the silane coupling agent.
  • the mercapto group of the thiol compound is likely to bond with the surface of the metal substrate, particularly with the hydroxyl group generated by surface treatment. Further, when used in combination with the silicon coupling agent, it reacts with a functional group such as a (meth)acryloyl group or an epoxy group derived from the silane coupling agent to form the resin coating layer on the surface of the metal substrate.
  • a thiol compound is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
  • the thiol compound is not particularly limited. Trademark) QE-340M” (manufactured by Toray Fine Chemicals Co., Ltd.); ether-based primary thiol compound: “Cupcure (registered trademark) 3-800” (manufactured by Cognis); 1,4-bis(3-mercaptobutyric Ryloxy) butane: "Karenzu MT BD1” (manufactured by Showa Denko KK), pentaerythritol tetrakis (3-mercaptobutyrate): "Karenzu MT PE1" (manufactured by Showa Denko KK); 1,3,5-tris ( 3-mercaptobutyloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione: "Karenzu MT NR1” (manufactured by Showa Denko KK) and the like. These thiol compounds may be used
  • the isocyanate compound in (c3) or (c6) is a compound other than the silane coupling agent.
  • the isocyanato group of the isocyanate compound is likely to bond with the surface of the metal base material, particularly with the hydroxyl group generated by the surface treatment. Further, when used in combination with the silicon coupling agent, it reacts with functional groups such as mercapto groups derived from the silane coupling agent, and is compatible with the compound that forms the resin coating layer on the surface of the metal substrate. can give rise to sensitive functional groups. Therefore, the isocyanate compound is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
  • isocyanate compound examples include, but are not limited to, polyfunctional isocyanates such as diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and isophorone diisocyanate (IPDI); Isocyanatoethyl methacrylate: "Karenzu MOI®", 2-isocyanatoethyl acrylate: “Karenzu AOI®” and “AOI-VM®”, 1,1-(bisacryloyloxyethyl) ethyl isocyanate : isocyanate compounds having a radical reactive group such as "Karenzu BEI (registered trademark)" (manufactured by Showa Denko KK). The said isocyanate compound may be used individually by 1 type, or may use 2 or more types together.
  • polyfunctional isocyanates such as diphenylmethane diisocyanate (MDI), he
  • the epoxy compound in (c2) or (c3) is a compound other than the silane coupling agent.
  • the epoxy group of the epoxy compound reacts with a functional group derived from the silane coupling agent, such as an amino group or a mercapto group, to produce a functional group that is compatible with the compound that forms the resin coating layer on the surface of the metal substrate.
  • a functional group derived from the silane coupling agent such as an amino group or a mercapto group
  • an epoxy compound is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
  • the epoxy compound a known epoxy compound can be used, and a polyfunctional epoxy compound or a compound having an alkenyl group in addition to the epoxy group is preferable.
  • the epoxy compound include allyl glycidyl ether, 1,6-hexanediol diglycidyl ether, and bifunctional epoxy resins.
  • Alicyclic epoxy compounds may also be used, such as 1,2-epoxy-4-vinylcyclohexane: "Celoxide (registered trademark; hereinafter the same.) 2000", 3',4'-epoxycyclohexylmethyl-3,4-epoxy Cyclohexane carboxylate: "Celoxide 2021P” (manufactured by Daicel Corporation) and the like. These epoxy compounds may be used singly or in combination of two or more.
  • the amine compound in (c5) is a compound other than the silane coupling agent.
  • the amino group of the amine compound reacts with a functional group such as an epoxy group derived from the silane coupling agent to generate a functional group that is compatible with the compound that forms the resin coating layer on the surface of the metal substrate. Therefore, the amine compound is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
  • amine compound a known amine compound or the like can be used, and amine compounds having two or more amino groups in one molecule and compounds having an alkenyl group in addition to an amino group (including an amide group) can be used.
  • amino compounds include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, hexamethylenediamine, 2,5-dimethyl-2,5-hexanediamine, 2, 2,4-trimethylhexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 4-aminomethyloctamethylenediamine, 3,3′-iminobis(propylamine), 3,3′-methylimino bis(propylamine), bis(3-aminopropyl)ether, 1,2-bis(3-aminopropyloxy)ethane, mensendiamine, isophoronediamine
  • Epoxy-modified (meth)acrylate compound The epoxy-modified (meth)acrylate compound in (c3) is a compound other than the silane coupling agent and has an epoxy group and a (meth)acryloyl group. Therefore, by reacting with a functional group such as a mercapto group derived from the silane coupling agent, a functional group that is easily compatible with the compound that forms the resin coating layer can be generated on the surface of the metal substrate. Therefore, the epoxy-modified (meth)acrylate compound is preferably used as a compound for forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer. be done.
  • epoxy-modified (meth)acrylate compound examples include glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl methacrylate: "Cychromer (registered trademark) M100", and (c2) and (c3) described above.
  • Cychromer registered trademark
  • a compound obtained by (meth)acryloylating a part of the polyfunctional epoxy compound in is mentioned.
  • These epoxy-modified (meth)acrylate compounds may be used singly or in combination of two or more.
  • the amino group-containing (meth)acrylate compound in (c3) or (c5) is a compound other than the silane coupling agent and has an amino group and a (meth)acryloyl group. Therefore, by reacting with a functional group such as a mercapto group or an epoxy group derived from the silane coupling agent, a functional group that is easily compatible with the compound forming the resin coating layer can be generated on the surface of the metal substrate. Therefore, the amino group-containing (meth)acrylate compound is suitable as a compound for forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer. Used.
  • amino group-containing (meth)acrylate compound examples include (meth)acrylamide, and part of the amine compound having two or more amino groups in one molecule in (c5) described above is (meth)acryloylated. and the like. These amino group-containing (meth)acrylate compounds may be used singly or in combination of two or more.
  • FIG. 3 shows one embodiment of the conjugate of the present invention.
  • the substrate-resin bonded body 10 shown in FIG. 3 is obtained by joining and integrating the resin primer layer side surface of the composite laminate 1 and the resin material 5 . That is, the base material 2 and the resin material 5 are joined and integrated through the resin primer layer 3 .
  • the resin primer layer 3 on the surface of the composite laminate 1 can be formed under low-temperature conditions that do not affect resin with low heat resistance such as deformation, and can be welded and integrated under the low-temperature conditions, resulting in high bonding strength. Therefore, a substrate-resin bonded body having excellent workability can be obtained.
  • the base material 2 is a resin base material
  • a resin-resin bonded body is obtained
  • the base material 2 is a metal base material
  • a base-resin bonded body is obtained.
  • the resin material to be joined with the composite laminate is not particularly limited, and may be a general synthetic resin.
  • the resin primer layer of the composite laminate can exhibit high bonding strength even under low-temperature conditions that do not affect resin with low heat resistance such as deformation, so it can be suitably used even with resins with low heat resistance. .
  • resins with low heat resistance examples include thermoplastic resins such as polyvinyl chloride, polyethylene, and polypropylene, as well as thermoplastic resins reinforced with glass fibers and carbon fibers.
  • thermoplastic resins such as polyvinyl chloride, polyethylene, and polypropylene
  • thermoplastic resins reinforced with glass fibers and carbon fibers are used.
  • pipes used for infrastructure are used. It is also suitable for use in connecting metal and resin, and is useful for connecting resin pipes and metal pipes, for example.
  • the joined body of the present invention can also be obtained by joining the composite laminates of the present invention through at least one resin primer layer.
  • the base material 2 of each composite laminate is a resin base material
  • a resin-resin bonded body is obtained
  • the base material 2 of each composite laminate is a metal base material
  • a metal-resin bonded body is obtained
  • one of the substrates 2 of each composite laminate is a resin substrate and the other is a metal substrate
  • a metal-resin bonded body is obtained.
  • the thickness of the resin primer layer depends on the material to be bonded to the resin primer layer and the contact area of the bonded portion, but from the viewpoint of sufficient bonding strength and heat resistance, it is preferably 1 ⁇ m to 1 mm, more preferably 2 ⁇ m to 500 ⁇ m. , more preferably 5 ⁇ m to 100 ⁇ m.
  • the bonded body can be obtained by welding a resin material, a metal substrate, or another composite laminate to the resin primer layer of the composite laminate. Specifically, for example, they can be joined and integrated by thermal welding, ultrasonic welding, high-frequency induction welding, high-frequency dielectric welding, injection molding, and press molding.
  • the welding methods include heat welding, ultrasonic welding, high-frequency induction welding, high-frequency dielectric welding, and injection molding, as well as various welding methods such as vibration welding, spin welding, laser welding, hot air welding, and hot plate welding. is also mentioned.
  • the resin primer layer of one composite laminate is attached to the resin primer layer of the other composite laminate.
  • the non-bonded substrate surfaces may be welded together.
  • a primer film can be used in place of the resin primer layer.
  • the primer film means a film that functions as an adhesive layer between the base material A and the base material B.
  • a primer film made of at least one selected from the group consisting of a polymer of a plastic resin composition is prepared, and between a base material A made of metal or resin and a base material B made of metal or resin, The base material A and the base material B can be joined and integrated
  • A a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin
  • B a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin
  • C a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin
  • D a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin
  • E Maleic anhydride-modified polyolefin and/or chlorinated polyolefin
  • the method for joining and integrating is selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, heat welding, injection welding, and press welding. It is preferable that at least one method is used.
  • [Metal substrate] ⁇ Aluminum plate: aluminum alloy; Al-Mg-Si system A6063, 18 mm ⁇ 45 mm, thickness 1.5 mm ⁇ Steel: Steel plate, SPHC (JIS G 3131: 2018), 18 mm x 45 mm, thickness 1.6 mm ⁇ SUS304 plate: Stainless steel SUS304 (Cr-Ni system), 18 mm ⁇ 45 mm, thickness 1.5 mm
  • Resin base material ⁇ Takiron C.I. Vinyl chloride plate Product number: ESS8800A, 10mm x 45mm, thickness 2.0mm ⁇ Sekisui Seisaku Kogyo Co., Ltd.
  • the aluminum test piece subjected to the etching treatment was prepared by dissolving 2 g of 3-aminopropyltrimethoxysilane (silane coupling agent "KBM-903" (manufactured by Shin-Etsu Silicone Co., Ltd.)) in 1000 g of industrial ethanol. After being immersed for 20 minutes in a solution containing a silane coupling agent at °C, the metal test piece was taken out and dried to perform a functional group imparting treatment to obtain an aluminum test piece to which a functional group was imparted.
  • ⁇ Steel plate, SUS-304 plate> The steel plate and SUS-304 plate used to manufacture the test pieces were degreased with acetone and subjected to surface treatment.
  • In-situ polymerizable thermoplastic resin compositions (1) to (9) were prepared as follows using the composition raw materials shown in Table 1 below.
  • thermoplastic resin composition (2) o-cresol novolac type epoxy resin "YDCN-704N" (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) 100 g, 100 g, bifunctional thiol compound: 1,4-bis(3-mercaptobutyryloxy)butane "Karenzu MT BD1" (manufactured by Showa Denko Co., Ltd.) 35.6 g, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30) 0.54 g was dissolved in 252 g of methyl ethyl ketone to prepare an in-situ polymerization type thermoplastic resin composition (2). made.
  • thermoplastic resin composition (3) 100 g of hexamethylene diisocyanate (HDI) (manufactured by Tokyo Chemical Industry Co., Ltd.), 125.0 g of BRG-556 "Shaunol BRG-556" (manufactured by Aica Kogyo Co., Ltd.), and 0.90 g of triphenylphosphine were dissolved in 418 g of methyl ethyl ketone.
  • a polymerizable thermoplastic resin composition (3) was prepared.
  • thermoplastic resin composition (4) 100 g of hexamethylene diisocyanate (HDI) (manufactured by DIC Corporation), 113.1 g of ortho-cresol novolac resin "LF-200" (manufactured by Lignite Corporation), and 0.85 g of triphenylphosphine were dissolved in 396 g of methyl ethyl ketone to form an on-site polymerization type thermoplastic.
  • a resin composition (4) was prepared.
  • thermoplastic resin composition (6) o-Cresol novolak type epoxy resin "YDCN-704N" (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) 100g, 100g, piperazine 41.0g, triphenylphosphine 0.56g dissolved in methyl ethyl ketone 262g to make an on-site polymerization type thermoplastic resin composition Item (6) was produced.
  • thermoplastic resin composition (7) 100 g of phenolic novolac type epoxy resin "N-740" (manufactured by DIC Corporation), 46.1 g of terephthalic acid, and 0.58 g of triphenylphosphine were dissolved in 271 g of methyl ethyl ketone to prepare an in-situ polymerization type thermoplastic resin composition (7). .
  • thermoplastic resin composition (8) In situ polymerization type thermoplastic resin composition (8)> In a solution of 10 g of maleic anhydride-modified polypropylene "Modic (registered trademark) ER321P" (manufactured by Mitsubishi Chemical Corporation) dissolved in 190 g of xylene, 6.0 g of the in-situ polymerization type thermoplastic resin composition (1) was mixed, A polymerizable thermoplastic resin composition (8) was prepared.
  • thermoplastic resin composition (9) In situ polymerization type thermoplastic resin composition (9)> In a solution of 10 g of chlorinated polypropylene "Superchron (registered trademark) 814HS" (manufactured by Nippon Paper Industries Co., Ltd.) dissolved in 190 g of xylene, 6.0 g of the in-situ polymerizable thermoplastic resin composition (2) was mixed and polymerized in situ. A type thermoplastic resin composition (9) was prepared.
  • thermoplastic resin compositions (1) to (9) were spray-coated onto each substrate so that the thickness after drying was 10 to 60 ⁇ m. After leaving it in the air at room temperature for 30 minutes to evaporate the solvent, it was left in a furnace at 70° C. for 30 minutes to cause a polyaddition reaction (only the in-situ polymerization type thermoplastic resin composition (7) was 6 hours). , and allowed to cool to room temperature to produce a composite laminate in which a resin primer layer was laminated on the surface of the base material. Table 2 shows the produced composite laminate.
  • Examples 37-46> Heat welding
  • the resin primer layer of the composite laminate (A) formed by forming the resin primer layer on the resin base material and the resin base material (C) were bonded together so that the joint portion was 1.0 cm x 0.5 cm. After being placed on top of each other so as to be 5 cm long, it was sandwiched with a double clip and allowed to stand in a drying oven at 75° C. for 5 minutes.
  • Examples 47 to 50> (Preparation of film for primer) In-situ polymerization type thermoplastic resin compositions (1), (3), and (8) are applied to a release film (PTFE film) so that the thickness after drying is 40 ⁇ m, and left at room temperature for 30 minutes. After volatilizing the solvent, the polymerization reaction was carried out at 80 ° C. for 30 minutes, and the temperature was returned to normal temperature and peeled off from the release film (PTFE film). ).
  • a primer film was sandwiched between the resin base material (A) and the resin base material (B) so that the joint area was 1.0 cm ⁇ 0.5 cm. After standing in the oven for 5 minutes, it was returned to room temperature.
  • a resin substrate (A) and a resin substrate are bonded using AV adhesive 32 manufactured by Asahi Organic Chemicals Co., Ltd., a vinyl chloride pipe adhesive manufactured by Cemedine Co., Ltd., and Cemedine PPX for PE and PP, which are commercially available adhesives for vinyl chloride.
  • the material (B) was applied and pasted together so that the joint area was 1.0 cm ⁇ 0.5 cm to prepare resin-resin joints (Comparative Examples 7 to 11).
  • Nominal diameter 40 polyvinyl chloride pipe VU40 manufactured by Kubota Chemix (outer diameter 48 mm, length 25 cm), 25 mm from the end, the in-situ polymerization type thermoplastic resin composition (1) is applied to the outer circumference to a thickness of 40 ⁇ m after drying. I sprayed it to make it look like it was. After leaving it in the air at room temperature for 30 minutes to volatilize the solvent, leave it in a furnace at 80 ° C. for 30 minutes to cause a polyaddition reaction, allow to cool to room temperature, and produce a polyvinyl chloride tube with a resin primer layer. formed.
  • the primer-applied part of the polyvinyl chloride pipe with the resin primer layer was pushed into a polyvinyl chloride cap with a nominal diameter of 40, and the joint part was heated for 3 minutes using a dryer.
  • the surface temperature reached 80°C in 2 minutes and was held for 1 minute.
  • the end was connected to a water pipe and a water pressure of 0.6 MPa was applied to check for leakage, and it was confirmed that there was no leakage.
  • Nominal diameter 40 polyvinyl chloride pipe VU40 manufactured by Kubota Chemix (outer diameter 48 mm, length 25 cm) was coated with an adhesive for vinyl chloride pipe manufactured by Cemedine Co., Ltd. on the outer periphery 25 mm from the end. Next, the adhesive coated portion of the polyvinyl chloride pipe with the resin primer layer was pushed into a polyvinyl chloride cap with a nominal diameter of 40 and left for 3 minutes. After 5 minutes, the end was connected to a water pipe and a water pressure of 0.6 MPa was applied to check for leakage.
  • the composite laminate of the present invention is joined and integrated with other materials or parts such as steel, aluminum, CFRP, etc., for example, door side panels, hoods, roofs, tailgates, steering hangers, A pillars, B pillar, C pillar, D pillar, crash box, power control unit (PCU) housing, electric compressor parts (inner wall, intake port, exhaust control valve (ECV) insertion part, mount boss, etc.), lithium ion battery ( LIB) It can be used as various automotive parts such as spacers, battery cases, and LED headlamps.
  • PCU power control unit
  • ECV exhaust control valve
  • LIB lithium ion battery
  • the composite laminate is, for example, by joining and integrating with a resin material such as nylon, polyphenylene sulfone, polyetherimide molding, etc., so that the metal-resin bonded body is required to have higher heat resistance. It is also expected to be used in fields such as parts and aerospace parts. However, the uses of the composite laminate are not limited to these exemplified uses.

Abstract

A composite laminate comprising a base material formed of a metal or a resin, and one or more resin primer layers laminated on a surface of the base material, wherein at least one of the resin primer layers is at least one polymer layer selected from the group consisting of polymer layers each formed of a polymer of an in-situ polymerization type thermoplastic resin composition that contains the following (A), polymer layers each formed of a polymer of an in-situ polymerization type thermoplastic resin composition that contains the following (B), polymer layers each formed of a polymer of an in-situ polymerization type thermoplastic resin composition that contains the following (C), polymer layers each formed of a polymer of an in-situ polymerization type thermoplastic resin composition that contains the following (D), and polymer layers each formed of a polymer of an in-situ polymerization type thermoplastic resin composition that contains the following (E) and any one of (A)-(D), and said polymer layer is disposed at the outermost surface. (A) A combination between a bifunctional thiol compound, and a phenol novolak-type epoxy resin and/or a cresol novolak-type epoxy resin. (B) A combination between a bifunctional amino compound, and a phenol novolak-type epoxy resin and/or a cresol novolak-type epoxy resin. (C) A combination between a bifunctional carboxy compound, and a phenol novolak-type epoxy resin and/or a cresol novolak-type epoxy resin. (D) A combination between a bifunctional isocyanate compound, and a phenol novolak resin and/or a cresol novolak resin. (E) A maleic anhydride-modified polyolefin and/or a chlorinated polyolefin.

Description

複合積層体及び接合体Composite laminate and joined body
 本発明は、金属又は樹脂からなる基材を含む複合積層体であって、前記基材同士を低温で溶着接合できる複合積層体及びその製造方法、並びに、前記複合積層体を用いた各基材同士の接合体、及びその製造方法に関する。 The present invention provides a composite laminate containing a base material made of metal or resin, wherein the base materials can be welded and joined together at a low temperature, a method for producing the same, and each base material using the composite laminate. The present invention relates to a bonded body and a method for manufacturing the same.
 自動車、航空機、産業機械及び建築・土木等の分野では、金属基材と樹脂基材、金属基材と金属基材、及び樹脂基材と樹脂基材(本明細書において、これらをまとめて「基材同士」という)を接合する手法として、リベットやネジを使用した機械的接合の他、接着剤を使用した接着接合もよく使用されている。
 上水道、下水道、農業用水、給水設備、排水設備、プラント設備、空調設備、ケーブル保護等のインフラ関係の分野では、水理特性や耐薬品性に優れ、取り扱いが容易である塩化ビニル樹脂管が広く使用されている。
 塩化ビニル樹脂管の接合手法として、大掛かりなウエルダーを使用して溶融して接合する方法があるが、適応範囲が狭いことから、接着剤を使用した接着接合が広く使用されている。塩化ビニル樹脂管同士の接合に用いる接着剤は、通常、テトラヒドロフラン、メチルエチルケトン等の溶剤に溶かした溶液形の接着剤である。これら溶液形の接着剤は、管や継手の接着面に塗布して、塗布された面を膨潤状態とし、膨潤状態で圧着して両者の塩化ビニル樹脂分子を絡ませ、溶剤の蒸発によって接合を実現するものである。
In the fields of automobiles, aircraft, industrial machinery, construction and civil engineering, etc., metal substrates and resin substrates, metal substrates and metal substrates, and resin substrates and resin substrates (in this specification, these are collectively referred to as " In addition to mechanical bonding using rivets and screws, adhesive bonding using an adhesive is often used as a method for bonding substrates.
In the field of infrastructure such as water supply, sewerage, agricultural water, water supply equipment, drainage equipment, plant equipment, air conditioning equipment, and cable protection, vinyl chloride resin pipes are widely used due to their excellent hydraulic characteristics, chemical resistance, and ease of handling. in use.
As a method of joining vinyl chloride resin pipes, there is a method of melting and joining using a large-scale welder, but since the applicable range is narrow, adhesive joining using an adhesive is widely used. The adhesive used for joining vinyl chloride resin pipes is usually a solution-type adhesive dissolved in a solvent such as tetrahydrofuran or methyl ethyl ketone. These solution-type adhesives are applied to the adhesive surfaces of pipes and joints, the applied surfaces are swollen, and the swollen surfaces are pressed together to entangle the vinyl chloride resin molecules of both, and the solvent evaporates to achieve bonding. It is something to do.
 接着接合に用いる接着剤に関し、ポリ塩化ビニルシートのような接着しにくくかつ柔軟性のある樹脂の被着体を、鋼板やコンクリートなどの硬質の下地材に接着する用途に好適であり、初期接着性が良好で、かつ耐久性、特に硬化後に形成される接着層の耐応力性や耐変形性に優れた接着剤組成物として、イソシアナト基末端ウレタンポリマーを含有する第1液と、1分子内に活性水素を2個以上有する活性水素含有化合物を含有する第2液からなる多液型接着剤組成物(特許文献1)が提案されている。
 また、接着接合に用いる接着剤に関し、塩化ビニル樹脂からなる物品とその他の物品を効率よく強固に接着できる樹脂用接着剤として、末端にイソシアナト基を有する湿気硬化型ウレタンプレポリマーと活性水素を有しない有機溶剤からなる樹脂用接着剤(特許文献2)が提案されている。
Regarding the adhesive used for adhesive bonding, it is suitable for bonding hard-to-bond and flexible resin adherends such as polyvinyl chloride sheets to hard base materials such as steel plates and concrete, and is suitable for initial bonding. As an adhesive composition having good properties and durability, especially excellent stress resistance and deformation resistance of the adhesive layer formed after curing, a first liquid containing an isocyanato group-terminated urethane polymer, A multi-liquid type adhesive composition consisting of a second liquid containing an active hydrogen-containing compound having two or more active hydrogens has been proposed (Patent Document 1).
In addition, regarding the adhesive used for adhesive bonding, as a resin adhesive that can efficiently and firmly bond an article made of vinyl chloride resin and other articles, a moisture-curable urethane prepolymer having an isocyanato group at the end and an active hydrogen A resin adhesive made of an organic solvent that does not dissolve is proposed (Patent Document 2).
特開2020-105460(低摩擦摺動性を有する安全性に優れた複合材料低摩擦摺動性を有する安全性に優れた複合材料)JP 2020-105460 (Composite material with low friction slidability and excellent safety Composite material with low friction slidability and excellent safety) 特開2020-94120JP 2020-94120
 上記特許文献1、2を含め、接着接合に用いる従来の接着剤は、テトラヒドロフラン、メチルエチルケトン等の溶剤に溶かした溶液形の接着剤であり、溶剤の蒸発が必要となる。溶剤は、高温条件下において速やかに蒸発させることができるが、例えば、耐熱性の低い塩化ビニル樹脂は80℃超の温度条件下では変形等の影響を受けるため、塩化ビニル樹脂の接着の用途では溶剤の蒸発は80℃以下の低温条件で行うことが必要となり、溶剤の蒸発に時間がかかるという課題があった。 Conventional adhesives used for adhesive bonding, including the above Patent Documents 1 and 2, are solution-type adhesives dissolved in a solvent such as tetrahydrofuran or methyl ethyl ketone, and the solvent must be evaporated. Solvents can quickly evaporate under high-temperature conditions, but vinyl chloride resins with low heat resistance, for example, are affected by deformation at temperatures above 80°C. It is necessary to evaporate the solvent under low temperature conditions of 80° C. or less, and there is a problem that it takes a long time to evaporate the solvent.
 本発明は、このような状況下でなされたものであり、接合作業の現場で、溶剤の蒸発のための時間が必要なく、低温条件下でも短時間で基材同士を高い接合強度で接合することができる複合積層体及びその製造方法の提供、並びに前記複合積層体を使用した接合体及びその製造方法の提供を目的とする。
 本発明における「低温条件」とは、塩化ビニル樹脂等の耐熱性の低い樹脂に変形等の影響を及ぼさない温度条件であり、具体的には、80℃以下、好ましくは75℃以下、より好ましくは70℃以下、の温度条件を意味する。
The present invention has been made under such circumstances, and joins base materials with high joint strength in a short time even under low temperature conditions without requiring time for evaporation of the solvent at the site of the joint work. An object of the present invention is to provide a composite laminate and a method for manufacturing the same, and to provide a joined body using the composite laminate and a method for manufacturing the same.
The “low temperature condition” in the present invention is a temperature condition that does not affect the resin such as vinyl chloride resin having low heat resistance such as deformation. means a temperature condition of 70°C or less.
 本発明は、基材の表面に、特定の材料で形成される樹脂プライマー層を設けることにより、現場で簡単に溶着に接合でき、前記の低温条件下でも、短時間で高い接合強度を発現できることを見出したことに基づくものである。 According to the present invention, by providing a resin primer layer formed of a specific material on the surface of a base material, it is possible to easily weld and bond on site, and to develop high bonding strength in a short time even under the above-mentioned low temperature conditions. This is based on the discovery of
 本発明は、以下の[1]~[20]を提供する。 The present invention provides the following [1] to [20].
<複合積層体>
[1]
 金属又は樹脂からなる基材と、前記基材の表面上に積層された1層又は複数層の樹脂プライマー層とを有する複合積層体であって、
 前記樹脂プライマー層の少なくとも1層が、下記(A)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(B)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(C)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(D)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、からなる群から選択される少なくとも何れかであり、前記重合物層を最表面に有する複合積層体。
(A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
(E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
[2]
 前記基材と前記樹脂プライマー層との間に、前記樹脂プライマー層に接して積層された官能基導入層を有し、
 前記官能基導入層が、シランカップリング剤、イソシアネート化合物及びチオール化合物からなる群より選ばれる少なくとも1種から導入された官能基を有する、[1]に記載の複合積層体。
[3]
 前記樹脂プライマー層が、前記基材の表面処理された面に積層され、
 前記表面処理が、プラズマ処理、コロナ放電処理、UVオゾン処理、ブラスト処理、研磨処理、エッチング処理及び化成処理からなる群より選ばれる少なくとも1種である、[1]又は[2]に記載の複合積層体。
[4]
 前記基材がアルミニウム、鉄及びステンレス鋼からなる群より選ばれる金属からなる、[1]~[3]のいずれかに記載の複合積層体。
[5]
 前記基材が、ポリ塩化ビニル、ポリエチレン及びポリプロピレンからなる群より選ばれる樹脂からなる[1]~[3]のいずれかに記載の複合積層体。
<複合積層体の製造方法>
[6]
 [1]~[5]のいずれかに記載の複合積層体の製造方法であって、
 前記基材の面上で、下記(A)を含む現場重合型熱可塑性樹脂組成物、下記(B)を含む現場重合型熱可塑性樹脂組成物、下記(C)を含む現場重合型熱可塑性樹脂組成物、下記(D)を含む現場重合型熱可塑性樹脂組成物、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物、からなる群から選択される少なくとも何れかの現場重合型熱可塑性樹脂組成物を重付加反応させることにより、前記樹脂プライマー層の少なくとも1層を形成する、複合積層体の製造方法。
(A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
(E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
[7]
 前記重付加反応を80℃以下の低温条件下で行い、前記樹脂プライマー層の少なくとも1層を形成する、[6]に記載の複合積層体の製造方法。
[8]
 前記重付加反応を、前記基材の表面処理された面上で行い、
 前記表面処理は、プラズマ処理、コロナ放電処理、UVオゾン処理、ブラスト処理、研磨処理、エッチング処理及び化成処理からなる群より選ばれる少なくとも1種である、[6]又は[7]に記載の複合積層体の製造方法。
[9]
 前記樹脂プライマー層を形成する前に、前記基材を、シランカップリング剤、イソシアネート化合物及びチオール化合物からなる群より選ばれる少なくとも1種で処理することにより、前記基材に官能基導入層を形成する、[6]~[8]のいずれかに記載の複合積層体の製造方法。
<複合積層体を用いた接合体>
[10]
 [1]~[5]のいずれかに記載の複合積層体のプライマー層側の面と、熱可塑性樹脂材とが接合一体化された、接合体。
[11]
 [1]~[5]のいずれかに記載の複合積層体のプライマー層側の面と、金属基材とが接合一体化された、接合体。
[12]
 [1]~[5]のいずれかに記載の複合積層体と[1]~[5]のいずれかに記載の複合積層体とが接合一体化された、接合体であって、各複合積層体のプライマー層側の面同士を合わせて接合一体化された、接合体。
<複合積層体を用いた接合体の製造方法>
[13]
 [10]に記載の接合体の製造方法であって、
 高周波誘導溶着、高周波誘電溶着、超音波溶着、レーザー溶着、熱溶着、射出溶着、プレス溶着からなる群より選ばれる少なくとも1種の方法で、前記複合積層体のプライマー層側の面と熱可塑性樹脂材とを溶着して接合一体化させる、接合体の製造方法。
[14]
 [11]に記載の接合体の製造方法であって、
 高周波誘導溶着、高周波誘電溶着、超音波溶着、レーザー溶着、熱溶着、射出溶着、プレス溶着からなる群より選ばれる少なくとも1種の方法で、前記複合積層体のプライマー層側の面同士を溶着して接合一体化させる、接合体の製造方法。
[15]
 前記溶着を80℃以下の温度で行う、[13]又は[14]に記載の接合体の製造方法。
<熱溶着用樹脂組成物、プライマー用フィルム>
[16]
 下記(A)を含む現場重合型熱可塑性樹脂組成物、下記(B)を含む現場重合型熱可塑性樹脂組成物、下記(C)を含む現場重合型熱可塑性樹脂組成物、下記(D)を含む現場重合型熱可塑性樹脂組成物、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物、からなる群から選択される少なくとも何れかからなる、熱溶着用樹脂組成物。
(A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
(E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
[17]
 [16]に記載の熱溶着用樹脂組成物を重付加反応させ、フィルム状にしてなる、プライマー用フィルム。
<プライマー用フィルムの製造方法>
[18]
 [16]に記載の熱溶着用樹脂組成物を離形型または離形フィルムの面上に塗布し、重付加反応させた後、離形してフィルム状の重合物を得る、プライマー用フィルムの製造方法。
<プライマー用フィルムを用いた接合体の製造方法>
[19]
 金属又は樹脂からなる基材と、
 金属又は樹脂からなる基材Aと、金属又は樹脂からなる基材Bとの間に、プライマー用フィルムを挟んで、前記基材Aと前記基材Bを接合一体化する、接合体の製造方法であって、
 前記プライマー用フィルムが、下記(A)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(B)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(C)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(D)を含む現場重合型熱可塑性樹脂組成物の重合物、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物の重合物、からなる群から選択される少なくとも何れかからなる、接合体の製造方法。
(A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
(E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
[20]
 前記基材Aと前記基材Bを、高周波誘導溶着、高周波誘電溶着、超音波溶着、レーザー溶着、熱溶着、射出溶着、プレス溶着からなる群より選ばれる少なくとも1種の方法で、溶着して接合一体化する、[19]に記載の接合体の製造方法。
<Composite laminate>
[1]
A composite laminate having a substrate made of metal or resin and one or more resin primer layers laminated on the surface of the substrate,
At least one layer of the resin primer layer is a polymer layer made of a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (A), and a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (B). A polymer layer consisting of a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (C), a polymer consisting of a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (D) and at least one selected from the group consisting of a polymer layer of an in-situ polymerizable thermoplastic resin composition containing any of the following (A) to (D) and the following (E). , a composite laminate having the polymer layer on the outermost surface thereof.
(A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
(D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
(E) maleic anhydride-modified polyolefins and/or chlorinated polyolefins [2]
Having a functional group-introduced layer laminated in contact with the resin primer layer between the base material and the resin primer layer,
The composite laminate according to [1], wherein the functional group-introduced layer has a functional group introduced from at least one selected from the group consisting of silane coupling agents, isocyanate compounds and thiol compounds.
[3]
The resin primer layer is laminated on the surface-treated surface of the base material,
The composite according to [1] or [2], wherein the surface treatment is at least one selected from the group consisting of plasma treatment, corona discharge treatment, UV ozone treatment, blasting treatment, polishing treatment, etching treatment and chemical conversion treatment. laminate.
[4]
The composite laminate according to any one of [1] to [3], wherein the substrate is made of a metal selected from the group consisting of aluminum, iron and stainless steel.
[5]
The composite laminate according to any one of [1] to [3], wherein the substrate comprises a resin selected from the group consisting of polyvinyl chloride, polyethylene and polypropylene.
<Method for manufacturing composite laminate>
[6]
A method for manufacturing a composite laminate according to any one of [1] to [5],
On the surface of the substrate, an in-situ polymerization type thermoplastic resin composition containing the following (A), an in-situ polymerization type thermoplastic resin composition containing the following (B), and an in-situ polymerization type thermoplastic resin containing the following (C) From the group consisting of a composition, an in-situ polymerization type thermoplastic resin composition containing the following (D), and an in-situ polymerization type thermoplastic resin composition containing any of the following (A) to (D) and the following (E) A method for producing a composite laminate, wherein at least one of the resin primer layers is formed by subjecting at least one selected in-situ polymerizable thermoplastic resin composition to a polyaddition reaction.
(A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
(D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
(E) maleic anhydride-modified polyolefins and/or chlorinated polyolefins [7]
The method for producing a composite laminate according to [6], wherein the polyaddition reaction is performed under low temperature conditions of 80° C. or less to form at least one layer of the resin primer layer.
[8]
performing the polyaddition reaction on the surface-treated surface of the substrate;
The composite according to [6] or [7], wherein the surface treatment is at least one selected from the group consisting of plasma treatment, corona discharge treatment, UV ozone treatment, blasting treatment, polishing treatment, etching treatment and chemical conversion treatment. A method for manufacturing a laminate.
[9]
Before forming the resin primer layer, the substrate is treated with at least one selected from the group consisting of a silane coupling agent, an isocyanate compound and a thiol compound to form a functional group-introduced layer on the substrate. The method for manufacturing a composite laminate according to any one of [6] to [8].
<Joint using composite laminate>
[10]
A joined body in which the primer layer side surface of the composite laminate according to any one of [1] to [5] and a thermoplastic resin material are joined and integrated.
[11]
A joined body in which the primer layer side surface of the composite laminate according to any one of [1] to [5] and a metal substrate are joined and integrated.
[12]
A joined body in which the composite laminate according to any one of [1] to [5] and the composite laminate according to any one of [1] to [5] are joined and integrated, each composite laminate A joined body in which the surfaces of the body on the primer layer side are brought together and joined together.
<Method for manufacturing joined body using composite laminate>
[13]
[10] A method for manufacturing a joined body,
At least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, thermal welding, injection welding, and press welding is applied to the surface of the composite laminate on the primer layer side and the thermoplastic resin. A method for manufacturing a joined body, in which the material is welded and joined together.
[14]
[11] A method for manufacturing a joined body,
The surfaces on the primer layer side of the composite laminate are welded together by at least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, heat welding, injection welding, and press welding. A method for manufacturing a bonded body, in which the bonded body is integrated by
[15]
The method for producing a joined body according to [13] or [14], wherein the welding is performed at a temperature of 80° C. or lower.
<Resin composition for heat welding, film for primer>
[16]
An in-situ polymerization type thermoplastic resin composition containing the following (A), an in-situ polymerization type thermoplastic resin composition containing the following (B), an in-situ polymerization type thermoplastic resin composition containing the following (C), and the following (D) At least one selected from the group consisting of an in-situ polymerization type thermoplastic resin composition containing, and an in-situ polymerization type thermoplastic resin composition containing any of the following (A) to (D) and the following (E) , a resin composition for heat welding.
(A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
(D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
(E) maleic anhydride-modified polyolefins and/or chlorinated polyolefins [17]
A primer film obtained by subjecting the heat-welding resin composition of [16] to a polyaddition reaction to form a film.
<Method for producing primer film>
[18]
A film for a primer, in which the heat-welding resin composition according to [16] is applied onto the surface of a release mold or a release film, subjected to a polyaddition reaction, and then released to obtain a film-like polymer. Production method.
<Method for manufacturing joined body using primer film>
[19]
a base material made of metal or resin;
A method for manufacturing a joined body, wherein a primer film is sandwiched between a base material A made of metal or resin and a base material B made of metal or resin, and the base material A and the base material B are joined and integrated. and
The primer film is a polymer of an in situ polymerization type thermoplastic resin composition containing (A) below, a polymer of an in situ polymerization type thermoplastic resin composition containing (B) below, and an in situ polymerization containing (C) below. A polymer of a type thermoplastic resin composition, a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (D), and an in-situ polymerization type containing any of the following (A) to (D) and the following (E) A method for producing a joined body comprising at least one selected from the group consisting of a polymer of a thermoplastic resin composition.
(A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
(D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
(E) maleic anhydride-modified polyolefins and/or chlorinated polyolefins [20]
The base material A and the base material B are welded by at least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, heat welding, injection welding, and press welding. The method for producing a joined body according to [19], wherein joining and integration are performed.
 本発明によれば、接合作業の現場で、溶剤の蒸発にかかる時間が必要なく、耐熱性の低い樹脂に変形等の影響を及ぼさない低温条件下でも短時間で基材同士を高い接合強度で接合することができる複合積層体及びその製造方法の提供、並びに前記複合積層体を使用した接合体(金属―金属接合体、金属―樹脂接合体、樹脂―樹脂接合体)及びその製造方法を提供することができる。 According to the present invention, there is no need for the solvent to evaporate at the site of the bonding work, and even under low-temperature conditions that do not affect the resin with low heat resistance such as deformation, the base materials can be bonded together in a short time with high bonding strength. Provide a composite laminate that can be bonded and a method for manufacturing the same, and provide a bonded product (a metal-metal bonded product, a metal-resin bonded product, a resin-resin bonded product) using the composite laminate and a method for manufacturing the same can do.
本発明の複合積層体の一実施形態を模式的に示した断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which showed typically one Embodiment of the composite laminated body of this invention. 本発明の複合積層体の他の実施形態を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing another embodiment of the composite laminate of the present invention; 本発明の接合体の一実施形態を模式的に示した断面図である。1 is a cross-sectional view schematically showing an embodiment of a joined body of the present invention; FIG.
 以下、本発明の複合積層体及びその製造方法、並びに、前記複合積層体を用いた接合体及びその製造方法について、図面を参照して説明する。
 本明細書において、「(メタ)アクリロイル」との用語は、アクリロイル及び/又はメタクリロイルを意味する。同様に、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、また、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
 本明細書において、「常温」とは、25±5℃の範囲内の一般的な室温を意味する。
 本明細書において、「接合」とは、物と物を繋ぎ合わせることを意味し、溶着及び接着は、その下位概念である。「溶着」とは、樹脂、金属等の接合材の接合面同士を、少なくとも一方の接合面に存在する成分の軟化点を超えるまたは融点を超える温度まで加熱し、接触加圧及び冷却での分子拡散による絡み合いや結晶化によって接合状態とすることを意味する。「接着」とは、テープや接着剤等の有機材料(熱硬化性樹脂や熱可塑性樹脂等)を介して、被着材を接合状態とすることを意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A composite laminate and a method for producing the same according to the present invention, and a joined body using the composite laminate and a method for producing the same will be described below with reference to the drawings.
As used herein, the term "(meth)acryloyl" means acryloyl and/or methacryloyl. Similarly, "(meth)acrylic" means acrylic and/or methacrylic, and "(meth)acrylate" means acrylate and/or methacrylate.
As used herein, "normal temperature" means a general room temperature within the range of 25±5°C.
As used herein, the term "joining" means to join things together, and welding and adhesion are subordinate concepts thereof. “Welding” means heating the joint surfaces of joint materials such as resins and metals to a temperature exceeding the softening point or melting point of the component present on at least one joint surface, and It means to form a bonding state by entanglement by diffusion or crystallization. The term “adhesion” means bonding of adherends via an organic material (thermosetting resin, thermoplastic resin, etc.) such as a tape or adhesive.
[複合積層体及びその製造方法]
 図1に、本発明の複合積層体の一実施形態を示す。図1に示す複合積層体1は、金属又は樹脂からなる基材2と、基材2の表面上に積層された1層又は複数層の樹脂プライマー層3とを備えた複合積層体である。
 樹脂プライマー層3の少なくとも1層は、下記(A)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(B)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(C)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(D)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、からなる群から選択される少なくとも何れかの重合物層である。複合積層体は、前記重合物層を最表面に有する。前記重合物層を2層以上有する場合、各重合物層は、同じ現場重合型熱可塑性樹脂組成物で形成されていてもよく、あるいはまた、異なる現場重合型熱可塑性樹脂組成物で形成されていてもよい。
(A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
(E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
[Composite laminate and its manufacturing method]
FIG. 1 shows one embodiment of the composite laminate of the present invention. The composite laminate 1 shown in FIG. 1 is a composite laminate comprising a substrate 2 made of metal or resin and one or more resin primer layers 3 laminated on the surface of the substrate 2 .
At least one layer of the resin primer layer 3 is a polymer layer made of a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (A), and a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (B). A polymer layer consisting of a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (C), a polymer consisting of a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (D) At least any polymerization selected from the group consisting of a layer and a polymer layer composed of a polymer of an in-situ polymerizable thermoplastic resin composition containing any of the following (A) to (D) and the following (E) It is a layer of things. The composite laminate has the polymer layer on the outermost surface. When the polymer layer has two or more layers, each polymer layer may be formed of the same in-situ polymerizable thermoplastic resin composition, or may be formed of a different in-situ polymerizable thermoplastic resin composition. may
(A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
(D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
(E) maleic anhydride-modified polyolefin and/or chlorinated polyolefin
 本明細書において、「(A)を含む現場重合型熱可塑性樹脂組成物」の表現における「含む」とは、現場重合型熱可塑性樹脂組成物の組成物原料として(A)の組み合わせが配合されていることを意味する。「(B)を含む現場重合型熱可塑性樹脂組成物」、「(C)を含む現場重合型熱可塑性樹脂組成物」、「(D)を含む現場重合型熱可塑性樹脂組成物」、「(A)~(D)のいずれかと(E)を含む現場重合型熱可塑性樹脂組成物」の表現も同様にそれぞれ、組成物原料として(B)の組み合わせが配合されていること、組成物原料として(C)の組み合わせが配合されていること、組成物原料として(D)の組み合わせが配合されていること、組成物原料として(A)の組み合わせ~(D)の組み合わせいずれかに、更に(E)を加えた組み合わせが配合されていること、を意味する。 In the present specification, the term "comprising" in the expression "in-situ polymerization type thermoplastic resin composition containing (A)" means that the combination of (A) is blended as a composition raw material of the in-situ polymerization type thermoplastic resin composition. means that "In-situ polymerization type thermoplastic resin composition containing (B)", "In-situ polymerization type thermoplastic resin composition containing (C)", "In-situ polymerization type thermoplastic resin composition containing (D)", "( Similarly, the expression "in-situ polymerization type thermoplastic resin composition containing any of A) to (D) and (E)" also means that the combination of (B) is blended as a composition raw material, and The combination of (C) is blended, the combination of (D) is blended as a composition raw material, the combination of (A) to (D) as a composition raw material, and further (E ) is blended.
<基材:金属基材>
 本発明の複合積層体に適用される金属基材の種類は特に限定されるものではない。前記金属基材の種類としては、例えば、アルミニウム材、鉄材、チタン材、マグネシウム材、ステンレス鋼材、銅材等が挙げられる。これらの金属基材は、金属単体であっても、合金であってもよい。これらのうち、軽量性及び加工容易性等の観点からは、アルミニウム材が好適に用いられる。
<Base material: Metal base material>
The type of metal base material applied to the composite laminate of the present invention is not particularly limited. Examples of the types of metal substrates include aluminum materials, iron materials, titanium materials, magnesium materials, stainless steel materials, and copper materials. These metal substrates may be single metals or alloys. Among these, aluminum is preferably used from the viewpoint of light weight and ease of processing.
<基材:樹脂基材>
 本発明の複合積層体に適用される樹脂基材を構成する樹脂の種類は特に限定されるものではないが、特にインフラの配管等に使用されるポリ塩化ビニル、ポリエチレン、ポリプロピレン等が挙げられる。ポリ塩化ビニルは硬質塩化ビニルや軟質塩化ビニルと呼ばれる樹脂を含み、ポリエチレンは高密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン等含み、ポリプロピレンはホモポリマー、ランダムコポリマー、ブロックコポリマー等の一般的なポリプロピレンを指す。
<Base material: Resin base material>
The type of resin constituting the resin base material applied to the composite laminate of the present invention is not particularly limited, but examples thereof include polyvinyl chloride, polyethylene, polypropylene and the like, which are used particularly for infrastructure piping and the like. Polyvinyl chloride includes resins called rigid vinyl chloride and soft vinyl chloride, polyethylene includes high-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, linear low-density polyethylene, ultra-high-molecular-weight polyethylene, etc. Polypropylene is a homopolymer. , random copolymers, block copolymers, etc.
<樹脂プライマー層>
 樹脂プライマー層は、前記基材の表面上に積層されている。前記樹脂プライマー層は、1層で構成されていてもよく、2層以上の複数層から構成されていてもよい。
 前記基材は、その表面に前記樹脂プライマー層が形成されていることにより、他の基材と高い接合強度で接合させることができる。また、前記樹脂プライマー層は、前記基材の表面上に、強固に接着されており、該基材の表面を汚れや酸化等の変質等から保護することもできる。
<Resin primer layer>
A resin primer layer is laminated on the surface of the substrate. The resin primer layer may be composed of one layer, or may be composed of two or more layers.
By forming the resin primer layer on the surface of the substrate, the substrate can be bonded to another substrate with high bonding strength. Moreover, the resin primer layer is firmly adhered to the surface of the base material, and can protect the surface of the base material from deterioration such as dirt and oxidation.
 樹脂プライマー層の少なくとも1層を構成する前記重合物層は、耐熱性の低い樹脂に変形等の影響を及ぼさない低温条件での加熱で形成することができる。
 また、前記重合物層を最表面に有する複合積層体は、耐熱性の低い樹脂に変形等の影響を及ぼさない低温条件での溶着により、前記重合物層に基材を接合することができ、高い接合強度を発現させることができる。
 前記重合物層のうち、前記(A)~(D)のいずれかと前記(E)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層は、ポリオレフィンからなる基材を接合することができ、高い接合強度を発現させることができる。
The polymer layer constituting at least one layer of the resin primer layer can be formed by heating under low temperature conditions that do not affect the resin having low heat resistance such as deformation.
In addition, in the composite laminate having the polymer layer on the outermost surface, the base material can be joined to the polymer layer by welding under low temperature conditions that do not affect the resin with low heat resistance such as deformation, A high bonding strength can be expressed.
Among the polymer layers, the polymer layer made of the polymer of the in-situ polymerizable thermoplastic resin composition containing any one of (A) to (D) and (E) joins the base material made of polyolefin. It is possible to develop a high bonding strength.
 前記重合物層の組成物原料である「フェノールノボラック型エポキシ樹脂」「クレゾールノボラック型エポキシ樹脂」とは、複数の核体数を持つエポキシ基を有する樹脂であり、「フェノールノボラック樹脂」「クレゾールノボラック樹脂」とは、複数の核体数を持つフェノール性水酸基を有する樹脂である。
 「フェノールノボラック型エポキシ樹脂」「クレゾールノボラック型エポキシ樹脂」「フェノールノボラック樹脂」「クレゾールノボラック樹脂」は、原料となるノボラックが核体数に分布を持つ。2核体のビスフェノールFの部分は下記のリニアポリマー構造を有する部分となる。ここで、リニアポリマーとは、ポリマー分子中に架橋構造を含まず、1次元の直鎖状であるポリマーを意味する。
 前記(A)を含む現場重合型熱可塑性樹脂組成物の重合物は、2官能チオール化合物と2官能エポキシ樹脂との触媒存在下での重付加反応による熱可塑構造、すなわち、リニアポリマー構造を有する。
 前記(B)を含む現場重合型熱可塑性樹脂組成物の重合物は、2官能アミノ化合物と2官能エポキシ樹脂との触媒存在下での重付加反応による熱可塑構造、すなわち、リニアポリマー構造を有する。
 前記(C)を含む現場重合型熱可塑性樹脂組成物の重合物は、2官能カルボキシ化合物と2官能エポキシ樹脂との触媒存在下での重付加反応による熱可塑構造、すなわち、リニアポリマー構造を有する。
 前記(D)を含む現場重合型熱可塑性樹脂組成物の重合物は、2官能イソシアネート化合物と2官能フェノールとの触媒存在下での重付加反応、及び/または2官能イソシアネート化合物と2官能クレゾールとの触媒存在下での重付加反応による熱可塑構造、すなわち、リニアポリマー構造を有する。
The "phenol novolak type epoxy resin" and "cresol novolak type epoxy resin", which are the raw materials for the composition of the polymer layer, are resins having an epoxy group having a plurality of nuclei. "Resin" is a resin having a phenolic hydroxyl group with a plurality of nuclear bodies.
"Phenol novolak type epoxy resin", "cresol novolak type epoxy resin", "phenol novolak resin" and "cresol novolak resin" have a distribution in the number of nuclei of the novolacs used as raw materials. The binuclear bisphenol F portion is a portion having the following linear polymer structure. Here, the linear polymer means a one-dimensional linear polymer that does not contain a crosslinked structure in the polymer molecule.
The polymer of the in-situ polymerizable thermoplastic resin composition containing (A) has a thermoplastic structure, that is, a linear polymer structure resulting from a polyaddition reaction of a bifunctional thiol compound and a bifunctional epoxy resin in the presence of a catalyst. .
The polymer of the in-situ polymerizable thermoplastic resin composition containing (B) has a thermoplastic structure, that is, a linear polymer structure resulting from a polyaddition reaction of a bifunctional amino compound and a bifunctional epoxy resin in the presence of a catalyst. .
The polymer of the in-situ polymerizable thermoplastic resin composition containing (C) has a thermoplastic structure, that is, a linear polymer structure resulting from a polyaddition reaction of a bifunctional carboxy compound and a bifunctional epoxy resin in the presence of a catalyst. .
The polymer of the in-situ polymerizable thermoplastic resin composition containing (D) is a polyaddition reaction of a bifunctional isocyanate compound and a bifunctional phenol in the presence of a catalyst, and/or a bifunctional isocyanate compound and a bifunctional cresol. It has a thermoplastic structure, that is, a linear polymer structure due to a polyaddition reaction in the presence of a catalyst.
 ノボラックの核体数が3核体以上の部分ではラダー構造や一部橋かけ構造を含む複雑な構造となっているため、比較的耐熱性を保てる構造を導くことができる。
 このため、前記(A)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、前記(B)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、前記(C)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、前記(D)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、前記(A)~(D)のいずれかと前記(E)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層は、全体的に架橋構造による3次元ネットワークで構成される熱硬化性樹脂とは異なり、一部橋かけ構造を含み、かつ、全体としては熱可塑性を有するものとして、比較的耐熱性を保てる構造を有する。
A portion of the novolak having three or more nuclear bodies has a complicated structure including a ladder structure and a partial cross-linking structure, so that a structure that can maintain a relatively high heat resistance can be derived.
For this reason, a polymer layer made of the polymer of the in-situ polymerization type thermoplastic resin composition containing the above (A), a polymer layer made of the polymer of the in-situ polymerization type thermoplastic resin composition containing the above (B), the above A polymer layer comprising a polymer of the in-situ polymerizable thermoplastic resin composition containing (C), a polymer layer comprising a polymer of the in-situ polymerizable thermoplastic resin composition containing (D), the (A) to A polymer layer composed of a polymer of an in-situ polymerizable thermoplastic resin composition containing any of (D) and the above (E) differs from a thermosetting resin that is entirely composed of a three-dimensional network with a crosslinked structure. , which includes a partially cross-linked structure and has thermoplasticity as a whole, and has a structure capable of maintaining relatively heat resistance.
 なお、「フェノールノボラック型エポキシ樹脂」「クレゾールノボラック型エポキシ樹脂」「フェノールノボラック樹脂」「クレゾールノボラック樹脂」は、複数の化合物を組成成分としており、これらの複数の化合物の配合比率や反応条件等によって、複数の官能基が関与して様々な複雑な反応を生じ得ることは、当業者にとって技術常識である。このため、「フェノールノボラック型エポキシ樹脂」、「クレゾールノボラック型エポキシ樹脂」、「フェノールノボラック樹脂」及び「クレゾールノボラック樹脂」からなる群から選択される少なくとも1種を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層の具体的な化学構造又は特性を、直接特定して包括的に表現することは、不可能又は非実際的であると考える。よって、本発明においては、前記重合物層について、該重合物層を形成する組成物原料の組成により特定することとしている。 "Phenol novolak type epoxy resin", "cresol novolak type epoxy resin", "phenol novolak resin", and "cresol novolak resin" are composed of multiple compounds. It is common general knowledge for those skilled in the art that various complex reactions can occur with the involvement of a plurality of functional groups. Therefore, an in-situ polymerization type thermoplastic resin composition containing at least one selected from the group consisting of "phenol novolac type epoxy resin", "cresol novolak type epoxy resin", "phenol novolak resin" and "cresol novolak resin". It is considered impossible or impractical to directly identify and comprehensively express the specific chemical structure or properties of a polymer layer comprising a polymer of . Therefore, in the present invention, the polymer layer is specified by the composition of the composition raw material forming the polymer layer.
 本発明の複合積層体は、前記基材の表面上で、(A)を含む現場重合型熱可塑性樹脂組成物、(B)を含む現場重合型熱可塑性樹脂組成物、(C)を含む現場重合型熱可塑性樹脂組成物、(D)を含む現場重合型熱可塑性樹脂組成物及び(A)~(D)のいずれかと(E)を含む現場重合型熱可塑性樹脂組成物からなる群から選択される少なくともいずれかの現場重合型熱可塑性樹脂組成物を重付加反応させて、樹脂プライマー層の1層又は複数層を形成する工程を経ることにより製造されることが好ましい。
 基材の表面上で、前記現場重合型熱可塑性樹脂組成物を重付加反応した重合物層を含む樹脂プライマー層を形成することにより、該基材の表面上に樹脂プライマー層が強固に接着した複合積層体を得ることができる。
The composite laminate of the present invention comprises an in-situ polymerizable thermoplastic resin composition containing (A), an in-situ polymerizable thermoplastic resin composition containing (B), and an in-situ polymerizable thermoplastic resin composition containing (C) on the surface of the base material. selected from the group consisting of a polymerizable thermoplastic resin composition, an in-situ polymerizable thermoplastic resin composition containing (D), and an in-situ polymerizable thermoplastic resin composition containing any of (A) to (D) and (E) It is preferable that the resin primer layer is produced through a step of forming one or more layers of the resin primer layer by subjecting at least one of the in-situ polymerization type thermoplastic resin compositions to a polyaddition reaction.
By forming a resin primer layer containing a polymer layer obtained by subjecting the in-situ polymerization type thermoplastic resin composition to a polyaddition reaction on the surface of the base material, the resin primer layer was firmly adhered to the surface of the base material. A composite laminate can be obtained.
 基材の表面上への現場重合型熱可塑性樹脂組成物のコーティング方法は、特に限定されるものではないが、例えば、スプレー塗布法、浸漬法等が挙げられる。
 コーティングした現場重合型熱可塑性樹脂組成物を重付加反応させて、樹脂プライマー層を形成する際の加熱温度は、反応させる化合物等の種類にもよるが、現場重合での操作容易性及び複合積層体の製造効率等の観点から、好ましくは常温~80℃、より好ましくは50~80℃、さらに好ましくは60~80℃である。また、同様の観点から、加熱時間は、好ましくは5~90分間、より好ましくは10~80分間、さらに好ましくは15~60分間である。
 なお、現場重合型熱可塑性樹脂組成物が溶剤を含む場合には、現場重合型熱可塑性樹脂組成物をコーティング後、適宜、溶剤の揮発のために乾燥させた後、加熱して重付加反応を行うことが好ましい。
The method of coating the surface of the substrate with the in-situ polymerizable thermoplastic resin composition is not particularly limited, but examples thereof include a spray coating method and an immersion method.
The heating temperature for forming a resin primer layer by polyaddition reaction of the coated in-situ polymerizable thermoplastic resin composition depends on the type of the compound to be reacted, but it is important for ease of operation in in-situ polymerization and composite lamination. From the viewpoint of production efficiency of the body, the temperature is preferably normal temperature to 80°C, more preferably 50 to 80°C, and still more preferably 60 to 80°C. From the same point of view, the heating time is preferably 5 to 90 minutes, more preferably 10 to 80 minutes, even more preferably 15 to 60 minutes.
In the case where the in-situ polymerization type thermoplastic resin composition contains a solvent, after coating the in-situ polymerization type thermoplastic resin composition, it is appropriately dried for volatilization of the solvent, and then heated to initiate the polyaddition reaction. preferably.
((A)を含む現場重合型熱可塑性樹脂組成物)
 (A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、における2官能チオール化合物とは、分子内にメルカプト基を2つ有する化合物であり、例えば、2官能2級チオール化合物の1,4-ビス(3-メルカプトブチリルオキシ)ブタン(例えば、昭和電工株式会社製「カレンズMT(登録商標) BD1」)が挙げられる。
 また架橋点を増やす観点から4官能チオール化合物を併用してもよい。4官能チオール化合物としてはペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば、昭和電工株式会社製「カレンズMT(登録商標) PE1」)
 フェノールノボラック型エポキシ樹脂としては、公知のものが使用できる。具体的には、例えばYDPN-638(日鉄ケミカル&マテリアル株式会社製)、N-740(DIC株式会社製)等が挙げられる。
 クレゾールノボラック型エポキシ樹脂としても公知のものが使用できる。具体的にはo-クレゾールノボラック型エポキシ樹脂としてYDCN-700-7、YDCN-700-10、YDCN-704、YDCN-704L(以上日鉄ケミカル&マテリアル株式会社製)、N-680(DIC株式会社製)、CNE-202(長春グループ製)等が挙げられる。
(In-situ polymerization type thermoplastic resin composition containing (A))
The bifunctional thiol compound in (A) a combination of a bifunctional thiol compound and a phenol novolac epoxy resin and/or a cresol novolak epoxy resin is a compound having two mercapto groups in the molecule, for example, a bifunctional difunctional Class thiol compound 1,4-bis(3-mercaptobutyryloxy)butane (for example, "Karenzu MT (registered trademark) BD1" manufactured by Showa Denko KK) can be mentioned.
A tetrafunctional thiol compound may also be used in combination from the viewpoint of increasing the number of crosslinking points. As a tetrafunctional thiol compound, pentaerythritol tetrakis (3-mercaptobutyrate) (for example, Showa Denko Co., Ltd. "Karenzu MT (registered trademark) PE1")
A well-known thing can be used as a phenol novolak-type epoxy resin. Specific examples include YDPN-638 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and N-740 (manufactured by DIC Corporation).
A known cresol novolac type epoxy resin can also be used. Specifically, o-cresol novolak type epoxy resins YDCN-700-7, YDCN-700-10, YDCN-704, YDCN-704L (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), N-680 (DIC Corporation (manufactured by Changchun Group) and CNE-202 (manufactured by Changchun Group).
((B)を含む現場重合型熱可塑性樹脂組成物)
 (B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、における2官能アミノ化合物は、アミノ基を2個有する化合物であり、例えば第二級アミンであるアミノ基を2個有するピペラジン等が好ましいが、第二級アミンであるアミノ基を2個有する化合物も使用できる。または活性水素が2つある第一級アミンを1つ有するアミンでもよい。
 第一級アミンであるアミノ基を2個有する化合物としては2官能の脂肪族ジアミン、芳香族ジアミンが挙げられる。脂肪族ジアミンとしては、エチレンジアミン、1,2-プロパーンジアミン、1,3-プロパーンジアミン、1,4-ジアミノブタン、1,6-ヘキサメチレンジアミン、2,5-ジメチル-2,5-ヘキサンジアミン、2,2,4ートリメチルヘキサメチレンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノシクロヘキサン、N-アミノエチルピペラジンなどが挙げられ、芳香族ジアミンとしては、ジアミノジフェニルメタン、ジアミノジフェニルプロパーン等が挙げられる。なかでもプライマーの強靭性の観点から、1,3-プロパーンジアミン、1,4-ジアミノブタン、1,6-ヘキサメチレンジアミン等が好ましい。
 フェノールノボラック型エポキシ樹脂としては、公知のものが使用できる。具体的には、例えばYDPN-638(日鉄ケミカル&マテリアル株式会社製)、N-740(DIC株式会社製)等が挙げられる。
 クレゾールノボラック型エポキシ樹脂としても公知のものが使用できる。具体的にはo-クレゾールノボラック型エポキシ樹脂としてYDCN-700-7、YDCN-700-10、YDCN-704、YDCN-704L(以上日鉄ケミカル&マテリアル株式会社製)、N-680(DIC株式会社製)、CNE-202(長春グループ製)等が挙げられる。
(In-situ polymerizable thermoplastic resin composition containing (B))
The bifunctional amino compound in (B) a combination of a bifunctional amino compound and a phenol novolac type epoxy resin and/or a cresol novolac type epoxy resin is a compound having two amino groups, such as a secondary amine amino group. Although piperazine and the like having two are preferred, compounds having two amino groups, which are secondary amines, can also be used. Or it may be an amine having one primary amine with two active hydrogens.
Compounds having two amino groups, which are primary amines, include bifunctional aliphatic diamines and aromatic diamines. Aliphatic diamines include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, 1,6-hexamethylenediamine, 2,5-dimethyl-2,5-hexane Diamine, 2,2,4-trimethylhexamethylenediamine, isophoronediamine, bis(4-amino-3-methylcyclohexyl)methane, 1,3-diaminocyclohexane, N-aminoethylpiperazine and the like, and aromatic diamines include includes diaminodiphenylmethane, diaminodiphenylpropane and the like. Among them, 1,3-propanediamine, 1,4-diaminobutane, 1,6-hexamethylenediamine and the like are preferable from the viewpoint of primer toughness.
A well-known thing can be used as a phenol novolak-type epoxy resin. Specific examples include YDPN-638 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and N-740 (manufactured by DIC Corporation).
A known cresol novolac type epoxy resin can also be used. Specifically, o-cresol novolak type epoxy resins YDCN-700-7, YDCN-700-10, YDCN-704, YDCN-704L (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), N-680 (DIC Corporation (manufactured by Changchun Group) and CNE-202 (manufactured by Changchun Group).
((C)を含む現場重合型熱可塑性樹脂組成物)
 (C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、における2官能カルボキシ化合物は、カルボキシ基を2つ有する化合物であり、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、イソフタル酸、テレフタル酸などが挙げられる。なかでもプライマーの強度や強靭性観点から、イソフタル酸、テレフタル酸、アジピン酸等が好ましい。
 フェノールノボラック型エポキシ樹脂としては、公知のものが使用できる。具体的には、例えばYDPN-638(日鉄ケミカル&マテリアル株式会社製)、N-740(DIC株式会社製)等が挙げられる。
 クレゾールノボラック型エポキシ樹脂としても公知のものが使用できる。具体的にはo-クレゾールノボラック型エポキシ樹脂としてYDCN-700-7、YDCN-700-10、YDCN-704、YDCN-704L(以上日鉄ケミカル&マテリアル株式会社製)、N-680(DIC株式会社製)、CNE-202(長春グループ製)等が挙げられる。
(In-situ polymerizable thermoplastic resin composition containing (C))
The bifunctional carboxy compound in (C) a combination of a bifunctional carboxy compound and a phenol novolac type epoxy resin and/or a cresol novolak type epoxy resin is a compound having two carboxy groups, such as oxalic acid, malonic acid, and succinic acid. , glutaric acid, adipic acid, maleic acid, fumaric acid, isophthalic acid, terephthalic acid, and the like. Among them, isophthalic acid, terephthalic acid, adipic acid, and the like are preferable from the viewpoint of primer strength and toughness.
A well-known thing can be used as a phenol novolak-type epoxy resin. Specific examples include YDPN-638 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and N-740 (manufactured by DIC Corporation).
A known cresol novolac type epoxy resin can also be used. Specifically, o-cresol novolak type epoxy resins YDCN-700-7, YDCN-700-10, YDCN-704, YDCN-704L (manufactured by Nippon Steel Chemical & Materials Co., Ltd.), N-680 (DIC Corporation (manufactured by Changchun Group) and CNE-202 (manufactured by Changchun Group).
((D)を含む現場重合型熱可塑性樹脂組成物)
 (D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、における2官能イソシアネート化合物は、イソシアナト基を2個有する化合物であり、例えばヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、ダイマー酸ジイソシアネート、2,4-または2,6ートリレンジイソシアネート(TDI)またはその混合物、p-フェニレンジシソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート(MDI)等のジイソシアネート化合物が挙げられる。なかでもプライマーの強度の観点から、TDIやMDI等が好ましい。
 フェノールノボラック樹脂としては、具体的にはBRG-555、BRG-556、BRG-557、BRG-558、CRG-951(以上、アイカ工業株式会社製)等が挙げられる。
 クレゾールノボラック樹脂としては、オルト、メタ、パラ体のクレゾールノボラックが挙げられる。具体的には、例えばメタパラクレゾールノボラック:LF-100、LF-110、LF-120、オルトクレゾールノボラック:LF-200、パラクレゾールノボラック:LF-400(以上、リグナイト株式会社製)等が挙げられる。
(In-situ polymerizable thermoplastic resin composition containing (D))
The bifunctional isocyanate compound in (D) a combination of a bifunctional isocyanate compound and a phenol novolac resin and/or a cresol novolac resin is a compound having two isocyanato groups, such as hexamethylene diisocyanate, tetramethylene diisocyanate, dimer acid diisocyanate, Diisocyanate compounds such as 2,4- or 2,6-tolylene diisocyanate (TDI) or mixtures thereof, p-phenylene diisocyanate, xylylene diisocyanate, and diphenylmethane diisocyanate (MDI) can be mentioned. Among them, TDI, MDI, and the like are preferable from the viewpoint of primer strength.
Specific examples of phenol novolak resins include BRG-555, BRG-556, BRG-557, BRG-558, and CRG-951 (manufactured by Aica Kogyo Co., Ltd.).
Cresol novolac resins include ortho-, meta-, and para-cresol novolacs. Specifically, for example, meta-para-cresol novolak: LF-100, LF-110, LF-120, ortho-cresol novolak: LF-200, para-cresol novolac: LF-400 (manufactured by Lignite Co., Ltd.), and the like. .
 (A)を含む現場重合型熱可塑性樹脂組成物における2官能チオール化合物と、フェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂、との配合比は、両者の反応性等を考慮して、エポキシ基に対するチオールのモル当量比が、0.7~1.5となるように設定されることが好ましく、より好ましくは0.8~1.4、さらに好ましくは0.9~1.3とする。
 (B)を含む現場重合型熱可塑性樹脂組成物における2官能アミノ基と、フェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂、との配合比は、両者の反応性等を考慮して、エポキシ基に対するアミノ基のモル当量比が、0.7~1.5となるように設定されることが好ましく、より好ましくは0.8~1.4、さらに好ましくは0.9~1.3とする。
 (C)を含む現場重合型熱可塑性樹脂組成物における2官能カルボキシ基と、フェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂、との配合比は、両者の反応性等を考慮して、エポキシ基に対するカルボキシ基のモル当量比が、0.7~1.5となるように設定されることが好ましく、より好ましくは0.8~1.4、さらに好ましくは0.9~1.3とする。
 (D)を含む現場重合型熱可塑性樹脂組成物における2官能オソシアネートと、フェノールノボラック樹脂及び/またはクレゾールノボラック樹脂、との配合比は、両者の反応性等を考慮して、エポキシ基に対するイソシアナト基のモル当量比が、0.7~1.5となるように設定されることが好ましく、より好ましくは0.8~1.4、さらに好ましくは0.9~1.3とする。
The compounding ratio of the bifunctional thiol compound and the phenol novolak epoxy resin and/or the cresol novolac epoxy resin in the in situ polymerizable thermoplastic resin composition containing (A) is determined by considering the reactivity of both. The molar equivalent ratio of thiol to epoxy groups is preferably set to 0.7 to 1.5, more preferably 0.8 to 1.4, and still more preferably 0.9 to 1.3. do.
In the in-situ polymerization type thermoplastic resin composition containing (B), the compounding ratio of the bifunctional amino group to the phenol novolak epoxy resin and/or the cresol novolac epoxy resin is determined by considering the reactivity of both. The molar equivalent ratio of amino groups to epoxy groups is preferably set to 0.7 to 1.5, more preferably 0.8 to 1.4, still more preferably 0.9 to 1.3. and
In the in-situ polymerization type thermoplastic resin composition containing (C), the compounding ratio of the bifunctional carboxyl group to the phenol novolak type epoxy resin and/or cresol novolak type epoxy resin is determined in consideration of the reactivity of both. The molar equivalent ratio of carboxy groups to epoxy groups is preferably set to 0.7 to 1.5, more preferably 0.8 to 1.4, and still more preferably 0.9 to 1.3. and
In the in-situ polymerization type thermoplastic resin composition containing (D), the compounding ratio of the bifunctional osocyanate and the phenol novolak resin and/or cresol novolak resin is determined by taking into consideration the reactivity of both isocyanato groups relative to the epoxy groups. is preferably set to be 0.7 to 1.5, more preferably 0.8 to 1.4, and still more preferably 0.9 to 1.3.
 樹脂プライマー層3の少なくとも1層である重合物層は、前記(A)の組み合わせ、前記(B)の組み合わせ、前記(C)の組み合わせ及び前記(D)の組み合わせからなる群から選択される少なくとも何れかを含む現場重合型熱可塑性樹脂組成物の重合物からなり、前記現場重合型熱可塑性樹脂組成物は前記群から選択される2以上を混合して含んでもよい。ここで、混合比には特に制限はない。 At least one polymer layer of the resin primer layer 3 is selected from the group consisting of the combination of (A), the combination of (B), the combination of (C) and the combination of (D). It consists of a polymer of an in-situ polymerization type thermoplastic resin composition containing any one of them, and the in-situ polymerization type thermoplastic resin composition may contain a mixture of two or more selected from the above group. Here, the mixing ratio is not particularly limited.
 前記重付加反応の際に用いる触媒としては、公知のものが使用できる。例えば、トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール等の第三級アミン;トリフェニルホスフィン等のリン化合物等が好適に用いられる。
 前記触媒を添加する場合、該触媒の使用量は、重付加反応の適度な促進の観点から、現場重合型熱可塑性樹脂を形成する原料化合物の合計100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~3質量部、さらに好ましくは0.1~2質量部である。
A known catalyst can be used for the polyaddition reaction. For example, tertiary amines such as triethylamine and 2,4,6-tris(dimethylaminomethyl)phenol; phosphorus compounds such as triphenylphosphine; and the like are preferably used.
When the catalyst is added, the amount of the catalyst used is preferably 0.01 with respect to a total of 100 parts by mass of the raw material compounds forming the in-situ polymerization type thermoplastic resin, from the viewpoint of moderate acceleration of the polyaddition reaction. to 5 parts by mass, more preferably 0.05 to 3 parts by mass, and even more preferably 0.1 to 2 parts by mass.
 なお、前記(A)の組み合わせ、前記(B)の組み合わせ、前記(C)の組み合わせ及び前記(D)の組み合わせからなる群から選択される少なくとも何れかを含む現場重合型熱可塑性樹脂組成物には、組成物原料の混合容易性及び現場重合型熱可塑性樹脂組成物のコーティング容易性等の観点から、溶剤を含んでいてもよい。
 前記溶剤は、組成物原料の溶解性や、現場重合型熱可塑性樹脂組成物の重付加反応後の残留の抑制等の観点から、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、テトラヒドロフラン、シクロヘキサン、n-ヘキサン、エタノール、メタノール等が好適に用いられるが、ポリ塩化ビニルとの接着性向上のためにはメチルエチルケトンやテトラヒドロフランの使用が好ましい。
 また、現場重合型熱可塑性樹脂組成物には、所望の樹脂コーティング層を形成させるために、必要に応じて着色剤等の添加剤が含まれていてもよい。この場合、現場重合型熱可塑性樹脂組成物(ただし、溶剤は除く。)100質量%中、現場重合型熱可塑性樹脂組成物を形成する原料化合物の合計100質量部に対して、0.1~5質量%であることが好ましく、より好ましくは0.5~3質量%である。
In addition, the in-situ polymerization type thermoplastic resin composition containing at least one selected from the group consisting of the combination of (A), the combination of (B), the combination of (C) and the combination of (D) may contain a solvent from the viewpoint of ease of mixing of composition raw materials and ease of coating of the in-situ polymerization type thermoplastic resin composition.
From the viewpoint of the solubility of the composition raw material and the suppression of residue after the polyaddition reaction of the in-situ polymerization type thermoplastic resin composition, the solvent is, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, tetrahydrofuran, Cyclohexane, n-hexane, ethanol, methanol and the like are preferably used, but methyl ethyl ketone and tetrahydrofuran are preferably used for improving adhesion to polyvinyl chloride.
In addition, the in-situ polymerization type thermoplastic resin composition may contain additives such as colorants as necessary in order to form a desired resin coating layer. In this case, in 100% by mass of the in-situ polymerization type thermoplastic resin composition (excluding the solvent), 0.1 to It is preferably 5% by mass, more preferably 0.5 to 3% by mass.
((A)~(D)のいずれかと(E)を含む現場重合型熱可塑性樹脂組成物)
 ポリオレフィンとの接合が必要な場合、前記(A)の組み合わせ、前記(B)の組み合わせ、前記(C)の組み合わせ及び前記(D)の組み合わせからなる群から選択される少なくとも何れかに、更に、(E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン、を含む現場重合型熱可塑性樹脂組成物を用いて重合物層を形成することが好ましい。
 前記無水マレイン酸変性ポリオレフィンとしては、無水マレイン酸をポリオレフィンにグラフトしたもので、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン等がある。化薬アクゾ社製カヤブリッド002PP、002PP-NW、003PP、003PP-NW、三菱ケミカル社製Modicシリーズ等がある。
 また無水マレイン酸で機能化させたポリプロピレン添加剤としてBYK社製SCONA TPPP2112GA、TPPP8112GA、TPPP9212GAを併用してもよい。
 塩素化ポリオレフィンとしては、東洋紡社製ハードレン(登録商標)13-LP、13-LLP、15-LP、日本製紙社製スーパークロン(登録商標)814HS、390S、803LT(トルエン溶液)、803L(トルエン溶液)、1026(トルエン溶液)等がある。
(In-situ polymerization type thermoplastic resin composition containing any of (A) to (D) and (E))
When bonding with polyolefin is required, at least one selected from the group consisting of the combination of (A), the combination of (B), the combination of (C) and the combination of (D), It is preferable to form the polymer layer using an in-situ polymerizable thermoplastic resin composition containing (E) maleic anhydride-modified polyolefin and/or chlorinated polyolefin.
The maleic anhydride-modified polyolefin is obtained by grafting maleic anhydride to polyolefin, and includes maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, and the like. There are Kayabrid 002PP, 002PP-NW, 003PP, 003PP-NW manufactured by Kayaku Akzo Co., Ltd., and Modic series manufactured by Mitsubishi Chemical.
SCONA TPPP2112GA, TPPP8112GA, and TPPP9212GA manufactured by BYK may also be used together as polypropylene additives functionalized with maleic anhydride.
As chlorinated polyolefins, Toyobo Hardren (registered trademark) 13-LP, 13-LLP, 15-LP, Nippon Paper Industries Co., Ltd. Superchron (registered trademark) 814HS, 390S, 803LT (toluene solution), 803L (toluene solution ), 1026 (toluene solution), and the like.
 (A)~(D)のいずれかと(E)を含む現場重合型熱可塑性樹脂組成物において、(A)~(D)に対する(E)の添加量は、(A)~(D)の合計量100質量部(固形分)に対して、(E)5~200質量部(固形分)であることが好ましく、20~100質量部(固形分)であることがより好ましい。添加量が5質量部より少ないとポリオレフィンと接合できず、200質量部を超えるとポリ塩化ビニルとの接合力が十分発現しない。
 また無水マレイン酸変性ポリオレフィンを添加した場合、常温~150℃で反応を進めておいてもよい。
In the in-situ polymerization type thermoplastic resin composition containing any of (A) to (D) and (E), the amount of (E) added to (A) to (D) is the total of (A) to (D) (E) is preferably 5 to 200 parts by mass (solid content), more preferably 20 to 100 parts by mass (solid content), with respect to 100 parts by mass (solid content). If the amount added is less than 5 parts by mass, bonding with polyolefin will not be possible, and if the amount exceeds 200 parts by mass, sufficient bonding strength with polyvinyl chloride will not be exhibited.
Further, when the maleic anhydride-modified polyolefin is added, the reaction may proceed at room temperature to 150°C.
(熱硬化性樹脂)
 前記樹脂プライマー層が複数層からなる場合、そのうちの少なくとも1層は、熱硬化性樹脂を含む樹脂組成物の硬化物から形成されてなる層(以下、「熱硬化性樹脂層」とも言う。)であることも好ましい。前記熱硬化性樹脂としては、例えば、アリル変性マレイミド樹脂、ウレタン樹脂、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂が挙げられる。
 前記熱硬化性樹脂層の各層は、これらの樹脂のうちの1種単独で形成されていてもよく、2種以上が混合されて形成されていてもよい。あるいはまた、2層以上の各層が異なる種類の熱硬化性樹脂層であってもよい。
(Thermosetting resin)
When the resin primer layer consists of a plurality of layers, at least one of the layers is a layer formed from a cured product of a resin composition containing a thermosetting resin (hereinafter also referred to as a "thermosetting resin layer"). It is also preferable that Examples of the thermosetting resin include allyl-modified maleimide resin, urethane resin, epoxy resin, vinyl ester resin, and unsaturated polyester resin.
Each layer of the thermosetting resin layer may be formed of one of these resins alone, or may be formed of a mixture of two or more. Alternatively, two or more layers may be thermosetting resin layers of different types.
<表面処理>
 前記基材の表面は、表面処理された面を有していることが好ましい。
 前記樹脂プライマー層は、基材の表面処理された面上に形成されていることにより、該基材と強固に接着しやすくなる。
 前記表面処理としては、例えば、溶剤等による洗浄又は脱脂処理、ブラスト処理、研磨処理、エッチング処理、化成処理等が挙げられる。これらの処理は、1種のみであっても、2種以上が併用されていてもよい。これらの中でも、プラズマ処理、コロナ放電処理、UVオゾン処理、ブラスト処理、研磨処理、エッチング処理及び化成処理からなる群より選ばれる少なくとも1種である表面処理が施されていることが好ましい。
<Surface treatment>
The surface of the substrate preferably has a surface-treated surface.
Since the resin primer layer is formed on the surface-treated surface of the base material, it can be easily and firmly adhered to the base material.
Examples of the surface treatment include cleaning with a solvent or the like, degreasing treatment, blasting treatment, polishing treatment, etching treatment, chemical conversion treatment, and the like. These treatments may be used alone or in combination of two or more. Among these, it is preferable that the surface be subjected to at least one surface treatment selected from the group consisting of plasma treatment, corona discharge treatment, UV ozone treatment, blasting treatment, polishing treatment, etching treatment and chemical conversion treatment.
 前記表面処理は、基材の表面の清浄化、該表面に水酸基を生じさせることによって、又は、該表面に微細な凹凸形成(粗面化)によるアンカー効果によって、該基材の表面に対する前記樹脂プライマー層の接着性を向上させることを目的として行われる。
 なお、上記のような方法で表面処理された基材の表面の性状は、表面処理された面上に樹脂プライマー層等が形成されることにより、表面処理直後とは変化している場合もある。このため、当該複合積層体において、表面処理された基材の表面の性状を特定して表現することは、不可能又は非実際的であると考える。よって、本発明においては、表面処理された基材の表面について、表面処理の方法によって特定することとしている。
 前記表面処理の各種処理は、公知の方法で行うことができる。具体的な処理方法としては、例えば、以下に示す方法により行うことができる。
The surface treatment is performed by cleaning the surface of the base material, generating hydroxyl groups on the surface, or by the anchor effect of forming fine unevenness (roughening) on the surface. This is done for the purpose of improving the adhesion of the primer layer.
The properties of the surface of the base material surface-treated by the above-described method may change from that immediately after the surface treatment due to the formation of a resin primer layer or the like on the surface-treated surface. . For this reason, it is considered impossible or impractical to specify and express the properties of the surface of the surface-treated substrate in the composite laminate. Therefore, in the present invention, the surface of the substrate that has undergone surface treatment is specified by the surface treatment method.
Various treatments of the surface treatment can be performed by known methods. As a specific treatment method, for example, the following method can be used.
〔洗浄・脱脂処理〕
 溶剤等による洗浄又は脱脂処理としては、例えば、基材の表面を、アセトン、トルエン等の有機溶剤を用いて、洗浄したり、拭くことにより脱脂する等の方法が挙げられる。
[Cleaning and degreasing]
The cleaning or degreasing treatment with a solvent or the like includes, for example, a method of cleaning the surface of the base material with an organic solvent such as acetone or toluene or wiping the surface for degreasing.
〔ブラスト処理〕
 前記ブラスト処理としては、例えば、ショットブラストやサンドブラスト等が挙げられる。
[Blasting]
Examples of the blasting include shot blasting and sandblasting.
〔研磨処理〕
 前記研磨処理としては、例えば、研磨布を用いたバフ研磨や、研磨紙(サンドペーパー)を用いたロール研磨、電解研磨等が挙げられる。
[Polishing]
Examples of the polishing treatment include buffing using an abrasive cloth, roll polishing using abrasive paper (sandpaper), electropolishing, and the like.
〔エッチング処理〕
 基材がアルミニウムである場合の前記エッチング処理としては、例えば、アルカリ法、リン酸-硫酸法、フッ化物法、クロム酸-硫酸法、塩鉄法等の化学的エッチング処理、また、電解エッチング法等の電気化学的エッチング処理等が挙げられる。
[Etching process]
Examples of the etching treatment when the substrate is aluminum include chemical etching treatments such as an alkali method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, an iron salt method, and an electrolytic etching method. and other electrochemical etching treatments.
 基材がアルミニウムである場合のエッチング処理は、水酸化ナトリウム水溶液又は水酸化カリウム水溶液を用いたアルカリ法が好ましく、特に、水酸化ナトリウム水溶液を用いた苛性ソーダ法が好ましい。
 前記アルカリ法としては、例えば、アルミニウム基材を濃度3~20質量%の水酸化ナトリウム又は水酸化カリウムの水溶液に、20~70℃で1~15分間浸漬させることにより行うことができる。添加剤として、キレート剤、酸化剤、リン酸塩等を添加してもよい。前記浸漬後、5~20質量%の硝酸水溶液等で中和(脱スマット)し、水洗、乾燥を行うことが好ましい。
When the substrate is aluminum, the etching treatment is preferably an alkali method using an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution, and particularly preferably a caustic soda method using an aqueous sodium hydroxide solution.
As the alkali method, for example, the aluminum substrate can be immersed in an aqueous solution of sodium hydroxide or potassium hydroxide having a concentration of 3 to 20% by mass at 20 to 70° C. for 1 to 15 minutes. As additives, a chelating agent, an oxidizing agent, a phosphate, or the like may be added. After the immersion, it is preferable to neutralize (desmut) with a 5 to 20% by mass nitric acid aqueous solution or the like, wash with water, and dry.
〔化成処理〕
 前記化成処理とは、主として基材の表面に、化成皮膜を形成するものである。
 基材がアルミニウム材からなる場合に施される化成処理としては、例えば、ベーマイト処理、ジルコニウム処理等が挙げられ、特に、ベーマイト処理が好ましい。
 化成処理は、前記エッチング処理の後に行うことも好ましい。
[Chemical treatment]
The chemical conversion treatment is to form a chemical conversion film mainly on the surface of the substrate.
Examples of the chemical conversion treatment applied when the substrate is made of an aluminum material include boehmite treatment and zirconium treatment, with boehmite treatment being particularly preferred.
It is also preferable that the chemical conversion treatment be performed after the etching treatment.
 ベーマイト処理では、例えば、アルミニウム基材を90~100℃程度の熱水で処理することにより行われ、該基材表面にベーマイト(アルミニウム水和酸化物)皮膜が形成される。反応促進剤として、アンモニアやトリエタノールアミン等を水に添加してもよい。例えば、アルミニウム基材を、濃度0.1~5.0質量%でトリエタノールアミンを含む90~100℃の熱水中に3秒~5分間浸漬することにより、ベーマイト処理を行うこともできる。
 ベーマイト処理においては、良好なベーマイト皮膜を形成させるため、前記熱水等での処理後、ベーキングすることが好ましい。
The boehmite treatment is carried out, for example, by treating an aluminum substrate with hot water of about 90 to 100° C. to form a boehmite (aluminum hydrated oxide) film on the surface of the substrate. As a reaction accelerator, ammonia, triethanolamine, or the like may be added to water. For example, boehmite treatment can be performed by immersing an aluminum substrate in hot water of 90 to 100° C. containing triethanolamine at a concentration of 0.1 to 5.0% by mass for 3 seconds to 5 minutes.
In the boehmite treatment, baking is preferably performed after the treatment with hot water or the like, in order to form a good boehmite film.
 ジルコニウム処理では、例えば、アルミニウム基材を、リン酸ジルコニウム等のジルコニウム塩含有液に浸漬することにより行われ、該基材表面にジルコニウム化合物の皮膜が形成される。例えば、アルミニウム基材を、「パルコート3762」、「パルコート3796」(以上、日本パーカライジング株式会社製)等のジルコニウム処理用の化成剤の45~70℃の液中に0.5~3分間浸漬することにより、ジルコニウム処理を行うこともできる。 The zirconium treatment is carried out, for example, by immersing an aluminum base material in a zirconium salt-containing liquid such as zirconium phosphate to form a zirconium compound film on the surface of the base material. For example, an aluminum substrate is immersed in a solution of a chemical conversion agent for zirconium treatment such as "Palcoat 3762" or "Palcoat 3796" (manufactured by Nihon Parkerizing Co., Ltd.) at 45 to 70°C for 0.5 to 3 minutes. Thus, zirconium treatment can also be performed.
 アルミニウム材からなる基材に表面処理を施す場合には、前記表面処理としては、エッチング処理及びベーマイト処理からなる群より選ばれる1種以上を含むことが好ましい。 When surface treatment is applied to a substrate made of an aluminum material, the surface treatment preferably includes one or more selected from the group consisting of etching treatment and boehmite treatment.
<官能基導入層>
 図2に、本発明の複合積層体の好ましい他の実施形態を示す。図2に示す複合積層体1は、金属からなる基材2(以下、金属基材)と樹脂コーティング層3との間に、両者に接して積層された官能基導入層4を有している。前記官能基導入層は、下記(C1)~(C7)からなる群より選ばれる1種以上の官能基由来の構造を有する。
(C1)シランカップリング剤由来の、アミノ基、メルカプト基、(メタ)アクリロイル基、エポキシ基及びイソシアナト基からなる群より選ばれる1種以上の官能基
(C2)シランカップリング剤由来のアミノ基と、前記シランカップリング剤以外の化合物由来のエポキシ基とが反応して生成した官能基
(C3)シランカップリング剤由来のメルカプト基と、前記シランカップリング剤以外の化合物由来の、エポキシ基及びイソシアナト基からなる群より選ばれる1種以上の基とが反応して生成した官能基
(C4)シランカップリング剤由来の(メタ)アクリロイル基と、前記シランカップリング剤以外の化合物由来のメルカプト基とが反応して生成した官能基
(C5)シランカップリング剤由来のエポキシ基と、前記シランカップリング剤以外の化合物由来の、アミノ基及びメルカプト基からなる群より選ばれる1種以上の基とが反応して生成した官能基
(C6)シランカップリング剤以外の化合物由来のイソシアナト基
(C7)シランカップリング剤以外の化合物由来のメルカプト基
<Functional group introduction layer>
FIG. 2 shows another preferred embodiment of the composite laminate of the present invention. The composite laminate 1 shown in FIG. 2 has a functional group-introduced layer 4 laminated between a substrate 2 made of metal (hereinafter referred to as a metal substrate) and a resin coating layer 3 in contact with both. . The functional group-introduced layer has a structure derived from one or more functional groups selected from the group consisting of (C1) to (C7) below.
(C1) silane coupling agent-derived amino group, mercapto group, (meth) acryloyl group, one or more functional groups selected from the group consisting of epoxy groups and isocyanato groups (C2) silane coupling agent-derived amino group and a functional group (C3) generated by the reaction of an epoxy group derived from a compound other than the silane coupling agent, a mercapto group derived from the silane coupling agent, and an epoxy group derived from a compound other than the silane coupling agent, and A functional group (C4) produced by reacting with one or more groups selected from the group consisting of isocyanato groups (C4) a (meth)acryloyl group derived from a silane coupling agent and a mercapto group derived from a compound other than the silane coupling agent The functional group (C5) generated by the reaction with an epoxy group derived from a silane coupling agent, and one or more groups selected from the group consisting of an amino group and a mercapto group derived from a compound other than the silane coupling agent. A functional group generated by the reaction of (C6) an isocyanato group derived from a compound other than a silane coupling agent (C7) a mercapto group derived from a compound other than a silane coupling agent
 前記官能基導入層における官能基由来の構造が、該官能基導入層に接して積層されている前記金属基材及び前記樹脂コーティング層のそれぞれと化学結合することにより、該金属基材と該樹脂コーティング層とが、強固に接着しやすくなる。また、前記官能基導入層は、当該複合積層体の前記樹脂コーティング層側の表面と樹脂材との接合強度の向上にも寄与し得るものと考えられる。 The structure derived from the functional group in the functional group-introduced layer chemically bonds with each of the metal substrate and the resin coating layer laminated in contact with the functional group-introduced layer, whereby the metal substrate and the resin It becomes easier to adhere firmly to the coating layer. In addition, it is considered that the functional group-introduced layer can also contribute to improving the bonding strength between the surface of the composite laminate on the resin coating layer side and the resin material.
 なお、前記官能基導入層が(C1)~(C7)の官能基由来の構造を有していることは、金属基材の表面上に該官能基導入層を形成した直後は、分析により確認できる場合もあるが、得られた複合積層体においては、これらの官能基由来の構造は、前記樹脂コーティング層と化学結合して変化しており、前記官能基導入層における該基又は構造の存在を確認することは、不可能又は非実際的である。このため、本発明においては、(C1)~(C7)の官能基由来の構造を生成させ得るシランカップリング剤及び/又はそれ以外の化合物が有する官能基に基づいて、前記官能基導入層の構成を特定することとしている。 The fact that the functional group-introduced layer has a structure derived from the functional groups (C1) to (C7) is confirmed by analysis immediately after the functional group-introduced layer is formed on the surface of the metal substrate. In some cases, it is possible, but in the obtained composite laminate, the structure derived from these functional groups is changed by chemically bonding with the resin coating layer, and the presence of the group or structure in the functional group-introduced layer It is impossible or impractical to ascertain Therefore, in the present invention, the functional group-introduced layer is formed on the basis of the functional groups possessed by the silane coupling agent and/or other compounds capable of generating structures derived from the functional groups (C1) to (C7). We will specify the configuration.
 前記官能基導入層は、上述した表面処理が施された金属基材の表面に積層されていることが好ましい。すなわち、前記金属基材は、前記官能基導入層を形成する前に、前記表面処理を施しておくことが好ましい。これにより、前記表面処理及び前記官能基導入層がもたらす化学結合との相乗効果によって、該金属基材と該樹脂コーティング層とが、強固に接着しやすくなる。また、当該複合積層体の前記樹脂コーティング層側の表面と樹脂材との接合強度も向上し得る。 The functional group-introduced layer is preferably laminated on the surface of the metal substrate that has undergone the surface treatment described above. That is, it is preferable that the metal substrate be subjected to the surface treatment before forming the functional group-introduced layer. As a result, the synergistic effect of the surface treatment and the chemical bond provided by the functional group-introduced layer facilitates strong adhesion between the metal substrate and the resin coating layer. Also, the bonding strength between the surface of the composite laminate on the resin coating layer side and the resin material can be improved.
 前記官能基導入層は、前記樹脂コーティング層を形成する前に、基材の表面に、下記(c1)~(c7)からなる群より選ばれる1種以上を用いた処理により官能基導入層を形成することができる。
(c1)アミノ基、メルカプト基、(メタ)アクリロイル基、エポキシ基及びイソシアナト基からなる群より選ばれる1種以上の官能基を有するシランカップリング剤
(c2)アミノ基を有するシランカップリング剤と、エポキシ化合物との組み合わせ
(c3)メルカプト基を有するシランカップリング剤と、エポキシ化合物、イソシアネート化合物、エポキシ変性(メタ)アクリレート化合物、及びアミノ基含有(メタ)アクリレート化合物からなる群より選ばれる1種以上の化合物との組み合わせ
(c4)(メタ)アクリロイル基を有するシランカップリング剤と、チオール化合物との組み合わせ
(c5)エポキシ基を有するシランカップリング剤と、アミン化合物、チオール化合物及びアミノ基含有(メタ)アクリレート化合物からなる群より選ばれる1種以上の化合物との組み合わせ
(c6)イソシアネート化合物
(c7)チオール化合物
The functional group-introduced layer is formed by treating the surface of the substrate with one or more selected from the group consisting of (c1) to (c7) below before forming the resin coating layer. can be formed.
(c1) a silane coupling agent having one or more functional groups selected from the group consisting of an amino group, a mercapto group, a (meth)acryloyl group, an epoxy group and an isocyanato group; and (c2) a silane coupling agent having an amino group. , a combination with an epoxy compound (c3) one selected from the group consisting of a silane coupling agent having a mercapto group, an epoxy compound, an isocyanate compound, an epoxy-modified (meth)acrylate compound, and an amino group-containing (meth)acrylate compound Combination with the above compounds (c4) Combination of a silane coupling agent having a (meth) acryloyl group and a thiol compound (c5) A silane coupling agent having an epoxy group, an amine compound, a thiol compound and an amino group-containing ( Combination with one or more compounds selected from the group consisting of meth)acrylate compounds (c6) isocyanate compound (c7) thiol compound
 なお、(c1)~(c7)は、順に、それぞれから形成される上記(C1)~(C7)のそれぞれの基又は構造に対応している。すなわち、(c1)による処理は、(C1)の基を導入する官能基導入層を形成するものであり、また、(c2)による処理は、(C2)の構造を導入する官能基導入層を形成するものである。
 例えば、(c2)による処理で、アミノ基に多官能エポキシ化合物を反応させた場合、該多官能エポキシ化合物が有する官能基であるエポキシ基が末端に導入される。同様に、(c3)による処理で、メルカプト基に多官能イソシアネート化合物を反応させた場合、該多官能イソシアネート化合物が有する官能基であるイソシアナト基が末端に導入される。
Note that (c1) to (c7) correspond to the respective groups or structures of (C1) to (C7) formed therefrom, respectively. That is, the treatment by (c1) forms a functional group-introduced layer into which the group of (C1) is introduced, and the treatment by (c2) forms a functional group-introduced layer into which the structure of (C2) is introduced. to form.
For example, in the treatment (c2), when the amino group is reacted with a polyfunctional epoxy compound, an epoxy group, which is a functional group possessed by the polyfunctional epoxy compound, is introduced at the end. Similarly, when the polyfunctional isocyanate compound is reacted with the mercapto group in the treatment (c3), an isocyanato group, which is a functional group possessed by the polyfunctional isocyanate compound, is introduced to the terminal.
 前記官能基導入層の形成方法は、特に限定されるものではないが、(c1)~(c7)に示すシランカップリング剤及び/又はその他の各種化合物を、スプレー塗布法、浸漬法等の公知のコーティング方法でコーティングすることにより形成することができる。例えば、金属基材を、濃度5~50質量%のシランカップリング剤等の常温~100℃の溶液中に1分~5日間浸漬した後、常温~100℃で1分~5時間乾燥させる等の方法が挙げられる。 The method for forming the functional group-introduced layer is not particularly limited. can be formed by coating with the coating method of For example, a metal substrate is immersed in a solution of a silane coupling agent having a concentration of 5 to 50% by mass at room temperature to 100° C. for 1 minute to 5 days, and then dried at room temperature to 100° C. for 1 minute to 5 hours. method.
〔シランカップリング剤〕
 (c1)~(c5)におけるシランカップリング剤としては、例えば、ガラス繊維の表面処理等において使用される公知のものを適用することができる。シランカップリング剤の加水分解により生成したシラノール基、又はこれがオリゴマー化したシラノール基が、金属基材の表面、特に、表面処理によって生じた水酸基と結合しやすく、該シランカップリング剤由来の、アミノ基、メルカプト基、(メタ)アクリロイル基、エポキシ基又はイソシアナト基等の官能基を、金属基材の表面に導入しやすい。これらの官能基は、前記樹脂コーティング層を形成する化合物と化学結合を生じやすい。
 また、これらの官能基は、前記官能基導入層の形成に用いられる前記シランカップリング剤以外の化合物の官能基との反応により、前記樹脂コーティング層を形成する化合物と馴染みやすい官能基を生じさせ得る。このため、(c2)~(c5)のそれぞれの処理は、金属基材の表面を前記シランカップリング剤で処理した後、該シランカップリング剤以外の化合物で処理することが好ましい。
 このように、シリコンカップリング剤は、官能基導入層を介して、金属基材と前記樹脂コーティング層とを強固に接着させるために、該官能基導入層を形成する化合物として好適に用いられる。
〔Silane coupling agent〕
As the silane coupling agent in (c1) to (c5), for example, known agents used in surface treatment of glass fibers can be applied. A silanol group generated by hydrolysis of a silane coupling agent, or a silanol group obtained by oligomerization of this, easily bonds to the surface of a metal substrate, in particular, a hydroxyl group generated by surface treatment, and the amino group derived from the silane coupling agent It is easy to introduce functional groups such as groups, mercapto groups, (meth)acryloyl groups, epoxy groups or isocyanato groups onto the surface of the metal substrate. These functional groups tend to form chemical bonds with the compounds forming the resin coating layer.
In addition, these functional groups react with functional groups of compounds other than the silane coupling agent used to form the functional group-introduced layer to produce functional groups that are compatible with the compound forming the resin coating layer. obtain. Therefore, in each of the treatments (c2) to (c5), it is preferable to treat the surface of the metal substrate with the silane coupling agent and then with a compound other than the silane coupling agent.
Thus, the silicon coupling agent is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
 前記シランカップリング剤としては、特に限定されるものではないが、官能基としてアミノ基、メルカプト基、(メタ)アクリロイル基、エポキシ基及びイソシアナト基からなる群より選ばれる1種以上を有するものが好ましい。これらのシランカップリング剤は、1種単独で用いても、2種以上を併用してもよい。
 アミノ基を有するものとしては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノプロピルトリメトキシシランの塩酸塩等が挙げられる。
 メルカプト基を有するものとしては、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。
 (メタ)アクリロイル基を有するものとしては、例えば、3-メタクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等が挙げられる。
 エポキシ基を有するものとしては、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。
 イソシアナト基を有するものとしては、例えば、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
The silane coupling agent is not particularly limited, but has one or more functional groups selected from the group consisting of an amino group, a mercapto group, a (meth)acryloyl group, an epoxy group and an isocyanato group. preferable. These silane coupling agents may be used singly or in combination of two or more.
Those having an amino group include, for example, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxy Silane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N-(vinylbenzyl)-2 -Aminopropyltrimethoxysilane hydrochloride and the like.
Those having a mercapto group include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
Those having a (meth)acryloyl group include, for example, 3-methacryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri ethoxysilane and the like.
Those having an epoxy group include, for example, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyltrimethoxysilane, 3-glycid xypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like.
Those having an isocyanato group include, for example, 3-isocyanatopropyltriethoxysilane.
〔チオール化合物〕
 (c4)、(c5)又は(c7)におけるチオール化合物は、前記シランカップリング剤以外の化合物である。前記チオール化合物のメルカプト基が、金属基材の表面、特に、表面処理によって生じた水酸基と結合しやすい。また、前記シリコンカップリング剤と組み合わせて用いられる場合は、該記シランカップリング剤由来の、(メタ)アクリロイル基又はエポキシ基等の官能基と反応し、金属基材の表面に前記樹脂コーティング層を形成する化合物と馴染みやすい官能基を生じさせ得る。
 このため、チオール化合物は、官能基導入層を介して、金属基材と前記樹脂コーティング層とを強固に接着させるために、該官能基導入層を形成する化合物として好適に用いられる。
[thiol compound]
The thiol compound in (c4), (c5) or (c7) is a compound other than the silane coupling agent. The mercapto group of the thiol compound is likely to bond with the surface of the metal substrate, particularly with the hydroxyl group generated by surface treatment. Further, when used in combination with the silicon coupling agent, it reacts with a functional group such as a (meth)acryloyl group or an epoxy group derived from the silane coupling agent to form the resin coating layer on the surface of the metal substrate. can give rise to functional groups that are compatible with compounds that form
Therefore, a thiol compound is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
 前記チオール化合物としては、特に限定されるものではないが、例えば、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート):「jERキュア(登録商標)QX40」(三菱ケミカル株式会社製)、「ポリチオール(登録商標)QE-340M」(東レ・ファインケミカル株式会社製);エーテル系第一級チオール化合物:「カップキュア(登録商標)3-800」(コグニス社製);1,4-ビス(3-メルカプトブチリルオキシ)ブタン:「カレンズMT BD1」(昭和電工株式会社製)、ペンタエリスリトールテトラキス(3-メルカプトブチレート):「カレンズMT PE1」(昭和電工株式会社製);1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン:「カレンズMT NR1」(昭和電工株式会社製)等が挙げられる。これらのチオール化合物は、1種単独で用いても、2種以上を併用してもよい。 The thiol compound is not particularly limited. Trademark) QE-340M” (manufactured by Toray Fine Chemicals Co., Ltd.); ether-based primary thiol compound: “Cupcure (registered trademark) 3-800” (manufactured by Cognis); 1,4-bis(3-mercaptobutyric Ryloxy) butane: "Karenzu MT BD1" (manufactured by Showa Denko KK), pentaerythritol tetrakis (3-mercaptobutyrate): "Karenzu MT PE1" (manufactured by Showa Denko KK); 1,3,5-tris ( 3-mercaptobutyloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione: "Karenzu MT NR1" (manufactured by Showa Denko KK) and the like. These thiol compounds may be used singly or in combination of two or more.
〔イソシアネート化合物〕
 (c3)又は(c6)におけるイソシアネート化合物は、前記シランカップリング剤以外の化合物である。前記イソシアネート化合物のイソシアナト基が、金属基材の表面、特に、表面処理によって生じた水酸基と結合しやすい。また、前記シリコンカップリング剤と組み合わせて用いられる場合は、該記シランカップリング剤由来の、メルカプト基等の官能基と反応し、金属基材の表面に前記樹脂コーティング層を形成する化合物と馴染みやすい官能基を生じさせ得る。
 このため、イソシアネート化合物は、官能基導入層を介して、金属基材と前記樹脂コーティング層とを強固に接着させるために、該官能基導入層を形成する化合物として好適に用いられる。
[Isocyanate compound]
The isocyanate compound in (c3) or (c6) is a compound other than the silane coupling agent. The isocyanato group of the isocyanate compound is likely to bond with the surface of the metal base material, particularly with the hydroxyl group generated by the surface treatment. Further, when used in combination with the silicon coupling agent, it reacts with functional groups such as mercapto groups derived from the silane coupling agent, and is compatible with the compound that forms the resin coating layer on the surface of the metal substrate. can give rise to sensitive functional groups.
Therefore, the isocyanate compound is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
 前記イソシアネート化合物としては、特に限定されるものではないが、例えば、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、イソホロンジイソシアネート(IPDI)等の多官能イソシアネート;2-イソシアネートエチルメタクリレート:「カレンズMOI(登録商標)」、2-イソシアネートエチルアクリレート:「カレンズAOI(登録商標)」及び「AOI-VM(登録商標)」、1,1-(ビスアクリロイルオキシエチル)エチルイソシアネート:「カレンズBEI(登録商標)」(以上、昭和電工株式会社製)等のラジカル反応性基を有するイソシアネート化合物等が挙げられる。前記イソシアネート化合物は、1種単独で用いても、2種以上を併用してもよい。 Examples of the isocyanate compound include, but are not limited to, polyfunctional isocyanates such as diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and isophorone diisocyanate (IPDI); Isocyanatoethyl methacrylate: "Karenzu MOI®", 2-isocyanatoethyl acrylate: "Karenzu AOI®" and "AOI-VM®", 1,1-(bisacryloyloxyethyl) ethyl isocyanate : isocyanate compounds having a radical reactive group such as "Karenzu BEI (registered trademark)" (manufactured by Showa Denko KK). The said isocyanate compound may be used individually by 1 type, or may use 2 or more types together.
〔エポキシ化合物〕
 (c2)又は(c3)におけるエポキシ化合物は、前記シランカップリング剤以外の化合物である。 前記エポキシ化合物のエポキシ基が、前記シランカップリング剤由来の、アミノ基又はメルカプト基等の官能基と反応し、金属基材の表面に前記樹脂コーティング層を形成する化合物と馴染みやすい官能基を生じさせ得る。
 このため、エポキシ化合物は、官能基導入層を介して、金属基材と前記樹脂コーティング層とを強固に接着させるために、該官能基導入層を形成する化合物として好適に用いられる。
[Epoxy compound]
The epoxy compound in (c2) or (c3) is a compound other than the silane coupling agent. The epoxy group of the epoxy compound reacts with a functional group derived from the silane coupling agent, such as an amino group or a mercapto group, to produce a functional group that is compatible with the compound that forms the resin coating layer on the surface of the metal substrate. can let
Therefore, an epoxy compound is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
 前記エポキシ化合物としては、公知のエポキシ化合物を用いることができ、多官能エポキシ化合物や、エポキシ基以外にアルケニル基を有する化合物が好ましい。前記エポキシ化合物としては、例えば、アリルグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、2官能エポキシ樹脂等が挙げられる。また、脂環式エポキシ化合物でもよく、1,2-エポキシ-4-ビニルシクロヘキサン:「セロキサイド(登録商標;以下、同様。)2000」、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート:「セロキサイド 2021P」(以上、株式会社ダイセル製)等が挙げられる。これらのエポキシ化合物は、1種単独で用いても、2種以上を併用してもよい。 As the epoxy compound, a known epoxy compound can be used, and a polyfunctional epoxy compound or a compound having an alkenyl group in addition to the epoxy group is preferable. Examples of the epoxy compound include allyl glycidyl ether, 1,6-hexanediol diglycidyl ether, and bifunctional epoxy resins. Alicyclic epoxy compounds may also be used, such as 1,2-epoxy-4-vinylcyclohexane: "Celoxide (registered trademark; hereinafter the same.) 2000", 3',4'-epoxycyclohexylmethyl-3,4-epoxy Cyclohexane carboxylate: "Celoxide 2021P" (manufactured by Daicel Corporation) and the like. These epoxy compounds may be used singly or in combination of two or more.
〔アミン化合物〕
 (c5)におけるアミン化合物は、前記シランカップリング剤以外の化合物である。前記アミン化合物のアミノ基が、前記シランカップリング剤由来の、エポキシ基等の官能基と反応し、金属基材の表面に前記樹脂コーティング層を形成する化合物と馴染みやすい官能基を生じさせ得る。
 このため、アミン化合物は、官能基導入層を介して、金属基材と前記樹脂コーティング層とを強固に接着させるために、該官能基導入層を形成する化合物として好適に用いられる。
[Amine compound]
The amine compound in (c5) is a compound other than the silane coupling agent. The amino group of the amine compound reacts with a functional group such as an epoxy group derived from the silane coupling agent to generate a functional group that is compatible with the compound that forms the resin coating layer on the surface of the metal substrate.
Therefore, the amine compound is preferably used as a compound forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer.
 前記アミン化合物としては、公知のアミン化合物等を用いることができ、1分子中に2個以上のアミノ基を有するアミン化合物や、アミノ基(アミド基を含む。)以外にアルケニル基を有する化合物が好ましい。前記アミノ化合物としては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、1,4-ジアミノブタン、ヘキサメチレンジアミン、2,5-ジメチル-2,5-ヘキサンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、4-アミノメチルオクタメチレンジアミン、3,3’-イミノビス(プロピルアミン)、3,3’-メチルイミノビス(プロピルアミン)、ビス(3-アミノプロピル)エーテル、1,2-ビス(3-アミノプロピルオキシ)エタン、メンセンジアミン、イソホロンジアミン、ビスアミノメチルノルボルナン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノシクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、アミノエチルピペラジン等が挙げられる。これらのアミン化合物は、1種単独で用いても、2種以上を併用してもよい。 As the amine compound, a known amine compound or the like can be used, and amine compounds having two or more amino groups in one molecule and compounds having an alkenyl group in addition to an amino group (including an amide group) can be used. preferable. Examples of the amino compounds include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, hexamethylenediamine, 2,5-dimethyl-2,5-hexanediamine, 2, 2,4-trimethylhexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 4-aminomethyloctamethylenediamine, 3,3′-iminobis(propylamine), 3,3′-methylimino bis(propylamine), bis(3-aminopropyl)ether, 1,2-bis(3-aminopropyloxy)ethane, mensendiamine, isophoronediamine, bisaminomethylnorbornane, bis(4-aminocyclohexyl)methane, bis(4-amino-3-methylcyclohexyl)methane, 1,3-diaminocyclohexane, 3,9-bis(3-aminopropyl)-2,4,8,10-tetraoxaspiro[5,5]undecane, Aminoethylpiperazine and the like can be mentioned. These amine compounds may be used singly or in combination of two or more.
〔エポキシ変性(メタ)アクリレート化合物〕
 (c3)におけるエポキシ変性(メタ)アクリレート化合物は、前記シランカップリング剤以外の化合物であり、エポキシ基及び(メタ)アクリロイル基を有している。このため、前記シランカップリング剤由来のメルカプト基等の官能基との反応により、金属基材の表面に前記樹脂コーティング層を形成する化合物と馴染みやすい官能基を生じさせ得る。
 このため、エポキシ変性(メタ)アクリレート化合物は、官能基導入層を介して、金属基材と前記樹脂コーティング層とを強固に接着させるために、該官能基導入層を形成する化合物として好適に用いられる。
[Epoxy-modified (meth)acrylate compound]
The epoxy-modified (meth)acrylate compound in (c3) is a compound other than the silane coupling agent and has an epoxy group and a (meth)acryloyl group. Therefore, by reacting with a functional group such as a mercapto group derived from the silane coupling agent, a functional group that is easily compatible with the compound that forms the resin coating layer can be generated on the surface of the metal substrate.
Therefore, the epoxy-modified (meth)acrylate compound is preferably used as a compound for forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer. be done.
 前記エポキシ変性(メタ)アクリレート化合物としては、例えば、グリシジル(メタ)アクリレートや、3,4-エポキシシクロヘキシルメチルメタクリレート:「サイクロマー(登録商標)M100」、また、上述した(c2)及び(c3)における多官能エポキシ化合物の一部を(メタ)アクリロイル化した化合物等が挙げられる。これらのエポキシ変性(メタ)アクリレート化合物は、1種単独で用いても、2種以上を併用してもよい。 Examples of the epoxy-modified (meth)acrylate compound include glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl methacrylate: "Cychromer (registered trademark) M100", and (c2) and (c3) described above. A compound obtained by (meth)acryloylating a part of the polyfunctional epoxy compound in is mentioned. These epoxy-modified (meth)acrylate compounds may be used singly or in combination of two or more.
〔アミノ基含有(メタ)アクリレート化合物〕
 (c3)又は(c5)におけるアミノ基含有(メタ)アクリレート化合物は、前記シランカップリング剤以外の化合物であり、アミノ基及び(メタ)アクリロイル基を有している。このため、前記シランカップリング剤由来のメルカプト基又はエポキシ基等の官能基との反応により、金属基材の表面に前記樹脂コーティング層を形成する化合物と馴染みやすい官能基を生じさせ得る。
 このため、アミノ基含有(メタ)アクリレート化合物は、官能基導入層を介して、金属基材と前記樹脂コーティング層とを強固に接着させるために、該官能基導入層を形成する化合物として好適に用いられる。
[Amino group-containing (meth)acrylate compound]
The amino group-containing (meth)acrylate compound in (c3) or (c5) is a compound other than the silane coupling agent and has an amino group and a (meth)acryloyl group. Therefore, by reacting with a functional group such as a mercapto group or an epoxy group derived from the silane coupling agent, a functional group that is easily compatible with the compound forming the resin coating layer can be generated on the surface of the metal substrate.
Therefore, the amino group-containing (meth)acrylate compound is suitable as a compound for forming the functional group-introduced layer in order to firmly bond the metal substrate and the resin coating layer through the functional group-introduced layer. Used.
 前記アミノ基含有(メタ)アクリレート化合物としては、例えば、(メタ)アクリルアミド、また、上述した(c5)における1分子中に2個以上のアミノ基を有するアミン化合物の一部を(メタ)アクリロイル化した化合物等が挙げられる。これらのアミノ基含有(メタ)アクリレート化合物は、1種単独で用いても、2種以上を併用してもよい。 Examples of the amino group-containing (meth)acrylate compound include (meth)acrylamide, and part of the amine compound having two or more amino groups in one molecule in (c5) described above is (meth)acryloylated. and the like. These amino group-containing (meth)acrylate compounds may be used singly or in combination of two or more.
[接合体]
 図3に、本発明の接合体の一実施形態を示す。図3に示す基材-樹脂接合体10は、複合積層体1の樹脂プライマー層側の面と、樹脂材5とが、接合一体化されたものである。すなわち、基材2と樹脂材5とが、樹脂プライマー層3を介して、接合一体化されている。
 複合積層体1の表面の樹脂プライマー層3は、耐熱性の低い樹脂に変形等の影響を及ぼさない低温条件下で形成でき、前記低温条件下で溶着し接合一体化でき、高い接合強度が得られるため、作業性に優れた基材-樹脂接合体を得ることができる。基材2が樹脂基材の場合、樹脂-樹脂接合体が得られ、基材2金属基材の場合、基材-樹脂接合体が得られる。
[Joint]
FIG. 3 shows one embodiment of the conjugate of the present invention. The substrate-resin bonded body 10 shown in FIG. 3 is obtained by joining and integrating the resin primer layer side surface of the composite laminate 1 and the resin material 5 . That is, the base material 2 and the resin material 5 are joined and integrated through the resin primer layer 3 .
The resin primer layer 3 on the surface of the composite laminate 1 can be formed under low-temperature conditions that do not affect resin with low heat resistance such as deformation, and can be welded and integrated under the low-temperature conditions, resulting in high bonding strength. Therefore, a substrate-resin bonded body having excellent workability can be obtained. When the base material 2 is a resin base material, a resin-resin bonded body is obtained, and when the base material 2 is a metal base material, a base-resin bonded body is obtained.
 前記複合積層体と接合される樹脂材は、特に限定されるものではなく、一般的な合成樹脂でよい。前記複合積層体の樹脂プライマー層は、耐熱性の低い樹脂に変形等の影響を及ぼさない低温条件下でも、高い接合強度を発現し得ることから、耐熱性の低い樹脂でも好適に用いることができる。 The resin material to be joined with the composite laminate is not particularly limited, and may be a general synthetic resin. The resin primer layer of the composite laminate can exhibit high bonding strength even under low-temperature conditions that do not affect resin with low heat resistance such as deformation, so it can be suitably used even with resins with low heat resistance. .
 前記耐熱性の低い樹脂としては、熱可塑性樹脂では例えばポリ塩化ビニル、ポリエチレン、ポリプロピレン等が挙げられ、さらにガラス繊維や炭素繊維で強化された各熱可塑性樹脂が挙げられる。特にインフラ関係に使用されるパイプ類など使用される。また、金属と樹脂とを繋ぐ用途にも好適であり、例えば樹脂パイプと金属パイプの繋ぎにも有用である。 Examples of resins with low heat resistance include thermoplastic resins such as polyvinyl chloride, polyethylene, and polypropylene, as well as thermoplastic resins reinforced with glass fibers and carbon fibers. Especially pipes used for infrastructure are used. It is also suitable for use in connecting metal and resin, and is useful for connecting resin pipes and metal pipes, for example.
 本発明の接合体は、本発明の複合積層体同士を少なくとも一方の樹脂プライマー層を介して接合して得ることもできる。各複合積層体の基材2が共に樹脂基材の場合、樹脂-樹脂接合体が得られ、各複合積層体の基材2が共に金属基材の場合、樹脂-樹脂接合体が得られ、各複合積層体の基材2のうち一方が樹脂基材で他方が金属基材の場合、金属-樹脂接合体が得られる。 The joined body of the present invention can also be obtained by joining the composite laminates of the present invention through at least one resin primer layer. When the base material 2 of each composite laminate is a resin base material, a resin-resin bonded body is obtained, and when the base material 2 of each composite laminate is a metal base material, a resin-resin bonded body is obtained, When one of the substrates 2 of each composite laminate is a resin substrate and the other is a metal substrate, a metal-resin bonded body is obtained.
 樹脂プライマー層の厚さは、樹脂プライマー層と接合される材質や接合部分の接触面積にもよるが、十分な接合強度及び耐熱性の観点から、好ましくは1μm~1mm、より好ましくは2μm~500μm、さらに好ましくは5μm~100μmである。 The thickness of the resin primer layer depends on the material to be bonded to the resin primer layer and the contact area of the bonded portion, but from the viewpoint of sufficient bonding strength and heat resistance, it is preferably 1 μm to 1 mm, more preferably 2 μm to 500 μm. , more preferably 5 μm to 100 μm.
[接合体の製造方法]
 前記接合体は、複合積層体の樹脂プライマー層に、樹脂材、金属基材、又は他の複合積層体を溶着して得ることができる。具体的には、例えば、熱溶着、超音波溶着、高周波誘導溶着、高周波誘電溶着、射出成形、プレス成形で接合一体化できる。
 前記溶着の方法としては、前記熱溶着、超音波溶着、高周波誘導溶着、高周波誘電溶着、射出成形に加えて、振動溶着、スピン溶着、レーザー溶着、熱風溶着、熱板溶着等の種々の溶着方法も挙げられる。
 本発明の複合積層体同士を接合する場合、各複合積層体の樹脂プライマー層同士を合わせて溶着しても、一方の複合積層体の樹脂プライマー層に、他方の複合積層体の樹脂プライマー層のない基材面を合わせて溶着してもよい。
[Method for producing joined body]
The bonded body can be obtained by welding a resin material, a metal substrate, or another composite laminate to the resin primer layer of the composite laminate. Specifically, for example, they can be joined and integrated by thermal welding, ultrasonic welding, high-frequency induction welding, high-frequency dielectric welding, injection molding, and press molding.
The welding methods include heat welding, ultrasonic welding, high-frequency induction welding, high-frequency dielectric welding, and injection molding, as well as various welding methods such as vibration welding, spin welding, laser welding, hot air welding, and hot plate welding. is also mentioned.
When joining the composite laminates of the present invention, even if the resin primer layers of each composite laminate are welded together, the resin primer layer of one composite laminate is attached to the resin primer layer of the other composite laminate. The non-bonded substrate surfaces may be welded together.
 他の実施形態として、前記の樹脂プライマー層に代えて、プライマー用フィルムを用いることもできる。本明細書において、プライマー用フィルムとは、基材Aと基材Bとの間で接着層として機能するフィルムを意味する。
 具体的には、下記(A)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(B)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(C)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(D)を含む現場重合型熱可塑性樹脂組成物の重合物、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物の重合物、からなる群から選択される少なくとも何れかからなるプライマー用フィルムを準備し、金属又は樹脂からなる基材Aと、金属又は樹脂からなる基材Bとの間に、前記プライマー用フィルムを挟んで、前記基材Aと前記基材Bを接合一体化して、接合体を製造することができる。
(A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
(D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
(E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
 前記接合一体化する方法は、高周波誘導溶着、高周波誘電溶着、超音波溶着、レーザー溶着、熱溶着、射出溶着、プレス溶着からなる群より選ばれる少なくとも1種の方法であることが好ましい。
As another embodiment, a primer film can be used in place of the resin primer layer. As used herein, the primer film means a film that functions as an adhesive layer between the base material A and the base material B.
Specifically, a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (A), a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (B), and an in-situ polymerization type containing the following (C) A polymer of a thermoplastic resin composition, a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (D), and an in-situ polymerization type heat containing any of the following (A) to (D) and the following (E) A primer film made of at least one selected from the group consisting of a polymer of a plastic resin composition is prepared, and between a base material A made of metal or resin and a base material B made of metal or resin, The base material A and the base material B can be joined and integrated with the primer film interposed therebetween to produce a joined body.
(A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
(C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
(D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
(E) Maleic anhydride-modified polyolefin and/or chlorinated polyolefin The method for joining and integrating is selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, heat welding, injection welding, and press welding. It is preferable that at least one method is used.
 以下、本発明を実施例に基づいて説明するが、本発明は下記実施例により限定されるものではない。 The present invention will be described below based on examples, but the present invention is not limited to the following examples.
 下記の実施例及び比較例で用いた主な原材料の詳細を、以下に示す。
[金属基材]
 ・アルミニウム板:アルミニウム合金;Al-Mg-Si系 A6063、18mm×45mm、厚さ1.5mm
 ・鋼:鋼板、SPHC(JIS G 3131:2018)、18mm×45mm、厚さ1.6mm
 ・SUS304板:ステンレス鋼SUS304(Cr-Ni系)、18mm×45mm、厚さ1.5mm
[樹脂基材]
・タキロンシーアイ 塩化ビニル板 品番:ESS8800A、10mm×45mm、厚さ2.0mm
・積水成形工業株式会社 高密度ポリエチレン PEプレート ナチュラル 品番:PE-1000、10mm×45mm、厚さ2.0mm
・積水成形工業株式会社 ポリプロピレン PPプレート ナチュラル 品番:PP-8000、10mm×45mm、厚さ2.0mm
[シランカップリング剤]
 ・KBM-903:3-アミノプロピルトリメトキシシラン;信越シリコーン株式会社製、「KBM-903」
 ・KBM-503:3-メタクリロキシプロピルトリメトキシシラン;信越シリコーン株式会社製、「KBM-503」
[現場重合型熱可塑性樹脂組成物(1)_(A)を含む現場重合型熱可塑性樹脂組成物]
<2官能チオール化合物>
 ・1,4-ビス(3-メルカプトブチリルオキシ)ブタン:昭和電工株式会社製、「カレンズMT BD1」
<フェノールノボラック型エポキシ樹脂>
 ・N-740;DIC株式会社製、「EPICLON N-740」
[現場重合型熱可塑性樹脂組成物(2)_(A)を含む現場重合型熱可塑性樹脂組成物]
<2官能チオール化合物>
 ・1,4-ビス(3-メルカプトブチリルオキシ)ブタン:昭和電工株式会社製、「カレンズMT BD1」
<クレゾールノボラック型エポキシ樹脂>
 ・YDCN-704L;日鉄ケミカル&マテリアル株式会社「o-クレゾールノボラック型エポキシ樹脂:YDCN-740L」
[現場重合型熱可塑性樹脂組成物(3)_(D)を含む現場重合型熱可塑性樹脂組成物]
<2官能イソシアネート化合物>
 ・4,4’-ジフェニルメタンジイソシアネート:東ソー株式会社製、「ミリオネートMT」
<フェノールノボラック樹脂>
 ・BRG-556;アイカ工業株式会社製、「ショウノールBRG-556」
[現場重合型熱可塑性樹脂組成物(4)_(D)を含む現場重合型熱可塑性樹脂組成物]
<2官能イソシアネート化合物>
 ・ヘキサメチレンジイソシアネート:東京化成工業株式会社製、「1,6-ジイソシナネートヘキサン」
<クレゾールノボラック樹脂>
 ・LF-200;リグナイト株式会社製、「オルトクレゾールノボラック:LF-200」
[現場重合型熱可塑性樹脂組成物(5)_(A)を含む現場重合型熱可塑性樹脂組成物]
<2官能チオール化合物>
 ・1,4-ビス(3-メルカプトブチリルオキシ)ブタン:昭和電工株式会社製、「カレンズMT BD1」
<3官能チオール化合物>
 ・ペンタエリスリトールテトラキス(3-メルカプトブチレート):昭和電工株式会社製、「カレンズMT PE1」
<フェノールノボラック型エポキシ樹脂>
 ・N-740;DIC株式会社製、「EPICLON N-740」
[現場重合型熱可塑性樹脂組成物(6)_(B)を含む現場重合型熱可塑性樹脂組成物]
<2官能アミノ化合物>
 ・ピペラジン;富士フィルム和光純薬株式会社製
<クレゾールノボラック型エポキシ樹脂>
 ・YDCN-704L;日鉄ケミカル&マテリアル株式会社「o-クレゾールノボラック型エポキシ樹脂:YDCN-740L」
[現場重合型熱可塑性樹脂組成物(7)_(C)を含む現場重合型熱可塑性樹脂組成物]
<2官能カルボキシ化合物>
 ・テレフタル酸;富士フィルム和光純薬株式会社製
<フェノールノボラック型エポキシ樹脂>
 ・N-740;DIC株式会社製、「フェノールノボラック型エポキシ樹脂:N-740」
[現場重合型熱可塑性樹脂組成物(8)_(A)及び(E)を含む現場重合型熱可塑性樹脂組成物]
<無水マレイン酸変性ポリプロピレン>
・無水マレイン酸変性ポリプロピレン;三菱ケミカル株式会社製、「Modic(登録商標)ER321P」
<2官能チオール化合物>
 ・1,4-ビス(3-メルカプトブチリルオキシ)ブタン:昭和電工株式会社製、「カレンズMT BD1」
<フェノールノボラック型エポキシ樹脂>
 ・N-740;DIC株式会社製、「EPICLON N-740」
[現場重合型熱可塑性樹脂組成物(9)_(A)及び(E)を含む現場重合型熱可塑性樹脂組成物]
<塩素化ポリプロピレン>
・塩素化ポリプロピレン;日本製紙株式会社製、「スーパークロン(登録商標)814HS」
<2官能チオール化合物>
 ・1,4-ビス(3-メルカプトブチリルオキシ)ブタン:昭和電工株式会社製、「カレンズMT BD1」
<クレゾールノボラック型エポキシ樹脂>
 ・YDCN-704L;日鉄ケミカル&マテリアル株式会社「o-クレゾールノボラック型エポキシ樹脂:YDCN-740L」
Details of main raw materials used in the following examples and comparative examples are shown below.
[Metal substrate]
・ Aluminum plate: aluminum alloy; Al-Mg-Si system A6063, 18 mm × 45 mm, thickness 1.5 mm
・Steel: Steel plate, SPHC (JIS G 3131: 2018), 18 mm x 45 mm, thickness 1.6 mm
・ SUS304 plate: Stainless steel SUS304 (Cr-Ni system), 18 mm × 45 mm, thickness 1.5 mm
[Resin base material]
・Takiron C.I. Vinyl chloride plate Product number: ESS8800A, 10mm x 45mm, thickness 2.0mm
・Sekisui Seisaku Kogyo Co., Ltd. High-density polyethylene PE plate Natural Product number: PE-1000, 10mm x 45mm, thickness 2.0mm
・ Sekisui Molding Co., Ltd. Polypropylene PP plate Natural Product number: PP-8000, 10mm x 45mm, thickness 2.0mm
[Silane coupling agent]
· KBM-903: 3-aminopropyltrimethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd., "KBM-903"
· KBM-503: 3-methacryloxypropyltrimethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd., "KBM-503"
[In situ polymerization thermoplastic resin composition containing (1)_(A)]
<Bifunctional thiol compound>
・ 1,4-bis (3-mercaptobutyryloxy) butane: manufactured by Showa Denko K.K., "Karenzu MT BD1"
<Phenol novolak type epoxy resin>
· N-740; manufactured by DIC Corporation, "EPICLON N-740"
[In-situ polymerization-type thermoplastic resin composition (2)_(A) containing in-situ polymerization-type thermoplastic resin composition]
<Bifunctional thiol compound>
・ 1,4-bis (3-mercaptobutyryloxy) butane: manufactured by Showa Denko K.K., "Karenzu MT BD1"
<Cresol novolak type epoxy resin>
・YDCN-704L; Nippon Steel Chemical & Material Co., Ltd. “o-cresol novolak type epoxy resin: YDCN-740L”
[In-situ polymerizable thermoplastic resin composition containing (3)_(D)]
<Bifunctional isocyanate compound>
・ 4,4'-diphenylmethane diisocyanate: manufactured by Tosoh Corporation, "Millionate MT"
<Phenol novolac resin>
・ BRG-556; “Shaunol BRG-556” manufactured by Aica Kogyo Co., Ltd.
[In-situ polymerizable thermoplastic resin composition containing (4)_(D)]
<Bifunctional isocyanate compound>
・ Hexamethylene diisocyanate: “1,6-diisocyanate hexane” manufactured by Tokyo Chemical Industry Co., Ltd.
<Cresol novolak resin>
· LF-200; manufactured by Lignite Co., Ltd., "Orthocresol Novolak: LF-200"
[In-situ polymerization-type thermoplastic resin composition (5)_(A) containing in-situ polymerization-type thermoplastic resin composition]
<Bifunctional thiol compound>
・ 1,4-bis (3-mercaptobutyryloxy) butane: manufactured by Showa Denko K.K., "Karenzu MT BD1"
<Trifunctional thiol compound>
・ Pentaerythritol tetrakis (3-mercaptobutyrate): Showa Denko K.K., "Karens MT PE1"
<Phenol novolak type epoxy resin>
· N-740; manufactured by DIC Corporation, "EPICLON N-740"
[In-situ polymerizable thermoplastic resin composition containing (6)_(B)]
<Bifunctional amino compound>
・ Piperazine; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. <Cresol novolak type epoxy resin>
・YDCN-704L; Nippon Steel Chemical & Material Co., Ltd. “o-cresol novolak type epoxy resin: YDCN-740L”
[In-situ polymerizable thermoplastic resin composition containing (7)_(C)]
<Bifunctional carboxy compound>
・Terephthalic acid; manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. <phenol novolak type epoxy resin>
· N-740; manufactured by DIC Corporation, "phenol novolak type epoxy resin: N-740"
[In-situ polymerizable thermoplastic resin composition (8)_In-situ polymerizable thermoplastic resin composition containing (A) and (E)]
<Maleic anhydride-modified polypropylene>
· Maleic anhydride-modified polypropylene; manufactured by Mitsubishi Chemical Corporation, "Modic (registered trademark) ER321P"
<Bifunctional thiol compound>
・ 1,4-bis (3-mercaptobutyryloxy) butane: manufactured by Showa Denko K.K., "Karenzu MT BD1"
<Phenol novolak type epoxy resin>
· N-740; manufactured by DIC Corporation, "EPICLON N-740"
[In-situ polymerizable thermoplastic resin composition (9)_In-situ polymerizable thermoplastic resin composition containing (A) and (E)]
<Chlorinated polypropylene>
・ Chlorinated polypropylene; Nippon Paper Industries Co., Ltd., "Superchron (registered trademark) 814HS"
<Bifunctional thiol compound>
・ 1,4-bis (3-mercaptobutyryloxy) butane: manufactured by Showa Denko K.K., "Karenzu MT BD1"
<Cresol novolac type epoxy resin>
・YDCN-704L; Nippon Steel Chemical & Material Co., Ltd. “o-cresol novolak type epoxy resin: YDCN-740L”
[金属基材の表面処理]
<アルミニウム>
 試験片の製造に用いたアルミニウムは、以下のようにして表面処理を行った。
 濃度5質量%の常温下の水酸化ナトリウム水溶液中にアルミニウム試験片を1.5分間浸漬した後、濃度5質量%の硝酸水溶液で中和し、水洗、乾燥を行うことにより、エッチング処理を行った。
 続いて、前記エッチング処理を行ったアルミニウム試験片を、3-アミノプロピルトリメトキシシラン(シランカップリング剤「KBM-903」(信越シリコーン株式会社製))2gを工業用エタノール1000gに溶解させた70℃のシランカップリング剤含有溶液中に20分間浸漬した後、金属試験片を取り出し、乾燥させることにより官能基付与処理を行い、官能基が付与されたアルミニウム試験片を得た。
<鋼板、SUS-304板>
 試験片の製造に用いた鋼板、SUS-304板はアセトン脱脂して表面処理を行った。
[Surface treatment of metal substrate]
<Aluminum>
The aluminum used for manufacturing the test piece was subjected to surface treatment as follows.
An aluminum test piece was immersed in an aqueous sodium hydroxide solution with a concentration of 5% by mass at room temperature for 1.5 minutes, then neutralized with an aqueous nitric acid solution with a concentration of 5% by mass, washed with water, and dried to perform an etching treatment. rice field.
Subsequently, the aluminum test piece subjected to the etching treatment was prepared by dissolving 2 g of 3-aminopropyltrimethoxysilane (silane coupling agent "KBM-903" (manufactured by Shin-Etsu Silicone Co., Ltd.)) in 1000 g of industrial ethanol. After being immersed for 20 minutes in a solution containing a silane coupling agent at °C, the metal test piece was taken out and dried to perform a functional group imparting treatment to obtain an aluminum test piece to which a functional group was imparted.
<Steel plate, SUS-304 plate>
The steel plate and SUS-304 plate used to manufacture the test pieces were degreased with acetone and subjected to surface treatment.
[現場重合型熱可塑性樹脂組成物の調製]
 下記表1に示す組成物原料を用いて現場重合型熱可塑性樹脂組成物(1)~(9)を、下記のように作製した。
[Preparation of in-situ polymerizable thermoplastic resin composition]
In-situ polymerizable thermoplastic resin compositions (1) to (9) were prepared as follows using the composition raw materials shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<現場重合型熱可塑性樹脂組成物(1)>
 フェノールノボラック型エポキシ樹脂「N-740」(DIC株式会社製)100g、2官能チオール化合物:1,4-ビス(3-メルカプトブチリルオキシ)ブタン「カレンズMT BD1」(昭和電工株式会社製)41.6g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30)0.57gをメチルエチルケトン263gに溶解し現場重合型熱可塑性樹脂組成物(1)を作製した。
<In situ polymerization type thermoplastic resin composition (1)>
Phenol novolac type epoxy resin "N-740" (manufactured by DIC Corporation) 100 g, bifunctional thiol compound: 1,4-bis (3-mercaptobutyryloxy) butane "Karenzu MT BD1" (manufactured by Showa Denko KK) 41 6 g and 0.57 g of 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30) were dissolved in 263 g of methyl ethyl ketone to prepare an in-situ polymerization type thermoplastic resin composition (1).
<現場重合型熱可塑性樹脂組成物(2)>
 o-クレゾールノボラック型エポキシ樹脂「YDCN-704N」(日鉄ケミカル&マテリアル株式会社製)100g、100g、2官能チオール化合物:1,4-ビス(3-メルカプトブチリルオキシ)ブタン「カレンズMT BD1」(昭和電工株式会社製)35.6g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30)0.54gをメチルエチルケトン252gに溶解し現場重合型熱可塑性樹脂組成物(2)を作製した。
<In situ polymerization type thermoplastic resin composition (2)>
o-cresol novolac type epoxy resin "YDCN-704N" (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) 100 g, 100 g, bifunctional thiol compound: 1,4-bis(3-mercaptobutyryloxy)butane "Karenzu MT BD1" (manufactured by Showa Denko Co., Ltd.) 35.6 g, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30) 0.54 g was dissolved in 252 g of methyl ethyl ketone to prepare an in-situ polymerization type thermoplastic resin composition (2). made.
<現場重合型熱可塑性樹脂組成物(3)>
 ヘキサメチレンジイソシアネート(HDI)(東京化成工業株式会社製)100g、BRG-556「ショウノールBRG-556」(アイカ工業株式会社製)125.0g、トリフェニルホスフィン0.90gをメチルエチルケトン418gに溶解し現場重合型熱可塑性樹脂組成物(3)を作製した。
<In situ polymerization type thermoplastic resin composition (3)>
100 g of hexamethylene diisocyanate (HDI) (manufactured by Tokyo Chemical Industry Co., Ltd.), 125.0 g of BRG-556 "Shaunol BRG-556" (manufactured by Aica Kogyo Co., Ltd.), and 0.90 g of triphenylphosphine were dissolved in 418 g of methyl ethyl ketone. A polymerizable thermoplastic resin composition (3) was prepared.
<現場重合型熱可塑性樹脂組成物(4)>
 ヘキサメチレンジイソシアネート(HDI)(DIC株式会社製)100g、オルトクレゾールノボラック樹脂「LF-200」(リグナイト株式会社製)113.1g、トリフェニルホスフィン0.85gをメチルエチルケトン396gに溶解し現場重合型熱可塑性樹脂組成物(4)を作製した。
<In situ polymerization type thermoplastic resin composition (4)>
100 g of hexamethylene diisocyanate (HDI) (manufactured by DIC Corporation), 113.1 g of ortho-cresol novolac resin "LF-200" (manufactured by Lignite Corporation), and 0.85 g of triphenylphosphine were dissolved in 396 g of methyl ethyl ketone to form an on-site polymerization type thermoplastic. A resin composition (4) was prepared.
<現場重合型熱可塑性樹脂組成物(5)>
 フェノールノボラック型エポキシ樹脂「N-740」(DIC株式会社製)100g、2官能チオール化合物:1,4-ビス(3-メルカプトブチリルオキシ)ブタン「カレンズMT BD1」(昭和電工株式会社製)20.8g、3官能チオール化合物:ペンタエリスリトールテトラキス(3-メルカプトブチレート)「カレンズMT PE1」(昭和電工株式会社製)35.0g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30)0.57gをメチルエチルケトン288gに溶解し現場重合型熱可塑性樹脂組成物(5)を作製した。
<In situ polymerization type thermoplastic resin composition (5)>
Phenol novolac type epoxy resin "N-740" (manufactured by DIC Corporation) 100 g, bifunctional thiol compound: 1,4-bis(3-mercaptobutyryloxy)butane "Karenzu MT BD1" (manufactured by Showa Denko KK) 20 .8 g, trifunctional thiol compound: pentaerythritol tetrakis (3-mercaptobutyrate) "Karenzu MT PE1" (manufactured by Showa Denko Co., Ltd.) 35.0 g, 2,4,6-tris (dimethylaminomethyl) phenol (DMP- 30) 0.57 g was dissolved in 288 g of methyl ethyl ketone to prepare an in-situ polymerization type thermoplastic resin composition (5).
<現場重合型熱可塑性樹脂組成物(6)>
o-クレゾールノボラック型エポキシ樹脂「YDCN-704N」(日鉄ケミカル&マテリアル株式会社製)100g、100g、ピペラジン41.0g、トリフェニルホスフィン0.56gをメチルエチルケトン262gに溶解し現場重合型熱可塑性樹脂組成物(6)を作製した。
<In situ polymerizable thermoplastic resin composition (6)>
o-Cresol novolak type epoxy resin "YDCN-704N" (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) 100g, 100g, piperazine 41.0g, triphenylphosphine 0.56g dissolved in methyl ethyl ketone 262g to make an on-site polymerization type thermoplastic resin composition Item (6) was produced.
<現場重合型熱可塑性樹脂組成物(7)>
 フェノールノボラック型エポキシ樹脂「N-740」(DIC株式会社製)100g、テレフタル酸46.1g、トリフェニルホスフィン0.58gをメチルエチルケトン271gに溶解し現場重合型熱可塑性樹脂組成物(7)を作製した。
<In situ polymerization type thermoplastic resin composition (7)>
100 g of phenolic novolac type epoxy resin "N-740" (manufactured by DIC Corporation), 46.1 g of terephthalic acid, and 0.58 g of triphenylphosphine were dissolved in 271 g of methyl ethyl ketone to prepare an in-situ polymerization type thermoplastic resin composition (7). .
<現場重合型熱可塑性樹脂組成物(8)>
 無水マレイン酸変性ポリプロピレン「Modic(登録商標)ER321P」(三菱ケミカル株式会社製)10gをキシレン190gに溶解した溶液中に、現場重合型熱可塑性樹脂組成物(1)6.0gを混合し、現場重合型熱可塑性樹脂組成物(8)を作製した。
<In situ polymerization type thermoplastic resin composition (8)>
In a solution of 10 g of maleic anhydride-modified polypropylene "Modic (registered trademark) ER321P" (manufactured by Mitsubishi Chemical Corporation) dissolved in 190 g of xylene, 6.0 g of the in-situ polymerization type thermoplastic resin composition (1) was mixed, A polymerizable thermoplastic resin composition (8) was prepared.
<現場重合型熱可塑性樹脂組成物(9)>
塩素化ポリプロピレン「スーパークロン(登録商標)814HS」(日本製紙株式会社製)10gをキシレン190gに溶解した溶液中に、現場重合型熱可塑性樹脂組成物(2)6.0gを混合し、現場重合型熱可塑性樹脂組成物(9)を作製した。
<In situ polymerization type thermoplastic resin composition (9)>
In a solution of 10 g of chlorinated polypropylene "Superchron (registered trademark) 814HS" (manufactured by Nippon Paper Industries Co., Ltd.) dissolved in 190 g of xylene, 6.0 g of the in-situ polymerizable thermoplastic resin composition (2) was mixed and polymerized in situ. A type thermoplastic resin composition (9) was prepared.
[複合積層体の製造]
 現場重合型熱可塑性樹脂組成物(1)~(9)を、各基材の上に、乾燥後の厚さが10~60μmになるように、スプレー塗布した。空気中、常温で、30分間放置して溶剤を揮発させた後、70℃の炉内に30分間放置して重付加反応させ(現場重合型熱可塑性樹脂組成物(7)のみは6時間)、常温まで放冷して、基材の表面に樹脂プライマー層が積層された複合積層体を製造した。作製した複合積層体を表2に示す。
[Manufacture of composite laminate]
The in-situ polymerizable thermoplastic resin compositions (1) to (9) were spray-coated onto each substrate so that the thickness after drying was 10 to 60 μm. After leaving it in the air at room temperature for 30 minutes to evaporate the solvent, it was left in a furnace at 70° C. for 30 minutes to cause a polyaddition reaction (only the in-situ polymerization type thermoplastic resin composition (7) was 6 hours). , and allowed to cool to room temperature to produce a composite laminate in which a resin primer layer was laminated on the surface of the base material. Table 2 shows the produced composite laminate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例1~13>
(溶着)
 下記表3-1の組み合わせで、金属基材に樹脂プライマー層を形成してなる複合積層体(A)の樹脂プライマー層と、樹脂基材に樹脂プライマー層を形成してなる複合積層体(B)の樹脂プライマー層を、接合部が1.0cm×0.5cmとなるように重ね合わせた状態で、ダブルクリップで挟み80℃乾燥炉中に5分間静置した後、室温に戻して、金属―樹脂接合体(実施例1-13)を作製した。
<Examples 1 to 13>
(welding)
The resin primer layer of the composite laminate (A) formed by forming the resin primer layer on the metal substrate and the composite laminate (B) formed by forming the resin primer layer on the resin substrate in the combinations shown in Table 3-1 below ) are overlapped so that the joint is 1.0 cm × 0.5 cm, sandwiched with a double clip and left to stand in a drying oven at 80 ° C. for 5 minutes, then returned to room temperature and metal - A resin bonded body (Example 1-13) was produced.
(引張りせん断強度)
 得られた接合体を常温で5分放置後、JISK 6850:1999に準拠して、引張試験機(万能試験機オートグラフ「AG-IS」(株式会社島津製作所製);ロードセル10kN、引張速度10mm/min)にて、23℃雰囲気での引張りせん断強度試験を行い、接合強度を測定した。測定結果を表3―1に示す。
(Tensile shear strength)
After leaving the resulting bonded body at room temperature for 5 minutes, it was subjected to a tensile tester (universal testing machine Autograph "AG-IS" (manufactured by Shimadzu Corporation); load cell 10 kN, tensile speed 10 mm in accordance with JISK 6850: 1999 /min) to measure the bonding strength. The measurement results are shown in Table 3-1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例14~26>
(溶着)
 下記表3-2の組み合わせで、金属基材に樹脂プライマー層を形成してなる複合積層体(A)の樹脂プライマー層と、樹脂基材(C)を、接合部が1.0cm×0.5cmとなるように重ね合わせた状態で、ダブルクリップで挟み80℃乾燥炉中に5分間静置した後、室温に戻して、金属―樹脂接合体(実施例14-26)を作製した。
<Examples 14 to 26>
(welding)
In the combination shown in Table 3-2 below, the resin primer layer of the composite laminate (A) formed by forming the resin primer layer on the metal base material and the resin base material (C) were bonded together so that the joint area was 1.0 cm×0.2 cm. After overlapping with a double clip and standing in a drying oven at 80° C. for 5 minutes, the temperature was returned to room temperature to prepare a metal-resin bonded body (Examples 14 to 26).
(引張りせん断強度)
 得られた接合体を常温で5分放置後、JISK 6850:1999に準拠して、引張試験機(万能試験機オートグラフ「AG-IS」(株式会社島津製作所製);ロードセル10kN、引張速度10mm/min)にて、23℃雰囲気での引張りせん断強度試験を行い、接合強度を測定した。測定結果を表3―2に示す。
(Tensile shear strength)
After leaving the resulting bonded body at room temperature for 5 minutes, it was subjected to a tensile tester (universal testing machine Autograph "AG-IS" (manufactured by Shimadzu Corporation); load cell 10 kN, tensile speed 10 mm in accordance with JISK 6850: 1999 /min) to measure the bonding strength. The measurement results are shown in Table 3-2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例27~36>
(溶着)
 下記表4-1の組み合わせで、樹脂基材に樹脂プライマー層を形成してなる複合積層体(A)の樹脂プライマー層と、樹脂基材に樹脂プライマー層を形成してなる複合積層体(B)の樹脂プライマー層を、接合部が1.0cm×0.5cmとなるように重ね合わせた状態で、ダブルクリップで挟み70℃乾燥炉中に5分間静置した後、室温に戻して、金属―樹脂接合体(実施例27-36)を作製した。
<Examples 27 to 36>
(welding)
The resin primer layer of the composite laminate (A) formed by forming the resin primer layer on the resin substrate and the composite laminate (B ) are overlapped so that the joint is 1.0 cm × 0.5 cm, sandwiched with a double clip and left to stand in a drying oven at 70 ° C. for 5 minutes, then returned to room temperature and metal - Resin bonded bodies (Examples 27 to 36) were produced.
(引張りせん断強度)
 得られた接合体を常温で5分放置後、JISK 6850:1999に準拠して、引張試験機(万能試験機オートグラフ「AG-IS」(株式会社島津製作所製);ロードセル10kN、引張速度10mm/min)にて、23℃雰囲気での引張りせん断強度試験を行い、接合強度を測定した。測定結果を表4―1に示す。
(Tensile shear strength)
After leaving the resulting bonded body at room temperature for 5 minutes, it was subjected to a tensile tester (universal testing machine Autograph "AG-IS" (manufactured by Shimadzu Corporation); load cell 10 kN, tensile speed 10 mm in accordance with JISK 6850: 1999 /min) to measure the bonding strength. The measurement results are shown in Table 4-1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例37~46>
(熱溶着)
 下記表4-2の組み合わせで、樹脂基材に樹脂プライマー層を形成してなる複合積層体(A)の樹脂プライマー層と、樹脂基材(C)を、接合部が1.0cm×0.5cmとなるように重ね合わせた状態で、ダブルクリップで挟み75℃乾燥炉中に5分間静置した後、室温に戻して、金属―樹脂接合体(実施例37-46)を作製した。
<Examples 37-46>
(Heat welding)
In the combination shown in Table 4-2 below, the resin primer layer of the composite laminate (A) formed by forming the resin primer layer on the resin base material and the resin base material (C) were bonded together so that the joint portion was 1.0 cm x 0.5 cm. After being placed on top of each other so as to be 5 cm long, it was sandwiched with a double clip and allowed to stand in a drying oven at 75° C. for 5 minutes.
(引張りせん断強度)
 得られた接合体を常温で5分放置後、JISK 6850:1999に準拠して、引張試験機(万能試験機オートグラフ「AG-IS」(株式会社島津製作所製);ロードセル10kN、引張速度10mm/min)にて、23℃雰囲気での引張りせん断強度試験を行い、接合強度を測定した。測定結果を表4―2に示す。
(Tensile shear strength)
After leaving the resulting bonded body at room temperature for 5 minutes, it was subjected to a tensile tester (universal testing machine Autograph "AG-IS" (manufactured by Shimadzu Corporation); load cell 10 kN, tensile speed 10 mm in accordance with JISK 6850: 1999 /min) to measure the bonding strength. The measurement results are shown in Table 4-2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例47~50>
(プライマー用フィルムの作製)
 現場重合型熱可塑性樹脂組成物(1)、(3)、(8)を離形フィルム(PTFEフィルム)上の乾燥後の厚さが40μmになるように塗布して、常温で30分間放置して溶剤を揮発後、80℃で30分重合反応行い常温に戻して離形フィルム(PTFEフィルム)から剥がし、溶着用の熱可塑性樹脂フィルムであるプライマー用フィルム(1)、(3)、(8)を得た。
<Examples 47 to 50>
(Preparation of film for primer)
In-situ polymerization type thermoplastic resin compositions (1), (3), and (8) are applied to a release film (PTFE film) so that the thickness after drying is 40 μm, and left at room temperature for 30 minutes. After volatilizing the solvent, the polymerization reaction was carried out at 80 ° C. for 30 minutes, and the temperature was returned to normal temperature and peeled off from the release film (PTFE film). ).
(溶着)
 樹脂基材(A)と樹脂基材(B)の間に、接合部が1.0cm×0.5cmとなるようにプライマー用フィルムを挟んで重ね合わせた状態で、ダブルクリップで挟み80℃乾燥炉中に5分間静置した後、室温に戻した。
(welding)
A primer film was sandwiched between the resin base material (A) and the resin base material (B) so that the joint area was 1.0 cm × 0.5 cm. After standing in the oven for 5 minutes, it was returned to room temperature.
(引張りせん断強度)
 得られた接合体を常温で5分放置後、JISK 6850:1999に準拠して、引張試験機(万能試験機オートグラフ「AG-IS」(株式会社島津製作所製);ロードセル10kN、引張速度10mm/min)にて、23℃雰囲気での引張りせん断強度試験を行い、接合強度を測定した。測定結果を表5に示す。
(Tensile shear strength)
After leaving the resulting bonded body at room temperature for 5 minutes, it was subjected to a tensile tester (universal testing machine Autograph "AG-IS" (manufactured by Shimadzu Corporation); load cell 10 kN, tensile speed 10 mm in accordance with JISK 6850: 1999 /min) to measure the bonding strength. Table 5 shows the measurement results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<比較例1~5>
(接着)
 市販の塩化ビニル用接着剤である旭有機材株式会社製AV接着剤32、セメダイン株式会社製塩化ビニルパイプ用接着剤、PE、PP用セメダインPPXをそれぞれ用いて、金属基材(A)と樹脂基材(B)を、接合部が1.0cm×0.5cmとなるように塗り貼り合わせて、金属―樹脂接合体(比較例1~5)を作製した。
<Comparative Examples 1 to 5>
(adhesion)
Using AV adhesive 32 manufactured by Asahi Organic Chemicals Co., Ltd., a vinyl chloride pipe adhesive manufactured by Cemedine Co., Ltd., and Cemedine PPX for PE and PP, which are commercially available adhesives for vinyl chloride, metal substrate (A) and resin The base material (B) was coated and adhered so that the joint area was 1.0 cm×0.5 cm to prepare metal-resin joints (Comparative Examples 1 to 5).
(引張りせん断強度)
 貼り合わせて5分後に引張りせん断試験を行った。せん断強度試験は上記各実施例と同様に行い、接合強度を測定した。測定結果を表6に示す。
(Tensile shear strength)
A tensile shear test was performed 5 minutes after the bonding. A shear strength test was performed in the same manner as in each of the above examples to measure the bonding strength. Table 6 shows the measurement results.
<比較例6>
 二官能エポキシ樹脂「jER(登録商標)1001」(三菱ケミカル株式会社製)100g、フェノールノボラック樹脂「ショウノールBRG-556」(アイカ工業株式会社製)22.1g、トリフェニルホスフィン0.49gをメチルエチルケトン227gに溶解し比較用現場重合型熱可塑性樹脂組成物を作製し、金属基材(A)と樹脂基材(B)に塗布して。空気中、常温で、30分間放置して溶剤を揮発させた後、70℃の炉内に30分間放置して冷却後、接合部が1.0cm×0.5cmとなるようにプライマー面同士を重ね合わせた状態で、ダブルクリップで挟み80℃乾燥炉中に5分間静置した後、室温に戻したが、接合することができなかった。
<Comparative Example 6>
100 g of bifunctional epoxy resin "jER (registered trademark) 1001" (manufactured by Mitsubishi Chemical Corporation), 22.1 g of phenol novolac resin "Shaunol BRG-556" (manufactured by Aica Kogyo Co., Ltd.), and 0.49 g of triphenylphosphine are mixed with methyl ethyl ketone. It was dissolved in 227 g to prepare an in-situ polymerization type thermoplastic resin composition for comparison, and applied to the metal substrate (A) and the resin substrate (B). After leaving it in the air at room temperature for 30 minutes to volatilize the solvent, leave it in a furnace at 70° C. for 30 minutes to cool it down. In a superimposed state, they were clamped with a double clip and allowed to stand in a drying oven at 80° C. for 5 minutes.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<比較例7~11>
(接着)
 市販の塩化ビニル用接着剤である旭有機材株式会社製AV接着剤32、セメダイン株式会社製塩化ビニルパイプ用接着剤、PE、PP用セメダインPPXを用いて、樹脂基材(A)と樹脂基材(B)を、接合部が1.0cm×0.5cmとなるように塗り貼り合わせて、樹脂―樹脂接合体(比較例7~11)を作製した。
<Comparative Examples 7 to 11>
(adhesion)
A resin substrate (A) and a resin substrate are bonded using AV adhesive 32 manufactured by Asahi Organic Chemicals Co., Ltd., a vinyl chloride pipe adhesive manufactured by Cemedine Co., Ltd., and Cemedine PPX for PE and PP, which are commercially available adhesives for vinyl chloride. The material (B) was applied and pasted together so that the joint area was 1.0 cm×0.5 cm to prepare resin-resin joints (Comparative Examples 7 to 11).
(引張りせん断強度)
 貼り合わせて5分後に引張りせん断試験を行った。せん断強度試験は上記各実施例と同様に行い、接合強度を測定した。測定結果を表7に示す。
(Tensile shear strength)
A tensile shear test was performed 5 minutes after the bonding. A shear strength test was performed in the same manner as in each of the above examples to measure the bonding strength. Table 7 shows the measurement results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例51>
 呼び径40ポリ塩化ビニル管:クボタケミックス製VU40(外径48mm、長さ25cm)の末端から25mmの外周に、現場重合型熱可塑性樹脂組成物(1)を、乾燥後の厚さが40μmになるように、スプレー塗布した。空気中、常温で、30分間放置して溶剤を揮発させた後、80℃の炉内に30分間放置して重付加反応させ、常温まで放冷して、樹脂プライマー層付きポリ塩化ビニル管を形成した。
 次に呼び径40ポリ塩化ビニルキャップに、前記樹脂プライマー層付きポリ塩化ビニル管のプライマー塗布部を押し込み、ドライヤーを使用して接合部を3分間加熱した。2分で表面温度が80℃に達し1分間保持した。
 5分後に末端を水道管に繋ぎ0.6MPaの水圧をかけ漏れがないか確認したところ、水漏れがないことを確認した。
<Example 51>
Nominal diameter 40 polyvinyl chloride pipe: VU40 manufactured by Kubota Chemix (outer diameter 48 mm, length 25 cm), 25 mm from the end, the in-situ polymerization type thermoplastic resin composition (1) is applied to the outer circumference to a thickness of 40 μm after drying. I sprayed it to make it look like it was. After leaving it in the air at room temperature for 30 minutes to volatilize the solvent, leave it in a furnace at 80 ° C. for 30 minutes to cause a polyaddition reaction, allow to cool to room temperature, and produce a polyvinyl chloride tube with a resin primer layer. formed.
Next, the primer-applied part of the polyvinyl chloride pipe with the resin primer layer was pushed into a polyvinyl chloride cap with a nominal diameter of 40, and the joint part was heated for 3 minutes using a dryer. The surface temperature reached 80°C in 2 minutes and was held for 1 minute.
After 5 minutes, the end was connected to a water pipe and a water pressure of 0.6 MPa was applied to check for leakage, and it was confirmed that there was no leakage.
<比較例12>
 呼び径40ポリ塩化ビニル管:クボタケミックス製VU40(外径48mm、長さ25cm)の末端から25mmの外周に、セメダイン株式会社製塩化ビニルパイプ用接着剤を塗布した。
 次に呼び径40ポリ塩化ビニルキャップに、前記樹脂プライマー層付きポリ塩化ビニル管の接着剤塗布部を押し込み、3分間放置した。
 5分後に末端を水道管に繋ぎ0.6MPaの水圧をかけ漏れがないか確認したところ、直ちにキャップが外れ接合できてないことを確認した。
<Comparative Example 12>
Nominal diameter 40 polyvinyl chloride pipe: VU40 manufactured by Kubota Chemix (outer diameter 48 mm, length 25 cm) was coated with an adhesive for vinyl chloride pipe manufactured by Cemedine Co., Ltd. on the outer periphery 25 mm from the end.
Next, the adhesive coated portion of the polyvinyl chloride pipe with the resin primer layer was pushed into a polyvinyl chloride cap with a nominal diameter of 40 and left for 3 minutes.
After 5 minutes, the end was connected to a water pipe and a water pressure of 0.6 MPa was applied to check for leakage.
 本発明の複合積層体は、例えば、鋼材、アルミニウム材、CFRP等の他の材料又は部品等と接合一体化されて、例えば、ドアサイドパネル、ボンネット、ルーフ、テールゲート、ステアリングハンガー、Aピラー、Bピラー、Cピラー、Dピラー、クラッシュボックス、パワーコントロールユニット(PCU)ハウジング、電動コンプレッサー部材(内壁部、吸入ポート部、エキゾーストコントロールバルブ(ECV)挿入部、マウントボス部等)、リチウムイオン電池(LIB)スペーサー、電池ケース、LEDヘッドランプ等の各種自動車用部品として用いることができる。
 また、前記複合積層体は、例えば、ナイロン、ポリフェニレンスルホン、ポリエーテルイミド成形体等の樹脂材と接合一体化させることによって、金属-樹脂接合体について、より耐熱性が求められる、自動車部品、電気部品、航空宇宙用部品等の分野での活用も期待される。ただし、前記複合積層体の用途は、これらの例示される用途に限定されるものではない。
The composite laminate of the present invention, for example, is joined and integrated with other materials or parts such as steel, aluminum, CFRP, etc., for example, door side panels, hoods, roofs, tailgates, steering hangers, A pillars, B pillar, C pillar, D pillar, crash box, power control unit (PCU) housing, electric compressor parts (inner wall, intake port, exhaust control valve (ECV) insertion part, mount boss, etc.), lithium ion battery ( LIB) It can be used as various automotive parts such as spacers, battery cases, and LED headlamps.
In addition, the composite laminate is, for example, by joining and integrating with a resin material such as nylon, polyphenylene sulfone, polyetherimide molding, etc., so that the metal-resin bonded body is required to have higher heat resistance. It is also expected to be used in fields such as parts and aerospace parts. However, the uses of the composite laminate are not limited to these exemplified uses.
 1  複合積層体
 2  基材
 3  樹脂プライマー層
 4  官能基導入層
 5  樹脂材
 10 基材-樹脂接合体
1 composite laminate 2 substrate 3 resin primer layer 4 functional group introduction layer 5 resin material 10 substrate-resin bonded body

Claims (20)

  1.  金属又は樹脂からなる基材と、前記基材の表面上に積層された1層又は複数層の樹脂プライマー層とを有する複合積層体であって、
     前記樹脂プライマー層の少なくとも1層が、下記(A)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(B)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(C)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、下記(D)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物の重合物からなる重合物層、からなる群から選択される少なくとも何れかであり、前記重合物層を最表面に有する複合積層体。
    (A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
    (E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
    A composite laminate having a substrate made of metal or resin and one or more resin primer layers laminated on the surface of the substrate,
    At least one layer of the resin primer layer is a polymer layer made of a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (A), and a polymer of an in-situ polymerizable thermoplastic resin composition containing the following (B). A polymer layer consisting of a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (C), a polymer consisting of a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (D) and at least one selected from the group consisting of a polymer layer of an in-situ polymerizable thermoplastic resin composition containing any of the following (A) to (D) and the following (E). , a composite laminate having the polymer layer on the outermost surface thereof.
    (A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
    (B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
    (C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
    (D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
    (E) maleic anhydride-modified polyolefin and/or chlorinated polyolefin
  2.  前記基材と前記樹脂プライマー層との間に、前記樹脂プライマー層に接して積層された官能基導入層を有し、
     前記官能基導入層が、シランカップリング剤、イソシアネート化合物及びチオール化合物からなる群より選ばれる少なくとも1種から導入された官能基を有する、請求項1に記載の複合積層体。
    Having a functional group-introduced layer laminated in contact with the resin primer layer between the base material and the resin primer layer,
    The composite laminate according to claim 1, wherein the functional group-introduced layer has a functional group introduced from at least one selected from the group consisting of silane coupling agents, isocyanate compounds and thiol compounds.
  3.  前記樹脂プライマー層が、前記基材の表面処理された面に積層され、
     前記表面処理が、プラズマ処理、コロナ放電処理、UVオゾン処理、ブラスト処理、研磨処理、エッチング処理及び化成処理からなる群より選ばれる少なくとも1種である、請求項1又は2に記載の複合積層体。
    The resin primer layer is laminated on the surface-treated surface of the base material,
    The composite laminate according to claim 1 or 2, wherein the surface treatment is at least one selected from the group consisting of plasma treatment, corona discharge treatment, UV ozone treatment, blasting treatment, polishing treatment, etching treatment and chemical conversion treatment. .
  4.  前記基材がアルミニウム、鉄及びステンレス鋼からなる群より選ばれる金属からなる、請求項1~3のいずれか1項に記載の複合積層体。 The composite laminate according to any one of claims 1 to 3, wherein the base material is made of a metal selected from the group consisting of aluminum, iron and stainless steel.
  5.  前記基材が、ポリ塩化ビニル、ポリエチレン及びポリプロピレンからなる群より選ばれる樹脂からなる請求項1~3のいずれか1項に記載の複合積層体。 The composite laminate according to any one of claims 1 to 3, wherein the base material is made of a resin selected from the group consisting of polyvinyl chloride, polyethylene and polypropylene.
  6.  請求項1~5のいずれか1項に記載の複合積層体の製造方法であって、
     前記基材の面上で、下記(A)を含む現場重合型熱可塑性樹脂組成物、下記(B)を含む現場重合型熱可塑性樹脂組成物、下記(C)を含む現場重合型熱可塑性樹脂組成物、下記(D)を含む現場重合型熱可塑性樹脂組成物、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物、からなる群から選択される少なくとも何れかの現場重合型熱可塑性樹脂組成物を重付加反応させることにより、前記樹脂プライマー層の少なくとも1層を形成する、複合積層体の製造方法。
    (A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
    (E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
    A method for manufacturing a composite laminate according to any one of claims 1 to 5,
    On the surface of the substrate, an in-situ polymerization type thermoplastic resin composition containing the following (A), an in-situ polymerization type thermoplastic resin composition containing the following (B), and an in-situ polymerization type thermoplastic resin containing the following (C) From the group consisting of a composition, an in-situ polymerization type thermoplastic resin composition containing the following (D), and an in-situ polymerization type thermoplastic resin composition containing any of the following (A) to (D) and the following (E) A method for producing a composite laminate, wherein at least one of the resin primer layers is formed by subjecting at least one selected in-situ polymerizable thermoplastic resin composition to a polyaddition reaction.
    (A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
    (B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
    (C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
    (D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
    (E) maleic anhydride-modified polyolefin and/or chlorinated polyolefin
  7.  前記重付加反応を80℃以下の低温条件下で行い、前記樹脂プライマー層の少なくとも1層を形成する、請求項6に記載の複合積層体の製造方法。 The method for producing a composite laminate according to claim 6, wherein the polyaddition reaction is performed under low temperature conditions of 80°C or less to form at least one layer of the resin primer layer.
  8.  前記重付加反応を、前記基材の表面処理された面上で行い、
     前記表面処理は、プラズマ処理、コロナ放電処理、UVオゾン処理、ブラスト処理、研磨処理、エッチング処理及び化成処理からなる群より選ばれる少なくとも1種である、請求項6又は7に記載の複合積層体の製造方法。
    performing the polyaddition reaction on the surface-treated surface of the substrate;
    The composite laminate according to claim 6 or 7, wherein the surface treatment is at least one selected from the group consisting of plasma treatment, corona discharge treatment, UV ozone treatment, blasting treatment, polishing treatment, etching treatment and chemical conversion treatment. manufacturing method.
  9.  前記樹脂プライマー層を形成する前に、前記基材を、シランカップリング剤、イソシアネート化合物及びチオール化合物からなる群より選ばれる少なくとも1種で処理することにより、前記基材に官能基導入層を形成する、請求項6~8のいずれか1項に記載の複合積層体の製造方法。 Before forming the resin primer layer, the substrate is treated with at least one selected from the group consisting of a silane coupling agent, an isocyanate compound and a thiol compound to form a functional group-introduced layer on the substrate. The method for producing a composite laminate according to any one of claims 6 to 8.
  10.  請求項1~5のいずれかに記載の複合積層体のプライマー層側の面と、熱可塑性樹脂材とが接合一体化された、接合体。 A joined body in which the primer layer side surface of the composite laminate according to any one of claims 1 to 5 and a thermoplastic resin material are joined and integrated.
  11.  請求項1~5のいずれかに記載の複合積層体のプライマー層側の面と、金属基材とが接合一体化された、接合体。 A joined body in which the primer layer side surface of the composite laminate according to any one of claims 1 to 5 and a metal substrate are joined and integrated.
  12.  請求項1~5のいずれかに記載の複合積層体と請求項1~5のいずれかに記載の複合積層体とが接合一体化された、接合体であって、各複合積層体のプライマー層側の面同士を合わせて接合一体化された、接合体。 A bonded body in which the composite laminate according to any one of claims 1 to 5 and the composite laminate according to any one of claims 1 to 5 are joined and integrated, wherein the primer layer of each composite laminate A bonded body that is integrated by joining the side surfaces together.
  13.  請求項10に記載の接合体の製造方法であって、
     高周波誘導溶着、高周波誘電溶着、超音波溶着、レーザー溶着、熱溶着、射出溶着、プレス溶着からなる群より選ばれる少なくとも1種の方法で、前記複合積層体のプライマー層側の面と熱可塑性樹脂材とを溶着して接合一体化させる、接合体の製造方法。
    A method for manufacturing a joined body according to claim 10,
    At least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, thermal welding, injection welding, and press welding is applied to the surface of the composite laminate on the primer layer side and the thermoplastic resin. A method for manufacturing a joined body, in which the material is welded and joined together.
  14.  請求項11に記載の接合体の製造方法であって、
     高周波誘導溶着、高周波誘電溶着、超音波溶着、レーザー溶着、熱溶着、射出溶着、プレス溶着からなる群より選ばれる少なくとも1種の方法で、前記複合積層体のプライマー層側の面同士を溶着して接合一体化させる、接合体の製造方法。
    A method for manufacturing a joined body according to claim 11,
    The surfaces on the primer layer side of the composite laminate are welded together by at least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, heat welding, injection welding, and press welding. A method for manufacturing a bonded body, in which the bonded body is integrated by
  15.  前記溶着を80℃以下の温度で行う、請求項13又は14に記載の接合体の製造方法。 The method for manufacturing a joined body according to claim 13 or 14, wherein the welding is performed at a temperature of 80°C or less.
  16.  下記(A)を含む現場重合型熱可塑性樹脂組成物、下記(B)を含む現場重合型熱可塑性樹脂組成物、下記(C)を含む現場重合型熱可塑性樹脂組成物、下記(D)を含む現場重合型熱可塑性樹脂組成物、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物、からなる群から選択される少なくとも何れかからなる、熱溶着用樹脂組成物。
    (A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
    (E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
    An in-situ polymerization type thermoplastic resin composition containing the following (A), an in-situ polymerization type thermoplastic resin composition containing the following (B), an in-situ polymerization type thermoplastic resin composition containing the following (C), and the following (D) At least one selected from the group consisting of an in-situ polymerization type thermoplastic resin composition containing, and an in-situ polymerization type thermoplastic resin composition containing any of the following (A) to (D) and the following (E) , a resin composition for heat welding.
    (A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
    (B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
    (C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
    (D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
    (E) maleic anhydride-modified polyolefin and/or chlorinated polyolefin
  17.  請求項16に記載の熱溶着用樹脂組成物を重付加反応させ、フィルム状にしてなる、プライマー用フィルム。 A primer film obtained by subjecting the heat-welding resin composition according to claim 16 to a polyaddition reaction to form a film.
  18.  請求項16に記載の熱溶着用樹脂組成物を離形型または離形フィルムの面上に塗布し、重付加反応させた後、離形してフィルム状の重合物を得る、プライマー用フィルムの製造方法。 A primer film is obtained by coating the heat-welding resin composition according to claim 16 on the surface of a release mold or release film, subjecting it to a polyaddition reaction, and then releasing it to obtain a film-like polymer. Production method.
  19.  金属又は樹脂からなる基材と、
     金属又は樹脂からなる基材Aと、金属又は樹脂からなる基材Bとの間に、プライマー用フィルムを挟んで、前記基材Aと前記基材Bを接合一体化する、接合体の製造方法であって、
     前記プライマー用フィルムが、下記(A)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(B)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(C)を含む現場重合型熱可塑性樹脂組成物の重合物、下記(D)を含む現場重合型熱可塑性樹脂組成物の重合物、及び、下記(A)~(D)のいずれかと下記(E)を含む現場重合型熱可塑性樹脂組成物の重合物、からなる群から選択される少なくとも何れかからなる、接合体の製造方法。
    (A)2官能チオール化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (B)2官能アミノ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (C)2官能カルボキシ化合物とフェノールノボラック型エポキシ樹脂及び/またはクレゾールノボラック型エポキシ樹脂の組み合わせ、
    (D)2官能イソシアネート化合物とフェノールノボラック樹脂及び/またはクレゾールノボラック樹脂の組み合わせ、
    (E)無水マレイン酸変性ポリオレフィン及び/または塩素化ポリオレフィン
    a base material made of metal or resin;
    A method for manufacturing a joined body, wherein a primer film is sandwiched between a base material A made of metal or resin and a base material B made of metal or resin, and the base material A and the base material B are joined and integrated. and
    The primer film is a polymer of an in situ polymerization type thermoplastic resin composition containing (A) below, a polymer of an in situ polymerization type thermoplastic resin composition containing (B) below, and an in situ polymerization containing (C) below. A polymer of a type thermoplastic resin composition, a polymer of an in-situ polymerization type thermoplastic resin composition containing the following (D), and an in-situ polymerization type containing any of the following (A) to (D) and the following (E) A method for producing a joined body comprising at least one selected from the group consisting of a polymer of a thermoplastic resin composition.
    (A) a combination of a bifunctional thiol compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
    (B) a combination of a bifunctional amino compound and a phenol novolak-type epoxy resin and/or a cresol novolac-type epoxy resin;
    (C) a combination of a bifunctional carboxy compound and a phenol novolak type epoxy resin and/or a cresol novolak type epoxy resin;
    (D) a combination of a difunctional isocyanate compound and a phenol novolak resin and/or a cresol novolak resin;
    (E) maleic anhydride-modified polyolefin and/or chlorinated polyolefin
  20.  前記基材Aと前記基材Bを、高周波誘導溶着、高周波誘電溶着、超音波溶着、レーザー溶着、熱溶着、射出溶着、プレス溶着からなる群より選ばれる少なくとも1種の方法で、溶着して接合一体化する、請求項19に記載の接合体の製造方法。
     
    The base material A and the base material B are welded by at least one method selected from the group consisting of high-frequency induction welding, high-frequency dielectric welding, ultrasonic welding, laser welding, heat welding, injection welding, and press welding. 20. The method for producing a bonded body according to claim 19, wherein the bonded body is integrated.
PCT/JP2022/007818 2021-02-26 2022-02-25 Composite laminate and joined body WO2022181754A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023502530A JPWO2022181754A1 (en) 2021-02-26 2022-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-030640 2021-02-26
JP2021030640 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181754A1 true WO2022181754A1 (en) 2022-09-01

Family

ID=83049156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007818 WO2022181754A1 (en) 2021-02-26 2022-02-25 Composite laminate and joined body

Country Status (2)

Country Link
JP (1) JPWO2022181754A1 (en)
WO (1) WO2022181754A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143942A (en) * 1998-11-13 2000-05-26 Toto Kasei Co Ltd Flame retardant for synthetic resin and flame retarded resin composition
JP2001348419A (en) * 2000-06-06 2001-12-18 Nagase Chemtex Corp Recyclable epoxy resin composition
US20100044914A1 (en) * 2004-05-21 2010-02-25 Minh-Tan Ton-That Primer composition and uses thereof
JP2011126942A (en) * 2009-12-15 2011-06-30 Toyota Motor Corp Hot melt adhesive and rtm molding method
JP2013533338A (en) * 2010-06-08 2013-08-22 ヘンケル コーポレイション Dual cure adhesive
JP2020202349A (en) * 2019-06-13 2020-12-17 昭和電工株式会社 Electronic board housing and manufacturing method thereof
WO2021024978A1 (en) * 2019-08-06 2021-02-11 昭和電工株式会社 Primer-equipped thermoplastic resin member, and resin-resin conjugate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143942A (en) * 1998-11-13 2000-05-26 Toto Kasei Co Ltd Flame retardant for synthetic resin and flame retarded resin composition
JP2001348419A (en) * 2000-06-06 2001-12-18 Nagase Chemtex Corp Recyclable epoxy resin composition
US20100044914A1 (en) * 2004-05-21 2010-02-25 Minh-Tan Ton-That Primer composition and uses thereof
JP2011126942A (en) * 2009-12-15 2011-06-30 Toyota Motor Corp Hot melt adhesive and rtm molding method
JP2013533338A (en) * 2010-06-08 2013-08-22 ヘンケル コーポレイション Dual cure adhesive
JP2020202349A (en) * 2019-06-13 2020-12-17 昭和電工株式会社 Electronic board housing and manufacturing method thereof
WO2021024978A1 (en) * 2019-08-06 2021-02-11 昭和電工株式会社 Primer-equipped thermoplastic resin member, and resin-resin conjugate

Also Published As

Publication number Publication date
JPWO2022181754A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
TW201927553A (en) Composite laminate and method for producing same, and metal resin bonded product and method for producing same
JP6919075B2 (en) Composite laminates and metal-polyolefin conjugates
JP6964809B2 (en) Metal resin joint and its manufacturing method
WO2022181754A1 (en) Composite laminate and joined body
WO2022130833A1 (en) Method for manufacturing metallic member-resin member bonded body, and film
JP6919076B1 (en) Composite laminates and metal-resin joints
US20230330946A1 (en) Method for joining metal and resin, and joined body thereof
JP6964808B2 (en) Composite laminate, its manufacturing method, and metal resin joint
JP6923721B1 (en) Substrate with primer, its manufacturing method, and bonded body
JP6967676B2 (en) Bonds and materials with primers
WO2021029227A1 (en) Composite layered product and metal/modified-poly(phenylene ether) bonded object
JP6918894B2 (en) Composite laminate and metal-polyamide resin joint
JP6919077B2 (en) Surface-treated metal materials, composite laminates, metal-non-metal joints, and methods for manufacturing them.
JP6923706B1 (en) Primer material and conjugate
JP2022102952A (en) Composite laminate and method for manufacturing the same, and joined body using the composite laminate and method for manufacturing the same
JP6923707B1 (en) Primer material and conjugate
JP2022096454A (en) Radiator and manufacturing method thereof
JP2023003079A (en) Heat-welding film and joint body including the same
JP2022083664A (en) Manufacturing method for jointed body
JP2022096062A (en) Top cover of battery case and method for manufacturing the same
JP2022133962A (en) On-board camera and method for manufacturing the same
JP2022133990A (en) Engine ecu and method for manufacturing the same
TW202120336A (en) Composite laminate and joined body
JP2022133953A (en) On-board motor and method for manufacturing the same, and electric compressor including on-board motor and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759788

Country of ref document: EP

Kind code of ref document: A1