WO2022181646A1 - Production method for titanium foil - Google Patents

Production method for titanium foil Download PDF

Info

Publication number
WO2022181646A1
WO2022181646A1 PCT/JP2022/007403 JP2022007403W WO2022181646A1 WO 2022181646 A1 WO2022181646 A1 WO 2022181646A1 JP 2022007403 W JP2022007403 W JP 2022007403W WO 2022181646 A1 WO2022181646 A1 WO 2022181646A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
cathode
molten salt
salt bath
anode
Prior art date
Application number
PCT/JP2022/007403
Other languages
French (fr)
Japanese (ja)
Inventor
拓実 金子
雄太 中條
大輔 鈴木
松秀 堀川
秀樹 藤井
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to JP2022525890A priority Critical patent/JP7100781B1/en
Priority to CA3208504A priority patent/CA3208504A1/en
Priority to CN202280011506.5A priority patent/CN116745465A/en
Priority to US18/275,509 priority patent/US20240084469A1/en
Publication of WO2022181646A1 publication Critical patent/WO2022181646A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts

Definitions

  • This invention relates to a method for producing a titanium foil by electrolyzing electrodes including an anode and a cathode using a molten salt bath and depositing metallic titanium on the cathode.
  • Metal titanium is generally manufactured by the Kroll method, which is suitable for mass production.
  • titanium oxide contained in titanium ore is reacted with chlorine in the presence of a carbon source such as coke to produce titanium tetrachloride. Thereafter, titanium tetrachloride is reduced with metallic magnesium to obtain sponge-like metallic titanium, so-called sponge titanium.
  • the sponge titanium is melted and cast into a titanium ingot or titanium slab, and then forged, rolled, or otherwise processed. It is common to apply the required processing of It is difficult to say that it is possible to efficiently produce titanium metal in a predetermined shape such as a foil shape at a low cost by such a process that requires melting and processing.
  • Patent Document 1 describes "a method for producing high-purity titanium by a molten salt electrolysis method, wherein electrolysis is performed in a chloride bath having a sodium ion content of 10 wt% or less as a bath composition. , ⁇ When performing electrolysis using an electrolytic bath having a low melting point of 400° C. or lower, the electrolysis temperature should be in the range of 550 to 900° C.''. In this patent document 1, "When using a bath with a low melting point (400° C. or lower) such as LiCl—KCl, electrolysis is usually performed at 400 to 500° C. However, the shape of the deposited Ti at this temperature is that of a sponge.
  • a low melting point 400° C. or lower
  • LiCl—KCl LiCl—KCl
  • the amount of oxygen is large and the loss is also large, resulting in a poor yield.”
  • the shape of the deposited Ti is changed to coarse crystals, specifically, hexagonal plates or dendrites, thereby reducing oxygen and improving the yield.”
  • Patent Document 2 "Titanium characterized by applying a voltage between a container filled with raw material titanium as an anode and an electrolysis container as a cathode when electrolytically refining raw material titanium by molten salt electrolysis.
  • the voltage of the electrolysis circuit 11 is 100 to 1000 mV
  • the voltage of the impurity elution prevention circuit 21 is 500 mV or less, preferably 10 to 150 mV, more preferably 30 to 100 mV.” .
  • Patent Document 3 A method for producing metallic titanium by performing electrolysis using an anode and a cathode in a molten salt bath, wherein an anode containing metallic titanium is used as the anode, and metallic titanium is used as a cathode.
  • the temperature of the molten salt bath is set to 250° C. or higher and 600° C. or lower, and the titanium precipitation step is started and 30 minutes have elapsed from the start of the titanium precipitation step.
  • a method for producing titanium metal which maintains the average current density of the cathode within the range of 0.01 A/cm 2 to 0.09 A/cm 2 , has been proposed.
  • an intermittent current such as a pulse current
  • An object of the present invention is to manufacture a titanium foil capable of increasing the amount of titanium metal electrodeposited per unit time without significantly reducing the ease of stripping the metal titanium deposited on the cathode from the cathode. It is to provide a method.
  • Electrodeposition of metallic titanium on the cathode is thought to be promoted by increasing the concentration of titanium ions in the molten salt bath, increasing the temperature of the molten salt bath, and increasing the current density when the electrode is energized. On the other hand, there is a concern that these factors may reduce the ease of peeling metal titanium from the cathode. As a result of intensive studies, the inventors have newly found a suitable combination of the above conditions. As a result, it is possible to suppress deterioration in the ease of peeling of metallic titanium even when the time for which the energization of the electrode is stopped is sufficiently shortened or when the energization is not stopped. Further, in this case, since the energization of the electrodes is stopped only for a short period of time or is not stopped, the amount of titanium metal deposited per unit time can be increased.
  • a molten salt bath containing titanium ions and chlorides is used to perform electrolysis with electrodes including an anode and a cathode to deposit metallic titanium on the electrolytic surface of the cathode.
  • electrodes including an anode and a cathode to deposit metallic titanium on the electrolytic surface of the cathode.
  • the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is maintained at 7% or more, and the temperature of the molten salt bath is maintained at 510 ° C. or less.
  • the continuous stop time of energization is less than 1.0 second
  • the current density is 0.10 A/cm 2 or more and 1.0 A/cm 2 or less
  • metal titanium is applied to the electrolytic surface of the cathode.
  • the electrodeposition time is set to 120 minutes or less.
  • the anode contains Ti and that the anode is consumed during the electrodeposition process.
  • the chloride preferably contains titanium dichloride and/or titanium trichloride.
  • the electrodeposition step it is preferable to maintain the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath at 10% or more.
  • the temperature of the molten salt bath it is preferable to maintain the temperature of the molten salt bath at 500°C or lower.
  • the current density is preferably 0.20 A/cm 2 or more and 0.50 A/cm 2 or less.
  • the method for producing a titanium foil of the present invention it is possible to increase the amount of titanium metal electrodeposited per unit time without reducing the ease of separating the metal titanium deposited on the cathode from the cathode. can.
  • a method for producing a titanium foil according to one embodiment of the present invention uses a molten salt bath in which a chloride containing titanium ions is melted, is electrolyzed with electrodes including an anode and a cathode, and electrolyzes the electrolytic surface of the cathode.
  • the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is maintained at 7% or more, and the temperature of the molten salt bath is maintained at 510° C. or lower.
  • the continuous stop time of electrification is set to less than 1.0 second, and the current density is set to 0.10 A/cm 2 or more and 1.0 A/cm 2 or less.
  • the time for electrodeposition of metallic titanium onto the electrolytic surface of the cathode in the electrodeposition step is 120 minutes or less.
  • the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is also simply referred to as the "ratio of titanium ions.”
  • the concentration of titanium ions in the molten salt bath is increased, the temperature of the molten salt bath is increased, and the current density is increased when the electrode is energized. deposition is accelerated, and the amount of titanium metal deposited per unit time tends to increase.
  • the proportion of titanium ions in the molten salt bath is increased to 7% or more, and the current density is 0.10 A/cm 2 or more and 1.0 A/cm 2 . Increase to some extent below.
  • the temperature of the molten salt bath is set to a relatively low temperature of 510° C. or less. According to this, it is possible to easily separate the titanium metal from the cathode while increasing the amount of the titanium metal electrodeposited per unit time. In particular, physical peeling such as peeling off the electrodeposited metal titanium from the electrode can be easily carried out.
  • the present invention is not limited to the above theory.
  • the continuous stop time of energization is set to less than 1.0 second, the amount of metallic titanium deposited per unit time increases, thereby improving the production efficiency of the titanium foil. can.
  • the titanium foil produced in this way has excellent smoothness due to the suppression of dendrite formation.
  • the molten salt forming the molten salt bath in the electrolytic cell is obtained by melting chloride.
  • the molten salt bath is made up of only molten chlorides as compounds. Examples of specific chlorides include MgCl 2 , NaCl, KCl, CaCl 2 , LiCl, BaCl 2 and CsCl.
  • the molten salt bath preferably contains one or more chlorides, more preferably two or more chlorides selected from the group consisting of MgCl2, NaCl, KCl, CaCl2, LiCl, BaCl2 and CsCl.
  • the molten salt bath preferably contains one or more, two or more, or three or more chlorides selected from the group consisting of MgCl 2 , NaCl, KCl, CaCl 2 and LiCl.
  • the molten salt bath preferably contains one or more, two or more, or three or more chlorides selected from the group consisting of MgCl 2 , NaCl, KCl and CaCl 2 .
  • Such preferred chlorides include NaCl-KCl-MgCl 2 , LiCl-KCl-MgCl 2 , NaCl-KCl-CaCl 2 , LiCl-KCl-CaCl 2 , NaCl-LiCl-KCl-MgCl 2 , NaCl- KCl--LiCl--CaCl 2 and the like are exemplified.
  • the molten salt bath can be kept in a good molten state even at a relatively low temperature, so that the aforementioned low temperature range of the molten salt bath in the electrodeposition process can be easily achieved.
  • the proportion of the total molar concentration of cesium ions is preferably 80% or more, more preferably 90% or more. However, considering the operating temperature and the like, the specific type and content of the chloride can be appropriately determined.
  • the molar concentration of each metal ion is calculated by ICP emission spectrometry and atomic absorption spectrometry.
  • the molten salt bath does not contain fluoride ions.
  • Components of the molten salt bath often remain on the surface of the titanium foil obtained by peeling off the metallic titanium deposited on the cathode in the electrodeposition process. Cleaning such as water washing may be performed.
  • fluoride is contained in the components of the molten salt bath remaining on the surface of the titanium foil, harmful hydrogen fluoride or hydrofluoric acid is generated upon contact with water.
  • the molten salt bath is formed by dissolving lithium fluoride, since lithium fluoride exhibits poor solubility in water, a large amount of water is required to remove it from the titanium foil by washing with water. .
  • the molten salt bath contains titanium ions.
  • the titanium raw material In order to include titanium ions in the molten salt bath, the titanium raw material must be dissolved in advance in the molten salt bath before the electrodeposition step, and/or, as described later, before the electrodeposition step or in the electrodeposition step. During the time it is possible to dissolve the Ti-containing anode.
  • the titanium raw material includes titanium chloride and/or low-purity titanium containing impurities such as titanium scrap and titanium sponge.
  • low-purity titanium containing impurities may contain relatively large amounts of Fe and O as impurities, for example.
  • titanium scrap or titanium sponge is used as a raw material for titanium, they are brought into contact with TiCl 4 to produce low-grade titanium chloride such as titanium dichloride (TiCl 2 ) and/or titanium trichloride (TiCl 3 ). can be dissolved to form a molten salt bath containing titanium ions.
  • titanium raw material is dissolved in the molten salt bath and then metallic titanium is deposited on the cathode, even if the titanium raw material contains a relatively large amount of impurities, contamination of the metallic titanium can be suppressed.
  • electrolytic device 1 shown in FIG. and a power source 4 connected to the anode 3a and the cathode 3b to energize the anode 3a and the cathode 3b.
  • the electrolytic cell 2 is normally partially openable, and the electrode 3 can be arranged in the electrolytic cell 2 using the opening.
  • the inside of the electrolytic cell 2 may be maintained in a reduced pressure atmosphere or an inert gas atmosphere such as argon gas.
  • the anode 3a preferably contains Ti.
  • the shape of the anode 3a can be various shapes such as sheet-like, cylindrical, columnar, plate-like, massive, powdery, granular, fibrous, or briquette-like.
  • sponge titanium, titanium scrap, titanium rod material and/or titanium plate material can be used as the anode 3a.
  • concretely sponge titanium and/or titanium scrap can be used as the anode 3a.
  • the above cage is also included as part of the anode 3a, and the anode 3a contains Ti and Ni.
  • the anode 3a including the cage and its contents (sponge titanium, etc.)
  • only the contents containing Ti are consumed during the anode dissolution process and the electrodeposition process, and the cage is not consumed in many cases.
  • a briquette-like material can be used as the anode 3a. When the briquette is used, the anode can be constructed without using the basket made of Ni or the like.
  • the material of the cathode 3b is not particularly limited as long as Ti is electrodeposited.
  • the cathode 3b contains Mo, W, Ta, Nb, or any one of their alloys on the electrolytic surface on which metallic titanium is to be electrodeposited.
  • at least the electrolytic surface preferably contains 90% by mass or more, more preferably 99.9% by mass or more of Mo. Since Mo is less likely to dissolve into Ti at 600° C. or less, the electrolytic surface of the cathode 3b containing 90% by mass or more of Mo does not adhere to the metallic titanium deposited thereon, and the metallic titanium can be easily peeled off. , contamination of impurities such as Mo into metallic titanium is suppressed.
  • the cathode 3b has a plurality of layers made of different materials, it is possible to form an electrolytic surface containing 90% by mass or more of Mo on at least the surface layer of the layers by coating the surface of the cathode. At least the electrolytic surface of the cathode 3b may contain less than 10% by mass of impurities other than Mo, such as Ti. When the cathode 3b is used repeatedly, the cathode 3b may contain Ti to some extent. In addition, not only the electrolytic surface of the cathode 3b but also the entire surface may be composed of Mo of 90% by mass or more.
  • the anode (the content of the cage, if it contains the cage described above) and the cathode can each be, for example, substantially rod-shaped, band-shaped, plate-shaped, cylindrical or other column-shaped, or block-shaped.
  • the anode and cathode may each be plate-shaped.
  • a plate-like one can be preferably used in some cases.
  • the electrolytic device 31 shown in FIG. 2 has substantially the same configuration as the electrolytic device 1 shown in FIG. and a cylindrical anode 33a surrounding the cathode 33b.
  • both the surface of the anode 33a and the surface of the cathode 33b are curved in this way, it is easy to keep the distance between the electrodes constant even if the cathode 33b is configured to be movable.
  • Metal titanium can be deposited more uniformly. From this point of view, the surface of the anode 33a and the opposing surface of the cathode 33b preferably have similar shapes.
  • FIG. 3 Another electrolytic device 11 is shown in FIG.
  • the electrolytic apparatus 11 of FIG. 3 has a cylindrical or columnar cathode 13b as a so-called cathode drum placed in a closed electrolytic bath 12 so that a part of the cylindrical surface is immersed in a molten salt bath Bf. It is arranged. Further, in the electrolysis apparatus 11, a plate-like anode 13a curving along the surface of a cylindrical cathode 13b is arranged in the molten salt bath Bf so as to face the surface of the cathode 13b.
  • a power source (not shown) energizes the electrodes 13, causing the circumference of the surface of the cathode 13b immersed in the molten salt bath Bf to rise.
  • a part of the direction mainly facing the anode 13a becomes an electrolytic surface for depositing metallic titanium, and a foil-shaped metallic titanium Ts is deposited on the electrolytic surface.
  • the portion of the surface of the cathode 13b that is immersed in the molten salt bath Bf changes as the cathode 13b rotates, and the electrolytic surface moves along the circumferential direction of the cathode 13b accordingly.
  • a titanium foil as the long metallic titanium Ts is continuously produced while being peeled off from the surface of the cathode 13b. can be done.
  • Still another electrolytic device 21 shown in FIG. 4 has a strip-shaped cathode 23b as a cathode strip which is annularly wound between a pair of rotating rolls 26a and 26b. Further, here, a plate-like anode 23a such as a flat plate is arranged in the molten salt bath Bf so as to face a portion of the cathode 23b in the molten salt bath Bf. Cathode 23b is positioned within closed electrolytic cell 22 such that a portion of its annularly wound, outwardly facing surface is immersed in molten salt bath Bf. In this electrolyzer 21, of the surface of the cathode 23b immersed in the molten salt bath Bf, the portion mainly facing the anode 23a serves as the electrolysis surface.
  • the strip-shaped cathode 23b and its electrolytic surface move around the rotating rolls 26a and 26b as shown by the arrows in FIG.
  • the rotating roll 26b on the driven side follows it and rotates.
  • a foil-like metal titanium Ts is deposited on the electrolytic surface outside the cathode 23b.
  • the metallic titanium Ts is peeled off from the surface of the cathode 23b and wound up by the winding roll 25, whereby a long titanium foil of the metallic titanium Ts can be continuously produced.
  • the distance between the electrodes between the anode and the cathode is not particularly limited, but it is preferably 0.5 cm or more and 10.0 cm or less on any of their facing surfaces.
  • the inter-electrode distance between the anode and the cathode is preferably 1.0 cm or more and 8.0 cm or less, and more preferably 1.0 cm or more and 5.0 cm or less.
  • This inter-electrode distance means the shortest distance between the surface of the anode and the surface of the cathode.
  • the distance between the electrodes is the shortest distance from the end of the cage to the surface of the cathode. .
  • the electrolytic device 1 shown in FIG. 1 will be described as an example, but the electrolytic devices 11, 21, and 31 shown in FIGS. 2 to 4 can be used in substantially the same manner.
  • anodic dissolution step of consuming the Ti-containing anode 3a and supplying titanium ions to the molten salt bath Bf can be performed before the electrodeposition step.
  • the anodic dissolution step may be omitted.
  • anodic dissolution step in substantially the same manner as in general molten salt electrolysis, while maintaining the molten salt bath Bf at a predetermined temperature, an appropriate current of a large magnitude.
  • the Ti-containing anode 3a dissolves into the molten salt bath Bf, and titanium ions are present in the molten salt bath Bf. That is, here, the anode 3a functions like a so-called consumable electrode to supply titanium ions to the molten salt bath Bf.
  • the temperature of the molten salt bath Bf in the anode dissolution step can be 250° C. to 800° C. on the premise that it is in a molten state, and the current density of the cathode 3b is 0.01 A/cm 2 to 2.00 A. / cm 2 . Thereby, the melting of the anode 3a is carried out satisfactorily.
  • the current value is the average value of the current flowed during a predetermined period of time for obtaining the current density. For example, if a constant current is applied, the value of that current will be the current value. If the value of the current changes with the passage of time, for example, obtain the measured values of the current at equal time intervals during the energization, and obtain the above current value by "total measured values of the current ⁇ the number of measurements". can be done.
  • the current density of the cathode 3b can be calculated in the same manner in the electrodeposition step, which will be described later.
  • the cathode 3b can be replaced prior to the electrodeposition process.
  • a metal other than Ti may be deposited on the cathode 3b. Therefore, if the electrodeposition step is performed using the cathode 3b in this state, the purity of the metallic titanium obtained in the electrodeposition step may decrease. Concerned.
  • the metal titanium electrodeposited on the cathode 3b in the electrodeposition process may be alloyed, resulting in a decrease in peelability. Therefore, it is preferable to replace the cathode 3b after supplying titanium ions to the molten salt bath Bf in the anodic dissolution step.
  • Electrodeposition process In the electrodeposition step, electricity is applied from the power supply 4 to the electrodes 3 including the anode 3a and the cathode 3b, whereby electrolysis is performed at the electrodes 3, and titanium ions in the molten salt bath Bf are deposited as metallic titanium on the cathode 3b. .
  • the electrolysis is performed so that the ratio of the molar concentration (Mt) of titanium ions to the total molar concentration (Mm) of metal ions in the molten salt bath Bf (percentage of Mt/Mm) is maintained at 7% or more. I do.
  • Mt molar concentration
  • Mm total molar concentration
  • the proportion of titanium ions in the molten salt bath Bf is less than 7%, titanium ions around the cathode 3b become deficient, resulting in a biased current distribution around the cathode 3b and dendrite formation in the metallic titanium on the cathode 3b. can be formed.
  • the proportion of titanium ions in the molten salt bath Bf is preferably maintained at 10% or more.
  • the upper limit of the Mt/Mm percentage is not particularly limited, and the ratio of titanium ions can be changed as appropriate within a range in which the molten salt bath can be maintained.
  • the molar concentration of each metal ion, including titanium ions, in the molten salt bath Bf is determined by solidifying a molten salt sample taken from the molten salt bath and then analyzing the components of the sample by ICP emission spectrometry and atomic absorption spectrometry.
  • the molten salt bath contained MgCl 2 , NaCl, KCl, CaCl 2 , LiCl, TiCl 2 and TiCl 3 .
  • Mm metal ions
  • the ratio of titanium ions can be calculated by dividing the molar concentration (Mt) of titanium ions by the total molar concentration (Mm) of the metal ions and expressing it as a percentage.
  • titanium ions in the molten salt bath Bf are consumed as metal titanium is electrodeposited on the cathode 3b.
  • the anode 3a containing Ti in the electrodeposition step. In this case, as the electrolysis progresses, the anode 3a is consumed, and the Ti contained therein becomes titanium ions and is supplied into the molten salt bath Bf. This makes it easier to maintain the titanium ions in the molten salt bath Bf at a predetermined ratio.
  • the temperature of the molten salt bath Bf in the electrodeposition step is maintained at 510°C or lower, preferably 500°C or lower, more preferably 480°C or lower. If the temperature of the molten salt bath Bf is too high, the crystal grains of the metallic titanium electrodeposited on the cathode 3b are likely to coarsen, and dendrite growth may proceed. If the molten salt forming the molten salt bath Bf can be maintained in a molten state and electrolysis using the molten salt bath Bf is possible, the temperature of the molten salt bath Bf can be sufficiently lowered.
  • the current density is 0.10 A/cm 2 or more and 1.0 A/cm 2 or less, and further 0.10 A/cm 2 or more and 0.50 A/cm 2 or less. more preferably 0.20 A/cm 2 or more and 0.50 A/cm 2 or less.
  • the above current density means an average value from the start to the end of electrolysis.
  • the continuous stop time of energization to the electrode 3 (that is, the time during which current does not flow continuously) is set to less than 1.0 second, and the continuous stop time of energization to the electrode 3 is sufficiently long. Either shorten it or keep the current flowing without stopping the current. Depending on the embodiment, the current may continue to flow without stopping the energization of the electrode 3 . If the continuous discontinuation time of energization to the electrode 3 is set to less than 1.0 second, the amount of metallic titanium deposited on the cathode 3b per unit time can be favorably increased.
  • the ratio of the total continuous stop time to the electrodeposition time for electrolytically depositing metallic titanium on the electrolytic surface of the cathode is 20% or less.
  • the discontinuation of energization as used herein means discontinuing the forward current for electrolysis for electrodepositing metallic titanium on the cathode. Therefore, even if the reverse current flows during at least a part of the energization stop time, the forward current does not flow during that time, and thus the energization is stopped.
  • the time for electrodeposition of metallic titanium on the electrolytic surface of the cathode is set to 120 minutes or less.
  • the production efficiency of the titanium foil can be improved, and the formation of dendrites in the metal titanium on the cathode 3b can be suppressed, so that the smoothness of the titanium foil can be improved.
  • the electrolysis device 11 shown in FIG. 3 and the electrolysis device 21 shown in FIG. 4 the electrolytic surfaces of the cathodes 13b and 23b move.
  • the electrolysis time of the titanium metal at the predetermined surface position serving as the electrolytic surface of the cathodes 13b and 23b may be 120 minutes or less.
  • the time after deposition begins is not included in the deposition time at the given surface location.
  • Electrodeposition time of metallic titanium onto the electrolytic surface of the cathode is preferably 80 minutes or less, more preferably 60 minutes or less.
  • the metal titanium electrodeposited on the cathode 3b in the electrodeposition step can be easily separated from the cathode 3b.
  • the peeling here means physically peeling off the metal titanium from the cathode 3b without using leaching or the like.
  • the metal titanium can be peeled off from the surface of the cathode 3b satisfactorily. obtain. Furthermore, even if the electrolytic surface of the surface of the cathode 3b is set to 500 cm 2 or more, good peelability may be ensured in some cases.
  • the area of the front and back surfaces of the titanium foil obtained by peeling off the cathode 3b may be 78 cm 2 or more, and further 500 cm 2 or more.
  • the average thickness of the titanium foil is preferably 10 ⁇ m to 1000 ⁇ m, more preferably 50 ⁇ m to 500 ⁇ m.
  • To calculate the average thickness of the titanium foil observe the cross section in the thickness direction along one side of the foil with an optical microscope at a magnification of 100, obtain the thickness at 10 points, and take the average value as the average thickness of the titanium foil. .
  • the titanium metal on the cathode 3b tends to become thicker as the electrodeposition time is lengthened.
  • the titanium foil is produced by depositing metallic titanium on the cathode 3b by electrolysis as described above, the contents of oxygen and iron that can be contained in this titanium foil are the same as those of the titanium of the anode 3a and the like. It can be less than what the raw material can contain.
  • the oxygen content can be reduced to 400 mass ppm or less.
  • the oxygen content can be measured by an inert gas fusion method.
  • an electric current was applied to the anode and the cathode, and electrolysis was performed in a molten salt bath.
  • the dimensions and shape of the bath portion of the electrolytic device were 500 mm ⁇ 800 mm depth.
  • the molten salt bath uses lower titanium chloride (titanium dichloride and titanium trichloride) as a titanium raw material, and the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is 6 to 10%.
  • the values shown in Table 1 were maintained, and the balance was NaCl, KCl and MgCl2.
  • a JIS class 2 titanium plate was used as the anode.
  • the cathode had a molybdenum plate with a thickness of 0.2 mm and a cylindrical shape with an inner diameter (diameter) of 96 mm.
  • the material of the outermost surface of the cathode was changed from molybdenum to tantalum.
  • the cathode was placed inside the cylindrical anode in the electrolytic cell of the electrolyzer.
  • the height direction of the anode and the cathode was set substantially parallel to the depth direction of the molten salt bath, and the central axis of the anode and the central axis of the cathode were positioned at the same position.
  • the inter-electrode distance was constant over the entire circumference of the anode and cathode.
  • Example 1 The conditions were changed as shown in Table 1, and the electrodeposition process was carried out for Examples 1 to 6 and Comparative Examples 1 to 4 to deposit relatively large foil-shaped metallic titanium on the surface of the cathode.
  • a constant current was passed through the electrode without stopping the current supply.
  • Comparative Example 3 a pulse current was applied, the current density when the pulse current was ON was 0.18 A/cm 2 , the ON time was 1.5 seconds, and the current density was 0 (no current flow) when the pulse current was OFF. was 1.5 seconds, and the average current density was 0.09 A/cm 2 .
  • the "electrodeposition time" in Comparative Example 3 is the total from the start to the end of the electrodeposition, so it includes the OFF time. Further, the temperature of the molten salt bath was maintained at the values shown in Table 1 during the electrodeposition process.
  • the peelability was determined by a peel strength test to determine whether it was " ⁇ ", " ⁇ ” or “ ⁇ ".
  • means that the peel strength was 0.2 N / mm or less
  • means that the peel strength was more than 0.2 N / mm and 1.0 N / mm or less
  • means that the peel strength was greater than 1.0 N/mm.
  • the ⁇ and ⁇ evaluations are acceptable, and the ⁇ evaluation means better. x evaluation is unacceptable.
  • the peel strength test was performed as shown in Fig. 7. First, a sample 103 of 70 mm ⁇ 10 mm is cut from the cathode and metallic titanium electrodeposited on the cathode with a cutter or the like. Next, the sample 103 is placed on the stage 111 of a 90° peeling tester, 10 mm of the titanium metal 101 is peeled off from the cathode 102 at one end of the sample 103, and the peeled portion of the titanium metal 101 is clamped with a chuck. Next, the cathode 102 at one end of the sample 103 on the stage 111 and the other end of the sample 103 located on the side opposite to the one end are fixed with a fixing jig 112 .
  • peel strength average load (N)/width of metal titanium foil (mm).
  • the average load means the average value of the load acting on the chuck in the vertical direction while the stage 111 is horizontally displaced by 20 mm from 5 mm to 25 mm.
  • the width of the titanium metal means the width of the titanium metal 101 on the stage 111 along the direction perpendicular to the moving direction of the stage 111 (the depth direction of the paper surface of FIG. 7).
  • the angle formed by the direction in which the metal titanium 101 was peeled off and the surface of the cathode 102 was 90° measured from the surface of the cathode.
  • a digital force gauge ZTS-200N (measurable load: 200 N) manufactured by Imada Co., Ltd. and a slide table P90-200N for 90 degree peel test were used.
  • the dendrite number density is obtained by measuring the number of dendrites per unit area. Specifically, using a scanning electron microscope (SEM), the number of dendrites present on the surface of the titanium metal on the cathode was measured for each of five fields of view with a magnification of 50 times, and the number of dendrites in each of these five fields of view. was converted into the number per 1 cm 2 (rounded off to the first decimal place). “ ⁇ ” indicates a dendrite number density of less than 1/cm 2 , “ ⁇ ” indicates a dendrite number density of 1/cm 2 or more and less than 2/cm 2 , and “ ⁇ ” indicates a dendrite number density. is 2 pieces/cm 2 or more. The ⁇ and ⁇ evaluations are acceptable, and the ⁇ evaluation means better. x evaluation is unacceptable.
  • the amount of metallic titanium deposited was evaluated from the result of converting the thickness of the metallic titanium electrodeposited on the cathode per 60 minutes of the electrodeposition time.
  • “ ⁇ ” means that the thickness of the metallic titanium per 60 minutes of electrodeposition time was 80 ⁇ m or more, and “ ⁇ ” means that the thickness of the metallic titanium per 60 minutes of electrodeposition time was 60 ⁇ m or more and less than 80 ⁇ m.
  • "x” means that the thickness of metallic titanium per 60 minutes of electrodeposition time was less than 60 ⁇ m. The ⁇ and ⁇ evaluations are acceptable, and the ⁇ evaluation means better. x evaluation is unacceptable.
  • Examples 1 to 6 the metallic titanium was easily separated from the cathode, and the metallic titanium was deposited sufficiently thickly per unit of electrodeposition time.
  • Comparative Examples 1 to 4 there were cases in which the separation of the metallic titanium from the cathode was not easy, and cases in which the thickness of the metallic titanium deposited per unit electrodeposition time was thin.
  • Examples 1 to 6 generally suppressed the formation of dendrites on the cathode.
  • the amount of titanium metal electrodeposited per unit time can be increased without greatly reducing the ease of stripping of the titanium metal electrodeposited on the cathode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

This production method for titanium foil includes an electrodeposition step in which a molten salt bath that includes titanium ions and a molten chloride is used to perform electrolysis at an electrode that includes an anode and a cathode, and titanium metal is deposited at an electrolysis surface of the cathode. During the electrodeposition step, the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is kept at or above 7%, the temperature of the molten salt bath is kept at or below 510°C, and, when the electrode is energized, the energization has a continuous stop time of less than 1.0 seconds, the current density is at least 0.10 A/cm2 but no more than 1.0 A/cm2, and the electrodeposition time of the titanium metal onto the electrolysis surface of the cathode is no more than 120 minutes.

Description

チタン箔の製造方法Method for manufacturing titanium foil
 この発明は、溶融塩浴を用いて陽極及び陰極を含む電極で電気分解を行い、陰極に金属チタンを析出させて、チタン箔を製造する方法に関するものである。 This invention relates to a method for producing a titanium foil by electrolyzing electrodes including an anode and a cathode using a molten salt bath and depositing metallic titanium on the cathode.
 金属チタンは、大量生産に適したクロール法により製造することが一般的である。金属チタンの製造では、コークス等の炭素源存在下でチタン鉱石に含まれる酸化チタンを塩素と反応させ、四塩化チタンを生成する。その後、四塩化チタンを金属マグネシウムで還元し、スポンジ状の金属チタン、いわゆるスポンジチタンを得る。 Metal titanium is generally manufactured by the Kroll method, which is suitable for mass production. In the production of metallic titanium, titanium oxide contained in titanium ore is reacted with chlorine in the presence of a carbon source such as coke to produce titanium tetrachloride. Thereafter, titanium tetrachloride is reduced with metallic magnesium to obtain sponge-like metallic titanium, so-called sponge titanium.
 ここで、上記のスポンジチタンを主原料として比較的薄い厚みの箔状の金属チタンを製造するには、スポンジチタンを溶解するとともに鋳造してチタンインゴットやチタンスラブとした後、さらに鍛造や圧延その他の所要の加工を施すことが一般的である。このような溶解及び加工を要するプロセスでは、箔状等の所定の形状の金属チタンを効率的かつ低コストで製造できるとは言い難い。 Here, in order to manufacture a relatively thin foil-shaped titanium metal using the sponge titanium as a main raw material, the sponge titanium is melted and cast into a titanium ingot or titanium slab, and then forged, rolled, or otherwise processed. It is common to apply the required processing of It is difficult to say that it is possible to efficiently produce titanium metal in a predetermined shape such as a foil shape at a low cost by such a process that requires melting and processing.
 かかる状況の下、上述した溶解及び加工に代えて、溶融塩浴を用いて金属チタンを析出させる溶融塩電解を採用することが、製造プロセスでの消費エネルギーの削減及びコストの低減の観点から検討されている。 Under these circumstances, the adoption of molten salt electrolysis, which deposits metallic titanium using a molten salt bath, instead of the melting and processing described above, is being considered from the perspective of reducing energy consumption and cost in the manufacturing process. It is
 溶融塩電解に関する技術としては、たとえば特許文献1~3に記載されたものがある。 Technologies related to molten salt electrolysis include those described in Patent Documents 1 to 3, for example.
 特許文献1には、「溶融塩電解法により高純度チタンを製造する方法において、浴組成としてはナトリウムイオンが10wt%以下である塩化物浴で電解することを特徴とする高純度チタンの製造方法」で、「融点が400℃以下の低い電解浴を用いて電解を行なう場合、電解温度が550~900℃の範囲で行なうこと」が記載されている。
 この特許文献1では、「LiCl-KCl等の融点が低い浴(400℃以下)を用いる場合、通常400~500℃で電解が行なわれる。しかし、この温度での電析Tiの形状は、海綿状あるいは粉末状になってしまう。この状態では、酸素が多く、またロスも多くなり収率が悪化してしまう。」とし、「第2表に示すごとく浴温を550~900℃好ましくは600~750℃にすることによって、電析Tiの形状を粗大な結晶、具体的には六角板状、樹枝状にすることにより酸素の低減及び収率の向上等が計られる」ことが教示されている。
Patent Document 1 describes "a method for producing high-purity titanium by a molten salt electrolysis method, wherein electrolysis is performed in a chloride bath having a sodium ion content of 10 wt% or less as a bath composition. , ``When performing electrolysis using an electrolytic bath having a low melting point of 400° C. or lower, the electrolysis temperature should be in the range of 550 to 900° C.''.
In this patent document 1, "When using a bath with a low melting point (400° C. or lower) such as LiCl—KCl, electrolysis is usually performed at 400 to 500° C. However, the shape of the deposited Ti at this temperature is that of a sponge. In this state, the amount of oxygen is large and the loss is also large, resulting in a poor yield." By setting the temperature to 750° C., the shape of the deposited Ti is changed to coarse crystals, specifically, hexagonal plates or dendrites, thereby reducing oxygen and improving the yield.” there is
 特許文献2には、「溶融塩電解法により原料チタンを電解精製する際に、陽極である原料チタンを充填した容器と陰極である電解容器との間に電圧を印加することを特徴とするチタンの製造方法」が開示されている。具体的には、「溶融塩電解工程としては、まずはじめに、容器本体1a内に原料チタンTおよびチタン棒3を装入しない状態から、予めモル比で1:1の割合に混合したNaCl-KClの混合塩化物を容器本体1a内に投入する。次いで、減圧下で650℃まで加熱して混合塩化物をよく脱水してから、炉内をアルゴン雰囲気に置換した後、740℃まで昇温保持して混合塩化物を溶融して電解浴4とする。次いで、原料チタンTおよびチタン棒3を電解浴4中に浸漬するとともに、蓋体1bを閉じる。続いて、図示せぬ供給管から、原料チタンTの底部に液体のTiCl4を適宜流量で吹き込んで電解浴中にチタンイオンを生成させた後、電解用回路11および不純物溶出防止用回路21の双方に、直流電流にて電圧をそれぞれ印加する。電解用回路11の電圧は100~1000mV、また、不純物溶出防止用回路21の電圧は500mV以下、好ましくは10~150mV、より好ましくは30~100mVとする。」などと記載されている。 In Patent Document 2, "Titanium characterized by applying a voltage between a container filled with raw material titanium as an anode and an electrolysis container as a cathode when electrolytically refining raw material titanium by molten salt electrolysis. A manufacturing method of "is disclosed. Specifically, "as the molten salt electrolysis step, first, from a state where the raw material titanium T and the titanium rod 3 are not charged into the container body 1a, NaCl-KCl mixed in advance at a molar ratio of 1:1 The mixed chloride of is put into the container body 1a.Then, after heating to 650° C. under reduced pressure to dehydrate the mixed chloride well, the atmosphere in the furnace is replaced with an argon atmosphere, and the temperature is raised to 740° C. and maintained. to melt the mixed chloride to form an electrolytic bath 4. Next, the raw material titanium T and the titanium rod 3 are immersed in the electrolytic bath 4, and the lid 1b is closed. After an appropriate flow rate of liquid TiCl 4 was blown into the bottom of the raw material titanium T to generate titanium ions in the electrolytic bath, voltage was applied to both the electrolysis circuit 11 and the impurity elution prevention circuit 21 by direct current. The voltage of the electrolysis circuit 11 is 100 to 1000 mV, and the voltage of the impurity elution prevention circuit 21 is 500 mV or less, preferably 10 to 150 mV, more preferably 30 to 100 mV.” .
 特許文献3では、「溶融塩浴で、陽極及び陰極を用いて電気分解を行い、金属チタンを製造する方法であって、前記陽極として、金属チタンを含有する陽極を使用し、金属チタンを陰極上に析出させるチタン析出工程を含み、前記チタン析出工程で、溶融塩浴の温度を250℃以上かつ600℃以下とするとともに、当該チタン析出工程の開始時から30分経過するまでの間の前記陰極の平均電流密度を0.01A/cm2~0.09A/cm2の範囲内に維持する、金属チタンの製造方法」が提案されている。特許文献3の実施例の項目では、「陽極及び陰極に、所定の間隔で通電及び停止を繰り返すパルス電流を流し、それにより電気分解を行って、陽極を溶解させ、陰極上に金属チタンを箔状に析出させた。」と記載されている(表1参照)。 In Patent Document 3, "A method for producing metallic titanium by performing electrolysis using an anode and a cathode in a molten salt bath, wherein an anode containing metallic titanium is used as the anode, and metallic titanium is used as a cathode. In the titanium precipitation step, the temperature of the molten salt bath is set to 250° C. or higher and 600° C. or lower, and the titanium precipitation step is started and 30 minutes have elapsed from the start of the titanium precipitation step. A method for producing titanium metal, which maintains the average current density of the cathode within the range of 0.01 A/cm 2 to 0.09 A/cm 2 , has been proposed. In the example section of Patent Document 3, it is stated that "a pulse current is applied to the anode and the cathode by repeating energization and stoppage at predetermined intervals, thereby performing electrolysis to dissolve the anode and form a metal titanium foil on the cathode. It was deposited in a shape.” (See Table 1).
特開平3-291391号公報JP-A-3-291391 特開2000-87280号公報JP-A-2000-87280 国際公開2020/044841号WO2020/044841
 特許文献3に記載された方法では、陰極上に金属チタンが薄く電析し、また、陰極から金属チタンを比較的容易に剥離させることができる。それ故に、この方法によれば、厚みの薄いチタン箔を得ることができると考えられる。 In the method described in Patent Document 3, a thin layer of metallic titanium is electrodeposited on the cathode, and the metallic titanium can be separated from the cathode relatively easily. Therefore, it is considered that a thin titanium foil can be obtained by this method.
 但し、特許文献3に記載の方法では、電極への通電に際し、たとえばパルス電流等の間欠的な電流を流すことがある。この場合は、パルス電流における通電の停止時間の故に、陰極上への金属チタンの電析にある程度時間を要するので、チタン箔の製造の能率は改善の余地がある。 However, in the method described in Patent Document 3, an intermittent current, such as a pulse current, may flow when energizing the electrodes. In this case, it takes a certain amount of time to electrodeposit titanium metal on the cathode due to the stop time of energization in the pulse current, so there is room for improvement in the efficiency of the production of titanium foil.
 この発明の目的は、陰極上に電析した金属チタンの、陰極からの剥離容易性を大きく低下させることなしに、単位時間当たりの金属チタンの電析量を増加させることができるチタン箔の製造方法を提供することにある。 An object of the present invention is to manufacture a titanium foil capable of increasing the amount of titanium metal electrodeposited per unit time without significantly reducing the ease of stripping the metal titanium deposited on the cathode from the cathode. It is to provide a method.
 陰極上への金属チタンの電析は、溶融塩浴中のチタンイオンの高濃度化、溶融塩浴の温度の上昇、電極への通電時の電流密度の増大により促進すると考えられる。一方、これらのことは、陰極からの金属チタンの剥離容易性の低下を招く懸念がある。
 発明者は鋭意検討の結果、上記の各条件の適切な組合せを新たに見出した。これにより、電極への通電の停止時間を十分短くした場合や通電を停止しない場合であっても、金属チタンの剥離容易性の低下を抑制することができる。またここでは、電極への通電の停止時間が短く又は通電を停止しないので、単位時間当たりの金属チタンの電析量の増加を実現することができる。
Electrodeposition of metallic titanium on the cathode is thought to be promoted by increasing the concentration of titanium ions in the molten salt bath, increasing the temperature of the molten salt bath, and increasing the current density when the electrode is energized. On the other hand, there is a concern that these factors may reduce the ease of peeling metal titanium from the cathode.
As a result of intensive studies, the inventors have newly found a suitable combination of the above conditions. As a result, it is possible to suppress deterioration in the ease of peeling of metallic titanium even when the time for which the energization of the electrode is stopped is sufficiently shortened or when the energization is not stopped. Further, in this case, since the energization of the electrodes is stopped only for a short period of time or is not stopped, the amount of titanium metal deposited per unit time can be increased.
 この発明のチタン箔の製造方法は、チタンイオンを含み塩化物が溶融してなる溶融塩浴を用いて、陽極及び陰極を含む電極で電気分解を行い、陰極の電解面に金属チタンを析出させる電析工程を含み、電析工程で、溶融塩浴中の金属イオンのモル濃度の合計に対するチタンイオンのモル濃度の割合を7%以上に維持し、溶融塩浴の温度を510℃以下に維持し、電極への通電に際し、通電の連続停止時間を1.0秒未満、電流密度を0.10A/cm2以上かつ1.0A/cm2以下とし、陰極の前記電解面への金属チタンの電析時間を120分以下とするというものである。 In the method for producing a titanium foil of the present invention, a molten salt bath containing titanium ions and chlorides is used to perform electrolysis with electrodes including an anode and a cathode to deposit metallic titanium on the electrolytic surface of the cathode. Including an electrodeposition step, in the electrodeposition step, the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is maintained at 7% or more, and the temperature of the molten salt bath is maintained at 510 ° C. or less. When energizing the electrode, the continuous stop time of energization is less than 1.0 second, the current density is 0.10 A/cm 2 or more and 1.0 A/cm 2 or less, and metal titanium is applied to the electrolytic surface of the cathode. The electrodeposition time is set to 120 minutes or less.
 上記のチタン箔の製造方法では、陽極がTiを含み、電析工程で前記陽極が消耗することが好ましい。 In the method for producing a titanium foil described above, it is preferable that the anode contains Ti and that the anode is consumed during the electrodeposition process.
 また、上記のチタン箔の製造方法では、前記塩化物が、二塩化チタン及び/又は三塩化チタンを含むことが好ましい。 In addition, in the method for manufacturing a titanium foil described above, the chloride preferably contains titanium dichloride and/or titanium trichloride.
 電析工程では、溶融塩浴中の金属イオンのモル濃度の合計に対するチタンイオンのモル濃度の割合を、10%以上に維持することが好ましい。 In the electrodeposition step, it is preferable to maintain the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath at 10% or more.
 また、電析工程では、溶融塩浴の温度を500℃以下に維持することが好ましい。 Also, in the electrodeposition step, it is preferable to maintain the temperature of the molten salt bath at 500°C or lower.
 そしてまた、電析工程では、電流密度を0.20A/cm2以上かつ0.50A/cm2以下とすることが好ましい。 Further, in the electrodeposition step, the current density is preferably 0.20 A/cm 2 or more and 0.50 A/cm 2 or less.
 この発明のチタン箔の製造方法によれば、陰極上に電析した金属チタンの、陰極からの剥離容易性を低下させることなしに、単位時間当たりの金属チタンの電析量を増加させることができる。 According to the method for producing a titanium foil of the present invention, it is possible to increase the amount of titanium metal electrodeposited per unit time without reducing the ease of separating the metal titanium deposited on the cathode from the cathode. can.
この発明の一の実施形態に係るチタン箔の製造方法に用いることのできる電解装置を模式的に示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows typically the electrolysis apparatus which can be used for the manufacturing method of the titanium foil which concerns on one Embodiment of this invention. 他の電解装置について、電極以外の部分を断面図として模式的に示す部分断面斜視図である。It is a fragmentary cross-sectional perspective view which shows typically parts other than an electrode as sectional drawing about another electrolysis apparatus. さらに他の電解装置を模式的に示す断面図である。It is a sectional view showing other electrolysis equipment typically. さらに他の電解装置を模式的に示す断面図である。It is a sectional view showing other electrolysis equipment typically. 実施例1の陰極上に電析した金属チタンの写真である。1 is a photograph of metallic titanium electrodeposited on the cathode of Example 1. FIG. 比較例2の陰極上に電析した金属チタンの写真である。4 is a photograph of metallic titanium electrodeposited on the cathode of Comparative Example 2. FIG. 剥離強度試験を示す断面図である。It is a cross-sectional view showing a peel strength test.
 以下に、この発明の実施の形態について詳細に説明する。なお、各実施形態を説明するための図1~4及び図7はその構成を模式図で概略的に示したものである。よって、図1~4及び図7に示す各構成の配置やサイズ等は正確ではないことがある。
 この発明の一の実施形態に係るチタン箔の製造方法は、チタンイオンを含み塩化物が溶融してなる溶融塩浴を用いて、陽極及び陰極を含む電極で電気分解を行い、陰極の電解面に金属チタンを析出させる電析工程を含む。そして、電析工程では、溶融塩浴中の金属イオンのモル濃度の合計に対するチタンイオンのモル濃度の割合を7%以上に維持するとともに、溶融塩浴の温度を510℃以下に維持する。また、電析工程では、電極への通電に際し、通電の連続停止時間を1.0秒未満とし、電流密度を0.10A/cm2以上かつ1.0A/cm2以下とする。電析工程での陰極の電解面への金属チタンの電析時間は、120分以下とする。なお、各実施形態の説明では、溶融塩浴中の金属イオンのモル濃度の合計に対するチタンイオンのモル濃度の割合を、単に「チタンイオンの割合」ともいう。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. 1 to 4 and 7 for explaining each embodiment are schematic diagrams showing the configuration thereof. Therefore, the arrangement, size, etc. of each component shown in FIGS. 1 to 4 and 7 may not be accurate.
A method for producing a titanium foil according to one embodiment of the present invention uses a molten salt bath in which a chloride containing titanium ions is melted, is electrolyzed with electrodes including an anode and a cathode, and electrolyzes the electrolytic surface of the cathode. including an electrodeposition step of depositing metallic titanium on the In the electrodeposition step, the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is maintained at 7% or more, and the temperature of the molten salt bath is maintained at 510° C. or lower. In the electrodeposition step, when electrifying the electrode, the continuous stop time of electrification is set to less than 1.0 second, and the current density is set to 0.10 A/cm 2 or more and 1.0 A/cm 2 or less. The time for electrodeposition of metallic titanium onto the electrolytic surface of the cathode in the electrodeposition step is 120 minutes or less. In the description of each embodiment, the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is also simply referred to as the "ratio of titanium ions."
 この種の溶融塩電解では、溶融塩浴中のチタンイオンの高濃度化、溶融塩浴の温度の上昇、及び、電極への通電時の電流密度の増大により、陰極上への金属チタンの電析が促進し、単位時間当たりの金属チタンの電析量が増加する傾向がある。但し、それらの全てを行うと、陰極上に電析した金属チタンを陰極から剥離することが困難になる。特に、電極から電析した金属チタンを引き剥がす等の物理的な剥離が困難となる。 In this type of molten salt electrolysis, the concentration of titanium ions in the molten salt bath is increased, the temperature of the molten salt bath is increased, and the current density is increased when the electrode is energized. deposition is accelerated, and the amount of titanium metal deposited per unit time tends to increase. However, if all of them are carried out, it becomes difficult to separate the metallic titanium electrodeposited on the cathode from the cathode. In particular, it becomes difficult to physically peel off the electrodeposited metal titanium from the electrode.
 これに対し、この実施形態では、電析工程にて、溶融塩浴中のチタンイオンの割合を7%以上と高濃度化し、電流密度を0.10A/cm2以上かつ1.0A/cm2以下とある程度高くする。他方、溶融塩浴の温度は510℃以下の比較的低温とする。このことによれば、単位時間当たりの金属チタンの電析量を増加させつつ、陰極から金属チタンを容易に剥離させることができる。特に、電極から電析した金属チタンを引き剥がす等の物理的な剥離を容易に実施できる。 In contrast, in this embodiment, in the electrodeposition step, the proportion of titanium ions in the molten salt bath is increased to 7% or more, and the current density is 0.10 A/cm 2 or more and 1.0 A/cm 2 . Increase to some extent below. On the other hand, the temperature of the molten salt bath is set to a relatively low temperature of 510° C. or less. According to this, it is possible to easily separate the titanium metal from the cathode while increasing the amount of the titanium metal electrodeposited per unit time. In particular, physical peeling such as peeling off the electrodeposited metal titanium from the electrode can be easily carried out.
 その理由は定かではないが、次のように推測することができる。溶融塩浴中のチタンイオンの割合を上記のように多くしたことにより、そのチタンイオンが電極への通電で陰極上に金属チタンとして析出しても、陰極の近傍のチタンイオンが欠乏しにくくなる。これにより、陰極の近傍での電流の偏りが抑制され、当該電流の偏りに起因するデンドライト状金属チタンの析出が抑制されて、金属チタンが陰極上に箔状に析出すると考えられる。また、デンドライトの形成に伴う電力集中が起こらないので、陰極表面の温度の上昇が抑えられる。さらには、溶融塩浴の温度も適切に低く維持されているので、陰極表面の温度上昇が適切に抑制される。これらの結果、陰極と、そこに析出した金属チタンとの間での金属の相互拡散が抑制される。したがって、通電の連続停止時間が1.0秒未満というように、電極への通電の停止時間を十分短くした場合や通電を停止せずに定電流とした場合であっても、陰極から電析した金属チタンを容易に剥離できるようになると推測される。但し、この発明は、上述したような理論に限定されるものではない。 The reason is not clear, but it can be speculated as follows. By increasing the ratio of titanium ions in the molten salt bath as described above, even if the titanium ions are deposited as metallic titanium on the cathode by energizing the electrode, the titanium ions in the vicinity of the cathode are less likely to be depleted. . It is believed that this suppresses the current bias in the vicinity of the cathode, suppresses the deposition of dendrite-like metallic titanium due to the current bias, and deposits the metallic titanium in the form of a foil on the cathode. In addition, since electric power is not concentrated due to the formation of dendrites, the temperature rise of the cathode surface can be suppressed. Furthermore, since the temperature of the molten salt bath is kept appropriately low, the temperature rise of the cathode surface is appropriately suppressed. As a result, interdiffusion of metal between the cathode and metallic titanium deposited thereon is suppressed. Therefore, even if the energization stop time to the electrode is sufficiently short, such as a continuous stop time of energization of less than 1.0 second, or even if the current is constant without stopping the energization, electrodeposition from the cathode will occur. It is presumed that it becomes possible to easily peel off the metal titanium. However, the present invention is not limited to the above theory.
 また、この実施形態では、通電の連続停止時間を1.0秒未満とすることから、単位時間当たりの金属チタンの電析量が増加し、それにより、チタン箔の製造能率を向上させることができる。加えて、このようにして製造されたチタン箔は、デンドライトの形成が抑制されたことにより、平滑性に優れたものになる。 In addition, in this embodiment, since the continuous stop time of energization is set to less than 1.0 second, the amount of metallic titanium deposited per unit time increases, thereby improving the production efficiency of the titanium foil. can. In addition, the titanium foil produced in this way has excellent smoothness due to the suppression of dendrite formation.
(溶融塩浴)
 電解槽内の溶融塩浴を構成する溶融塩は、塩化物を溶融させたものとする。好ましくは、溶融塩浴は、化合物としては塩化物のみが溶融してなるものとする。具体的な塩化物としては、たとえば、MgCl2やNaCl、KCl、CaCl2、LiCl、BaCl2、CsCl等を挙げることができる。
(Molten salt bath)
The molten salt forming the molten salt bath in the electrolytic cell is obtained by melting chloride. Preferably, the molten salt bath is made up of only molten chlorides as compounds. Examples of specific chlorides include MgCl 2 , NaCl, KCl, CaCl 2 , LiCl, BaCl 2 and CsCl.
 溶融塩浴は、MgCl2、NaCl、KCl、CaCl2、LiCl、BaCl2及びCsClからなる群から選択される一種以上、さらには二種以上の塩化物を含むことが好ましい。なお、溶融塩浴は、MgCl2、NaCl、KCl、CaCl2及びLiClからなる群から選択される一種以上、さらには二種以上、さらには三種以上の塩化物を含むことが好ましい。また、溶融塩浴は、MgCl2、NaCl、KCl及びCaCl2からなる群から選択される一種以上、さらには二種以上、さらには三種以上の塩化物を含むことが好ましい。このような好ましい塩化物の具体例として、NaCl-KCl-MgCl2、LiCl-KCl-MgCl2、NaCl-KCl-CaCl2、LiCl-KCl-CaCl2、NaCl-LiCl-KCl-MgCl2、NaCl-KCl-LiCl-CaCl2等が例示される。以上のような塩化物を含むことにより、ある程度低温としても溶融塩浴の溶融状態を良好に維持できるので、電析工程での溶融塩浴の先述した低い温度範囲を実現しやすくなる。 The molten salt bath preferably contains one or more chlorides, more preferably two or more chlorides selected from the group consisting of MgCl2, NaCl, KCl, CaCl2, LiCl, BaCl2 and CsCl. The molten salt bath preferably contains one or more, two or more, or three or more chlorides selected from the group consisting of MgCl 2 , NaCl, KCl, CaCl 2 and LiCl. Moreover, the molten salt bath preferably contains one or more, two or more, or three or more chlorides selected from the group consisting of MgCl 2 , NaCl, KCl and CaCl 2 . Specific examples of such preferred chlorides include NaCl-KCl-MgCl 2 , LiCl-KCl-MgCl 2 , NaCl-KCl-CaCl 2 , LiCl-KCl-CaCl 2 , NaCl-LiCl-KCl-MgCl 2 , NaCl- KCl--LiCl--CaCl 2 and the like are exemplified. By containing the above-described chlorides, the molten salt bath can be kept in a good molten state even at a relatively low temperature, so that the aforementioned low temperature range of the molten salt bath in the electrodeposition process can be easily achieved.
 溶融塩浴中の金属イオンのモル濃度の合計に対する、マグネシウムイオンのモル濃度、ナトリウムイオンのモル濃度、カリウムイオンのモル濃度、カルシウムイオンのモル濃度、リチウムイオンのモル濃度、バリウムイオンのモル濃度及びセシウムイオンのモル濃度の合計の占める割合は、好ましくは80%以上、さらには90%以上とすることができる。但し、操業温度等を考慮し、その具体的な塩化物の種類や含有量は適宜決定することができる。なお、各金属イオンのモル濃度は、ICP発光分析及び原子吸光分析により算出する。 Magnesium ion molarity, sodium ion molarity, potassium ion molarity, calcium ion molarity, lithium ion molarity, barium ion molarity and The proportion of the total molar concentration of cesium ions is preferably 80% or more, more preferably 90% or more. However, considering the operating temperature and the like, the specific type and content of the chloride can be appropriately determined. The molar concentration of each metal ion is calculated by ICP emission spectrometry and atomic absorption spectrometry.
 溶融塩浴は、フッ化物イオンを含まないことが望ましい。電析工程で陰極上に析出した金属チタンを陰極から剥離させて得られるチタン箔の表面には、溶融塩浴の成分が残留することが多く、これを除去するべく電析工程後にチタン箔の水洗等の洗浄を行うことがある。このとき、チタン箔の表面に残留した溶融塩浴の成分にフッ化物が含まれると、水との接触により有害なフッ化水素ないしフッ化水素酸が発生する。また、溶融塩浴がフッ化リチウムを溶解してなるものである場合、フッ化リチウムは水に対して難溶性を示すことから、水洗でのチタン箔からの除去に多量の水が必要になる。このような作業者及び環境への負荷を低減するため、フッ化物イオンを含まない溶融塩浴を用いることが好適である。 It is desirable that the molten salt bath does not contain fluoride ions. Components of the molten salt bath often remain on the surface of the titanium foil obtained by peeling off the metallic titanium deposited on the cathode in the electrodeposition process. Cleaning such as water washing may be performed. At this time, if fluoride is contained in the components of the molten salt bath remaining on the surface of the titanium foil, harmful hydrogen fluoride or hydrofluoric acid is generated upon contact with water. Further, when the molten salt bath is formed by dissolving lithium fluoride, since lithium fluoride exhibits poor solubility in water, a large amount of water is required to remove it from the titanium foil by washing with water. . In order to reduce the burden on workers and the environment, it is preferable to use a molten salt bath that does not contain fluoride ions.
 また、溶融塩浴にはチタンイオンが含まれる。溶融塩浴にチタンイオンを含ませるには、電析工程の前に予め溶融塩浴にチタン原料を溶解させておくこと、及び/又は、後述するように、電析工程の前もしくは電析工程の間に、Tiを含有する陽極を溶解させることが可能である。 In addition, the molten salt bath contains titanium ions. In order to include titanium ions in the molten salt bath, the titanium raw material must be dissolved in advance in the molten salt bath before the electrodeposition step, and/or, as described later, before the electrodeposition step or in the electrodeposition step. During the time it is possible to dissolve the Ti-containing anode.
 溶融塩浴にチタン原料を予め溶解させる場合、チタン原料としては、より詳細には、塩化チタン、及び/又は、チタンスクラップやスポンジチタンのような不純物を含む低純度チタン等を挙げることができる。このうち、不純物を含む低純度チタンは、たとえば、不純物としてFeやOを比較的多く含む場合がある。チタンスクラップやスポンジチタンをチタン原料として使用する場合は、これらとTiCl4を接触させて二塩化チタン(TiCl2)及び/又は三塩化チタン(TiCl3)等の低級の塩化チタンを生成させ、それを溶解させてチタンイオンを含む溶融塩浴を構成することができる。ここでは、チタン原料が溶融塩浴に溶解してから陰極に金属チタンが析出するので、チタン原料が不純物を比較的多く含んでいても、金属チタンへの不純物混入が抑制され得る。 When the titanium raw material is preliminarily dissolved in the molten salt bath, more specifically, the titanium raw material includes titanium chloride and/or low-purity titanium containing impurities such as titanium scrap and titanium sponge. Among these, low-purity titanium containing impurities may contain relatively large amounts of Fe and O as impurities, for example. When titanium scrap or titanium sponge is used as a raw material for titanium, they are brought into contact with TiCl 4 to produce low-grade titanium chloride such as titanium dichloride (TiCl 2 ) and/or titanium trichloride (TiCl 3 ). can be dissolved to form a molten salt bath containing titanium ions. Here, since the titanium raw material is dissolved in the molten salt bath and then metallic titanium is deposited on the cathode, even if the titanium raw material contains a relatively large amount of impurities, contamination of the metallic titanium can be suppressed.
(電解装置)
 この発明では、種々の電解装置を用いることができる。その一例として図1に示す電解装置1は、内部を溶融塩浴Bfとする密閉容器状の電解槽2と、電解装置1内で溶融塩浴Bfに浸漬させて配置した陽極3a及び陰極3bを含む電極3と、陽極3a及び陰極3bに接続されて、それらの陽極3a及び陰極3bに通電する電源4とを備えるものである。図示は省略するが、通常、電解槽2はその一部が開口可能となっており、開口を使用して電極3を電解槽2内に配置等することができる。他方、前記開口は密閉することも可能であり、電極3への通電中は外部環境から電解槽2内への大気の混入を抑制できる。陽極溶解工程及び/又は電析工程では、電解槽2内を減圧雰囲気又は、アルゴンガス等による不活性ガス雰囲気に維持することがある。
(Electrolyzer)
Various electrolytic devices can be used in the present invention. As an example, the electrolytic device 1 shown in FIG. and a power source 4 connected to the anode 3a and the cathode 3b to energize the anode 3a and the cathode 3b. Although illustration is omitted, the electrolytic cell 2 is normally partially openable, and the electrode 3 can be arranged in the electrolytic cell 2 using the opening. On the other hand, it is also possible to seal the opening, so that it is possible to prevent air from entering the electrolytic cell 2 from the external environment while the electrode 3 is being energized. In the anodic dissolution process and/or the electrodeposition process, the inside of the electrolytic cell 2 may be maintained in a reduced pressure atmosphere or an inert gas atmosphere such as argon gas.
 ここで、電解槽2内の溶融塩浴Bfに浸漬させる陽極3a及び陰極3bのうち、陽極3aは、Tiを含むことが好ましい。陽極3aの形状は、シート状、円筒状、円柱状、板状、塊状、粉状、粒状、繊維状又はブリケット状等の様々な形状とすることができる。陽極3aとしては、具体的には、スポンジチタン、チタンスクラップ、チタン棒材及び/又はチタン板材等を用いることができる。また、陽極3aとしては、具体的には、スポンジチタン及び/又はチタンスクラップ等を用いることができる。スポンジチタンを陽極3aとして使用する場合は、塊状のスポンジチタンをNi製等の籠内に設置し、その籠に通電すればよい。NiはTiよりもイオン化傾向が小さいため、Niは溶出せずにスポンジチタンのみを陽極3aとして溶出させることができる。この場合、上記の籠も陽極3aの一部に含まれ、陽極3aはTi及びNiを含む。籠及びその内容物(スポンジチタン等)を含む陽極3aは、陽極溶解工程や電析工程でTiを含む当該内容物のみが消耗し、籠は消耗しないことが多い。また、上記のとおり陽極3aとしては、ブリケット状のものを使用できる。ブリケット状とする場合は、上記Ni製等の籠を使用することなく陽極を構成できる。 Here, of the anode 3a and the cathode 3b to be immersed in the molten salt bath Bf in the electrolytic bath 2, the anode 3a preferably contains Ti. The shape of the anode 3a can be various shapes such as sheet-like, cylindrical, columnar, plate-like, massive, powdery, granular, fibrous, or briquette-like. Specifically, sponge titanium, titanium scrap, titanium rod material and/or titanium plate material can be used as the anode 3a. Further, as the anode 3a, concretely sponge titanium and/or titanium scrap can be used. When titanium sponge is used as the anode 3a, a block of titanium sponge is placed in a cage made of Ni or the like, and the cage is energized. Since Ni has a lower ionization tendency than Ti, only titanium sponge can be eluted as the anode 3a without eluting Ni. In this case, the above cage is also included as part of the anode 3a, and the anode 3a contains Ti and Ni. In the anode 3a including the cage and its contents (sponge titanium, etc.), only the contents containing Ti are consumed during the anode dissolution process and the electrodeposition process, and the cage is not consumed in many cases. Further, as described above, a briquette-like material can be used as the anode 3a. When the briquette is used, the anode can be constructed without using the basket made of Ni or the like.
 またここで、陰極3bの材質は、Tiが電析するものであれば特に問わない。なお、陰極3bは、少なくとも、金属チタンを電析させる電解面が、Mo、W、TaもしくはNb又はそれらのいずれかの合金を含むものとすることがある。なかでも、陰極3bとしては、少なくとも電解面が、Moを90質量%以上、さらに99.9質量%以上含有するものを使用することが好ましい。Moは600℃以下ではTiに溶出しにくいことから、Moを90質量%以上含有する陰極3bの電解面はそこに析出した金属チタンと密着せず、当該金属チタンが容易に剥離可能になるとともに、金属チタンへのMo等の不純物の混入が抑制される。 Also, here, the material of the cathode 3b is not particularly limited as long as Ti is electrodeposited. In some cases, the cathode 3b contains Mo, W, Ta, Nb, or any one of their alloys on the electrolytic surface on which metallic titanium is to be electrodeposited. Among them, as the cathode 3b, at least the electrolytic surface preferably contains 90% by mass or more, more preferably 99.9% by mass or more of Mo. Since Mo is less likely to dissolve into Ti at 600° C. or less, the electrolytic surface of the cathode 3b containing 90% by mass or more of Mo does not adhere to the metallic titanium deposited thereon, and the metallic titanium can be easily peeled off. , contamination of impurities such as Mo into metallic titanium is suppressed.
 陰極3bが材質の異なる複数の層を有する場合、陰極の表面に対するコーティング等により、それらの層のうちの少なくとも表層に90質量%以上のMoを含む電解面を形成することができる。陰極3bの少なくとも電解面は、Mo以外の不純物が10質量%未満で含まれることがあり、当該不純物としてはTi等が挙げられる。陰極3bを繰り返し使用する場合、陰極3bにはTiがある程度含まれることがある。なお、陰極3bの電解面のみならず全体を、90質量%以上のMoで構成してもよい。 When the cathode 3b has a plurality of layers made of different materials, it is possible to form an electrolytic surface containing 90% by mass or more of Mo on at least the surface layer of the layers by coating the surface of the cathode. At least the electrolytic surface of the cathode 3b may contain less than 10% by mass of impurities other than Mo, such as Ti. When the cathode 3b is used repeatedly, the cathode 3b may contain Ti to some extent. In addition, not only the electrolytic surface of the cathode 3b but also the entire surface may be composed of Mo of 90% by mass or more.
 陽極(先述した籠を含む場合はその内容物)及び陰極はそれぞれ、たとえば、ほぼ棒状、帯状、板状もしくは、円柱その他の柱状又は、塊状等のものとすることができる。特に図2に例示するように、陰極33bは、金属チタンが電析する電解面の少なくとも一部が曲面形状であることが好適である。但し、陽極及び陰極はそれぞれ板状のものを使用してもよい。陰極については、板状のものが好適に使用できる場合がある。図2に示す電解装置31は、陽極33a及び陰極33bの形状を変更したことを除いて、図1に示す電解装置1とほぼ同様の構成を有するものであり、円筒状の表面を有する円柱状の陰極33bと、陰極33bの周囲を取り囲んで配置した円筒状の陽極33aを備える。このように陽極33aの表面および陰極33bの表面をともに曲面形状とすると、陰極33bを可動に構成しても電極間距離を一定としやすいことから、陰極33bの表面(電解面)の広い面積でより均一に金属チタンを析出させることができる。この観点から、陽極33aの表面および陰極33bの対向する表面は、互いに相似な形状を有することが好ましい。 The anode (the content of the cage, if it contains the cage described above) and the cathode can each be, for example, substantially rod-shaped, band-shaped, plate-shaped, cylindrical or other column-shaped, or block-shaped. In particular, as illustrated in FIG. 2, it is preferable that at least a part of the electrolytic surface on which metallic titanium is electrodeposited on the cathode 33b has a curved surface shape. However, the anode and cathode may each be plate-shaped. As for the cathode, a plate-like one can be preferably used in some cases. The electrolytic device 31 shown in FIG. 2 has substantially the same configuration as the electrolytic device 1 shown in FIG. and a cylindrical anode 33a surrounding the cathode 33b. When both the surface of the anode 33a and the surface of the cathode 33b are curved in this way, it is easy to keep the distance between the electrodes constant even if the cathode 33b is configured to be movable. Metal titanium can be deposited more uniformly. From this point of view, the surface of the anode 33a and the opposing surface of the cathode 33b preferably have similar shapes.
 図3に他の電解装置11を示す。図3の電解装置11は、密閉された電解槽12内に、いわゆる陰極ドラムとしての円筒状もしくは円柱状の陰極13bを、その円筒状の表面の一部が溶融塩浴Bfに浸漬するように配置したものである。また、この電解装置11では、溶融塩浴Bf中に、円筒状の陰極13bの表面に倣って湾曲する板状の陽極13aを、陰極13bの表面と対向させて配置している。 Another electrolytic device 11 is shown in FIG. The electrolytic apparatus 11 of FIG. 3 has a cylindrical or columnar cathode 13b as a so-called cathode drum placed in a closed electrolytic bath 12 so that a part of the cylindrical surface is immersed in a molten salt bath Bf. It is arranged. Further, in the electrolysis apparatus 11, a plate-like anode 13a curving along the surface of a cylindrical cathode 13b is arranged in the molten salt bath Bf so as to face the surface of the cathode 13b.
 図3の電解装置11では、円筒状もしくは円柱状の陰極13bを中心軸周りに回転させつつ、図示しない電源からそれらの電極13へ通電すると、溶融塩浴Bfに浸漬する陰極13bの表面の周方向の一部のうち、主として陽極13aと対向する部分が金属チタンを析出させる電解面になり、当該電解面に箔状の金属チタンTsが析出する。陰極13bの表面の、溶融塩浴Bfに浸漬する部分は、陰極13bの回転に伴って変化し、それに応じて電解面は、陰極13bの周方向に沿って移動する。ここでは、金属チタンTsを、電解装置11がさらに備える巻取りロール15で巻き取ることにより、長尺の金属チタンTsとしてのチタン箔を、陰極13bの表面から剥離しつつ連続的に製造することができる。 In the electrolysis apparatus 11 of FIG. 3, while rotating the cylindrical or columnar cathode 13b around the central axis, a power source (not shown) energizes the electrodes 13, causing the circumference of the surface of the cathode 13b immersed in the molten salt bath Bf to rise. A part of the direction mainly facing the anode 13a becomes an electrolytic surface for depositing metallic titanium, and a foil-shaped metallic titanium Ts is deposited on the electrolytic surface. The portion of the surface of the cathode 13b that is immersed in the molten salt bath Bf changes as the cathode 13b rotates, and the electrolytic surface moves along the circumferential direction of the cathode 13b accordingly. Here, by winding up the metallic titanium Ts with a winding roll 15 further provided in the electrolytic device 11, a titanium foil as the long metallic titanium Ts is continuously produced while being peeled off from the surface of the cathode 13b. can be done.
 図4に示すさらに他の電解装置21は、一対の回転ロール26a、26b間に、陰極ストリップとしての帯状の陰極23bを環状に巻き掛けて配置したものである。またここでは、溶融塩浴Bf中に平板等の板状の陽極23aを、陰極23bの溶融塩浴Bf中の部分に対向させて配置している。陰極23bは、環状に巻き掛けたその外側を向く表面の一部が溶融塩浴Bfに浸漬するように、密閉された電解槽22内に位置する。この電解装置21では、溶融塩浴Bfに浸漬する陰極23bの表面のうち、主に陽極23aと対抗する部分が、電解面になる。 Still another electrolytic device 21 shown in FIG. 4 has a strip-shaped cathode 23b as a cathode strip which is annularly wound between a pair of rotating rolls 26a and 26b. Further, here, a plate-like anode 23a such as a flat plate is arranged in the molten salt bath Bf so as to face a portion of the cathode 23b in the molten salt bath Bf. Cathode 23b is positioned within closed electrolytic cell 22 such that a portion of its annularly wound, outwardly facing surface is immersed in molten salt bath Bf. In this electrolyzer 21, of the surface of the cathode 23b immersed in the molten salt bath Bf, the portion mainly facing the anode 23a serves as the electrolysis surface.
 図4の電解装置21によると、たとえば、駆動側の回転ロール26aを回転させることより、帯状の陰極23b及びその電解面が回転ロール26a、26bの周囲で、図4に矢印で示すように移動するとともに、従動側の回転ロール26bがそれに追従して回転する。このとき、図示しない電源から電極23に通電することにより、陰極23bの外側の電解面上に金属チタンTsが箔状に析出する。金属チタンTsは、陰極23bの表面から剥離されながら巻取りロール25で巻き取られ、それにより、長尺の金属チタンTsのチタン箔を連続的に製造することができる。 According to the electrolysis apparatus 21 of FIG. 4, for example, by rotating the rotating roll 26a on the drive side, the strip-shaped cathode 23b and its electrolytic surface move around the rotating rolls 26a and 26b as shown by the arrows in FIG. At the same time, the rotating roll 26b on the driven side follows it and rotates. At this time, by energizing the electrode 23 from a power source (not shown), a foil-like metal titanium Ts is deposited on the electrolytic surface outside the cathode 23b. The metallic titanium Ts is peeled off from the surface of the cathode 23b and wound up by the winding roll 25, whereby a long titanium foil of the metallic titanium Ts can be continuously produced.
 なお、陽極と陰極との間の電極間距離は特に限定されないが、それらの対向する表面のいずれにおいても0.5cm以上かつ10.0cm以下であることが好ましい。なお、陽極と陰極との間の電極間距離は、1.0cm以上かつ8.0cm以下とすることが好ましく、また1.0cm以上かつ5.0cm以下とすることが好ましい。電極間距離を0.5cm以上とすることにより、電極間の短絡の発生を抑制することができる。また、電極間距離を10.0cm以下とすることにより、電圧の意図しない上昇が抑えられて、消費電力を節約することができる。この電極間距離は、陽極の表面と陰極の表面との間の最短距離を意味する。なお、陽極が、先述したようなNi製等の籠及び、そのなかに配置されたスポンジチタン等を有する場合、上記の電極間距離は、籠の端部から陰極の表面までの最短距離とする。 The distance between the electrodes between the anode and the cathode is not particularly limited, but it is preferably 0.5 cm or more and 10.0 cm or less on any of their facing surfaces. The inter-electrode distance between the anode and the cathode is preferably 1.0 cm or more and 8.0 cm or less, and more preferably 1.0 cm or more and 5.0 cm or less. By setting the distance between the electrodes to 0.5 cm or more, it is possible to suppress the occurrence of a short circuit between the electrodes. Further, by setting the inter-electrode distance to 10.0 cm or less, an unintended increase in voltage can be suppressed, and power consumption can be saved. This inter-electrode distance means the shortest distance between the surface of the anode and the surface of the cathode. When the anode has a cage made of Ni or the like as described above and sponge titanium or the like disposed therein, the distance between the electrodes is the shortest distance from the end of the cage to the surface of the cathode. .
 以下の説明では、図1に示す電解装置1を例として述べるが、図2~4の電解装置11、21、31を用いた場合でも実質的に同様にして実施することができる。 In the following description, the electrolytic device 1 shown in FIG. 1 will be described as an example, but the electrolytic devices 11, 21, and 31 shown in FIGS. 2 to 4 can be used in substantially the same manner.
(陽極溶解工程)
 必要に応じて、電析工程の前に、Tiを含有する陽極3aを消耗させ、溶融塩浴Bfにチタンイオンを供給する陽極溶解工程を行うことができる。但し、陽極溶解工程は省略してもよい。
(anodic dissolution process)
If necessary, before the electrodeposition step, an anodic dissolution step of consuming the Ti-containing anode 3a and supplying titanium ions to the molten salt bath Bf can be performed. However, the anodic dissolution step may be omitted.
 陽極溶解工程では、一般的な溶融塩電解と実質的に同様にして、溶融塩浴Bfを所定の温度に維持した状態で、溶融塩浴Bfに浸漬させた陽極3a及び陰極3b間に、適切な大きさの電流を流す。
 これにより、Tiを含有する陽極3aは溶融塩浴Bfに溶け出し、溶融塩浴Bfに、チタンイオンが存在するようになる。つまり、ここでは、陽極3aは、いわゆる消耗電極のように、チタンイオンを溶融塩浴Bfへ供給するべく機能する。
In the anodic dissolution step, in substantially the same manner as in general molten salt electrolysis, while maintaining the molten salt bath Bf at a predetermined temperature, an appropriate current of a large magnitude.
As a result, the Ti-containing anode 3a dissolves into the molten salt bath Bf, and titanium ions are present in the molten salt bath Bf. That is, here, the anode 3a functions like a so-called consumable electrode to supply titanium ions to the molten salt bath Bf.
 陽極溶解工程での溶融塩浴Bfの温度は、溶融状態であることを前提として250℃~800℃とすることができ、また陰極3bの電流密度は、0.01A/cm2~2.00A/cm2とすることができる。これにより、陽極3aの溶解が良好に行われる。
 ここで、陰極3bの電流密度は、式:電流密度(A/cm2)=電流値(A)÷電解面積(cm2)により算出することができる。ここで、電解面積については、たとえば円筒状の表面を有する陰極3bの場合、式:電解面積(cm2)=陰極浸漬表面積=陰極直径(cm)×π×陰極高さ(cm)に基づいて算出する。また、電流値は、電流密度を求める所定の時間に流す電流の平均値である。例えば、定電流を流すのであれば、その電流の値が上記電流値となる。時間の経過により電流の値を変更するのであれば、例えば、通電中の等しい時間間隔にて電流の測定値を取得し、「電流の測定値の合計÷測定回数」で上記電流値を求めることができる。後述する電析工程についても、陰極3bの電流密度は同様にして算出することができる。
The temperature of the molten salt bath Bf in the anode dissolution step can be 250° C. to 800° C. on the premise that it is in a molten state, and the current density of the cathode 3b is 0.01 A/cm 2 to 2.00 A. / cm 2 . Thereby, the melting of the anode 3a is carried out satisfactorily.
Here, the current density of the cathode 3b can be calculated by the formula: current density (A/cm 2 )=current value (A)÷electrolysis area (cm 2 ). Here, regarding the electrolytic area, for example, in the case of the cathode 3b having a cylindrical surface, based on the formula: electrolytic area (cm 2 )=cathode immersion surface area=cathode diameter (cm)×π×cathode height (cm) calculate. Also, the current value is the average value of the current flowed during a predetermined period of time for obtaining the current density. For example, if a constant current is applied, the value of that current will be the current value. If the value of the current changes with the passage of time, for example, obtain the measured values of the current at equal time intervals during the energization, and obtain the above current value by "total measured values of the current ÷ the number of measurements". can be done. The current density of the cathode 3b can be calculated in the same manner in the electrodeposition step, which will be described later.
 なお、陽極溶解工程では、溶融塩浴Bfへのチタンイオンの供給が終了した後、電析工程に先立って、陰極3bを交換することができる。陽極溶解工程では陰極3bにTi以外の金属が析出する場合があるので、この状態の陰極3bを使用して電析工程を行うと、電析工程で得られる金属チタンの純度が低下することが懸念される。また、電析工程で陰極3b上に電析する金属チタンが合金化し、剥離性が低下するおそれもある。それ故に、陽極溶解工程にて溶融塩浴Bfにチタンイオンを供給した後は、陰極3bを交換することが好ましい。 In addition, in the anodic dissolution process, after the supply of titanium ions to the molten salt bath Bf is completed, the cathode 3b can be replaced prior to the electrodeposition process. In the anodic dissolution step, a metal other than Ti may be deposited on the cathode 3b. Therefore, if the electrodeposition step is performed using the cathode 3b in this state, the purity of the metallic titanium obtained in the electrodeposition step may decrease. Concerned. In addition, there is a possibility that the metal titanium electrodeposited on the cathode 3b in the electrodeposition process may be alloyed, resulting in a decrease in peelability. Therefore, it is preferable to replace the cathode 3b after supplying titanium ions to the molten salt bath Bf in the anodic dissolution step.
(電析工程)
 電析工程では、電源4から陽極3a及び陰極3bを含む電極3に通電することにより、電極3で電気分解が行われ、溶融塩浴Bf中のチタンイオンが陰極3b上に金属チタンとして析出する。
(Electrodeposition process)
In the electrodeposition step, electricity is applied from the power supply 4 to the electrodes 3 including the anode 3a and the cathode 3b, whereby electrolysis is performed at the electrodes 3, and titanium ions in the molten salt bath Bf are deposited as metallic titanium on the cathode 3b. .
 ここでは、溶融塩浴Bf中の金属イオンのモル濃度の合計(Mm)に対するチタンイオンのモル濃度(Mt)の割合(Mt/Mmの百分率)が7%以上に維持されるように、電気分解を行う。溶融塩浴Bf中のチタンイオンの割合が7%を下回ると、陰極3bの周囲でチタンイオンが欠乏し、それに起因して陰極3bの周囲で電流分布が偏り、陰極3b上の金属チタンにデンドライトが形成され得る。デンドライトの形成は、それ自体が、陰極3b上の金属チタンから得られるチタン箔の平滑性を損なわせるので望ましくない他、陰極3bからの金属チタンの剥離を困難にする。この観点から、溶融塩浴Bf中のチタンイオンの割合は、10%以上に維持することが好ましい。上記Mt/Mmの百分率の上限側については特段に限定がなく、溶融塩浴を維持できる範囲内でチタンイオンの割合を適宜変更することができる。 Here, the electrolysis is performed so that the ratio of the molar concentration (Mt) of titanium ions to the total molar concentration (Mm) of metal ions in the molten salt bath Bf (percentage of Mt/Mm) is maintained at 7% or more. I do. When the proportion of titanium ions in the molten salt bath Bf is less than 7%, titanium ions around the cathode 3b become deficient, resulting in a biased current distribution around the cathode 3b and dendrite formation in the metallic titanium on the cathode 3b. can be formed. The formation of dendrites itself is undesirable because it impairs the smoothness of the titanium foil obtained from the titanium metal on the cathode 3b, and also makes it difficult to remove the titanium metal from the cathode 3b. From this point of view, the proportion of titanium ions in the molten salt bath Bf is preferably maintained at 10% or more. The upper limit of the Mt/Mm percentage is not particularly limited, and the ratio of titanium ions can be changed as appropriate within a range in which the molten salt bath can be maintained.
 溶融塩浴Bf中のチタンイオンを含む各金属イオンのモル濃度は、溶融塩浴から採取した溶融塩のサンプルを固化させた後、そのサンプルの成分を、ICP発光分析及び原子吸光分析で分析することにより算出する。仮に溶融塩浴中にMgCl2、NaCl、KCl、CaCl2、LiCl、TiCl2及びTiCl3が含まれていた場合、金属イオンのモル濃度の合計(Mm)は、マグネシウムイオンのモル濃度、ナトリウムイオンのモル濃度、カリウムイオンのモル濃度、カルシウムイオンのモル濃度、リチウムイオンのモル濃度及び、チタンイオンのモル濃度(Mt)を足し合わせて求める。チタンイオンのモル濃度(Mt)を、当該金属イオンのモル濃度の合計(Mm)で除して百分率で表すことにより、チタンイオンの割合を算出することができる。 The molar concentration of each metal ion, including titanium ions, in the molten salt bath Bf is determined by solidifying a molten salt sample taken from the molten salt bath and then analyzing the components of the sample by ICP emission spectrometry and atomic absorption spectrometry. Calculated by If the molten salt bath contained MgCl 2 , NaCl, KCl, CaCl 2 , LiCl, TiCl 2 and TiCl 3 , then the sum of the molar concentrations of metal ions (Mm) would be the molar concentration of magnesium ions, sodium ions , the molar concentration of potassium ions, the molar concentration of calcium ions, the molar concentration of lithium ions, and the molar concentration of titanium ions (Mt). The ratio of titanium ions can be calculated by dividing the molar concentration (Mt) of titanium ions by the total molar concentration (Mm) of the metal ions and expressing it as a percentage.
 電析工程の間は、陰極3b上に金属チタンが電析するに伴い、溶融塩浴Bf中のチタンイオンが消費される。これに対し、溶融塩浴Bf中のチタンイオンを、上述したような高濃度に維持するため、電析工程では、Tiを含む陽極3aを用いることが好ましい。この場合、電気分解が進行すると、陽極3aが消耗し、それに含まれるTiがチタンイオンになって溶融塩浴Bf中に供給される。このことから、溶融塩浴Bf中のチタンイオンを所定の割合に維持しやすくなる。 During the electrodeposition process, titanium ions in the molten salt bath Bf are consumed as metal titanium is electrodeposited on the cathode 3b. On the other hand, in order to maintain the high concentration of titanium ions in the molten salt bath Bf as described above, it is preferable to use the anode 3a containing Ti in the electrodeposition step. In this case, as the electrolysis progresses, the anode 3a is consumed, and the Ti contained therein becomes titanium ions and is supplied into the molten salt bath Bf. This makes it easier to maintain the titanium ions in the molten salt bath Bf at a predetermined ratio.
 また、電析工程での溶融塩浴Bfの温度は、510℃以下に維持することとし、好ましくは500℃以下に維持することとし、さらに好ましくは480℃以下に維持する。溶融塩浴Bfの温度が高すぎると、陰極3b上に電析した金属チタンの結晶粒が粗大化しやすく、デンドライトの成長が進行するおそれがある。なお、溶融塩浴Bfを構成する溶融塩の溶融状態を維持できて当該溶融塩浴Bfを用いた電気分解が可能であれば、溶融塩浴Bfの温度は十分に低くすることができる。 In addition, the temperature of the molten salt bath Bf in the electrodeposition step is maintained at 510°C or lower, preferably 500°C or lower, more preferably 480°C or lower. If the temperature of the molten salt bath Bf is too high, the crystal grains of the metallic titanium electrodeposited on the cathode 3b are likely to coarsen, and dendrite growth may proceed. If the molten salt forming the molten salt bath Bf can be maintained in a molten state and electrolysis using the molten salt bath Bf is possible, the temperature of the molten salt bath Bf can be sufficiently lowered.
 そしてまた、電極3へ通電するに際し、電流密度は、0.10A/cm2以上かつ1.0A/cm2以下とし、さらには0.10A/cm2以上かつ0.50A/cm2以下とすることが好ましく、さらには0.20A/cm2以上かつ0.50A/cm2以下とすることが好ましい。このように比較的高い電流密度とすることにより、陰極3b上に金属チタンが短時間のうちに電析する。また、上述したような高い電流密度としても、この実施形態では、陰極3bから金属チタンを容易に剥離させることが可能である。電流密度が0.10A/cm2を下回るときは、陰極3b上への単位時間当たりの金属チタンの電析量が少なくなり、チタン箔の製造の能率が低下する。電流密度を1.0A/cm2よりも大きくすると、金属チタンが陰極3b上から容易に剥離することができなくなるおそれがある。なお、電析工程の電気分解の間に電流が変化する場合は、上記の電流密度は、電気分解の開始から終了までの間の平均値を意味する。 Further, when the electrode 3 is energized, the current density is 0.10 A/cm 2 or more and 1.0 A/cm 2 or less, and further 0.10 A/cm 2 or more and 0.50 A/cm 2 or less. more preferably 0.20 A/cm 2 or more and 0.50 A/cm 2 or less. By setting the current density to such a relatively high value, metallic titanium is electrodeposited on the cathode 3b in a short period of time. Moreover, even with the high current density as described above, in this embodiment, it is possible to easily separate the metal titanium from the cathode 3b. When the current density is less than 0.10 A/cm 2 , the amount of metallic titanium deposited on the cathode 3b per unit time decreases, resulting in a decrease in the efficiency of titanium foil production. If the current density is higher than 1.0 A/cm 2 , there is a possibility that the metallic titanium cannot be easily peeled off from the cathode 3b. When the current changes during electrolysis in the electrodeposition step, the above current density means an average value from the start to the end of electrolysis.
 この実施形態の電析工程では、電極3への通電の連続停止時間(すなわち、連続して電流が流れない時間)を1.0秒未満として、電極3への通電の連続停止時間を十分に短くするか、又は通電を停止せずに常に電流を流し続ける。実施形態によっては、電極3への通電を停止せずに常に電流を流し続けるようにすることがある。電極3への通電の連続停止時間を1.0秒未満とすれば、陰極3b上への単位時間当たりの金属チタンの電析量を良好に増加させることができる。仮に通電の連続停止時間を設ける場合であっても、たとえば、陰極の電解面に金属チタンが電析する電析時間のうち、連続停止時間の合計が占める割合を20%以下とする等といったように、通電時間に対して連続停止時間を極めて短くすることが好ましい。なお、ここでいう通電の停止とは、陰極上に金属チタンを電析させる電気分解が行われる順方向の電流を停止することを意味する。したがって、その通電の停止時間の少なくとも一部に逆方向の電流が流れていたとしても、その間は順方向の電流が流れていないので、通電の停止に該当する。
 特に好ましくは、電極3への通電を停止せず、また電流値ないし電流密度をあまり大きく変化させない定電流とする。この場合も、電流密度は先述した範囲内とすることが好適である。
In the electrodeposition step of this embodiment, the continuous stop time of energization to the electrode 3 (that is, the time during which current does not flow continuously) is set to less than 1.0 second, and the continuous stop time of energization to the electrode 3 is sufficiently long. Either shorten it or keep the current flowing without stopping the current. Depending on the embodiment, the current may continue to flow without stopping the energization of the electrode 3 . If the continuous discontinuation time of energization to the electrode 3 is set to less than 1.0 second, the amount of metallic titanium deposited on the cathode 3b per unit time can be favorably increased. Even if a continuous stop time of energization is provided, for example, the ratio of the total continuous stop time to the electrodeposition time for electrolytically depositing metallic titanium on the electrolytic surface of the cathode is 20% or less. In addition, it is preferable to make the continuous stop time extremely short with respect to the energization time. It should be noted that the discontinuation of energization as used herein means discontinuing the forward current for electrolysis for electrodepositing metallic titanium on the cathode. Therefore, even if the reverse current flows during at least a part of the energization stop time, the forward current does not flow during that time, and thus the energization is stopped.
It is particularly preferable to use a constant current that does not stop electrifying the electrode 3 and does not change the current value or current density too much. Also in this case, the current density is preferably within the range described above.
 上述した各条件に加えて、さらに、陰極の電解面への金属チタンの電析時間を120分以下とする。これにより、チタン箔の製造能率を向上させることができる他、陰極3b上の金属チタンへのデンドライトの形成が抑制されて、チタン箔の平滑性を高めることができる。先述した図3の電解装置11や図4の電解装置21では、陰極13b、23bの電解面が移動する。この場合、陰極13b、23bの電解面となっている所定の表面位置での金属チタンの電析時間が120分以下であればよく、電解面が移動して他の表面位置で金属チタンの電析が開始した後の時間は、当該所定の表面位置での電析時間に含まれない。陰極の電解面への金属チタンの電析時間は、好ましくは80分以下とし、より好ましくは60分以下とする。 In addition to the conditions described above, the time for electrodeposition of metallic titanium on the electrolytic surface of the cathode is set to 120 minutes or less. As a result, the production efficiency of the titanium foil can be improved, and the formation of dendrites in the metal titanium on the cathode 3b can be suppressed, so that the smoothness of the titanium foil can be improved. In the electrolysis device 11 shown in FIG. 3 and the electrolysis device 21 shown in FIG. 4, the electrolytic surfaces of the cathodes 13b and 23b move. In this case, the electrolysis time of the titanium metal at the predetermined surface position serving as the electrolytic surface of the cathodes 13b and 23b may be 120 minutes or less. The time after deposition begins is not included in the deposition time at the given surface location. Electrodeposition time of metallic titanium onto the electrolytic surface of the cathode is preferably 80 minutes or less, more preferably 60 minutes or less.
 以上に述べたように各種条件を調整したことにより、電析工程で陰極3b上に電析した金属チタンは、その陰極3bから容易に剥離することができる。ここでいう剥離とは、リーチング等を利用せず、金属チタンを陰極3bから物理的に引き剥がすことを意味する。 By adjusting various conditions as described above, the metal titanium electrodeposited on the cathode 3b in the electrodeposition step can be easily separated from the cathode 3b. The peeling here means physically peeling off the metal titanium from the cathode 3b without using leaching or the like.
 なお、たとえば、陰極3bの表面の電解面を78cm2以上として、比較的大きな寸法の箔状の金属チタンを析出させた場合であっても、該金属チタンが陰極3bの表面から良好に剥離され得る。さらに、陰極3bの表面の電解面を500cm2以上としても良好な剥離性を確保できる場合がある。 For example, even if the electrolytic surface on the surface of the cathode 3b is set to 78 cm 2 or more and relatively large-sized foil-shaped titanium metal is deposited, the metal titanium can be peeled off from the surface of the cathode 3b satisfactorily. obtain. Furthermore, even if the electrolytic surface of the surface of the cathode 3b is set to 500 cm 2 or more, good peelability may be ensured in some cases.
 陰極3bから剥離して得られるチタン箔の表裏面の面積は、それぞれ78cm2以上、さらには500cm2以上になることがある。チタン箔の平均厚みは、好ましくは10μm~1000μm、より好ましくは50μm~500μmである。チタン箔の平均厚みを算出するには、光学顕微鏡にて箔の一辺に沿って厚み方向の断面を100倍で観察し、10点で厚みを求め、その平均値をチタン箔の平均厚みとする。なお、電析時間を長くするほど陰極3b上の金属チタンは厚くなる傾向にある。 The area of the front and back surfaces of the titanium foil obtained by peeling off the cathode 3b may be 78 cm 2 or more, and further 500 cm 2 or more. The average thickness of the titanium foil is preferably 10 μm to 1000 μm, more preferably 50 μm to 500 μm. To calculate the average thickness of the titanium foil, observe the cross section in the thickness direction along one side of the foil with an optical microscope at a magnification of 100, obtain the thickness at 10 points, and take the average value as the average thickness of the titanium foil. . Incidentally, the titanium metal on the cathode 3b tends to become thicker as the electrodeposition time is lengthened.
 またここでは、チタン箔を、上述したように電気分解により陰極3b上に金属チタンを析出させて製造することから、このチタン箔に含まれ得る酸素及び鉄の含有量は、陽極3a等のチタン原料に含まれ得るものよりも少なくすることができる。たとえば、この実施形態に従って製造したチタン箔では、酸素の含有量は400質量ppm以下まで低減することができる。酸素の含有量は、不活性ガス融解法により測定することができる。 Further, here, since the titanium foil is produced by depositing metallic titanium on the cathode 3b by electrolysis as described above, the contents of oxygen and iron that can be contained in this titanium foil are the same as those of the titanium of the anode 3a and the like. It can be less than what the raw material can contain. For example, in the titanium foil produced according to this embodiment, the oxygen content can be reduced to 400 mass ppm or less. The oxygen content can be measured by an inert gas fusion method.
 次に、この発明のチタン箔の製造方法を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。 Next, the method for producing a titanium foil of the present invention was experimentally carried out, and the effect was confirmed, which will be explained below. However, the description herein is for illustrative purposes only and is not intended to be limiting.
 図2に示す電解装置を用いて陽極及び陰極に電流を流し、溶融塩浴中にて電気分解を行った。電解装置の浴部分の寸法形状は、500mmΦ×800mm深さとした。溶融塩浴は、チタン原料として低級塩化チタン(二塩化チタンおよび三塩化チタン)を使用し、溶融塩浴中の金属イオンのモル濃度の合計に対するチタンイオンのモル濃度の割合を6~10%で表1に示す値にて維持することとし、残部をNaCl、KCl及びMgCl2とした。陽極は、JIS2種チタン板(厚さ6mm)を使用した。陰極は、その最表層を厚さ0.2mmのモリブデン板を内径(直径)96mmの円筒形にしたものとした。実施例5については、陰極の最表面の材質をモリブデンからタンタルに変更した。電解装置の電解槽内にて、円筒状の陽極の内側に陰極を配置した。ここでは、陽極及び陰極の高さ方向を溶融塩浴の深さ方向とほぼ平行とし、陽極の中心軸と陰極の中心軸は同じ位置とした。これにより、陽極および陰極の全周に渡り電極間距離は一定になった。 Using the electrolytic apparatus shown in FIG. 2, an electric current was applied to the anode and the cathode, and electrolysis was performed in a molten salt bath. The dimensions and shape of the bath portion of the electrolytic device were 500 mmΦ×800 mm depth. The molten salt bath uses lower titanium chloride (titanium dichloride and titanium trichloride) as a titanium raw material, and the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is 6 to 10%. The values shown in Table 1 were maintained, and the balance was NaCl, KCl and MgCl2. A JIS class 2 titanium plate (thickness 6 mm) was used as the anode. The cathode had a molybdenum plate with a thickness of 0.2 mm and a cylindrical shape with an inner diameter (diameter) of 96 mm. In Example 5, the material of the outermost surface of the cathode was changed from molybdenum to tantalum. The cathode was placed inside the cylindrical anode in the electrolytic cell of the electrolyzer. Here, the height direction of the anode and the cathode was set substantially parallel to the depth direction of the molten salt bath, and the central axis of the anode and the central axis of the cathode were positioned at the same position. As a result, the inter-electrode distance was constant over the entire circumference of the anode and cathode.
 表1に示すように各条件を変更して、実施例1~6及び比較例1~4について電析工程を行い、陰極の表面上に比較的大きな箔状の金属チタンを析出させた。電析工程の間、実施例1~6並びに比較例1、2及び4では、電極に通電を停止せずに定電流を流した。一方、比較例3ではパルス電流を流し、このパルス電流のON時の電流密度を0.18A/cm2、ONの時間を1.5秒、OFF時の電流密度をゼロ(通電なし)、OFFの時間を1.5秒、平均電流密度を0.09A/cm2とした。なお、比較例3の「電析時間」は電析開始から終了までのトータルであるため、OFFの時間が含まれている。また、電析工程の間、溶融塩浴の温度は表1に示す値を維持した。 The conditions were changed as shown in Table 1, and the electrodeposition process was carried out for Examples 1 to 6 and Comparative Examples 1 to 4 to deposit relatively large foil-shaped metallic titanium on the surface of the cathode. During the electrodeposition process, in Examples 1 to 6 and Comparative Examples 1, 2 and 4, a constant current was passed through the electrode without stopping the current supply. On the other hand, in Comparative Example 3, a pulse current was applied, the current density when the pulse current was ON was 0.18 A/cm 2 , the ON time was 1.5 seconds, and the current density was 0 (no current flow) when the pulse current was OFF. was 1.5 seconds, and the average current density was 0.09 A/cm 2 . The "electrodeposition time" in Comparative Example 3 is the total from the start to the end of the electrodeposition, so it includes the OFF time. Further, the temperature of the molten salt bath was maintained at the values shown in Table 1 during the electrodeposition process.
 電析工程の後、金属チタンが電析した陰極を溶融塩浴から引き揚げた。陰極上に電析した金属チタンは、実施例1では図5に示す外観であり、比較例2では図6に示す外観であった。 After the electrodeposition process, the cathode on which metallic titanium was electrodeposited was pulled up from the molten salt bath. The metallic titanium electrodeposited on the cathode had the appearance shown in FIG. 5 in Example 1 and the appearance shown in FIG. 6 in Comparative Example 2. FIG.
 その後、陰極上の金属チタンを水洗し、その表面に付着していた溶融塩を除去した。そして、後述の剥離強度試験を実施した。そのときの剥離容易性を表1に示す。 After that, the metal titanium on the cathode was washed with water to remove the molten salt adhering to its surface. Then, a peel strength test, which will be described later, was carried out. Table 1 shows the ease of peeling at that time.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 剥離容易性は、剥離強度試験により、「〇」、「△」又は「×」のいずれであるかを判定した。「〇」は剥離強度が0.2N/mm以下であったことを意味し、「△」は剥離強度が0.2N/mm超1.0N/mm以下であったことを意味し、「×」は剥離強度が1.0N/mm超であったことを意味する。〇評価及び△評価は合格であり、〇評価はより優れていることを意味する。×評価は不合格である。 The peelability was determined by a peel strength test to determine whether it was "○", "△" or "×". "○" means that the peel strength was 0.2 N / mm or less, "△" means that the peel strength was more than 0.2 N / mm and 1.0 N / mm or less, "× ” means that the peel strength was greater than 1.0 N/mm. The ◯ and △ evaluations are acceptable, and the ◯ evaluation means better. x evaluation is unacceptable.
 剥離強度試験は、図7に示すようにして行った。はじめに、陰極及び陰極に電着した金属チタンから70mm×10mmの試料103を、カッター等により切断して採取する。次に、90°剥離試験機のステージ111上に試料103を載置し、試料103の一端部にて陰極102から金属チタン101を10mm剥がし、その剥がした部分の金属チタン101をチャックで挟む。次に、ステージ111上の試料103の一端部の陰極102及び、その一端部とは反対側に位置する試料103の他端部をそれぞれ固定治具112で固定する。そして、図7に矢印で示すように、チャックを鉛直方向の上方側に20mm/secで上昇させ、ステージ111を水平方向に20mm/secで移動させる。このときに測定される荷重から、式:剥離強度=平均荷重(N)/金属チタン箔の幅(mm)を用いて剥離強度を求める。ここで、平均荷重とは、ステージ111を水平方向に5mmから25mmまで20mm変位する間の、チャックに鉛直方向に作用する荷重の平均値を意味する。また、金属チタンの幅とは、ステージ111上でステージ111の移動方向と直交する方向(図7の紙面奥行方向)に沿う金属チタン101の幅を意味する。なお、金属チタン101を剥離する方向と陰極102の表面とのなす角度は、陰極の表面から測って90°とした。剥離試験機としては、株式会社イマダ製デジタルフォースゲージZTS-200N(測定可能荷重:200N)および90度剥離試験用スライドテーブルP90-200Nを用いた。 The peel strength test was performed as shown in Fig. 7. First, a sample 103 of 70 mm×10 mm is cut from the cathode and metallic titanium electrodeposited on the cathode with a cutter or the like. Next, the sample 103 is placed on the stage 111 of a 90° peeling tester, 10 mm of the titanium metal 101 is peeled off from the cathode 102 at one end of the sample 103, and the peeled portion of the titanium metal 101 is clamped with a chuck. Next, the cathode 102 at one end of the sample 103 on the stage 111 and the other end of the sample 103 located on the side opposite to the one end are fixed with a fixing jig 112 . Then, as indicated by the arrow in FIG. 7, the chuck is lifted vertically upward at 20 mm/sec, and the stage 111 is moved horizontally at 20 mm/sec. From the load measured at this time, the peel strength is determined using the formula: peel strength=average load (N)/width of metal titanium foil (mm). Here, the average load means the average value of the load acting on the chuck in the vertical direction while the stage 111 is horizontally displaced by 20 mm from 5 mm to 25 mm. The width of the titanium metal means the width of the titanium metal 101 on the stage 111 along the direction perpendicular to the moving direction of the stage 111 (the depth direction of the paper surface of FIG. 7). The angle formed by the direction in which the metal titanium 101 was peeled off and the surface of the cathode 102 was 90° measured from the surface of the cathode. As the peel tester, a digital force gauge ZTS-200N (measurable load: 200 N) manufactured by Imada Co., Ltd. and a slide table P90-200N for 90 degree peel test were used.
 また表1中、デンドライト個数密度は、単位面積当たりのデンドライトの個数を測定したものである。具体的には、走査型電子顕微鏡(SEM)を使用し、拡大倍率50倍の5視野のそれぞれについて陰極上の金属チタンの表面に存在するデンドライトの個数を計測し、それらの5視野におけるデンドライト個数の平均値を1cm2あたりの個数に換算して求めた(小数点第1位は四捨五入とした)。「〇」は、デンドライト個数密度が1個/cm2未満であり、「△」は、デンドライト個数密度が1個/cm2以上2個/cm2未満であり、「×」は、デンドライト個数密度が2個/cm2以上であったことを意味する。〇評価及び△評価は合格であり、〇評価はより優れていることを意味する。×評価は不合格である。 Moreover, in Table 1, the dendrite number density is obtained by measuring the number of dendrites per unit area. Specifically, using a scanning electron microscope (SEM), the number of dendrites present on the surface of the titanium metal on the cathode was measured for each of five fields of view with a magnification of 50 times, and the number of dendrites in each of these five fields of view. was converted into the number per 1 cm 2 (rounded off to the first decimal place). “◯” indicates a dendrite number density of less than 1/cm 2 , “Δ” indicates a dendrite number density of 1/cm 2 or more and less than 2/cm 2 , and “×” indicates a dendrite number density. is 2 pieces/cm 2 or more. The ◯ and △ evaluations are acceptable, and the ◯ evaluation means better. x evaluation is unacceptable.
 また表1中、金属チタンの電析量評価は、陰極上に電析した金属チタンの厚みを電析時間60分当たりに換算した結果から評価した。「〇」は、電析時間60分当たりの金属チタンの厚みが80μm以上であったことを意味し、「△」は、電析時間60分当たりの金属チタンの厚みが60μm以上80μm未満であったことを意味し、「×」は、電析時間60分当たりの金属チタンの厚みが60μm未満であったことを意味する。〇評価及び△評価は合格であり、〇評価はより優れていることを意味する。×評価は不合格である。 Also, in Table 1, the amount of metallic titanium deposited was evaluated from the result of converting the thickness of the metallic titanium electrodeposited on the cathode per 60 minutes of the electrodeposition time. “◯” means that the thickness of the metallic titanium per 60 minutes of electrodeposition time was 80 μm or more, and “Δ” means that the thickness of the metallic titanium per 60 minutes of electrodeposition time was 60 μm or more and less than 80 μm. "x" means that the thickness of metallic titanium per 60 minutes of electrodeposition time was less than 60 µm. The ◯ and △ evaluations are acceptable, and the ◯ evaluation means better. x evaluation is unacceptable.
 表1より、実施例1~6では、陰極からの金属チタンの剥離が容易であり、また単位電析時間当たり金属チタンが十分厚く電析したことが解かる。一方、比較例1~4には、陰極からの金属チタンの剥離が容易ではなかったものや、単位電析時間当たりに電析した金属チタンの厚みが薄かったものがあった。また、実施例1~6は概して、陰極上へのデンドライトの形成が抑制されていたといえる。 From Table 1, it can be seen that in Examples 1 to 6, the metallic titanium was easily separated from the cathode, and the metallic titanium was deposited sufficiently thickly per unit of electrodeposition time. On the other hand, in Comparative Examples 1 to 4, there were cases in which the separation of the metallic titanium from the cathode was not easy, and cases in which the thickness of the metallic titanium deposited per unit electrodeposition time was thin. In addition, it can be said that Examples 1 to 6 generally suppressed the formation of dendrites on the cathode.
 よって、この発明によれば、陰極上に電析した金属チタンの剥離容易性を大きく低下させることなしに、単位時間当たりの金属チタンの電析量を増加できることが解かった。 Therefore, according to the present invention, it was found that the amount of titanium metal electrodeposited per unit time can be increased without greatly reducing the ease of stripping of the titanium metal electrodeposited on the cathode.
 1、11、21、31 電解装置
 2、12、22、32 電解槽
 3、13、23、33 電極
 3a、13a、23a、33a 陽極
 3b、13b、23b、33b 陰極
 4、34 電源
 15、25 巻取りロール
 26a、26b 回転ロール
 101 金属チタン
 102 陰極
 103 試料
 111 ステージ
 112 固定治具
 Bf 溶融塩浴
 Ts 金属チタン
1, 11, 21, 31 electrolyzer 2, 12, 22, 32 electrolytic cell 3, 13, 23, 33 electrode 3a, 13a, 23a, 33a anode 3b, 13b, 23b, 33b cathode 4, 34 power source 15, 25 winding Take-up rolls 26a, 26b Rotation roll 101 Metal titanium 102 Cathode 103 Sample 111 Stage 112 Fixing jig Bf Molten salt bath Ts Metal titanium

Claims (9)

  1.  チタン箔を製造する方法であって、
     チタンイオンを含み塩化物が溶融してなる溶融塩浴を用いて、陽極及び陰極を含む電極で電気分解を行い、陰極の電解面に金属チタンを析出させる電析工程を含み、
     電析工程で、溶融塩浴中の金属イオンのモル濃度の合計に対するチタンイオンのモル濃度の割合を7%以上に維持し、溶融塩浴の温度を510℃以下に維持し、電極への通電に際し、通電の連続停止時間を1.0秒未満、電流密度を0.10A/cm2以上かつ1.0A/cm2以下とし、陰極の前記電解面への金属チタンの電析時間を120分以下とする、チタン箔の製造方法。
    A method of manufacturing a titanium foil, comprising:
    Electrolysis is performed with electrodes including an anode and a cathode using a molten salt bath in which chloride containing titanium ions is melted, and an electrodeposition step of depositing metallic titanium on the electrolytic surface of the cathode,
    In the electrodeposition step, the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is maintained at 7% or more, the temperature of the molten salt bath is maintained at 510° C. or less, and the electrodes are energized. In this case, the continuous stop time of energization is set to less than 1.0 second, the current density is set to 0.10 A/cm 2 or more and 1.0 A/cm 2 or less, and the time to deposit metallic titanium on the electrolytic surface of the cathode is 120 minutes. A method for manufacturing a titanium foil as follows.
  2.  陽極がTiを含み、
     電析工程で前記陽極が消耗する、請求項1に記載のチタン箔の製造方法。
    the anode contains Ti,
    2. The method for producing a titanium foil according to claim 1, wherein said anode is consumed in the electrodeposition step.
  3.  前記塩化物が、二塩化チタン及び/又は三塩化チタンを含む、請求項1又は2に記載のチタン箔の製造方法。 The method for producing a titanium foil according to claim 1 or 2, wherein the chloride contains titanium dichloride and/or titanium trichloride.
  4.  電析工程で、溶融塩浴中の金属イオンのモル濃度の合計に対するチタンイオンのモル濃度の割合を、10%以上に維持する、請求項1~3のいずれか一項に記載のチタン箔の製造方法。 The titanium foil according to any one of claims 1 to 3, wherein in the electrodeposition step, the ratio of the molar concentration of titanium ions to the total molar concentration of metal ions in the molten salt bath is maintained at 10% or more. Production method.
  5.  電析工程で、溶融塩浴の温度を500℃以下に維持する、請求項1~4のいずれか一項に記載のチタン箔の製造方法。 The method for producing a titanium foil according to any one of claims 1 to 4, wherein the temperature of the molten salt bath is maintained at 500°C or less in the electrodeposition step.
  6.  電析工程で、電流密度を0.20A/cm2以上かつ0.50A/cm2以下とする、請求項1~5のいずれか一項に記載のチタン箔の製造方法。 The method for producing a titanium foil according to any one of claims 1 to 5, wherein in the electrodeposition step, the current density is 0.20 A/cm 2 or more and 0.50 A/cm 2 or less.
  7.  前記溶融塩浴が、フッ化物イオンを含まない、請求項1~6のいずれか一項に記載のチタン箔の製造方法。 The method for producing a titanium foil according to any one of claims 1 to 6, wherein the molten salt bath does not contain fluoride ions.
  8.  前記陽極の表面および陰極の対向する表面が、互いに相似な形状を有する、請求項1~7のいずれか一項に記載のチタン箔の製造方法。 The method for producing a titanium foil according to any one of claims 1 to 7, wherein the surface of the anode and the facing surface of the cathode have shapes similar to each other.
  9.  前記陽極と前記陰極との間の電極間距離を、0.5cm以上かつ10.0cm以下とする、請求項1~8のいずれか一項に記載のチタン箔の製造方法。 The method for producing a titanium foil according to any one of claims 1 to 8, wherein the inter-electrode distance between the anode and the cathode is 0.5 cm or more and 10.0 cm or less.
PCT/JP2022/007403 2021-02-25 2022-02-22 Production method for titanium foil WO2022181646A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022525890A JP7100781B1 (en) 2021-02-25 2022-02-22 Titanium foil manufacturing method
CA3208504A CA3208504A1 (en) 2021-02-25 2022-02-22 Production method for titanium foil
CN202280011506.5A CN116745465A (en) 2021-02-25 2022-02-22 Method for producing titanium foil
US18/275,509 US20240084469A1 (en) 2021-02-25 2022-02-22 Production Method for Titanium Foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021029246 2021-02-25
JP2021-029246 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181646A1 true WO2022181646A1 (en) 2022-09-01

Family

ID=83048224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007403 WO2022181646A1 (en) 2021-02-25 2022-02-22 Production method for titanium foil

Country Status (1)

Country Link
WO (1) WO2022181646A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033621A (en) * 2018-08-31 2020-03-05 国立大学法人京都大学 Production method of titanium metal
JP2020109209A (en) * 2020-03-23 2020-07-16 日本製鉄株式会社 Titanium foil production method by molten salt electrolysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033621A (en) * 2018-08-31 2020-03-05 国立大学法人京都大学 Production method of titanium metal
JP2020109209A (en) * 2020-03-23 2020-07-16 日本製鉄株式会社 Titanium foil production method by molten salt electrolysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAISUKE SUZUKI; YUTA NAKAJO; YASUTAKA MOCHIKI; HITOSHI YAMAMOTO; MATSUHIDE HORIKAWA; HIDEKI FUJII: "J3: Factors affecting separativeness of deposited titanium foils from cathodes (Manufacturing of high quality titanium thin foil by electrodeposition route)", COLLECTED ABSTRACTS OF 2019 SPRING MEETING OF THE JAPAN INSTITUTE OF METALS AND MATERIALS; MARCH 20-22, 2019, JAPAN INSTITUTE OF METALS AND MATERIALS, JP, 6 March 2019 (2019-03-06) - 22 March 2019 (2019-03-22), JP, XP009539423 *

Similar Documents

Publication Publication Date Title
US6712952B1 (en) Removal of substances from metal and semi-metal compounds
US8460535B2 (en) Primary production of elements
US7504017B2 (en) Method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state
JP2863058B2 (en) Heat-resistant metal alloy that can be processed into a homogeneous and pure ingot and a method for producing the alloy
US2828251A (en) Electrolytic cladding process
WO2013022020A1 (en) Method for recovering element and apparatus for recovering element
WO2022181646A1 (en) Production method for titanium foil
JP7100781B1 (en) Titanium foil manufacturing method
US11649554B2 (en) Method for producing metal titanium
JP7097572B2 (en) Manufacturing method of metallic titanium
US20230392273A1 (en) Method for manufacturing recycled aluminum, manufacturing equipment, manufacturing system, recycled aluminum, and processed aluminum product
Kishimoto et al. Electrorefining of titanium from Bi–Ti alloys in molten chlorides for a new smelting process of titanium
US2939823A (en) Electrorefining metallic titanium
JP7301673B2 (en) Method for producing metallic titanium
JP7388948B2 (en) Method for monitoring peelability and manufacturing method for metallic titanium foil
CA2363648A1 (en) A method for the continuous electrowinning of pure titanium metal from molten titanium slag, ilmenite and other semiconductive titanium oxide compounds
JP2024033569A (en) Method for manufacturing titanium foil
EP4332273A1 (en) Metal titanium production method and metal titanium electrodeposit
CN116856010A (en) Electrochemical recovery method for waste beryllium
JP5816538B2 (en) Method for electrolytic purification of anode and gold
WO2012143719A2 (en) Methods and apparatus for the production of metal

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022525890

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011506.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18275509

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3208504

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759681

Country of ref document: EP

Kind code of ref document: A1