WO2022181421A1 - Composition for antiviral coating, antiviral coating method, and antiviral material - Google Patents

Composition for antiviral coating, antiviral coating method, and antiviral material Download PDF

Info

Publication number
WO2022181421A1
WO2022181421A1 PCT/JP2022/006192 JP2022006192W WO2022181421A1 WO 2022181421 A1 WO2022181421 A1 WO 2022181421A1 JP 2022006192 W JP2022006192 W JP 2022006192W WO 2022181421 A1 WO2022181421 A1 WO 2022181421A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiviral
coating
less
platinum
film
Prior art date
Application number
PCT/JP2022/006192
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 木下
耕三郎 田中
Original Assignee
株式会社木下抗菌サービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社木下抗菌サービス filed Critical 株式会社木下抗菌サービス
Publication of WO2022181421A1 publication Critical patent/WO2022181421A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention relates to an antiviral coating composition, an antiviral coating method, and an antiviral substance used indoors.
  • antibacterial used in this specification shall mean “antibacterial” in a broad sense including “antiviral” unless otherwise specified.
  • Cited Document 1 describes a technology of an antibacterial resin that sterilizes the surface by gradually eluting an antibacterial agent.
  • an antibacterial resin is installed, for example, on handrails of escalators in public facilities, and is expected to have an antibacterial effect on places that are touched by an unspecified number of people.
  • it is difficult to develop harmless antibacterial ingredients that are effective against pathogens of various infectious diseases and that do not cause allergies to humans, and processing technology for resins must also be developed for individual antibacterial ingredients.
  • a resin molding must be designed and manufactured for each antibacterial object, and the use of antibacterial resin is limited. Therefore, if the surface of various articles can be subjected to an antibacterial treatment afterward, its application will be wide-ranging, and techniques for imparting such a general-purpose antibacterial effect are being investigated.
  • Photocatalyst-based antibacterial agents are attracting attention as reusable antibacterial agents that can be given an antibacterial effect by post-treatment.
  • pollutants such as waste gas adhered to the exterior of the building exterior by white paint containing titanium oxide are oxidized with active oxygen generated by the ultraviolet light of sunlight and solubilized in water.
  • a technique is described in which the technique of maintaining a clean surface due to the photocatalytic effect is used to remove indoor pollutant gases.
  • no indoor antiviral photocatalyst paint has been developed that has been confirmed to have sufficient antiviral properties against infectious bacteria and that is capable of antiviral treatment of articles made of various substrates.
  • the surface of articles made of various base materials that people touch For example, it can be applied to the metal of a doorknob, the glass of a touch panel, etc.
  • it must be a coating film that does not impair the visibility of an antiviral target operated by a person, for example, an operation touch panel.
  • its antiviral effect must be broadly effective against pathogens of various infectious diseases.
  • Japanese Patent No. 6638742 Japanese Patent No. 5995830 Japanese Patent No. 2938376 Japanese Patent No. 4150712 Japanese Patent No. 5377003
  • the present invention can be applied simply by coating antivirus objects of various materials such as keyboards and touch panels such as ticket issuing machines for public facilities and public transportation, automatic teller machines for financial institutions, and payment terminals for commercial facilities.
  • An object of the present invention is to provide an antiviral coating composition, an antiviral coating method, and an antiviral substance for indoor use, in which a sustained antiviral effect can be obtained by the photocatalytic effect of indoor light such as a white fluorescent lamp or a white LED.
  • Antiviral activity value JIS R1756: 2020 compliant exceeds 2.0 in indoor light, has antiviral effect even in dark places, antiviral effect can be expressed for a long time immediately after application, antiviral target by coating
  • An object of the present invention is to provide an antiviral coating composition, an antiviral coating method, and an antiviral substance that provide a transparent antiviral coating film that does not impair the visibility of objects.
  • the present invention provides an antiviral coating composition for indoor use, Dispersed in a dispersant containing water as a main component, titanium: 0.3 to 0.6% by mass, platinum: 1 ⁇ 10 -5 to 100 mass% of the aqueous dispersion of the antiviral coating composition 1 ⁇ 10 ⁇ 4 %, and silver: 3 ⁇ 10 ⁇ 4 to 6 ⁇ 10 ⁇ 4 %.
  • Titanium in the antiviral coating composition of the present invention is composed of anatase-type titanium oxide and peroxotitanic acid as a binder, and platinum is composed of an aqueous dispersion of platinum-supported titanium oxide irradiated with ultrasonic waves. is 10-100 nm.
  • the dispersant can be one or more selected from the group consisting of ethanol, isopropanol, and castor oil. Additionally, additives including fragrances and surfactants may be included.
  • the antiviral coating method of the antiviral coating composition used indoors of the present invention includes a stirring treatment step of preparing and stirring the antiviral coating composition, and treating the treated object after the stirring treatment step as an antiviral target. and a step of applying.
  • the antiviral coating method of the present invention comprises a stirring treatment step of preparing and stirring an antiviral coating composition, a step of forming an undercoating film on an antiviral target, and a treated object after the stirring treatment step. on the undercoating film.
  • the undercoating film used for antiviral coating is made of a silica-based composition, and the silica-based composition can contain silica particles having a volume-based average radius of 100 nm or less.
  • the step of applying the treated material after the stirring treatment step includes spray coating, roll coating and brush coating, and is an antiviral coating method characterized in that the antiviral object is coated twice or less.
  • the coating of the present invention has an antiviral activity value of more than 2, a photocatalytic effect of 0.6 or more, a water contact angle range of 7° to 22°, and a wavelength of
  • the normalized absorbance at wavelengths 400, 450, and 500 nm normalized by the absorbance at 300 nm is 0.3 or less, 0.15 or less, and 0.1 or less, respectively, and the haze value is 6% or less. It is an antiviral coating method that coats as is.
  • the antiviral product of the present invention comprises a base material and an antiviral coating film, and is composed of 50.0 to 65.0% by mass of titanium and 0.005 to 0.005% by mass of platinum relative to 100 mass of the antiviral coating film. 015%, and silver: 0.05-0.08%.
  • the antiviral substance has an antiviral activity value of more than 2.0 under irradiation with a white fluorescent lamp of 500 l for 2 hours, a photocatalytic effect of 0.6 or more, and a water contact angle range of 7° to 22°.
  • the normalized absorbance at wavelengths 400, 450, and 500 nm divided by the absorbance at wavelength 300 nm is 0.3 or less, 0.15 or less, and 0.1 or less, respectively, and the haze value is 6% or less. on the substrate.
  • the antiviral coating film formed on the base material of the antiviral target has an antiviral activity value of more than 2.0 under irradiation with 500 lx 2 hours of white fluorescent light that cuts wavelengths of 380 nm or less, and photocatalyst
  • an antiviral coating composition and an antiviral coating method for indoor use which yields an antiviral substance having a high antiviral effect of 0.6 or more.
  • the normalized absorbance at wavelengths of 400, 450, and 500 nm which is normalized by dividing the absorbance at a wavelength of 300 nm, is 0.
  • an antiviral substance with an antiviral activity value of more than 2.0 which has been subjected to antiviral treatment, simply by coating the surface of an article or the like that requires antiviral treatment.
  • the antiviral effect can be expressed for a long period of time, for example, one year, immediately after the formation of the antiviral coating film without causing skin damage or the like due to elution of the antiviral component.
  • the antiviral coating method of the antiviral coating composition of the present invention is most suitable for imparting antiviral properties to antiviral objects inside public facilities and public transportation facilities.
  • the antiviral coating composition of the present invention comprises a semiconductor compound such as a metal oxide that exhibits photocatalytic activity and a visible-light-responsive photocatalyst composed of a metal component dispersed in a dispersant containing water as a main component. contains water plus any one or more of the group consisting of ethanol, isopropanol, castor oil, and may contain additives including fragrances, surfactants, and the like.
  • the visible-light-responsive photocatalyst of the present invention is a substance that exhibits photocatalytic action by absorbing indoor light such as white fluorescent lamps and white LEDs. Bacteria and viruses adsorbed on the surface are decomposed by active oxygen generated by electrons and holes excited in the photocatalyst by absorption of room light.
  • Photocatalysts are semiconductor compounds such as metal oxides that exhibit photocatalytic activity, such as titanium oxide, titanium peroxide, vanadium oxide, iron oxide, copper oxide, zinc oxide, tungsten oxide, niobium oxide, tin oxide, gallium oxide, One or more selected from the group consisting of alkali (earth) metal titanates and the like may be mentioned, but there is no particular limitation.
  • Metal oxides generally have a catalytic effect when irradiated with ultraviolet light, but in order to obtain a photocatalytic effect indoors, it is necessary to add impurities or pigments to the metal oxides or to make them fine particles in order to respond to white light.
  • the visible light responsive photocatalyst has optical properties in which the absorption in the visible region from 400 nm to 780 nm is not large, for example, the normalized absorbance at wavelengths of 400, 450, and 500 nm divided by the absorbance at 300 nm is It may be doped with various elements as long as they are 0.3 or less, 0.15 or less, and 0.1 or less, respectively.
  • Anatase titanium oxide is preferably used in the present invention.
  • the metal component has an antibacterial effect when in contact with bacteria, and includes, but is not limited to, one or more selected from the group consisting of simple metals, metal ions, metal salts, metal oxides, metal colloids, and the like. .
  • a simple metal or a metal ion is preferable.
  • the metal of the metal component is a noble metal or transition metal, and is selected from the group consisting of platinum, gold, silver, copper, zinc, iron, nickel, chromium, cobalt, manganese, rhodium, palladium, ruthenium, iridium, etc.
  • One or more types can be used, but there is no particular limitation.
  • one or more selected from the group consisting of platinum, gold, silver and copper are used.
  • One or more selected from platinum and silver is particularly preferably used.
  • the metal component has the effect of sensitizing the photocatalytic effect of titanium oxide to the visible region.
  • a photocatalytic effect is exhibited under room light.
  • silver ions antibacterial and antiviral effects can be exhibited even under weak light or in a dark place.
  • metal components and metal ions are reduced to fine metal particles by the photocatalytic effect of titanium dioxide.
  • platinum fine particles and the like electron-holes generated by photoexcitation are dissociated and their recombination is suppressed, thereby enhancing the photocatalytic effect.
  • a dispersing agent for dispersing the visible light responsive photocatalyst a dispersing agent containing water as a main component is used, but it is not particularly limited as long as it does not impair the photocatalytic effect.
  • One or more selected from the group consisting of carbon and the like can be used.
  • the organic solvent is not particularly limited, but general alcohol solvents such as ethanol, propanol, butanol, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, ester solvents such as ethyl acetate, acetic acid, etc.
  • Butyl, ⁇ -butyrolactone, ether solvents such as diethyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, halogenated hydrocarbon solvents such as methylene chloride, and aromatic hydrocarbon solvents
  • ether solvents such as diethyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, halogenated hydrocarbon solvents such as methylene chloride, and aromatic hydrocarbon solvents
  • amide solvents such as methylpyrrolidone and dimethylacetamide
  • aliphatic hydrocarbon solvents such as mineral spirits
  • binder In the present invention, peroxotitanic acid is used as the binder and dispersion medium, but generally used binders (binders) may be added as long as the photocatalytic effect is not impaired. Furthermore, an adsorbent may be added. [Additive] Additives such as surfactants and dispersants generally used for the purpose of dispersing titanium oxide and fine metal particles may be added as long as they do not impair the photocatalytic effect. In addition, depending on the required purpose, etc., various components generally used for forming an antiviral coating film may be added and used.
  • Examples thereof include, but are not limited to, fragrances, coloring agents, fillers, viscosity modifiers, bactericides, preservatives, surface modifiers, ultraviolet absorbers, light stabilizers, antifoaming agents and the like.
  • the content of each component can be arbitrarily adjusted according to the purpose of addition within a range that does not impair the photocatalytic effect.
  • a known dispersant or polymer dispersant that stabilizes the dispersion of titanium oxide fine particles can be used within a range that does not impair the photocatalytic effect.
  • Antiviral coating method As an antiviral coating method for forming an antiviral coating film on an antiviral substrate or the like, a general coating method can be used. Examples of the coating method include one or more selected from the group consisting of air spray, airless spray, hand gun, electrostatic, rotary atomization, immersion, roll coater, curtain flow coater, roller curtain coater, die coater, inkjet, and the like. be done. Preference is given to spray coating, roll coating and brush coating methods. When forming the antiviral coating film, it may be formed by one coating, or may be formed by two or more coatings.
  • a drying step may be provided in the middle, or a wet-on-wet method may be performed without providing a drying step in the middle, or these may be combined. good. It may also be spread using a suitable cloth.
  • a transparent antivirus with a small haze value is obtained.
  • a virus coating membrane can be formed.
  • the state of dispersion of the antiviral coating composition in water is important.
  • the dispersion state of the aqueous dispersion of platinum-supported titanium oxide, which is the platinum component is particularly important.
  • the aqueous dispersion of platinum-supported titanium oxide is subjected to ultrasonic treatment in advance by irradiating ultrasonic waves, and then mixed with a dispersion containing other components such as titanium oxide and silver ions to form an antiviral coating composition. manufacture.
  • the frequency, output, and irradiation time of the ultrasonic treatment of the aqueous dispersion of platinum-supported titanium oxide are not particularly limited, but ultrasonic irradiation is performed at 20 kHz, 540 W for 300 seconds per liter, and the condition is 50% (1 second irradiation for about 1 second repeat every ).
  • ultrasonic irradiation is performed at 20 kHz, 540 W for 300 seconds per liter, and the condition is 50% (1 second irradiation for about 1 second repeat every ).
  • the undercoating film used for antiviral coating is made of a silica-based composition, and the silica-based composition can contain silica particles having a volume-based average radius of 100 nm or less.
  • the antiviral object of the present invention may be any object as long as it can be coated with an antiviral coating composition to impart antiviral properties.
  • the antiviral target is not particularly limited, but facilities that are used by an unspecified number of people, such as public facilities, financial institutions, commercial facilities, educational facilities, medical facilities, nursing facilities, eating and drinking facilities, factories, public transportation For example, there are ticket issuing machines for public transportation, automatic teller machines for financial institutions, and payment terminals for commercial facilities.
  • Examples of articles that people directly touch include doors, door knobs, handrails, handles, walls, glass, building materials, tables, chairs, home appliances, writing instruments, stationery, office supplies, medical equipment, push buttons, personal computers, keyboards, Examples include mice, touch panels, mobile communication devices, electronic medical records, display devices, desks, drawers, files, name tags/display boards, operation buttons, switches, and the like.
  • touch panels and buttons for operating automatic teller machines touch panels for operating payment terminals, buttons, and touch panels for operating ticket issuing machines, which are touched by an unspecified number of people and require visibility as anti-virus targets. , buttons, etc. are suitable.
  • the antiviral article of the present invention is an antiviral object coated with an antiviral coating composition to impart antiviral properties, and comprises a substrate and an antiviral coating film formed on the substrate.
  • the base material of the antiviral material any material can be used as long as it imparts antibacterial performance and can be coated with an antiviral agent.
  • the base material is not particularly limited, but examples thereof include metals such as iron and aluminum, glass plastics, and the like, and composite materials thereof may also be used.
  • an operation touch panel which is touched by an unspecified number of people and requires visibility, is suitable as an antiviral substance.
  • the antiviral coating film is a coating film obtained by forming an antiviral coating composition on an antiviral substrate by an antiviral coating method.
  • the antiviral coating film of the present invention has an antiviral activity value of more than 2.0 under irradiation with 500 l x 2 hours of a white fluorescent lamp that cuts wavelengths of 380 nm or less, and furthermore, has a photocatalytic effect of 0.6 or more. It has a satisfying antiviral property.
  • the antiviral film of the present invention has absorption in the emission wavelengths of white fluorescent lamps and white LEDs, which are typical indoor light sources, and is capable of performing antiviral treatment on various antiviral targets. It is desirable to have as little color as possible. Therefore, in the present invention, as a requirement for an antiviral film, attention was paid to the absorbance in the visible light region with a wavelength of 400 nm to 780 nm, particularly at a wavelength of 400 nm to 500 nm, which is near the absorption edge of a photocatalyst.
  • the absorbance also depends on the film thickness, but as a typical antiviral construction, for example, the absorbance of an antiviral film formed with 1 liter of antiviral composition per 90 square meters was used as a guideline.
  • the normalized absorbances at wavelengths of 400, 450, and 500 nm divided by the absorbance at a wavelength of 300 nm are 0.3 or less, 0.15 or less, and 0.1 or less, respectively, and the haze value is preferably 6% or less.
  • This is a light-yellow colored transparent film, and is suitable because it does not impair the visibility of antiviral objects such as touch panels even when coated on the substrates of various indoor antiviral objects.
  • the film thickness of the antiviral coating film formed by the antiviral coating composition can be appropriately adjusted according to the application.
  • the dry film thickness can be 0.1 to 20 ⁇ m, and can be in the range of 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the absorbance increases and the degree of haze also increases, resulting in poor visibility. It can be adjusted as appropriate depending on the base material of the antiviral target, the required degree of visibility, and the like.
  • the antiviral activity value of the antiviral coating film formed on the base material of the antiviral substance is 2.00 under irradiation with 500 l ⁇ 2 hours of white fluorescent light that cuts ultraviolet light of 380 nm or less. A value greater than zero.
  • This antiviral activity value is an index value in accordance with JIS R1756:2020 Visible Light Responsive Virus Test Method.
  • the antiviral activity value based on JIS is obtained as the difference between the average logarithmic values of the viable counts of both antiviral-coated substrates and non-coated substrates after inoculating a predetermined bacterium and culturing for 24 hours. value, and when the antiviral activity value is 2.0 or more, it is certified as having an antiviral effect.
  • the volume-average dispersion particle size (D50) of the anatase-type titanium oxide in the antiviral coating composition can be 10 to 100 nm or less according to a known production method. Fine particles of 10 nm are preferred. Also, the volume average dispersed particle diameter (D50) of the fine metal particles of platinum and silver can be 10 to 100 nm or less. By using fine particles, light scattering is small, and antiviral properties can be imparted to antiviral objects made of various base materials without impairing visibility.
  • the haze value (cloudiness) of the antiviral coating film in the antiviral product can be 20% or less, preferably 10% or less, more preferably 6% or less.
  • the haze value of the antiviral film is an index value based on the test method in JIS K 7136:2000 "Plastics - Determination of haze of transparent materials".
  • the haze value is an index showing the transparency/cloudiness of the antiviral coating film, and it can be said that the lower the haze value, the higher the transparency. Generally, it can be measured with a turbidity meter.
  • the additive to be added appropriately has high transparency.
  • the antiviral coating film formed on the antiviral product of the present invention satisfies the following requirements.
  • Normalized absorbance at wavelengths of 400, 450, and 500 nm divided by absorbance at wavelength of 300 nm is 0.3 or less, 0.15 or less, and 0.1 or less, respectively;
  • a haze value of 6.0% or less is 0.3 or less, 0.15 or less, and 0.1 or less, respectively.
  • the antiviral activity value exceeds 2.0 in 2 hours of irradiation with 500 lx white fluorescent light (cutting wavelengths of 380 nm or less), (4) A photocatalytic effect of 0.6 or more. Due to these, by simply coating the antiviral coating composition of the present invention on antiviral objects of various base materials in public facilities and public transportation, Sustained antiviral effect is obtained by photocatalytic effect.
  • the present invention will be described in more detail below with reference to examples, but the present invention is not limited to the examples.
  • the properties of the antiviral coating composition and the properties of the antiviral film were measured and evaluated by the following methods.
  • An antiviral coating film was created on a synthetic quartz substrate of 25 mm ⁇ 25 mm ⁇ 1 mm, and its ultraviolet-visible absorption spectrum was measured using a self-recording ultraviolet-visible spectrophotometer (V-630, manufactured by JASCO Corporation). The substrate was measured as a reference. Also, an antiviral coating film was formed on a glass substrate of 50 mm ⁇ 50 mm ⁇ 1 mm, and the haze value of the antiviral coating film was measured using a turbidity meter (NDH2000 manufactured by Nippon Denshoku Industries).
  • the aqueous peroxotitanic acid solution used as a binder in the present invention may be produced by any method or commercially available aqueous peroxotitanic acid solution as long as it does not interfere with the practice of the present invention. .
  • aqueous peroxotitanic acid solution used as a binder in the present invention.
  • Patent Document 3 to an aqueous solution containing a titanium raw material, hydrogen peroxide solution in excess of the reaction equivalent is added, then aqueous ammonia is added for neutralization, and the resulting yellow solution is placed.
  • Peroxotitanate is precipitated, the precipitate is collected by filtration, washed, suspended in water, and hydrogen peroxide solution is added to obtain a yellow and transparent peroxotitanic acid aqueous solution.
  • Known noble metals such as platinum-supported titanium dioxide (Patent Document 4) and silver ions (Patent Document 5) can be used as long as they meet the purpose of the present invention.
  • platinum-supported titanium dioxide Patent Document 4
  • silver ions Patent Document 5
  • Each component of the composition used in the present invention is described below. All aqueous solutions herein express mass volume percent concentrations.
  • the powder obtained by pulverizing the obtained solid was heated to 300° C. at 1° C./min and fired while maintaining at 300° C. for 10 hours.
  • 30 g of the resulting platinum oxide-supported titanium dioxide powder was dispersed in 69.9 g of distilled water, 0.1 g of ammonium polyacrylate was added, and after stirring for 30 minutes, ultrasonic treatment was performed to disperse platinum-supported titanium oxide.
  • a liquid (C liquid) was produced.
  • ⁇ Antiviral coating composition 1 25 ml of anatase-type titanium oxide dispersion (solution B) as photocatalyst titanium dioxide, 25 ml of peroxotitanic acid aqueous solution (solution A) as binder, 8.0 mg of platinum-supported titanium oxide dispersion (solution C), 1 ml of silver ion solution (solution D) were mixed, and distilled water was added to bring the total to 100 g to prepare an antiviral coating composition 1.
  • antiviral coating composition 1 The metal component of antiviral coating composition 1 was confirmed by atomic absorption.
  • the composition was 0.3% titanium, 0.00008% platinum, and 0.00028% silver based on 100% by weight of antiviral coating composition 1.
  • Antiviral coating composition 2 54 ml of anatase-type titanium oxide dispersion (solution B) as photocatalyst titanium dioxide, 27 ml of peroxotitanic acid aqueous solution (solution A) as binder, 5 mg of platinum-supported titanium oxide dispersion (solution C), 2.1 ml of silver ion solution (solution D) were mixed, and distilled water was added to bring the total to 100 g to prepare antiviral coating composition 2.
  • the platinum-supporting titanium oxide dispersion (solution C) was added after being subjected to ultrasonic treatment in advance.
  • the metal component of antiviral coating composition 2 was confirmed by atomic absorption.
  • the composition was 0.49% titanium, 0.00005% platinum, and 0.00059% silver based on 100% by mass of antiviral coating composition 2.
  • ⁇ Antiviral coating composition 3 45 ml of anatase-type titanium oxide dispersion (solution B) as photocatalyst titanium dioxide, 45 ml of peroxotitanic acid aqueous solution (solution A) as binder, 5 mg of platinum-supported titanium oxide dispersion (solution C), 2.1 ml of silver ion solution (solution D) was blended to prepare an antiviral coating composition 3.
  • the platinum-supporting titanium oxide dispersion (solution C) was added after being subjected to ultrasonic treatment in advance.
  • the metal component of antiviral coating composition 3 was confirmed by atomic absorption.
  • the composition was 0.54% titanium, 0.00005% platinum, and 0.00060% silver based on 100% by weight of antiviral coating composition 3.
  • Antiviral coating method ⁇ A coating method> Using a spray gun, the antiviral coating composition was applied to a glass substrate or a synthetic quartz substrate as an antiviral base material by repeating spray coating 30 to 60 times so that the film thickness was 1 ⁇ m.
  • Example 1 An antiviral coating composition 1 was prepared and coated on a glass substrate or a synthetic quartz substrate as a base material by the A coating method to prepare an antiviral material.
  • Example 2 An antiviral coating composition 2 was prepared and coated on a glass substrate or a synthetic quartz substrate as a base material by the A coating method to prepare an antiviral material.
  • Example 3 An antiviral coating composition 3 was prepared and coated on a glass substrate or a synthetic quartz substrate as a base material by the A coating method to prepare an antiviral material.
  • Example 4 An antiviral coating composition 3 was prepared and coated on a synthetic quartz substrate or a glass substrate by the B coating method to prepare an antiviral material.
  • Example 5 An antiviral coating composition 3 was prepared and undercoated on a glass substrate or a synthetic quartz substrate as a base material, and then an antiviral product was produced by the A coating method.
  • An antiviral coating composition 3 was prepared, undercoated on a glass substrate or a synthetic quartz substrate as a base material, and then coated by the B coating method to prepare an antiviral article.
  • the A coating method is better than the B
  • the contact angle is smaller than the coating method. This difference in contact angle with the same composition suggests that the surface structure differs depending on the coating method, and that the A coating method has a larger surface area.
  • composition of the present invention exhibits visible-light-responsive photocatalytic activity.
  • Examples 1 and 4 in which a synthetic quartz substrate was used as the base material of the antiviral substance, measurements were made using an uncoated synthetic quartz substrate as a reference using a UV-visible spectrophotometer.
  • the absorption spectrum of the antiviral coating film has a spectral shape in which there is a large absorption around a wavelength of 300 nm based on titanium oxide, and the absorption skirts in the visible region with a wavelength of 400 nm or more.
  • the absorbance of the tail of absorption in the visible region of 400 nm or more increases, the degree of yellowing of the antiviral coating film increases, and the visibility of the coated substrate deteriorates.
  • the absorbance at each wavelength was divided by the absorbance at 300 nm in the absorption spectrum and normalized.
  • Table 3 summarizes the normalized absorbance at wavelengths 400, 450 and 500 nm normalized by dividing by the absorbance at 300 nm for Examples 1 and 4.
  • the absorbance at the tail of the absorption edge in the visible region with a wavelength of 400 nm or more is reduced, and coloring is reduced. It was confirmed that
  • [Haze value of antiviral coating film] To evaluate the visibility of the antiviral-coated base material of the antiviral substance, the haze values of Examples 1 and 4 were measured using a glass substrate of 50 mm ⁇ 50 mm ⁇ 1 mm as the base material of the antiviral substance. . Based on JIS K 7136 "Measurement of transmittance and turbidity of plastic", using a D 65 light source with a turbidity meter (NDH2000 manufactured by Nippon Denshoku Industries), a measurement diameter of 20 mm, obtained from the average value of three measurements Table 4 summarizes the haze values (%) obtained.
  • Example 4 It was confirmed that the haze value of Example 4 was greatly reduced compared to Example 1.
  • Example 4 using a 50 mm ⁇ 50 mm ⁇ 2 mm glass substrate (hereinafter referred to as a test piece) was placed in a petri dish as a base material for the antiviral substance, and a bacteriophage liquid (Q ⁇ : NBRC20012) was dropped on the test piece.
  • a test piece 50 mm ⁇ 50 mm ⁇ 2 mm glass substrate
  • the bacteriophage solution was covered with an adhesive film (OHP film), and a moisturizing glass (Tempax glass) was placed on the petri dish. After irradiating the petri dish containing the test piece with visible light from a white fluorescent lamp with a wavelength of 380 nm or less cut for a specified period of time, the bacteriophage liquid is washed out from the test piece and the adhesive film, and the infectivity of the washed out bacteriophage is determined by the bacteriophage. was determined by the plaque formation method using E. coli (NBRC106373) sensitive to .
  • An antiviral activity value exceeding 2.0 was obtained by irradiation for 2 hours with 500 l of a white fluorescent lamp in which ultraviolet light with a wavelength of 380 nm or less was cut. That is, the value that suppresses viral proliferation exceeds 99%. Since the antiviral coating film of Example 4 contains silver ions, the antiviral effect of silver ions is also included. However, a photocatalytic effect of 0.6, which is the difference between the antiviral activity value by light irradiation and the antiviral activity value in the dark, was obtained, confirming that the photocatalytic effect greatly contributes to the antiviral properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)

Abstract

Provided are: a composition for antiviral coating that has an antiviral activity value under indoor light that exceeds 2.0, that has an antiviral effect even in the dark, that is capable of manifesting an antiviral effect over an extended period of time from immediately after application, and that gives a transparent antiviral film that does not harm the visibility of the material rendered antiviral by coating; an antiviral coating method; and an antiviral material. [Solution] A composition for antiviral coating to be used indoors, wherein the composition includes, in mass%, titanium: 0.3-0.6%, platinum: 1×10-5 to 1×10-4%, and silver: 3×10-4 to 6×10-4%, dispersed in a dispersant having water as the main ingredient. An antiviral coating film on a substrate of an antiviral material of the present invention has an antiviral activity value that exceeds 2.0 under white fluorescent lamp 500 l×2 hours irradiation, a photocatalytic effect of 0.6 or more, suppressed discoloration in the visible range, a haze value of 6% or less, little cloudiness, and excellent transparency.

Description

抗ウイルスコーティング用組成物、抗ウイルスコーティング方法及び抗ウイルス物Antiviral coating composition, antiviral coating method and antiviral substance
 本発明は、室内で用いる抗ウイルスコーティング用組成物、抗ウイルスコーティング方法、抗ウイルス物に関する。 The present invention relates to an antiviral coating composition, an antiviral coating method, and an antiviral substance used indoors.
 近年、様々なウイルス性感染症が人の接触や往来によって、これまでにない世界的規模で感染が拡大して、健康被害にだけでなく、経済的な影響が世界全体で問題となっている。特に、不特定多数の人が利用する公共施設や商業施設での公共交通での感染を抑制することが急務である。
 感染症の病原菌の消毒や感染予防に、従来からアルコールや次亜塩素酸水によって人が接触する物品などのふき取り消毒除菌が広く行われてきた。これらの消毒除菌剤は即効性が高く、消毒除菌効果も大きいが、消毒除菌された清浄な状態を維持するためには、汚染のたびに消毒除菌作業を繰り返す必要がある。
In recent years, various viral infectious diseases have spread on an unprecedented global scale due to human contact and traffic, and the economic impact as well as health damage has become a global problem. . In particular, there is an urgent need to control infection in public facilities and commercial facilities used by an unspecified number of people.
Wiping disinfection and sterilization of articles that come into contact with people with alcohol or hypochlorous acid water have been widely used in the past for disinfection of pathogenic bacteria of infectious diseases and prevention of infection. These antiseptic and sterilizing agents have a high immediate effect and a high antiseptic and antiseptic effect, but in order to maintain a clean, disinfected state, it is necessary to repeat the antiseptic and antiseptic work every time contamination occurs.
 不特定多数が頻繁に利用する施設において、除菌された清浄な状態を維持するには、例えば、劇場などでは、毎回の公演終了時の観客の入れ替えの時に、または、飲食施設では、利用客の入れ替え毎に、客席や人の手の触れる箇所の消毒除菌の作業が必要となる。
 このような毎回の消毒除菌作業は人的労力を要し、消毒除菌に用いられるアルコールや次亜塩素酸水などの消毒除菌剤の資源の消費も、社会全体では無視できない量となり、また、これらの排出に伴う環境負荷や生態系への影響も問題となる。
 そのため、除菌された清浄な状態を持続できる抗菌・坑ウイルス剤や繰り返し使える抗菌・坑ウイルス剤の開発が検討されている。
以下、本明細書で用いる「抗菌」は特に明示しない限り「抗ウイルス」も含む広義の「抗菌」を示すものとする。
In order to maintain a sterilized and clean state at a facility that is frequently used by an unspecified number of people, for example, at a theater, when the audience is replaced at the end of each performance, or at a restaurant, the customer For each replacement, it is necessary to disinfect and disinfect the audience seats and places that people touch.
Such disinfection and sterilization work requires human labor, and the consumption of resources for disinfection and sterilization agents such as alcohol and hypochlorous acid water used for disinfection and sterilization is an amount that cannot be ignored by society as a whole. In addition, the impact on the environment and ecosystems associated with these emissions is also a problem.
Therefore, the development of an antibacterial/antiviral agent that can maintain a clean, sanitized state and an antibacterial/antiviral agent that can be used repeatedly is being studied.
Hereinafter, the term “antibacterial” used in this specification shall mean “antibacterial” in a broad sense including “antiviral” unless otherwise specified.
 引用文献1には、抗菌剤が徐々に溶出して表面を除菌する抗菌樹脂の技術が記載されている。このような抗菌樹脂は、例えば、公共施設のエスカレーターの手すりなどに設置され、不特定多数の人が触れる箇所の抗菌効果が期待される。しかし、様々な感染症の病原菌に有効で、人にアレルギーを起こさない無害な抗菌成分の開発は困難であり、樹脂への加工技術も個々の抗菌成分対して開発しなければならない。さらに、抗菌対象物毎に樹脂成形物を設計製造しなければならず、抗菌樹脂の利用は限定的である。
 そこで、種々の物品表面に後から抗菌処理をすることができれば、その応用は広範囲なものとなり、このような汎用的な抗菌効果の付与技術が検討されている。
Cited Document 1 describes a technology of an antibacterial resin that sterilizes the surface by gradually eluting an antibacterial agent. Such an antibacterial resin is installed, for example, on handrails of escalators in public facilities, and is expected to have an antibacterial effect on places that are touched by an unspecified number of people. However, it is difficult to develop harmless antibacterial ingredients that are effective against pathogens of various infectious diseases and that do not cause allergies to humans, and processing technology for resins must also be developed for individual antibacterial ingredients. Furthermore, a resin molding must be designed and manufactured for each antibacterial object, and the use of antibacterial resin is limited.
Therefore, if the surface of various articles can be subjected to an antibacterial treatment afterward, its application will be wide-ranging, and techniques for imparting such a general-purpose antibacterial effect are being investigated.
 後処理で抗菌効果の付与ができて、繰り返して使える抗菌剤として、光触媒を用いた抗菌が注目されている。
 引用文献2には、建物の外装に用いた酸化チタンを含む白色塗料が外装に付着した廃棄ガスなどの汚染物を、太陽光の紫外光によって発生する活性酸素で酸化して水に可溶化する光触媒効果により、清浄表面を維持する技術を室内の汚染ガスの除去に用いる技術が記載されている。
 しかしながら、感染症菌に対する充分な坑ウイルス性などが確認され、様々な基材の物品の抗ウイルス処理が可能な室内用抗ウイルス性光触媒塗料は開発されていないのが現状である。
 この光触媒を公共施設や公共交通機関の室内での抗ウイルスに用いるためには、室内の微弱光や暗所での抗菌効果の発現に加えて、人が触れる様々な基材からなる物品の表面、例えば、ドアノブの金属やタッチパネルのガラスなどに塗布することができ、特に、人が操作する抗ウイルス対象物、例えば、操作タッチパネルの視認性を損なわない塗布膜でなければならない。
 また、その抗ウイルス効果もさまざまな感染症の病原菌に広範囲に有効でなければならない。
Photocatalyst-based antibacterial agents are attracting attention as reusable antibacterial agents that can be given an antibacterial effect by post-treatment.
In Cited Document 2, pollutants such as waste gas adhered to the exterior of the building exterior by white paint containing titanium oxide are oxidized with active oxygen generated by the ultraviolet light of sunlight and solubilized in water. A technique is described in which the technique of maintaining a clean surface due to the photocatalytic effect is used to remove indoor pollutant gases.
However, at present, no indoor antiviral photocatalyst paint has been developed that has been confirmed to have sufficient antiviral properties against infectious bacteria and that is capable of antiviral treatment of articles made of various substrates.
In order to use this photocatalyst for antivirus indoors in public facilities and public transportation, in addition to exhibiting antibacterial effects in indoor weak light and dark places, the surface of articles made of various base materials that people touch For example, it can be applied to the metal of a doorknob, the glass of a touch panel, etc. In particular, it must be a coating film that does not impair the visibility of an antiviral target operated by a person, for example, an operation touch panel.
In addition, its antiviral effect must be broadly effective against pathogens of various infectious diseases.
特許第6638742号公報Japanese Patent No. 6638742 特許第5995830号公報Japanese Patent No. 5995830 特許第2938376号公報Japanese Patent No. 2938376 特許第4150712号公報Japanese Patent No. 4150712 特許第5377003号公報Japanese Patent No. 5377003
 本発明は、公共施設や公共交通機関の乗車券の発券機、金融機関の現金自動預け払い機、商業施設の支払い端末などキーボードやタッチパネルなどの様々な素材の坑ウイルス対象物にコーティングするだけで、白色蛍光灯や白色LEDの室内光による光触媒効果によって持続的な抗ウイルス効果が得られる室内で用いる抗ウイルスコーティング用組成物、抗ウイルスコーティング方法及び抗ウイルス物を提供することを目的とする。
 室内光で抗ウイルス活性値(JIS R1756:2020準拠)が2.0を超え、暗所でも抗ウイルス効果を有し、抗ウイルス効果が塗布直後から長期に渡って発現でき、コーティングによって坑ウイルス対象物の視認性を損なわないような透明な抗ウイルスコーティング膜を与える抗ウイルスコーティング用組成物、抗ウイルスコーティング方法及び抗ウイルス物を提供することを目的とする。
The present invention can be applied simply by coating antivirus objects of various materials such as keyboards and touch panels such as ticket issuing machines for public facilities and public transportation, automatic teller machines for financial institutions, and payment terminals for commercial facilities. An object of the present invention is to provide an antiviral coating composition, an antiviral coating method, and an antiviral substance for indoor use, in which a sustained antiviral effect can be obtained by the photocatalytic effect of indoor light such as a white fluorescent lamp or a white LED.
Antiviral activity value (JIS R1756: 2020 compliant) exceeds 2.0 in indoor light, has antiviral effect even in dark places, antiviral effect can be expressed for a long time immediately after application, antiviral target by coating An object of the present invention is to provide an antiviral coating composition, an antiviral coating method, and an antiviral substance that provide a transparent antiviral coating film that does not impair the visibility of objects.
 すなわち、本発明は、室内に用いる抗ウイルスコーティング用組成物であって、
水を主成分とする分散剤に分散され、抗ウイルスコーティング用組成物の水分散液の質量100に対し、質量%でチタン:0.3~0.6%、白金:1×10-5~1×10-4%、及び銀:3×10-4~6×10-4%を含むことを特徴とする抗ウイルスコーティング用組成物である。
 本発明の抗ウイルスコーティング用組成物のチタンはアナターゼ型酸化チタンとバインダーとしてペルオキソチタン酸からなり、白金は、超音波を照射した白金担持酸化チタンの水分散液からなり、体積基準の平均粒径が10~100nmである。分散剤は、水に加え、エタノール、イソプロパノール、ひまし油からなる群から1以上選ばれることことができる。
 さらに、香料及び界面活性剤を含む添加剤を含むことができる。
That is, the present invention provides an antiviral coating composition for indoor use,
Dispersed in a dispersant containing water as a main component, titanium: 0.3 to 0.6% by mass, platinum: 1 × 10 -5 to 100 mass% of the aqueous dispersion of the antiviral coating composition 1×10 −4 %, and silver: 3×10 −4 to 6×10 −4 %.
Titanium in the antiviral coating composition of the present invention is composed of anatase-type titanium oxide and peroxotitanic acid as a binder, and platinum is composed of an aqueous dispersion of platinum-supported titanium oxide irradiated with ultrasonic waves. is 10-100 nm. In addition to water, the dispersant can be one or more selected from the group consisting of ethanol, isopropanol, and castor oil.
Additionally, additives including fragrances and surfactants may be included.
 本発明の室内に用いる抗ウイルスコーティング用組成物の抗ウイルスコーティング方法は、抗ウイルスコーティング用組成物を準備して攪拌する攪拌処理段階と、攪拌処理段階の後の処理物を抗ウイルス対象物に塗布する段階と、からなることを特徴とする抗ウイルスコーティング方法である。 The antiviral coating method of the antiviral coating composition used indoors of the present invention includes a stirring treatment step of preparing and stirring the antiviral coating composition, and treating the treated object after the stirring treatment step as an antiviral target. and a step of applying.
 さらに、本発明の抗ウイルスコーティング方法は、抗ウイルスコーティング用組成物を準備して攪拌する攪拌処理段階と、坑ウイルス対象物にアンダーコーティング膜を形成する段階と、攪拌処理段階の後の処理物をアンダーコーティング膜上に塗布する段階と、からなる抗ウイルスコーティング方法であってもよい。
 抗ウイルスコーティングに用いられるアンダーコーティング膜はシリカ系組成物からなり、シリカ系組成物は体積基準の平均半径100nm以下のシリカ粒子を含むことができる。
Furthermore, the antiviral coating method of the present invention comprises a stirring treatment step of preparing and stirring an antiviral coating composition, a step of forming an undercoating film on an antiviral target, and a treated object after the stirring treatment step. on the undercoating film.
The undercoating film used for antiviral coating is made of a silica-based composition, and the silica-based composition can contain silica particles having a volume-based average radius of 100 nm or less.
 また、攪拌処理段階の後の処理物を塗布する段階は、スプレーコーティング、ロールコーティング及び刷毛塗布法を含み、坑ウイルス対象物に2回以下コーティングすることを特徴とする抗ウイルスコーティング方法である。
 本発明のコーティングは、白色蛍光灯500lx2時間の照射下での抗ウイルス活性値は2を超え、光触媒効果は0.6以上であり、水接触角の範囲が7°~22°であり、波長300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度は、それぞれ0.3以下、0.15以下及び0.1以下であり、ヘーズ値が6%以下であるようにコーティングする抗ウイルスコーティング方法である。
In addition, the step of applying the treated material after the stirring treatment step includes spray coating, roll coating and brush coating, and is an antiviral coating method characterized in that the antiviral object is coated twice or less.
The coating of the present invention has an antiviral activity value of more than 2, a photocatalytic effect of 0.6 or more, a water contact angle range of 7° to 22°, and a wavelength of The normalized absorbance at wavelengths 400, 450, and 500 nm normalized by the absorbance at 300 nm is 0.3 or less, 0.15 or less, and 0.1 or less, respectively, and the haze value is 6% or less. It is an antiviral coating method that coats as is.
 本発明の抗ウイルス物は、基材と抗ウイルスコーティング膜からなり、抗ウイルスコーティング膜の質量100に対し、質量%でチタン:50.0~65.0%、白金:0.005~0.015%、及び銀:0.05~0.08%を含む抗ウイルスコーティング膜を基材上に有する。
 抗ウイルス物は、白色蛍光灯500lx2時間の照射下での抗ウイルス活性値は2.0を超え、光触媒効果は0.6以上であり、水接触角の範囲が7°~22°であり、波長300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度は、それぞれ0.3以下、0.15以下及び0.1以下であり、ヘーズ値が6%以下である抗ウイルスコーティング膜を基材上に有する。
The antiviral product of the present invention comprises a base material and an antiviral coating film, and is composed of 50.0 to 65.0% by mass of titanium and 0.005 to 0.005% by mass of platinum relative to 100 mass of the antiviral coating film. 015%, and silver: 0.05-0.08%.
The antiviral substance has an antiviral activity value of more than 2.0 under irradiation with a white fluorescent lamp of 500 l for 2 hours, a photocatalytic effect of 0.6 or more, and a water contact angle range of 7° to 22°. The normalized absorbance at wavelengths 400, 450, and 500 nm divided by the absorbance at wavelength 300 nm is 0.3 or less, 0.15 or less, and 0.1 or less, respectively, and the haze value is 6% or less. on the substrate.
 本発明により、坑ウイルス対象物の基材上に形成された抗ウイルスコーティング膜は380nm以下の波長をカットした白色蛍光灯500lx2時間の照射下での抗ウイルス活性値は2.0を超え、光触媒効果0.6以上である高い抗ウイルス性を有する坑ウイルス物が得られる、室内で用いる抗ウイルスコーティング用組成物及び抗ウイルスコーティング方法が提供される。
 また、本発明によって提供される抗ウイルス物の基材上の抗ウイルスコーティング膜は、波長300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度は、それぞれ0.3以下、0.15以下及び0.1以下であり、可視領域での着色が抑制され、ヘーズ値が6%以下である曇り度の小さく透明性に優れる。そのため、さまざまな坑ウイルス対象物の基材の視認性を損なうことなしに塗布して、抗ウイルス性を付与することができるという効果を有している。
 この抗ウイルス性は室内の白色蛍光灯などの照射下での光触媒効果によって発現される。そのため、持続的に抗ウイルス状態が保たれ、従来必要だった、アルコールや次亜塩素酸水でのふき取り作業を軽減でき、このことによって、人的労力の軽減や、アルコールや次亜塩素酸水などの消毒除菌剤の削減に貢献でき、また、環境負荷の軽減にも貢献することができる。
 さらに、本発明により、抗ウイルス処理が必要な物品等の表面をコーティングするだけで、抗ウイルス活性値が2.0を超える抗ウイルス処理が行われた、抗ウイルス物を得ることができ、しかも、坑ウイルス成分の溶出による皮膚障害等が起きず、抗ウイルスコーティング膜形成直後から長期間、例えば、1年間にわたり抗ウイルス効果を発現させることができる。これらのことより、本発明の抗ウイルスコーティング用組成物の坑ウイルスコーティング方法は、公共施設や公共交通機関の室内の坑ウイルス対象物の抗ウイルス性付与に最適である。
According to the present invention, the antiviral coating film formed on the base material of the antiviral target has an antiviral activity value of more than 2.0 under irradiation with 500 lx 2 hours of white fluorescent light that cuts wavelengths of 380 nm or less, and photocatalyst Provided are an antiviral coating composition and an antiviral coating method for indoor use, which yields an antiviral substance having a high antiviral effect of 0.6 or more.
In addition, in the antiviral coating film on the antiviral substrate provided by the present invention, the normalized absorbance at wavelengths of 400, 450, and 500 nm, which is normalized by dividing the absorbance at a wavelength of 300 nm, is 0. .3 or less, 0.15 or less, and 0.1 or less, coloring in the visible region is suppressed, haze value is 6% or less, haze is small, and transparency is excellent. Therefore, it has the effect of being able to be applied to various antiviral target substrates without impairing their visibility to impart antiviral properties.
This antiviral property is exhibited by a photocatalytic effect under illumination such as indoor white fluorescent light. Therefore, the antiviral state is maintained continuously, and the wiping work with alcohol or hypochlorous acid water, which was required in the past, can be reduced. It can contribute to the reduction of disinfectant and disinfectant such as, and also contribute to the reduction of environmental load.
Furthermore, according to the present invention, it is possible to obtain an antiviral substance with an antiviral activity value of more than 2.0, which has been subjected to antiviral treatment, simply by coating the surface of an article or the like that requires antiviral treatment. , the antiviral effect can be expressed for a long period of time, for example, one year, immediately after the formation of the antiviral coating film without causing skin damage or the like due to elution of the antiviral component. For these reasons, the antiviral coating method of the antiviral coating composition of the present invention is most suitable for imparting antiviral properties to antiviral objects inside public facilities and public transportation facilities.
 本発明の実施形態について説明する。なお、本発明は、以下の実施形態及び実施態様に限定されず、適宜変更を加えて実施することができる。 An embodiment of the present invention will be described. It should be noted that the present invention is not limited to the following embodiments and modes, and can be implemented with appropriate modifications.
[抗ウイルスコーティング用組成物]
 本発明の抗ウイルスコーティング用組成物は、金属酸化物などの半導体化合物で光触媒活性を示す化合物と金属成分からなる可視光応答形光触媒が水を主成分とする分散剤に分散され、この分散剤は水に加えて、エタノール、イソプロパノール、ひまし油、からなる群のいずれか1つ以上を含み、香料、界面活性剤などを含む添加剤を含むことができる。
[Antiviral coating composition]
The antiviral coating composition of the present invention comprises a semiconductor compound such as a metal oxide that exhibits photocatalytic activity and a visible-light-responsive photocatalyst composed of a metal component dispersed in a dispersant containing water as a main component. contains water plus any one or more of the group consisting of ethanol, isopropanol, castor oil, and may contain additives including fragrances, surfactants, and the like.
[可視光応答形光触媒]
 本発明の可視光応答形光触媒は、白色蛍光灯や白色LEDなどの室内光の光を吸収して光触媒作用を示す物質である。室内光の吸収により光触媒に生じた励起された電子と正孔により発生した活性酸素によって表面に吸着した細菌やウイルスが分解される。
[Visible light responsive photocatalyst]
The visible-light-responsive photocatalyst of the present invention is a substance that exhibits photocatalytic action by absorbing indoor light such as white fluorescent lamps and white LEDs. Bacteria and viruses adsorbed on the surface are decomposed by active oxygen generated by electrons and holes excited in the photocatalyst by absorption of room light.
[光触媒]
 光触媒は、金属酸化物などの半導体化合物で光触媒活性を示す化合物、例えば、酸化チタン、過酸化チタン、酸化バナジウム、酸化鉄、酸化銅、酸化亜鉛、酸化タングステン、酸化ニオブ、酸化錫、酸化ガリウム、チタン酸アルカリ(土類)金属塩等からなる群より選ばれる1種以上があげられるが特に限定されない。金属酸化物は、一般には紫外光照射によって触媒効果が得られるが、室内で光触媒効果を得るためには、白色光に応答するために金属酸化物に不純物や色素を添加したり、微粒子にしたり、白色光に感度を有する金属酸化物の利用などの様々な可視光応答形光触媒についての公知の技術がある。
 可視光応答形光触媒で、波長400nmから780nmの可視領域の吸収が大きくない光学特性、例えば、波長300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度は、それぞれ0.3以下、0.15以下及び0.1以下であれば、各種元素でドーピングしたものでも良い。本発明では好ましくは、アナターゼ型酸化チタンを用いる。
[photocatalyst]
Photocatalysts are semiconductor compounds such as metal oxides that exhibit photocatalytic activity, such as titanium oxide, titanium peroxide, vanadium oxide, iron oxide, copper oxide, zinc oxide, tungsten oxide, niobium oxide, tin oxide, gallium oxide, One or more selected from the group consisting of alkali (earth) metal titanates and the like may be mentioned, but there is no particular limitation. Metal oxides generally have a catalytic effect when irradiated with ultraviolet light, but in order to obtain a photocatalytic effect indoors, it is necessary to add impurities or pigments to the metal oxides or to make them fine particles in order to respond to white light. There are various known techniques for visible light responsive photocatalysts, such as the use of metal oxides sensitive to white light.
The visible light responsive photocatalyst has optical properties in which the absorption in the visible region from 400 nm to 780 nm is not large, for example, the normalized absorbance at wavelengths of 400, 450, and 500 nm divided by the absorbance at 300 nm is It may be doped with various elements as long as they are 0.3 or less, 0.15 or less, and 0.1 or less, respectively. Anatase titanium oxide is preferably used in the present invention.
[金属成分]
 金属成分は、細菌と接触することで抗菌作用を有するもので、金属単体、金属イオン、金属塩、金属酸化物、金属コロイドなどからなる群より選ばれるの1種以上があげられるが特に限定されない。好ましくは、金属単体又は金属イオンである。
 金属成分の金属は、貴金属又は遷移金属であり、例えば、白金、金、銀、銅、あるいは亜鉛、鉄、ニッケル、クロム、コバルト、マンガン、ロジウム、パラジウム、ルテニウム及びイリジウム等からなる群より選ばれる1種以上があげられるが特に限定されない。
 好ましくは、白金、金、銀、銅、からなる群より選ばれる1種以上が用いられる。特に好ましくは、白金、及び銀より選ばれる1種以上が用いられる。
[Metal component]
The metal component has an antibacterial effect when in contact with bacteria, and includes, but is not limited to, one or more selected from the group consisting of simple metals, metal ions, metal salts, metal oxides, metal colloids, and the like. . A simple metal or a metal ion is preferable.
The metal of the metal component is a noble metal or transition metal, and is selected from the group consisting of platinum, gold, silver, copper, zinc, iron, nickel, chromium, cobalt, manganese, rhodium, palladium, ruthenium, iridium, etc. One or more types can be used, but there is no particular limitation.
Preferably, one or more selected from the group consisting of platinum, gold, silver and copper are used. One or more selected from platinum and silver is particularly preferably used.
 金属成分は抗菌効果に加えて、酸化チタンの光触媒効果を可視領域に増感する効果を有する。本発明では白金担持酸化チタンを用いることによって室内光で光触媒効果を発現させている。
 また、本発明ではさらに銀イオンを用いることにより、銀イオンによって微弱光や暗所での抗菌・坑ウイルス効果も発現することができる。
 金属成分や金属イオンは、二酸化チタンの光触媒効果によって還元されて金属微粒子となることが知られている。例えば、銀イオンが還元された銀粒子の場合には、銀粒子のプラズモンによる酸化チタンの可視光増感を行う効果がある。
 また、白金微粒子などでは、光励起によってできた電子-正孔が解離して、再結合を抑制して、光触媒効果の増強も知られている。
In addition to the antibacterial effect, the metal component has the effect of sensitizing the photocatalytic effect of titanium oxide to the visible region. In the present invention, by using platinum-supported titanium oxide, a photocatalytic effect is exhibited under room light.
Further, in the present invention, by using silver ions, antibacterial and antiviral effects can be exhibited even under weak light or in a dark place.
It is known that metal components and metal ions are reduced to fine metal particles by the photocatalytic effect of titanium dioxide. For example, in the case of silver particles in which silver ions have been reduced, there is an effect of sensitizing titanium oxide to visible light by the plasmons of the silver particles.
It is also known that in platinum fine particles and the like, electron-holes generated by photoexcitation are dissociated and their recombination is suppressed, thereby enhancing the photocatalytic effect.
[分散剤]
 可視光応答形光触媒を分散させる分散剤としては、水を主成分とする分散剤を用いるが、光触媒効果を損なわない範囲において、特に限定されず、塗布法に適するように水、有機溶剤、二酸化炭素などからなる群より選ばれる1種以上を用いることができる。
 有機溶剤として、特に限定されないが、一般的なアルコール系溶剤、例えば、エタノール、プロパノール、ブタノールなどや、ケトン系溶剤、例えば、アセトン、メチルエチルケトン、シクロヘキサノンなどや、エステル系溶剤、例えば、酢酸エチル、酢酸ブチル、γ-ブチロラクトンなどや、エーテル系溶剤、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテルなどや、塩化メチレンなどのハロゲン化炭化水素系溶剤や、芳香族炭化水素系溶剤、例えば、ベンゼン、トルエン、キシレンなどや、アミド系溶剤、例えば、メチルピロリドン、ジメチルアセトアミドなどや、ミネラルスピリット等の脂肪族炭化水素系溶剤からなる群より選ばれる1種以上を用いることができる。
[Dispersant]
As a dispersing agent for dispersing the visible light responsive photocatalyst, a dispersing agent containing water as a main component is used, but it is not particularly limited as long as it does not impair the photocatalytic effect. One or more selected from the group consisting of carbon and the like can be used.
The organic solvent is not particularly limited, but general alcohol solvents such as ethanol, propanol, butanol, ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone, ester solvents such as ethyl acetate, acetic acid, etc. Butyl, γ-butyrolactone, ether solvents such as diethyl ether, tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, halogenated hydrocarbon solvents such as methylene chloride, and aromatic hydrocarbon solvents For example, one or more selected from the group consisting of benzene, toluene, xylene and the like, amide solvents such as methylpyrrolidone and dimethylacetamide, and aliphatic hydrocarbon solvents such as mineral spirits can be used.
[バインダー]
 本発明では、バインダー及び分散媒体としてペルオキソチタン酸を用いているが、光触媒効果を損なわない範囲で、一般的に用いられるバインダー(結合剤)などを加えても良い。さらに、吸着剤を加えても良い。
[添加剤]
 添加剤としては、光触媒効果を損なわない範囲で、酸化チタンや金属微粒子の分散の目的で、一般的に用いられる界面活性剤や分散剤などの添加物を加えても良い。
 また、要求される目的等に応じて、抗ウイルスコーティング膜を形成するために一般的に用いられている各種成分を添加して用いてもよい。例えば、香料、着色剤、充填剤、粘度調整剤、殺菌剤、防腐剤、表面調整剤、紫外線吸収剤、光安定化剤、消泡剤などがあげられるが特に限定されない。各成分の含有量は、光触媒効果を損なわない範囲で、添加目的等に応じて、任意に調整することができる。
 本発明では、酸化チタン微粒子の分散を安定化させる、公知の分散剤、高分子分散剤を光触媒効果を損なわない範囲で用いることができる。
[binder]
In the present invention, peroxotitanic acid is used as the binder and dispersion medium, but generally used binders (binders) may be added as long as the photocatalytic effect is not impaired. Furthermore, an adsorbent may be added.
[Additive]
Additives such as surfactants and dispersants generally used for the purpose of dispersing titanium oxide and fine metal particles may be added as long as they do not impair the photocatalytic effect.
In addition, depending on the required purpose, etc., various components generally used for forming an antiviral coating film may be added and used. Examples thereof include, but are not limited to, fragrances, coloring agents, fillers, viscosity modifiers, bactericides, preservatives, surface modifiers, ultraviolet absorbers, light stabilizers, antifoaming agents and the like. The content of each component can be arbitrarily adjusted according to the purpose of addition within a range that does not impair the photocatalytic effect.
In the present invention, a known dispersant or polymer dispersant that stabilizes the dispersion of titanium oxide fine particles can be used within a range that does not impair the photocatalytic effect.
[抗ウイルスコーティング方法]
 抗ウイルスコーティング膜を坑ウイルス物の基材等の上に形成する抗ウイルスコーティング方法として、一般的な塗布法を用いることができる。
 塗布法として、例えば、エアスプレー、エアレススプレー、ハンドガン、静電、回転霧化、浸漬、ロールコーター、カーテンフローコーター、ローラーカーテンコーター、ダイコーター、インクジェットなどからなる群より選ばれる1種以上があげられる。
 好ましくは、スプレーコーティング、ロールコーティング及び刷毛塗布法が含まれる。
 抗ウイルスコーティング膜形成に際しては、1回のコーティングで形成してもよく、2回以上のコーティングで形成してもよい。2回以上のコーティングを行う場合には、途中で乾燥工程を設けてもよく、また、途中で乾燥工程を設けることなくウエットオンウエット(Wet on Wet)で行ってもよく、これらを組み合わせてもよい。また、適切な布を用いて塗広げても良い。
 本発明の抗ウイルスコーティング用組成物の抗ウイルスコーティング方法の一形態として、スプレーコーティング、ロールコーティング及び刷毛塗布法のいずれか1方法によるコーティングを2回以下行うことによって、ヘーズ値が小さく透明な抗ウイルスコーティング膜を形成できる。
[Antiviral coating method]
As an antiviral coating method for forming an antiviral coating film on an antiviral substrate or the like, a general coating method can be used.
Examples of the coating method include one or more selected from the group consisting of air spray, airless spray, hand gun, electrostatic, rotary atomization, immersion, roll coater, curtain flow coater, roller curtain coater, die coater, inkjet, and the like. be done.
Preference is given to spray coating, roll coating and brush coating methods.
When forming the antiviral coating film, it may be formed by one coating, or may be formed by two or more coatings. When performing coating twice or more, a drying step may be provided in the middle, or a wet-on-wet method may be performed without providing a drying step in the middle, or these may be combined. good. It may also be spread using a suitable cloth.
As one embodiment of the antiviral coating method of the antiviral coating composition of the present invention, by performing coating twice or less by any one of spray coating, roll coating and brush coating, a transparent antivirus with a small haze value is obtained. A virus coating membrane can be formed.
[超音波処理]
 散乱の少ない透明な抗ウイルスコーティング膜を形成するために、水に分散された分散液の抗ウイルスコーティング用組成物の分散状態は重要である。
 本発明において、抗ウイルスコーティング用組成物の成分の中で、白金成分である白金担持酸化チタンの水分散液の分散状態は、特に重要である。
 白金担持酸化チタンの水分散液は、超音波を照射する超音波処理を予め行った後に、酸化チタンや銀イオンなどの他の成分を含む分散液に混合して、抗ウイルスコーティング用組成物を製造する。
 白金担持酸化チタンの水分散液の超音波処理の周波数、出力、照射時間は、特に限定されないが、20kHz540Wで超音波照射を1リットルあたり300秒、コンディション50%(1秒程度の照射を1秒ごとに繰り返し)とすることができる。この超音波処理により、白金担持酸化チタンの水分散液を混合した坑ウイルスコーティング用組成物である分散液は白濁が消え、淡黄色に着色透明な分散液となる。
[Ultrasonic treatment]
In order to form a transparent antiviral coating film with little scattering, the state of dispersion of the antiviral coating composition in water is important.
In the present invention, among the components of the antiviral coating composition, the dispersion state of the aqueous dispersion of platinum-supported titanium oxide, which is the platinum component, is particularly important.
The aqueous dispersion of platinum-supported titanium oxide is subjected to ultrasonic treatment in advance by irradiating ultrasonic waves, and then mixed with a dispersion containing other components such as titanium oxide and silver ions to form an antiviral coating composition. manufacture.
The frequency, output, and irradiation time of the ultrasonic treatment of the aqueous dispersion of platinum-supported titanium oxide are not particularly limited, but ultrasonic irradiation is performed at 20 kHz, 540 W for 300 seconds per liter, and the condition is 50% (1 second irradiation for about 1 second repeat every ). By this ultrasonic treatment, the cloudiness of the antiviral coating composition mixed with the aqueous dispersion of platinum-supported titanium oxide disappears, and the dispersion becomes pale yellow and transparent.
[アンダーコーティング]
 抗ウイルスコーティング用組成物を坑ウイルス対象物の基材にコーティングする際、基材と抗ウイルスコーティング膜との間の付着性、基材の耐食性を改善するために、粗面化処理、プラズマ処理、プライマー処理などの公知の表面処理や一般的なアンダーコーティング材の塗布を抗ウイルスコーティング膜の機能を損ない範囲で行ってもよい。
 本発明の一形態として、抗ウイルスコーティングに用いられるアンダーコーティング膜はシリカ系組成物からなり、シリカ系組成物は体積基準の平均半径100nm以下のシリカ粒子を含むことができる。
[Undercoating]
When coating the antiviral coating composition on the substrate of the antiviral target, surface roughening treatment and plasma treatment are performed to improve the adhesion between the substrate and the antiviral coating film and the corrosion resistance of the substrate. , Known surface treatments such as primer treatment and application of a general undercoating material may be performed to the extent that the function of the antiviral coating film is impaired.
As one embodiment of the present invention, the undercoating film used for antiviral coating is made of a silica-based composition, and the silica-based composition can contain silica particles having a volume-based average radius of 100 nm or less.
[抗ウイルス対象物]
 本発明の抗ウイルス対象物は、坑ウイルス性を付与するために抗ウイルスコーティング用組成物をコーティングできるものであれば、どのような物でも良い。
 抗ウイルス対象物としては、特に限定されないが、不特定多数が利用するような施設、例えば、公共施設、金融機関、商業施設、教育施設、医療施設、介護施設、飲食施設、工場、公共交通機関などに設置されている設備や使用される各種機器など、例えば、公共交通機関での乗車券の発券機、金融機関の現金自動預け払い機、商業施設の支払い端末などがある。また、人が直接触れる物品としては、例えば、ドア、ドアノブ、手すり、ハンドル、壁、ガラス、建材、テーブル、いす、家電製品、筆記具、文房具、事務用品、医療機器、押しボタン、パソコン、キーボード、マウス、タッチパネル、携帯通信機器、電子カルテ、表示装置、机、引き出し、ファイル、名札・表示板、操作ボタン、スイッチ、等があげられる。
 特に、坑ウイルス対象物として、不特定多数が触れ、視認性が要求される、現金自動預け払い機の操作用タッチパネル、ボタン、支払い端末の操作用タッチパネル、ボタン、乗車券の発券機操作用タッチパネル、ボタンなどが好適である。
[Antiviral target]
The antiviral object of the present invention may be any object as long as it can be coated with an antiviral coating composition to impart antiviral properties.
The antiviral target is not particularly limited, but facilities that are used by an unspecified number of people, such as public facilities, financial institutions, commercial facilities, educational facilities, medical facilities, nursing facilities, eating and drinking facilities, factories, public transportation For example, there are ticket issuing machines for public transportation, automatic teller machines for financial institutions, and payment terminals for commercial facilities. Examples of articles that people directly touch include doors, door knobs, handrails, handles, walls, glass, building materials, tables, chairs, home appliances, writing instruments, stationery, office supplies, medical equipment, push buttons, personal computers, keyboards, Examples include mice, touch panels, mobile communication devices, electronic medical records, display devices, desks, drawers, files, name tags/display boards, operation buttons, switches, and the like.
In particular, touch panels and buttons for operating automatic teller machines, touch panels for operating payment terminals, buttons, and touch panels for operating ticket issuing machines, which are touched by an unspecified number of people and require visibility as anti-virus targets. , buttons, etc. are suitable.
[抗ウイルス物]
 本発明の抗ウイルス物は、坑ウイルス性を付与するために抗ウイルスコーティング用組成物をコーティングした抗ウイルス対象物であり、基材と基材上に形成された抗ウイルスコーティング膜からなる。
[Antiviral substance]
The antiviral article of the present invention is an antiviral object coated with an antiviral coating composition to impart antiviral properties, and comprises a substrate and an antiviral coating film formed on the substrate.
[基材]
 抗ウイルス物の基材としては、抗菌性能を付与するものであって、抗ウイルスコーティングできるものであればどのようなものでもよい。
 基材としては、特に限定されないが、例えば、鉄、アルミニウム等の金属、ガラスプラスチックなどがあげられ、これらの複合材でもよい。
 特に、坑ウイルス物として、不特定多数が触れ、視認性が要求される、操作用タッチパネルなどが好適である。
[抗ウイルスコーティング膜]
 抗ウイルスコーティング膜は、抗ウイルス物の基材上に、抗ウイルスコーティング用組成物を抗ウイルスコーティング方法で形成したコーティング膜である。
 本発明の抗ウイルスコーティング膜は、波長380nm以下の波長をカットした白色蛍光灯500lx2時間の照射下での抗ウイルス活性値が2.0を超え、さらに、光触媒効果が0.6以上の要件を満たす抗ウイルス性を有する。
[Base material]
As the base material of the antiviral material, any material can be used as long as it imparts antibacterial performance and can be coated with an antiviral agent.
The base material is not particularly limited, but examples thereof include metals such as iron and aluminum, glass plastics, and the like, and composite materials thereof may also be used.
In particular, an operation touch panel, which is touched by an unspecified number of people and requires visibility, is suitable as an antiviral substance.
[Antiviral coating membrane]
The antiviral coating film is a coating film obtained by forming an antiviral coating composition on an antiviral substrate by an antiviral coating method.
The antiviral coating film of the present invention has an antiviral activity value of more than 2.0 under irradiation with 500 l x 2 hours of a white fluorescent lamp that cuts wavelengths of 380 nm or less, and furthermore, has a photocatalytic effect of 0.6 or more. It has a satisfying antiviral property.
 本発明の課題を解決するのに重要な要件で、抗ウイルス物の基材上に形成された抗ウイルスコーティング膜が備えるべき特性について述べる。
[抗ウイルス膜の吸光度]
 光触媒性能に影響する要因の一つとして、光触媒の光吸収の度合い(吸光度)がある。これは、光触媒によって生じる活性酸素は、光吸収によって励起された電子と正孔による酸化還元反応に起因するためである。しかし、吸光度が大きくても励起された電子が正孔と再結合して失活したりする場合がある。
 特に、本発明の抗ウイルス膜は、代表的な室内光源の白色蛍光灯や白色LEDの発光波長に吸収を有して、且つ、さまざまな坑ウイルス対象物に坑ウイルス処理するために、可能な限り着色していない方が望ましい。
 そこで、本発明では、抗ウイルス膜の要件として、波長400nm~780nmの可視光領域の、特に、光触媒の吸収端付近である波長400nm~500nmの吸光度に注目した。吸光度は膜厚にも依存するが、典型的な抗ウイルス施工として、例えば、90平方メートル当たり抗ウイルス組成物1リットルで形成される抗ウイルス膜の吸光度を目安とした。
 本発明では、波長300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度は、それぞれ0.3以下、0.15以下及び0.1以下であり、ヘーズ値が6%以下であることが好ましい。
 これは、薄黄色の着色透明膜であり、さまざまな室内の坑ウイルス対象物の基材上にコーティングしても、例えば、タッチパネルなど坑ウイルス対象物の視認性を損なわないもので好適である。
The characteristics that should be provided by the antiviral coating film formed on the antiviral base material, which are important requirements for solving the problems of the present invention, will be described.
[Absorbance of antiviral membrane]
One of the factors affecting the photocatalyst performance is the degree of light absorption (absorbance) of the photocatalyst. This is because the active oxygen generated by the photocatalyst is caused by the redox reaction of electrons and holes excited by light absorption. However, even if the absorbance is high, the excited electrons may recombine with the holes and become deactivated.
In particular, the antiviral film of the present invention has absorption in the emission wavelengths of white fluorescent lamps and white LEDs, which are typical indoor light sources, and is capable of performing antiviral treatment on various antiviral targets. It is desirable to have as little color as possible.
Therefore, in the present invention, as a requirement for an antiviral film, attention was paid to the absorbance in the visible light region with a wavelength of 400 nm to 780 nm, particularly at a wavelength of 400 nm to 500 nm, which is near the absorption edge of a photocatalyst. The absorbance also depends on the film thickness, but as a typical antiviral construction, for example, the absorbance of an antiviral film formed with 1 liter of antiviral composition per 90 square meters was used as a guideline.
In the present invention, the normalized absorbances at wavelengths of 400, 450, and 500 nm divided by the absorbance at a wavelength of 300 nm are 0.3 or less, 0.15 or less, and 0.1 or less, respectively, and the haze value is preferably 6% or less.
This is a light-yellow colored transparent film, and is suitable because it does not impair the visibility of antiviral objects such as touch panels even when coated on the substrates of various indoor antiviral objects.
[抗ウイルスコーティング膜厚]
 抗ウイルス物において、抗ウイルスコーティング用組成物により形成される抗ウイルスコーティング膜の膜厚は、用途等に合わせて適宜調整することができる。例えば、乾燥膜厚で0.1~20μmとすることができ、10μm以下、好ましくは5μm以下、より好ましくは1μm以下の範囲内とすることができる。
 膜厚は厚くなるにつれて、吸光度が増大し、さらに曇り度も増大して視認性が悪くなる。坑ウイルス対象物の基材や必要とされる視認性の程度などよって適宜調整することができる。
[Antiviral coating film thickness]
In the antiviral substance, the film thickness of the antiviral coating film formed by the antiviral coating composition can be appropriately adjusted according to the application. For example, the dry film thickness can be 0.1 to 20 μm, and can be in the range of 10 μm or less, preferably 5 μm or less, more preferably 1 μm or less.
As the film thickness increases, the absorbance increases and the degree of haze also increases, resulting in poor visibility. It can be adjusted as appropriate depending on the base material of the antiviral target, the required degree of visibility, and the like.
[抗ウイルス活性値]
 本発明において、抗ウイルス物の基材に形成された抗ウイルスコーティング膜の抗ウイルス活性値は、380nm以下の紫外光をカットした白色蛍光灯500lx2時間の照射下での抗ウイルス活性値は2.0を超える値である。この抗ウイルス活性値は、JIS R1756:2020可視光応答型ウイルス試験方法に準拠した指標値である。JISに基づく抗ウイルス活性値は、坑ウイルスコーティングした基板とコーティングしていない基板とに所定の細菌を接種し24時間培養した後、両者の生菌数の対数値の平均値の差として求められる値であって、抗ウイルス活性値が2.0以上のとき抗ウイルス効果があると認定される。
[Antiviral activity value]
In the present invention, the antiviral activity value of the antiviral coating film formed on the base material of the antiviral substance is 2.00 under irradiation with 500 l×2 hours of white fluorescent light that cuts ultraviolet light of 380 nm or less. A value greater than zero. This antiviral activity value is an index value in accordance with JIS R1756:2020 Visible Light Responsive Virus Test Method. The antiviral activity value based on JIS is obtained as the difference between the average logarithmic values of the viable counts of both antiviral-coated substrates and non-coated substrates after inoculating a predetermined bacterium and culturing for 24 hours. value, and when the antiviral activity value is 2.0 or more, it is certified as having an antiviral effect.
[体積平均分散粒子径]
 本発明において抗ウイルスコーティング用組成物のアナターゼ型酸化チタンの体積平均分散粒子径(D50)は、公知の製造方法に従っており、10~100nm以下とすることができる。好ましくは、10nmの微粒子である。
 また、白金や銀の金属微粒子の体積平均分散粒子径(D50)も、10~100nm以下とすることができる。
 微粒子を用いることにより光散乱が小さく、さまざまな基材からなる抗ウイルス対象物の視認性を損なわずに抗ウイルス性を付与できる。
[Volume average dispersed particle size]
In the present invention, the volume-average dispersion particle size (D50) of the anatase-type titanium oxide in the antiviral coating composition can be 10 to 100 nm or less according to a known production method. Fine particles of 10 nm are preferred.
Also, the volume average dispersed particle diameter (D50) of the fine metal particles of platinum and silver can be 10 to 100 nm or less.
By using fine particles, light scattering is small, and antiviral properties can be imparted to antiviral objects made of various base materials without impairing visibility.
[ヘーズ値]
 本発明において、抗ウイルス物における抗ウイルスコーティング膜のヘーズ値(曇り度)は、20%以下、好ましくは10%以下、さらに好ましくは6%以下とすることができる。
 本発明において、抗ウイルス膜のヘーズ値は、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」における試験方法に準拠した指標値である。ヘーズ値は、抗ウイルスコーティング膜の透明度/曇り度を示す指標であり、ヘーズ値が低いと透明度が高いといえる。一般的には濁度計により測定することができる。
 抗ウイルス膜のヘーズ値を10%以下とするためには、室内用コーティング用組成物の成分の酸化チタンや金属微粒子は、それぞれ100nm以下の平均半径の微粒子を用いると、光散乱が小さく好ましい。適宜、添加する添加剤も透明性の高いものが好ましい。
 抗ウイルス膜のヘーズ値を6%以下とすることで、坑ウイルス対象物として高い視認性が要求されるタッチパネルなどの人の接触する操作画面の感染症予防として抗ウイルス処理が可能となる。
[Haze value]
In the present invention, the haze value (cloudiness) of the antiviral coating film in the antiviral product can be 20% or less, preferably 10% or less, more preferably 6% or less.
In the present invention, the haze value of the antiviral film is an index value based on the test method in JIS K 7136:2000 "Plastics - Determination of haze of transparent materials". The haze value is an index showing the transparency/cloudiness of the antiviral coating film, and it can be said that the lower the haze value, the higher the transparency. Generally, it can be measured with a turbidity meter.
In order to reduce the haze value of the antiviral film to 10% or less, it is preferable to use fine particles having an average radius of 100 nm or less for the titanium oxide and metal fine particles, which are the components of the indoor coating composition, because light scattering is small. It is preferable that the additive to be added appropriately has high transparency.
By setting the haze value of the antiviral film to 6% or less, it is possible to perform antiviral treatment to prevent infectious diseases on operation screens that are touched by people, such as touch panels, which require high visibility as antiviral targets.
 本発明の抗ウイルス物に形成される抗ウイルスコーティング膜は、下記の要件を満たす。
(1)波長300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度は、それぞれ0.3以下、0.15以下及び0.1以下、
(2)ヘーズ値が6.0%以下、
(3)白色蛍光灯500lx(380nm以下の波長をカット)2時間の照射での抗ウイルス活性値が2.0を超え、
(4)光触媒効果0.6以上、である。
 これらのことによって、本発明の坑ウイルスコーティング用組成物を、公共施設や公共交通機関の様々な基材の坑ウイルス対象物に抗ウイルスコーティングするだけで、白色蛍光灯や白色LEDの室内光による光触媒効果によって持続的な抗ウイルス効果が得られる。
The antiviral coating film formed on the antiviral product of the present invention satisfies the following requirements.
(1) Normalized absorbance at wavelengths of 400, 450, and 500 nm divided by absorbance at wavelength of 300 nm is 0.3 or less, 0.15 or less, and 0.1 or less, respectively;
(2) a haze value of 6.0% or less,
(3) The antiviral activity value exceeds 2.0 in 2 hours of irradiation with 500 lx white fluorescent light (cutting wavelengths of 380 nm or less),
(4) A photocatalytic effect of 0.6 or more.
Due to these, by simply coating the antiviral coating composition of the present invention on antiviral objects of various base materials in public facilities and public transportation, Sustained antiviral effect is obtained by photocatalytic effect.
 以下、実施例をあげて本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。なお、実施例及び比較例において、抗ウイルスコーティング用組成物の特性等及び抗ウイルス膜の特性等の測定・評価は、以下に示す方法で測定した。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the examples. In the examples and comparative examples, the properties of the antiviral coating composition and the properties of the antiviral film were measured and evaluated by the following methods.
[抗ウイルス物の光学的評価]
 25mm×25mm×1mmの合成石英基板に抗ウイルスコーティング膜を作成して、その紫外可視吸光スペクトルは自記式紫外可視分光光度計(V-630 日本分光製)を用いて、コーティングしていない合成石英基板をレファレンスとして測定した。
また、50mm×50mm×1mmのガラス基板に抗ウイルスコーティング膜を作成して、抗ウイルスコーティング膜のヘーズ値を、濁度計(NDH2000 日本電色工業製)を用いて測定した。
[Optical evaluation of antiviral substances]
An antiviral coating film was created on a synthetic quartz substrate of 25 mm × 25 mm × 1 mm, and its ultraviolet-visible absorption spectrum was measured using a self-recording ultraviolet-visible spectrophotometer (V-630, manufactured by JASCO Corporation). The substrate was measured as a reference.
Also, an antiviral coating film was formed on a glass substrate of 50 mm×50 mm×1 mm, and the haze value of the antiviral coating film was measured using a turbidity meter (NDH2000 manufactured by Nippon Denshoku Industries).
[抗ウイルスコーティング用組成物の調製]
本発明でバインダーとして用いるペルオキソチタン酸水溶液は、本発明の実施に支障のないものであれば、何れの方法によって製造したものでも、又は、市販されているペルオキソチタン酸水溶液でも使用することができる。例えば、特許文献3に記載されているように、チタン原料含有水溶液に、反応当量より過剰の過酸化水素水を加え、次いでアンモニア水を加えて中和し、得られた黄色溶液を置してペルオキソチタン酸塩を沈殿させ、沈殿をろ取・洗浄し、水に懸濁させて過酸化水素水を加えると、黄色透明なペルオキソチタン酸水溶液が得られる。
 貴金属、例えば白金担持二酸化チタン(特許文献4)や銀イオン(特許文献5)は、本発明の目的に合致する物であれば、公知のものを使用することができる。
 以下に、本発明で用いる組成物の各成分について述べる。ここでは、水溶液はいずれも質量容積パーセント濃度を表す。
[ペルオキソチタン酸水溶液(A液)の製造]
 四塩化チタンの60%水溶液39.6mlに蒸留水を加え、波長4000mlとした溶液に、2.5%アンモニア水440mlを滴下して水酸化チタンを沈殿させた。沈殿物をろ取し、蒸留水で洗浄した水酸化チタンに、蒸留水を加えて720mlとした水酸化チタン懸濁液に、30%過酸化水素水80mlを加えて攪拌した。7℃において24時間放置して余剰の過酸化水素水を分解させて、黄色粘性のペルオキソチタン酸水溶液1000mlを得た。
[アナターゼ型酸化チタン分散液(B液)の製造]
 得られたペルオキソチタン酸水溶液(A液)を耐圧ガラス容器に密閉して水浴中で12時間煮沸(98~100℃)して、淡黄色半透明の1.00%のアナターゼ型酸化チタン分散液(B液)が生成した。
[白金担持酸化チタン分散液(C液)の製造]
300mlの蒸留水に、白金硝酸アンモニウムを1.7g溶解させ、白金塩の溶液を調製した。この白金塩溶液に、30gのアナターゼ型酸化チタン粉末を添加し、30分間混合した。この混合液を110℃にて蒸発乾固させた。得られた固体を粉砕した粉末を1℃/分で300℃まで昇温し、300℃にて10時間維持して焼成した。得られた酸化白金を担持した二酸化チタン粉末30gを69.9gの蒸留水に分散し、ポリアクリル酸アンモニウム0.1g添加して、30分攪拌した後、超音波処理を行い白金担持酸化チタン分散液(C液)を製造した。
[銀イオン溶液(D液)の製造]
蒸留水994mlに50%フィチン酸溶液を6ml、酢酸銀433.0mgを完全に溶解させた。得られた酢酸銀水溶液に重炭酸ナトリウムを2g、分散剤のポリアクリル酸ナトリウムを6g添加し紫紺色透明な銀イオン溶液(D液)を製造した。
<抗ウイルスコーティング用組成物1>
 光触媒二酸化チタンとしてアナターゼ型酸化チタン分散液(B液)25ml、バインダーとしてペルオキソチタン酸水溶液(A液)25ml、白金担持酸化チタン分散液(C液)8.0mg、銀イオン溶液(D液)1mlを混合し、蒸留水を加えて全体を100gとして、抗ウイルスコーティング用組成物1を調製した。
 抗ウイルスコーティング用組成物1の金属成分は原子吸光によって確認した。その組成は、抗ウイルスコーティング用組成物1の質量100に対して、質量%でチタン0.3%、白金0.00008%、銀0.00028%であった。
<抗ウイルスコーティング用組成物2>
 光触媒二酸化チタンとしてアナターゼ型酸化チタン分散液(B液)54ml、バインダーとしてペルオキソチタン酸水溶液(A液)27ml、白金担持酸化チタン分散液(C液)5mg、銀イオン溶液(D液)2.1mlを混合し、蒸留水を加えて全体を100gとして、抗ウイルスコーティング用組成物2を調製した。白金担持酸化チタン分散液(C液)は予め超音波処理を行った後に添加した。
 抗ウイルスコーティング用組成物2の金属成分は原子吸光によって確認した。その組成は、抗ウイルスコーティング用組成物2の質量100に対して、質量%でチタン0.49%、白金0.00005%、銀0.00059%であった。
<抗ウイルスコーティング用組成物3>
 光触媒二酸化チタンとしてアナターゼ型酸化チタン分散液(B液)45ml、バインダーとしてペルオキソチタン酸水溶液(A液)45ml、白金担持酸化チタン分散液(C液)5mg、銀イオン溶液(D液)2.1mlを配合して、抗ウイルスコーティング用組成物3を調製した。白金担持酸化チタン分散液(C液)は予め超音波処理を行った後に添加した。
 抗ウイルスコーティング用組成物3の金属成分は原子吸光によって確認した。その組成は、抗ウイルスコーティング用組成物3の質量100に対して、質量%でチタン0.54%、白金0.00005%、銀0.00060%であった。
[Preparation of antiviral coating composition]
The aqueous peroxotitanic acid solution used as a binder in the present invention may be produced by any method or commercially available aqueous peroxotitanic acid solution as long as it does not interfere with the practice of the present invention. . For example, as described in Patent Document 3, to an aqueous solution containing a titanium raw material, hydrogen peroxide solution in excess of the reaction equivalent is added, then aqueous ammonia is added for neutralization, and the resulting yellow solution is placed. Peroxotitanate is precipitated, the precipitate is collected by filtration, washed, suspended in water, and hydrogen peroxide solution is added to obtain a yellow and transparent peroxotitanic acid aqueous solution.
Known noble metals such as platinum-supported titanium dioxide (Patent Document 4) and silver ions (Patent Document 5) can be used as long as they meet the purpose of the present invention.
Each component of the composition used in the present invention is described below. All aqueous solutions herein express mass volume percent concentrations.
[Production of peroxotitanic acid aqueous solution (A solution)]
Distilled water was added to 39.6 ml of a 60% aqueous solution of titanium tetrachloride to adjust the wavelength to 4000 ml, and 440 ml of 2.5% aqueous ammonia was added dropwise to precipitate titanium hydroxide. The precipitate was collected by filtration, and distilled water was added to the titanium hydroxide washed with distilled water to prepare a titanium hydroxide suspension of 720 ml. The mixture was left at 7° C. for 24 hours to decompose excess hydrogen peroxide to obtain 1000 ml of a yellow viscous peroxotitanic acid aqueous solution.
[Production of anatase-type titanium oxide dispersion (liquid B)]
The resulting peroxotitanic acid aqueous solution (solution A) was sealed in a pressure-resistant glass container and boiled (98 to 100° C.) for 12 hours in a water bath to obtain a pale yellow translucent 1.00% anatase titanium oxide dispersion. (Liquid B) was produced.
[Production of platinum-supporting titanium oxide dispersion (solution C)]
A platinum salt solution was prepared by dissolving 1.7 g of platinum ammonium nitrate in 300 ml of distilled water. 30 g of anatase titanium oxide powder was added to the platinum salt solution and mixed for 30 minutes. The mixture was evaporated to dryness at 110°C. The powder obtained by pulverizing the obtained solid was heated to 300° C. at 1° C./min and fired while maintaining at 300° C. for 10 hours. 30 g of the resulting platinum oxide-supported titanium dioxide powder was dispersed in 69.9 g of distilled water, 0.1 g of ammonium polyacrylate was added, and after stirring for 30 minutes, ultrasonic treatment was performed to disperse platinum-supported titanium oxide. A liquid (C liquid) was produced.
[Production of silver ion solution (D solution)]
6 ml of 50% phytic acid solution and 433.0 mg of silver acetate were completely dissolved in 994 ml of distilled water. 2 g of sodium bicarbonate and 6 g of sodium polyacrylate as a dispersing agent were added to the resulting silver acetate aqueous solution to prepare a purple-blue transparent silver ion solution (solution D).
<Antiviral coating composition 1>
25 ml of anatase-type titanium oxide dispersion (solution B) as photocatalyst titanium dioxide, 25 ml of peroxotitanic acid aqueous solution (solution A) as binder, 8.0 mg of platinum-supported titanium oxide dispersion (solution C), 1 ml of silver ion solution (solution D) were mixed, and distilled water was added to bring the total to 100 g to prepare an antiviral coating composition 1.
The metal component of antiviral coating composition 1 was confirmed by atomic absorption. The composition was 0.3% titanium, 0.00008% platinum, and 0.00028% silver based on 100% by weight of antiviral coating composition 1.
<Antiviral coating composition 2>
54 ml of anatase-type titanium oxide dispersion (solution B) as photocatalyst titanium dioxide, 27 ml of peroxotitanic acid aqueous solution (solution A) as binder, 5 mg of platinum-supported titanium oxide dispersion (solution C), 2.1 ml of silver ion solution (solution D) were mixed, and distilled water was added to bring the total to 100 g to prepare antiviral coating composition 2. The platinum-supporting titanium oxide dispersion (solution C) was added after being subjected to ultrasonic treatment in advance.
The metal component of antiviral coating composition 2 was confirmed by atomic absorption. The composition was 0.49% titanium, 0.00005% platinum, and 0.00059% silver based on 100% by mass of antiviral coating composition 2.
<Antiviral coating composition 3>
45 ml of anatase-type titanium oxide dispersion (solution B) as photocatalyst titanium dioxide, 45 ml of peroxotitanic acid aqueous solution (solution A) as binder, 5 mg of platinum-supported titanium oxide dispersion (solution C), 2.1 ml of silver ion solution (solution D) was blended to prepare an antiviral coating composition 3. The platinum-supporting titanium oxide dispersion (solution C) was added after being subjected to ultrasonic treatment in advance.
The metal component of antiviral coating composition 3 was confirmed by atomic absorption. The composition was 0.54% titanium, 0.00005% platinum, and 0.00060% silver based on 100% by weight of antiviral coating composition 3.
[抗ウイルスコーティング方法]
<Aコーティング方法>
 スプレイガンを用いて、坑ウイルス物の基材としてガラス基板又は合成石英基板に抗ウイルスコーティング用組成物を30回から60回スプレーコーティングを繰り返すことによって膜厚1μmになるようにコーティングを行った。
<Bコーティング方法>
 スプレイガンを用いて、坑ウイルス物の基材としてガラス基板又は合成石英基板に抗ウイルスコーティング用組成物を2回スプレーコーティングして膜厚1μmになるようにコーティングを行った。
[Antiviral coating method]
<A coating method>
Using a spray gun, the antiviral coating composition was applied to a glass substrate or a synthetic quartz substrate as an antiviral base material by repeating spray coating 30 to 60 times so that the film thickness was 1 μm.
<B coating method>
Using a spray gun, the antiviral coating composition was spray-coated twice on a glass substrate or a synthetic quartz substrate as a base material of the antiviral substance so that the film thickness was 1 μm.
[実施例1]
 抗ウイルスコーティング用組成物1を準備して、基材としてガラス基板又は合成石英基板にAコーティング方法によってコーティングして坑ウイルス物を作成した。
[Example 1]
An antiviral coating composition 1 was prepared and coated on a glass substrate or a synthetic quartz substrate as a base material by the A coating method to prepare an antiviral material.
[実施例2]
 抗ウイルスコーティング用組成物2を準備して、基材としてガラス基板又は合成石英基板にAコーティング方法によってコーティングして坑ウイルス物を作成した。
[Example 2]
An antiviral coating composition 2 was prepared and coated on a glass substrate or a synthetic quartz substrate as a base material by the A coating method to prepare an antiviral material.
[実施例3]
 抗ウイルスコーティング用組成物3を準備して、基材としてガラス基板又は合成石英基板にAコーティング方法によってコーティングして坑ウイルス物を作成した。
[Example 3]
An antiviral coating composition 3 was prepared and coated on a glass substrate or a synthetic quartz substrate as a base material by the A coating method to prepare an antiviral material.
[実施例4]
 抗ウイルスコーティング用組成物3を準備して、合成石英基板又はガラス基板にBコーティング方法によってコーティングして坑ウイルス物を作成した。
[Example 4]
An antiviral coating composition 3 was prepared and coated on a synthetic quartz substrate or a glass substrate by the B coating method to prepare an antiviral material.
[実施例5]
 抗ウイルスコーティング用組成物3を準備して、基材としてガラス基板又は合成石英基板にアンダーコーティングを行った後にAコーティング方法によってして坑ウイルス物を作成した。
[Example 5]
An antiviral coating composition 3 was prepared and undercoated on a glass substrate or a synthetic quartz substrate as a base material, and then an antiviral product was produced by the A coating method.
[実施例6]
 抗ウイルスコーティング用組成物3を準備して、基材としてガラス基板又は合成石英基板にアンダーコーティングを行った後にBコーティング方法によってコーティングして坑ウイルス物を作成した。
[Example 6]
An antiviral coating composition 3 was prepared, undercoated on a glass substrate or a synthetic quartz substrate as a base material, and then coated by the B coating method to prepare an antiviral article.
[比較例1]
 ガラス基板又は合成石英基板に、アンダーコーティングを行いアンダーコーティング膜を作成した。
[Comparative Example 1]
An undercoating film was formed by undercoating a glass substrate or a synthetic quartz substrate.
[抗ウイルス物の表面濡れ性]
 50mm×50mm×1mmのガラス基板にコーティングした後、暗所に保管しておいた実施例1乃至6及び比較例1のコーティング表面に蒸留水2μlの水滴を滴下して水との接触角をFTÅ188(First Ten Ångstroms製)を用いて測定した。表1に実施例1乃至6及び比較例1の水接触角示す。
[Surface wettability of antiviral substance]
After coating a glass substrate of 50 mm × 50 mm × 1 mm, a water droplet of 2 μl of distilled water was dropped on the coating surface of Examples 1 to 6 and Comparative Example 1, which was stored in a dark place, and the contact angle with water was FTÅ188. (manufactured by First Ten Ångstroms). Table 1 shows the water contact angles of Examples 1 to 6 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
 表面と水との接触角の値は、表面の疎水性又は親水性の濡れ性に影響され、さらに表面の微細構造による表面積の影響を受けることが知られている。
 表1において、同じAコーティング方法でコーティングした組成の異なる実施例1乃至3を比べると、接触角は銀イオン濃度の増加により小さくなり、親水性が増大していることが示された。
 アンダーコーティングによる影響について、同じ組成でアンダーコーティング膜を設けた実施例5及び実施例6と、対応するアンダーコーティング膜のない実施例3及び実施例4とを比較すると、アンダーコーティング膜を設けた実施例5及び6の方は接触角が小さく、親水性が増大していることが示唆された。
 コーティング方法による影響について、コーティング方法の異なる実施例3と実施例4とを比較し、さらにアンダーコーティング膜を設けた実施例5と実施例6とを比較すると、Aコーティング方法の方がいずれもBコーティング方法より接触角は小さい。この同一組成での接触角の違いは、コーティング方法によって表面構造が異なり、Aコーティング方法の方が表面積は大きいことが示唆される。
Figure JPOXMLDOC01-appb-T000001
It is known that the value of the contact angle between a surface and water is affected by the hydrophobic or hydrophilic wettability of the surface and is further affected by the surface area due to the microstructure of the surface.
In Table 1, comparing Examples 1 to 3 with different compositions coated by the same A coating method, the contact angle decreased with increasing silver ion concentration, indicating an increase in hydrophilicity.
Regarding the influence of the undercoating, when comparing Examples 5 and 6 with the same composition and an undercoating film and Examples 3 and 4 without the corresponding undercoating film, the results of the experiment with the undercoating film were as follows. Examples 5 and 6 had lower contact angles, suggesting increased hydrophilicity.
Regarding the influence of the coating method, when comparing Examples 3 and 4 with different coating methods, and further comparing Example 5 and Example 6 provided with an undercoating film, the A coating method is better than the B The contact angle is smaller than the coating method. This difference in contact angle with the same composition suggests that the surface structure differs depending on the coating method, and that the A coating method has a larger surface area.
[抗ウイルス物のセルフクリーニング性能試験]
 抗ウイルス物の可視光照射に対する光触媒性を、JIS R 1753:2013「可視光応答形光触媒材料のセルフクリーニング性能試験方法」に準拠して調べた。抗ウイルス物の基材として、50mm×50mm×1mmのガラス基板を用いた実施例1及び実施例2のコーティング表面にステアリン酸を付着させ、蒸留水2μlの水滴を滴下して、水との初期接触角を測定してから、白色蛍光灯の波長380nm以下の紫外光をカットするフィルターによって得られる可視光を照射し、照度10000lxの可視光照射による接触角の経時変化を測定した。
 可視光照射を開始してから接触角が初期接触角の半分の値になるまでの時間(初期接触角半減時間)及び10°以下となるまでの時間(水接触角接触角減少時間(10°))を求め、可視光応答形光触媒活性の指針とした。
 実施例1及び実施例2の接触角の測定結果を表2に示す。
[Self-cleaning performance test of antiviral substance]
The photocatalytic properties of the antiviral substance against visible light irradiation were examined in accordance with JIS R 1753:2013 "Self-cleaning performance test method for visible light responsive photocatalytic materials". Stearic acid was attached to the coating surface of Example 1 and Example 2 using a glass substrate of 50 mm × 50 mm × 1 mm as the base material of the antiviral substance, and 2 μl of distilled water was added to the initial reaction with water. After measuring the contact angle, it was irradiated with visible light obtained through a filter that cuts off ultraviolet light with a wavelength of 380 nm or less from a white fluorescent lamp, and the change over time of the contact angle was measured by visible light irradiation with an illuminance of 10000 lx.
The time from the start of visible light irradiation until the contact angle becomes half the value of the initial contact angle (initial contact angle half-life time) and the time until it becomes 10 ° or less (water contact angle contact angle decrease time (10 ° )) was determined and used as a guideline for visible-light-responsive photocatalytic activity.
Table 2 shows the measurement results of the contact angles of Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000002
 本願発明の組成物は可視光応答形光触媒活性を示すことが確認された。
Figure JPOXMLDOC01-appb-T000002
It was confirmed that the composition of the present invention exhibits visible-light-responsive photocatalytic activity.
 室内のさまざまな坑ウイルス対象物の基材上に抗ウイルス性を付与するために基材上に形成する抗ウイルスコーティング膜は、可視光応答形光触媒活性に加えて、コーティングされた坑ウイルス対象物の視認性を確保する必要がある。
 そこで、抗ウイルスコーティング膜の着色の度合いや曇り度を小さくするために、坑ウイルスコーティング用組成物の成分やその濃度及び坑ウイルスコーティング方法を検討した。
[坑ウイルス物の光学評価]
 抗ウイルスコーティング膜の紫外可視吸収スペクトル及びヘーズ値を測定して、抗ウイルスコーティング膜の着色や曇り度に影響を与える組成の影響について調べた。
 抗ウイルス物の基材として合成石英基板を用いた実施例1及び実施例4について、紫外可視分光光度計を用いてコーティングしていない合成石英基板をレファレンスとして測定した。
 抗ウイルスコーティング膜の吸収スペクトルは、酸化チタンに基づく波長300nm付近に大きな吸収があり、波長400nm以上の可視領域へ吸収の裾を引くスペクトル形状である。この波長400nm以上の可視領域へ吸収の裾の吸光度が増大すると、抗ウイルスコーティング膜は黄色に着色いた度合いが大きくなり、コーティングされた基材の視認性が悪くなる。一方、可視領域へ吸収の裾の吸光度が減少すると、抗ウイルスコーティング膜の着色の度合いが小さくなり基材の視認性が良くなる。
坑ウイルスコーティング用組成物の組成の違いによる抗ウイルスコーティング膜の着色度合いを示す指標として、吸収スペクトルの300nmでの吸光度で、各波長での吸光度を除して規格化した。
実施例1及び実施例4について、300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度を表3にまとめる。
The antiviral coating film formed on the substrate to impart antiviral properties on the substrate of various antiviral objects in the room, in addition to the visible light-responsive photocatalytic activity, visibility must be ensured.
Therefore, in order to reduce the degree of coloring and cloudiness of the antiviral coating film, the components of the antiviral coating composition, their concentrations, and the antiviral coating method were investigated.
[Optical evaluation of antiviral products]
The UV-visible absorption spectrum and haze value of the antiviral coating film were measured to investigate the effect of the composition on the coloration and haze of the antiviral coating film.
For Examples 1 and 4, in which a synthetic quartz substrate was used as the base material of the antiviral substance, measurements were made using an uncoated synthetic quartz substrate as a reference using a UV-visible spectrophotometer.
The absorption spectrum of the antiviral coating film has a spectral shape in which there is a large absorption around a wavelength of 300 nm based on titanium oxide, and the absorption skirts in the visible region with a wavelength of 400 nm or more. When the absorbance of the tail of absorption in the visible region of 400 nm or more increases, the degree of yellowing of the antiviral coating film increases, and the visibility of the coated substrate deteriorates. On the other hand, when the absorbance of the tail of the absorption into the visible region decreases, the degree of coloring of the antiviral coating film decreases and the visibility of the substrate improves.
As an index showing the degree of coloration of the antiviral coating film due to the difference in the composition of the antiviral coating composition, the absorbance at each wavelength was divided by the absorbance at 300 nm in the absorption spectrum and normalized.
Table 3 summarizes the normalized absorbance at wavelengths 400, 450 and 500 nm normalized by dividing by the absorbance at 300 nm for Examples 1 and 4.
Figure JPOXMLDOC01-appb-T000003
 本願発明の坑ウイルスコーティング用組成物の成分のなかで、白金担持酸化チタンの含有量を小さくすることにより、波長400nm以上の可視領域の吸収端の裾の吸光度が減少し、着色が軽減していることが確認された。
Figure JPOXMLDOC01-appb-T000003
Among the components of the antiviral coating composition of the present invention, by reducing the content of platinum-supported titanium oxide, the absorbance at the tail of the absorption edge in the visible region with a wavelength of 400 nm or more is reduced, and coloring is reduced. It was confirmed that
[抗ウイルスコーティング膜のヘーズ値]
 坑ウイルス物の坑ウイルスコーティングされた基材の視認性の評価として、抗ウイルス物の基材として、50mm×50mm×1mmのガラス基板を用いた実施例1及び実施例4のヘーズ値を測定した。JIS K 7136「プラスチックの透過率および濁度の測定」に準拠して、濁度計(NDH2000 日本電色工業製)でD65光源を用いて、測定径20mm、3回測定の平均値から求めたヘーズ値(%)を表4にまとめる。
[Haze value of antiviral coating film]
To evaluate the visibility of the antiviral-coated base material of the antiviral substance, the haze values of Examples 1 and 4 were measured using a glass substrate of 50 mm × 50 mm × 1 mm as the base material of the antiviral substance. . Based on JIS K 7136 "Measurement of transmittance and turbidity of plastic", using a D 65 light source with a turbidity meter (NDH2000 manufactured by Nippon Denshoku Industries), a measurement diameter of 20 mm, obtained from the average value of three measurements Table 4 summarizes the haze values (%) obtained.
Figure JPOXMLDOC01-appb-T000004
 実施例4は実施例1に比べてヘーズ値が大きく減少していることが確認された。
Figure JPOXMLDOC01-appb-T000004
It was confirmed that the haze value of Example 4 was greatly reduced compared to Example 1.
[坑ウイルス物の抗ウイルス活性と光触媒効果評価]
 JIS R1756:2020「ファインセラミックス-可視光応答形光触媒材料の抗ウイルス性試験方法-バクテリオファージQβを用いる方法」に準拠して、坑ウイルス物の抗ウイルス活性と光触媒効果評価を行った。坑ウイルス物の基材として、50mm×50mm×2mmのガラス基板を用いた実施例4(以下、試験片と称する)をシャーレに置き、バクテリオファージ液(Qβ:NBRC20012)を試験片に滴下し、密着フィルム(OHPフィルム)でバクテリオファージ液を覆い、保湿ガラス(テンパックスガラス)をシャーレの上にかぶせた。試験片を入れたシャーレに波長380nm以下をカットした白色蛍光灯による可視光を規定時間照射後、試験片及び密着フィルムからバクテリオファージ液を洗い出し、この洗い出されたバクテリオファージの感染価をバクテリオファージに感受性をもつ大腸菌(NBRC106373)を用いたプラーク形成法によって測定した。コントロールとしてコーティングしていない50mm×50mm×2mmのガラス基板を用い、抗ウイルス物の試験片と同様の条件で可視光照射をしたコントロール、暗所に置いた抗ウイルス物の試験片及びコントロールの測定結果とを比較して抗ウイルス活性と光触媒効果の値を算出した。
 表5に坑ウイルス試験の結果をまとめる。
[Evaluation of antiviral activity and photocatalytic effect of antiviral substances]
In accordance with JIS R1756:2020 "Fine ceramics-Antiviral test method for visible light responsive photocatalyst material-Method using bacteriophage Qβ", the antiviral activity and photocatalytic effect of the antiviral substance were evaluated. Example 4 using a 50 mm × 50 mm × 2 mm glass substrate (hereinafter referred to as a test piece) was placed in a petri dish as a base material for the antiviral substance, and a bacteriophage liquid (Qβ: NBRC20012) was dropped on the test piece. The bacteriophage solution was covered with an adhesive film (OHP film), and a moisturizing glass (Tempax glass) was placed on the petri dish. After irradiating the petri dish containing the test piece with visible light from a white fluorescent lamp with a wavelength of 380 nm or less cut for a specified period of time, the bacteriophage liquid is washed out from the test piece and the adhesive film, and the infectivity of the washed out bacteriophage is determined by the bacteriophage. was determined by the plaque formation method using E. coli (NBRC106373) sensitive to . Using an uncoated 50 mm × 50 mm × 2 mm glass substrate as a control, the control was irradiated with visible light under the same conditions as the antiviral test piece, and the antiviral test piece placed in the dark and the control were measured. The results were compared to calculate the values of antiviral activity and photocatalytic effect.
Table 5 summarizes the results of the antiviral testing.
Figure JPOXMLDOC01-appb-T000005
 波長380nm以下の紫外光をカットした白色蛍光灯500lx2時間照射で坑ウイルス活性値が2.0を超える値が得られた。即ち、ウイルス増殖を抑制する値が99%を超える値である。実施例4の抗ウイルスコーティング膜には銀イオンが含まれるため、銀イオンによる坑ウイルス効果も含まれる。しかしながら、光照射による坑ウイルス活性値と暗所での坑ウイルス活性値との差である光触媒効果0.6が得られており、光触媒効果による坑ウイルス性の寄与が大きいことが確認された。
Figure JPOXMLDOC01-appb-T000005
An antiviral activity value exceeding 2.0 was obtained by irradiation for 2 hours with 500 l of a white fluorescent lamp in which ultraviolet light with a wavelength of 380 nm or less was cut. That is, the value that suppresses viral proliferation exceeds 99%. Since the antiviral coating film of Example 4 contains silver ions, the antiviral effect of silver ions is also included. However, a photocatalytic effect of 0.6, which is the difference between the antiviral activity value by light irradiation and the antiviral activity value in the dark, was obtained, confirming that the photocatalytic effect greatly contributes to the antiviral properties.
 表1乃至表5の結果より、本発明によって、室内の坑ウイルス対象物にコーティングすることにより、白色蛍光灯500lxの照射での光触媒効果によって抗ウイルス活性値2.0を超える抗ウイルス性能を有する坑ウイルス物を簡便に得ることができる。本発明の抗ウイルスコーティング膜は、透明性が高く、曇り度が低いために視認性があり、広くさまざまな坑ウイルス対象物にコーティングできる。

 
From the results in Tables 1 to 5, it can be seen that by coating an indoor antiviral object according to the present invention, it has an antiviral performance exceeding an antiviral activity value of 2.0 due to the photocatalytic effect under irradiation with a white fluorescent lamp of 500 lx. An antiviral product can be obtained easily. The antiviral coating film of the present invention has high transparency and low haze, so that it is visible and can be applied to a wide variety of antiviral objects.

Claims (17)

  1.  室内に用いる抗ウイルスコーティング用組成物であって、
     水を主成分とする分散剤に分散され、
     質量%でチタン:0.3~0.6%、白金:1×10-5~1×10-4%、及び銀:3×10-4~6×10-4%を含み、
     前記チタンは、
     光触媒として体積基準の平均粒径が10~100nmであるアナターゼ型酸化チタンとバインダーとしてペルオキソチタン酸とからなり、
     前記白金は、白金担持酸化チタンであり、
     前記銀は、酢酸銀より生成した銀イオンであり、
     JIS R1756:2020に準拠した抗ウイルス活性値が2.0を超えることを特徴とする抗ウイルスコーティング用組成物。
    An antiviral coating composition for indoor use,
    Dispersed in a water-based dispersant,
    Titanium: 0.3 to 0.6%, platinum: 1 x 10-5 to 1 x 10-4%, and silver: 3 x 10-4 to 6 x 10-4% by mass,
    The titanium is
    Consists of an anatase-type titanium oxide having a volume-based average particle size of 10 to 100 nm as a photocatalyst and peroxotitanic acid as a binder,
    The platinum is platinum-supported titanium oxide,
    The silver is a silver ion generated from silver acetate,
    An antiviral coating composition having an antiviral activity value exceeding 2.0 according to JIS R1756:2020.
  2.  前記分散剤は、水に加え、エタノール、イソプロパノール、ひまし油からなる群から1以上選ばれることを特徴とする請求項1に記載の抗ウイルスコーティング用組成物。 The antiviral coating composition according to claim 1, wherein the dispersant is one or more selected from the group consisting of ethanol, isopropanol, and castor oil, in addition to water.
  3.  前記分散剤は、香料及び界面活性剤を含む添加剤を含むことを特徴とする請求項2に記載の抗ウイルスコーティング用組成物。 The antiviral coating composition according to claim 2, wherein the dispersant contains an additive containing a fragrance and a surfactant.
  4.  請求項1乃至3のいずれか1項に記載の抗ウイルスコーティング用組成物を準備して攪拌する攪拌処理段階と、
     前記攪拌処理段階の後の処理物を抗ウイルス対象物にコーティングする段階と、からなることを特徴とする抗ウイルスコーティング方法。
    A stirring treatment step of preparing and stirring the antiviral coating composition according to any one of claims 1 to 3;
    and coating an antiviral object with the treated material after the agitation step.
  5.  請求項1乃至4のいずれか1項に記載の抗ウイルスコーティング用組成物を準備して攪拌する攪拌処理段階と、
     抗ウイルス対象物にアンダーコーティング膜を形成する段階と、
     前記攪拌処理段階の後の処理物を前記アンダーコーティング膜上にコーティングする段階と、からなることを特徴とする抗ウイルスコーティング方法。
    A stirring treatment step of preparing and stirring the antiviral coating composition according to any one of claims 1 to 4;
    forming an undercoating film on an antiviral object;
    and coating the undercoating film with the treated product after the stirring step.
  6.  前記攪拌処理段階の後の処理物をコーティングする段階は、
     スプレーコーティング、ロールコーティング、及び刷毛コーティング法のいずれか1方法によるコーティングを2回以下行うことを特徴とする請求項4又は5に記載の抗ウイルスコーティング方法。
    The step of coating the processed material after the stirring step includes:
    6. The antiviral coating method according to claim 4 or 5, wherein the coating is performed twice or less by any one of spray coating, roll coating, and brush coating.
  7.  前記コーティングは、
     白色蛍光灯500lxの2時間の照射下でのJIS R1756:2020に準拠した抗ウイルス活性値は2.0を超えるようにコーティングすることを特徴とする請求項6に記載の抗ウイルスコーティング方法。
    The coating is
    7. The antiviral coating method according to claim 6, wherein the antiviral activity value in accordance with JIS R1756:2020 under irradiation with a white fluorescent lamp of 500 lx for 2 hours exceeds 2.0.
  8.  前記コーティングは、
     白色蛍光灯500lxの2時間の照射下でのJIS R1756:2020に準拠した光触媒効果は0.6以上であるようにコーティングすることを特徴とする請求項6に記載の抗ウイルスコーティング方法。
    The coating is
    7. The antiviral coating method according to claim 6, wherein the photocatalytic effect according to JIS R1756:2020 under irradiation with a white fluorescent lamp of 500 lx for 2 hours is 0.6 or more.
  9.  前記コーティングは、
     水接触角の範囲が7°~22°であるようにコーティングすることを特徴とする請求項6に記載の抗ウイルスコーティング方法。
    The coating is
    7. The antiviral coating method according to claim 6, wherein coating is performed so that the water contact angle ranges from 7° to 22°.
  10.  前記コーティングは、
     波長300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度が、
     それぞれ0.3以下、0.15以下及び0.1以下であるようにコーティングすることを特徴とする請求項6に記載の抗ウイルスコーティング方法。
    The coating is
    Normalized absorbance at wavelengths 400, 450, 500 nm normalized by dividing by absorbance at wavelength 300 nm,
    7. The antiviral coating method according to claim 6, wherein the coating is performed to be 0.3 or less, 0.15 or less, and 0.1 or less, respectively.
  11.  前記コーティングは、
     ヘーズ値は5%以下であるようにコーティングすることを特徴とする請求項6に記載の抗ウイルスコーティング方法。
    The coating is
    7. The antiviral coating method according to claim 6, wherein the haze value is 5% or less.
  12.  基材と抗ウイルスコーティング膜からなる抗ウイルス物であって、
     質量%でチタン:50.0~65.0%、白金:0.005~0.015%、及び銀:0.05~0.08%を含み、
     前記チタンは、
     光触媒として体積基準の平均粒径が10~100nmであるアナターゼ型酸化チタンとバインダーとしてペルオキソチタン酸とからなり、
     前記白金は、白金担持酸化チタンであり、
     前記銀は、酢酸銀より生成した銀イオンであり、
     JIS R1756:2020準拠の抗ウイルス活性値が2.0を超える
    前記抗ウイルスコーティング膜を基材上に有することを特徴とする抗ウイルス物。
    An antiviral substance comprising a base material and an antiviral coating film,
    Titanium: 50.0 to 65.0%, platinum: 0.005 to 0.015%, and silver: 0.05 to 0.08% by mass,
    The titanium is
    Consists of an anatase-type titanium oxide having a volume-based average particle size of 10 to 100 nm as a photocatalyst and peroxotitanic acid as a binder,
    The platinum is platinum-supported titanium oxide,
    The silver is a silver ion generated from silver acetate,
    An antiviral article comprising, on a substrate, the antiviral coating film having an antiviral activity value exceeding 2.0 according to JIS R1756:2020.
  13.  前記抗ウイルスコーティング膜は、
     白色蛍光灯500lxの2時間の照射下でのJIS R1756:2020に準拠した抗ウイルス活性値が2.0を超えることを特徴とする請求項12に記載の抗ウイルス物。
    The antiviral coating film is
    13. The antiviral substance according to claim 12, wherein the antiviral activity value according to JIS R1756:2020 under irradiation with a white fluorescent lamp of 500 lx for 2 hours exceeds 2.0.
  14.  前記抗ウイルスコーティング膜は、
     白色蛍光灯500lx2時間の照射下でのJIS R1756:2020準拠の光触媒効果が0.6以上であることを特徴とする請求項12又は13に記載の抗ウイルス物。
    The antiviral coating film is
    14. The antiviral product according to claim 12 or 13, wherein the photocatalytic effect in accordance with JIS R1756:2020 under irradiation with a white fluorescent lamp of 500 l for 2 hours is 0.6 or more.
  15.  前記抗ウイルスコーティング膜は、
     水接触角の範囲が7°~22°であることを特徴とする請求項12乃至14のいずれか1項に記載の抗ウイルス物。
    The antiviral coating film is
    15. The antiviral product according to any one of claims 12 to 14, wherein the water contact angle ranges from 7° to 22°.
  16.  前記抗ウイルスコーティング膜は、
     波長300nmでの吸光度で除して規格化した波長400、450、500nmにおける規格化された吸光度が、
     それぞれ0.3以下、0.15以下及び0.1以下であることを特徴とする請求項12乃至15のいずれか1項に記載の抗ウイルス物。
    The antiviral coating film is
    Normalized absorbance at wavelengths 400, 450, 500 nm normalized by dividing by absorbance at wavelength 300 nm,
    16. The antiviral substance according to any one of claims 12 to 15, which is 0.3 or less, 0.15 or less and 0.1 or less, respectively.
  17.  前記抗ウイルスコーティング膜は、
     ヘーズ値が6%以下であることを特徴とする請求項12乃至16のいずれか1項に記載の抗ウイルス物。
     
    The antiviral coating film is
    17. The antiviral product according to any one of claims 12 to 16, which has a haze value of 6% or less.
PCT/JP2022/006192 2021-02-25 2022-02-16 Composition for antiviral coating, antiviral coating method, and antiviral material WO2022181421A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-029318 2021-02-25
JP2021029318A JP6935603B1 (en) 2021-02-25 2021-02-25 Antiviral coating compositions, antiviral coating methods and antiviral products

Publications (1)

Publication Number Publication Date
WO2022181421A1 true WO2022181421A1 (en) 2022-09-01

Family

ID=77657897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006192 WO2022181421A1 (en) 2021-02-25 2022-02-16 Composition for antiviral coating, antiviral coating method, and antiviral material

Country Status (2)

Country Link
JP (1) JP6935603B1 (en)
WO (1) WO2022181421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807836C1 (en) * 2023-05-10 2023-11-21 Акционерное общество "Объединение "Ярославские краски" Antibacterial, anti viral, anti fungal paint materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097486B1 (en) 2021-09-07 2022-07-07 ジオマテック株式会社 Articles with anti-viral microstructures and methods for transferring antiviral microstructures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302980A (en) * 2000-04-19 2001-10-31 Asahi Kasei Corp Hinokitiol-containing coating
JP2013032474A (en) * 2010-10-20 2013-02-14 Shin-Etsu Chemical Co Ltd Photocatalyst coating liquid, and photocatalyst thin film obtained therefrom
JP2014167011A (en) * 2006-02-23 2014-09-11 E.I.Du Pont De Nemours And Company Removable antibacterial coating composition and application method thereof
WO2016148108A2 (en) * 2015-03-13 2016-09-22 株式会社バイオミミック Paint composite film comprising anatase-type titanium oxide, and method for manufacturing same
WO2017033926A1 (en) * 2015-08-25 2017-03-02 富士フイルム株式会社 Antibacterial solution, antibacterial film, spray and cloth
JP2019063712A (en) * 2017-09-29 2019-04-25 信越化学工業株式会社 Photocatalyst/alloy fine-particle dispersion having antibacterial/antifungal properties, method of preparation thereof, and member having photocatalyst/alloy thin film on surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302980A (en) * 2000-04-19 2001-10-31 Asahi Kasei Corp Hinokitiol-containing coating
JP2014167011A (en) * 2006-02-23 2014-09-11 E.I.Du Pont De Nemours And Company Removable antibacterial coating composition and application method thereof
JP2013032474A (en) * 2010-10-20 2013-02-14 Shin-Etsu Chemical Co Ltd Photocatalyst coating liquid, and photocatalyst thin film obtained therefrom
WO2016148108A2 (en) * 2015-03-13 2016-09-22 株式会社バイオミミック Paint composite film comprising anatase-type titanium oxide, and method for manufacturing same
WO2017033926A1 (en) * 2015-08-25 2017-03-02 富士フイルム株式会社 Antibacterial solution, antibacterial film, spray and cloth
JP2019063712A (en) * 2017-09-29 2019-04-25 信越化学工業株式会社 Photocatalyst/alloy fine-particle dispersion having antibacterial/antifungal properties, method of preparation thereof, and member having photocatalyst/alloy thin film on surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807836C1 (en) * 2023-05-10 2023-11-21 Акционерное общество "Объединение "Ярославские краски" Antibacterial, anti viral, anti fungal paint materials

Also Published As

Publication number Publication date
JP2022130240A (en) 2022-09-06
JP6935603B1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
Page et al. Titania and silver–titania composite films on glass—potent antimicrobial coatings
JP6755598B1 (en) Antibacterial paint, antibacterial paint, antibacterial paint manufacturing method and antibacterial paint manufacturing method
Rtimi et al. Preparation and mechanism of Cu-decorated TiO2–ZrO2 films showing accelerated bacterial inactivation
JP5546575B2 (en) Sterilization method
Heo et al. Water-repellent TiO2-organic dye-based air filters for efficient visible-light-activated photochemical inactivation against bioaerosols
Kozlova et al. Inactivation and mineralization of aerosol deposited model pathogenic microorganisms over TiO2 and Pt/TiO2
CN103131313B (en) Compound type photocatalyst air purification aqueous inner wall paint and preparation method thereof
CN107469820A (en) A kind of photocatalyst and preparation method thereof
WO2022181421A1 (en) Composition for antiviral coating, antiviral coating method, and antiviral material
CN111683692A (en) Photocatalysis method for disinfecting inner wall surface and composition of washable bactericidal paint with photocatalysis performance
JP3914982B2 (en) Antibacterial material and antibacterial product using the same
WO2016122995A1 (en) Antibacterial composition of silver nanoparticles bonded to a dispersing agent
WO2012023612A1 (en) Method for producing photocatalyst coating film, and photocatalyst coating film
JP2006089858A (en) Photocatalytic wallpaper and porous photocatalytic wallpaper derived from the same
Latif et al. Novel method for preparation of pure and iron-doped titania nanotube coated wood surfaces to disinfect airborne bacterial species pseudomonas aeruginosa and staphylococcus aureus
US11906157B2 (en) Photocatalyst formulations and coatings
CN109694595A (en) Wide spectrum UV lamp coating and application thereof
KR102329494B1 (en) AIR STERILIZER INCLUDING PHOTOCATALYTIC FILER OF TiO2 BY VUV ULTRAVIOLET PHOTOPLASMA
Bucuresteanu et al. Preliminary Study on Light-Activated Antimicrobial Agents as Photocatalytic Method for Protection of Surfaces with Increased Risk of Infections
Guerrini Photocatalysis and virus. From theory to applications
WO2022070934A1 (en) Coating composition
KR100520479B1 (en) Photo-catalyst sol and preparation method thereof
WO2017178953A1 (en) System for illuminating spaces and purifying air therein by photocatalysis
Mili et al. Advances in nanoarchitectonics of antimicrobial tiles and a quest for anti-SARS-CoV-2 tiles
Bucure et al. Preliminary Study on Light-Activated Antimicrobial Agents as Photocatalytic Method for Protection of Surfaces with Increased Risk of Infections. Materials 2021, 14, 5307

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759460

Country of ref document: EP

Kind code of ref document: A1